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Abstract

An observation of Jupiterʼs tidal response is anticipated for the ongoing Juno spacecraft mission. We combine
self-consistent, numerical models of Jupiterʼs equilibrium tidal response with observed Doppler shifts from the
Juno gravity science experiment to test the sensitivity of the spacecraft to tides raised by the Galilean satellites and
the Sun. The concentric Maclaurin spheroid (CMS) method finds the equilibrium shape and gravity field of a
rotating, liquid planet with the tide raised by a satellite, expanded in Love numbers (knm). We present
improvements to the CMS theory that eliminate an unphysical center-of-mass offset and study in detail the
convergence behavior of the CMS approach. We demonstrate that the dependence of knm with orbital distance is
important when considering the combined tidal response for Jupiter. Conversely, the details of the interior structure
have a negligible influence on knm for models that match the zonal harmonics J2, J4, and J6, already measured to
high precision by Juno. As the mission continues, improved coverage of Jupiter’s gravity field at different phases
of Io’s orbit is expected to yield an observed value for the degree-two Love number (k22) and potentially select
higher-degree knm. We present a test of the sensitivity of the Juno Doppler signal to the calculated knm, which
suggests the detectability of k33, k42, and k31, in addition to k22. A mismatch of a robust Juno observation with the
remarkably small range in calculated Io equilibrium, k22=0.58976±0.0001, would indicate a heretofore
uncharacterized dynamic contribution to the tides.

Unified Astronomy Thesaurus concepts: Jupiter (873); Tides (1702); Outer planets (1191); Jovian satellites (872);
Planetary interior (1248); Tidal distortion (1697)

Supporting material: machine-readable tables

1. Introduction

Since orbital insertion in 2016 July, the Juno spacecraft has
yielded robust measurements of even (Folkner et al. 2017) and
odd (Iess et al. 2018) zonal harmonics of Jupiterʼs gravitational
field. These high-precision gravity measurements inform our
understanding of Jupiterʼs interior structure (Nettelmann 2017;
Wahl et al. 2017b; Debras & Chabrier 2019) and wind structure
(Kaspi et al. 2017, 2018; Guillot et al. 2018). As the spacecraft
makes additional orbits, it is expected to constrain the tidal
response of the planet in terms of the degree-two Love number,
k22, and possibly higher-degree knm as well. Prior knowledge
of the higher-degree knm from theoretical models also aids
in the fitting of a gravity solution to the Juno Doppler radio
measurements.

The concentric Maclaurin spheroid (CMS) method (Hubbard
2012, 2013) is a nonperturbative numerical method for
calculating the self-consistent mass distribution and gravity
field of a rotating liquid body. In two dimensions, the CMS
approach allows efficient and precise exploration of interior
structure models (Militzer et al. 2019). In three dimensions, the
CMS method permits a precise calculation of equilibrium tidal
response, yielding both k22 and higher-degree knm (Wahl et al.
2016, 2017a). The CMS calculations demonstrated a significant
effect from the rotational flattening of Jupiter and Saturn,
manifesting in an enhanced k22 compared with calculations
treating the tidal response as a perturbation from a sphere
(Gavrilov & Zharkov 1977), as well as splitting of the higher-
degree knm. In this paper, we present improvements to the CMS
equilibrium tidal response calculations, including a solution to

the unphysical center-of-mass offsets described in Wahl et al.
(2017a). We also study in greater detail the convergence
behavior of CMS tidal response calculations and how this
affects the precision to which we can determine different values
of knm for the four Galilean satellites and the Sun.
A preliminary value of k22=0.625±0.06 was presented in

the Juno gravity solution of Iess et al. (2018), consistent with
the enhanced value predicted from CMS but not sufficiently
precise to fully characterize the nature of the tidal response. In
the case of Saturn, astrometric observations (Lainey et al. 2017)
yield a k22 that is below the value for an equilibrium tide to
their reported uncertainty but still enhanced compared to the
prediction from perturbation theory applied to a spherical
Saturn.
A major outstanding question is whether Jupiterʼs tidal

response can be adequately described by equilibrium theory
alone, as addressed in this paper, or whether there is a
detectable dynamic contribution to the tides. The equilibrium
tidal response treated here assumes that the rotating liquid
interior responds instantaneously to the perturbing satellite.5

In the corotating frame of the planet, we find the equilibrium
tidal distortion fully determined by the orbit and knm calculated
for each perturbing satellite. In contrast, dynamic tides are
a frequency-dependent response, affected by proximity to
resonances, excitation, and waves as the tidal perturbations
interact with interior structural features, such as stable layers or
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5 The terms “equilibrium tides” and “static tides” have been used
interchangeably to refer to the same phenomenon in the literature. We elect
to use “equilibrium” in this paper.
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density discontinuities (Marley & Porco 1993; Fuller 2014a,
2014b). Calculations of dynamic tides rely on normal mode
calculations (Durante et al. 2017) related to techniques used in
asteroseismology (Chaplin & Miglio 2013). While special
cases of dynamic tidal response have been shown to result
in a small enhancement to k22 (Gavrilov & Zharkov 1977),
a comprehensive treatment of the dynamic tidal response of a
Jovian planet with rotational flattening has not been attempted.
However, once an interior model is fitted to the observed
zonal harmonic coefficient, Jn, its equilibrium tidal response
coefficient, knm, is determined with little remaining uncertainty.
Thus, measurements of knm that disagree with the equilibrium
response are evidence of a dynamic tidal response.

In Wahl et al. (2016), we presented preliminary calculations
of Jupiterʼs equilibrium tidal response for a range of different
interior models (Hubbard & Militzer 2016) based on pre-Juno
knowledge and assumptions about the planetʼs interior. This
included a wide range of models, in part because of a
disagreement of the JUP310 gravity solution (Jacobson 2013)
with earlier gravity solutions (Campbell & Synnott 1985;
Jacobson 2003). The pre-Juno gravity solution permitted two-
or three-layer interior structure models with a variety of
hydrogen–helium equations of state (Saumon & Guillot 2004;
Militzer et al. 2008; Nettelmann et al. 2012; Hubbard &
Militzer 2016; Miguel et al. 2016). As of the Juno gravity
solution presented by Iess et al. (2018), there are now precise
determinations of the even gravity harmonics up to J10 and odd
harmonics up to J9. The low-order, even gravity harmonics J2,
J4, and J6 are all determined to∼10−8 or better. When taken
into consideration with state-of-the-art equations of state for
hydrogen–helium mixtures (Vorberger et al. 2007; Militzer
2013) and constraints on atmospheric composition and temper-
ature, these low-order harmonics place strong constraints on the
viable interior structure models (Nettelmann 2017; Wahl et al.
2017a; Debras & Chabrier 2019; B. Militzer et al. 2020, in
preparation), suggesting that Jupiterʼs interior structure is more
complicated the previously thought. Nettelmann (2019) pre-
sented calculations of the equilibrium knm of an interior structural
fit to an earlier Juno gravity solution (Folkner et al. 2017). In this
paper, we present results for the equilibrium tidal response of
Jupiter, with the constraints from the most recent Juno gravity
solution (Iess et al. 2018) and an improved implementation of
the CMS method. We consider the ranges in tidal response
expected from the uncertainty from the interior structure, deep
winds, and measurements of the relevant physical parameters,
as well as the numerical precision of the CMS method.
Characterizing this uncertainty in modeling the equilibrium
tide is necessary to know whether a precise measurement of
knm alone is sufficient to detect a dynamic contribution and
distinguish it from the equilibrium contributions.

In Section 2.1 we present an overview of the CMS method
focused on the details pertinent to the calculation of the
equilibrium tidal response. In Section 2.2 we describe the
improvements to the CMS approach for equilibrium tidal
calculations and their effect on the calculations. In Section 2.3
we describe the interior models used in this study, as well as
our methods for quantifying the possible range of knm from
interior structure and winds. In Section 3.1 we look at the
convergence of the CMS models with various parameters to
quantify the precision to which different knm can be predicted.
In Section 3.2 we present, in detail, the tidal response of Jupiter
to the four Galilean satellites and the Sun and consider Junoʼs

ability to sample that tidal response. Finally, in Section 3.4, we
test the sensitivity of the Juno Doppler gravity measurements to
the calculated knm and discuss the significance of the higher-
degree knm to the fitting of a gravity solution by the Juno
gravity science experiment.

