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Abstract
In this paper we consider the Dirac equation in curved spacetime which has a line element given
by ( ( )) ( )a q q f= + - - -ds U r dt dr r d r d1 sin2 2 2 2 2 2 2 2 2 2 with electromagnetic field

( ( ) ( ) )=mA V r cA r, , 0, 0r . We calculate the spinorial wave function and the energy spectrum of
the Dirac oscillator in the curved spacetime, and from this result, we are able to return the
solution in the flat spacetime. We consider two forms of symmetry in the coupling of the spin
1/2 particle with the electromagnetic field and curved spacetime: exact spin symmetry V(r)=U
(r) and pseudo-spin symmetry ( ) ( )= -V r U r .

Keywords: curved spacetime, dirac equation, dirac-oscillator, spin symmetry, pseudo-spin
symmetry

(Some figures may appear in colour only in the online journal)

1. Introduction

Oscillatory systems such as the harmonic oscillator arouse
much interest by the many possibilities of application in var-
ious branches of physics. In quantum mechanics, one of the
key and exactly solvable problems is the harmonic oscillator in
the non-relativistic regime, where we have the well-known
eigenenergies and eigenfunctions as in Thaller [1]. Gilbey and
Goodman [2] studied the forced harmonic oscillator and,
Pedrosa and Guedes [3] investigated the harmonic oscillator
with mass and frequency depending on time. In view of the
well-established theory of the harmonic oscillator in the non-
relativistic regime, the need to investigate this system in the
relativistic regime arose, and in 1967 Itô and Carriere [4] stu-
died for the first time the Dirac oscillator. Later on, in the 1989
Moshinsky and Szczepaniak [5] solved Dirac equation for the
relativistic harmonic oscillator using the minimum substitution
method

  
wb -p p im r . Other studies have emerged as

well, such as Bentez and Salas-Brito [6] that studied the hidden
supersymmetry of a relativistic oscillator, and Villalba [7] who
solved the two-dimensional oscillator. Nouicer [8] obtained an
exact solution for the one-dimensional Dirac oscillator in the

presence of minimal lengths. Boumali and Chetouani [9] that
get exact solutions of the Dirac oscillator in Kemmer equation
for spin-1 particles; and de Lima Rodriguez [10] that get a new
representation for the Dirac oscillator based on the Clifford
algebra. Based on this, interest arises in solving the Dirac
oscillator in curved spacetime using exact spin and exact
pseudo-spin symmetry approach [11], which have already been
studied in the relativistic regime in flat spacetime by Ginocchio
[12] and Lisboa and Fiolhais [13] respectively, as well as the
way to obtain such oscillatory systems through geometry in
curved spacetime.

The pseudo-spin symmetry is commonly related in
nuclear physics to certain aspects of exotic and deformed
nuclei [14, 15] and it is characterized by quasi-degeneracy
between doublet single-particle states ( )= +n l j l, , 1 2 and
( )- + = +n l j l1, 2, 3 2 , where n, l and j are the radial,
the orbital and the total angular momentum quantum num-
bers, respectively. In this symmetry the angular momentum is
written as pseudo-angular momentum ˜ = +l l 1 and pseudo-
spin ˜ = =s s 1 2 [16]. The spin and pseudo-spin symmetries
are relationship between the scalar U(r) and vectorial V(r)
potentials as follows: (i) spin symmetry ( ) ( )D = -r U r

( ) =V r constant, when Δ(r)=0 we have exact spin sym-
metry and (ii) pseudo-spin symmetry ( ) ( ) ( )S = + =r U r V r
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constant, when Σ(r)=0 we have exact pseudo-spin sym-
metry. This approach has been applied in several works and we
can mention: Ginocchio [12] investigated the possibility of the
appearance of pseudospin symmetry in nuclei moving in a
relativistic mean field; Guo and Xu [17] that investigated
pseudo-spin symmetry in the relativistic harmonic oscillator;
Xu and Zhu [18] that investigated the pseudo-spin symmetry
and spin symmetry in the relativistic Woods-Saxon potential;
Alhaidari [19] that generalized spin and pseudo-spin sym-
metry; Liang and Zhou [20] that approach the recent progress
on the pseudo-spin and spin symmetry in various systems and
potentials, including extensions of the pseudo-spin symmetry
study from stable to exotic nuclei; and Gao and Zhang [21] that
calculated an approximate analytical solution of the Dirac-
Eckart problem with a Hulthén tensor interaction under the
condition of the pseudo-spin symmetry.

