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1.  Introduction
Many students are familiar with x-ray com-
puted tomography, or CT (formerly ‘computed 
axial tomography’, or CAT). At the high school 
or introductory undergraduate level, however, 
these students may not yet have been introduced 
to mathematical concepts involved with medical 
imaging science, such as Fourier analysis or the 
central slice theorem [1]. CT imaging may be 
used as a way to illustrate simple concepts involv-
ing the mathematics of imaging science, and as 
an example of techniques from physics and math-
ematics applied to problems in medicine. This 
learning unit was designed for an undergraduate 
student population with a range of educational 
backgrounds and majors, with prerequisites of at 
least the equivalent of one semester of undergrad-
uate calculus and one semester of introductory 
undergraduate physics.

Previously published works [2–6] detail 
comprehensive laboratory exercises examining 
various aspects of computed tomography. For a 
survey course with a single 50 min class period 
devoted to CT imaging and reconstruction, there 
was insufficient time for an extensive project-
based learning unit or full laboratory activity. 
Instead, a brief and straightforward hands-on 
activity was developed to supplement a classroom 
discussion introducing these topics.

2.  Computed tomography (CT)
In a previous class, students learned that photons 
used in radiography and other medical imaging 
modalities passing through media are attenuated 
exponentially, based on properties of the media 
and on the energy of the radiation. Because some 
materials in the body attenuate more than others 
(for example, bone attenuates keV x-rays to a 
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Abstract
As part of an undergraduate introductory survey course on medical physics, 
x-ray computed tomography (CT) was used to illustrate fundamental 
principles and mathematics in imaging science. A qualitative description 
of sinograms was presented to students through a hands-on activity 
involving simple classroom materials, then the basics of tomographic image 
reconstruction were presented. Modern applications of CT imaging, including 
for the diagnosis and treatment of disease, were used to emphasize the utility 
of medical physics and medical imaging. A simple, qualitative description of 
convolution, including a very elementary presentation on Fourier transforms 
and inverse transforms, was included to offer a basic introduction to some of 
the mathematical tools used in medical imaging physics. Electronic media 
and materials for the lesson plan are available upon request.

IOP

Published

5

2020

1361-6552/ 20 /034001+6$33.00

Phys. Educ. 55 (2020) 034001 (6pp)

publisher-id
doi
http://iopscience.org/ped
https://orcid.org/0000-0003-2074-5723
mailto:jfagerstrom@nmpc.org
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6552/ab753c&domain=pdf&date_stamp=2020-03-02


J M Fagerstrom﻿

2May 2020

greater degree than soft tissue), x-rays travelling 
through a body may be used to acquire a planar 
image of that body detailing different anatomical 
features. X-ray computed tomography involves 
acquiring many two-dimensional projections, or 
planar images at known angles, of a three-dimen-
sional object to construct a three-dimensional 
image. These projections are acquired using an 
x-ray tube (a source of x-rays) that is rotated 
around the object, and attenuated x-rays are 
detected by a series of x-ray detectors positioned 
opposite the tube [7].

The prefix ‘tomo’ derives from the Greek 
word for ‘slice’ or ‘section’ [8]. Computed 
tomography is the process of building a three-
dimensional image out of individual slices, 
and these slices are themselves built from data 
acquired at many different angles. The result is an 
incredibly important tool in modern medicine that 
is used for the diagnosis, monitoring, and treat-
ment of disease. For this class, only a subset of 
possible CT geometries and algorithms was dis-
cussed for simplicity. Only parallel-beam, single-
slice, and axial scanning geometries (as opposed 
to fan-beam, multi-slice, or helical geometries) 
were discussed, and only filtered backprojec-
tion (as opposed to iterative reconstruction) was  
illustrated as a reconstruction method.

3.  Sinograms
For each image (in the case of a three-dimensional 
object to be imaged, each cross-sectional plane or 
slice), the projection data may be compiled and 
displayed in an array called a sinogram. This 
acquisition and organization of raw data is the 
first step to reconstructing an image. Raw imag-
ing data is arranged based on the angle of pro-
jection that it was acquired as well as its spatial 
position on the imaging plane. A simple example 
was presented in class and is included in figure 1.

An in-class, hands-on activity was designed 
to guide students in building a sinogram. Students 
were divided into seven groups (Group A to 
Group G). A white paper circle with two three-
dimensional black building blocks was displayed 
at the front of the classroom as the object to be 
imaged. It was overlaid on black paper indicat-
ing seven projection angles (corresponding to the 
seven groups); see figure 2. Each group was given 
a strip of paper the same length as the length of 

the sides of the black paper indicating projection 
angle. Students were asked to draw what they saw 
from their assigned observation angle. Following 
the exercise, the projection drawings were 
arranged in order of projection angle to reveal 
the approximate sinogram shape. Students were 
asked to hypothesize how the sinogram would 
change if more precise methods of observation 
were used and many additional projection angles 
were included.

While simple objects, such as those included 
in figures 1 and 2, are illustrative for explaining 
the concept of sinograms, in general, it is not 
straightforward to recover an imaged object from 
raw data just by observing the sinogram. This 
is true for anatomical data as well as any image 
data, such as a photograph. To illustrate this point, 
a photograph of a CT scanner was displayed in 
class along with its corresponding sinogram. The 
images are included in figure 3. How is a sino-
gram—a set of data for which it is not straight-
forward to view as an image—reconstructed into 
an image? This question leads to a discussion of 
backprojection and filtered backprojection.

4.  Backprojection and filtered 
backprojection
A sinogram acquired using projection imaging 
(forward projection) may be used to reconstruct 
an image of the original object through a process 
called backprojection. Information acquired at 
each projection angle is spread out along the path 
of that projection. Over many projection angles, 
this procedure results in an image. An illustration 
of simple backprojection was presented in class 
and is included in figure 4.

