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Abstract

By conducting three-dimensional hydrodynamical simulations we find that jets that a main-sequence companion
launches as it orbits inside the wind acceleration zone of an asymptotic giant branch star can efficiently remove
mass from that zone. We assume that during the intensive wind phase a large fraction of the gas in the acceleration
zone does not reach the escape velocity. Therefore, in the numerical simulations we blow the wind with a velocity
just below the escape velocity. We assume that a main-sequence companion accretes mass from the slow wind via
an accretion disk, and launches two opposite jets perpendicular to the equatorial plane. This novel flow interaction
shows that, by launching jets, a companion outside a giant star, but close enough to be in the acceleration zone of a
slow intensive wind, can enhance the mass-loss rate from the giant star by ejecting some gas that would otherwise
fall back onto the giant star. The jets are bent inside the wind acceleration zone and eject mass in a belt on the two
sides of the equatorial plane. The jet–wind interaction contains instabilities that mix the shocked jets’ gas with the
wind, leading to energy transfer from the jets to the wind. Our new simulations add to the rich variety of jet-
induced outflow morphologies from evolved stars.

Unified Astronomy Thesaurus concepts: Stellar jets (1607); Asymptotic giant branch (108); Close binary stars
(254); Planetary nebulae (1249)

1. Introduction

There are a rich variety of stellar binary systems in which, at
one or more periods during their evolution, one star accretes
mass from the other star through an accretion disk and launches
jets. Most relevant to the present study are systems where a
main-sequence companion accretes mass from a cool giant and
launches jets (e.g., Witt et al. 2009; Thomas et al. 2013;
Gorlova et al. 2015; Van Winckel 2017). The jets themselves
might, in return, influence the ambient gas that serves as the
mass reservoir for the accretion disk. In particular, the jets
might shape the outflow and enhance the mass-loss rate from
the binary system so as to reduce the mass accretion rate and
therefore the jets’ power. This removal of mass by the jets
begins a negative feedback cycle, known as the jet feedback
mechanism (see Soker 2016a for a review).

Alongside the negative component of the feedback cycle, the
jets have a positive feedback component. The mass that flows
onto the accreting compact object builds a high-pressure zone
near that object. This high pressure acts to reduce the accretion
rate (e.g., Ricker & Taam 2012; MacLeod & Ramirez-
Ruiz 2015). By removing angular momentum, high entropy
gas, and energy from the close surroundings of the accreting
compact object, the jets reduce the pressure in that region and
therefore enable a high mass accretion rate (Shiber et al. 2016;
Staff et al. 2016a; Chamandy et al. 2018).

In one type of binary system where jets are thought to
remove mass, a neutron star companion launches jets inside
the envelope of a giant star (e.g., Armitage & Livio 2000;
Chevalier 2012; Papish et al. 2015; Soker & Gilkis 2018;
Gilkis et al. 2019), or in its inflated unstable envelope (e.g.,
Danieli & Soker 2019). White dwarfs (e.g., Soker 2004), and in
particular main-sequence stars (e.g., Soker 2004; Moreno
Méndez et al. 2017; Sabach et al. 2017), might also launch jets
while spiraling inwards inside the envelope of a giant star, and
through this facilitate the removal of the common envelope
(e.g., López-Cámara et al. 2019; Shiber et al. 2019).

In the present study, we simulate the launching of jets outside
the envelope of the giant star. We are interested in cases where
the dense wind of the giant star overflows its Roche lobe before
the wind reaches its terminal velocity, but the giant envelope does
not overflow its Roche lobe. If the companion is closer to the
giant star, such that the envelope itself overflows its Roche lobe
and the companion star accretes mass and launches jets, but the
companion is not deep inside the giant envelope, it actually
grazes the giant star and the system experiences a grazing
envelope evolution (e.g., Shiber et al. 2017; Shiber 2018; Shiber
& Soker 2018; López-Cámara et al. 2019).
We also take the mass-loss rate of the giant star to be very