The theory of fermions in curved spacetime has already
been studied by Parker [22] and in references [23–30]. Such
studies in condensed matter and graphene bring possible
applications of fermions in curved spacetime as interpreta-
tions of topological defects as Bakke [31] which makes a
Kaluza-Klein description of the geometric phases in gra-
phene, Stagmann and Szpak [32] that compare two different
approaches to the electronic transport in deformed graphene:
the condensed matter approach and the general relativistic
approach in which classical trajectories of relativistic point
particles moving in a curved surface; Iorio [33] studied the
Hawking-Unruh phenomenon also in graphene; de Juan [34]
studied dislocations and twisting in graphene and related
systems; and, Minár ̌ [35] that show that a Dirac Hamiltonian
in a curved background spacetime can be interpreted as a
tight-binding Hamiltonian with non-unitary tunneling
amplitudes. There are also experimental studies such as
Louko [36] that examine the Unruh-DeWitt [37, 38] particle
detector coupled to a scalar field in an arbitrary Hadamard
state in four-dimensional curved spacetime. Boada [39] that
used cold atoms to produce an artificial gravitational field,
and fermions propagating in a curved spacetime could be
simulated in such a system. We propose in this paper is a
theoretical analysis of spin 1/2 fermions in curved space-
time using spin and pseudo-spin symmetry. In this way we
will use the Dirac equation with spherical symmetry in
curved spacetime given by,

( )( ) ( ) q q f= - - -ds e dt e dr r d r dsin , 1f r g r2 2 2 2 2 2 2 2 2 2

where f (r) and g(r) are arbitrary functions of the radial
coordinate r. Equation (1) has as special cases Schwarzs-
child [40], Reissner-Nordström [41] and anti de-Sitter [42]
metrics. Because of spherical symmetry in (1), the angular
component of the Dirac spinor will be given by the spherical
harmonic functions in the same way as systems with the
same symmetry in flat spacetime. So, what remains to be
solved are the radial equations from the separation of the
Dirac equation in curved spacetime. This is the main
objective of our work.

The paper is organized as follows, in section 2 we present
the Dirac equation in spherical coordinate in the curved
spacetime for a general metric and symmetric spherical
external electromagnetic field and solved the angular comp-
onent of the wave function. In sections 3 and 4 we solve the
Dirac oscillator system in curved spacetime with exact spin
and exact pseudo-spin symmetry, respectively. Finally, in
section 5 we have the conclusion.

2. Dirac equation in curved spacetime and exact
solution of angular equation

In this section we will briefly review the Dirac equation in
curved spacetime with external electromagnetic field, such as
the the angular component of spinor. Let the metric on curved
spacetime be (1) and consider the electromagnetic potential

( ( ) ( ) )=mA V r cA r, , 0, 0r . The Dirac equation in atomic
units (m=e=ÿ=1 and c=1/α ) is written as [26],

⎜ ⎟
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with a bg=i i. There are two ways of representing
equation (2): (i) using the diagonal gauge, where g =i

( )g g g, ,d d d
1 2 3 are the canonical Dirac matrices with the spinor

Ψ=Ψd, or (ii) using the Cartesian gauge with spinor Ψ=Ψc

and ( )g g g g= , ,i
c c c
1 2 3 , where

( )
( )

( )

g g f g f q g q

g g f g f q g q

g g f g f

= + +
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Henceforth we will write
⎛
⎝⎜