2. Methods

2.1. CMS Method

The CMS method is a nonperturbative, iterative method for
finding the gravity field of a liquid body that was formulated by
Hubbard (2012, 2013) and extended to three dimensions by
Wahl et al. (2017a).
In this method, a continuous density structure is discretized

into N nested, constant-density spheroids, as shown in Figure 1.
The planetʼs self-gravity, V, is calculated as a volume-
integrated function of all spheroids in their current configura-
tion and combined with a centrifugal potential, Q, and an
external potential from a perturbing satellite, W, into a single
effective potential,

= + +r r r rU V Q W . 1( ) ( ) ( ) ( ) ( )

The shape of each spheroid is then adjusted until the surface of
each becomes an equipotential surface of U.

Figure 1. Conceptual diagram of a CMS model with a tidal perturbation from a
satellite. (a) The density structure is discretized into a superposition of
constant-density spheroids. The surface of spheroid i is described by the
fraction ζi of the equatorial radius λi at coordinates μ, f. (b) In the presence of a
tidal perturber, the spheroid surfaces and centers of mass are permitted to
respond to the external potential under the constraint of constant volume such
that the outermost spheroids shift toward the satellite, while the innermost
spheroids shift away from the satellite. The total center of mass remains fixed at
the origin.
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Given a prescribed interior density structure, the nonsphe-
rical contributions to the potential are parameterized by three
nondimensional numbers. First is the relative strength of the
centrifugal potential,

w
=q

r

GM
, 2rot

2
J
3

J
( )

where ω is the sidereal rotation frequency, rJ is the equatorial
radius of Jupiter, G is the universal gravitational constant, and
MJ is the mass of Jupiter. The second describes the relative
strength of the tidal perturbation,

= -q
m r

M R

3
, 3tid

s J
3

J
3

( )

where ms is the mass of the perturbing satellite (or the Sun) and
R is the orbital distance. Last is the ratio of the satelliteʼs orbital
distance to the planetʼs radius,

R r . 4J ( )

The relevant physical parameters for Jupiter, its satellites, and
the Sun are summarized in Table 1. The uncertainty of qrot is
dominated by the∼4 km uncertainty in rJ. It is worth noting
that although a CMS calculation is performed for a single set of
parameters, qtid and R/rJ vary with time due to the eccentricity
of the orbit, which must be taken into account when translating
the calculated knm into a gravity signal.

The zonal, Jn, and tesseral, Cnm and Snm, harmonics of the
gravity field (depicted in Figure 2) can be calculated by
integrating over the density and shape of a converged CMS
model (Wahl et al. 2017a). For Jupiter and its Galilean
satellites, qtid=qrot, which means that the equilibrium tidal
response from each satellite can be calculated independently,
and the resulting Cnm and Snm can be linearly superimposed to
obtain the total equilibrium tidal response. The calculations can
be further simplified by assuming that the satellites reside in the
planetʼs equatorial plane, since the Galilean moons each exhibit
a small orbital inclination. Under these assumptions, we
perform CMS calculations for a single satellite at a time, with
a fixed position in the equatorial plane.
As per convention (Zharkov & Trubitsyn 1978), the tidal

Love numbers represent the ratio of the tidally induced gravity
moments to the strength of the perturbing tidal potential, which
can be represented as
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+
-
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where m n and Pn
m are the associated Legendre polyno-

mials.6 Here Cnm
0 is the harmonic for the unperturbed body

(i.e., with rotation but without tides). For ¹m 0, =C 0nm
0 , but

Table 1
Jupiter Tidal Parameters

Body Parametera Parameterb

Jupiter GM 126686534.911 km3 s−2 qrot  ´ -0.089195 1.5 10 5

req 71492±4 km
Trot 0:9:55:29.711 D:H:m:s

Io GM 5962.0 km3 s−2 Rpj 5.87534 rJ
a 421769 km Raj 5.92372 rJ
e 0.0041 qtid,pj −6.87587×10−7

qtid,aj −6.79199×10−7

Europa GM 3201.6 km3 s−2 Rpj 9.29196 rJ
a 671079 km Raj 9.48158 rJ
e 0.0101 qtid,pj −9.44995×10−8

qtid,aj −9.11439×10−8

Ganymede GM 9891.0 km3 s−2 Rpj 14.95833 rJ
a 1070042.8 km Raj 14.97629 rJ
e 0.0006 qtid,pj −6.99812×10−8

qtid,aj −6.97297×10−8

Callisto GM 7181.3 km3 s−2 Rpj 26.15424 rJ
a 1883000 km Raj 26.52298 rJ
e 0.007 qtid,pj −9.50535×10−9

qtid,aj −9.11439×10−9

Sun GM 132712440041.93938 km3 s−2 Rpj 10357.8 rJ
a 778.57×106 km Raj 11422.8 rJ
e 0.0489 qtid,pj −2.82816×10−9

b qtid,aj −2.10853×10−9

Note.
a The physical parameters in the left column are from https://ssd.jpl.nasa.gov/horizons.cgi.
b The derived tidal parameters at perijove and apojove.

6 This equation appeared in Wahl et al. (2017a) with a typographical error in
the prefactor.
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with rotation

= -C J2 , 6n n0
0 0 ( )

where Jn is the corresponding zonal harmonics from an
axisymmetric calculation with the same qrot.

For this reason, the kn0 cannot be directly measured in the
Juno Doppler data, as their contribution is indistinguishable
from contributions from rotation and interior density distribu-
tion. The eccentricity of the satellite orbit induces a small, time-
variable component of Cn0 that might be detectable as a
variation of the observed Jn with the satellite’s orbital phase. If
the tidal perturbers are located on the equatorial plane, as we
assume, then all knm with odd values of n−m are zero. For a
nonrotating planet, the knm with the same degree n are
degenerate with order m. Jupiter, on the other hand, exhibits
significant splitting of these knm due to the significant rotational
flattening.

2.2. Tidal Response Calculations

In this section, we provide details to perform accurate tidal
response calculation with the CMS method and discuss a
number of assumptions and approximations. Most importantly,
we only deal with the equilibrium response and assume the
planet responds instantaneously to an external perturbation by a
satellite. Since the satelliteʼs diameter is small compared to its
orbital distance, R, it is well justified to treat the satellite as a

point mass, ms. Its gravitational potential is given by

=
-

r R
R r

W
Gm

, 7s( )
∣ ∣

( )

and can be expressed in terms of Legendre polynomials,
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where we have specified the satellite’s location with R, μs,
and fs.
For the potential theory to be applicable, the tidal

perturbation needs to be time-independent, which means one
can only derive the tidal response for an analog system where
the satelliteʼs orbital period is set equal to the rotation period of
the planet. In the rotating frame, the satelliteʼs gravity field then
becomes time-independent, and it is a well-posed but simplified
task to determine the planetʼs response. There are situations
where these assumptions are well justified, e.g., tidally locked
exoplanets that have equal orbital and rotation periods.
However, satellites in the solar system all have orbital periods
that are much longer than the rotation periods of the host
planets. This introduces a time dependence into the tidal
perturbation and may lead to dynamic tidal effects. The
dynamic response is typically studied by expanding the
planetʼs response in terms of normal modes (Gavrilov &
Zharkov 1977). Even when such dynamic tidal calculations are
performed for Jupiter, one expects to find a negligible tidal lag
because the viscosity in giant planets is very small. A
counterexample is the tides on Earth, where there is a more
substantial response lag for the solid mantle and crust.
The standard approach to derive a time-independent solution

is to remove the average force that the tidal perturber exerts on
the planet(Murray & Dermott 1999). Removing the average
force can be motivated by representing the planet by a system
of N fluid parcels of mass mi at locations ri. Its total energy is
assumed to be given by ¼ r rN1( ), and an equilibrium
configuration must satisfy = ¶ ¶ =F r 0i i . In order to
establish the orbital distance for a given planet, we constrain
the planetʼs center of mass to reside at RCM. To solve this
constrained optimization problem, we introduce the modified
function,

ål¼ = ¼ - - r r r r r Rm M , 9N N
i

i i1 1 CM˜ ( ) ( ) ( )
⎡
⎣⎢

⎤
⎦⎥

where λ is a Lagrange multiplier and M is the total mass.
Solving ¶ ¶ = r 0i

˜ yields that λ must be equal to the average
force, á ñF . The equilibrium solution of the constrained system
must then satisfy = ¶ ¶ - á ñ r F m0 i i, which explains why
one would want to remove the average force.
In the CMS calculations, we derive this average force as

ò

ò

r

r

á ñ = 

=-  = -  =

F r r r R

r r r R r R

M
d W

M
d W

m

M
V

1
,
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, ,

10

r

R R
s

( ) ( )

( ) ( ) ( )

( )

Figure 2. Shapes of the gravity harmonics, Cnm, labeled by degree n and order
m, where m n∣ ∣ . Yellow arrows show the pole and indicate the direction of
the tidal perturber, and the yellow line shows the equator.
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where we have integrated over all fluid parcels in the planet in
the first two terms. In the last term, we have used the symmetry
of the gravitational potential, which implies that the average
force that the satellite exerts on the planet is equal but opposite
to the force that the planet exerts on the satellite. The
evaluation of the last term is straightforward within the CMS
method because the gradient is already needed to converge the
spheroid shapes onto equipotential surfaces using Newtonʼs
method.

