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Multiple traffic states and Braess’ paradox in dynamical networks
with limited buffer size

Xiang Ling
1
, Jun-Jie Chen

1
, Zong-Kun Zhang

2
, Kong-Jin Zhu

1 and Ning Guo
1(a)

1 School of Automotive and Transportation Engineering, Hefei University of Technology - 230009, Hefei, PRC
2 School of Computer Science and Technology, Huazhong University of Science and Technology
430074, Wuhan, PRC

received 23 July 2019; accepted in final form 17 February 2020
published online 2 March 2020

PACS 89.75.Hc – Networks and genealogical trees
PACS 89.20.Hh – World Wide Web, Internet
PACS 89.40.Bb – Land transportation

Abstract – Traffic dynamics has always been a research hotspot of complex networks. In this
letter, dynamical networks in which the nodes are moving with limited buffer size are studied.
We propose an adaptive routing strategy where Euclidean distance and node load are combined
by a tunable parameter. The packet loss and traffic congestion can be observed in our model due
to limited buffer size. Traffic congestion will occur unless the tunable parameter is in a critical
interval. We mainly focus on the impact of the buffer size on traffic congestion and obtain four
different traffic states: partial-, short-, no- and long-congestion state. Moreover, a phenomenon
similar to the Braess’ paradox can be observed in our model. We also find that the higher the
node speed, the worse the traffic capacity.

Copyright c© EPLA, 2020

Introduction. – The dynamic processes on complex
networks [1–3] have been extensively studied in the past
few years, including phase transition phenomena [4–6],
scaling of traffic fluctuations [7–9] and routing strate-
gies [10–12]. The transmission of data on the Internet,
the flying of aircrafts between airports, the movement of
vehicles in urban networks, and the migration of carbon
in bio-systems are all realistic prototypes of network traf-
fic. The topological properties of the network (e.g., degree
distribution, average path length and clustering) have an
important impact on the dynamic processes. Research
on dynamic processes of complex networks is developing
rapidly, but there are still some challenging problems in-
cluding traffic congestion [13–15], cascade failures [16–18],
epidemic spreading [19–21].

Traffic congestion on complex networks is one of the hot
issues in current research. When the traffic load of the
entire network increases over time, the network will get
to be congested. Generally speaking, traffic congestion
does not occur unless the packet generation rate exceeds
a threshold. The root cause of traffic congestion is that
the node cannot deliver the packet to the neighbor node in
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time due to the limited processing capability of the node.
From previous studies, it can be found that scale-free net-
works are more prone to cause traffic congestion than ho-
mogeneous networks [10,22], and nodes with larger degree
are more likely to be blocked than those with smaller de-
gree. In our real life, traffic congestion not only increases
travel time, but also seriously restricts economic develop-
ment. In order to solve the congestion problem in these
network systems, researchers put forward many improve-
ment measures. The simplest way is to augment the traffic
resources [23,24], such as increasing the line bandwidth,
widening the road, etc. But these methods are costly.
Therefore, it is a necessary issue to explore new routing
strategies and optimize network traffic resources [25–27] to
solve traffic congestion. In path choice process, more infor-
mation brings better traffic performance of the network,
but leads to higher computational cost. The most famous
shortest path protocol is a simple and widely used tech-
nology in static routing algorithm. The shortcomings of
the shortest path protocol on scale-free networks are also
exposed. For example, previous studies [10] have found
that nodes with high degree (e.g., hub nodes) are very
easy to be blocked when using the shortest path proto-
col, and the congestion of hub nodes will gradually cause
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a global congestion of the entire network. Therefore, the
traffic capacity is very limited by the shortest path routing
strategy on the scale-free network.

In recent years, the dynamical network [14,21,28,29] has
attracted extensive attention as an important part of com-
plex networks. Compared to static networks, nodes in
dynamical networks are moving all the time, so the net-
work structure is constantly changing. A typical example
of dynamical network in real world is the wireless ad hoc
network (WANET) [12], specifically vehicular ad hoc net-
works (VANETs), smart phone ad hoc networks (SPANs),
wireless sensor networks, robots, and the like. Generally,
the bandwidth of the wireless ad hoc network is much
smaller than that of the cellular network, and the car-
rier of the mobile node can be either a person, a vehicle
or even a UAV, so the moving speed of the node may
be very fast. Since the structure of dynamical networks
is much more complex than that of static networks, the
characteristics of traffic congestion in dynamical networks
is different from that of static networks. Yang et al. [28]
proposed a random routing to study the transportation
dynamics on mobile networks. A theory is provided to
explain the dependence of the throughput on the speed
of agent movement and the communication range. Then,
Yang et al. [29] proposed an adaptive routing strategy that
incorporates geographical distance with local traffic infor-
mation through a traffic-awareness parameter to improve
traffic capacity of dynamical networks.