⎞
⎠⎟g g s

s
= =

-
0

0d
j j

j

j
, where

σ j are the Pauli matrices. These two representations are
related via similarity transformation S, namely, g g= -S Sc

i
d
i 1

e Y = YSc d. The matrix S is defined by,

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

f
g g

q
g g

g g g g g g

=

´ + + +
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exp
2

exp
2

1

2
. 4

1 2 3 1

4
2 1 1 3 3 2

Since we want to study spherically symmetric physical
systems one have to use the Dirac equation in the Cartesian
gauge, because this is the SO(3) representation, which con-
tains the symmetries we need to solve the angular equation of
the systems in function of the spherical harmonics. However,
in this gauge the Dirac equation is more complicated to work
with, so to avoid this we will use Ψd because the spinor in the
diagonal gauge is easier to work and with this we obtain the

2

Phys. Scr. 95 (2020) 055304 M D de Oliveira and A G M Schmidt



desired spinor in the Cartesian gauge through the relation
Y = YSc d. Using = ¶ ¶H id t in equation (2) we obtain
Hamiltonian in the diagonal gauge given by,
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Using (5) on eigenvalue problem ( ) ( )Y = YH c E cd d d

and applying a unitary transformation ( g g= + +D 14
2 1

)g g g g+ 21 3 3 2 , we will have ( ) ( )† Y = YD H c D D E c Dd d d

and effecting the transformation we obtain,
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with Y¢ = YD d. So †Y = Y¢Dd , thus ( )fg gY = exp 2c
1 2

( )qg g Y¢exp 23 1 . Then we can write the 4-component spinorial
wave function as,
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where l is the orbital angular momentum, l̃ is the pseudo-orbital
angular momentum and ∣ ∣

 j
m j

1 2 are the spinor functions given by
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with Ym
l spherical harmonics [43], and R1(r) and R2(r) must

satisfy,
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where = E c2 and ( )l =  +j 1 2 . Having determined the
angular wave function of the system, we must now solve the
radial differential equations, given by (9), for particle and anti-
particle, namely R1(r) and R2(r) respectively. As in [26] here we
will use f=g in (1) for the purely theoretical interest of ana-
lyzing Dirac fermions in this type of metric. There are few studies

devoted to this type of metric. On the other hand, there are works
with other types of combinations of f and g such as: (i) Laguna
and Celi [44] studied the case ¹f 0 and g=0; (ii) Sabín [45]
that proposed a quantum simulation using a system where f=0
and ¹g 0 ; and (iii) Lyu [46] studied a system where f=1/g.
We have to use ( )a= +e U r1f 2 in order to eliminate the
exponential for the sake of simplicity, because we want to ana-
lyze the system with exact spin and exact pseudo-spin symmetry
between scalar and electrostatic potentials U and V, respectively,
in curved spacetime. Thus, from (9) we have,
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considering ( ) ( ) ( )S = +r V r U r and ( ) ( ) ( )D = -r V r U r
we have,
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Thus, from equation (11) we obtain,
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we have two forms for solve (12), the first begins with,
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In this case, spin symmetry, we have

where l is the orbital angular momentum. The second
approach to solve (12) is to write R1 in terms of R2, namely,
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now, with pseudo-spin symmetry, we have
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where l̃ is the pseudo-orbital angular momentum. To solve
the radial equations for R1(r) and R2(r) we need to define the
functions V(r), U(r) and Ar(r). In next sections we will solve
the Dirac oscillator with exact spin and exact pseudo-spin
symmetry.

3. Dirac oscillator with exact spin symmetry in
curved spacetime

The first application we will analyze is the relativistic harmonic
oscillator by minimum substitution Ar=ω r with exact spin
symmetry. Thus we have ( ) ( ) ( )D = S =r r V r0, 2 , and we
will consider the quadratic radial potential ( ) m=V r r2, where μ
and ω are real constants. As a result from (14) we obtain,
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where b a ml w= +2 is coupling constant of the effective
tensor potential. Replacing x=δ r2 with ( )d b m= + + 2 1 ,2
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Such ordinary differential equation (20) has already been
solved by Maghsoodi and Zarrinkamar [47] using the Nikiforov-
Uvarov method [48], so we have
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In order to calculate the eigenenergies we use (23) and one
must solve the fourth-order equation,

