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Abstract

The mechanisms of angular momentum transport and the level of turbulence in protoplanetary disks (PPDs) are
crucial for understanding many aspects of planet formation. In recent years, it has been realized that the magneto-
rotational instability tends to be suppressed in PPDs due to nonideal magnetohydrodynamic (MHD) effects, and
the disk is primarily laminar with accretion driven by magnetized disk winds. In parallel, several hydrodynamic
mechanisms have been identified that likely also generate vigorous turbulence and drive disk accretion. In this
work, we study the interplay between MHD winds in PPDs with the vertical shear instability (VSI), one of the most
promising hydrodynamic mechanisms, through 2D global nonideal MHD simulations with ambipolar diffusion
(AD) and ohmic resistivity. For typical disk parameters, MHD winds can coexist with the VSI with accretion
primarily wind-driven accompanied by vigorous VSI turbulence. The properties of the VSI remain similar to the
unmagnetized case. The wind and overall field configuration are not strongly affected by the VSI turbulence,
showing a modest level of variability and corrugation of the midplane current sheet. Weak AD strength or the
enhanced coupling between gas and magnetic fields weakens the VSI. The VSI is also weakened with increasing
magnetization, and characteristic VSI corrugation modes transition to low-amplitude breathing mode oscillations
with strong magnetic fields.

Unified Astronomy Thesaurus concepts: Protoplanetary disks (1300); Magnetohydrodynamics (1964);
Astrophysical fluid dynamics (101)

1. Introduction

Understanding the gas dynamics of protoplanetary disks
(PPDs) is crucial for the study of many aspects of planet
formation. The key element to PPD gas dynamics lies in the
mechanisms for disk angular momentum transport. This is,
first, because it determines the overall disk structure and
controls long-term disk evolution and, second, because
mechanisms responsible for angular momentum transport
generally give rise to complex internal flow structures,
particularly turbulence. Most stages of planet formation take
place in PPDs, which sensitively depend on both of these
factors (e.g., Armitage 2011). While angular momentum
transport is not yet directly observable, theoretical studies are
mainly guided by the fact that PPDs are actively accreting onto
protostars at a typical rate of∼10−8Me yr−1 (e.g., Hartmann
et al. 1998; Herczeg & Hillenbrand 2008), which places strong
constraints on the possible mechanisms involved.

Angular momentum transport in PPDs has been convention-
ally attributed to the turbulence driven by the magneto-
rotational instability (MRI, Balbus & Hawley 1991). However,
this scenario is complicated by the fact that PPDs are extremely
weakly ionized (e.g., Wardle 2007; Bai 2011a), which
substantially weakens the coupling between gas and magnetic
fields. This coupling is described by three nonideal magneto-
hydrodynamic (MHD) effects: ohmic resistivity, the Hall
effect, and ambipolar diffusion (AD). They affect the MRI
in different ways (e.g., Blaes & Balbus 1994; Jin 1996;
Wardle 1999; Balbus & Terquem 2001; Desch 2004; Kunz &
Balbus 2004), and particularly dissipations by resistivity and
AD lead to damping or even complete quenching of the MRI
(Bai & Stone 2011; Simon et al. 2013a, 2013b; Gammie 2017).

Via detailed simulations with increasingly realistic disk
microphysics, it has been shown that PPD accretion is likely
primarily driven by magnetized disk winds (Bai & Stone 2013;
Bai 2013, 2017; Gressel et al. 2015) in a largely laminar disk: a
major paradigm shift.
Parallel to the development of the MHD theory, pure

hydrodynamic mechanisms for driving angular momentum
transport have also been discussed extensively in recent years.
These include the vertical shear instability (VSI; Nelson et al.
2015; hereafter N13), convective overstability in its linear
(Klahr & Hubbard 2014; Lyra 2014; Latter 2016) and nonlinear
state (subcritical baroclinic instability; Klahr & Bodenheimer
2003; Petersen et al. 2007a, 2007b; Lesur & Papaloizou 2010),
and zombie vortex instability (Marcus et al. 2013, 2015;
Umurhan et al. 2016b). These instabilities generally operate
under certain specific thermodynamic conditions and can
potentially be activated in different regions of PPDs (Fromang
& Lesur 2017; Malygin et al. 2017; Pfeil & Klahr 2019). It is
generally found in numerical simulations that the level of
turbulence resulting from these hydrodynamic instabilities is
not sufficiently strong to account for the typical disk accretion
rates; they yield Shakura–Sunyaev (Shakura & Sunyaev 1973)
α values up to ~ -- -10 104 3, while α∼10−2 is likely
required for the outer disk (e.g., Hartmann et al. 1998). But as
potential sources of disk turbulence, they have important
implications to planet formation. They can efficiently stir up
dust particles (e.g., Stoll & Kley 2016; Flock et al. 2017b;
Lin 2019), trap them in vortices, and facilitate planetesimal
formation (e.g., Raettig et al. 2015; Manger & Klahr 2018).
Such turbulence is also needed so that submicron dust particles
are suspended to account for the disk spectral energy
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distributions (SEDs; D’Alessio et al. 2001) and the patterns
seen in scattered light images.

So far, studies of wind-driven accretion have generally
adopted simplistic treatments of thermodynamics, partly to
avoid the development of these hydrodynamic instabilities. On
the other hand, studies of these hydrodynamic instabilities have
mostly ignored magnetic fields. A natural question arises: are
hydrodynamic and MHD mechanisms compatible with each
other? In other words, can these hydrodynamic instabilities
operate in disks that launch magnetized disk winds?

In this paper, we focus on one of the most promising
hydrodynamic instabilities, the VSI, and its interplay with
magnetic fields. The VSI is an application of the Goldreic–
Schubert–Fricke instability (Goldreich & Schubert 1967;
Fricke 1968), originally derived in the context of differentially
rotating stars, to accretion disks (Urpin & Brandenburg 1998;
Urpin 2003; Arlt & Urpin 2004). Applications of the VSI to
PPDs by N13 have drawn significant attention, leading to
intense follow-up studies since then (e.g., Barker & Latter 2015;
Umurhan et al. 2016b). Essentially, a disk that is Rayleigh-
stable from radial shear becomes unstable in the presence of
vertical shear where the rotational velocity varies over height,
provided that the cooling timescale is much shorter than the
orbital timescale to overcome the stabilizing effect of vertical
buoyancy. In the limit of instant cooling, the criterion becomes
(N13)
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where j is the specific angular momentum and is a function of
cylindrical coordinates ( )R Z, , and kR, kZ are the radial and
vertical wave numbers. The VSI taps free energy from the
vertical shear in disk rotational velocities, which destabilizes
inertial-gravity waves (e.g., Lin & Youdin 2015). Such vertical
shear is present when the fluid is baroclinic where contours of
constant density and pressure are not aligned, and this is
generally unavoidable in passively heated disks. The require-
ment for rapid cooling or thermal relaxation is more
demanding. For standard models of PPDs, calculations suggest
that the VSI can be triggered in the outer regions beyond ∼5 au
as well as in the very inner regions (Lin & Youdin 2015;
Malygin et al. 2017; Pfeil & Klahr 2019).

Unstable VSI modes typically have large ratios of kR/kZ to
take advantage of the vertical shear, and nonlinear simulations
by N13 in an idealized setup assuming vertically isothermal
disks have found that the VSI develops into vigorous
turbulence with prominent vertical oscillations. A cooling time
well within ∼0.1 orbital time is needed to trigger the VSI,
giving α values up to∼10−3. More realistic simulations by
Stoll & Kley (2014) incorporating radiative transfer show
agreement with the results of N13, though a reduced efficiency
of angular momentum transport is reported. Recent 3D
simulations further suggest the development of vortices
(Richard et al. 2016; Manger & Klahr 2018), which is likely
due to secondary Kelvin–Helmholtz instabilities (Latter &
Papaloizou 2018).