In most previous studies, the capacity of storing packets
at nodes is assumed to be infinite. Recently, multilayer
networks with finite storage capacity have been studied
and some interesting phenomena, such as the slower is
faster effect and Braess’ paradox, were observed [15]. In
this letter, we introduce a dynamical network model, in
which each node has a limited and identical buffer size. We
also propose an adaptive routing strategy to enhance net-
work performance. Then, we further look into the impact
of the buffer size and obtain four different traffic states.
A phenomenon similar to the Braess’ paradox [30] can be
observed in our model. Finally, we study how the node
speed affects the traffic capacity of the network. In Man-
fredi’s model [15], times spent on links and on nodes are
always comparable, and the message generation rate is
constant at a small value. But in our model, travel times
can be heavily dominated by waiting times on the nodes,
and the message generation rate is varied and later tuned
to a value close to system overload.

This letter is organized as follows. The network model
and the traffic model are described in detail, respectively.
Then the simulation results are presented and discussed.
In the last section, the work is concluded.

The network model. – We study the traffic behavior
on a dynamical network. Take a wireless ad hoc network
as an example, in which mobile nodes communicate with
each other via wireless links and a node can transmit data
packets to the other node if their distance is shorter than

a critical value. We let N nodes move on a L × L square
area with periodic boundary conditions. At time t = 0,
all nodes are randomly distributed on the square area.
At each time step, the moving direction θ of each node
changes randomly, but the moving speed v is the same
for all nodes in the whole simulation process. Since the
nodes are moving, their positions change with time t. The
evolution of each node i’s position and moving direction
is the following:

xi(t + 1) = xi(t) + v cos θi(t),
yi(t + 1) = yi(t) + v sin θi(t),
θi(t + 1) = θi(t) + ψi(t),

(1)

where xi(t) and yi(t) are the horizontal and vertical coor-
dinates of node i at time t, respectively. ψi(t) represents
the change of moving direction of node i between time
t + 1 and time t, which is a random number in the in-
terval [−π, π]. We use the Euclidean distance to describe
the position relationship between nodes. The Euclidean
distance between node i and j at time t is defined as

Dij(t) =
√

[xi(t) − xj(t)]2 + [yi(t) − yj(t)]2. (2)

Each node has the same communication radius r. Two
nodes can communicate with each other if the Euclidean
distance between them is less than r in a time step, and
those two nodes are regarded as temporary neighbors.
Therefore, all temporary neighbors of a node are defined
as all nodes within the current communication area of that
node.

The traffic model. – In our traffic model, each node
can create, buffer, deliver, and receive packets. At each
time step, for each node, a packet will be generated with
a probability ρ to be delivered to another node of the dy-
namical network. Thus, there are on average Nρ packets
generated on the network at each time step, and the desti-
nation node of each packet is selected randomly from the
network. Every node has a limited buffer size to store
packets. For simplicity, the buffer size of each node is ho-
mogeneous and denoted as B. This implies that the queue
length in all nodes cannot exceed B. The first-in-first-out
(FIFO) rule is applied to all queues. One node can deliver
at most C packets to its current neighbors at each time
step. To deliver a packet to its destination, a node per-
forms a local search within its neighbors. If the packet’s
destination is a neighbor of the node where the packet is
currently located, the packet will be delivered directly to
its destination node at the next time step and then be
immediately removed from the network. Otherwise, the
packet is forwarded to the appropriate neighbor node se-
lected based on the adaptive routing strategy we proposed
below. Let us assume that at time t the packet is in node
s, and its destination node j is not a neighbor of node s.
For each neighbor node i of node s, there is an effective
distance from node j, denoted by

dij
eff(t) = h

Dij(t)
L′ + (1 − h)

qi(t)
B

, (3)
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where qi(t) is node i’s queue length at time t and h is a
tunable parameter (0 ≤ h ≤ 1). In order to make the first
item and the second item in eq. (3) in the same order of
magnitude, we set L

′
= L/2. Then, at time t + 1 node s

will send the packet to the neighbor node i with the small-
est value of dij

eff(t). Note that when h = 1, the packet will
be delivered to a neighbor node whose Euclidean distance
away from the destination node is shortest. If a node cur-
rently has no neighbors, it will keep the packet and deliver
it later.

