
February 2020

EPL, 129 (2020) 34002 www.epljournal.org

doi: 10.1209/0295-5075/129/34002

Super-resolution limit of shear-wave elastography

C. Zemzemi, A. Zorgani, L. Daunizeau, S. Belabhar, R. Souchon and S. Catheline
(a)

INSERM U1032 LabTAU, Université de Lyon - Lyon, France
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Abstract – When a wave field is measured within a propagative medium, it is widely accepted
that the resulting image resolution depends on the measuring point density, and no longer on the
wavelength. Indeed, in situ measurements allow the near-field details needed for super-resolution
to be retrieved. Rarely studied in elastography, this is supported here by experiments. A passive
elastography imaging of two inclusions in a tissue mimicking phantom is shown with a resolution
down to 1/45 of a shear wavelength.
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Introduction. – In optics, imaging with evanescent
waves offers the possibility to overcome the classical
diffraction limit of half a wavelength, with a super-
resolution of near-field microscope defined by its probe
size [1,2]. In the same way, a source [3–5] or a scatterer [6]
smaller than one wavelength that is placed within the
medium and detected in the far field also allows super-
resolution. Time reversal can also overcome the diffrac-
tion limit when resonators are placed near a source [7,8],
or when an acoustic sink is used [9]. To a lesser de-
gree, near-field details can sometimes be extracted from
the far field using sophisticated algorithms, such as in-
verse filter [10] or multiple signal classification (MU-
SIC) [11]. With the use of metamaterials, a super-lens,
or a hyper-lens [12], moderate sub-diffraction imaging can
be achieved down to a quarter of the optical wavelength.
Each of these techniques uses a different approach, but
they all require some near-field measurements. When a
wave is measured within a propagation medium, as is of-
ten the case for surface waves in seismology, nondestruc-
tive testing, and shear-wave elastography, the diffraction
limit is no longer valid. Super-resolution is inherent to
these imaging techniques, and thus it only depends on
the measuring point density. In elastography, the elas-
tic wave field inside the human body is measured using
ultrasounds [13,14], optics [15,16], or magnetic resonance
imaging [17,18]. The general aim of elastography is to con-
vey a palpation tomography of soft tissues to physicians.
This palpation elasticity being closely related to shear
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elasticity, the shear-wave speed is locally estimated us-
ing different medical imaging modalities. The shear-wave
field is generated using low-frequency (<500Hz) vibra-
tions while detection strategies are modality-dependent.
In optics and ultrasounds, speckle tracking algorithms ap-
plied on successive frames acquired during the shear-wave
propagation have been shown to be efficient. Elastogra-
phy is thus a form of multi-wave imaging technique [19].
We will show that its resolution is limited by its smaller
wavelength [20].

In this letter, a quantitative experimental estimation of
the resolution in passive elastography is conducted in a
tissue mimicking phantom. Passive elastography is taken
as an example of shear-wave elastography. In contrast
with shear-wave elastography that needs active sources,
passive elastography relies on natural shear-waves due to
heart beatings, muscle motions or pulsatility of arteries.
The speed is estimated using noise correlation algorithms
developed in the field of seismology. They were adapted in
the context of medical imaging and presented here using
elastodynamic equations. It should be pointed that in in-
ert material such as that used in the following experiments,
passive elastography is using active sources, vibrators, able
to mimic uncontrolled wave field of living tissues. Without
loss of generality, the conclusions on resolution limits are
valid for any shear-wave–based elastography. Through-
out experiments, the shear-wave field is kept unchanged
in terms of amplitude, frequency and phase. The only
parameter under consideration is the central frequency of
the medical arrays or, in other words the resolution of the
ultrasound imaging.
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For the sake of clarity, one last comment is worthy to be
mentioned. Contrast in elastography, and thus the quan-
titative estimation of shear-wave speed, although impor-
tant, is not the subject treated in the present paper and
should not be confused with resolution.