With the average force, we define a modified tidal potential

= - á ñr R r R F rW W, , 11˜ ( ) ( ) · ( )

and introduce it into Equation (1) before using the modified
potential to construct equipotential surfaces. With this
approach, one obtains a stable numerical algorithm that
converges to a self-consistent CMS solution. This algorithm
is used for all of the results reported in this paper.

With other, more approximate approaches, it is more difficult
to reach well-converged simulations. Zharkov & Trubitsyn
(1978) did not derive the average force explicitly but instead
removed the n=1 term from Equation (8), which is linear in r.
For point masses, this is equivalent to Equation (10), but for an
extended planet, this introduces a small spurious force that lets
the planet drift toward the satellite because the gravitational
force is nonlinear. In the previous implementation of the CMS
tidal response calculation(Wahl et al. 2017a) that was based on
Equation (8), we noticed a small but persistent center-of-mass
shift (C11>0) following each iterative update of the spheroid
surfaces (ζi). This was accounted for by applying a translation
to all grid points after each iteration to eliminate C11, but this
prevented full convergence of the spheroids to equipotential
surfaces with the expected numerical precision. With our new
approach based on Equations (10) and (11), this problem has
been eliminated, and we now obtained well-converged
equipotentials, and the computed C11 is zero to within
numerical precision.

We initialize our tidal calculations with spheroid shapes
defined by the fractional radius, ζi(μ, f), that we obtain from
a fully converged 2D axisymmetric CMS solution, ζi(μ). The
spheroid shapes have converged when U(ζi(μ, f)) is the same
for all points in any given spheroid. We can no longer fix
ζi(μ=0)=1, since we expect two tidal bulges to form.
Instead, we require the volume of each spheroid to be the
same as determined by the initial axisymmetric calculation.
Since there is much flexibility in the 3D CMS calculation,
the implementation of the volume constraint requires some
care. For a given spheroid, we first compute a target potential
value, Ui

T, by averaging z m fU ,i k k( ( )) over all spheroid points,
k. We then compute the vector of proposed ζ corrections with
Newtonʼs method,

z z m f
z m f

z m f
D º D =

-
¢

U U

U
,

,

,
, 12i

k
i k k

i k k i

i k k

T

( )
( ( ))

( ( ))
( )( )

where ¢U is the derivative of U with respect to ζ. We require
that all zD i

k( ) combined do not change the spheroid volume, Ωi.
We thus remove the volume-changing vector component with

= -y y
y x
x x

x, 13corr ·
·

( )

where y and x represent the vectors zD i
k( ) and zWd di i

k( ),

respectively. We then apply the corrected zº Dy i
kcorr ( ) and

rescale the spheroid again to exactly match the original Ωi.
Once all spheroids have been updated, we compute the new

C11 term and apply a single coherent shift to all spheroids so
that the planetʼs total center of mass is again at the origin. This
requires performing a spline interpolation for each spheroid
over μ and f so that the pre- and postshift grid points remain on
the quadrature points. In contrast to the behavior described in
Wahl et al. (2017a), this center-of-mass shift gradually
decreases to zero as the spheroids converge toward equipoten-
tial surfaces.
When we examine the converged CMS solutions, we notice

that the centers of mass of individual outer spheroids exhibit a
small shift toward the perturbing satellite, while the inner
spheroids have drifted away from it, as shown in Figure 1(b).
When we instead restricted the center of mass of every
individual spheroid during the CMS iterations, we were not
able to construct equipotential surfaces. We thus conclude that
the small spheroid shifts are necessary to correctly represent
how a fluid planet with a realistic interior density structure
responds to the tidal perturbations.
In Figure 3, we show the spheroid shifts quantitatively for a

representative CMS calculation. Over the course of the
calculations, the spheroids arrange themselves so that the
centers of mass follow a smooth function of radius. When
shown as a function of integrated mass, it can be seen that
roughly half of the mass is shifted toward the satellite and the
other half away, such that the planetʼs total center of mass
remains at the origin. The inner spheroids exhibit a larger
magnitude of shift than the outer spheroids, but they also
contain less mass. Depending on the magnitude of the tidal
perturbation, we find that the outermost spheroid shifts between
10−12 and 10−5 Jupiter radii.

2.3. Interior Models

We start from the assumption of a liquid planet in hydrostatic
equilibrium,

r = P U, 14( )

where P is the pressure, ρ is the mass density, and U is the total
effective potential. The material properties of the hydrogen–
helium mixture, with a mass fraction of heavier elements in
solution, determines a barotrope P(ρ) for the planetʼs interior.
Presently, the most trusted equations of state are constructed

from ab initio simulations using density functional molecular
dynamics (DFT-MD; Vorberger et al. 2007; Militzer 2013;
Becker et al. 2015; Chabrier et al. 2019). Our models use
barotropes constructed from a grid of adiabats determined by the
Militzer (2013) equation of state for a hydrogen–helium mixture.
The DFT-MD simulations were performed, with cells containing
NHe=18 helium and NH=220 hydrogen atoms, using the
Perdew–Burke–Ernzerhof functional (Perdew et al. 1996) in
combination with a thermodynamic integration technique.
There was initial disagreement between different DFT-MD–

based equations of state for hydrogen–helium mixtures, with
the REOS (Nettelmann et al. 2008; Becker et al. 2015) equation
of state predicting hotter, less dense barotropes (Militzer 2009;
Guillot et al. 2018) than those of Militzer (2013) due to their
different method for calculating the specific entropy. There is
now better agreement between the independently constructed
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DFT equations of state (Militzer & Hubbard 2013; Schöttler &
Redmer 2018; Chabrier et al. 2019), all predicting colder,
denser barotropes consistent with those based on thermody-
namic integration.

We follow the same treatment of specific entropy, helium,
and heavy-element fractions as in previous work (Hubbard &
Militzer 2016; Militzer et al. 2016; Wahl et al. 2016, 2017b).

The entropy, S, is a proxy for a particular adiabatic temperature T
(P) relationship for a fixed composition H–He mixture (Y0=
0.245). This initial composition also provides the reference
barotrope densities, in which deviations from the baseline
composition (Y0=0.245, Z0=0) are treated as perturbations
using the additive volume law (Wahl et al. 2017a).
When the inherent density of the hydrogen–helium mixture

is set by the DFT equation of state, it is not possible to find
simple three-layer interior models that simultaneously match
the Juno gravity solution while satisfying the atmospheric
constraints on temperature and composition from the Galileo
entry probe (Seiff et al. 1998; von Zahn et al. 1998). Satisfying
all such constraints requires either more complex interior
thermal and compositional structure (Debras & Chabrier 2019),
contributions from deep winds (Guillot et al. 2018; Kaspi et al.
2018), or both (B. Militzer et al. 2020, in preparation). The
requisite deep wind profile decays with depth due to interaction
of the conductive fluid with the magnetic field (Cao &
Stevenson 2017) and cannot be described self-consistently
using a potential-based theory like CMS (Militzer et al. 2019).
The Love numbers are known to be strongly correlated with

Jn (Wahl et al. 2017a). We thus elect to first examine a set of
simple interior models capable of matching the updated low-
order axisymmetric Juno gravity solution (Iess et al. 2018) with
loosened compositional constraints (A1–4 in Table 2). We next
consider the effect of deep wind profiles optimized to match the
odd zonal harmonics (Kaspi et al. 2018; B1–2 in Table 2).
Finally, we include models in which a more complicated
interior structure and deep wind profile are optimized
simultaneously (B. Militzer et al. 2020, in preparation; C1–4 in
Table 2). The models considering deep winds are described in
more detail in Section 2.4.
The first set of models considered are three- or four-layer

interior models modified from those presented in Wahl et al.
(2017b) with parameters tuned to match J2, J4, and J6. These
models are denoted as A1–4 in Table 2, with model Jn
compared to the target values from Juno. The target Jn are
obtained from the Iess et al. (2018) gravity solution to the Juno
Doppler measurements. However, in this solution, the reported
Jn would include any tidal contribution (Cn0). Thus, for
consistency, we subtract the calculated Io Cn0 from the
observed Jn to obtain the target Jn. For instance, the target
J2=14696.51×10−6 is used instead of the observed

= ´ -J 14696.57 102
6. The interior models consist of an outer

molecular envelope and an inner metallic envelope separated
by a transition in which helium is proposed to phase separate
and rain out (Stevenson & Salpeter 1977; Morales et al. 2013;
Militzer et al. 2016). Each model includes an innermost
spheroid representing a constant-density central core with a
fractional radius r/rj=0.15. The outer and inner envelope are
parameterized by a set of parameters (S1, Y1, Z1) and
(S2, Y2, Z2), respectively. The helium rain region is treated as
a smooth transition of each parameter between two pressures,
while the central core is treated separately from the envelope
parameters with its density required to conserve the total mass
of the planet. A subset of these models (A3–A4) also consider a
dilute core with a constant enrichment of heavy elements (Z3)
with a higher concentration than in the metallic envelope (Z2).
Since there is a density trade-off between parameters and a lack
of constraints in the deep interior, we assume S3=S2 and
Y3=Y2 for simplicity.