It is important to note that packet loss may occur in the
model due to the limited buffer size. The queuing process
of packets in nodes is described as follows [15]. We denote
the resulting net flow in node i at time t as Ri(t):

Ri(t) = Ii(t) + δIi(t) − Oi(t) − δOi(t), (4)

where Ii(t) and Oi(t) are the queue incoming and outgoing
rate from and to other nodes, respectively, while δIi(t) and
δOi(t) are the number of packets generated or removed in
node i at time t. Particularly, the outgoing rate Oi(t) is
related to the capacity of node i to deliver packets towards
other nodes. As mentioned above, one node can deliver at
most C packets at each time step, so Oi(t) ≤ C. Once
all the values of Ri(t) are calculated, we update the queue
length according to the following rule:

qi(t + 1) =

⎧⎨
⎩

0 qi(t) + Ri(t) ≤ 0,
qi(t) + Ri(t) 0 < qi(t) + Ri(t) < B,

B B ≤ qi(t) + Ri(t)
(5)

for each node i, i = 1, . . . , N . Notice that when B ≤
qi(t) + Ri(t), qi(t + 1) = B, which means that qi(t) +
Ri(t)−B packets are lost in node i at time t + 1. Packets
may be lost in the process of generation and transporta-
tion, and not all packets can be actually generated and
reach their respective destinations. Therefore, we define
the traffic flow as the total number of packets that reach
their respective destinations during the system process.

Simulation results. – In the following simulations,
we set the total number of nodes N = 1500, the size of
the square region L = 10, the communication radius r =
1, and the node delivery capacity C = 1. The moving
speed v is fixed to 0.1 if there is no special mention. Each
simulation runs Tm time steps, and Tm = 1 × 105.

Figure 1(a) shows the relationship between the traffic
flow and the packet generation rate ρ with different values
of the tunable parameter h. One can see that for a fixed
value of h, as the packet generation rate ρ enhances, the
traffic flow first increases linearly until a suddenly drop
after reaching the peak, and then decreases slowly. The
maximum value of the traffic flow depends on h and the
optimal value of ρ is denoted as ρc (ρc ≈ 0.18 for h = 0.2
or 0.9, while ρc ≈ 0.2 for h = 0.5). Figure 1(b) shows the
network density Φ as a function of ρ with different values
of h. The network density Φ is defined as the ratio of the
total number of packets in the network to the sum of the

Fig. 1: (a) The traffic flow, (b) network density Φ, (c) packet
loss Λ, (d) average travel time 〈T 〉 and (e) average number
of hops 〈H〉 as a function of the packet generation rate ρ with
three different values of the tunable parameter h = 0.2, 0.5, 0.9.
The simulation parameters are N = 1500, L = 10, C = 1,
r = 1, v = 0.1, and B = 100.

buffer sizes of all nodes at the end of the simulation, which
can be expressed as

Φ = Φ(Tm) =
∑N

i=1 qi(Tm)
NB

. (6)

For a fixed value of h, Φ mutates from about 0 to about
1 at ρ ≈ ρc, indicating that there is a balance between
the number of generated and removed packets when ρ ≤
ρc, but congestion occurs and packets accumulate in the
system until the buffers of all nodes are full when ρ > ρc.
Figure 1(c) shows the packet loss Λ as a function of ρ
for different values of h. The packet loss Λ is defined as
the percentage of packets that are unable to reach their
destination with respect to the total number of actually
generated packets. One can observed that for a fixed value
of h, no packets are lost when ρ is small and Λ increases
linearly as ρ surpasses ρc. Obviously, if ρ exceeds this
critical value, the faster the packet is generated, the faster
the network reaches congestion. Then, we define the travel
time as the time steps that a packet spends traveling from
its source to its destination. In our simulation, the travel
time of a packet is only counted when the traffic condition

38001-p3



Xiang Ling et al.

is stable. Figure 1(d) shows the average travel time 〈T 〉
as a function of ρ with different values of h. For a fixed
value of h, with the increase of ρ, 〈T 〉 is very small and
increases slowly when ρ ≤ ρc. When ρ surpasses ρc, 〈T 〉
increases suddenly to a very large value, which is also the
maximum value, and then decreases slightly. The rate of
decline of 〈T 〉 depends on h. From the first four subgraphs
in fig. 1, one can find that all curves in the same subgraph
show the same trend regardless of the values of h and have
a sudden transition when ρ is around ρc. It is indicated
that congestion begins to occur when ρ ≈ ρc.

