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Abstract
In this paper, we study the global well-posedness of a coupled system of kinetic 
and fluid equations. More precisely, we establish the global existence of weak 
solutions for Navier–Stokes–BGK system consisting of the BGK model of 
Boltzmann equation  and incompressible Navier–Stokes equations  coupled 
through a drag forcing term. This is achieved by combining weak compactness 
of the particle interaction operator based on Dunford–Pettis theorem, strong 
compactness of macroscopic fields of the kinetic part relied on velocity 
averaging lemma and a high order moment estimate, and strong compactness 
of the fluid part by Aubin–Lions lemma.

Keywords: Vlasov equation, BGK model, incompressible Navier–Stokes 
equations, spray models, global existence of weak solutions
Mathematics Subject Classification numbers: 76D05, 76N10, 35Q20, 
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1.  Introduction

In the modeling of a fluid-particle system where the particles are dispersed in a fluid flow, 
it is often the case that the motions of the particles are described at the kinetic level and the 
fluid is described at the macroscopic level, with the acceleration of the particles caused by 
the surrounding fluid and the acceleration of the fluid caused by the immersed particles given 
by the drag force terms. When the inter-particle interactions are not negligible such as in the 
case of polydisperse multiphase flows, crossing jets, a collision type operator that captures the 
interactions between the particles must be included in the kinetic equations [8, 25, 31, 40]. 
The mathematical modeling for the interactions between particles and fluid is classified by 
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O’Rourke [40] according to the volume fraction of the gas. In the current work, we are inter-
ested in the dynamics of particles called moderately thick sprays where the volume fraction of 
the gas is negligible, but collisions between particles are taken into account. More precisely, 
we address the existence of weak solutions for a particle-fluid system in which the BGK 
model of Boltzmann equation and the incompressible Navier–Stokes equations are coupled 
through a drag force [5, 8, 25, 31]:

∂tf + v · ∇xf +∇v · ((u − v) f ) = M( f )− f ,

∂tu + u · ∇xu +∇xp − µ∆xu = −
∫

R3
(u − v) f dv,

∇x · u = 0,

� (1.1)

subject to initial data

( f (x, v, 0), u(x, 0)) =: ( f0(x, v), u0(x)).

Here f (x, v, t) denotes the number density function on the phase point (x, v) ∈ T3 × R3 at time 
t ∈ R+, and u(x, t) and p(x, t) are the fluid velocity and the hydrostatic pressure on x ∈ T3 at 
time t ∈ R+, respectively. µ is the kinematic viscosity of the fluid. The first two terms in the 
kinetic equation in (1.1) represent the free transport of dispersed particles in a fluid. The third 
term is the drag force which explains the acceleration of the immersed particles driven by the 
surrounding fluid, which also appears as an external force in the fluid equations taking into 
account the acceleration of the fluid caused by the immersed particles.

The local Maxwellian M( f ) is defined by

M( f )(x, v, t) =
ρf (x, t)√

(2πTf (x, t))3
exp

(
−
|v − Uf (x, t)|2

2Tf (x, t)

)
,

where the macroscopic fields of f : ρf , Uf , and Tf  are defined by

ρf (x, t) :=
∫

R3
f (x, v, t) dv,

ρf (x, t)Uf (x, t) :=
∫

R3
vf (x, v, t) dv,

3ρf (x, t)Tf (x, t) :=
∫

R3
|v − Uf (x, t)|2f (x, v, t) dv,

respectively. These relations give the following cancellation properties:
∫

R3

{
M( f )− f

} (
1, v, |v|2

)
dv = 0.

Note that this provides the conservation of mass, momentum and energy for the uncoupled 
BGK model. However, in our coupled model (1.1), this only leads to conservation of mass due 
to the presence of drag force terms.

The most general model to describe the dynamics of rarefied particles suspended in a fluid 
is the Navier–Stokes–Boltzmann system coupled through the drag force term. Due to various 
technical difficulties, however, the global-in-time existence of solutions for such model is 
currently not available. In this paper, we consider the case in which the interactions between 
the particles are described by the nonlinear relaxation operator of the BGK model. This is 
meaningful in the following two senses.
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First, the BGK model is one of the most widely used model equation of the Boltzmann 
equation in physics and engineering. This is due to the qualitatively reliable results produced 
by the BGK model at much lower computational cost compared to that of the Boltzmann 
equation.

Secondly, even though existence theories for particle-fluid systems are well studied nowa-
days, most of the results dealing with the interactions between the suspended particles con-
sider the linear interaction operators. To the best knowledge of the authors, our result seems 
to be the first result to consider the particle-fluid model with a nonlinear collision operator for 
particle interactions.

History 1: Navier–Stokes–Vlasov system: Recently, the study on particle-fluid system is 
gathering a lot of attentions due to their applications, for example, in the study of sedimenta-
tion phenomena, fuel injector in engines, and compressibility of droplets of the spray, etc [3, 
8, 40, 44, 49, 51]. Along with that applicative interest, the mathematical analysis for various 
modelling is also emphasized. In the case when the direct particle-particle interactions are 
absent, there are a number of literature on the global existence of solutions; weak solutions 
for Vlasov or Vlasov–Fokker–Planck equation coupled with homogeneous/inhomogeneous 
fluids are studied in [9, 15, 27, 34, 50, 54], strong solutions near a global Maxwellian for 
Vlasov–Fokker–Planck equation coupled with incompressible/compressible Euler system are 
obtained in [10, 12, 23]. We also refer to [13, 14] for the large-time behavior of solutions and 
finite-time blow-up phenomena in kinetic-fluid systems. Despite those fruitful developments 
on the existence theory, to the best knowledge of the authors, global existence of solutions 
for kinetic-fluid models where collisions between the particles are taken into account has 
not been studied so far. It is worth mentioning that the local-in-time smooth solutions for the 
Vlasov–Boltzmann/compressible Euler equations are studied in [31] and the global existence 
of weak solutions of Vlasov/incompressible Navier–Stokes equations with a linear particle 
interaction operator taking care of the breakup phenomena is established in [4, 53]. More 
recently, the existence of strong solutions to the inhomogeneous Navier–Stokes-BGK system 
is also discussed in [17]. In [1, 16], Vlasov/Navier–Stokes system with a nonlinear particle 
interaction operator describing an asymptotic velocity alignment behavior is considered and 
the global existence of weak solutions is obtained.

History 2: BGK model: In spite of its important role as a fundamental model connecting 
the particle level description and the fluid level description of gaseous systems, the applica-
tions of the Boltzmann equation at the physical or engineering level have often been limited 
by the high numerical cost involved in the numerical computations of the collision operator. 
This is especially so if one is interested in dealing with specific flow problems. Looking for a 
model equation that shares important features of the Boltzmann equation, and therefore, suc-
cessfully mimics the dynamics of the Boltzmann equation, Bhatnagar et al, and independently 
Walender, introduced a relaxation model of the Boltzmann equation, which is called the BGK 
model. Since then, the BGK model has seen a wide range of applications in engineering and 
physics due to its reliable results at much lower computational cost compared to that of the 
Boltzmann equation.

The mathematical study of the BGK model can be traced back to [36] where Perthame 
established the existence of weak solutions. Perthame and Pulvirenti later studied the existence 
of unique mild solution in a weighted L∞ space [38]. These works were fruitfully extended 
to several directions: gases in the presence of external forces [52], plasma [60, 61], solutions 
in Lp  spaces [59] and gas mixture problems [28]. The existence of classical solutions and its 
exponential stabilization near equilibrium are studied in [55]. The results on the stationary 
problems in a slab can be found in [48]. The ellisoidal extension of the BGK model recently 
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drew much attention [2, 56–58]. BGK model also saw various applications in the study of var-
ious macroscopic limits [22, 29, 32, 33, 41–43]. We omit the survey on the numerical compu-
tations related to the BGK model, interested readers may refer to [19, 20, 24, 35, 39, 45, 46].

1.1.  Main result

Before we define our solution concept and state the main result, we define norms, function 
spaces and notational conventions.

	 •	�We denote by C a generic, not necessarily identical, positive constant. It may depend on 
final time T, but not on x.

	 •	�For functions f (x, v), g(x), ‖f‖L p and ‖g‖L p denote the usual L p(T3 × R3)-norm and 
L p(T3)-norm, respectively.

	 •	�‖f‖L∞
q

 represents a weighted L∞-norm:

‖f‖L∞
q

:= ess sup
x,v

(1 + |v|q) f (x, v).

	 •	�For any nonnegative integer s, Hs denotes the sth order L2 Sobolev space.
	 •	�Cs([0, T]; E) is the set of s-times continuously differentiable functions from an interval 

[0, T] ⊂ R into a Banach space E, and Lp (0,T;E) is the set of the Lp  functions from an 
interval (0, T) to a Banach space E.

In order to state our main theorem on the global existence of weak solutions to the system 
(1.1), we also introduce functions spaces as follows:

H := {w ∈ L2(T3) : ∇x · w = 0} and V := {w ∈ H1(T3) : ∇x · w = 0}.

We then define a notion of weak solutions to the system (1.1).

Definition 1.1.  We say that ( f , u) is a weak solution to the system (1.1) if the following 
conditions are satisfied:

	 (i)	�f ∈ L∞(0, T; (L1
+ ∩ L∞)(T3 × R3)),

	(ii)	�u ∈ L∞(0, T;H) ∩ L2(0, T;V) ∩ C0([0, T];V ′),
	(iii)	�For all φ ∈ C1

c (T3 × R3 × [0, T]) with φ(x, v, T) = 0,

−
∫

T3×R3
f0φ0 dxdv −

∫ T

0

∫

T3×R3
f (∂tφ+ v · ∇xφ+ (u − v) · ∇vφ) dxdvdt

=

∫ T

0

∫

T3×R3
(M( f )− f )φ dxdvdt,

	(iv)	�For all ψ ∈ C1
c (T3 × [0, T]) with ∇x · ψ = 0 for almost all t,

−
∫

T3
u0 · ψ0 dx +

∫

T3
u · ψ dx −

∫ T

0

∫

T3
u · ∂tψ dxdt +

∫ T

0

∫

T3
(u · ∇x)u · ψ dxdt

= −µ

∫ T

0

∫

T3
∇xu : ∇xψ dxdt −

∫ T

0

∫

T3×R3
f (u − v) · ψ dxdvdt.