In this paper, we conduct 2D global nonideal MHD
simulations of PPDs and study the possible development of
the VSI, focusing on outer regions dominated by AD. While
the VSI may operate in the innermost disk regions that are
highly optically thick, the dynamics of these regions are much

more complex and are likely dominated by the MRI turbulence
due to thermal ionization (e.g., Fromang et al. 2002; Desch &
Turner 2015; Flock et al. 2017a). We restrict ourselves to cases
where the disk is otherwise laminar (without VSI) to avoid
complications from external driving sources. Note that even the
system is laminar, there is still finite coupling between gas and
magnetic fields, and hence a pure hydrodynamic understanding
is incomplete. Recently, Latter & Papaloizou (2018) analyzed
the linear properties of the VSI in the presence of magnetic
fields. They found that in the ideal MHD limit, while the MRI
and the VSI modes lie in the same branch of the dispersion
relation, MRI modes always dominate given their much higher
growth rate. It is speculated that the VSI modes might survive
when the MRI is suppressed, though they only mentioned
ohmic resistivity. We will directly examine whether the VSI
can survive in the AD-dominated regime more relevant to
realistic PPDs. If so, we will further address how the VSI is
affected by magnetic fields, and in turn, whether the
development of the VSI affects wind properties. As these are
the first numerical simulations to examine the interplay
between the VSI and nonideal MHD, we aim to make the
problem as clean as possible. Therefore, we do not employ
sophisticated implementations of realistic disk physics as in Bai
(2017), but rather conduct numerical experiments similar to
those in Bai & Stone (2017) with prescribed AD coefficients to
mimic outer PPD conditions. We anticipate our results to serve
as a benchmark for future studies that incorporate more realistic
thermodynamics together with nonideal MHD physics.
This paper is organized as follows. In Section 2, we provide

detailed descriptions of the numerical methods and the
simulation setup. In Section 3, we list diagnostic quantities to
furnish analyses of simulation results. Discussion on fiducial
models of instability features are detailed in Section 4. The
flow structure, mass accretion, and disk winds are discussed in
Section 5. We conduct a parameter study on magnetic field
strengths, cooling timescales, and AD strengths in Section 6.
Finally, we summarize and discuss the main findings in
Section 7.

2. Methods and Simulation Setup

In this section, we describe the method and setup of our
simulations, and in the meantime demonstrate the basic
considerations that enter these simulations.

2.1. Dynamical Equations

We use the grid-based high-order Godunov MHD code
Athena++ (Stone et al. 2019) to conduct global simulations of
the VSI in the context of PPDs. Athena++ is the successor of
the Athena MHD code (Gardiner & Stone 2005, 2008; Stone
et al. 2008), but is rewritten in C++ which has much more
flexible coordinate and grid options with significantly improved
performance, scalability, and source code modularity. We solve
standard MHD equations in spherical polar coordinates in
conservative form, including nonideal MHD effects as
implemented in Bai & Stone (2017):
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where ρ, v, and P are gas density, velocity, and pressure,
respectively. The sum of the thermal and magnetic pressures is
denoted by p= +P P B 82* , where =P IP* * , with I being
the identity tensor, and ∣ ∣= BB . The gravitational potential of
the central star with mass M* has the form Φ=−GM*/r.
The total energy density is given by ( )g= - +E P 1
r p+v B2 82 2 , where ∣ ∣= vv . The ideal gas law is adopted
with an adiabatic index γ=7/5 for molecular gas in the bulk
disk.4 The term Λc in the last equation represents the cooling
rate to be detailed in Section 2.4.

The electric field involves components from nonideal MHD
effects. In the local fluid rest frame, it reads

( ) ( )p
h h¢ = + ^E J J

c

4
, 6O A2

where the ohmic and ambipolar diffusivities are denoted by ηO
and ηA, and we have ignored the Hall term (see Section 2.3).
The current density is p= ´J Bc 4 , and we express

( ˆ) ˆ= - ´ ´Ĵ J b b as the component of J that is perpend-
icular to the magnetic field. The magnetic field B has its unit
vector denoted by ˆ =b B B. The Poynting flux associated with
nonideal MHD is given by p¢ = ¢ ´S E Bc 4 . We use
Gaussian units in the above equations, whereas in code units
a factor of 4πis absorbed so that the magnetic permeability
is m = 1.

We perform global 2D simulations in spherical polar
coordinates (r, θ, f). We also use R=rsinθ and z=rcosθ
to denote radial and vertical components in cylindrical
coordinates. The unit system in the code has G=M=
R0=1, where R0 is the reference radius fixed at the location of
the inner boundary. The simulation domain spans r=1 to 100
and θ=0 to π (i.e., including the polar region) so that the
domain contains sufficient dynamical range and is fully
extended to accommodate wind launching. We use the van
Leer time integrator and the HLLD Riemann solver, with
piecewise linear reconstruction. Super time stepping is used to
accelerate the calculations of nonideal MHD as in Bai &
Stone (2017).

2.2. Disk Model and Initial Conditions

As mentioned earlier, we aim to conduct relatively clean
numerical experiments, hence our disk model is set to be scale
free. In particular, the disk temperature is set by the aspect ratio
ò=H/r, where H=cs/Ω is the disk scale height, and

r=c Ps
2 is the isothermal sound speed. Being scale free
(self-similar) requires ò to be independent of r, so that the disk

temperature is given by
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In the above, the aspect ratio morphs from a disk value òd to
a surface value òw. We employ a modestly thin disk with
òd=Hd/r=0.1 and set òw=0.5. The transition happens
at q = H3.5trans d, with δθ the angle from θtrans. The transition
width is controlled by n, where in our prescription n=2,
corresponding to a transition that occurs within 0.05Hd.
Physically, the temperature transition is motivated by the
external UV and X-ray heating from the protostar in the wind
zone (e.g., Walsh et al. 1999; Glassgold et al. 2004).
We consider a density profile that is a power law in radius
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where we set qD=2. The function f (θ) is obtained through a
hydrostatic equilibrium solution. Solving for the Euler’s
equation in spherical polar coordinates in r and θ directions
yields (Bai & Stone 2017)
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where we define ( ) ( ) ( )q q qº F f 2 . Note that f (θ) is an
implicit function of ò(θ), hence numerical integration is applied
to calculate F(θ) and then to compute f (θ). Radial and θ

velocities are set to zero for equilibrium, but we further add
random noise to these velocity components with an amplitude
of±5% of the local sound speed.
The poloidal magnetic fields are initialized by specifying an

azimuthal vector potential (Zanni et al. 2007; Bai &
Stone 2017),
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Here, Bz0 is the midplane field strength at R0. The parameter m
determines the initial magnetic field configuration, quantifying
the degree for which the magnetic field lines bend. A value
that approaches infinity  ¥m gives a purely vertical field.
In this paper, we choose m=0.5. The poloidal field is
computed by =  ´ fB A , so that one can arrive at =Bmid

( ) ˆ( )- +B R R zz
q

0 0
1 2D for a magnetic field at the midplane. Using

a vector potential guarantees that the resulting field is
divergence free. The midplane poloidal field B is set so that
the plasma β, defined as the ratio of gas to magnetic pressure, is
constant. With midplane b p= p B80 0 mid

2 , p0 being the

4 The VSI primarily occurs in the disk where gas is molecular with γ=7/5.
By a transition above the disk surface, the gas is mainly atomic in the wind
zone where γ=5/3 (e.g., Wang et al. 2019). The exact value of γ affects the
critical thermal relaxation timescale to trigger the VSI (Lin & Youdin 2015).
Nevertheless, as we have experimented, we find effectively no difference in the
outcome of the simulations between these two values.

3

The Astrophysical Journal, 891:30 (18pp), 2020 March 1 Cui & Bai



midplane pressure, we choose b = 100
4 in the fiducial model

and further explore stronger and weaker fields.

2.3. Elsässer Numbers

The strength of the nonideal MHD effects are characterized
by the dimensionless Elsässer numbers. For resistivity and AD,
they are given by

( )
h h

L =
W

=
W

v
Am

v
, , 13

O

A
2

K

A
2

A K

where pr=v B 4A
2 is the Alfvén speed. At a given

ionization fraction, ηO is independent of field strength and
density, whereas h rµ BA

2 2, and the Hall diffusivity
ηH∝B/ρ. Note that by definition, Am is generally independent
of field strength. The ohmic and AD Elsässer numbers are
known to largely control operation of the MRI, with a threshold
of about unity (e.g., Turner et al. 2007; Bai & Stone 2011).
Here, we primarily consider the outer regions of PPDs where
low densities make AD the dominant nonideal MHD effect.
While the Hall effect likely plays an important role at
intermediate disk radii (e.g., Bai 2017), we do not include it
to avoid complications, and because it would break the scale-
free nature of our numerical experiments. We do include
resistivity for purely numerical reasons (see below).

