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Abstract

CrossMark

This research paper elucidates solitary, compacton, and peakon computational solutions, and
numerical solutions of the nonlinear fractional Kolmogorov—Petrovskii—Piskunov (FKPP)

equation that belongs to the class of reaction—diffusion equation. This equation describes the
behavior of genetic models in the increase of microorganisms. Usually, it is used as a biological
model to investigate the microbiological densities in bacteria cells as a result of diffusion
mechanisms in terms of space-time. The present framework depends on applying the modified
Khater method to the FKPP equation to extract the computational solutions then using these
solutions to get necessary boundary conditions to implement the numerical B—spline schemes on
the suggested equation. The reliability and accuracy of the computational method and solutions
are verified by using numerical simulations. For more explanation of the obtained analytical
solutions, some sketches are plotted in different types. Also, the comparison between the distinct

types of obtained solutions is shown by calculating the absolute value of error.

Keywords: the nonlinear fractional kolmogorov—petrovskii—piskunov (FKPP) equation,
fractional calculus, fractional nonlinear partial differential equation, modified khater method,

septic b—spline scheme, computational & numerical solutions

(Some figures may appear in colour only in the online journal)

1. Introduction

Biomathematics is one of the newest exciting fields that use
mathematical models to illustrate and investigate biological
phenomena. The function and structure of the natural system
components are studied in isolation by using modern exper-
imental biology. Collecting the data from the biological
experiment allows formulating the mathematical models of
these phenomena. The dynamic of these models represents the
system’s components, structure, and processes of their interac-
tions. These mathematical models are essential tools to simulate
and analysis these biological phenomena to extend the biolo-
gical theory that enables new hypotheses or experiments. Many
information and quantitative answers are obtained by for-
mulating these phenomena in mathematical equations such as

0031-8949,/20,/055213+-14$33.00

the decline in sea turtle populations, predict the outcome
accurately before action is taken, and so on [1, 2].

Recently, many Mathematicians and physicists are
interested in studying the bacteria cell’s properties where all
animal life on Earth depends on it. They use theoretical
analysis, mathematical models, and abstractions of the living
organisms to analyze their structure, development, and
behaviour. Bacteria poses a large domain of prokaryotic
microorganisms. The general properties of it are few micro-
meters in length and ranging from spheres to rods and spirals.
It is considered as the first life forms on the Earth and usually
lives in the radioactive waste, the deep portions of Earth’s
crust, soil, water, radioactive waste, and acidic hot springs.
Just 27% of bacteria cell can be grown in the laboratory where
there are [5 x 103°] bacteria on Earth, so you can imagine the

© 2020 IOP Publishing Ltd  Printed in the UK
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Figure 1. Compacton wave of (10) in three, two-dimensional, and contour plots when [¢ = 0.5, « =3, 3=15,6 = —2J7. k=6, p =4,

oc=2,w=—2J21,0=1].

number of bacteria that can be grown in the laboratory. The
bacteriology is the scientific name of studying the bacteria
and its role in human life [3-5].

Fractional nonlinear evolution equations include systematic
memory effects and non-local through time derivatives and
fractional-order space that allows to formulate the phenomena
across multiple time and space scales such as biological, che-
mical, engineering, viscoelastic materials, and physical models.
These fractional models bases on the fractional derivatives can
limit or capture salient features of complex phenomena that
allow more investigation of these formulated mathematical
models. Many kind of fractional derivatives are formulated to
solve that kind of models such as Riemann-Liouville, Caputo,
and conformable fractional derivatives [6—8].