Remark 1.2.  (1) L1
+ means the set of non-negative L1 functions. (2) The pressure p  is not 

contained in the definition since it vanishes when it is tested on the divergence free vectors.
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We are now ready to state our main result:

Theorem 1.3.  Let T  >  0. Suppose that the initial data ( f0, u0) satisfy

[f0 ∈ L∞(T3 × R3),
∫

T3×R3

(
1 + |v|2 + | ln f0|

)
f0dxdv < ∞, and u0 ∈ L2(T3)].

Then there exists at least one weak solution to the system (1.1) in the sense of definition 1.1 
satisfying the following estimates:

	 (i)	�Velocity distribution function is uniformly bounded:

‖f‖L∞(T3×R3×(0,T)) � C‖f0‖L∞(T3×R3).

	(ii)	�Total energy is uniformly bounded:

1
2

(∫

T3×R3
|v|2f dxdv +

∫

T3
|u|2 dx

)
+ µ

∫ t

0

∫

T3
|∇xu|2 dxds

+

∫ t

0

∫

T3×R3
|u − v|2f dxdvds � C

(∫

T3×R3
|v|2f0 dxdv +

∫

T3
|u0|2 dx

)
.

	(iii)	�Entropy is uniformly bounded:

∫

T3×R3
f | ln f | dxdv +

∫ T

0

∫

T3×R3

{
M( f )− f

}
ln f dxdvdt � Cf0,T

		 for almost every t ∈ (0, T).

One of the key elements in the proof is the derivation of the third moment estimate that 
remains uniformly bounded with respect to the mollification parameter ε. To derive the weak 
compactness of the local Maxwellian, we first need to obtain the compactness of the macro-
scopic fields. For the compactness of the local density and bulk velocity, the second moment 
estimate combined with the velocity averaging lemma is enough to derive the desired result. 
However, we need a moment estimate strictly higher than 2 to derive the compactness of the 
local temperature(see [36]). In view of this, we observe that the third moment of the regular-
ized distribution function fε can be controlled by the kinetic energy of the suspended particles 
and a fluid-particle type estimate (See section 3 for the definitions of fε and ηε):
∫ T

0

∫

T3×R3
fε|v|3 dxdvdt � C

(
‖(ηε � uε − v) fε(1 + |v|)‖L1 +

∫ T

0

∫

T3×R3
fε|v|2 dxdvdt

)
,

for some C  >  0 independent of ε, which in turn is bounded by L5 norm of the fluid velocity.
For the existence of solutions to the fluid equations, a strong compactness is required to 

control the convection term. For this, we again need to have some uniform bounds for the 
local density and local moments together with the total energy estimates. This, combined with 
the smoothing effect from the viscosity enables us to use the Aubin–Lions lemma to have the 
strong compactness.

The outline of this paper is as follows: In section 2, we record several technical lemmas. 
In section 3, we set up a regularized approximate system for the Navier–Stokes-BGK model 
(1.1). Then, we prove the existence of the regularized model in section 4, and derive several 
key a priori estimates independent of the regularizing parameter in section 5. Section 6 is 
devoted to the proof of the main theorem.
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2.  Preliminaries: auxiliary lemmas

In this section, we record various technical lemmas that will be crucially used later. We 
first state the lower bound estimate of the local temperature, which is essential for the local 
Maxwellian to be well-defined.

Lemma 2.1 ([38, proposition 2.1]).  There exists a positive constant Cq, which depends 
only on q, such that

ρf (x, t) � Cq‖f‖L∞
q

T3/2
f (x, t) (q > 3 or q = 0).

We also need to control the growth of the local Maxwellian by that of the distribution 
functions:

Lemma 2.2 ([38, p 291]).  Suppose ‖f‖L∞
q

< ∞ for q  >  5. Then there exists a positive 
constant Cq, which depends only on q, such that

‖M( f )‖L∞
q

� Cq‖f‖L∞
q

(q > 5 or q = 0).

The next lemma says that, unlike the above estimate, the constant depends also on the final 
time and the lower bounds of macroscopic fields if we are to control the growth of derivatives 
either.

Lemma 2.3 ([56, proposition 4.1]).  Assume that f  satisfies

	(1)	�‖f‖L∞
q

+ ‖∇x,vf‖L∞
q

< C1,
	(2)	�ρf + |Uf |+ Tf < C2,
	(3)	�ρf , Tf > C3,

for some constants Ci  >  0 (i = 1, 2, 3). Then, we have

‖M( f )‖L∞
q

+ ‖∇x,vM( f )‖L∞
q

� CT

{
‖f‖L∞

q
+ ‖∇x,vf‖L∞

q

}
,

where CT  >  0 depends only on C1, C2, C3 and the final time T.

The Lipschitz continuity of the local Maxwellian can be measured in the same weighted 
L∞

q  space as follows:

Lemma 2.4 ([56, proposition 6.1]).  Assume f , g satisfy (h denotes either f  or g)

	(1)	�‖h‖L∞
q

< C1,
	(2)	�ρh + |Uh|+ Th < C2,
	(3)	�ρh, Th > C3,

for some constants Ci  >  0 (i = 1, 2, 3). Then, we have

‖M( f )−M(g)‖L∞
q

� CT‖f − g‖L∞
q

,

where CT  >  0 depends only on C1, C2, C3 and the final time T.

In the lemma below, we give an interpolation-type inequality for local moments of f . For 
this, we set (k = 0, 1, 2, · · · )

Y-P Choi and S-B Yun﻿Nonlinearity 33 (2020) 1925
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mkf (x, t) :=
∫

R3
|v|kf (x, v, t) dv and Mkf (t) :=

∫

T3×R3
|v|kf (x, v, t) dxdv.

Lemma 2.5 ([7, lemma 1]).  Let β > 0 and g ∈ L∞
+ (T3 × R3 × (0, T)) with mβg(x, t) < ∞ 

for almost every (x, t). Then we have

mαg(x, t) �
(

4π
3
‖g(t)‖L∞ + 1

)
(mβg(x, t))

α+3
β+3 a.e. (x, t),

for any α < β.

We next state the velocity averaging lemma.

Lemma 2.6 ([9, lemma 3.2]).  For 1 � p < 5/4, let {gn}n be bounded in 
L p(T3 × R3 × (0, T)). Suppose that f n is bounded in L∞(0, T; (L1 ∩ L∞)(T3 × R3)) and 
|v|2f n is bounded in L∞(0, T; L1(T3 × R3)). If f n and gn satisfy the equation

∂tf n + v · ∇xf n = ∇k
vgn, f n|t=0 = f0 ∈ L p(T3 × R3),

for a multi-index k. Then, for any ψ(v), such that |ψ(v)| � c|v| as |v| → ∞, the sequence
{∫

R3
f nψ(v) dv

}

n

is relatively compact in L p(T3 × (0, T)).

3.  Global existence for a regularized system

In this section, we consider a regularized system of (1.1). As in [7], we regularize the fluid 
velocity in the drag forcing and convection terms, and apply a high-velocity cut-off to the drag 
force in the fluid part to relax some difficulties in the system (1.1). More precisely, let ε > 0 
and η be a standard mollifier:

0 � η ∈ C∞
0 (T3), suppxη ⊆ B(0, 1),

∫

T3
η(x) dx = 1,

and we set a sequence of smooth mollifiers ηε(x) = (1/ε3)η(x/ε). We also introduce a cut-off 
function γε ∈ C∞(R3):

suppγε ⊆ B(0, 1/ε), 0 � γε � 1, γε = 1 on B(0, 1/(2ε)), and γε → 1 as ε → 0.

Then the regularized system for the system (1.1) is defined as follows:

∂tfε + v · ∇xfε +∇v · ((ηε � uε − v) fε) = M( fε)− fε,

∂tuε + (ηε � uε) · ∇xuε +∇xpε − µ∆xuε = −
∫

R3
γε(v)(uε − v) fε dv,

∇x · uε = 0,

� (3.1)

subject to regularized initial data:

( fε(x, v, 0), uε(x, 0)) =: ( f0,ε(x, v), u0,ε(x)), (x, v) ∈ T3 × R3.
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Here � represents the convolution with respect to the spatial variable x. u0,ε is any C∞ approx
imation of u0 such that u0,ε → u0 strongly in L2(T3) as ε → 0, and f0,ε is defined by

f0,ε = η �
{

f01f0<1/ε
}
+ εe−|v|2 .

where 1A denotes the characteristic function on A. Note that f0,ε satisfies f0,ε → f0 strongly 
in L p(T3 × R3) for all p < ∞ and weakly-∗ in L∞(T3 × R3), M2f0,ε → M2f0 strongly in 
L∞(T3) and uniformly bounded with respect to ε,

In the following two sections, we prove the proposition below on the global-in-time exist-
ence of weak solutions and local-in-time uniform bound estimates of the regularized system 
(3.1).

Proposition 3.1. 

	(1)	�For any T  >  0 and ε > 0, there exists at least one weak solution ( fε, uε) of the regularized 
system (3.1) in the sense of definition 1.1.