When the moving speed is not very large (here v = 0.1),
it is easy to understand why the critical packet generation
rate ρc is around 0.2: The network has a physical size of
L = 10, so the distance of packet source and sink is about
5 on average. A packet hops a distance of almost one per
hop on average. Therefore, once in about five time steps
a packet reaches its destination and is removed, result-
ing in a removal rate around 0.2. Therefore, for ρ ≤ 0.2
the nodes are almost empty, for ρ > 0.2 they are almost
completely filled. Figure 1(e) shows the average number
of hops 〈H〉 as a function of ρ with different values of h.
When ρ > ρc, a packet needs slightly more than five hops,
and on every node the packet waits almost 100 time steps
(because B = 100), so the travel time is totally domi-
nated by waiting on the nodes. After ρ surpasses ρc, as
ρ increases, 〈H〉 decreases instead. This can explain why
the average travel time 〈T 〉 decreases slightly with the in-
crease of ρ when ρ > ρc. The faster the packet is gener-
ated, the more congested the node is, and the easier it is
for the packet to be deleted during the delivery process.
This will cause that only nodes with few hops successfully
reach their destination. In a congestion state, the fewer
hops means that the waiting time is greatly reduced, so
the average travel time will be shorter. In addition, the
smaller h is, the more the packet tends to be delivered to
the node with a relatively small load, leading to an in-
crease in the number of hops. However, the network at
h = 0.5 is less prone to congestion, compared with that at
h = 0.2 and h = 0.9. So there may be a better value of h
to optimize the traffic capacity of the network.

Figure 1 shows that routing strategies that tend to
be distance-based (h → 1) or load-based (h → 0) are
prone to congestion, and that the effective combination of
the two (h ≈ 0.5) can improve the traffic capacity of the
network. If ρ takes a very small or very large value, then
for the routing strategy we propose, no matter what value
h takes, the network will be completely unblocked or con-
gested. In order to reflect the advantages of the proposed
routing strategy and some noteworthy characteristics, the
packet generation rate ρ needs to be controlled within a
certain interval. When h = 0, 0.5, 1, let ρc = ρc0, ρc0.5, ρc1,
respectively. It is acceptable for ρ to take any value in the
interval (max(ρc0, ρc1), ρc0.5]. When ρ is close to ρc0.5,
congestion is more likely to occur and the simulation time
can be shortened. Therefore, in the following simulations,
without loss of generality, we fix ρ = 0.2.

Fig. 2: (a) The traffic flow, (b) packet loss Λ, and (c) average
travel time 〈T 〉 as functions of the tunable parameter h. The
simulation parameters are N = 1500, L = 10, C = 1, r = 1,
v = 0.1, B = 100, and ρ = 0.2.

Then, we study the effect of h on the traffic capacity
of our model. We fix ρ = 0.2 and B = 100 based on the
result of fig. 1. From fig. 2, one can see that the traffic
state changes significantly with the change of h. With
the increase of h, all three functions have significant tran-
sitions at h = 0.45 and h = 0.73. In fig. 2(a), when
0.45 ≤ h ≤ 0.73, the traffic flow fluctuates slightly around
a certain value and is much larger than that when h < 0.45
or h > 0.73. However, in figs. 2(b) and (c), the trends
of the packet loss Λ and the average travel time 〈T 〉 are
nearly the same and completely opposite to the traffic flow
as h increases. For fix values of ρ and B, if the value of
h is too large or too small, congestion will occur. Only
if h is within a certain interval can congestion be allevi-
ated. Therefore, the tunable parameter h considering both
distance and node load can effectively enhance the traffic
capacity of the dynamical network.