high, as expected on the upper asymptotic giant branch (AGB),
such that the density in the zone above the giant star is very
high. Radiation pressure on dust accelerates the wind.
However, the acceleration is less efficient in the case of dense
parcels of gas, and they might fall back onto the envelope of
the giant star. Soker (2008) termed this extended zone above
the surface of giant stars the effervescent zone, where in
addition to the escaping wind there are parcels of gas that do
not reach the escape velocity, Soker (2008) further argued that
accretion from the effervescent zone is efficient and the gas
flows through an accretion disk that launches jets. The jets that
the more compact companion, basically a main-sequence star,
launches shape the outflow and hence the descendant planetary
nebula. In the present study we simulate the interaction of the
jets with the dense wind zone, i.e., the effervescent zone.
The idea is that the mass accretion rate is higher than that

from wind because the wind acceleration zone overflows its
Roche lobe. Harpaz et al. (1997) discussed this process. In their
words, they discussed cases where “if the companion star is
sufficiently close that the Roche lobe of the AGB star moves
inside the extended atmosphere, then the slowly moving
material will be forced to flow approximately along the critical
potential surface (i.e., the Roche lobe) until it flows into the
potential lobe of the companion star.”Mohamed & Podsiadlowski
(2007) and Podsiadlowski & Mohamed (2007) (and later papers,
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e.g., Mohamed & Podsiadlowski 2012; Chen et al. 2017, 2020;
Saladino et al. 2018) studied this process in more detail, including
three-dimensional (3D) hydrodynamical simulations, and termed
it a wind–Roche lobe overflow. Chen et al. (2017) find that the
mass transfer process in this case is likely to form a circumbinary
disk (see also Chen et al. 2020) as well as an accretion disk around
the secondary (see also Saladino et al. 2018).

Akashi & Soker (2013) simulated the case where a
companion launches jets very close to the surface of an AGB
star when the AGB star loses a mass of » M0.1 in a pulse.
The flow is optically thick. We differ by having an optically
thin flow and by having a continuous wind. Our simulations are
closer to those of García-Arredondo & Frank (2004). There are
some quantitative differences between the initial conditions in
their simulations and ours, as well as two qualitative
differences. The first qualitative difference is that we consider
radiative cooling while they took a constant adiabatic index of
γ=1.01 to mimic radiative cooling. The second qualitative
difference is that they were interested mainly in the shaping of
the outflow while we are aiming at revealing the manner by
which the companion might enhance the mass-loss rate from
the giant star. For that reason, we inject the wind at a velocity
smaller than the escape velocity from the AGB star, while they
injected the wind at a superescape velocity.

We describe the numerical setting in Section 2, and our
results in Section 3. In Section 4 we list the main results of our
simulations, and further emphasize the important role of jets in
the evolution of close binary systems.

2. Numerical Setup

In this section we describe the features of the simulations
that we design to demonstrate the effect of jets on the extended
acceleration zone of an intensive wind of an AGB star. We run
the 3D hydrodynamical code PLUTO (Mignone et al. 2007). At
the center of the simulation zone (x, y, z)=(0, 0, 0) we place a
spherical AGB star, the primary star, with a radius of
R1=200 R☉, and mass of M1=2M☉. The full 3D Cartesian
grid is taken as a cube with sides of 4000 R☉ (10 times the
diameter of the star). The boundary conditions are transmission
for all boundaries.

In three simulations we employ an adaptive mesh refinement
(AMR) grid with three refinement levels, the fiducial value.
The base grid resolution is 1/48 of the grid length (i.e., 83.33
R☉), and the finest resolution is 23 times smaller (i.e., 10.4 R☉).
The refinement criterion is the default AMR criterion in PLUTO
v4.2, based on the second derivative error norm (Lohner 1987)
of the total energy density, which effectively tracks the
secondary star and the perturbed regions. In one simulation,
the high-resolution simulation, we increase the resolution by
using a base grid resolution of 1/64 instead of 1/48 of the grid
length.

Since we do not include the acceleration of the wind, we
mimic the acceleration zone of the wind, the effervescent zone,
in the following way. The escape velocity from the central star
is = -v 61.8 km sesc

1. We inject a spherically symmetric
outflow, the wind, at the surface of the AGB star with an initial
velocity of = -v 60.5 km sw0

1. We take this outflow velocity
to ensure that the wind remains gravitationally bounded to the
AGB star, and yet it will exit the grid to avoid a counterinward
flow. We take the mass-loss rate of the primary star to the wind
to be ☉ = ´ - -M M5 10 yrw