	(2)	�Moreover, there exists a T∗ ∈ (0, T], which only depends on T, ‖u0‖L2 + M2f0, and ‖f0‖L∞ 
such that

	 •	�Total energy estimate:

sup
0�t�T∗

(
‖uε(t)‖2

L2 + M2fε(t) +
∫ t

0
‖∇xuε(s)‖L2 ds

)
� C1.� (3.2)

	 •	�Fluid-kinetic mixed estimate:

‖(ηε � uε − v)(1 + |v|) fε‖L1 < C( f0, u0, T∗).� (3.3)

	 •	�Third moment and entropy estimate:

‖M3fε‖L1(0,T∗) + sup
0�t�T∗

∫

T3×R3
fε(t)| ln fε(t)| dxdv � C( f0, u0, T∗).

Here, in particular, C1  >  0 depends only on T*, T, ‖u0‖L2 + M2f0, and ‖f0‖L∞.

Since the proof is rather long, we divide the proof into two parts in sections 4 (Existence 
and Uniqueness) and 5 (Uniform-in-ε estimates ) below.

4.  Proof of proposition 3.1 (1): existence of ( fε, uε)

We construct the solution ( fε, uε) to the regularized system (3.1) as a limit of the approx
imation sequence ( f n

ε , un
ε) for the system (3.1) given by the following decoupled and linear-

ized system:

∂tf n+1
ε + v · ∇xf n+1

ε +∇v · ((ηε � un
ε − v) f n+1

ε ) = M( f n
ε )− f n+1

ε ,

∂tun+1
ε + (ηε � un+1

ε ) · ∇xun+1
ε +∇xpn+1

ε − µ∆xun+1
ε = −

∫

R3
γε(v)(un

ε − v) f n
ε dv,

∇x · un+1
ε = 0,

� (4.1)

with the initial data and first iteration step:

( f n
ε (x, v, t), un

ε(x, t)) |t=0 = ( f0,ε(x, v), u0,ε(x)) for all n � 1,

and
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(
f 0
ε (x, v, t), u0

ε(x, t)
)
= ( f0,ε(x, v), u0,ε(x)), (x, v, t) ∈ T3 × R3 × (0, T).

Before we consider (4.1), we consider the existence of characteristics:

Lemma 4.1.  For u ∈ L∞(0, T; L2(T3)) such that ‖u‖L∞(0,T;L2) < ∞ and a fixed ε > 0,  
define the backward characteristic Zε(s) := (Xε(s), Vε(s)) := (Xε(s; t, x, v), Vε(s; t, x, v)) by

d
ds

Xε(s) = Vε(s),

d
ds

Vε(s) = ηε � u(Xε(s), s)− Vε(s),
� (4.2)

with the terminal datum

Xε(t) = x and Vε(t) = v.

Then Zε(s) is globally well-defined and satisfies

|Zε(s)| � CT ,ε,u(1 + |v|) and |∇x,vZε(s)| � CT ,ε,u,� (4.3)

for some positive constant CT ,ε,u = C
(
T , ε, ‖u‖L∞(0,T;L2)

)
.

Proof.  The existence part is clear due to the regularization. For the estimate of (4.3), we 
rewrite (4.2) as

Xε(s)= x −
∫ t

s
Vε(τ) dτ ,

Vε(s) = et−sv −
∫ t

s
eτ−s(ηε � u)(Xε(τ), τ) dτ .

� (4.4)

A straightforward computation yields

|Xε(s)| � |x|+
∫ s

0
|Vε(τ)| dτ � C +

∫ s

0
|Zε(τ)| dτ

and

|Vε(s)| � et−s|v|+
∫ t

s
eτ−s |(ηε � u)(Xε(τ), τ)| dτ � CT |v|+

CT

ε3/2 ‖η‖L2‖u‖L2 ,

where we used

‖ηε � u‖L∞ � ‖ηε‖L2‖u‖L2 �
1

ε3/2 ‖η‖L2‖u‖L∞(0,T;L2).

Thus we obtain

|Zε(s)| � CT |v|+ CT ,ε,u +

∫ s

0
|Zε(τ)| dτ ,
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which gives

|Zε(s)| � CT ,ε,u(1 + |v|),� (4.5)

for some positive constant CT ,ε,u depending on T , ε, and ‖u‖L∞(0,T;L2). Similarly, using

‖∇x(ηε � u)‖L∞ � ‖∇xηε‖L2‖u‖L2 �
1

ε5/2 ‖∇xη‖L2‖u‖L∞(0,T;L2),

we get

|∇x,vXε(s)| � C +

∫ s

0
|∇x,vVε(τ)| dτ ,

|∇x,vVε(s)| � CT + CT

∫ s

0
|(∇xηε) � u(Xε(τ), τ)||∇x,vZε(τ)| dτ

� CT +
CT

ε5/2

∫ s

0
‖∇xη‖L2‖u‖L2 |∇x,vZε(τ)| dτ .

Thus we have

|∇x,vZε(s)| � CT + CT ,ε

∫ s

0
|∇x,vZε(τ)| dτ ,

which, from Gronwall’s inequality, yields

|∇x,vZε(s)| � CT ,ε,u.

Here, CT ,ε,u is a positive constant depending on T , ε, and ‖u‖L∞(0,T;L2).� □ 

We now state the results on existence and uniqueness of the regularized and decoupled 
system (4.1), and its uniform bound estimates in n in the proposition below.

Proposition 4.1.  Let q  >  5. For any T  >  0 and n ∈ N, there exists a unique solution 
( f n

ε , un
ε) of the regularized and decoupled system (4.1) such that f n

ε ∈ L∞(0, T; L∞
q (T3 × R3)) 

and un
ε ∈

(
H1(0, T; L2(T3)) ∩ L2(0, T; H1(T3))

)
. Moreover, ( f n

ε , un
ε) satisfies the following 

uniform-in-n estimates:

	 (i)	�‖f n
ε ‖L∞(T3×R3×(0,T)) � C1‖f0,ε‖L∞(T3×R3),

	(ii)	�‖un
ε‖L∞(0,T;L2(T3))∩L2(0,T;H1(T3)) < C2,ε, ‖∂tun

ε‖L2(T3×(0,T)) � C3,ε,
	(iii)	�‖f n

ε ‖L∞(0,T;L∞
q (T3×R3)) + ‖∇x,vf n

ε ‖L∞(0,T;L∞
q (T3×R3)) � C4,ε,

	(iv)	�ρf n
ε
+ |Uf n

ε
|+ Tf n

ε
< C5,ε,   ρf n

ε
, Tf n

ε
> C6,ε,

Here, C1 = C1(T) depends only on T, whereas C2,ε = C2(T , f0, u0, ε), C3,ε = C3(T , f0,
u0,∇u0, ε) and Ci,ε = Ci(T , f0, ε) (i = 4, 5, 6).

Remark 4.2.  The upper bound estimate of f n
ε  in L∞(T3 × R3 × (0, T)) does not depend 

on both ε and n.

Proof.  We prove this proposition using induction. The case n  =  0 is trivially satisfied. As-
sume that we have obtained ( f n, un) ∈ L∞(T3 × R3 × (0, T))× L∞(0, T; L2(T3)) that satis-
fies all the statement of proposition 4.1.
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	(1) Existence and uniqueness of ( f n+1
ε , un+1

ε ): Under the assumption ( f n, un) ∈ L∞ 
(T3 × R3 × (0, T))× L∞(0, T; L2(T3)), (4.1)1 can be seen as an inhomogeneous trans-
port equation:

∂tf n+1
ε + v · ∇xf n+1

ε + (ηε � un
ε − v) · ∇vf n+1

ε − 2f n+1
ε = M( f n

ε ).� (4.6)

		 Thus, in view of the uniform bound on M( f n
ε ) given by lemma 2.2, the existence follows 

straightforwardly once the well-posedness of the characteristic:

Zn+1
ε (s) := (Xn+1

ε (s), Vn+1
ε (s)) := (Xn+1

ε (s; t, x, v), Vn+1
ε (s; t, x, v))

		 defined by

d
ds

Xn+1
ε (s) = Vn+1

ε (s), 0 � s � T ,

d
ds

Vn+1
ε (s) = ηε � un

ε(X
n+1
ε (s), s)− Vn+1

ε (s),
� (4.7)

		 with the terminal datum

Xn+1
ε (t) = x and Vn+1

ε (t) = v,

		 is verified, which is provided by lemma 4.1.
		 On the other hand the assumption ( f n, un) ∈ L∞(T3 × R3 × (0, T))× L∞(0, T; L2(T3)) 

together with the high-velocity cut-off function γε(v) implies that the drag forcing term 
in the fluid part belongs to L2(T3 × (0, T)) at least. Thus, by a standard existence theory 
of incompressible Navier–Stokes equations with a mollified convection term [30], we can 
obtain the global-in-time existence and uniqueness of solution un+1

ε  solving the fluid part 
in (4.1) with the regularity mentioned in proposition 4.1.

	(2) Uniform bound estimates in n: We now prove the uniform-in-n bounds in proposition 
4.1.

	 •	�Estimate of ‖f n
ε (t)‖L∞: Integrating (4.6) along the characteristic defined in (4.7), we get 

the mild form:

f n+1
ε (x, v, t) = e2tf0,ε(Zn+1

ε (0)) +
∫ t

0
e2(t−s)M( f n

ε )
(
Zn+1
ε (s), s

)
ds.� (4.8)

		 Then, lemma 2.2 gives

‖f n+1
ε (t)‖L∞ � ‖f0,ε‖L∞e2T + e2T

∫ t

0
‖M( f n

ε )(s)‖L∞ ds

� CT‖f0,ε‖L∞ + CT

∫ t

0
‖f n

ε (s)‖L∞ ds.