With simple backprojection, the resulting 
image will always experience a blurring effect 
(related to 1/r) [9]. Often this blurry image is 
inadequate for medical purposes, but it is possible 
to ‘deblur’ image data. Many students are famil-
iar with deblurring options available on smart 
phone photography applications, and this was 
discussed in class. A similar process, called fil-
tered backprojection, may be accomplished with 
backprojected data. Figure 5 illustrates the same 
image of a CT scanner used in figure 3. The origi-
nal data were first blurred using a Gaussian blur-
ring filter, then the blurred data were sharpened 
using a deblurring filter. Filtered backprojection 
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uses a similar process. The basic mathematics of 
these processes will be introduced in the follow-
ing section.

5.  Convolution and Fourier transforms
The filter function discussed in the previous sec-
tion is often applied using the mathematical oper-
ation of convolution, denoted ∗ or �. Convolution 
is the expression of how two signals or functions 
may be combined to derive a resulting signal or 

function [9]. In the one-dimensional case, convo-
lution may be expressed:

f (x) ∗ g(x) =
∫ ∞

−∞
f (τ) · g(x − τ)dτ� (1)

where f  and g are functions of a continuous spatial 
variable x.

The photograph of the CT scanner in 
figure  5(a) was blurred in figure  5(b) by con-
volving it with a Gaussian function, and then the 
blurred image was deblurred in figure  5(c) by 

Figure 1.  (Left) The object that is to be imaged consists of a dark circle with two light-colored, round embedded 
elements. (Right) The resulting sinogram is illustrated. The projection angles are displayed along the vertical 
axis of the sinogram, and the spatial information along each projection is displayed along the horizontal axis 
of the sinogram. Two planes at different projection angles are highlighted in relation to the object and in their 
approximate corresponding position on the sinogram.

Figure 2.  Materials for the hands-on activity illustrating sinograms. (a) The white paper circle and black building 
blocks represent the ‘slice’ of the object to be imaged. The dark paper divided into seven segments indicates 
the projection angle from which student groups will observe the object. Each student group was given a strip of 
paper to draw the image from their perspective. Following student participation, strips of paper may be arranged 
according to their projection angle, as shown in (b), to reveal the approximate sinogram shape as acquired from a 
small number of projection angles.
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convolving it with a deblurring filter. How this is 
often accomplished in practice is by completing 
a Fourier transform—a new mathematical con-
cept to many students at this level. Equation (1) 
gives the one-dimensional expression for convo-
lution. In a CT scan, however, large amounts of 
two-dimensional data must be convolved, which 
is a computationally expensive process. To com-
plete this task efficiently, convolution may be 
completed first by transforming to frequency 

space using a Fourier transform. While in the 
spatial domain, convolution is a slow process, in 
Fourier space, this process becomes multiplica-
tion (a much faster process). The multiplied data 
in Fourier space may then be transformed back 
into the spatial domain.

The Fourier transform process expresses 
a composite signal in the spatial domain (an 
image) in its component signals in the frequency 
domain (Fourier space) [11]. Often, operations in 

Figure 3.  (a) A photograph of a CT scanner is shown as an example of a two-dimensional object that may be 
imaged. (b) The resulting sinogram is shown, where the projection angle is displayed on the vertical axis and the 
pixel number is displayed on the horizontal axis.

Figure 4.  The sinogram data from figure 1 is reconstructed to form an image. (a) The two angles highlighted in 
figure 1 are used for backprojection using only two projection angles. An approximation of the backprojected data 
results in the bright spots spread out along the directions of the two projection angles. (b) An approximation of the 
data from many projection angles results in a blurry image.
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one domain have corresponding operations in the 
other domain that are significantly faster to per-
form, such as convolution in the spatial domain 
performed as multiplication in the frequency 
domain. Tomographic reconstruction of CT data 
may be used as an example of using Fourier anal-
ysis as a means for practical implementation of 
convolution of a large amount of data.

6.  Discussion
This lesson was designed to introduce an under-
graduate student population to basic qualita-
tive concepts in computed tomography and 
tomographic image reconstruction in a short 
time period. Many students are likely familiar 
with medical applications of radiography and  
computed tomography; however, the basics of 
medical imaging physics are likely new to many 
students at this level.

While some more advanced students may be 
aware that all functions may be expressed as a 
sum of sines and cosines of varying frequencies 
and amplitudes from studying Fourier series in 
previous undergraduate math or physics courses 
[12–15], they may not be cognizant of the range 
of applications for Fourier analysis. A thorough 
discussion of Fourier transforms and inverse 
transforms were beyond the scope of the short 
course period. However, CT image reconstruc-
tion may be used to introduce students to one 

practical application for Fourier analysis, and to 
encourage interested students to pursue the line 
of study further. To support this learning unit, fol-
lowing the class period, students were assigned to 
read a nonmathematical summary of tomographic 
reconstruction by Currie et al [16]. The work is 
aimed at medical radiation technologists and ther-
apists, but offers students a more in-depth (while 
still qualitative) overview of topics covered dur-
ing the classroom instruction period.

Principles of tomographic image recon-
struction are used in other imaging modalities, 
including positron emission tomography (PET) 
and single photon emission computed tomogra-
phy (SPECT). Though computed tomography 
was used to showcase the basics of this learn-
ing unit, many students may also be interested in 
other facets of medical physics, such as nuclear 
medicine with its associated imaging modalities. 
This lesson plan may serve as a way to generate 
enthusiasm for a new topic for students who are 
interested in medical physics.
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Figure 5.  (a) The same image of a CT scanner as was used in figure 3. (b) The image is blurred using a Gaussian 
blurring filter. (c) The blurred image is deblurred using a Weiner filter algorithm [10].
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