In our fiducial simulations, we set Am=0.3 for the bulk
disk. Note that the value of Am is found to be of order unity
toward the PPD outer regions (Bai 2011a, 2011b), and we
choose it to be on the lower end which helps suppress the MRI.
The value of Am then smoothly increases from the disk zone to
the wind zone where Am is set to 100, attributed to the stellar
irradiation of the far-UV (FUV) and X-rays that substantially
elevate the ionization level above the disk surface (Perez-
Becker & Chiang 2011), recovering the ideal MHD regime.
The functional form of the transition is similar to that of
temperature, since heating and ionization in the disk atmos-
phere/wind zone are both due to UV/X-rays.

For simulations with pure AD, the system unavoidably
develops a current sheet in the midplane region where Bf flips
sign (e.g., Bai & Stone 2017; Bai 2017; Suriano et al. 2018).
This current sheet tends to be unstable, which then corrugates
and develops into more complex structures (see Appendix B
for more discussion). While this is interesting on its own right
and will be investigated in a future publication, it imposes
difficulties to assess the development and saturation of the VSI
and causes problems near the inner radial boundary. Given the
experimental nature of our simulations, we thus apply
resistivity near the inner boundary and a thin layer (~Hd)
in the midplane region throughout to stabilize the system (see
Figures 5). It allows us to investigate the development of the
VSI on top of a laminar disk that launches MHD disk winds.
The value of the midplane resistivity is fixed to h = c H0.05 sO d,
and it rapidly declines toward the surface, being negligible
within H0.1 d. The fiducial run with β0=104 has an initial
midplane ohmic Elsässer number of L = ´ -4 10 3.

2.4. Thermal Relaxation

Cooling of the system is achieved through thermal
relaxation, which is associated with the Λc term on the right-

hand side of Equation (5). We adjust the disk temperature as

( )
( )

t
= -

-dT

dt

T T
, 14

eq

where T is the temperature at time t, and the target temperature
Teq is set to the equilibrium temperature by initial condition. A
relaxation time τ is prescribed to be a fraction of the local
Keplerian orbital period, i.e., ( ) ( )t pµ = WR P R2orb K . More
precisely, we adjust the disk temperature at each time step by
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D
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where ΔT=T(t+Δt)−T(t). The terminology utilized for
thermodynamics throughout this paper is (i) locally isothermal,
which forΔt? τ the disk temperature is kept to its equilibrium
value at each position; and (ii) thermal relaxation, for which the
disk temperature is returned to its equilibrium value on some
timescale determined by τ. Following Bai (2017) and Bai &
Stone (2017), the wind zone is set to be locally isothermal for
all runs with a smooth transition from the disk zone.5

2.5. Boundary Conditions

The conditions of the inner radial boundary deserve special
attention. We fix the hydrodynamic variables to the initial
equilibrium state, with temperature and density computed from
Equations (7) and (9). The angular velocity is set to the
minimum between the initial vf through Equation (11) and

( )W r RK 0 , along with the other two velocity components
vr=vθ=0. Such a fixed state boundary condition can provide
a more stable flow structure and minimize the influence of the
inner boundary on the main simulation domain. Furthermore,
we add a buffer zone between r=r0 and =r r1.5 0 by
including a constant resistivity from the midplane all the way
up to near the pole with values at each θ equal to the midplane
resistivity. It helps stabilize the magnetic flux originating from
the inner boundary, though not completely over long times.
The rest of the boundary conditions are standard. The

hydrodynamic variables in the outer radial boundary are
extrapolated from the last grid zone, assuming r µ -r qD,
µ -T r qT , and µf

-v r 1 2. Radial and meridional velocities vr
and vθ are copied directly from the last grid zone, except setting
vr=0 when vr<0. Magnetic field variables in the inner and
outer ghost zones are determined via µ -B rr

2, µqB const.,
and µf

-B r 1. With the θ domain reaching to the pole, we
employ polar boundary conditions, where the θ and f
components are reversed across the polar boundary.

2.6. Simulation Runs

Our simulation runs are listed in Table 1, with three main
physical parameters: the disk magnetization β0, the thermal
relaxation timescale τ, and the disk AD Elsässer number Am.
For the fiducial run, we choose β0=104, τ=0, and
Am=0.3. Models by varying these parameters are considered
with [ ]b Î 10 , 100

3 5 , τä[0, 0.1], and [ ]ÎAm 0.3, 1 . To
facilitate analyses, we also conduct simulations with τ=1 that

5 Global nonideal MHD simulations coupled with thermochemistry per-
formed on disk winds indicate τ∼5 in the atmosphere (Wang et al. 2019). A
more realistic thermodynamic prescription can be applied to the wind zone in
future work.
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are otherwise identical to runs Fid, B3, and B5 but with τ=1,
where VSI is not expected to develop.

The simulation models listed in Table 1 are all carried out
with the same resolution, 1536×480 grid cells in ( )qr, , except
model ResH. The radial domain spans from r=1 to 100 and
has logarithmic spacing. Note that our radial domain is much
wider than previous hydrodynamic simulations of the VSI. This
is because to properly accommodate the MHD winds, the
domain size should generally be much larger than the wind
launching radius. The grid spacing in the θ direction increases by
a constant factor of 1.006 per grid cell from the midplane toward
the two poles so that the resolution at the midplane is four times
finer than that at the pole. This enables us to achieve a resolution
of about 32 cells per Hd in r and 32 cells per Hd in θ at the disk
midplane. Run ResH is a hydrodynamic run with limited θ
domain and no temperature transition for comparison with
earlier works in literature. Its limited spatial domain spans

[ ]Îr 1, 4 and [ ]q Î - H r H r5 , 5d d . The resolution achieves
96 cells per Hd in r and 108 cells per Hd in θ with uniform grid
spacing. In Appendix A, we demonstrate our adopted resolution
is sufficient for numerical convergence.

For comparison, pure hydrodynamic simulations with an
identical setup to MHD runs are also conducted by the same set
of thermal relaxation timescales. Note that these hydrodynamic
simulations differ from existing simulations (e.g., those in N13)
in that we cover a much more extended θ domain with a
temperature transition. We will see that most VSI activity is
bounded by this temperature transition region even though the
disk atmosphere is set to have instantaneous cooling.

3. Diagnostics

We list relevant diagnostic quantities in this section to
facilitate the analyses of simulation results.

3.1. Kinetic Energy

One quantity of great interest is the perturbed energy, which
is defined as the sum of volume-integrated meridional and
radial kinetic energies normalized by the initial equilibrium

angular velocity fv 0 (N13):

∭
∭
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r q q f

r q q f
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+ q
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. 16

r
2 2 2
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We compute the kinetic energies in a box of [ ]Îr 2, 4 and
[ ]q Î - H r H r3 , 3d d . The evolution of kinetic energies will

be frequently invoked in the Results sections to facilitate
comparisons of different simulation models.

3.2. Stress Tensors

In steady state, the equation of angular momentum
conservation in cylindrical coordinates reads

⎛
⎝⎜

⎞
⎠⎟ ∣ ( )


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¶
¶

á ñ + á ñf f
-

-
M v

R
R dz T R T

4
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R z z
zacc K 2 2

wb
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wb
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where the angle brackets stand for temporal and spatial
averages. The net mass accretion rate on the left-hand side of
Equation (17) is given by

( ) òp r= -
-

M R v dz2 , 18
z

z

Racc
wb

wb

and two terms on the right-hand side of Equation (17) are
associated with transport due to the radial and vertical
components of the angular momentum flux, corresponding to
the Rf and zf components of the stress tensor, and are defined
as (Balbus & Hawley 1998)

( )rd d
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= -f f
f

T v v
B B

4
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=
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f
f

T
B B

4
. 20z

z

The hydrodynamic and magnetic parts of the stress tensors are
known as Reynolds (TRey) and Maxwell (TMax) stress,
respectively. For vertical transport, we retain only the Maxwell
stress, because the Reynolds component, r fv vz , does not carry
excess angular momentum from the disk. The vertical height of
the wind base is marked by ∣ ∣ =z H3.5wb d, which separates the
disk and atmosphere. Empirically, it is the location where the
nonideal MHD dominated disk zone transitions to the ideal
MHD dominated wind zone. For better statistics, we do it over
a time interval from 200 to P300 0 as well as over a cylindrical
radial extent R 0.1 around the radius of interest.
Radial transport is generally mediated by turbulence and is

characterized by the classic dimensionless α parameter
(Shakura & Sunyaev 1973). At each location it is defined as

( )a =
á ñ

f
fT

P
. 21R

R

The role of radial (viscous) transport on disk accretion is
reflected in the vertically integrated α, defined as

( )
ò

ò
a =

f-

-

T dz

P dz
, 22z

z
R

z

z
wb

wb

wb

wb

Table 1
List of Simulation Models and Parameters

Run b0 t Porb Am

FidH L 0 L
ResH L 0 L

Fid 104 0 0.3
B3 103 0 0.3
B5 105 0 0.3
t–3 104 10−3 0.3
t–2 104 10−2 0.3
t–1 104 10−1 0.3
Am0.5 104 0 0.5
Am1 104 0 1.0

Note. FidH and Fid are hydrodynamic and MHD fiducial simulations,
respectively. Porb and P0 denote the local orbital period and innermost orbital
period. Run FidH has a run time of 600 P0 and B3 has a run time of 800 P0, and
the rest of the models have a run time of 500 P0.
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and by assuming steady-state viscously driven accretion, it
yields an accretion rate given by

( ) ( ) ( ) p a
p a»

¶ S
¶

~ SM
v

c R

R
R v

4
4 , 23s

d Kvis
K

2 2
2

where ò rS =
-

dz
z

z

wb

wb is the surface density. In the second

relation, we replace ¶ ¶R by -R 1 for an order of magnitude
estimate.