		 Therefore, by Gronwall’s inequality, we have

sup
0�t�T

‖f n
ε (t)‖L∞ � CT‖f0,ε‖L∞ for n � 1.� (4.9)

	 •	�Estimate of ‖un
ε(t)‖L∞(0,T:L2) and ‖∂tun

ε(t)‖L2(0,T:L2): Multiplying (4.1) by un+1
ε  and inte-

grating it over T3 gives
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1
2

d
dt

∫

T3
|un+1

ε |2 dx + µ

∫

T3
|∇un+1

ε |2 dx = −
∫

T3×R3
γε(v)(un

ε − v) f n
ε · un+1

ε dxdv

� (4.10)
		 due to

∫

T3
∇xpεun+1

ε dx = −
∫

T3
pε∇x · un+1

ε dx = 0,

		 and
∫

T3
(ηε � un+1

ε ) · ∇xun+1
ε · un+1

ε dx = 0.

		 On the other hand, the term on the right hand side of (4.10) can be estimated as
∣∣∣∣
∫

T3×R3
γε(v)(un

ε − v) f n
ε · un+1

ε dxdv
∣∣∣∣ � Cε‖f n

ε ‖L∞
(
1 + ‖un

ε‖2
L2 + ‖un+1

ε ‖2
L2

)

� CT ,ε
(
1 + ‖un

ε‖2
L2 + ‖un+1

ε ‖2
L2

)
,

		 thanks to (4.9) and the cut-off function γε. Thus we have

1
2

d
dt
‖un+1

ε ‖2
L2 + µ‖∇un+1

ε ‖2
L2 � CT ,ε

(
1 + ‖un

ε‖2
L2 + ‖un+1

ε ‖2
L2

)
,

		 and this gives the uniform bound of un
ε in L∞(0, T; L2(T3)) ∩ L2(0, T; H1(T3)). Now we 

turn to the estimate of ‖∂tun
ε(t)‖L2(0,T:L2). For this, we multiply (4.1) by ∂tun

ε(t), integrate 
over x, and use a similar argument as above to derive

∫

T3
|∂tun+1

ε |2 dx +
µ

2
d
dt

∫

T3
|∇xun+1

ε |2 dx = −
∫

T3×R3
γε(v)(un

ε − v) f n
ε · ∂tun+1

ε dxdv

� Cε‖∂tun+1
ε ‖L2

� Cε +
1
2
‖∂tun+1

ε ‖2
L2 .

		 Integrating the above inequality with respect to time, we obtain

‖∂tun+1
ε ‖2

L2(0,T;L2) + µ‖∇xun+1
ε ‖2

L∞(0,T;L2) � CεT + µ‖∇xu0,ε‖2
L2 ,

		 which gives ‖∂tun+1
ε ‖L2(0,T;L2) � C(ε).

	 •	�Estimate of ‖f n
ε ‖L∞(0,T;L∞

q ) + ‖∇x,vf n
ε ‖L∞(0,T;L∞

q ): Let us take CT ,ε > 0 such that

e2T

ε3/2

∫ T

0
‖η‖L2‖un

ε‖L2 dτ � CT ,ε.

		 Note that the constant above CT ,ε does not depend on n due to the uniform bound estimate 
of un

ε in the previous part. Then it follows from (4.4) that

|Vn+1
ε (t)| � |v| − e2T

ε3/2

∫ T

0
‖η‖L2‖un

ε‖L2 dτ � |v| − CT ,ε,

		 that is,

1 + CT ,ε + |Vn+1
ε (t)| � 1 + |v| for n � 1 and 0 � t � T .

		 Using the above estimate, we find
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f0,ε(Zn+1
ε (0)) = f0,ε(Zn+1

ε (0))(1 + CT ,ε + |Vn+1
ε (0)|)q(1 + CT ,ε + |Vn+1

ε (0)|)−q

� CT ,ε,q‖f0,ε‖L∞
q
(1 + |v|)−q,

for 0 < q < ∞. Similarly, with the aid of lemma 2.2, we estimate

M( f n
ε )(Z

n+1
ε (τ), τ) � M( f n

ε )(Z
n+1
ε (τ), τ)(1 + CT ,ε + |Vn+1

ε (τ)|)q(1 + CT ,ε + |Vn+1
ε (τ)|)−q

� CT ,ε,q‖M( f n
ε )‖L∞

q
(1 + |v|)−q

� CT ,ε,q‖f n
ε ‖L∞

q
(1 + |v|)−q.

		 Combining all the above estimate, we have

|f n+1
ε (x, v, t)| � CT ,ε,q‖f0,ε‖L∞

q
(1 + |v|)−q + CT ,ε,q

∫ t

0
‖f n

ε (s)‖L∞
q
(1 + |v|)−qds.

		 This readily gives

‖f n+1
ε (t)‖L∞

q
� CT ,ε,q‖f0,ε‖L∞

q
+ CT ,ε,q

∫ t

0
‖f n

ε (s)‖L∞
q

ds.� (4.11)

		 We next estimate the first-order derivative for f n+1
ε . Note that the estimate in lemma 4.1 is 

now uniform in n due to the uniform bound estimate of un
ε in L∞(0, T; L2(T3)). This and 

using the similar argument as the above yield

|∇x,vf n+1
ε (x, v, t)|
� e2t|∇x,vf0,ε(Zn+1

ε (0))||∇x,vZn+1
ε (0)|

+

∫ t

0
e2(t−s)|∇x,vM( f n

ε )
(
Zn+1
ε (s), s

)
||∇x,vZn+1

ε (s)| ds

� CT ,ε‖∇x,vf0,ε‖L∞
q
(1 + |v|)−q + CT ,ε

∫ t

0
‖∇x,vM( f n

ε )‖L∞
q
(1 + |v|)−q ds

� CT ,ε‖∇x,vf0,ε‖L∞
q
(1 + |v|)−q + CT ,ε

∫ t

0

(
‖f n

ε ‖L∞
q

+ ‖∇x,vf n
ε ‖L∞

q

)
(1 + |v|)−q ds.

		 Hence we obtain

‖∇x,vf n+1
ε ‖L∞

q
� CT ,ε‖∇x,vf0,ε‖L∞

q
+ CT ,ε

∫ t

0

(
‖f n

ε ‖L∞
q

+ ‖∇x,vf n
ε ‖L∞

q

)
ds.

� (4.12)
		 Combining (4.11) and (4.12), we have

‖f n+1
ε (t)‖L∞

q
+ ‖∇x,vf n+1

ε (t)‖L∞
q

� CT ,ε

(
‖f0,ε‖L∞

q
+ ‖∇x,vf0,ε‖L∞

q

)
+ CT ,ε

∫ t

0

(
‖f n

ε ‖L∞
q

+ ‖∇x,vf n
ε ‖L∞

q

)
ds,

		 which yields the desired result.
	 •	�Estimates of macroscopic fields of f n

ε : We show that macroscopic fields of f  satisfy 
ρf n

ε
+ |Uf n

ε
|+ Tf n

ε
< CT ,ε and ρf n

ε
, Tf n

ε
> CT ,ε for some positive constant CT ,ε. For this, we 

take into account the integration of (4.8) and recall how we regularized f 0 to see
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∫

R3
f n
ε (x, v, t) dv � e2t

∫

R3
f0(Zn

ε(0)) dv �
∫

R3
εe−|Vn

ε(0)|2 dv

�
∫

R3
εe−CT ,ε(1+|v|)2

dv � CT ,ε,
� (4.13)

		 where we used (4.5) together with the uniform estimate of un
ε. This gives the lower bound 

for ρf n
ε
. Then, the lower bound for Tf n

ε
 follows directly from lemma 2.1. The upper bounds 

can be obtained by exactly the same manner as in [38].� □ 

4.1.  Proof of proposition 3.1. (1)

We are now ready to prove the existence and uniqueness of ( fε, uε) stated in proposition 3.1. 
(1). We split the proof into five steps as follows.

	Step A.- Cauchy estimate for f n:	� It follows from (4.8) that

f n+1
ε (x, v, t)− f n

ε (x, v, t) =
∫ t

0
e2(t−s) (M( f n

ε )
(
Zn+1
ε (s), s

)
−M( f n−1

ε ) (Zn
ε(s), s)

)
ds

=

∫ t

0
e2(t−s) (M( f n

ε )
(
Zn+1
ε (s), s

)
−M( f n

ε ) (Z
n
ε(s), s)

)
ds

+

∫ t

0
e2(t−s) (M( f n

ε ) (Z
n
ε(s), s)−M( f n−1

ε ) (Zn
ε(s), s)

)
ds

=: I1 + I2,

I1 can be estimate as follows.

I1 =

∫ t

0
e2(t−s)∇x,vM( f n

ε )
(
αZn+1

ε (s) + (1 − α)Zn
ε(s), s

)
· (Zn+1

ε (s)− Zn
ε(s)) ds

� CT ,ε

∫ t

0
‖∇x,vM( f n

ε )‖L∞
q
|Zn+1

ε (s)− Zn
ε(s)| ds(1 + |v|)−q

� CT ,ε(1 + |v|)−q
∫ t

0

(
‖f n

ε (s)‖L∞
q

+ ‖∇x,vf n
ε (s)‖L∞

q

)
|Zn+1

ε (s)− Zn
ε(s)| ds.