Figure 3. Top panel: cumulative mass m/MJ as a function of fractional radius λ
for a representative interior model. Middle panel: offset of spheroid center of
mass as a function of cumulative mass for CMS models with tidal response to
Io. Spheroids exterior to m/MJ∼0.5 have center-of-mass shifts toward the
satellite, while interior spheroids have center-of-mass shifts away from the
satellite. The total center of mass of the planet is constrained to lie at the origin.
Bottom panel: magnitude of the center-of-mass shift for the outermost layer
(λ=0) as a function of tidal perturber strength, qtid. Vertical lines denote the
qtid of the four Galilean moons, with Io shown in red.
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In model A1, J2 and J4 are matched by iteratively tuning
S1=S2 and Z2 and J6 by tuning the pressure of helium rain
onset. In other models, the pressure of helium rain onset is set
to P=95.4 GPa, consistent with the Morales et al. (2013)
phase curve and an outer envelope adiabat with S=7.07 kB
electron–1 based on Galileo entry probe temperature measure-
ments (Seiff et al. 1998).7 In model A2, J2 and J4 are matched
to the same procedure, while J6 is matched by tuning the jump
in ΔS=S2−S1 across the helium rain layer. Finally, models
A3 and A4 fit J6 by tuning the heavy-element fraction of a
dilute core, Z3, with a fractional radius of =r r 0.7j and 0.5,
respectively. Models A3 and A4 require dilute cores with
Z3 = 0.12 and 0.30, respectively, compared to the heavy-
element fraction for the deep envelope with Z2 = 0.066 in A1.

As noted previously (Wahl et al. 2017b; Guillot et al. 2018),
such simple three- or four-layer models require outer envelopes
hotter than expected based on the Galileo entry probe
measurements (Seiff et al. 1998) when using the Militzer
(2013) equation of state. These models are thus interpreted to
give a rough, conservative estimate of the range of tidal
responses that might be expected from variability in an interior
density structure alone matching the low-order zonal harmo-
nics, rather than seeking a single model to match all desired
constraints.

2.4. Influence of Deep Winds

The observed zonal harmonics are not due solely to a
barotropic interior profile but will have contributions from deep
winds (Kaspi 2013; Kaspi et al. 2017). Due to the limitations of
potential theory, differential rotation can only be implemented
fully consistently for cylinders extending through the deep
interior of the planet (Wisdom & Hubbard 2016). It is therefore
not possible to implement the more complex 3D wind profile
expected for Jupiter, in which the cylindrical flow velocities
decay rapidly at depths where conductivity becomes high

enough for flows to couple to the planetʼs magnetic field (Cao &
Stevenson 2017). We therefore cannot self-consistently test their
effect on the tidal response (Militzer et al. 2019). As a
conservative estimate, we consider interior models that fit to
J2− J6 with the contributions from various wind models
omitted. The first class of wind models uses the ΔJn from Kaspi
et al. (2018), which used the thermal wind equation (TWE) to
optimize a decay function for the observed surface wind profiles
to match the odd zonal harmonics. The second class of wind
models represents a class of models that can be found when the
interior structure and wind profiles are optimized simultaneously
(B. Militzer et al. 2020, in preparation).
The second set of models in Table 2 are constructed

identically to the reference model (A1) but with the target Jn
chosen to be - DJ Jn Juno n, , where ΔJn is set to the contribution
from the optimized deep wind profiles of Kaspi et al. (2018) for
the longitude-independent (model B1) and longitude-dependent
(model B2) profiles. The wind profiles that lead to these ΔJn
values are incompatible with a potential theory–based method
like CMS. In lieu of a consistent method for predicting the
wind contribution to the tidal response, we consider the case
where the winds have no direct contribution to knm and only
affect the model through modifying the target Jn in the CMS
calculation to be different from the reference model, A1. Since
the true contribution of the winds to knm should partially offset
this difference, this treatment should lead to a conservative
estimate of the range values that might result from models with
winds. In Section 3.2, we demonstrate that this range is indeed
small compared to Junoʼs sensitivity.
Finally, we calculate the tidal response for a third set of

interior models (C1–C4 in Table 2) selected from an ensemble
of models generated by a simultaneous optimization of the
interior structure and wind profile using a Monte Carlo
approach (B. Militzer et al. 2020, in preparation). These
models relate wind velocity–depth profiles to contributions in
Jn using the TWE as presented in Kaspi et al. (2018). Whereas
models B1–B2 from Kaspi et al. (2018) used a single reference
interior density structure and found an optimized wind profile
to match the odd zonal harmonics (J3, J5, ...), models C1–C4

Table 2
Interior Models

Modela Description J2 J4 J6 J8 J10

Target Jn PJ06 gravity solutionb 14696.51 −586.60 34.20 −2.42 0.17

A1 Helium rain onset pressure 14696.51 −586.613 34.202 −2.458 0.202
A2 Helium rain layer DS 14696.51 −586.609 34.202 −2.458 0.202
A3 Dilute core Z, r=0.7 14696.51 −586.602 34.204 −2.457 0.202
A4 Dilute core Z, r=0.5 14696.51 −586.603 34.203 −2.457 0.202

B1 Kaspi et al. (2018) longitude-independent 14696.01 −586.561 34.200 −2.459 0.202
B2 Kaspi et al. (2018) longitude-dependent 14697.04 −586.463 34.200 −2.460 0.202

C1 B. Militzer et al. (2020, in preparation) model 1 14694.90 −586.524 34.502 −2.504 0.207
C2 B. Militzer et al. (2020, in preparation) model 2 14695.27 −586.721 34.511 −2.505 0.207
C3 B. Militzer et al. (2020, in preparation) model 3 14694.92 −586.562 34.499 −2.504 0.207
C4 B. Militzer et al. (2020, in preparation) model 4 14695.08 −586.566 34.503 −2.504 0.207

Notes.
a All A and B models fit J2 and J4 by tuning S and Z2. Descriptions for A models specify the parameter tuned to fit J6. The B models are fit to theΔJn from Kaspi et al.
(2018) optimized wind profiles. The C models are more complicated interior profiles from B. Militzer et al. (2020, in preparation), where ΔJn corresponds to a wind
profile optimized simultaneously with the interior density profile. Model A1 is used as the reference model in all tables and figures unless otherwise stated.
b Target Jn is from the PJ06 gravity solution (Iess et al. 2018) with the calculated tidal contribution from Io removed. The Jn values which models A1–A4 attempt to
match are shown in bold.

7 This pressure is not consistent with the envelope entropy for the three or
four models presented here, but we treat P=95.4 GPa as a baseline, given
multiple sources of uncertainty for the onset of helium rain.
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attempt to match the even Jn with a combined contribution
from the CMS interior structure and a wind profile using the
TWE while simultaneously matching the odd Jn with the same
wind profile. The parameterization of the interior structure in
these models is similar to Wahl et al. (2017b). In practice, these
models are found to be able to match the Juno Jn while better
fulfilling the composition constraints from Galileo due to the
added freedom for the wind profile to account for a portion of
the even Jn. These models result in larger ΔJn than Kaspi et al.
(2018), particularly for J6, and consequently lead to a slightly
larger range in calculated knm.

3. Results

3.1. Convergence Behavior

Here we study the convergence behavior of the CMS
calculations for the equilibrium tidal response. This is of
particular relevance when considering the higher-degree Love
numbers, as the tesseral moments of various degree, n, and
order, m, can exhibit very different convergence behavior. This
must be accounted for when reporting the numerical precision
of a given knm calculated using the CMS approach.