Vertical transport of angular momentum is mediated by
magnetized disk winds. Because of a long lever arm, it is more
efficient than radial transport by a factor ~R H , given BR and
Bz are of the same order of magnitude. Inside the disk, wind-
driven accretion is achieved by a torque exerted by the Lorentz
force, and in the thin disk limit, Bz is approximately constant,
and the local accretion velocity given by (Wardle 2007; Bai &
Stone 2013) is

( )r
p

- W » -
¶

¶
f

v
B B

z

1

2 4
, 24R

z
k

which states that the accreting velocity is proportional to the
vertical gradient of Bf.

3.3. Wind Kinematics

The local mass loss rate per logarithmic radius of wind is
formulated by

( ∣ ∣ ) ( )


p r r= á ñ + á- ñ -
dM

d R
R v v

ln
2 , 25z z z z

wind 2
wb wb

where ( )M Rwind is the cumulative wind mass loss rate within
radius R. An important diagnostic of the magnetized winds is
the Alfvén radius, which is the point along a field line where
the poloidal gas velocity vp equals the local Alfvén velocity

pr=v B 4Ap p . The wind mass loss rate is related to the mass
accretion rate in the bulk disk by (Ferreira & Pelletier 1995),
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where ξ is called the ejection index, and the ratio R RA wb is
often referred to the magnetic lever arm. Thus, the location of
the Alfvén point can provide a convenient measure of the wind
mass loss rate.

3.4. VSI Linear Modes

General linear analysis on pure hydrodynamic VSI can be
found in N13. With a locally isothermal equation of state, and
in the short-wavelength limit, the VSI growth rate σ is given by

( )s k~ W
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0 0
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where Ω0 is the angular velocity of disk at the center of the
shearing box, and κ0 denotes the epicyclic frequency. This
expression directly relates the vertical shear ¶ ¶fv Z to the
growth rate of the wave modes. The fastest growing mode then
satisfies
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Local linear analysis incorporating magnetism has been
conducted by Latter & Papaloizou (2018) under the assumption
of ideal MHD. For the VSI modes to fit into the disk, their
wavelength should not exceed the disk scale height, and this
gives an upper limit to the field strength

( )b - q , 302

where β represents the ratio of thermal pressure to magnetic
pressure, and q is a measure of the vertical shear strength.
Taking q∼H/R=0.1, we have β100 (Barker & Latter
2015). Equations (27) and (30) will later be involved to discuss
why VSI weakens with increasing disk magnetization
(Section 6.1).
The above mentioned linear analyses are performed under

the local shearing sheet assumption in the short-wavelength
limit. Vertically global analyses demonstrate the emergence of
two types of modes, namely the body modes near the midplane
that can be further categorized into breathing and corrugation
modes, and the high latitude surface modes when applying no-
flow boundary conditions (N13; Barker & Latter 2015;
McNally & Pessah 2015; Umurhan et al. 2016a). The nonlinear
evolution of the VSI is eventually taken over by large-
amplitude corrugation modes.

4. Fiducial Models

Starting with an analysis on the fiducial hydrodynamic
model FidH, we demonstrate its consistency with the limited θ-
domain simulation ResH (Section 4.1). Then we present results
from MHD simulations by discussing the fiducial model Fid in
detail to illustrate the main features of the VSI when
incorporating magnetic fields (Sections 4.2–4.4). Analyses on
models B3 and B5 are detailed in Section 6.1.
In presenting the results, we use time in units of the

innermost orbital time ( ) p= =P P R 20 orb 0 . If not otherwise
noted, we analyze the data at radii between R=2 and R=4,
and average the results from time 200 to 300P0 for model Fid
and B5, and 600 to 700P0 for model B3. These time intervals
are chosen after the VSI has fully saturated (see Figures 2
and 12).

4.1. The Hydrodynamic Runs

In Figure 1, we show the meridional velocities at time
t=150P0 for runs FidH and ResH. Note the difference
between the two runs is that run FidH has an extended domain
with a temperature transition at = z H3.5 d. As discussed
in N13, there are higher latitude surface modes and lower
latitude body modes in the early stage of their simulations, and
the body (corrugation) modes dominate the nonlinear state of
evolution. Surface modes generally require high resolution to
be resolved due to their short radial wavelengths. Our run ResH
achieves comparable resolution as in N13, and all these modes
are observed where breathing modes show up when initial
perturbations are small (~ - c10 s

6 ). Surface and breathing modes
are ultimately taken over by corrugation modes in the nonlinear
stage, showing prominent vertical oscillations. While run FidH
has lower resolution and does not show surface modes, we see
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that the corrugation modes at the nonlinear state are well
captured.

As seen in Figure 1, the two runs share very similar
turbulence patterns, except that in run FidH, the VSI is well
confined in the bulk disk within the transition region.
Turbulence properties in between the two runs also converge,
as we find that the turbulent kinetic energy as defined in
Equation (16) asymptotes to ~ ´ -KE 2 10 4 after ∼40P0 for
both models (see Figure 2). The Reynolds stresses between the
two models are also consistent with each other, on the order
of a ~f

-10R
3.

N13 found turbulent kinetic energy in their simulations rises
unphysically after a few hundred orbits, which was attributed to
their restricted computational domain and θ boundary condi-
tions. We have also observed this phenomenon in run ResH.
While our run FidH with a much more extended domain shows
fluctuations in kinetic energy after about 300P0, the mean value
remains similar, and the turbulence structure is sustained in the
long run.

4.2. Time Evolution in MHD Simulations

The time evolution of our fiducial MHD run Fid is illustrated
in four figures. Figure 2 shows the time evolution of kinetic
energy fluctuations as defined in Equation (16). In Figures 3
and 4, snapshots of vertical velocity vz and magnetic fields are
displayed along the evolutionary sequence. In these two
figures, we also show results of the simulation with τ=1
where the VSI does not develop, for comparison. In Figure 12,
we provide a spacetime plot of vertical velocity at R=3 to
show the development of VSI consecutively.

With poloidal fields, the initial stage of the evolution is
characterized by wind launching from the surface layer, which
occurs around the transition region where gas becomes better
coupled to the magnetic field. This process generates some
disturbances that traverse the simulation domain in a few tens
of orbits that is visible in Figure 2. Once the wind is established
in a few tens of P0, the overall field configuration remains
quasi-steady state as seen in Figure 4. Note that when setting
the cooling time to be τ=1 (last panels of Figures 3 and 4),
the wind configurations remain stable and symmetric through-
out the simulation time. Therefore, the turbulent fluctuations
we observe at later times in run Fid should arise from the VSI.

We observe the VSI developing in the bulk disk body
progressively from small to large radii, on top of the
magnetized wind. In Figure 3, we see that at =t P25 0, wave
patterns in a region <R 1.5 are associated with VSI wave
modes. Features at >R 1.5 correspond to disturbances from
initial relaxation. We mainly focus on regions between R=2
to 4, for which it takes~ P100 0 for the VSI turbulence to cover
this entire region.
The overall development of the VSI in run Fid is similar to

that in the hydrodynamic counterpart run FidH. In Figure 2, we
see the VSI of run Fid takes longer to develop, which is a
general trend in magnetized runs (see Section 6.1). In Figure 3,
it can be seen that regions around R=2 show breathing modes
(body modes with odd symmetry) at =t P50 0, and transitions
at –=t P60 70 0 to become corrugation modes with even
symmetry. These features are all very similar to the pure
hydrodynamic case, though the transition is slightly delayed
when comparing the results at the same radial range. Due to the
lower resolution, surface modes found in the initial develop-
ment of the VSI in the hydrodynamic simulations of N13 are
not observed, though in N13 it was noted that these modes are
later overtaken by corrugation modes. As can be seen in
Figure 1, finer turbulent structures are present in higher

Figure 1. Radial velocities vr for model FidH (first column) and ResH (third column) and meridional velocities vθ for model FidH (second column) and model ResH
(forth column) at t=150P0. Dashed lines mark the angles π/2−θ=±0.35 radians corresponding to the transition from the disk zone to the wind zone.