For I2, we define ρn
ε, Un

ε, Tn
ε to be the macroscopic fields constructed from f n

ε , and recall from 
(4.11) and (4.13) that

‖f n
ε ‖L∞

q
� CT ,ε and ρn

ε > CT ,ε.� (4.14)

These estimates, together with lemma 2.1 gives the lower bound of Tn
ε independent of n:

Tn
ε � CT ,ε.� (4.15)

We can also derive from (4.14) the upper bounds for the regularized macroscopic fields:
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ρn
ε =

∫

R3
f n
ε dv � C‖f n

ε ‖L∞
q

� CT ,ε,

|Un
ε| =

1
ρn
ε

∣∣∣∣
∫

R3
f n
ε v dv

∣∣∣∣ �
C
ρn
ε

‖f n
ε ‖L∞

q
� CT ,ε,

Tn
ε =

1
ρn
ε

∫

R3
f n
ε |v|2 dv − 1

ρn
ε

∣∣∣∣
∫

R3
f n
ε v dv

∣∣∣∣
2

�
C
ρn
ε

‖f n
ε ‖L∞

q
+

C
ρn
ε

‖f n
ε ‖2

L∞
q

� CT ,ε.

� (4.16)
Estimates (4.14), (4.15), (4.16) show that f n

ε  and its macroscopic fields (ρn
ε, Un

ε, Tn
ε) satisfy the 

assumptions of lemma 2.4. Therefore, we have from lemma 2.4:

I2 � CT ,ε(1 + |v|)−q
∫ t

0
‖( f n

ε − f n−1
ε )(s)‖L∞

q
ds.� (4.17)

Here we used lemma 2.4 and the similar argument as in the proof of proposition 4.1. This 
yields

‖( f n+1
ε − f n

ε )(t)‖L∞
q

� CT ,ε

∫ t

0
‖( f n

ε − f n−1
ε )(s)‖L∞

q
ds + CT ,ε

∫ t

0
|Zn+1

ε (s)− Zn
ε(s)| ds.

		 Step B.- Cauchy estimate for the characteristic Zn+1
ε :	� We first find from (4.7) that

|Xn+1
ε (s)− Xn

ε(s)| �
∫ t

s
|Vn+1

ε (τ)− Vn
ε(τ)| dτ .

We next estimate the characteristic for velocity as

|Vn+1
ε (s)− Vn

ε(s)| �
∫ t

s
eτ−s

∣∣ηε � un
ε(X

n+1
ε (τ), τ)− ηε � un

ε(X
n
ε(τ), τ)

∣∣ dτ

+

∫ t

s
eτ−s

∣∣ηε � un
ε(X

n
ε(τ), τ)− ηε � un−1

ε (Xn
ε(τ), τ)

∣∣ dτ

� CT ,ε

∫ t

s
‖∇ηε‖L2‖un

ε‖L2 |Xn+1
ε (τ)− Xn

ε(τ)|dτ

+ CT

∫ T

0
‖ηε‖L2‖(un

ε − un−1
ε )(τ)‖L2 dτ

� CT ,ε

∫ T

0
|Xn+1

ε (τ)− Xn
ε(τ)|+ ‖(un

ε − un−1
ε )(τ)‖L2 dτ ,

where we used the uniform bound estimate of ‖un
ε‖L∞(0,T;L2) in n. Thus we have

|Zn+1
ε (s)− Zn

ε(s)| � CT ,ε

∫ T

0
|Zn+1

ε (τ)− Zn
ε(τ)| dτ + CT ,ε

∫ T

0
‖(un

ε − un−1
ε )(τ)‖L2 dτ .

	Step C.- Cauchy estimate for the fluid velocity un:	 For notational simplicity, we set 
wn+1
ε := un+1

ε − un
ε. Then it follows from (4.1)2 that wn+1 satisfies

∂twn+1
ε + (ηε � wn+1

ε ) · ∇xun+1
ε + (ηε � un

ε) · ∇xwn+1
ε +∇x( pn+1

ε − pn
ε)− µ∆xwn+1

ε

= −
∫

R3
γε(v)wn

εf n
ε dv −

∫

R3
γε(v)(un−1

ε − v)( f n
ε − f n−1

ε ) dv
� (4.18)
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and ∇x · wn+1
ε = 0. Multiplying (4.18) by wn+1

ε  and integrating it over T3 gives

1
2

d
dt
‖wn+1

ε ‖2
L2 + µ‖∇xwn+1

ε ‖2
L2

= −
∫

T3
(ηε � wn+1

ε ) · ∇xun+1
ε · wn+1

ε dx −
∫

T3×R3
γε(v)wn

ε · wn+1
ε f n

ε dxdv

−
∫

T3×R3
γε(v)(un−1

ε − v) · wn+1
ε ( f n

ε − f n−1
ε ) dxdv

=: J1 + J2 + J3,

thanks to
∫

T3
(ηε � un

ε) · ∇xwn+1
ε · wn+1

ε dx = 0.

We then estimate Ji(i  =  1,2,3) as

J1 =

∫

T3
(∇xηε � wn+1

ε ) · wn+1
ε · un+1

ε dx +
∫

T3
(ηε � wn+1

ε ) · ∇xwn+1
ε · un+1

ε dx

� Cε‖un+1
ε ‖L2‖wn+1

ε ‖2
L2 + Cε‖un+1

ε ‖L2‖wn+1
ε ‖L2‖∇xwn+1

ε ‖L2 ,

J2 � Cε‖f n
ε ‖L∞‖wn

ε‖L2‖wn+1
ε ‖L2 ,

J3 � Cε(1 + ‖un−1
ε ‖L2)‖wn+1

ε ‖L2‖f n
ε − f n−1

ε ‖L∞ .

Hence, together with the uniform bound estimate of ( f n
ε , un

ε) in n and Young’s inequlity, we get

J1 + J2 + J3 � Cε‖wn+1
ε ‖2

L2 + Cε‖wn+1
ε ‖L2‖∇xwn+1

ε ‖L2

+ Cε‖wn
ε‖L2‖wn+1

ε ‖L2 + Cε‖wn+1
ε ‖L2‖f n

ε − f n−1
ε ‖L∞

� Cε

(
‖wn

ε‖2
L2 + ‖wn+1

ε ‖2
L2 + ‖f n

ε − f n−1
ε ‖2

L∞

)
,

so that

d
dt
‖wn+1

ε ‖2
L2 + µ‖∇xwn+1

ε ‖2
L2 � Cε

(
‖wn

ε‖2
L2 + ‖wn+1

ε ‖2
L2 + ‖f n

ε − f n−1
ε ‖2

L∞

)
.

	Step D.- Cauchy estimate for ( f n
ε , un

ε, Zn
ε)n∈N: Combining the estimates in previous steps, we 

have for all 0 � t < T

‖f n+1
ε (t)− f n

ε (t)‖L∞
q

+ ‖Zn+1
ε (t)− Zn

ε(t)‖L∞ + ‖un+1
ε (t)− un

ε(t)‖L2

� CT ,ε

∫ T

0
‖f n

ε (τ)− f n−1
ε (τ)‖L∞

q
+ ‖Zn+1

ε (τ)− Zn
ε(τ)‖L∞ + ‖un

ε(τ)− un−1
ε (τ)‖L2 dτ ,

from which we can conclude that( f n
ε , un

ε)n∈N is a Cauchy sequence in 
L∞(0, T; L∞

q (T3 × R3)))× L∞(0, T; L2(T3)). Therefore, for a fixed ε > 0, there exist lim-
iting functions fε, uε, Zε such that

sup
0�t�T

(
‖f n

ε (t)− fε(t)‖L∞
q

+ ‖Zn
ε(t)− Zε(t)‖L∞ + ‖un

ε(t)− uε(t)‖L2

)
→ 0

� (4.19)
as n → ∞.
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	Step E.- ( fε, uε, Zε)n∈N solve the regularized system (3.1):	� Now we will show that

‖M( f n
ε )−M( fε)‖L∞

q
→ 0,

which, combined with the standard argument as in [4], leads to the conclusion that ( fε, Zε, uε) 
solve the regularized system (3.1).
For this, we note from (4.19) the assumption q  >  5 that, for φ(v) = 1, v, |v|2

∣∣∣∣
∫

R3
f n
εφ(v) dv −

∫

R3
fεφ(v) dv

∣∣∣∣ �
∫

R3
|f n
ε − f ||φ(v)| dv

� ‖f n
ε − fε‖L∞

q

∫

R3

|φ(v)|
(1 + |v|)q dv

� C‖f n
ε − fε‖L∞

q
→ 0.

Therefore, we have

ρn
ε → ρε,

ρn
εUn

ε → ρεUε,

ρn
ε|Un

ε|2 + 3ρn
εTn

ε → ρε|Uε|2 + 3ρεTε

uniformly in x and t. Here (ρε, Uε, Tε) represent the macroscopic fields constructed from fε. 
Then, since we have ρn

ε > CT ,ε from (4.13), this yields

ρn
ε → ρε, Un

ε → Uε, Tn
ε → Tε uniformly in x, t.

Now, recall that we proved in Step A that f n
ε  and its macroscopic fields (ρn

ε, Un
ε, Tn

ε) satisfy the 
assumptions of lemma 2.4. Thus, the convergence of f n

ε  in ‖ · ‖L∞
q

 and the uniform convergence 
of (ρn

ε, Un
ε, Tn

ε) to (ρε, Uε, Tε) imply that fε and (ρε, Uε, Tε) also satisfy the assumptions of 
lemma 2.4. Therefore, we conclude from lemma 2.4 and (4.19) that

‖M( f n
ε )−M( fε)‖L∞

q
� CT ,ε‖f n

ε − fε‖L∞
q

→ 0.

		 This completes the proof.

5.  Proof of proposition 3.1. (2): uniform-in-ε estimates on ( fε, uε)

In this section, we establish several uniform-in-ε estimates for ( fε, uε) given in proposition 
3.1. (2). For notational simplicity, we drop the subscript f  in ρfε , Ufε, and Tfε when there is no 
confusion, i.e. we denote by ρε := ρfε, Uε := Ufε, and Tε := Tfε.

	 •	Uniform bounds of the total energy: A straightforward computation yields from (3.1)1 
that

d
dt

M2fε + 2M2fε � 2
∫

T3
|ηε � uε(x, t)|m1fε dx.