Experimental estimation of resolution in passive
elastography. – The experiments were conducted on a
homemade aqueous medium. It contains gelatin (Sigma
Aldrich, St Louis, MO, USA) for stiffness control and
graphite (Sigma Aldrich, St Louis, MO, USA) for ul-
trasonic scattering. Two stiff cylindrical inclusions were
embedded in a softer homogenous surrounding phantom.
The gelatin concentration in the inclusion was 9% (w/v)
while it was 3% (w/v) in the surrounding phantom. The
graphite concentration was the same in both solutions,
0.5% (w/v). The preparation was realized in two steps.
First, the solution for the surrounding phantom was pre-
pared. Then it was poured into a mold for cooling. The
mold was shaped like a truncated cylinder along elevation
in order to break the symmetry of the reverberation from
the boundaries, fig. 1. Two small cylinders were verti-
cally fixed on the bottom of the mold in order to create a
vacuum for the inclusion. After one hour of cooling, the
inclusion solution was poured in the vacuum created by
the cylinders and kept in the fridge for two more hours.
The two resulting cylindrical hard inclusions have a diam-
eter of 5mm and are separated by 2mm. Three shakers
(RS Pro Round Speaker Driver, 1w nom, 8ω, RS Compo-
nents, Singapore) that are arbitrarily positioned on the
surface, emit a 0.8 s duration sweep signal from 20Hz
to 200Hz. Simultaneously, a 128-transducer array con-
nected to an ultrafast ultrasound scanner (Vantage R© Ve-
rasonics, Inc. Kirkland, WA, USA) is used to measure
the ultrasonic echoes from a homogeneous region of the
soft solid. Three experiments are performed with three
different arrays. Central frequencies are 5MHz (L7-4 R©
Philips ATL Bothell, WA, USA), 9.5MHz (Vermon, Inc.
Tours, France) and 15MHz (Vermon, Inc. Tours, France),
fig. 2(a). The axial resolution of the ultrasound images,
which theoretically corresponds to AR = (Q ∗λ)/4 [20], is
thus of the order of 154μm, 81.05μm, and 51.33μm, re-
spectively, where Q is the quality factor of the transducer,
in our case Q = 2, and λ is the ultrasonic wavelength. In
the 5 and 9.5MHz experiment, a 15mm coupling medium
was placed between the imaging probe and the cavity to
keep away the inclusion from the near field of ultrasound.
Over 1 s, 1000 such ultrasound speckle images are acquired
at a repetition frequency of 1 kHz using plane wave imag-
ing [21]. The induced displacements were computed by
the speckle tracking algorithm [22] from the acquired RF
data. The amplitude of the displacement is ±1μm. The
measured displacement central frequency is f∼100Hz, un-
changed during the three experiments. Elastic waves that
are trapped in the cavity and reflected by the boundaries
results in a reverberated diffuse field. For in vivo passive
elastography, the reverberant field is produced by natural

Fig. 1: Experimental set-up. The elastic diffuse field is cre-
ated using three vibrators applied to random positions on
the surface of the soft solid. Field measurements in the
bulk require a medical ultrasound transducer array connected
to an ultrafast scanner. Using speckle tracking algorithms
developed in elastography, a 1 second displacement field is
obtained.

Fig. 2: The homogeneous elastic medium contains two cylindri-
cal hard inclusions that are separated by 2 mm. (a) Ultrasound
images acquired with three different arrays placed on top, with
central frequencies of 5 MHz, 9.5 MHz and 15 MHz (as indi-
cated). (b) The excellent resolution in shear-wave speed imag-
ing using the 5 MHz, 9.5 MHz and 15 MHz probes is clearly
subwavelength when compared to the 18 mm shear-wavelength
representation (top right).

motion of living tissues. It is produced by muscle contrac-
tions, heart beating or arteries pulsatility. Since no shear-
wave source is needed, it explains the term “passive” in
the name of the technique. As usual in passive elastog-
raphy, the time-reversal (TR) field is obtained through
correlation of the diffuse field φ. For following detailed
computation, see [23]:

φTR(r, t) = φ(rS ,−t) ⊗ φ(rO, t). (1)

The pseudo-source position is rS , the observation point is
rO, the distance between observation and source point is
r = rO − rS and ⊗ stands for time convolution product.
To any field that obeys the wave equation, say the particle
velocity v = ∂φ

∂t and the strain fields ε = ∂φ
∂r , one can as-

sociate general time-reversal fields ϑTR(r, t) and ξTR(r, t).
The link between ΦTR(r, t), ϑTR(r, t) and ξTR(r, t) can
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be computed as follows. The use of the time derivative
property of a convolution product (f ⊗ g)′′ = f ′ ⊗ g′

straightly gives:

− ∂2

∂t2
φTR =

∂φ

∂t
(−t) ⊗ ∂φ

∂t
(t) = v(−t) ⊗ v(t) = ϑTR.

(2)

According to this eq. (2), the time reversal velocity field
ϑTR can thus be interpreted as the second time derivative
of the time-reversal field or, in other words, its time curva-
ture. As far as the time-reversal strain field is concerned,
the starting point is the derivation from (1):

∂2

∂rS∂rO
φTR =

∂φ

∂rS
(rS ,−t) ⊗ ∂φ

∂rO
(rO, t).

Using the variable r = rO − rS within the time-reversal
field φTR(rO, rS , t) = φTR(r, t), the space derivative trans-
forms to:

∂2

∂rS∂rO
φTR = − ∂2

∂r2
φTR.