Figure 2. Time evolution of normalized perturbed kinetic energies of model
ResH, FidH, B3, Fid, and B5, all with locally isothermal prescriptions and
plotted in log-linear scale.
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resolution runs. It is unclear whether such finer turbulent
structures affect the diffusion of magnetic fields, though we
expect them to be negligible compared to the much stronger
nonideal MHD effects. By =t P200 0 and within the entire
region of R=4, the instability is saturated with vigorous VSI
turbulence, characterized by strong vertical oscillations. The
radial spacing of these oscillation columns is about –~ H2 3 d,
again similar to the pure hydrodynamic case. The oscillation
period can be also obtained in Figure 12, which is about P20 0 at
R=3, corresponding to 3.8 local orbits.

The development of the VSI modifies the magnetic field
configuration. Around the transition zone, the radial magnetic
field appears to show some bunching behavior as seen in the
upper panels of Figure 4. This results from radial shear in
vertical oscillations of the VSI. In the disk zone, the τ=1
simulation shows the standard pattern with a smooth toroidal
field that flips at the midplane, leading to a current sheet (e.g.,

Bai & Stone 2017). In the bottom panels of Figure 4, the
current sheet corrugates and oscillates around the midplane in
accordance with the VSI oscillations. As a consequence, the
toroidal field component becomes less smooth, showing some
banded patterns.
One caveat to our simulations is that the magnetized wind

configuration is only quasi-steady. As found in Bai & Stone
(2017), disks tend to gradually lose magnetic flux over time. At
the numerical level, the inner boundary is gradually depleted of
magnetic flux and becomes less magnetized, which causes the
region to be less stable. This can be seen in the sixth and
seventh panels in Figures 4 and 3, and the effect starts to affect
the region of interest after about P300 0, and is related to the
successive decline of the kinetic energy beyond~ P300 0 seen in
Figure 2. The corrugation oscillation period also becomes more
irregular as seen in Figure 12. Therefore, in the rest of the paper

Figure 3. Vertical velocities vz of the fiducial MHD simulation (model Fid), displayed in logarithmic scale. First seven panels: snapshots of vertical velocity at
=t 25, 50, 60, 70, 100, 200, and P300 0 with a locally isothermal prescription (t = 0). Lower right panel: snapshot of vertical velocity perturbations at t=300P0

with the thermal relaxation prescription (t = 1). The dashed lines mark the opening angles q = p 0.35
2

.
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we restrict our analysis for model Fid to a time interval from
200 to P300 0 and mainly focus on radius R=3.

4.3. Diagnostic Vertical Profiles

To examine the gas dynamics in the presence of the VSI, we
show in Figure 5 the vertical profiles of major diagnostic
physical quantities in a vertical extent [ ]Î -z H r H r5 , 5 ,d d
which covers the entire disk zone and part of the wind zone, at
a cylindrical radius R=3. For comparison, the first and second
rows show time-averaged results from run Fid, and the
corresponding profiles of the model with thermal relaxation
time τ=1. Dashed curves correspond to profiles measured in
initial hydrostatic equilibrium (t= 0).

All profiles are either symmetric or antisymmetric about the
midplane. In the second column, we see that toroidal fields are
the dominant field component which reaches a factor ∼5 of the

midplane field and undergoes a flip of sign in the midplane. As
seen in the fourth column, the flip is achieved over a relatively
thick layer of = z H due to the midplane resistivity added to
stabilize the current sheet. Since the transition is at
~ z H3.5 d, the bulk disk is still AD dominated, and is

sufficient for us to study its interplay with the VSI for the outer
disk. The relatively low transition height which may be
expected for the outer disk (e.g., Perez-Becker & Chiang 2011)
leads to the fact that the gas is still relatively dense there, and
the entire disk is gas pressure dominated. Nevertheless, overall
wind profiles remain similar to those obtained in previous wind
simulations (e.g., Bai & Stone 2017). The poloidal velocity is
accelerated along field lines reaching a substantial fraction of
the midplane Keplerian speed, whereas rotation remains sub-
Keplerian at all heights as seen in the third column due to the
pressure gradient. A vertical shear in the rotational velocity is
clearly present which is the driving source of the VSI. The

Figure 4. Snapshots of radial (top panels) and toroidal (bottom panels) magnetic fields taken at t=100, 200, and P300 0 of the fiducial model Fid. Solid black curves
delineate the evenly spaced contour lines of poloidal magnetic flux. For comparison, the last column of both rows shows the corresponding τ=1 contours at
=t P300 0. The dashed lines mark the opening angles q = p 0.35

2
.
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wind profiles between run FidH, which is turbulent but time-
averaged, and its τ=1 counterpart, which is laminar without
VSI, closely resemble each other. This is a clear indication that
the VSI does not affect the general properties of the disk wind.

4.4. Turbulence Strengths

To assess the level of VSI turbulence, we calculate the root
mean square of velocity fluctuations as ( )d º - á ñv v v rms,
where angle brackets denote the temporal and spatial
averaging. We average the quantities over a time interval from
200 to P300 0 and over a spatial extent = R 3 0.1. The results
are shown in Figure 6 for runs B3, Fid, and B5.

We focus on run Fid here in the middle panel.
The perturbed velocities in the τ=0 run are around 10%
of the local sound speed in the bulk disk, and are dominated
by the vertical component as is expected in the VSI.
The radial and azimuthal component of the fluctuation
rises toward the wind zone. At the wind base around the
transition height ( ~ z H3.5 d), total velocity fluctuations are
at about 20%–30% of the midplane sound speed, which
leads to fluctuations in the wind kinematics (see more
discussion in Section 5.2.3). By contrast, velocity fluctuations
are at a much lower level by several orders of magnitude in
the τ=1 case.

Figure 5. Vertical profiles of hydrodynamic and magnetic variables at fixed cylindrical radius R=3 of MHD fiducial model Fid with initial magnetic field strength
b = 100

4. First row: profiles averaged over a time interval from 200 to P300 0 with the thermodynamic prescription τ=0. Second row: profiles measured at =t P300 0

of the corresponding τ=1 model. Dashed curves correspond to profiles measured in initial hydrostatic equilibrium (t = 0). Temperature profiles are shown in H/R.
The gas density and pressure are normalized to midplane values rmid and Pmid. The magnetic field strength is normalized to the initial midplane field strength Bmid,0.
The three velocity components are normalized to the Keplerian velocity.

Figure 6. Three components of velocity fluctuations normalized by the local sound speed cs of model B3 (left column) averaged over – P600 700 0, Fid (middle
column), and B5 (right column) averaged over – P200 300 0 at R=3. Solid and dotted curves correspond to τ=0 and τ=1 models, respectively.
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5. Angular Momentum Transport

In this section, we analyze angular momentum transport
processes in the presence of both the VSI and disk winds
through radial (Section 5.1) and vertical (Section 5.2) transport.

5.1. Radial Transport

In Figure 7, we show components of a fR , the time and
spatially averaged Reynolds and Maxwell stress, normalized by
the midplane gas pressure at = R 3 0.1. Focusing on the
middle panel for our fiducial model Fid, the Reynolds stress
due to the VSI is appreciable throughout the disk column
achieving a maximum of ~ ´ -5 10 4 at ~ z H1.5 d. The
τ=1 model shows a negligible Reynolds stress as expected.

The Maxwell stresses of both the locally isothermal model
and the thermal relaxation (τ=1) model drop near the disk
midpane ( ~ z Hd, Figure 5). While this is mainly due to
(artificially) enhanced ohmic resistivity applied to this region,
we note that in reality the flip of Br and Bf should give rise to a
similar but much narrower feature. The Maxwell stress rises
toward the disk surface as accompanied by wind launching,
and reaches a local a ~f

-10R
3 near the wind base. With the

VSI, additional turbulent fluctuations increase the Maxwell
stress in the midplane region so that the overall vertical profile
is relatively flat compared to the τ=1 case.