( )m+ - + =  a b c2 2 0, 274 2 2

where ( ) ( )a b l a l= - + - = + +a b n1 1 2 , 2 2 3 22 2

and ( )b m= - +c a b 22 2 2 . So as to obtain the roots of (27)we
use the so-called Ferrari’s solution [49] which yields,
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where m is given by,
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2

3 2 4 27

2 4 27
, 29

2 3
1 3

2 3
1 3

with m= - + - = - -p a ac b q a c2 27 2 3 2, 33 2 4 2 .
However, the correct physical interpretation of the system
imposes that when μ=0 the system takes the well-known
flat spacetime [50] form. Therefore, ( )m = = 0

( )a w l+ + + +n l1 2 2 12 , so from (28) we note that only
two eigenenergies satisfy such condition, thus

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )

m
m= -  + - -  a

b

m
m am b m

2
2 2 .

30

nl

2
2 2

1 2

It is important to note that for each chosen value of the
parameters ω and μ we have a finite number for n in which the
eigenenergies (30) are real, consequently we will have a finite
number of square integrable spinors, and we have degeneracy
between doublets states, e.g., p0 1 2 and p0 3 2 when the coupling
constant β of the effective tensor potential vanishes. On the other
hand, when β is not zero there is no degeneracy. Finally, we
obtain the spinorial wave functions,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( ) ( )

( ) ( )

( )

∣ ∣

˜
∣ ∣q f

a m q f

q f
Y =

+ - 


r N

r

r

R r

iR r
, ,

1 ,

,
,

31

c nl
nl l

m j

nl l
m j

2 2 1 2 1

2

the normalization constant is calculated in appendix. The spi-
norial wave function in (31) can be written as Y =curved

( ) Y-gtt
flat1 4 where ( )a m= +g r1tt

2 2 2 is the first element of
the metric given in (32) andY flat is the spinorial wave function in
flat spacetime with effective mass ( ) a m= +m r r1 2 2 and
effective frequency δ.

In figure 1 we plot the normalized radial probability
density ∣ ∣Yc

2 for some values of the parameter μ, for
w = =j1, 1 2, using + and l > 0 in (15) with λ=l=1.

A physical interpretation of this problem in curved space-
time is that for m ¹ 0 the particle behaves as it had an effective
mass which depends on r, namely, ( ) a m= +m r r1 2 2. This
effect comes from the curvature of the space as well as from the
interaction with the electromagnetic field. So, it is more likely to
find the particle close to the origin as we can observe in figure 1.
Conversely, when μ=0 we return to the well-known flat
spacetime Dirac oscillator [50] without spin symmetry.

In summary, we calculated exactly the spinorial wave
function, equation (31), and the eigenenergies, equation (30)
of the relativistic harmonic oscillator in a curved spacetime
whose line element is,

( ) ( )
( )

a m q q f= + - - -ds r dt dr r d r d1 sin ,
32

2 2 2 2 2 2 2 2 2 2 2

where μ�0. The scalar curvature [40] of this problem is
given by,

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )a m
a m a m

=
+

+ -
+

R
r

r r r

8

1

2
1

1

1
, 33

4 2 2

2 2 4 2 2 2 2

so that in the limit of r 0 it implies that maR 4 2, i.e.,
the curvature is constant. On the other hand, when  ¥r it
implies that R 0, so we obtain a vanishing curvature which
means the spacetime is flat in this limit.

4. Exact pseudo-spin symmetry on the Dirac
oscillator into curved spacetime

In this section let us turn to the pseudo-spin symmetry.
Consider the relativistic harmonic oscillator again by mini-
mum substitution Ar=ω r, but now with ( )S =r 0,

( ) ( )D =r V r2 . Let the external potential be the quadratic
radial potential ( ) ( ) m= - =V r U r r2, where μ and ω are real

Figure 1. Plot of the probability density ∣ ∣Yc
2 in a curved space with

line element given by (1) for n=0. We plot the flat spacetime
probability density (μ=0), and as the parameter μ increases we
observe that the curves approach the origin. Since the problem can
also be interpreted as relativistic oscillator on flat spacetime with
position-dependent mass we observed that the probability density
becomes higher in the region close to origin because of
effective mass.
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constants. As a result of (17) we obtain,