It finally follows that

− ∂2

∂r2
φTR =

∂φ

∂r
(−t) ⊗ ∂φ

∂r
(t) = ε(−t) ⊗ ε(t) = ξTR.

(3)

According to this eq. (3), the time-reversal strain field
ξTR can thus be interpreted as the second space deriva-
tive of the time-reversal field or, in other words, its space
curvature.

On the other hand, the time-reversal field is related to
the Green’s function [23] according to

ΦTR(r, t) = Alm[Gmm(r, t)], (4)

where A is a constant called power spectral density.
The elastic harmonic Green’s function G is the solution

of the elastodynamic wave equation, in a homogeneous,
isotropic, frictionless solid [24]:

Gmn(r, t) =
{

eiqr

4πρC2
pr

[
γmγn + i

3γmγn − δmn

qr

]

+
eikr

4πρC2
s r

[
δmn − γmγn − i

3γmγn − δmn

kr

]
eiωt

}
, (5)

where m and n are indices of the direction axis for the
source and the receiver, r is the radial distance from the
source, t is the time, ρ, CP and CS are the density, com-
pression wave speed, and shear-wave speed, respectively, q
and k are the compression and shear-wave number, respec-
tively, γi is the cosine director, and δmn is the Kronecker
symbol. Let us assume that the source and the field
have the same polarization, then m = n, δmn = 1 and
γm = cos θ. According to eqs. (4) and (5) the time-reversal

elastic field is expressed as

ΦTR(r, 0)

=
Ak

12πρC2
S

{[(
CS

CP

)3

(j0(qr) + j2(qr)) + 2j0(kr) − j2(kr)

]

+

[
3j2(kr) − 3

(
CS

CP

)3

j2(qr)

]
cos2 θ

}
,

where j0 and j2 are the first-kind Bessel functions for first
and second order, respectively. In its harmonic form, time
can arbitrarily be chosen equal to 0, and becomes the
zero-lag time of correlation. For short-range approxima-
tion, r � 1, a linearization of the time-reversal field is
computed. If the polarization of the source and of the
measuring point is the same, γm = γn = cos θ, the final
expression becomes:

ΦTR(r, 0) =

Alm[Gmm(r, 0)] ≈ Ak

12πρC2
S

{(
CS

CP

)3 (
1 − (qr)2

10

)

+2
(

1 − (kr)2

5

)
+

1
5

[
(kr)2 −

(
CS

CP

)3

(qr)2
]

cos2 θ

}
.

On the source point, the distance cancels r = 0:

ΦTR(0, 0) = Alm[Gmm(0, 0)] =
Ak

6πρc2
S

.

Equations (2) and (3) result in the expressions

ϑTR(0, 0) = − ∂2

∂t2
Alm [Gmm(0, 0)] ≈ Aω2k

6πρc2
S

,

ξTR(0, 0) = − ∂2

∂r2
Alm [Gmm(0, 0)] ≈ (2 − cos2 θ)

Ak3

30πρc2
S

.

(6)

The shear-wave speed can now be extracted from the pair
of eq. (6):

cS =
ω

k
=

√
1
5
(2 − cos2 θ)

√
ϑTR

ξTR
.

In the experiments presented here, θ = 0, and the speed
is thus

cS =

√
1
5

ϑTR

ξTR
.

In order to estimate the local shear-wave speed, the origin
r0 is scanned on the whole image. Reconstruction algo-
rithm of the shear-wave speed imaging (fig. 2) is

cS(r0) =

√
1
5

ϑTR(r0, t0)
ξTR(r0, t0)

, (7)

where r0 is the position of the focal spot, t0 is the recom-
pression time, arbitrarily set to 0ms.
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To make the time-reversal interpretation of eq. (7) sim-
ple, the shear-wave velocity comes from ϑTR on the one
hand, defined in eq. (2) as the curvature of the time re-
compression or, in other words, the squared central fre-
quency, and from ξTR, on the other hand, defined in eq. (3)
as the curvature of the focal spot, or in other words,
the squared inverse central wavelength. To summarize,
from the measurements of the 1 second displacement field
φ(r, t), a numerical time derivative gives the particle ve-
locity v(r, t) and, using correlation of eq. (1), the time-
reversal velocity field ϑTR(rS , 0) is obtained. Similarly, a
numerical gradient of φ(r, t) along depth gives the strain
ε(r, t) and using correlation of eq. (1), the time-reversal
strain field ξTR(rS , 0) is obtained. Computing their ratio
point by point finally gives the shear-wave speed imaging
(fig. 2). Inspired by seismic noise correlation [25–28], a
complete description of the elastography method is avail-
able in [23,29].

The shear-wave frequency spectrum is kept constant
during the three experiments, as a constant central shear
wavelength of 18mm in the background of the medium.