This research paper applies the modified Khater and B—
spline schemes to the nonlinear FKPP equation to find the
computational and numerical solutions. It is a quasilinear
parabolic one arising in the modeling of certain reaction—
diffusion processes in the theory of combustion, mathematical
biology, and other areas of natural sciences. This equation is
given in the following formula:

9M Aux,t) = F(H(x, 1)), (1)
ot
where x = (x1, xp, ..., X,,) is a point of space R", t € R, n > 1,
A =9} + 05 + 03+ ... +9? is the laplacian in 93", and the
right-hand side f € C'([0, 1]) is positive on the interval (0, 1)
and satisfies the conditions

f(0) =f(1) =0, Eg:=f'(0) > 0;

moreover, f(§) < Eg & for £ € (0, 1). Using the following
wave transformation

Hx, 1) = M, 1), n(x, 1) =@, 1) —wt,w>0,

coverts equation (1) that represents a stage of an uncompleted
process at which a particular form of initial data has not had a
noticeable effect on its steady—state behavior. substituting
E(&) = £ f(£9) into equation (1) leads to a generalized Fisher
equation that takes the following formula

2
CM M M- M =0, M e, 1),
dn dn

@)

The nonlinear KPP equation (the so—called intermediate
asymptotic regime) was derived by Kolmogorov, Petrovskii, and
Piskunov in 1937 has the following formula [9, 10]:

H, — Hox +pH+8H> + 0 H =0, 3)

where p, 0, pare arbitrary constants and H(x, r) designates
respectively, the state evolution over the spatial-temporal
domain distinguished by the x, ¢ coordinates. This equation is
used to analyze the distinct physical, chemical, and biological
models. Under specific conditions on the arbitrary constants, (3)
contains different form of nonlinear evolution equations such as:

* When [p = —1, 6 =0, ¢ = 1], equation (3) reduces to
be the Newll-Whitehead equation [11, 12].

e When [p=pu,b6=—(+ 1), o= 1], equation (3)
reduces to be the FitzHugh-Nagumo equation [13, 14].

e When[p=—1,6=1,0=0,(H; — Hex = H — H?1,
equation (3) reduces to be the Fisher equation [15, 16].

While, the nonlinear FKPP equation is formulated to
investigate the nonlocal property of the micro-morphogenesis
which has a vital role in the elementary phenomena of
contemporary microbiology[17-20].

D'H —Hox+pH+8H 4+ 0 H? =0, “

where 0 < ¥ < 1 and D is differential operator. Using the
next definition of the conformable derivative properties

[H =Hx,t) =HO),0 =kx + sz“] on equation (4),
leads to

WH —kH'+pH+6H>+ 0o H>=0. (5)
using the homogeneous balance rule on equation (5),
yields BN=N+2 — N=1].

This kind of model attracts the attention of the mathe-
maticians and physics, where they can use them to discover
more properties of them. In the context of the mathematical
view of this survey, many computational, semi—analytical,
and numerical schemes are derived to find distinct types of
solutions such as The variational iteration method (VIM.),
Adomian decomposition method, the generalized Kudryashov

method, Riccati equation method, (%)—expansion method,

Khater method, the modified Khater method (modified aux-
iliary equation method) and so on [21-35].
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The rest of this research paper is ordered in the following order: section 2 applies the modified Khater method [36-42], and B—
spline schemes [43-47] to the nonlinear FKPP equation. Moreover, the comparison between the computational and numerical
obtained solutions is explained, and some sketches are plotted to show more physical properties of this system. Section 3 discusses
the obtained computational results and explain the comparison between them and that obtained in previous work. Moreover, it show
the comparison between the obtained numerical results. Section 4 gives the conclusion of the whole research.

2. Computational and numerical solutions of the nonlinear FKPP equation

This section applies the computational and numerical schemes to the nonlinear FKPP equation to show more physical
properties of the model in the optical illusions field by explaining the behavior of the Langmuir waves in an ionized
plasma wave.

2.1. Solitary wave solutions

Implementation of the modified Khater method to the nonlinear FKPP equation, leads to derive the general form of solution of
equation (5) in the following formula

HD) = ZlN:] a;Ki9© 4 leil b, K190 4 g,
= aleO(a) “+ ap + b1K7 50(8), (6)

where ay, a;, b, are arbitrary constants and ¢(0) is the solution function of the following equation

pe B aK 90 4 gKe®©
©'(©) = , )
In(K)
where K, a, (3, o are arbitrary constants. Additionally, N is the value of the balance between the highest order derivative term
and nonlinear term. Substituting equation (6) along (7) into equation (5), yields a polynomial of Ko@), Gathering the
coefficients with the same power of K¢, leads to a system of algebraic equation. Solving this system by the Mathematica

11.2, yields
Family I
ko? 2 2 ko?
I~ \/g(—4ako + B% + 2p) ko2 a\/g(—4aka + 0% + 2p) + ﬁ&[!—}
by —0,w— ———— ,a; — ,ag — >
o % \/EUQ

5 — —\/5\/,_0(—404k0 + 3% + 2p), where o = 0 |.