6 1. The radial density profile of

the wind is given by mass conservation
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where the velocity of the wind in our simulation (that does not
include radiation pressure) is calculated from energy conserva-
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As the most relevant parts of the wind to the dynamics are the
hot parts that have high pressure, we assume for the entire wind
an equation of state of a solar composition ionized ideal gas
with a mean molecular weight of μ=0.62.
We include radiative cooling of optically thin gas as

implemented in the PLUTO code using the tabulated cooling
function from Table 6 in Sutherland & Dopita (1993). We do
not include dust grains, radiation pressure, self-gravity of the
wind, or the gravity of the secondary star that launches the jets.
We include only the spherically symmetric gravity of the
primary AGB star.
We assume that a secondary star orbits the primary star with

an orbital separation of a=1000 Re and with an orbital period
of Torb=7.1 yr, as if the secondary mass is zero. In reality,
the secondary star in the scenario we propose has a mass
of  -M M0.3 12 . However, since we do not include the
gravity of the secondary star, we set its velocity to be as if
its mass is zero. At that orbit the wind velocity and density
(by Equations (1) and (2)) are ( ) = -v a 24.7 km sw

1 and
( )r = ´ - -a 2.1 10 g cmw

15 3. The orbital velocity at that
radius is ( ) = -v a 19.5 km s2

1, and so the relative velocity of
the wind and the secondary star is ( ) = -v a 31.5 km srel

1.
From the above parameters we calculate the Bondi–Hoyle–

Lyttleton accretion radius to be ( )/  =R M M R115 0.3acc 2
and the accretion rate to be
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If a fraction ηj of the accreted mass is launched in the jets
at about the escape velocity from the secondary star, =vjet

-600 km s 1, the power of the jets for our simulated parameters
is
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We assume a lower efficiency than that we derive in
Equation (4), and in the fiducial run we set the mass-loss rate
into the two jets and the power of the two jets to be
 = ´ - -M M2.8 10 yrjets

10 1 and  = ´ -E 3.2 10 erg sjets
31 1,

respectively. Namely, we take ηj=0.013 for M2=0.3 Me.
We inject the jets in two opposite cones, each extending from
the location of the secondary star to a distance of 50 Re from it.
In the fiducial cases, each jet has a half opening angle of
αj=30° and an initial velocity of = -v 600 km sj

1.
We run three other cases where in each case we vary one

parameter relative to the fiducial run. In one case we set
αj=45° instead of αj=30°. In another case we set the mass-
loss rate into the jets, hence the energy they carry, to be five
times as high, namely,  = ´ -E 1.6 10 erg sjets,5

32 1 (still for
αj=30°). In yet another case we use the same physical

2
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parameters as in the fiducial run, but take a higher resolution in
the numerical grid, namely, the base grid resolution is 1/64 of
the grid length instead of 1/48.

In our flow the radiative cooling is very rapid, and it severely
limits the numerical time step. To facilitate a reasonable
simulation time, we reduce the cooling rate by a factor of
ηrad=1000. The cooling time in the regions where it is most
important is much shorter than the orbital period and/or the
adiabatic cooling time. Therefore, this numerical reduction of
the cooling rate has a small influence on our main results. Even
with this numerical setup the simulations on our computer
cluster last for weeks, and so in the present study we limit
ourselves to present three cases that demonstrate our idea of jet-
driven mass removal in the acceleration zone (effervescent
zone) of the wind.

3. Results

3.1. Reaching a Steady State

We first check the time for the flow without jets, namely the
slow spherical wind, to reach a steady state. We inject the
spherical wind at r=300 Re and present the mass in the grid
above that radius as a function of time by the red line in
Figure 1. At an early time the initial mass in the grid flows out
from the grid at a higher rate than the wind inflow rate. After
about 4 yr the flow reaches a steady state (line becomes
horizontal). We then examine the mass in the grid when we
inject jets. The default case is the jets’ half opening angle of
αj=30° and our fiducial resolution which we present with a
solid blue line. We also present (green line) the mass in the grid
for the high-resolution simulation (which took a long
computational time). The periodic variation of the mass in
the grid results from the cubical boundary of the grid and the
spiral structure of the mass that the jets remove. The dashed-
blue line presents the mass in the grid for the fiducial resolution

but for αj=45°, and the black line represents the case with
higher-energy jets. The different cases approach a similar
behavior.
In Figure 2, we present the density of the high-resolution