When integrating the stress over height, one obtains the
vertically integrated α of Maxwell and Reynolds stress. For
model B3, Fid, and B5, the Reynolds stresses obtained are
a » ´ ´ ´- - -6.9 10 , 1.0 10 , 1.6 106 4 4, and the Maxwell
stresses are a » ´ ´ ´- - -4.1 10 , 5.7 10 , 1.0 103 4 4, respec-
tively. With decreasing disk magnetization, the Reynolds stress
becomes prominent, and it surpasses the Maxwell stress as seen
in model B5.

We note that the Reynolds stresses measured in all three of
our magnetized models are noisy and are smaller than those
obtained in 3D simulations (a ~ -10 ;3 e.g., N13; Manger &
Klahr 2018) which allow for better averaging. We find the
same holds for hydrodynamic simulations. The higher
Reynolds stress in 3D is likely due to the formation of vortices
(Richard et al. 2016; Manger & Klahr 2018), though the kinetic
energy fluctuations remain very similar between 2D and 3D.

Further study with nonideal MHD in 3D is needed to better
constrain the range of Reynolds stress values.

5.2. Vertical Transport

Without VSI turbulence, previous works (e.g., Bai 2017)
show that magnetized disk winds are predominant in driving
disk accretion. In this section, we examine how the VSI affects
the wind properties.

5.2.1. Flow Structure

As explained earlier, for purely wind-driven accretion, the
vertical profile of accretion (radial) velocity should be given by
Equation (24). This is clearly seen in the right panel of Figure 8
for simulations with τ=1, similar to the results in Bai & Stone
(2017). The accretion layer is confined to within = z H2 d
where Bf flips, and the mass flux agrees very well with
expectations. Gas starts to flow radially outward as the gradient
of Bf reverses. Some deviation in the upper layer can be
attributed to the fact that Bz can no longer be taken to be
constant as assumed.

Figure 7. Components of the dimensionless a fR parameter defined in Equations (19) and (21): averaged Reynolds (black) or Maxwell (red) stress normalized by the
gas pressure at R=3 for model B3 (left panel), Fid (middle panel), and B5 (right panel). Solid curves delineate locally isothermal models τ=0. Dashed curves
delineate thermal relaxation models τ=1.

Figure 8. Vertical profiles of mass flux measured at R=3 and averaged over
– P200 300 0 of model Fid with τ=0 (left) and τ=1 (right). Mass fluxes

computed directly from simulation data (solid red) and predicted from wind-
driven accretion (dotted black; Equation 24) are shown. Gray curves delineate
the transition between accretion and decretion regions.
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In the left panel of Figure 8, the onset of the VSI modifies
flow structure in both accretion and decretion layers. The
accreting/decreting layer becomes narrower/broader, and the
mass fluxes of these two layers are both enhanced. The bulk
disk is now not in steady state, hence Equation (24) is
inapplicable to estimate the flow structure. Sudden drops of the
dotted black curve near = z H2.5 d are associated with the
bunching of poloidal fields, and VSI turbulence tends to restrict
the accreting flow toward the midplane within = z Hd.

5.2.2. Mass Accretion Rate

Figure 9 shows the radial profiles of accretion and mass loss
rates, computed at R=3 and averaged over –=t P200 300 0.
The right panel shows the accretion rate without the VSI.
Clearly, accretion is mainly driven by wind, and it dominates
the contribution from the fR component of the Maxwell stress
by a factor of ~R H , as expected. There is excessive mass
loss, with a mass loss rate a factor of several higher than the
accretion rate. Correspondingly, we find that the Alfvén radius
is very close to the wind base, as expected from Equation (26).
This is mainly controlled by the location of the wind base, and
a higher wind base would lower the mass loss rate (e.g., Bai
et al. 2016). Detailed understanding of wind dynamics requires
realistic calculations of heating/cooling processes in the disk
atmosphere (e.g., Wang et al. 2019) and is beyond the scope of
this work. Here, we are mainly concerned with the gas
dynamics in the bulk disk and in the interplay between the VSI
and winds, and we have experimented to confirm that our
overall conclusions are robust when setting the wind base at
different heights.

The left panel of Figure 9 shows accretion rates in the
presence of the VSI. The bulk accretion and mass loss rates are
similar to those of the τ=1 case, indicating that the VSI plays
a minor role in the overall processes including angular
momentum transport and mass loss. Still, the magnetized wind
remains the dominant mechanism in driving disk accretion. The
main differences due to the VSI is that accretion driven by the
Rf component of the Reynolds stress is significantly boosted,
reaching a level comparable to that from the Maxwell stress.
We also note that with the VSI the profiles are noisier even

after some time averaging. To better quantify the role of radial
transport, we use Equation (23) for an order-of-magnitude
estimate, taking a ~ -10 3, which is slightly larger than the
values obtained from our fiducial run (sum of Maxwell and
Reynolds stress), but comparable to those measured in 3D
hydrodynamic simulations (Section 5.1). Converting to code
units, we find a value of~ ´ -1.8 10 5 at R=3, which is again
about a factor H/R to wind-driven accretion rates.

5.2.3. Wind Variability

The turbulent nature of the bulk disk due to the VSI induces
time variabilities in the wind. To show this, we trace a poloidal
field line from the midplane at =R 30 all the way up to the
boundary of the simulation domain. In Figure 10, we present
the time evolution of poloidal velocity and mass flux along this
field line at cylindrical radii of R=3.5 and R=15 over a time
interval – P200 400 0. The poloidal velocities measured at the
two radii increases with distance, implying the wind keeps

Figure 9. Mass accretion and mass loss rate of model Fid (left panel) and corresponding τ=1 model (right panel). The radial profiles of the mass accretion rate (blue
solid), mass loss rate per logarithmic radius (blue dashed–dotted), fR component of Maxwell stress driven accretion rate (black solid), fR component of Reynolds
stress driven accretion rate (black dashed), and fz component of Maxwell stress driven accretion rate (black dotted) are shown.

Figure 10. Time variability of quantities measured at R=3.5 (black) and
R=15 (red) along the traced poloidal magnetic field line from the midplane
with =R 30 . Top panel: the time variability of the wind poloidal velocity
normalized by the Keplerian velocity ( )W RK 0 . Bottom panel: the time
variability of mass flux normalized by the midplane density ( )r Rmid 0 and the
Keplerian velocity. Solid and dashed curves represent models of τ=0
and τ=1.

12

The Astrophysical Journal, 891:30 (18pp), 2020 March 1 Cui & Bai



accelerating. The wind from the τ=1 case (no VSI) is fairly
steady, as the bulk disk is in quasi-steady state. With the VSI
(τ=0), wind velocity and wind mass flux are on average
about the same as in the τ=1 case. In the meantime, the wind
velocity fluctuates at about ±25% at R=3.5 and ±8.5% at
R=15, whereas the mass flux fluctuates around ±34% at
R=3.5 and ±26% at R=15. These results suggest that the
VSI affects wind kinematics only at a modest level.

6. Parameter Study

In this section, we investigate the effect of magnetic field
strength (Section 6.1), the thermal relaxation timescale
(Section 6.2), and the AD strength (Section 6.3) on the onset
of the VSI.

6.1. Magnetic Field Strength

We first look at the evolution of kinetic energies for all runs in
Figure 2. It is notable that the development of the instability is
closely related to the magnetic field strength; stronger fields result
in a time delay in the onset of the VSI and weaker kinetic energy
fluctuations. Specifically, initial growth proceeds the fastest in the
hydrodynamic run FidH. Growths in models B5 and Fid lag a
few tens of orbital periods behind. These runs saturate at similar
turbulence levels. The growth of model B3 is much more
prolonged, and is only noticeable after~ P300 0 and saturates after
about P450 0. Overall, run B5 resembles the behavior of run Fid
except that the body (corrugation) modes show earlier growth
and saturate to slightly higher amplitude (Figure 2). Run B3 is
more special and we discuss it in more detail below.