Next, we mainly focus on the impact of the buffer size
B on traffic congestion. We set ρ = 0.2 and h = 0.5 ac-
cording to above results. Figure 3(a) shows the traffic flow
as a function of the buffer size B. It can be observed that
with the increase of B, when 0 < B ≤ B1 (B1 = 25), the
traffic flow increases; when B1 ≤ B ≤ B2 (B2 = 85), the
traffic flow first decreases, then increases sharply; when
B2 ≤ B ≤ B3 (B3 = 280), the traffic flow fluctuates
slightly around its maximum; when B ≥ B3, the traffic
flow displays a decreasing trend with fluctuation. Fig-
ure 3(b) shows the network density Φ as a function of B.
When 0 < B ≤ B2, with the increase of B, Φ first increases
greatly, and gradually converges to Φ = 1, but then sud-
denly drops to the minimum. When B2 ≤ B ≤ B3, Φ
fluctuates around its minimum. When B ≥ B3, Φ first
increases rapidly, then fluctuates around its maximum. In
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Fig. 3: (a) The traffic flow, (b) network density Φ, and
(c) packet loss Λ as a function of the node buffer size B. B1,
B2 and B3 are the critical values for partial-, short-, no-, and
long-congestion states, respectively. The simulation parame-
ters are N = 1500, L = 10, C = 1, r = 1, v = 0.1, ρ = 0.2, and
h = 0.5.

fig. 3(c), the trend of the packet loss Λ is completely op-
posite to the traffic flow in fig. 3(a) as B increases.

The reasons for the different traffic states in fig. 3 are
explained as follows. We first observe the traffic state
when the buffer size B ∈ [B2, B3]. Obviously, the traffic
flow is the largest and no packets are lost in this interval.
We call this traffic state no-congestion state. In this state,
no matter what the value of B is, the network density Φ is
very small and almost the same (the average value Φm is
shown in fig. 3(b)). It can be seen from eq. (6) that Φ(t)
is the average value of ratio qi(t)/B of all nodes at time t,
which can measure the weight of the second term in eq. (3)
at this time. From the analysis of fig. 2, we know that only
when the two terms in eq. (3) are combined with a certain
weight, can the traffic capacity in the system be optimal.
Therefore, a necessary condition to avoid traffic congestion
is that the network density Φ(t) is always approximately
equal to Φm when t → ∞.

When the buffer size B is very small (0 < B ≤ B1), a
small difference in queue length q of each node will lead
to a large difference in ratio q/B, so the effective distance
expressed in eq. (3) is mainly determined by the second
item. Thus, packets are mainly delivered to nodes with
smaller queue length, causing congestion in these nodes.
Because only a small number of nodes are congested, the
network density Φ and the packet loss Λ are not very large.
With the increase of B, this difference effect decreases, and
the effect of the first term in eq. (3) increases gradually,
so that the traffic flow increases and Λ decreases. We call
this traffic state partial-congestion state.

When the buffer size B is not very small (B1 < B < B2),
traffic congestion also apparently occurs. At the beginning

Fig. 4: The average travel time 〈T 〉 as a function of the node
buffer size B. B2 and B3 are the critical values for short-,
no-, and long-congestion states, respectively. The simulation
parameters are as in fig. 3. The arrows denote the area where
the Braess’ paradox occurs.

of the simulation, the network density Φ(t) increases grad-
ually as packets are injected into the network at each time
step. At some time steps, Φ(t) is bound to reach Φm,
but why does congestion eventually occur? In the no-
congestion state, there is a balance between the number
of generated packets and removed packets without packet
loss. It is required that the total number of packets in the
network should not be too small. When Φ(t) reaches Φm,
the total number of packets in the network is too small
to reach that balance according to eq. (6). At this time,
the queue length of each node is also very short. Once
Φ(t) continues to increase, traffic congestion is inevitable.
Eventually all nodes will be congested. The larger B, the
longer the average waiting time of the packet in the node.
Note that the first term in eq. (3) has timeliness, i.e., the
longer the time after calculation, the worse the effect of
the equation. As a result, the traffic flow decreases and
the packet loss Λ increases with the increase of B. We call
this traffic state short-congestion state. Obviously, as B
approaches B2, the traffic state changes to no-congestion
state.