simulation in the equatorial plane at three times, as indicated.
Most prominent is the spiral structure that the jets carve in the
wind. After about three years the spiral structure reaches a more
or less steady state. We turn to analyze the flow structure on
small scales (Section 3.2) and on a large scale (Section 3.3).
In Figure 3 we compare the fiducial run (a) with the high-

resolution one (b). As expected, the high-resolution run better
resolves the small scale instabilities and other flow structures of
the jets’ interaction with the dense wind. Besides that, the two
simulations are very similar, showing numerical convergence.
In the figures we present in this section the structure of the
numerical grid is imprinted in the density maps. But the
similarity of the results of the two simulations with different
resolutions show that this has only a small influence on the
flow we are focusing on, namely, the jets’ interaction with the
dense wind.
There are some effects that we do not include here, like

radiation pressure, the formation of dust, the self-gravity of the
gas, and the gravity of the secondary star. One of the effects of
the secondary stellar gravity is to focus an equatorial outflow,
many times in a spiral structure as numerical simulations show
(e.g., Mastrodemos & Morris 1999; Liu et al. 2017; MacLeod
et al. 2018; Kim et al. 2019; Saladino et al. 2019; El Mellah
et al. 2020). These numerical simulations do not include jets.
Shiber et al. (2019) include the gravity of the secondary star,
the self-gravity of the gas, and jets. They obtain a spiral pattern
in the equatorial plane as well. However, as they start with the
secondary star very close to the surface, in a short time the
system enters a common envelope and so the spiral pattern has
no time to develop. There is a need for dedicated studies that
include both the gravity of the secondary star and jets.

3.2. Instabilities and Mixing

In Figure 4 we present the density and jet-tracer maps in the
y=790 Re plane and at =t 8.1 yr of the high-resolution run,
which we mark by the white horizontal line in Figure 2(b). The
jet-tracer variable follows the gas that was injected in the jets,
and in each grid cell it is equal to the fraction of the gas that
originated in the jets. In Figure 5 we present the density and jet-
tracer maps in two cuts perpendicular to the orbital plane at
=t 8.9 yr. Figures 5(a) and (b) are in the x=150 Re plane

that we mark by the white vertical line in Figure 2(c), while (c)
and (d) are for the y=1200 Re plane as marked by the white
horizontal line in Figure 2(c).
Figures 4 and 5 emphasize the Kelvin–Helmholtz instabil-

ities that develop in the shear layer between the jets and the
envelope. These instabilities mix the gas that originated in
the jets with the gas in the wind, as the jet-tracer maps show.
The mixing not only transfers gas from the jets to the wind, but
also transfers energy from the jets to the wind to unbind some
of the gas in the acceleration zone of the wind (Section 3.3).
The mixing is induced by the complicated flow pattern, like
vortexes, that results from instabilities. Hillel & Soker (2014)
studied and discussed the efficient transport of energy from jets
to the ambient gas that results from mixing by vortexes.
Although they discussed jets in cooling flows in clusters of
galaxies, the physics is similar in our flow setting.

Figure 1. The mass inside the grid in the volume r>300 Re as function of
time for four simulations with jets, and one without jets. The red line presents
the mass for the case without jets to show that the wind is stable and the flow
reaches a steady state. The angles listed in the inset are the half opening angle
of the jets, and HR stands for high-resolution simulation. The periodic mass
variation is due to the cubical boundary of the grid and the spiral structure of
the mass that the jets remove.
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Figure 2. Density maps in the equatorial plane (z = 0) at (a) =t 3.55 yr ,
(b) =t 8.1 yr , and (c) =t 8.9 yr , taken from the high-resolution run.
The colors depict the density in units of -g cm 3 according to the colorbar
that is in a logarithmic scale running from - -10 g cm17 3 (blue) to ´2

- -10 g cm14 3 (red). The cyan dot at ( ) ( )=x y R, 1000 , 0 is the initial
location of the secondary star that launches the jets, and the black dashed
circle is the spherical surface from where we inject the radial slow wind.
Axes are in units of R☉. The spiral structure reaches a more or less steady
structure at t 3 yr. Cuts along the white lines are presented in Figures 4
and 5.