The vertical velocity fluctuations at different stages of the
disk evolution for run B3 are shown in Figure 11. At
=t P200 0, we can identify the presence of breathing modes

with odd symmetry. The amplitude of such fluctuations
saturates after about P500 0 at radii –=R 2 4 and remains until
the end of the simulation at P800 0 (Figure 2). We find that the
system is entirely dominated by such low-amplitude breathing
modes (top panel of Figure 12). The oscillation period at R=3

is around~ ~P50 100 local orbits, and is not entirely steady as
the radial spacing of such modes also varies with time. Because
of the symmetry of the breathing mode, the current sheet
remains largely unperturbed in the equatorial plane. We also
show results from the simulation with τ=1 in the last panel of
Figure 11. In contrast, there is very little fluctuation in vertical
velocity and no sign of such breathing modes, which further
supports that what we observe in run B3 is a consequence of
the VSI.
Figure 6 further shows the vertical profiles of velocity

fluctuations of runs B5 and B3. We see that the velocity
fluctuations of run B5 generally resemble the behavior of those
in run Fid, which are dominated by vertical motions similar to
the pure hydrodynamic case at the quantitative level. Velocity
fluctuations in run B3 are much weaker. Moreover, as the
corrugation mode is suppressed, vertical velocity fluctuation
appear to be the weakest, whereas there are stronger velocity
fluctuations in vf.
Figure 7 is similar to Figure 6, but for vertical profiles of the
fR component of the Reynolds and Maxwell stresses. For the

Maxwell stress, it is clear that stronger magnetization gives a
higher Maxwell stress, which accompanies wind launching as
usual.6 On the other hand, run B5 yields a stronger Reynolds
stress than the fiducial run, while run B3 gives much less. Since
the Reynolds stress is mainly caused by the VSI, this
anticorrelation with field strength again reflects that the VSI
weakens with stronger magnetization.
The fact that stronger magnetization leads to weaker VSI

may have two possible causes. First, wind launching modifies
the vertical shear profile and thus likely alters the free energy
source that feeds the VSI. This can be seen in Equation (29),
where the linear growth rate directly scales with this shear rate,
though it does not apply to the vertically global body modes. In
Figure 13, we show the vertical shear profiles of runs FidH, B5,
Fid, and B3 in the τ=1 (no VSI) and τ=0 (with VSI) cases.

Figure 11. Snapshots of the vertical velocity vz in logarithmic scale for model B3 at t=200, 500, and P700 0 for τ=0, as well as at =t P700 0 for τ=1. Solid cyan
curves delineate the evenly spaced contour lines of poloidal magnetic flux. The dashed lines mark the opening angles q = p 0.35

2
.

6 In addition, midplane resistivity weakens the Maxwell stress more
significantly for runs with weaker magnetization.
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Comparing the two panels, we see that the VSI modifies the
shear profile at a modest level. Interestingly, a narrow feature is
observed at ~ H3 d in run B3 that is related to wind launching,
in both τ=1 and τ=0 cases, whereas below this region, the
shear profile remains similar to runs with weaker magnetiza-
tion. Given the complexity of this feature, however, it is
difficult to deduce whether it is responsible for the transition to
breathing modes or not.

The perspective above employs the results of a linear
analysis from pure hydrodynamics on top of a magnetically
modified vertical shear profile, and thus ignores the coupling
between gas and the magnetic field. In the opposite limit, the
linear analysis by Latter & Papaloizou (2018) mainly assumed
the ideal MHD limit (i.e., perfect coupling between gas and the
magnetic field), and found that the MRI generally overwhelms
the VSI, and that the VSI modes are stabilized by magnetic
tension when b ~- q 1002 (Equation 30). We find that
magnetization in our run B3 has reached this limit for z H2 d,
which is consistent with the lower-than-expected growth rate
discussed earlier. We will further discuss in Section 6.3 the role
played by AD. We also note that the linear analysis in Latter &
Papaloizou (2018) was conducted in the short-wavelength
limit, applicable mainly to the surface modes, whereas the more
relevant are the body modes requiring vertically global
treatment. While this has been done in the hydrodynamic
framework (N13; Barker & Latter 2015; McNally &
Pessah 2015), it can be highly challenging to further
incorporate vertical magnetic fields because of the lack of a
well-defined initial equilibrium.

6.2. Thermal Relaxation Timescale

The thermal relaxation timescale is decisive regarding the
onset of the VSI. Short thermal timescales can diminish the
stabilizing effect from buoyancy, and hence furnish the growth

Figure 13. Left: vertical shear profile at R=3 of model FidH (dotted), B5
(black), Fid (red) at P200 0, and B3 (blue) at P600 0 with τ=1. Right: vertical
shear profile at R=3 of model FidH, B5, and Fid averaged over – P200 300 0,
and B3 averaged over – P600 700 0 with τ=0. In both panels, the dashed–
dotted curves display the initial vertical shear profile ( )=t 0 , which are the
same for all runs. The gray line marks zero vertical shear gradient.

Figure 12. Spacetime diagram of the vertical velocity vz at R=3 for run B3 (top panel), Fid (middle panel), and B5 (bottom panel) in logarithmic scale. Note that the
time is in units of P0 (orbital period at the innermost boundary), which needs to be divided by »3 5.23 2 to convert to local orbits at R=3.
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of the instability. Here, we consider the evolution of the models
by relaxing the locally isothermal assumption. The thermal
timescales investigated are fractions of the local orbital periods.
We chose t = 0.1, 0.01, 0.001 corresponding to model t−1,
t−2, and t−3, along with the fiducial model Fid where τ=0.
For comparison, each MHD model is accompanied by a
hydrodynamic run with the same thermal relaxation
prescription.

In Figure 14, we show the evolution of the kinetic energy
fluctuations for models with various thermal timescales. In pure
hydrodynamic simulations, it is clear that in the τ=0.1 model,
the kinetic energy fluctuations quickly dampen and then
maintain a constant and very low level, indicating no VSI
growth. Model τ=0.001 shares great similarities with the
locally isothermal run FidH, whereas model τ=0.01 grows
slower and saturates at a turbulence level with kinetic energy
about twice lower. The critical cooling time of τ=0.1 is
consistent with previous analytical studies and hydrodynamic
simulations with either simplified disk models or more realistic
radiative transfer (e.g., N13; Stoll & Kley 2014; Lin &
Youdin 2015).

The solid curves in Figure 14 show the corresponding MHD
runs. Comparing the results with the pure hydrodynamic runs,
we see that the threshold thermal relaxation timescale is similar
between the two cases. For –t = - -10 103 2, the level of
saturation is also similar between hydrodynamic and MHD
runs, where the system shows prominent vertical oscillations
that are characteristic of the corrugation modes.

6.3. Ambipolar Diffusion Strength

The role played by nonideal MHD effects (especially AD) in
our simulations can be understood from two aspects. First, they
suppress the MRI, thus allowing the VSI to stand out. Second,
they break the flux freezing condition to make the gas behave
close to the unmagnetized case. Latter & Papaloizou (2018)
qualitatively discussed the VSI under the ohmic resistivity,
where the VSI should be able to operate completely unimpeded
when magnetic diffusion is able to weaken magnetic tension
over the timescale of VSI growth, which translates to an ohmic

Elsässer number L < q, where q is defined in Equation (30).
AD shares some similarities with ohmic resistivity in its
dissipative nature, though a more detailed examination is
needed. Here, we show the influence of Am from our numerical
results below.
We explore the evolution of perturbed kinetic energies as a

function of AD Elsässer number Am which is prescribed as a
constant within the bulk disk (Figure 5). Realistic values of Am
are found to be of order unity toward outer regions of PPDs
(e.g., Bai 2011a). Here, we further increase the value of Am
to 0.5 and 1, and the time evolution of the kinetic energy
fluctuation of these runs is shown in the right panel of
Figure 14. We see that the VSI becomes weaker when Am is
larger, which corresponds to smaller diffusivity. This result
supports the expectation discussed earlier that strong magnetic
dissipation can assist the development of the VSI.
From these results, we see that in the limit of strong AD

( Am 1), the disk can be considered as unmagnetized and we
expect vigorous VSI turbulence if thermal relaxation in the disk
is sufficiently rapid. In the opposite limit ( Am 1), the MRI
will take over the VSI that again leads to strong turbulence.
Hence, weakest turbulence is likely to occur in between these
two limits.

7. Conclusions and Discussion

In this paper, we study the onset and nonlinear evolution of
the vertical shear instability, which has so far been studied
mostly in the hydrodynamic framework, in the presence of
MHD disk winds. We perform 2D simulations in spherical
polar coordinates in the –qr plane using the Athena++ code.
We focus on outer regions of PPDs, where thermodynamic
conditions favor the development of the VSI. Nonideal MHD
effects including AD and ohmic resistivity are incorporated,
with prescribed diffusivities that suppress the MRI in the bulk
disk and launch MHD winds from the surface. The main results
are summarized as follows.