Thus, the solitary wave solutions of the nonlinear FKPP equation are in the following formulas:
When 32 — 4ao < 0&o = 0

2
Hi(x, t) = \/51 X U\/g(74aka + 8% + 2p) + oJ4ao — (2 %
oo \

10 %2 [o(—4ako + B2 + 2p)
X tan %\/4aa — 3% kx — ¢ , 3)

ot

2
Hy(x, t) = ﬁ; X a\/g(74aka + % + 2p) + g\/4a0 — 32 k%
g0

1 /’“;—2 Jo(—4ako + % + 2p)
o’

X cot %«/40«7 — % kx —

€))
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When 32 — 4a0 > 0&o = 0

2
Ha(x, 1) = \/Elag X a\/g(—4aka + 8% + 2p) — 03 — dao %

£ /%2\/9(—404/«7 1 5% + 2p)

x tanh %,/ﬁz " oo |k — — , (10)
1 > > ko?
Hs(x, t) = X J\/p(—4ako + B% + 2p) — g\/ﬁ —4ao | —
«/Eag 4
10 % [o(—4ako + B% + 2p)
x coth %«/ﬁz — 4ao | kx — ? — (11)
When ao > 0&o = 0&a = 0&0 = 0
2
ko2 lﬂ@ [oQ2p — 4ako)
( — a ljtan «/OLO'[]CXT
Vo(p — 2ako
Hs(x, 1) = + , 12
5(x, 1) ; Nor: (12)
2
o2 17, % [o(2p — 4ako)
( 2k) \/50( 7C0t «/OZO'[]CX—T
N — 20ko
Hox, 1) = Y22 - . (13)
0 Jao
When ao < 0&o = 0&a = 0&8 = 0
2
o2 t"\/g [oQ2p — dako)
: — NEX ITtanh «/aa[kx -
N — 20ko
Holx, 1) = Y2 + : (14)
0 J=ao
2
o2 r"\/g 0Q2p — 4ako)
: o NEX [7 coth «/aa[kx -
N — 20ko
Hs(x, 1) = Al + ) (15)
) J=ao
When § = 0&a = —0o
¥ ok 2
f 202k 5 t - o@ak + 2p)
Hotx, 1) = YECOKTD 5 ok o — + kx|, (16)
1% %
When 3 =0 = k&a =0
o [k o (% +2p)
Jo(k%k + 2p) — g‘/% coth ;[/{kx - Jﬁﬂp]
Hio(x, 1) = a7

V20
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When o = 0&0 = 0&o = 0

2,
38 ko? : 1 + 1 + Vo Bk +2p)
4 [;?r" ko (032 + 20) 7 4
exp| —4—— — Brx| -2
ol 2
Hilx, t) = \/5 (18)
When = a = 0&o = 0
207
Hia(x, 1) = e — (19)
20 5ot — N2xdo " Jpe
When 3 = 0&a = o
m o 1% [0Q2p — 4a?k) [0~ 2070
Histr, 1) = V2|2 tan|c - V2 +oke| 4 YL 20)
0 v 0
When 32 — 4a0 = 0
JE 408+ 2 + Sao?
m N ¢ ‘ 7 11‘)\ % | o(~4ako + 32k + 2p) — kox)
32
Hialx, 1) = 2 5 d : Q1
Family 11
/%Jg(—wca T 6% + 2p) YT Bo| "% + aJo(—dako + F% + 2p)
a—0,w— b1 — , ag — - ,
« 4 \/5049
6 — —ﬁ\/g(—4aka + 8% + 2p), where a = 0.
Thus, the solitary wave solutions of the nonlinear FKPP equation are in the following formulas:
When 3% — 4a0 < 0&o = 0
—4ako + 3%k + 2 [a2
His(x, t)=£ X \/g( il P) + ak[ﬁ
2 o o o
- 2o , (22)
| t”,ﬁ [ o(—4ako + 3% +2p)
B — J4ao — (% tan JV4ao — 32 = — + kx
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“dako + %k + 2 a2
Hm(%ﬂ‘%x \/g( oko + 7 + p)+ 'k
% o