Figure 3. A comparison of the density maps at =t 5 yr in the equatorial plane
of the (a) fiducial run, and of the (b) high-resolution run. The differences are
small, thus showing numerical convergence. The density color coding is
according to the colorbar of Figure 2.

Figure 4. (a) Density; color coding according to the colorbar that is in a
logarithmic scale running from - -10 g cm17 3 (blue) to ´ - -2 10 g cm14 3

(red), as in Figure 2) and jet tracer ((b); color coding is logarithmic) maps at
=t 8.1 yr in the =y R790 plane that is perpendicular to the equatorial plane

as marked by the white line on Figure 2(b).
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In Figure 6 we present velocity maps. The upper panel
presents the flow in the same region as in Figure 4 and at
=t 8.1 yr. The lower panel presents the velocity map of the

white rectangle marked on Figure 5(c). These panels
demonstrate the complicated flow pattern that results from
the instabilities.

Figures 4–6 demonstrate the complex flow interaction
between the jets and the wind, and the development of
instabilities and vortexes. From Figures 4 and 5 we find that the
typical distance between “instability fingers” is≈50 Re. This
is about the size of the region from where we inject the jets (the
length of each of the two opposite cones). Our experience with

the hydrodynamical code PLUTO (Refaelovich & Soker 2012)
shows that the size of the dominant Kelvin–Helmholtz modes,
e.g., the size of vortexes (or turbulent eddies), are somewhat
larger than the cross section of the jets.

3.3. Flow Properties

We turn to discuss the global properties of the flow. In
Figure 7, we present density-surface 3D maps of the gas that
originated in the jets and mixed with the wind. The figure show
surfaces of constant densities, but only for regions where the jet
tracer is >10−4; namely, only computational zones into which
some jets’ gas is mixed. The upper panel presents the fiducial
run, whereas the lower panel presents the high-energy run
where the mass-loss rate into the jets is five times larger. As
expected, the jets inflate larger bubbles. This figure demon-
strates the bending of the jets and the interaction region where
the jets mix with the wind gas. The jets add energy to the wind
and unbound part of the wind (boosting its energy to be
positive) that leaves the grid in a spiral pattern (Figure 2).

Figure 5. Density and jet-tracer maps at =t 8.9 yr in planes perpendicular to
the equatorial plane as marked by the white lines on Figure 2(c). (a), (b) The
density (left) and jet tracer (right) in the plane =x R150 , as marked by the
vertical solid-white line on Figure 2(c). (c) The density and (d) the jet tracer in
the plane =y R1200 as marked by the horizontal white lines on Figure 2(c).
The colorbars for the density and for the tracer scales are as in Figure 4. The
white rectangle in (c) refers to the lower panel of Figure 6.

Figure 6. Velocity arrows on top of the density maps. The lengths of the
arrows are proportional to the velocity, with a maximum value of -650 km s 1.
Upper panel: the same region and time as in Figure 4 ( =t 8.1 yr; =y R790 ;

  R x R500 2000 ;  -  R z R800 800 ). Lower panel: the same
plane as in Figure 5(c), but only the region marked by the white rectangle there
( =t 8.9 yr; =y R1200 ;  -  R x R100 500 ;   R z R0 500 ).
The arrows demonstrate the complex flow structure of the disturbed wind zone.

5

The Astrophysical Journal, 891:33 (8pp), 2020 March 1 Hillel, Schreier, & Soker



In Figure 8 we present two globe maps of the average
outflow flux of the unbound gas as function of direction and
through a sphere of radius Rout=1900 Re. We average over
one orbital period from =t 2.9 yr to =t 10 yr, for the
fiducial run with αj=30° (upper map), and for the higher-
energy case (lower map). The color coding of the two panels is
different and in units of 

-M yr 1, and the value is as if the
entire sphere (solid angle of 4π) would have the same mass flux
as that through the given direction. This figure quantitatively
presents what earlier figures show qualitatively. Namely, that
the unbound material leaves the grid in a flow around the
equatorial plane. As the jets’ energy increases, the two jets are
separated. In Figure 8, we see that the outflow pattern has a
periodic variation with θ (longitude) every 90°. The reason is

the Cartesian structure of cells in the numerical grid. As we
discussed earlier, there are many instability modes that develop
to vortexes (turbulent eddies) and further cause the wiggling of
the spiral structure. The initial perturbations that develop to
these nonlinear structures are caused by the finite-resolution
grid, and hence the final nonlinear structure has the imprint of
the Cartesian grid.
In Figure 9, we average unbound mass outflow flux over the