First, we study the discretization error by comparing the
calculated knm for models for an increasing number of

spheroids, NL, in the CMS calculation. Figure 4 shows the
convergence of the calculated k22 and k20 from 64 layers to the
512 layer model used in the rest of the paper, and then up to
2048 layers. The difference between 512 and 1024 layers in the
upper panel shows that 512 layers is sufficient to derive k22 to
six significant digits. Meanwhile, k20 is only converged to the
level of ~ -10 4. The convergence behavior of k22 is notably
better than that of the higher-degree Love numbers, which
converge to∼10−5 when n=m but with precision worsening
as n−m increases. Up to degree n=5, all knm values are
converged with NL to better than 2×10−4. In the current
implementation, calculations of more than 1000 layers are too
computationally expensive for a detailed study, although the
accelerated approach for the 2D CMS approach (Militzer et al.
2019) could be adapted to the 3D CMS method.
Next, we study the convergence behavior of the various knm

from a single model through the iterative procedure. Whereas
the Love numbers with order ¹m 1 are converged to at least
the level of the discretization error after 25 iterations, those
with m=1 require ∼150 iterations. This can be attributed to
the fact that the rearranging of the spheroid centers of mass
described in Section 2.2 is slower than the convergence of the
shape of the spheroid. In the original implementation of the
CMS tidal response (Wahl et al. 2016, 2017a), the convergence
of k31 and k51 was essentially halted at a precision of∼10−2 to
∼10−3. This appears to have a negligible effect on the results
for the other knm values, where ¹n 1. The convergence
behavior over the course of the calculation is also found to be
nearly independent of the strength of the tidal perturber qtid.
Finally, we look at the convergence behavior of knm with

tidal perturber strength, qtid. Figure 5 shows three examples for
the convergence of a given knm, where the satelliteʼs orbital
distance is fixed, while qtid or, equivalently, the satellite mass is
varied. Starting from a magnitude of qtid much greater than the
corresponding satellite value, the value of knm initially
approaches a constant value with decreasing qtid∣ ∣. This constant
demonstrates the expected tidal response in the limit of small
perturbation. However, at the smallest values of qtid∣ ∣, the value
of knm diverges again from the constant value due to the limited
numerical precision of the calculation. In the case of Ioʼs k22,
the CMS calculation can clearly resolve a small nonlinearity at
the corresponding qtid.
However, the convergence behavior for other knm values

with qtid differ significantly from k22. From the very same CMS
calculation at Ioʼs orbital distance, the value of k20 at the
satellite qtid is affected by this limited precision. In this case, we
cannot resolve any nonlinearity in k20, and we instead report
the linear regime value evaluated at the qtid∼−10−5, where
the change in k20 between different qtid is at a minimum. In
Figure 5, the reported knm is shown in green. The precision of
this knm is limited by the fact that it is derived by taking the
finite difference of Equation (5) between two calculations
performed with different qtid. This uncertainty in the calculated
linear regime knm limits the precision of k20 and the other kn0
and is included in the reported numerical uncertainty.
The precision of the higher-degree knm becomes increasingly

limited as the satellite becomes more distant due to the decrease in
qtid. For example, the reported k33 for Callisto is the linear regime
result, whereas the larger qtid of Io or Europa allows k33 to be
calculated directly. These limits to the precision of the linear
regime knm calculation are well below the potential sensitivity of
Juno. The sensitivity of Juno is discussed in detail in Sections 3.3

Figure 4. Convergence of Love numbers k22 and k20 with the number of
spheroids, NL, in the CMS model. The numerical precision for Love numbers
of different degree and order is limited by their convergence at NL=512. The
Love numbers of order m=0 are determined to significantly lower precision
that the other Love numbers.
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and 3.4 but can be estimated by taking a relatively optimistic
assumption that Juno can detect a signal with a maximum strength
of ∼1 μgal. If the signal from C20 considered in Figure 5 were
modified to account for a 1 μgal change in the maximum
anomaly, it would cause a corresponding ∼0.01 change in k20,
which is 2 orders of magnitude larger than the estimated numerical
uncertainty. However, directly using the value calculated at the
satellite qtid can result in a significant misreporting of some knm
when the magnitude of qtid is sufficiently small.

3.2. Tidal Response from Galilean Satellites

Table 3 tabulates the calculated Love numbers for the
equilibrium tidal response of Jupiter to Io. Independent
calculations with the identical reference interior model (A1)
were performed at the satellite’s perijove and apojove, yielding
a linear correction with orbital distance, dk dRnm sat, in units of
Jupiterʼs equatorial radius.

The Love numbers for a nonrotating analog planet are also
tabulated. As was noted in previous work with the CMS

method, the knm for a nonrotating planet is independent of m,
while for the rapidly rotating Jupiter, these values diverge as a
result of rotational flattening. The value of k22=0.5897 for the
reference Jupiter model with rotation is significantly higher
than the nonrotating case with k22=k20=0.5364.
A similar disparity is seen when the CMS result is compared to

the Radau–Darwin approximation, commonly used for tides on
bodies with less significant rotational flattening. The normalized
moment of inertia (C/Ma2) can be calculated directly from the
CMS interior density structure (Hubbard & Militzer 2016). The
calculated moment of inertia, C/Ma2=0.2639, would corre-
spond to k22∼0.524 under this approximation.
As described in Section 3.1, the table notes whether the CMS

calculation is able to resolve nonlinear behavior with qtid. The
numerical uncertainty represents the estimated discretization
error for the reported 512 layer CMS calculation. In the cases
where the nonlinear behavior cannot be resolved at Ioʼs qtid, we
report the linear regime result and include the corresponding
uncertainty in the reported numerical uncertainty. At the
strength of Ioʼs perturbation, all values of knm with ¹m 0 can
resolve nonlinearity up to a degree n=10, while nonlinearity
is not resolved for any knm with m=0.
For Io specifically, we also considered the full suite of

interior models (A1–C4) tuned to fit the observed low-order
zonal harmonics J2, J4, and J6, as described in Section 2.3.
These are tabulated as “error interior” and in most cases
represent a range less than 1 order of magnitude larger than the
numerical precision. Likewise, the range for each Love number
from the two sets of interior models constructed with
consideration of the deep winds (Section 2.4) are tabulated as
“error winds K18” and “error winds M19.” Even with their
density contributions completely omitted, the range of knm
predicted for wind profiles differs from the reference model
(A1) by an amount smaller than could be observed by Juno.
The error reported in “knm perijove” includes the maximum
deviations from the different interior and wind profiles, along
with the estimated numerical error and error propagated from
uncertainties in physical constants. For k22, the largest source
of uncertainty comes not from interior structure or winds but
from propagating the ∼4 km uncertainty on Jupiterʼs observed
radius into qrot and thus to the rotational flattening of the body.
In spite of our conservative estimates of the various sources of
uncertainty, the combined uncertainty remains well below the
expected sensitivity of Juno. For instance, an optimistic
sensitivity of ∼1 μgal suggests an uncertainty two orders of
magnitude larger than the greatest disparity in k22 between
models with different interior structures or winds. This suggests
that knm is extremely well determined by the low-order
gravitational harmonics and thus provides little additional
information to constrain the deep interior structure of the
planet.
Table 3 also presents the value of knm for the reference

interior model at apojove, along with the corresponding
derivative with orbital distance, dk dRnm sat. For n<4, the
variation in knm from orbital distance is small compared to the
numerical uncertainty and ranges from different interior
models. However, in the case of k42, the deviation of knm
between apojove and perijove is much more substantial. The
same is true for other higher-degree knm values, where ¹m n,
although in most cases, this effect is likely below detectability.
The one possible exception is for k20, where, despite dknm/dRsat

being smaller than the reported uncertainties, independent

Figure 5. Representative examples of the convergence of various Love
numbers as a function of tidal perturber strength, qtid (blue). The red vertical
line denotes the value of qtid corresponding to the perturbing satellite. Shown in
red is the value obtained directly from the CMS simulation with qtid∣ ∣
corresponding to the satellite. Shown in green is the reported value for knm,
which depends on whether the CMS simulation at the correct qtid resolves a
value better than the estimate for the linear regime. Top: k22 for a satellite at
Ioʼs orbital distance, which resolves the nonlinearity of the Love number.
Middle: k20 for a satellite at Ioʼs orbital distance. In this case, the best estimate
of the linear regime occurs at qtid,io. This is the case for all Love numbers of
order zero regardless of satellite. Bottom: For Callisto, the smaller magnitude
of qtid means the best estimate of k33 is the estimate of the linear regime, even
though the k33 value is resolved directly for Io.
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calculations yield a signal with consistent amplitude in which
the observable J2 varies by a magnitude similar to Juno’s
uncertainty (Iess et al. 2018).