		 This, together with lemma 2.5; m1fε � C(m2fε)4/5, Minkowski’s inequality; 
‖ηε � uε(t)‖L5 � C‖uε(t)‖L5, the uniform bound estimate of ‖fε‖L∞ in proposition 4.1, 
(see also Remark 4.2), and Hölder inequality gives

d
dt

M2fε + 2M2fε � ‖ηε � uε(t)‖L5‖m1fε(t)‖L5/4 � C‖uε(t)‖L5(M2fε)4/5.� (5.1)

Y-P Choi and S-B Yun﻿Nonlinearity 33 (2020) 1925



1942

		 Applying Gronwall’s inequality, we obtain

M2fε(t) � C
(
(M2f0,ε)

1/5 +

∫ t

0
‖uε(s)‖L5 ds

)5

� C
(

1 +

∫ t

0
‖uε(s)‖L5 ds

)5

,

� (5.2)

		 due to M2f0,ε � CM2f0, where C  >  0 is independent of ε. We next turn to the uniform 
estimate of the fluid velocity. For this, we multiply (3.1)2 by uε, integrate over x to get

1
2

d
dt
‖uε‖2

L2 + µ‖∇xuε‖2
L2 = −

∫

T3×R3
fεuε · (uε − v)γε(v) dxdv

= −
∫

T3×R3
fε|uε|2γε(v) dxdv +

∫

T3×R3
fεuε · vγε(v) dxdv

�
∫

T3
|uε|m1fε dx.

		 Then, by using the argument in (5.1) and (5.2), we can bound the last term as
∫

T3
|uε|m1fε dx � ‖uε‖L5‖m1fε‖L5/4

� C‖uε(t)‖L5(M2fε)4/5

� C‖uε‖L5

(
1 +

∫ t

0
‖uε(s)‖L5 ds

)4

� C‖uε‖H1

(
1 +

(∫ t

0
‖uε(s)‖2

H1 ds
)1/2

)4

,

�

(5.3)

		 where we used the Sobolev embedding L5(T3) ↪→ H1(T3) in the last line. We then use the 
Young’s inequality to proceed

∫

T3
|uε|m1fε dx

�
µ

2
‖uε‖2

H1 + C

(
1 +

(∫ t

0
‖uε(s)‖2

H1 ds
)1/2

)8

� C + C‖uε‖2
L2 +

µ

2
‖∇xuε‖2

L2 + C
(∫ t

0
‖uε(s)‖2

L2 ds
)4

+ C
(∫ t

0
‖∇xuε(s)‖2

L2 ds
)4

� C + C‖uε‖2
L2 +

µ

2
‖∇xuε‖2

L2 + C
∫ t

0
‖uε(s)‖8

L2 ds + C
(∫ t

0
‖∇xuε(s)‖2

L2 ds
)4

.

		 In the last line, we used Hölder inequlity:

∫ t

0
‖uε(s)‖2

L2 ds � CT

(∫ t

0
‖uε(s)‖8

L2 ds
)1/4

.

		 Therefore, we have

1
2

d
dt
‖uε‖2

L2 + µ‖∇xuε‖2
L2

� C + C‖uε‖2
L2 +

µ

2
‖∇xuε‖2

L2 + C
∫ t

0
‖uε(s)‖8

L2 ds + C
(∫ t

0
‖∇xuε(s)‖2

L2 ds
)4

.
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		 Integrating the above inequality over the time interval [0, t], we find

‖uε‖2
L2 + µ

∫ t

0
‖∇xuε(s)‖2

L2 ds � ‖u0,ε‖2
L2 + C + C

∫ t

0
‖uε(s)‖2

L2 ds + C
∫ t

0
‖uε(s)‖8

L2 ds

+ C
∫ t

0

(∫ s

0
‖∇xuε(τ)‖2

L2 dτ
)4

ds.

		 We then apply the Gronwall’s inequality to obtain that there exists a 0 < T∗ � T  such that

‖uε(t)‖2
L2 +

∫ t

0
‖∇xuε(s)‖2

L2 ds � C for 0 � t � T∗,� (5.4)

		 due to ‖u0,ε‖L2 � C‖u0‖L2, where C  >  0 is independent of ε. We also combine (5.2) and 
(5.4) to have

M2fε(t) � C for 0 � t � T∗,� (5.5)

		 where C  >  0 is independent of ε.
	 •	Uniform bound of ‖(ηε � uε − v)(1 + |v|) fε‖L1: We divide the integral as

‖(ηε � uε − v)(1 + |v|) fε‖L1

=

∫ T∗

0

∫

T3×R3
|(ηε � uε − v)|fε dxdvdt +

∫ T∗

0

∫

T3×R3
|(ηε � uε − v)||v|fε dxdvdt

=: I1 + I2,

		 and estimate I1 and I2 separately. For the estimate of I1, we first note that

I1 �
∫ T∗

0

∫

T3
|ηε � uε|ρε dxdt +

∫ T∗

0

∫

T3
m1fε dxdt

�
∫ T∗

0
‖uε(t)‖L5/2‖ρε(t)‖L5/3 dt + C

∫ T∗

0
‖m1fε‖L5/4 dt,

		 where the second term on the right hand side of the above inequality can be uniformly 
bounded as

‖m1fε‖L5/4 �

(
1 +

∫ t

0
‖uε(s)‖L5 ds

)4

� C

(
1 +

(∫ t

0
‖uε(s)‖2

H1 ds
)1/2

)4

� C for t ∈ (0, T∗),

		 by using the same argument as in the estimate of the total energy. For the first term, 
we use lemma 2.5; m0fε � C(m1fε)3/4 to get ‖ρε‖L5/3 � C‖m1fε‖3/4

L5/4, where C  >  0 is 

independent of ε. A similar argument as in the previous estimate then yields
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∫ T∗

0
‖uε(t)‖L5/2‖ρε(t)‖L5/3 dt

� C
∫ T∗

0
‖uε(t)‖L5/2‖m1fε(t)‖3/4

L5/4 dt

� C
∫ T∗

0
‖uε(t)‖H1

(
1 +

∫ t

0
‖uε(s)‖H1 ds

)3

dt

� C
∫ T∗

0
‖uε(t)‖H1 dt + C

∫ T∗

0
‖uε(t)‖H1

(∫ t

0
‖uε(s)‖2

H1 ds
)3/2

dt

� C
∫ T∗

0
‖uε(t)‖H1 dt

� C
(∫ T∗

0
‖uε(t)‖2

H1 dt
)1/2

� C,

		 for 0 � t � T∗, where C  >  0 is independent of ε due to (5.4). For I2, we decompose 
similarly as

I2 �
∫ T∗

0

∫

T3
|ηε � uε|m1fε dxdt +

∫ T∗

0
M2fε dt.

		 The uniform boundedness of the second term on the right hand side is obtained in (5.5). 
The computation for the first term is treated in (5.3). This concludes the desired result.

	 •	Uniform bound of third moment: We adopt the argument from [6, 37], unlike in [6, 37], 
we show that the third moment is controlled by the kinetic-fluid mixed estimate due to the 
presence of the drag force term. We multiply (3.1) by

Φ(x, v) =
(1 + |v|2)1/2x · v
(1 + |x|2)1/2

		 and integrate on T3 × R3 × [0, T∗] to get

−
∫ T∗

0

∫

T3×R3
v · ∇xfεΦ dxdvdt =

∫ T∗

0

∫

T3×R3
∂tfεΦ dxdvdt

+

∫ T∗

0

∫

T3×R3
∇v ·

{(
ηε � uε − v

)
fε
}
Φ dxdvdt

−
∫ T∗

0

∫

T3×R3
{M( fε)− fε}Φ dxdvdt.

		 We denote the left hand side by L and the three terms on the right hand side by Ri(i  =  1, 
2, 3).

	� �The estimate of L: By divergence theorem, we have
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L =

∫ T∗

0

∫

T3×R3
fεv · ∇xΦ dxdvdt

=

∫ T∗

0

∫

T3×R3
fε{v(1 + |v|2)1/2} · ∇x

{
x · v

(1 + |x|2)1/2

}
dxdvdt

=

∫ T∗

0

∫

T3×R3
fε{v(1 + |v|2)1/2} ·

{
v

(1 + |x|2)1/2 +
−x(x · v)

(1 + |x|2)3/2

}
dxdvdt

=

∫ T∗

0

∫

T3×R3
fε(1 + |v|2)1/2 ·

{
|v|2

(1 + |x|2)1/2 +
−(x · v)2

(1 + |x|2)3/2

}
dxdvdt

=

∫ T∗

0

∫

T3×R3
fε
|v|2(1 + |v|2)1/2

(1 + |x|2)1/2

{
1 − (x · v)2

(1 + |x|2)|v|2

}
dxdvdt.

		 On the other hand, we observe

1 − (x · v)2

(1 + |x|2)|v|2
� 1 − |x|2|v|2

(1 + |x|2)|v|2
=

1
1 + |x|2

� 1/4,

		 and

|v|2(1 + |v|2)1/2

(1 + |x|2)1/2 �
1
2
|v|3,

for (x, v) ∈ T3 × R3. This yields

L �
1
8

∫ T∗

0

∫

T3×R3
|v|3fε dxdvdt.

	�	� The estimate of R1: Since Φ does not depend on t, we can integrate in time as

R1 =

∫

T3×R3
( fε(T∗)− fε(0)) Φ dxdv

�
∫

T3×R3
( fε(T∗)− fε(0)) (1 + |v|2) dxdv

� C,

		 where we used Φ(x, v) � (1 + |v|2) for (x, v) ∈ T3 × R3 and (3.2), and the constant 
C  >  0 is independent of ε.