⎡
⎣⎢

⎤
⎦⎥

( ) { ( )}

( ) ( )

l l
b m

b l
a

-
-

- - -

- + +
-

=





d

dr r
r

R

1
2 1

1 2
1

0, 34

2

2 2
2 2

2

2 2

where b w a ml= - 2 is coupling constant of the effective
tensor potential. Replacing g=x r2 with ( )g b m= - - 2 1 ,2

( ) ˜(˜ )l l - = +l l1 1 and ( )= -R x G x2
1 4 in (34) we obtain,

⎡
⎣⎢

⎧⎨⎩
⎫⎬⎭
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⎫⎬⎭

⎤
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˜(˜ )

( ) ( )
da
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d

-
+

-

+
-

-
+

- =


d

dx

l l

x

x
G

1

4

3

16

1

1

4

1 2

4

1 1

4
0. 35

2

2 2

2

2

As in the previous case we solve (35) using (22). One
easily identifies ( ) ( ) ( ) ( )da b l g= - - + =A B1 4 1 2 4 ,2 2

˜(˜ )- + +l l 1 4 3 16 and = -C 1 4, so we obtain,

⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )(˜ ) ˜= -+ -G x x

x
L xexp

2
, 36l

n
l1 2 2 1 2

using notation ˜=R R
nl2
2 and ˜=R R

nl1
1 from now on, we obtain,

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )˜

˜ ˜g
g

g= - -R r r
r

L rexp
2

, 37
nl

l
n
l2

2
1 2 2

and using (16) we write ˜R
nl
1 ,

⎡
⎣⎢
⎧⎨⎩

⎫⎬⎭
⎛
⎝⎜

⎞
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( )
˜

( ) ( )

( )]( ) ( )

˜
˜

˜ ˜

a l
g b g

g g g
g

=
-

-
+ -

- -

-

+


R r

l

r
r L r

rL r r
r

1

2 exp
2

. 38

nl n
l

n
l l

1 1 2 2

1 2 2
2

Again, using (23) we obtain same fourth order algebraic
equation given in (27) for the eigenenergies, with = - -a 1

( ) ( ˜ )a b l a+ = + +b n l1 2 , 2 2 3 22 2 and = -c a2

( )b m-b 22 2 . Therefore the eigenenergies will be given by the
same fourth-degree polynomial of the previous case, but the
values of a, b and c are different, so the eigenenergies satisfying
the condition ( ) ( ˜ )m a w l= = + + + + n l0 1 2 2 22

will be

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )

˜
m

m= -  + - -  a
b

m
m am b m

2
2 2 ,

39

nl

2
2 2

1 2

where m is given by (29). Again for each chosen value of the
parameters ω and μ we have a finite number for n in which the
eigenenergies in (39) are real, consequently we will have a finite
number of square integrable spinors. Here we have degeneracy

between doublet states, for instance s1 1 2 and d0 3 2, when the
coupling constant β of the effective tensor potential vanishes.
Conversely, when β is not zero we have no degeneracy. Finally,
we write the spinorial wave function,

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( ) ( ) ( )

( ) ( )

( )

˜
˜

∣ ∣

˜ ˜
∣ ∣

q f
a m q f

q f
Y =

- - 


r N

r

r

R r

iR r
, ,

1 ,

,
,

40

c nl
nl l

m j

nl l
m j

2 2 1 2 1

2

with ˜ = +l l 1. As in the previous case the spinorial wave
function in (40) can be written as ( )Y = Y-gcurved

tt
flat1 4 where

( )a m= -g r1tt
2 2 2 is the first element of the metric given in

(41) andY flat is the spinorial wave function in flat spacetime with
effective mass ( ) a m= -m r r1 2 2 and effective frequency γ. In
figure 2 we plot some of these probability densities for m ¹ 0
and μ=0 , when ω=1 and λ<0 in (18)with ˜l = - = -l 1.
In the present case the particle effective is ( ) a m= -m r r1 2 2,
and the coupling with both curved spacetime and electromagnetic
field does probability density confining itself close to the origin,
as we can observe in figure 2. In the special case of μ=0 we
obtain the Dirac oscillator in flat spacetime without pseudo-spin
symmetry.