For the reference interior model (A1), identical calculations
were performed for the three other Galilean satellites
(tabulated in Tables 4–6) and the Sun (Table 7). These tables
have been truncated to discount knm values that would
produce signals well below the detectability of Juno; the full
tables (up to n=16) can be found in the supporting data.
For these bodies, the reported uncertainty is the numerical
uncertainty plus the uncertainty on qrot, as reported for Io, but
without the additional ranges from different interior density
profiles or winds.

The qualitative behavior of knm is similar between satellites,
although the precise values differ due to nonlinearity in the
response to both qtid and R/rJ. As described in Wahl et al.
(2016), the rotational flattening of Jupiter leads to a splitting of
the knm values from those calculated for nonrotating analog
planets. Most of the low-degree knm values agree with those
presented in Nettelmann (2019). Our calculated value for Ioʼs
k22 matches theirs to within our reported uncertainty. The
largest disparities occur for knm with m=1, with their values
for Ioʼs k31 and k51 differing from those presented here by
∼30% and∼15%, respectively. This disparity can likely be
attributed to the treatment of the average force and spheroid
centers of mass described in Section 2.2, as they used the older
CMS implementation that suffered from the offset center of
mass. The match between the independent calculations also
becomes poorer for knm with higher-degree n and for more
distant satellites, which may reflect the limitations of numerical
precision with small qtid∣ ∣ summarized in Section 3.1. None-
theless, the good agreement supports our conclusion on the
insensitivity of the equilibrium tidal response to the details
of the interior model, including those based on a different
equation of state.

The magnitude of the splitting becomes more significant
with increasing degree n and orbital distance. It is also
noteworthy that a higher-degree knm with ¹m n shows a much
greater difference from the nonrotating analog than knm with
m=n. This can be related to the geometry of the tesseral
harmonics in Figure 2, as harmonics with ¹m n are those that
exhibit nodes in longitude and therefore map differently onto a
flattened spheroid than those without such nodes.
Figure 6 shows an example of how two such knm values vary

with orbital distance. For k22, the change is relatively modest,
with the value predicted for Europa differing by only∼3×
10−4, likely too small a difference to be observable to Juno
but still an order of magnitude larger than the uncertainty
introduced from considering different interior models that fit
the observed J2− J6. In contrast, k42 at Callistoʼs orbital
distance is over 18 times larger than that for Io. As a result, the
satellite-dependent equilibrium tidal response is most readily
observable for k42, even though the magnitude of the signal
corresponding to k22 and k33 is larger. In the case of the tide
raised by the Sun (Table 7), the splitting of the calculated
higher-degree knm becomes quite extreme, but the corresp-
onding harmonic Cnm strength decays rapidly with degree n,
such that all Cnm values with n>2 are far below the levels
detectable by Juno. The lack of a substantial satellite
dependence for k22 does not rule out the possibility of a
satellite-dependent dynamic contribution (Notaro et al. 2019).
In fact, given the small difference in equilibrium k22 calculated
for the various satellites, measurement of disparate k22 at the
different satellite orbital frequencies might be taken as evidence
for a dynamic tidal contribution.
In order to model the complete equilibrium tidal bulge on

Jupiter, the contributions from all four of the satellites must be
taken into account. Since, for each satellite, qtid=qrot, it is a
reasonable assumption to treat the full tesseral harmonic as a
linear superposition of contributions from the separate
satellites. Rearranging Equations (3) and (5), the contribution

Table 3
Calculated Equilibrium Love Numbers for Io

n m knm Nonrotating knm Perijovea knm Apojove dk dRnm sat Nonlinear
Error

Numerical Error qrot

Error
Interior

Error
Winds
K18

Error
Winds
M20

2 2 0.536369 -
+0.589759 1.3e 04

1.1e 04
–
– 0.589749 −1.931e−04 True ±4.9e−07 ±9.2e−05 -

+ +
5.7e 06
0.0e 00

– -
+

2.5e 05
2.1e 05

–
–

-
+ +

3.0e 05
0.0e 00

–

2 0 -
+0.4699 7.8e 04

7.1e 04
–
– 0.4699 −2.745e−04 False ±1.9e−04 ±8.4e−05 -

+
4.9e 04
1.3e 04

–
–

-
+

1.5e 05
2.6e 05

–
–

- +
+

0.0e 00
3.1e 04–

3 3 0.22434 -
+0.23948 6.3e 04

6.8e 05
–
– 0.23948 −9.256e−05 True ±1.5e−05 ±5.3e−05 -

+ +
1.9e 05
0.0e 00

– -
+ +

8.8e 05
0.0e 00

– -
+ +

5.5e 04
0.0e 00

–

3 1 -
+0.19014 5.7e 04

5.7e 05
–
– 0.19013 −1.556e−04 True ±1.1e−05 ±4.5e−05 -

+ +
1.4e 05
0.0e 00

– -
+ +

7.0e 05
0.0e 00

– -
+ +

5.0e 04
0.0e 00

–

4 4 0.12786 -
+0.1353 8.9e 05

8.8e 04
–
– 0.13529 −5.881e−05 True ±1.3e−05 ±3.9e−05 - +

+
0.0e 00
5.8e 05–

-
+ +

3.7e 05
0.0e 00

– - +
+

0.0e 00
7.7e 04–

4 2 -
+1.7432 8.5e 04

1.7e 03
–
– 1.7702 5.589e−01 True ±1.1e−04 ±2.9e−04 -

+
6.8e 06
6.2e 08

–
–

-
+ +

4.4e 04
0.0e 00

– - +
+

0.0e 00
1.3e 03–

4 0 -
+1.8231 2.8e 03

2.3e 03
–
– 1.8516 5.886e−01 False ±6.6e−04 ±3.4e−04 -

+
1.4e 03
4.1e 04

–
–

-
+ +

4.5e 04
0.0e 00

– - +
+

0.0e 00
8.8e 04–

5 5 0.08354 -
+0.08806 5.6e 05

1.2e 03
–
– 0.08805 −4.136e−05 True ±1.1e−05 ±3.1e−05 -

+
8.1e 07
9.1e 06

–
–

-
+ +

1.3e 05
0.0e 00

– - +
+

0.0e 00
1.2e 03–

5 3 -
+0.81536 4.6e 04

6.7e 03
–
– 0.82769 2.548e−01 True ±9.1e−05 ±1.9e−04 - +

+
0.0e 00
1.1e 04–

-
+ +

1.7e 04
0.0e 00

– - +
+

0.0e 00
6.3e 03–

5 1 -
+0.9406 5.4e 04

7.3e 03
–
– 0.9551 2.998e−01 True ±1.0e−04 ±2.4e−04 - +

+
0.0e 00
1.9e 04–

-
+ +

2.1e 04
0.0e 00

– - +
+

0.0e 00
6.7e 03–

6 6 0.059081 -
+0.062151 1.0e 04

1.2e 03
–
– 0.062149 −3.100e−05 True ±9.3e−06 ±2.6e−05 -

+ +
5.8e 05
0.0e 00

– -
+

1.1e 05
1.3e 05

–
–

- +
+

0.0e 00
1.2e 03–

6 4 -
+0.49903 5.2e 04

8.0e 03
–
– 0.50647 1.538e−01 True ±7.0e−05 ±1.5e−04 -

+ +
2.1e 04
0.0e 00

– -
+

8.7e 05
2.4e 05

–
–

- +
+

0.0e 00
7.8e 03–

6 2 -
+5.8999 3.5e 03

6.1e 02
–
– 6.0858 3.842e+00 True ±7.0e−04 ±1.0e−03 -

+ +
7.8e 04
0.0e 00

– -
+ +

9.6e 04
0.0e 00

– - +
+

0.0e 00
5.9e 02–

6 0 -
+6.826 1.3e 02

1.1e 01
–
– 7.043 4.498e+00 False ±5.6e−03 ±1.6e−03 -

+
4.7e 03
7.3e 04

–
–

-
+ +

1.1e 03
0.0e 00

– - +
+

0.0e 00
1.0e 01–

Notes.
a The total error of “knm Perijove” includes uncertainties from the last five columns.

(This table is available in its entirety in machine-readable form.)
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Table 6
Calculated Equilibrium Love Numbers for Callisto

n m knm Nonrotating knm Perijove knm Apojove dk dRnm sat Nonlinear Error Numerical Error qrot

2 2 0.536369 0.589214±9.8e−05 0.589218 −2.165e−06 False 5.0e−07 9.8e−05
2 0 0.469±9.6e−03 0.47 −3.073e−06 False 9.5e−03 1.0e−04
3 3 0.22434 0.23922±4.8e−05 0.23925 −1.060e−06 False 2.8e−05 2.0e−05
3 1 0.18970±4.1e−05 0.18972 −1.702e−06 False 2.1e−05 2.0e−05
4 4 0.12776 0.13513±1.6e−05 0.13518 −1.662e−06 True 1.1e−05 4.7e−06
4 2 32.507±2.2e−03 33.434 2.496e+00 True 2.0e−03 1.6e−04
4 0 34.2±4.9e−01 35.2 2.628e+00 False 4.9e−01 1.6e−03

(This table is available in its entirety in machine-readable form.)