1. The VSI generates vigorous turbulence in the presence of
magnetized PPD disk winds. The turbulence properties

Figure 14. Left panel: evolution of normalized kinetic energy with various thermal relaxation timescales. Solid curves show kinetic energies of model Fid (τ=0),
t−1, t−2, and t−3. Dotted curves show kinetic energies of the corresponding hydrodynamic simulations to the MHD models. Right panel: evolution of perturbed
kinetic energy with varying AD strengths of model Fid (Am=0.3), Am0.5, and Am1. Model FidH is also shown for comparison.
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are similar to those of the pure hydrodynamic case,
yielding velocity fluctuations on the order of c0.1 s
dominated by vertical motions. The Shakura–Sunyaev
α parameter is a few times 10−4 in our 2D simulations.

2. Magnetized disk winds persist despite the VSI turbu-
lence. The bulk wind properties remain similar to the
cases without the VSI, with small variability at the level
of ∼10%–30%. The midplane current sheet becomes
corrugated as a result of the VSI, and the poloidal
magnetic field shows bunching in the surface layer.

3. The growth rate of the VSI depends on disk magnetiza-
tion. Stronger fields lead to slower growths, and the
dominant behavior transitions from corrugation to low-
amplitude breathing modes.

4. The level of VSI turbulence weakens as gas becomes
better coupled to magnetic fields as long as the MRI
remains suppressed. We speculate the weakest turbulence
is achieved at some intermediate values of Am.

5. The conclusions above apply to locally isothermal disks.
A finite thermal relaxation timescale weakens the VSI in
a way similar to the pure hydrodynamic case, and
eventually suppresses the VSI for t  P0.1 orb for our
fiducial disk parameters.

7.1. Discussion

The development of MHD winds and of hydrodynamic
instabilities has been mostly studied independently in the
literature. This work shows for the first time that they can
coexist. A profound implication of this result is that unlike in
the conventional thinking, where turbulence serves to both
transport angular momentum and provide particle stirring,
angular momentum transport is mainly driven by magnetized
disk winds and particle stirring is due to turbulence. This means
that observational constraints on disk turbulence from either
direct measurement (e.g., Flaherty et al. 2017, 2018; Teague
et al. 2018) or indirect inference from the thickness of the dust
layer (e.g., HL Tau; Pinte et al. 2016) do not necessarily tell the
mechanism of angular momentum transport, as has already
been speculated in the case of HL Tau (Hasegawa et al. 2017).

More broadly, magnetic fields tends to play a destabilizing
role in the ideal MHD limit due to the development of the MRI.
This has been shown by Lyra & Klahr (2011) in the case of
subcritical baroclinic instability. For the VSI, we have also seen
that it tends to be weaker as AD weakens, and it is likely
eventually taken over by the MRI. Therefore, we may speculate
that with a magnetically driven disk wind launched from the
disk surface, the largely magnetically inactive PPD offers a
relatively clean environment for hydrodynamic instabilities to
develop, and besides the VSI, it is worth investigating the case
with other hydrodynamic instabilities.

As the first numerical study incorporating magnetism to
investigate the vertical shear instability, we have adopted some
simplifications in order to make the simulations as clean as
possible. Therefore, our simulations are subject to several
limitations both numerically and physically that can be
improved in future studies. Numerically, first we employ
ohmic resistivity in all simulations at the midplane to stabilize
the current sheet (Appendix B). Properly following the long-
term behavior of the midplane current sheet requires 3D
simulations with reasonable resolution. Second, our 2D

simulations inevitably prevent the development of vortices,
which have been known to be prevalent in 3D. Third, the inner
boundary becomes less stable toward longer timescales, which
is likely related to the secular outward transport (loss) of
poloidal magnetic flux, restricting our simulations to relatively
short timescales.
Physically, we have used prescribed vertical profiles of

temperature and ambipolar diffusivity, whereas more realistic
calculations should properly account for ionization chemistry
(e.g., Bai 2017) and radiative processes in the disk (e.g., Stoll
& Kley 2016). Moreover, wind properties are sensitive to the
physics of the wind launching region, which we have treated
using a simple transition, calling for further improvement (e.g.,
Wang et al. 2019). Lastly, we have neglected the Hall effect,
which is also expected to play an important role in a broad
range of radii, and whose behavior depends on the polarity of
the net poloidal field with respect to disk rotation (e.g.,
Wardle 2007). For the aligned case, prior global 2D (Bai 2017;
Béthune et al. 2017) and local 2D and 3D (Bai 2014, 2015;
Lesur et al. 2014; Simon et al. 2015) simulations indicate that
the disk is magnetically laminar, with a horizontal field
substantially amplified by the Hall-shear instability (HSI,
Kunz 2008). We might expect the VSI to coexist on top of
the wind as found in this work, though it remains to be seen as
the system configuration can be asymmetric about the midplane
due to the HSI (Bai 2017). For the antialigned case, the disk
might undergo bursty turbulent motions (Simon et al. 2015),
for which further investigation needs to be pursued in global
3D simulations to understand its interplay with the VSI.
Future works are planned to extend the simulations to 3D

and to incorporate more physics, which will likely yield a more
complete and realistic picture of gas dynamics in the outer
region of PPDs.
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Appendix A
Resolution Study

First, we compare hydrodynamic simulations via four levels
of resolution. Model ResH has a domain and resolution similar
to those of N13. The limited spatial domain spans over

[ ]Îr 1, 4 and [ ]q Î - H r H r5 , 5d d , and the resolution
achieves 96 cells per Hd in r and 108 cells per Hd in θ with
uniform grid spacing. We do not apply a transition from the
disk zone to the wind zone for model ResH. The other three
simulations possess a large domain size the same as simulations
presented in Table 1, reaching 16, 32, and 48 cells per Hd at the
midplane, respectively. The direct comparison of the evolution
of kinetic energies in a box of [ ]Îr 2, 4 and [q Î - H r3 ,d

]H r3 d are shown in the left panel of Figure 15. In the early
stages, relaxation from the inner boundary dominates the
fluctuations in models Res16, Res32, and Res48. After ~ P15 0,
fluctuations by the VSI take over, and the kinetic energies
converge for all four runs after ~ P50 0.
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We also perform a resolution study for the MHD simulations
but with weak disk magnetization (b = 100

5). Three resolu-
tions are tested as in the hydrodynamical simulations. The right
panel of Figure 15 indicates that the three simulations have
their kinetic energies converge after P100 0. As experimented, a
resolution of 48 cells per Hd can be time consuming, especially
when field strengths are strong. Overall, we conclude that a
moderate resolution of 32 cells per Hd is well suited for the
purpose of this study.

Appendix B
Corrugation of the Midplane Current Sheet

In our simulations, the current sheet emerges at the midplane
due to the orbital shear generated toroidal magnetic fields. The
current sheet dissipates the toroidal magnetic field via
reconnection. This current sheet is observed to be unstable

and leads to fluctuations to the gas motion and magnetic field
above/below the midplane. The unstable current sheet can
further adversely affect the development of the VSI. As the first
numerical experiment to explore the interplay between the VSI
and laminar MHD winds, we implement ohmic resistivity in
the midplane to stabilize the current sheet, allowing for the VSI
to develop on top of a clean background.
To track the behavior of the current sheet, we conduct test

runs without the VSI to explore how this current sheet will
evolve and affect its vicinity. Figure 16 shows snapshots of
toroidal magnetic fields overlaid with equally spaced contour
lines of poloidal magnetic flux with τ=1 and Am=0.5. Now
the resistivity at the midplane is removed while it is still
retained in the buffer zone at <r 1.5. Noticeable corrugations
of the current sheet in the vertical direction is detected after
~ P200 0. As seen at later times, the level of corrugations
exacerbates and breaks up the current sheet for >R 2. We are

Figure 15. Perturbed kinetic energies for the resolution study with 16 (solid), 32 (dashes), and 48 (dotted) cells per Hd at the midplane. Left panel: time evolution of
kinetic energies of the hydrodynamic simulations. Right panel: time evolution of perturbed kinetic energies of the MHD simulations with magnetization b = 100

5.

Figure 16. Snapshots of toroidal magnetic field contour maps taken at =t 200, 250, 350, and P450 0 of a model with τ=1, Am=0.5, and without midplane
resistivity. Solid black curves show the evenly spaced contour lines of poloidal magnetic fluxes.
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currently working on 3D simulations to further investigate this
issue.
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