	�	� The estimate of R2: Using divergence theorem, we estimate

R2 =

∫ T∗

0

∫

T3×R3
∇v ·

{(
ηε � uε − v

)
fε
} (1 + |v|2)1/2x · v

(1 + |x|2)1/2 dxdvdt

= −
∫ T∗

0

∫

T3×R3

{(
ηε � uε − v

)
fε
}
· ∇v

{
(1 + |v|2)1/2x · v
(1 + |x|2)1/2

}
dxdvdt

= −
∫ T∗

0

∫

T3×R3

{(
ηε � uε − v

)
fε
}
(1 + |v|2)1/2

{
v{x · v}+ x(1 + |v|2)
(1 + |v|2)(1 + |x|2)1/2

}
dxdvdt.

		 Note that
∣∣∣∣

v{x · v}+ x(1 + |v|2)
(1 + |v|2)(1 + |x|2)1/2

∣∣∣∣ � 2 for (x, v) ∈ T3 × R3,
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		 which gives

|R2| � 2
∫ T∗

0

∫

T3×R3
|ηε � uε − v|fε(1 + |v|) dxdvdt = 2‖(ηε � uε − v)(1 + |v|) fε‖L1 � C,

where we used (3.3).
	� �The estimate of R3: A straightforward computation gives

R3 �
∫ T∗

0

∫

T3×R3

{
M( fε) + fε

}
(1 + |v|2) dxdvdt

= 2
∫ T∗

0

∫

T3×R3
fε(1 + |v|2) dxdvdt

� Cf0,u0,T∗ .

		  Combining all these estimates, we obtain

∫ T∗

0

∫

T3×R3
fε|v|3 dxdvdt � Cf0,u0,T∗ .

	•Uniform bound of entropy: Multiply (3.1)1 by ln fε and integrate with respect to x and 
v to get

d
dt

∫

T3×R3
fε ln fε dxdv +

∫

T3×R3
(v · ∇xfε) ln fε dxdv +

∫

T3×R3
∇v · ((ηε � uε − v) fε) ln fε dxdv

=

∫

T3×R3
(M( fε)− fε) ln fε dxdv.

		 The second term on the left hand side vanishes due to the divergence theorem. Using 
divergence theorem and integration by parts, we can estimate the third term on the left 
hand side as

∫

T3×R3
∇v · ((ηε � uε − v) fε) ln fε dxdv = −

∫

T3×R3
(ηε � uε − v)∇vfε dxdv

= −3
∫

T3×R3
fε dxdv.

Since the local Maxwellian shares the same moments up to second order with fε, we get
∫

T3×R3
{M( fε)− fε} lnM( fε) dxdv =

∫

T3×R3
{M( fε)− fε}

{
ln

ρε√
(2πTε)3

− |v − Uε|2

2Tε

}
dxdv

= 0,

which immediately gives
∫

T3×R3
{M( fε)− fε} ln fε dxdv = −

∫

T3×R3
{M( fε)− fε} {lnM( fε)− ln fε} dxdv � 0.

Thus, we obtain

d
dt

∫

T3×R3
fε ln fε dxdv − 3

∫

T3×R3
fε dxdv = −

∫

T3×R3
{M( fε)− fε} (lnM( fε)− ln fε) dxdv.
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Integrating in time, we get
∫

T3×R3
fε(t) ln fε(t) dxdv +

∫ t

0

∫

T3×R3
{M( fε)− fε} (lnM( fε)− ln fε) dxdvds

�
∫

T3×R3
f0,ε ln f0,ε dxdv + 3M0f0T for t ∈ (0, T).

Then, it is standard to show that (see for example, [11, 21])

sup
0�t�T

∫

T3×R3
fε(t)| ln fε(t)| dxdv � C( f0, T).

This completes the proof.

6.  Global existence of weak solutions

6.1.  Weak compactness of fε and M( fε)

In this part, we use the uniform estimates in ε obtained in the previous subsection to derive 
compactness of ( fε, uε) and the relaxation operators.

We have derived in the previous section that there exists a constant C, independent of ε 
such that

∫ T∗

0

∫

T3×R3
(1 + |v|3 + | ln fε|) fε dxdvdt � C.

Dunford–Pettis theorem then implies that fε, fεv and fε|v|2 are weakly compact in 
L1(T3 × R3 × (0, T∗)). To derive the weak compactness of M( fε), we compute for R  >  1

M( f )− f =
{
M( f )− f

}
1M( f )<Rf +

{
M( f )− f

}
1M( f )�Rf

� (R − 1) f 1M( f )<Rf +
1

lnR

(
M( f )− f

)(
lnM( f )− ln f

)
1M( f )�Rf ,

so that

M( f ) � Rf +
1

lnR

(
M( f )− f

)(
lnM( f )− ln f

)
.

Now, we take an arbitrary measurable set Bx,v ⊆ T3 × R3 and integrate over Bx,v × [0, T∗] to 
get
∫ T∗

0

∫

Bx,v

M( f ) dxdvdt

� R
∫ T∗

0

∫

Bx,v

f dxdvdt +
1

lnR

∫ T∗

0

∫

Bx,v

(
M( f )− f

)(
lnM( f )− ln f

)
dvdxdt

� R
∫ T∗

0

∫

Bx,v

f dxdvdt +
1

lnR

∫ T∗

0

∫

T3×R3

(
M( f )− f

)(
lnM( f )− ln f

)
dvdxdt

� R
∫ T∗

0

∫

Bx,v

f dxdvdt +
1

lnR

(∫

T3×R3
f0 ln f0 dxdv + 3M0f0T

)

� R
∫ T∗

0

∫

Bx,v

f dxdvdt +
1

lnR

(∫

T3×R3
f0| ln f0|dxdv + Cf0,T

)
.
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Then, Dunford–Pettis theorem again gives the weak compactness of M( f ) in 
L1(T3 × R3 × (0, T∗)).

6.2.  Strong compactness of ρε, Uε and Tε

From the argument in the previous section, we see that there exists f ∈ L1(T3 × R3 × (0, T∗)) 
such that fε, fεv, fε|v|2 converge to f , fv , f |v|2 weakly in L1(T3 × R3 × (0, T∗)) respectively, 
which also implies

ρε =

∫

R3
fε dv ⇀

∫

R3
f dv = ρ, ρεUε =

∫

R3
vfε dv ⇀

∫

R3
vf dv = ρU,

and

3ρεTε + ρε|Uε|2 =

∫

R3
fε|v|2dv ⇀

∫

R3
f |v|2dv = 3ρT + ρ|U|2

in L1(T3 × (0, T∗)). Thanks to the velocity averaging lemma [26], the above convergence 
actually is strong, which gives the almost everywhere convergence of the macroscopic fields:

ρε → ρ a.e on T3 × [0, T∗], Uε → U a.e on E, and Tε → T a.e on E,
� (6.1)

where

E = {(x, t) ∈ T3 × (0, T∗) | ρ(x, t) �= 0}.

Next, we need to show that M( fε) converges weakly in L1 to M( f ).

6.3.  M( fε) converges to M( f ) in L1(T3 × R3 × (0, T∗))

Since (6.1) implies

M(ρε, Uε, Tε)ϕ → M(ρ, U, T)ϕ a.e on E × R3

for any non-negative L∞ function ϕ, we have from Fatou’s lemma that
∫

E×R3
M(ρ, U, T)ϕ dxdvdt � lim

ε→0

∫

E×R3
M(ρε, Uε, Tε)ϕ dxdvdt.

On the other hand, from the weak L1 compactness of M( fε), we can find a L1 function M 
such that

lim
ε→0

∫

E×R3
M(ρε, Uε, Tε)ϕ dxdvdt =

∫

E×R3
Mϕ dxdvdt.

Thus we obtain
∫

E×R3
M(ρ, U, T)ϕ dxdvdt �

∫

E×R3
Mϕ dxdvdt,

for all ϕ ∈ L∞(T3 × R3 × (0, T∗)), from which we can conclude that

M(ρ, U, T) � M� (6.2)
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almost everywhere on E × R3. Now, taking ϕ = 1, we find
∫

E×R3
M dxdvdt = lim

ε→0

∫

E×R3
M(ρε, Uε, Tε) dxdvdt

= lim
ε→0

∫

E
ρε dxdt

=

∫

E
ρ dxdt

=

∫

E×R3
M(ρ, U, T) dxdvdt.

This, together with (6.2) implies M(ρ, U, T) = M  almost everywhere on E. On the other 
hand, we observe

∣∣∣∣limε→0

∫

Ec×R3
Mεϕ dxdvdt

∣∣∣∣ � lim
ε→0

∫

Ec×R3
Mε|ϕ| dxdvdt

� lim
ε→0

‖ϕ‖L∞

∫

Ec×R3
Mε dxdvdt

= lim
ε→0

‖ϕ‖L∞

∫

Ec
ρε dxdt

= ‖ϕ‖L∞

∫

Ec
ρ dxdt

= 0.

Hence we obtain

lim
ε→0

∫

Ec×R3
M dxdvdt = 0.

In conclusion, we have

lim
ε→0

∫ T∗

0

∫

T3×R3
M( fε)ϕ dxdvdt = lim

ε→0

∫

E×R3
M( fε)ϕ dxdvdt + lim

ε→0

∫

Ec×R3
M( fε)ϕ dxdvdt

=

∫

E×R3
M( f )ϕ dxdvdt + 0

=

∫ T∗

0

∫

T3×R3
M( f )ϕ dxdvdt.

This provides the desired result.

6.4.  Compactness of uε in L2(0, T∗; L2(T3))

In this subsection, we show that uε is compact in L2(0, T∗; L2(T3)). For this, we are going 
to show that ∂tuε is uniformly bounded in L3/2(0, T∗;V ′) so that we can employ the Aubin–
Lions lemma that guarantees the strong compactness [18, 47].