Table 4
Calculated Equilibrium Love Numbers for Europa

n m knm Nonrotating knm Perijove knm Apojove dk dRnm sat Nonlinear Error Numerical Error qrot

2 2 0.536369 0.589414±9.2e−05 0.589408 −4.782e−05 True 4.7e−07 9.1e−05
2 0 0.469±1.3e−03 0.469 −6.799e−05 False 1.2e−03 8.4e−05
3 3 0.22434 0.23932±6.9e−05 0.23931 −2.288e−05 True 1.5e−05 5.3e−05
3 1 0.18986±5.7e−05 0.18985 −3.849e−05 True 1.1e−05 4.5e−05
4 4 0.12786 0.13519±5.3e−05 0.13520 −1.450e−05 True 1.3e−05 3.9e−05
4 2 4.1975±9.3e−04 4.3662 8.893e−01 True 2.6e−04 6.7e−04
4 0 4.407±9.1e−03 4.584 9.367e−01 False 8.3e−03 8.0e−04
5 5 0.083531 0.087982±3.9e−05 0.087998 −8.086e−06 True 8.3e−06 3.1e−05
5 3 1.9343±6.7e−04 2.0114 4.056e−01 True 2.3e−04 4.4e−04
5 1 2.2570±8.0e−04 2.3477 4.771e−01 True 2.5e−04 5.5e−04

(This table is available in its entirety in machine-readable form.)

Table 5
Calculated Equilibrium Love Numbers for Ganymede

n m knm Nonrotating knm Perijove knm Apojove dk dRnm sat Nonlinear Error Numerical Error qrot

2 2 0.536369 0.589274±9.2e−05 0.589276 −1.177e−05 True 4.5e−07 9.1e−05
2 0 0.4692±1.0e−03 0.4692 −1.675e−05 False 9.6e−04 8.4e−05
3 3 0.22434 0.23925±6.9e−05 0.23925 −5.506e−06 False 1.6e−05 5.3e−05
3 1 0.18975±5.8e−05 0.18975 −9.348e−06 False 1.3e−05 4.5e−05
4 4 0.12786 0.13515±5.3e−05 0.13516 −2.322e−06 True 1.3e−05 3.9e−05
4 2 10.7058±2.3e−03 10.7315 1.418e+00 True 6.7e−04 1.7e−03
4 0 11.26±1.7e−02 11.29 1.494e+00 False 1.5e−02 2.0e−03
5 5 0.083498 0.087961±3.3e−05 0.087978 −4.765e−05 True 2.1e−06 3.1e−05
5 3 4.9016±1.9e−03 4.9138 6.467e−01 False 7.5e−04 1.1e−03
5 1 5.7480±2.1e−03 5.7622 7.608e−01 False 7.4e−04 1.4e−03

(This table is available in its entirety in machine-readable form.)

Table 7
Calculated Equilibrium Love Numbers for Solar Tide

n m knm Nonrotating knm Perijove knm Apojove dk dRnm sat Nonlinear Error Numerical Error qrot

2 2 0.536369 0.589186±9.1e−05 0.589188 1.878e−12 False 4.6e−08 9.1e−05
2 0 0.469±1.3e−03 0.469 −3.756e−12 False 1.2e−03 8.4e−05

(This table is available in its entirety in machine-readable form.)

11

The Astrophysical Journal, 891:42 (15pp), 2020 March 1 Wahl et al.



of a satellite to the tesseral harmonics is given by

= F - FC C mcos , 15nm nm,0 0( ( ) ( )

= F - FS C msin , 16nm nm,0 0( ( ) ( )

where Φ and F0 are the phase of the satellite and a reference
phase, and

=
-
+

+
C

n m

n m

m

M

r

R
P k2 0 , 17nm

n

n
m

nm,0
s eq

1( )!
( )!

( ) ( )⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

with knm at a given orbital separation R given by the various
tables. Here R varies over the course of an elliptical orbit,
leading to small changes in both req/R and qtid.

Since the three satellites with the strongest tidal perturbations
are in a 4:2:1 orbit resonance, the time-dependent equilibrium
tidal bulge is dominated by a signal that repeats once every
orbit of Ganymede. It is convenient for visualization to set the
reference phase Φ0 in Equation (15) to that of Ioʼs orbit. In this
frame of reference, the primary contribution to the tidal bulge
from Io remains fixed, contributing only to Cnm, while
contributions from the other satellites cause temporal variations
in Cnm and Snm from that baseline value. Figure 7 shows this
repeating pattern in the tidal response in terms of C22 and S22
over a single orbit of Ganymede, with t=0 taken to be at the
inferior conjunction of Io and Ganymede. Figure 8 shows the
corresponding pattern for Cnm of other selected low-degree
harmonics.
Due to the coincidental match of Junoʼs orbital period with

this resonance, the spacecraft perijoves occur within a limited
range of F - FIo Europa. The point in the orbital cycle for each
Juno perijove is shown on the Cnm curves in Figures 7 and 8 for
both the completed (PJ1–PJ21) and currently projected (PJ22–
PJ35) perijoves. If the Juno spacecraft orbit is altered during
the extended mission to allow for a larger range of ΔΦ, then
the sensitivity of the Juno gravity solution to the satellite
specific knm would increase.
While k20 is not directly observable through the means that

knm with m>0 is, the top panel of Figure 8 suggests an
indirect means of measuring it. The equilibrium C20 varies with
Ioʼs orbital distance. The total equilibrium tidal contribution to
J2 is∼6.6×10−8 and would be embedded in much larger
contributions from the interior or winds. However, the
variations from Ioʼs orbital eccentricity would cause the total
J2 to vary by ∼1.5×10−9. This is roughly an order of
magnitude smaller than the reported J2 uncertainty of the

Figure 6. Dependence of Love numbers k22 and k20 on the orbital distance of
the four Galilean moons. The relative strength of the effect becomes more
significant for both larger degree n and larger n−m. The effect is relatively
small for k22 (top panel) and more significant for k42 (bottom panel). For Io, the
error bars show the range of knm for interior models matching the observed Jn.

Figure 7. Combined contribution to the tesseral gravity harmonics C22 (yellow)
and S22 (green) from all Galilean moons over the course of one orbit of
Ganymede (four orbits of Io), with t=0 at the inferior conjunction of Io and
Ganymede. The coordinates are chosen such that Io contributes only to Cnm,
with Snm contributions arising from the other satellites. The contribution from
Cnm from Io alone is shown in blue. The squares show the point in the cycle at
Juno perijove, with completed PJ1–PJ21 in black and projected PJ22–PJ35
in red.

Figure 8. Combined contribution to Cnm (yellow) from all Galilean moons over
the course of one orbit of Ganymede, as in Figure 7. The contribution from Cnm

from Io is shown in blue. The squares show the point in the cycle at Juno
perijove, with completed PJ1–PJ21 in black and projected PJ22–PJ35 in red.
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Iess et al. (2018) gravity solution but may become detectable as
the uncertainty decreases over the course of the mission.

3.3. Gravity Anomaly from the Love Numbers

A straightforward way of estimating the relative detectability
of a given knm is to calculate the maximum gravitational
anomaly associated with that specific Love number. Starting
with the corresponding tesseral gravity harmonic Cnm from
Equation (17), the gravity anomaly at the subsatellite point
(m = 0, f=0) that results from adding that tesseral signal to
an axisymmetric gravity solution is

d =
+

g C
P

n

GM

r

0

1
. 18r nm

n
m

J

J
2

( ) ( )

Figure 9 shows the relative magnitude of the anomaly for
various knm values calculated for each of the four satellites at
their perijove. Ioʼs k22 yields δgr∼0.085 mgal, while Europa
and Ganymedeʼs k22 have a corresponding dgr roughly 1 order
of magnitude smaller, and Callisto’s is an order of magnitude
smaller yet. In the lower panel of Figure 9, we see that the most
readily detectable higher-order Love numbers, k33, k42, and k31,
have δgr values on the order of 1 μgal.

We can attempt to predict which Love numbers Juno is
sensitive to by comparing the calculated gravity anomaly
magnitude with an estimate for observational uncertainty. For
instance, Figure 3 of Iess et al. (2018) presents the residual
gravitational accelerations for a single close approach of the
spacecraft, during which the minimum uncertainty is on the

order of ∼0.1 mgal. Using this value in conjunction with
Figure 9, we would thus predict that Juno is sensitive to only
k22 and k20 for Io, and not to any knm from the other satellites.
In the following section, we instead consider the sensitivity to a
time-integrated signal from the calculated equilibrium tides.