Results and discussion. – When compared to con-
ventional ultrasound imaging associated with the three
frequencies (fig. 2(a)), the two inclusions are clearly ap-
parent on the shear-wave speed reconstructions (fig. 2(b)).
The 2mm distance between the inclusions can be com-
pared to the representation of the shear wavelength on
the top right corner of fig. 2. This conveys a clear idea of
what fraction of a shear wavelength the resolution of the
shear-wave speed mapping can be.

The axial and lateral resolutions Rz and Rx are esti-
mated from the average distance needed for a level in-
side the inclusions to decrease to the average value of
the amplitude of the background (fig. 3(a)). The shear-
wave speed estimation within 10% error is 2.1m · s−1,
2.0m · s−1, 1.8m · s−1 in the background and 7.1m · s−1,
6.4m · s−1, 3.6m · s−1 in the inclusions at respectively 5,
9.5 and 15MHz. These variation estimations can be due
to ultrasound SNR, or temperature changes during exper-
iments. In any case, they are related to contrast, beyond
the scope of this work, and not to resolution.

The width of inclusion edge estimation is equivalent to
the −6 dB width of a point spread function. This reso-
lution estimation is conducted on each edge of inclusion
(top and side panels fig. 3(a)) for 3 consecutive profiles
distributed around the center of each inclusion. Conse-
quently, a single estimation of resolution with a relative
error of 20% results from the average of 12 measurements
(3 × 2 × 2) and is represented in fig. 3(b) as squares and
circles. This approach is firstly validated on axial reso-
lution of ultrasound imaging: Rexp

z = 140, 80 and 50μm
are found very close to the expected theoretical values
Rtheo

z = 145, 76 and 48μm at, respectively, 5, 9.5 and
15MHz.

The whole results are represented in fig. 3(b) as filled
symbols for the ultrasound imaging, as open symbols for

Fig. 3: (a) Profiles of inclusions, top and right panels, are
extracted from the shear-wave speed reconstruction in the cen-
ter. The 9.5 MHz probe is placed on top of the image. Edge
length estimations provide axial Rz and lateral Rx resolution.
(b) With the shear wavelength unchanged, the resolution of
the shear-wave speed imaging (open symbols) follows the ul-
trasound imaging resolution improvement at increasing ultra-
sound frequencies (filled symbols). The lateral-resolution along
x (rectangle symbols) reached 1/45 of a shear wavelength, i.e.,
400 μm.

the shear-wave speed imaging, as circles for the axial res-
olution along z and as rectangle for the lateral resolutions
along x. Although comparable at first sight on images
of fig. 2, the axial resolution of the ultrasounds imaging
is at least 5 fold greater than for the shear-wave speed
imaging whatever the frequency, fig. 3(b). This difference
comes from the speckle tracking algorithms that is used
to estimate the displacement field: a windowing of five
ultrasound wavelengths is responsible for the resolution
degradation of the shear-wave speed imaging. The use of
phase-based motion estimation [29] should make it theo-
retically possible for the shear-wave imaging to reach the
resolution of ultrasound. As far as the lateral-resolution
is concerned, no significant difference between ultrasound
and shear-wave imaging is observed. It confirms that the
number one limitation of resolution in these experiments
is the windowing used in the speckle tracking algorithms.
It should be pointed out that final resolution in shear-wave
elastography is highly dependent on the strategy used for
the speed estimation: noise, filtering, sampling, interpola-
tion can become an issue. However, the results reported in
the present letter clearly support the first claim that the
upper super-resolution limit is independent of the shear
wavelength. The best resolution reached in these exper-
iments is 1/45 of a shear wavelength, i.e., 400μm. This
super-resolution is limited by the Rayleigh criteria of ul-
trasound, not of the shear-waves. This is our second claim.

Conclusion. – It has been shown in the first part
that elastography is inherently a super-resolution tech-
nique in the sense that resolution is independent of the
shear wavelength. Resolution limit as small as 1/45th of
a shear wavelength is reported. Although obtained in the
landscape of ultrasound passive elastography, this result
is valid for any shear-wave–based imaging. As a conclu-
sion, in the absence of noise in the data, the upper reso-
lution bound depends 1) in ultrasound elastography [30]
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on ultrasound wavelength, 2) in magnetic resonance elas-
tography [31] on voxel size, 3) in optical coherent elastog-
raphy [32,33] on light wavelength, and 4) in ultra-dense
array seismology [34] on the distance between the geo-
phones. It is worthy to stress that resolution should not
be confused with contrast. These are independent con-
cepts. Resolution rules out the separation between two
neighboring points whereas contrast deals with amplitude
and thus measure the ability of elastography to estimate
correct quantitative shear-wave speed. Contrast problem
in elastography has not been studied in the present paper.
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