angle f from f=0° to f=360° to obtain the dependence of

Figure 7. Density-surface 3D maps of the gas that originated in the jets and
mixed with the wind so the jet-tracer value is > -10 4. Colors are density
surfaces according to the colorbars on the left from - -10 g cm17 1 (blue) to
´ - -2 10 g cm14 1 (red). The top panel shows the fiducial case with a = 30j

and the bottom panel shows the case with five times as much jet energy. Both
maps were taken at =t 8.9 yr

Figure 8. Globe maps of the unbound average mass flux through a sphere of
radius =r R1900 at =t 8.9 years for the fiducial case with a = 30j and for
the the case with five times as much energy from the jets. The color coding is in
units of 

-M yr 1, differing for the two panels, and the value is as if the entire
sphere (solid angle of 4π) would have the same mass flux as that through the
given direction.

Figure 9. The f-averaged unbound outflow mass flux. We average over the
angle f from f=0° to f=360° to obtain the dependence of the unbound
outflow flux on latitude. The units in 

-M yr 1 are as if the entire sphere (solid
angle of 4π) would have the same unbound outflow mass flux as that of the
average at the given angle θ. The blue line is for the fiducial case with
a = 30j , the red line is for the a = 45j case, and the green line is for
a = 30j with five times as much energy in the jets.
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the unbound outflow flux on latitude. The units are as if the
entire sphere (solid angle of 4π) would have the same unbound
outflow mass flux as that of the average at the given angle θ.
We present the graphs for the fiducial case with αj=30°, for
the αj=45° case, and for αj=30° but with five times as
much energy. Figure 9 shows that the jets eject mass mainly
around the equatorial plane, with a lower value very close to
the equatorial plane. The maximum outflow flux of unbound
material is at an angle of ;10° from the equatorial plane for the
two cases with the fiducial energy, and at higher latitudes for
the higher-energy simulation, as we see also in Figure 8.

Figures 2–8 also show that the jet–wind interaction spiral
region is very clumpy. In addition, the spiral pattern does not
have a constant shape, but rather wiggles slightly. Both these
effects cause the mass flux through a given sphere to fluctuate.
We demonstrate this in Figure 10, which shows the unbound
mass outflow rate through a sphere of radius Rout=1900 Re as
function of time. There are large fluctuations of the mass
flux. A typical time span between peaks of fluctuations is
D »t 1 yrfluc . This timescale can be understood as the width of
the spiral pattern at a radius of r=1900 Re, Δr;800 Re
divided by the radial velocity of the spiral pattern,
 -v 18 km ss,r

1.
We recall that in our simulations the wind by itself has a

negative energy, namely, it is bound, but only marginally so.
Figure 10 shows the mass-loss rate of the unbound wind
material to be  

- -M10 yr7 1. The jets accelerate this mass to
escape velocities. The mass-loss rate into the jets in the
simulations we present in Figure 10 is  = ´M 2.8jets


- -M10 yr10 1, <1% of the unbound wind mass-loss rate. This

shows the jets to be efficient in unbinding gas from the
acceleration zone of the wind.

We end the discussion of the flow by referring to our
reduction of the cooling rate by a factor of ηrad=1000 due to
severe numerical limitations on the time step (Section 2).
We find the postshock temperature of the jets to be
 ´T 3 10 Kj,s

6 . Because of the oblique shock, in most of
the jets’ postshock volume the velocity is faster than the
postshock velocity of a perpendicular shock (v 4j ), and its
value is  -v 500 km sj,s

1. The flow timescale over a typical

region of =D R500 is then t »D v 0.02 yrj f, j,s . The
jets’ postshock density is r - -10 g cmj,s

17 1, from which we
calculate the radiative cooling time from a temperature of
 ´T 3 10 Kj,s

6 to be t » 0.1 yrj,rad . Since we decrease the
radiative cooling time by a large factor, radiative cooling of this
gas is negligible in our numerical setting. However, adiabatic
cooling is more important than radiative cooling at these
temperatures, so that the effect of reducing cooling time is
small. At lower temperatures of »10 K5 the adiabatic cooling
is longer due to slower flows. However, at these low
temperatures and higher densities the radiative cooling time,
even with our reduction of radiative cooling rate by a factor of
h = 1000rad , is still short enough to play a role, i.e., much
shorter than the flow time. To summarize, although not
completely accurate, our numerical scheme of a reduced
radiative cooling rate still captures the general flow properties.