3.4. Sensitivity of Juno Doppler Measurements to the
Calculated Love Numbers

The Juno gravity science experiment uses measurements of
the Doppler shift of the radio signal transmitted by the
spacecraft to determine the time history of the spacecraft
velocity projected onto the direction to the Earth tracking
station, r . The velocity component is measured with an
accuracy of about s m=r

-5 m s 1
 for averaging times of 1

minute, limited primarily by fluctuations in the water content in
the Earthʼs troposphere (Asmar et al. 2017). The velocity
measurements are used to estimate corrections to models of the
forces acting on the spacecraft, including Jupiterʼs equilibrium
gravity field and its tidal perturbations characterized by the
Love numbers. In order to estimate Love numbers knm from the
Doppler measurements, we calculate the partial derivative for
the change in velocity per unit change in the value of the Love
number, r¶ ¶knm , for each measurement time. Given a
calculated value of knm, the magnitude of the predicted velocity
change due to each Love number is

r
r

=
¶
¶

k
k

. 19nm
nm

pred ( ) 

The top panel of Figure 10 shows the predicted Doppler
velocity, rpred , as a function of time for the 13th closest
approach of the Juno spacecraft to Jupiter (labeled PJ13), on
2018 May 24, due to the tides raised on Jupiter by the four
Galilean satellites, each characterized by the calculated values
of the Love number k42. The signals are well above the
measurement noise level, sr , for about 1 hr centered on closest
approach, and, as expected, Io raises the strongest tidal effect
on Jupiter. Equivalent signatures from k22 are nearly 200 times
larger than those from k42; therefore, we choose not to display
both effects, as they are difficult to display using the same scale
for the signal strength. Eventually, the values of the Love
numbers will be adjusted to best fit the measurements from
several Juno perijoves. While the data are still being calibrated,
we use the theoretical values of the Love numbers while
estimating the larger equilibrium gravitational signature to
reduce the chance of mismodeling of the tidal signatures
corrupting the equilibrium gravity field estimate.
The middle panel of Figure 10 shows the degree-four tidal

signal from Io during PJ13 for different values of the order m.
Likewise, the signals of these parameters are well above the
noise cutoff level; hence, we expect them to affect the reduction
of the Juno Doppler data and require them to be properly
modeled. Furthermore, the predicted Doppler signal from tides
is a function not only of the Love number and tide-raising body
but also of the Juno–Io phase angle (bottom panel).
In order to compare the size of the effects of the different

Love numbers, Figure 11 shows the signal-to-noise ratio (S/N)
during Juno’s 13th perijove (PJ13) for Love numbers knm. The
S/N is defined here as the ratio of the nominal value of the
Love number and the uncertainty in its estimated value, sknm,
from the Doppler data when only the Love number is

Figure 9. Top panel: maximum gravity anomaly, dgr , at the surface resulting
from the calculated knm for each Galilean satellite. Bottom panel: same as top
panel but on a linear scale at the μgal level. The most readily observable knm
values with n>2 are labeled.
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estimated. The uncertainty is given by

s
s

r
=

å ¶ ¶
r

k
, 20k

nm
nm ( )

( )



where the summation is over all Doppler measurements for a
single perijove. The S/N is then given by

s
=

k
S N . 21nm

nm

knm

( )

This definition of the S/N allows a comparison of the
amplitude of the effect of the different equilibrium Love
numbers on the Doppler measurements. Figure 11 shows that
the S/N for Love numbers of degree and order 3 through degree
and order 5 ranges from 2 to 2400; hence, most of them are, in
principle, detectable in the Juno data. In general, the Love
numbers cannot be independently estimated because their
signatures in the Doppler data are not orthogonal to the other
Love numbers, the equilibrium gravity signature, or several other
parameters describing other force models. Therefore, Juno is
likely to be able to accurately estimate values and uncertainties
for Love numbers with S/Ns greater than∼100, but inclusion of

nominal values for lower Love numbers is important to avoid
aliasing of small tidal signals into other gravity parameters.
Using this conservative threshold for S/N, Figure 11 suggests

that Juno will be able to estimate Ioʼs k33, k31, and k42, with k44
lying near the threshold. Likewise, it suggests that Juno may be
able to estimate k22 for the other three Galilean satellites. The solar
tide is below the threshold, with its k22 having an S/N∼30,
and the next most significant tidal perturber, Jupiterʼs satellite
Amalthea, yields an S/N an order of magnitude smaller than that
of the Sun. If the signals could be sufficiently separated down to an
S/N∼10, then degree 3 and 4 Love numbers might be detected
for Europa and Ganymede, along with k53 for Io. The conclusions
of the S/N analysis are, therefore, more optimistic toward the
number of detectable knm values than would be predicted from
the gravity anomaly magnitudes alone (Section 3.3). Comparing
these predictions to the lower panel of Figure 9 suggests that Juno
is sensitive to tides with a maximum gravity anomaly as low as
∼1μgal.

4. Conclusions

In this work, we calculate the equilibrium tidal response of
Jupiter to its four Galilean moons and the Sun. We present
these as a series of tables that report the knm for each body,
characterizing its dependence on orbital distance, and the
estimated uncertainty from the numerical method, physical
parameters, interior density structure, and winds. We find an
equilibrium = k 0.58976 0.000122 for Io, consistent with
previous calculations (Wahl et al. 2016; Nettelmann 2019), that
is remarkably insensitive to the details of the interior structure
model, once fitted to the low-degree axisymmetric gravity
solution (J2, J4, and J6) from Juno (Iess et al. 2018). This
means that measurement of k22 by Juno will not yield
additional constraints on the interior structure via the
equilibrium tidal response. However, this insensitivity to
interior models also means that Juno has the opportunity to
unambiguously detect dynamic contributions to the tidal
response. Should dynamic contributions be detected, they

Figure 11. The S/N for time-integrated Doppler shift profiles (Figure 10)
resulting from adding the calculated equilibrium knm for each Galilean satellite
and the Sun from this paper at their PJ13 positions. During PJ13, Juno was
close to the Io subsatellite point (DF = - 8Io ). The error bars show the range
of S/N including two other close approaches, PJ06 and PJ03, with
DF = - 54Io and 85°, respectively.

Figure 10. Top panel: Doppler shift as a function of time near Juno perijove
resulting from adding an equilibrium k42 with the magnitude for each Galilean
satellite from this paper at their PJ13 positions. The red shaded region shows
the noise level for data about the optimized gravity solution for this perijove.
Middle panel: same as top panel but showing k44, k42, and k40 for Io. Bottom
panel: same as top panel but comparing k42 from Io for PJ13, PJ06, and PJ03,
during which the difference in longitude between Juno and Io (ΔΦIo) is −8°,
−54°, and 85°, respectively.

14

The Astrophysical Journal, 891:42 (15pp), 2020 March 1 Wahl et al.



may yield independent information regarding interior structure
or processes, although comprehensive theoretical predictions
for such a dynamic response have not been performed.

We introduce improvements to the CMS method for tidal
response calculations that eliminate the previously described
center-of-mass shift resulting from the original implementation.
The improvement allows us to correctly resolve the Love
numbers of order m=1 (i.e., k31 and k51). We find that for the
tides experienced by Jupiter, the predictions of the other knm
values using the previous method (Wahl et al. 2016, 2017a;
Nettelmann 2019) are consistent, at least within the expected
sensitivity of Juno. It remains to be shown whether the
improved method has a more profound effect on predictions for
close-in extrasolar planets, where the tidal perturbations can be
several orders of magnitude stronger.

In Section 3.4 we studied the sensitivity of the Juno Doppler
measurements to the calculated equilibrium tidal response. By
finding the S/N for the calculated knm, we show that Juno is
sensitive to both the higher-degree (n>2) Love numbers of Io
and the k2m of Europa, Ganymede, Callisto, and the Sun. This
is important for two reasons. First, it motivates the need for
inclusion of the higher-order tidal components in the analysis
and interpretation of Juno Doppler data. The signals from these
higher-order tides are sufficiently large that mischaracterizing
them could lead to their misinterpretation as contributions from
another source (i.e., interior density structure or deep winds).
Second, they suggest that multiple knm values may be
detectable by Juno. In principle, this could provide a test of
the theoretical predictions for the rotationally induced splitting
and orbital dependence of the equilibrium knm (Wahl et al.
2017a). They may also offer independent measurements from
k22 to detect or characterize a dynamic contribution to the tides.
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