It follows from the weak formulation for the fluid part that for all ψ ∈ C1(T3 × [0, T∗]) 
with ∇x · ψ = 0 for almost everywhere t
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∫ t

0

∫

T3
∂tuε · ψ dxds = −

∫ t

0

∫

T3
((ηε � uε) · ∇x) uε · ψ dxds − µ

∫ t

0

∫

T3
∇xuε : ∇xψ dxds

−
∫ t

0

∫

T3×R3
fε(uε − v)γε(v) · ψ dxdvds

=: J1 + J2 + J3.

Using the integration by parts together with the divergence free condition, we get

J1 =

∫ t

0

∫

T3
((ηε � uε) · ∇x)ψ · uε dxds.

By Hölder inequility, we have

|J1| �
∫ t

0
‖∇xψ‖L2‖|ηε � uε||uε|‖L2 ds.� (6.3)

Then, by Hölder inequality again,

‖ηε � uε||uε|‖L2 =

(∫

R3
|ηε � uε|2|uε|2dx

)1/2

�

(∫

R3
|ηε � uε|4dx

)1/4 (∫

R3
|uε|4dxdx

)1/4

� ‖uε‖2
L4

and Minkowski integral inequality,
(∫

R3
|ηε � uε|4dx

)1/4

� ‖uε‖L4 ,

we obtain from (6.3) that

|J1| �
∫ t

0
‖∇xψ‖L2‖uε‖2

L4 ds � ‖∇xψ‖L3(0,T∗;L2)‖uε‖2
L3(0,T∗;L4),� (6.4)

where ‖uε‖L3(0,T∗;L4) is uniformly bounded in ε due to the uniformly boundedness of uε in 
L∞(0, T∗; L2(T3)) ∩L2(0, T∗; H1(T3)) and the Sobolev embedding:

L∞(0, T∗; L2(T3)) ∩ L2(0, T∗; H1(T3)) ↪→ L3(0, T∗; L4(T3)).

Thus we obtain

ψ �→ −
∫ t

0

∫

T3
((ηε � uε) · ∇x) uε · ψ dxds

is bounded in L3/2(0, T∗;V ′). The estimate of J2 can be easily done as

|J2| � µ

∫ t

0
‖∇xuε‖L2‖∇xψ‖L2 ds � ‖∇xψ‖L3(0,T∗;L2)‖∇xuε‖L3/2(0,T∗;L2).

Thus it gives the same result as the above. Finally, we estimate J3 as
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|J3| �
∫ t

0

∫

T3×R3
fε (|uε|+ |v|) |ψ| dxdvds

�
∫ t

0
(‖uε‖L6‖ψ‖L6‖ρε‖L3/2 + ‖ψ‖L5‖m1fε‖L5/4) ds

� ‖uε‖L2(0,T∗;L6)‖ψ‖L2(0,T∗;L6)‖ρε‖L∞(0,T∗;L3/2) + ‖ψ‖L2(0,T∗;L5)‖m1fε‖L2(0,T∗;L5/4).

On the other hand, it follows from lemma 2.5; m0f � C‖fε‖L∞ (m2f )3/5 and Hölder inequality 
that

‖ρfε‖L3/2 � C
(∫

T3
(m2fε)9/10dx

)2/3

� C
(∫

T3

{
(m2fε)9/10

}10/9
dx
)9/10 (∫

T3
110dx

)1/10

� C (M2fε)
3/5 .

Thus we get the uniform boundedness of ‖ρfε‖L∞(0,T∗;L3/2) in ε. Similarly, we find

‖m1fε‖L5/4 � C(M2fε)4/5,

i.e. m1fε is uniformly bounded in L2(0, T∗; L5/4(T3)). Combined with the uniform bounded-
ness of ‖uε‖L2(0,T∗;L6) in ε, this yields

|J3| � C‖ψ‖L2(0,T∗;L6) � C‖ψ‖L2(0,T∗;H1).

Thus we obtain that ∂tuε is uniformly bounded in L3/2(0, T∗;V ′). Then, by Aubin–Lions 
lemma, we have the following strong convergences of uε:

uε → u in L2(0, T∗; L2(T3)), uε → u in C([0, T∗];V ′),

as ε → 0. These convergence together with the weak convergences allow us to pass to the limit 
to conclude the existence of weak solutions.

In order to extend that local-in-time weak solutions to the global ones, we give the fol-
lowing energy estimate showing the total energy of the system (1.1) is not increasing. Then, 
by using the same strategy based on the continuity argument as in [7, section 3.6], we have 
the global-in-time existence of weak solutions and complete the proof of theorem 1.3. Even 
though the proof of following lemma is almost same with [7, lemma 2], for the completeness 
and the readers’ convenience, we provide its details.

Lemma 6.1.  Let ( f , u) be the solutions to the system (1.1) obtained above. Then we have 
the following total energy estimate

1
2

M2f (t) +
1
2
‖u(t)‖2

L2 + µ

∫ t

0
‖∇u(s)‖2

L2 ds

+

∫ t

0

∫

T3×R3
f |u − v|2dxdvds �

1
2

M2f0 +
1
2
‖u0‖2

L2

for almost every t ∈ [0, T∗].
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Proof.  A straightforward computation yields

1
2

M2fε(t) +
1
2
‖uε(t)‖2

L2 + µ

∫ t

0
‖∇uε(s)‖2

L2 ds

+

∫ t

0

∫

T3×R3
fε|uε − v|2 dxdvds =

1
2

M2f ε0 +
1
2
‖uε

0‖2
L2 + Rε(t),

where the remnant Rε(t) is given by

Rε(t) =
∫ t

0

∫

T3×R3
fε|uε|2(1 − γε(v)) dxdvds −

∫ t

0

∫

T3×R3
fεuε · v(1 − γε(v)) dxdvds

+

∫ t

0

∫

T3×R3
fε(uε − ηε � uε) · v dxdvds

=: R1
ε + R2

ε + R3
ε.

We now show Rε(t) → 0 as ε → 0 uniformly in t ∈ [0, T∗].

	 •	�Estimate of R1
ε(t): Set hε(x, t) :=

∫
R3 fε(x, v, t)(1 − γε(v)) dv. Then we use lemma 2.5 to 

obtain

|R1
ε(t)| �

∫ t

0

∫

T3
|uε|2|hε|dxds �

∫ t

0
‖uε‖2

L6‖m0hε‖L3/2 ds

� C
∫ t

0
‖uε‖2

H1 |M3/2hε|3/2ds

� C‖M3/2hε‖3/2
L∞(0,T∗;L3/2)

‖uε‖2
L2(0,T∗;H1).

		 On the other hand, we find

|M3/2hε(t)| �
∫

T3×R3
|v|3/2fε(1 − γε)dxdv

�
∫

T3×{v:|v|� 1
2ε}

|v|3/2fεdxdv

�
√

2ε
∫

T3×R3
|v|2fεdxdv � C

√
ε.

		 Thus we have

|R1
ε(t)| � C

√
ε → 0 as ε → 0.

	 •	�Estimate of R2
ε(t): Taking a similar argument as the above, we get

|R2
ε(t)| �

∫ t

0

∫

T3
|uε||m1hε|dxds �

∫ t

0
‖uε‖L6‖m1hε‖L6/5 ds

�
∫ t

0
‖uε‖H1 |M9/5hε|5/6ds

�
√

T‖uε‖L2(0,T∗;H1)‖M9/5hε‖5/6
L∞(0,T∗;L5/3)

� Cε1/5 → 0 as ε → 0,

		 where we used
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|M9/5hε(t)| �
∫

T3×{v:|v|� 1
2ε}

|v|9/5fε dxdv � (2ε)1/5M2fε(t) � Cε1/5.

	 •	�Estimate of R3
ε(t): We again divide it into two terms R3,i

ε,δ , i = 1, 2 as follows.

R3
ε(t) =

∫ t

0

∫

T3×R3
fε(uε − ηε � uε) · v(1 − γδ(v)) dxdvds

+

∫ t

0

∫

T3×R3
fε(uε − ηε � uε) · vγδ(v) dxdvds

=: R3,1
ε,δ(t) + R3,2

ε,δ(t),

		 for any δ > 0. First, we easily find that |R3,1
ε,δ(t)| � Cδ1/5 → 0 as δ → 0 uniformly in ε 

using the same argument as the above. For the estimate R3,2
ε,δ , we use the uniform bound 

estimate of fε in L∞(T3 × R3 × (0, T∗)) to get

|R3,2
ε,δ(t)| �

∫ t

0

∫

T3×{v:|v|� 1
δ }

|uε − ηε � uε||fε||v|dxdvds � Cδ‖fε‖L∞‖uε − ηε � uε‖L1(0,T∗;L1).

		 Then since uε → u in L2(0, T∗; L2
loc(T3)) we obtain

|R3,2
ε,δ(t)| → 0 as ε → 0.

		 Thus we first let ε → 0 to have |R1
ε(t)|+ |R2

ε(t)|+ |R3
ε(t)| � Cδ1/5 for all δ > 0, and then 

let δ → 0 to have Rε → 0 as ε → 0 uniformly in t ∈ [0, T∗]. We next use the weak−� 
convergence of fε in L∞(T3 × R3 × (0, T∗)) to get

M2f (t) � lim inf
ε→0

M2fε(t) for almost every t ∈ [0, T∗].

		 Using that idea together with the strong convergence of uε in L2(T3 × (0, T∗)), we can 

also deal with the terms 
∫ t

0

∫
T3×R3 fε|uε − v|2 dxdvds, ‖uε‖L2(T3), and 

∫ t
0 ‖∇xuε(s)‖2

L2 ds. 

This completes the proof.� □ 
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