4. Discussion and Summary

The main new result of our study is the introduction of the
notion that jets can remove bound mass from the extended
acceleration zone of the wind of AGB stars that experience a
high mass-loss rate. We did not include any calculation of the
acceleration of the wind to overcome the gravity of the AGB
star, nor did we calculate the formation of an extended zone
above the AGB star where a large fraction of the mass is still
bound, and therefore falls back (the effervescence zone).
Therefore, we could not accurately quantify the effect of mass
removal from the effervescence zone by jets. We could only
present crude estimates, which nonetheless show that this
process might be significant for the evolution of some binary
AGB stars.
The second finding, similar to, e.g., the grazing envelope

evolution simulations of Shiber & Soker (2018), is the bending
of the jets and the wind material it mixes with toward the
equatorial plane (Figure 7). This leads to a mass loss that is
concentrated near the equatorial plane (Figures 8 and 9).
The third finding, similar to our finding of simulations of jets

interacting with the envelope of an AGB star (Schreier et al.
2019), is the development of instabilities, i.e., density
fluctuations (Figures 4 and 5), and turbulent flow (Figure 6),
in the interaction zones of the jets with the wind. This
turbulence leads to mixing of the jets with the wind, and
therefore to the transfer of energy from the jets to the wind, a
process that unbinds part of the wind. The spiral pattern of the
gas that the jets unbinds (Figure 2) and the instabilities lead to a
fluctuating mass-loss rate through a given sphere (Figure 10).
We place our study in a broader contest. There is a very rich

variety of binary interaction types that lead to the formation of
nonspherical nebulae around evolved stars, particularly plane-
tary nebulae, e.g., some very recent simulations of jet shaping
(Akashi & Soker 2018; Balick et al. 2019; Estrella-Trujillo
et al. 2019; Rechy-García et al. 2019; Zou et al. 2019). For the
many binary (or triple) interaction types (or evolutionary
routes), most of them must be rare, and some are even very
rare. Accompanying these different types of binary interactions
is a rich variety of processes, including tidal interaction, the
presence of a tertiary star, mass transfer, winds, and jets that a
mass-accreting companion might launch. Although each of the
(very) rare evolutionary routes accounts for only one to a few
observed systems (or even none that have been observed yet),
the study of many (very) rare evolutionary routes, some of

Figure 10. The unbound mass outflow rate through a sphere of =r R1900 as
function of time, for two cases as indicated.
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them with rare processes, will eventually build a full picture of
binary interaction of evolved stars.

In the present study, we simulated such a rare evolutionary
route where a companion is present in the extended wind
acceleration zone of an upper AGB star that experiences a high
mass-loss rate. Because of the high mass-loss rate, we assumed
(see Section 1) that there is an extended wind acceleration zone
above the AGB star, where many parcels of gas fall back onto
the AGB envelope (a zone that Soker (2008) termed the
effervescent zone). We further assumed that the companion
main-sequence star accretes mass and launches jets. In the
present study we simulate a few cases of such a possible
interaction, which we consider rare.

Since we assumed a spherically symmetric wind, the jets did
not break out along the polar directions. We did not consider
the process where the wind acceleration zone overflows its
Roche lobe (Harpaz et al. 1997; Mohamed & Podsiadlowski
2007, 2012; Podsiadlowski & Mohamed 2007; Chen et al.
2017, 2020; Saladino et al. 2018), such that the accretion flow
from near the equatorial plane is much larger while the wind
along the polar direction is weaker. In such a case, the jets are
stronger due to a higher accretion rate onto the companion, the
wind polar density is lower, and the jets might break from the
polar directions and shape a bipolar outflow with two opposite
large lobes. This, also rare, type of interaction requires a study
of its own.

Our results have implications also to eccentric binary
systems where near periastron passages the jets that the
companion launches remove mass from the envelope of the
AGB star. Our results show that the jets can also remove some
mass near apastron passages, although much less than from
the envelope. Future studies should explore such eccentric
binary systems while considering our results.
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