In summary, we exactly calculated the spinorial wave
function, equation (40), and eigenenergies, equation (39), of
the relativistic harmonic oscillator on curved spacetime whose
metric is

( ) ( )
( )

a m q q f= - - - -ds r dt dr r d r d1 sin ,
41

2 2 2 2 2 2 2 2 2 2 2

where μ�0. The scalar curvature [40] of this problem is
given by,

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( )a m
a m a m

=
-

+ -
-

R
r

r r r

8

1

2
1

1

1
, 42

4 2 2

2 2 4 2 2 2 2

Figure 2. Plot of the probability density ∣ ∣Yc
2 in a curved space with

line element given by (1) for n=0. We plot the flat spacetime
probability density (μ=0), and as the parameter μ increases we
observe that the curves approach the origin. Since the problem again
can also be interpreted as relativistic oscillator on flat spacetime with
position-dependent mass we observed that, the probability density
becomes higher in the region where the particle gets more massive.
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so in the limit of r 0 we have ma -R 4 2, i.e., the cur-
vature is negative and constant. When  ¥r it implies

R 0, so we obtain a vanishing curvature, thus the space-
time is flat in this limit.

5. Conclusion

We studied the Dirac oscillator in this work by the method of
minimum substitution with external electromagnetic field given
by ( )m w=mA r c r, , 0, 02 in a curved spacetime with =ds2

( ( ))( )a q q f+ - - -U r dt dr r d r d1 sin2 2 2 2 2 2 2 2. We apply
two different metrics: in the first case ( ) m=U r r2 and in the
second case ( ) m= -U r r2, so that with these couplings two
symmetries appeared: exact spin and exact pseudo-spin. We
solved the Dirac equation for two cases so that for the exact spin
symmetry comes up an effective mass ( ) a m= +m r r1 2 2 and
effective frequency δ, and for exact pseudo-spin symmetry the
effective mass and frequency is ( ) a m= -m r r1 2 2 and γ,
respectively. In both cases, the probability densities are confined
close to the origin for m ¹ 0. Another interesting fact is that we
were able to write the spinors in curved spacetime as the product
of the first element of the metric with the spinor in flat spacetime
with effective mass and frequency as follows: Y =curved

( ) Y-gtt
flat1 4 . The metric element gtt is often related to the Fermi

velocity, which is proportional to ( )gtt
1 2 and also in optical

metric where the refraction index of light is equal to ( )gtt
1 2. In

both cases with spin and pseudo-spin symmetry, an effective
tensor potential emerged that broke the degenerescence between
the double states, thus breaking both symmetries. In the limit of
b  0, the degeneracy of doubled states returned, as for
example, in states p0 1 2 and p0 3 2 for spin symmetry and s1 1 2

and d0 3 2 for pseudo-spin symmetry.
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Appendix

A.1. Calculation of the normalization constants

Let us calculate explicitly the normalization constants
for the spinor wave functions we studied in the previous
sections. The normalization condition for each system is

given by,

∣ ( )∣ ( ( ))

( )
ò ò ò q f a

q q f

Y +

´ =

p p¥
r r U r

drd d

, , 1

sin 1. 43

c
0 0 0

2
2 2 2 2

Since the integrals over θ and f are already normalized
we impose,

(∣ ∣ ∣ ∣ )( ( )) ( )ò a+ + =
¥

N R R U r dr1 1, 442

0
1

2
2

2 2

where N must be calculated. For the Dirac oscillator with
exact spin symmetry in section (III), the normalization con-
stant is,
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and for the Dirac oscillator with exact pseudo-spin symmetry
in section (IV), the normalization constant is,
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In both cases In is defined as,
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taking x=sr2 and using the associated Laguerre polynomial
identity [51],
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perusal of reference [51] yields,
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