When the buffer size B is too large (B > B3), traffic
congestion occurs because of the reason opposite to the
short-congestion state. When the network density Φ(t)
reaches Φm, the total number of packets in the network is
too large, i.e., the average queue length in nodes is very
long. Due to the timeliness of the first item in eq. (3),
the adaptive routing strategy has no effect, and thus con-
gestion will also inevitably occur. Over time, all nodes
become congested. When the total number of packets in
the network is small, the second term in eq. (3) has little
difference. The larger B is, the less difference it has, and
the faster congestion will occur. As a result, the traffic flow
decreases and the packet loss Λ increases with the increase
of B. However, due to the randomness of the dynamical
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Fig. 5: The traffic flow as a function of the packet generation
rate ρ for five different values of node speed v = 0.1–0.5. The
arrow denotes the position of the critical value ρc. The inset
shows the maximum traffic flow Flowmax and ρc as functions
of v. The simulation parameters are N = 1500, L = 10, C = 1,
r = 1, B = 100, and h = 0.5.

network, the results show some fluctuations. We call this
traffic state long-congestion state.

Moreover, a phenomenon similar to the Braess’ paradox,
in which adding extra resources to a network will reduce
network performance in some cases, can be observed in
our model. Figure 4 shows the average travel time 〈T 〉 as
a function of the buffer size B. One can see that when
B < B2 or B > B3, 〈T 〉 increases with the increase of
B. According to the analysis of fig. 3, traffic congestion
occurs when B < B2 or B > B3, resulting in almost full
buffer for many nodes. In these two regimes, the average
waiting time for all packets is positively correlated with
the buffer size B. Therefore, the buffer size enhancement
(i.e., the addition of physical space to the nodes) during
congestion will not improve the system, but will even cost
more travel time. Note that when B approaches B2, the
congestion may be eliminated and the average travel time
〈T 〉 plummets. We can also see that when B2 ≤ B ≤
B3, the average travel time 〈T 〉 is very small and remains
almost unchanged due to the unblocked network.

Figure 5 shows the dependence of traffic flow on the
packet generation rate ρ for different values of v. For a
fixed value of v, the traffic flow first increases linearly as
ρ increases. When ρ surpasses a critical value denoted
as ρc, the traffic flow drops suddenly, and then remains
almost unchanged, i.e., congestion occurs. The traffic flow
at ρc is denoted as Flowmax, which is also the maximum
traffic flow at this speed. From the insets of fig. 5, one can
observe that when v increases from 0.1 to 0.5, both ρc and
Flowmax decrease continuously. Therefore, increasing v
within a certain range will lead to slower packet processing
rate and thus worse traffic capacity of the network.

Conclusions. – The queue length of nodes is usually
regarded as infinite in most papers, but in fact the buffer
size is a finite resource. In this letter, we study the dy-
namical network with limited buffer size and propose an
adaptive routing strategy to deliver packets. The routing
strategy combines Euclidean distance and node load with
a tunable parameter. The packet loss and traffic conges-
tion can be observed in our model due to limited buffer
size. We conclude that traffic congestion will occur un-
less the tunable parameter is in a critical interval, which
means that the adaptive routing strategy can play a pos-
itive role. We mainly discuss the impact of buffer size on
traffic congestion. Based on the buffer size, four different
traffic states are obtained: partial-, short-, no-, and long-
congestion state. In the no-congestion state, there is no
packet loss and the traffic capacity of the network is the
best. In the other three states, traffic congestion occurs
for various reasons related to the routing strategy. In the
partial-congestion state, some nodes are blocked, while in
the short- or long-congestion state, all nodes are blocked.
Moreover, a phenomenon similar to the Braess’ paradox
can be observed in our model. When traffic congestion
occurs, the average travel time increases with the buffer
size due to the increasing waiting time. In addition, in-
creasing v within a certain range will lead to slower packet
processing rate and thus worse traffic capacity of the net-
work. It seems that the assumption that all nodes know
the status of other nodes is also a complex issue. How-
ever, it has been solved in reality. Taking the wireless
ad hoc network as an example, each node can use GPS
for positioning, and transmit the location information to
other nodes through the wireless ad hoc network system.
Because location information is very important, it can be
sent by other routes as a priority. In reality, the location
information is relatively small, and it only takes up very
little bandwidth and buffer. This letter studies a simplified
physical model, so this issue is ignored. Existing research
models [14,28,29] also use simplified processing similar to
the model in this letter. We believe that our work can
provide some inspiration for alleviating real-world traffic
congestion.
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