o |

) 40 . 3)
o [ [0 dako 1 5%+ 20)
8- mcot %m[ \/j ar ke
When 32 — 4a0 > 0&o = 0
Moy = Y2 | deChako + Bk +2p) ok | B
17\A > 2 4 g @
) i ’ (24)
8 + B — 4ac tanh gm[ a v o
a1y = 2 [ JoCtako + Bk +20) [k | g
18X, 2 o g @
) 4o r : @3
. | > t”, 2 & ! ’
6 + MCoth E ﬂ - 40&0’[ v + fox
When ag > 0&0 = 0&a = 0&3 = 0
— o r}%\/m
L e R
Jolp — 20k “
oot 1) — o(p ) + R (26)
4 Jee
1 [*% [0@p — dake)
ﬁa\/(ﬁzta“ W[FT ke
Jo(p — 2ako) ]
oot 1) = o(p ) + . 27
P ~Joo
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When ao < 0&o = 0&a = 0&3 = 0

v

lﬁ@ [o(2p — 4ako)
- 4 kx

«/5«/—040 % coth| v/—ao
— 2ok )
Hox, 1) = Yep — 20k : (28)

o o

ot

ﬁ«/—aa,lazk tanh «/—oza[
— 2ak )
Hap(x, t) = ¢p = 2aka) + . 29)
%

«

tﬁ@,/g(2p74ak0) kx]
_r- = +

When § = 0&a = —0o

9 [a%k 2
[ 0202k P tV |— ootk + 2p)
Hos(x, 1) = NoQaTk + p) + 2 /O‘_k tanh ¢ > + akx | (30)
4 4

Whenﬁ:%:n&g:()

K2k 4 \/y(h',zk +2p)
= + 1|+ —-—-
4 r‘gj;\ 02k +2p) 2
exp yf + rkx | =2
Hau(x, 1) = 7 31
When § = 0 = 0&a = 0
2a0

Has(x, 1) = = S (32)

O‘_zk 9 PO .
V2xd0 | , + 20 /pot

When 8 = 0&a = o

+ akx

9 a2k
2 19 |22 Jo2p — 4a%k)
Hoe(x, t) = J2 /a_k cot| C + ¢
4

Y

— 2
Jr\/@(p 2ak) 33)

4
When 0 = 0&3 = 0&a = 0
3 % |1 2 i Jo(B%+2p)
g1 a0 |97 [, 5% 1 2p) Q
a— Bexp ++ﬁkx

Hor(x, 1) = 34)

NG

When 32 — 4a0 = 0

1

2 x [2a04 o(—4ake + 5% + 2p)
ﬁg(ﬁt”\/";\/g(—4ako T Pk + 2p) + av(Bkx + 2))

H28(x$ t) =

2 2
+ B(=k)ot’(4ac — (%) a’k + 280 /ﬂ (pt” + 19)—|—aﬁkx19\/g(—4ozka + % + 2p)]. 35)
4 4
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2.2. Numerical simulations

This section studies the numerical solutions of equation (5) by applying the B—spline techniques that are considered as the most

accurate numerical tools to get this type of solutions. Using the computational solution of (5) with the following initial

conditions | Heyeer = l(—4)tanh 9), o= 37 a=2, ay=4,8=3,A=50c=1w= —311 allows applying the fol-
3 2 6336 2

lowing schemes, as follows:

2.2.1. Cubic-Spline. Based on the cubic B—spline, the suggested solution of the nonlinear KPP equation (5) is given by
n+1
HE@) = Y UiX, (36)

i=—1

where U;, N; fulfill the next conditions:

L 'H(0) = @(0;, H(0;))where (i = 0, 1,...,n)

and
(0 — 0i-2)°, 0 € [0i—2, 0;-1l,
—30 -0, +3h (@ —0,_)> +3h*O —di_) + 1, 0 €[Di_y, Dy,
N;(0) = o =301 — 01 +3h(Dis1 — 0 + 3k (01— 0) + A, D€ [D;, 0il, (37
(Oi42 — 0)%, 0 € [0i11, Oi42l,
0, otherwise,

where L is a linear operator, i € [—2, n + 2]. So that, the numerical formula of the solution is given as
Hi(©) = Ui-1 + 4 U; + Uip1. (38)

Substituting equation (38) into (5), leads to a system of equations. Solving this system of equations, gives the value of U;.
Replacing the values of U;, N; into equation (36), gives the following data that are shown in the next table 1

2.2.2. Quintic-spline. Based on the quintic B—spline, the suggested solution of the nonlinear KPP equation (5) is given by
n+1
H@) = ) UiN, (39)
i=—1

where U;, N; satisfies the following condition

L H(O) = @(0;, H(0;))where (i = 0, 1,...,n)

and
( @ — B3, d €[5 0 al,
(@ —3i—3)° — 6(3 — 9,-2)°, 0 € [0i—2, 0;-1l,
! (0 —0-3° — 6@ —09;-2)° + 15@ — 9;_)°, 0 € [0i—, D,
N;(0) = E‘ Qi3 — 0)° — 6(0i12 — 0)° + 15041 — 0)5, D € [D;, Dir1ls (40)

(0ix3 — 0)° — 6(Biy2 — 0)°, 0 € [0i41, Oiy2l,
(Bi+3 — 0)°, x € [Di12, Oiy3l,

L 0, otherwise,

where L is a linear operator, i € [—2, n + 2]. Hence, the numerical solution is formulated in the next form

vi(0) = Ui 2 + 260, 1 + 66 U; + 26 U;1 1 + Uipa. 41
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Figure 2. Peakon solitary wave of (11) in three, two-dimensional, and contour plots when [ = 0.5, « =3, 3=15,6 = 2J7. k=6,
p=40=2,w=-2J21, o=1].

Figure 3. Solitary wave of (21) in three, two-dimensional, and contour plots when [[3 =5 a=1,0= E]

Substituting equation (41) into equation (5), obtains a system of equations. Solving this system, leads to the value of U;.
Substituting the values of U;, N; into equation (39), obtains the following data in table 2

2.2.3. Septic-spline. Based on the septic B—spline, the suggested solution of the ordinary differential form of the nonlinear
KPP equation (5) is given as follow

n+1
H@) = ) UiX, (42)

i=—1
where U;, N; satisfies the next conditions

L 'H(0) = @(0;, H(x;))where (i = 0, 1,...,n)

and
( (0 — 0i—4), 0 € [0i4, 0;3],
(0 — 0i—4) — 8(0 — B;_3), 0 € [0;-3, 0;2],
(0 —3;—4) — 8(0 — B;—3) + 2830 — 9;_o), 0 € [0i—2, 0;-1l,
| (0 —0;—4) —8(0 — 0;_3)" +28(0 — 0;_») +56(0@ — 0;_)’, 3 € [0;_1, O,
N;(0) = 75 (Oiya — 0) — 8(0j13 — 0) + 28(0;12 — ) + 56(0;1 — 0), 0 € [0, Diyil, (43)

(Oiy4 — 0) — 8(0i3 — ) + 28(0;42 — O, 0 € [Dit1, Oival,
(Oiy4 — 0) — 8(0;13 — 0), 0 € [Di12, 0143l
(Bis4 — O, 0 € [0iy3, 014l

L 0, otherwise,
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Figure 4. Exact, numerical, and absolute value of error by using cubic B—spline scheme on equation (5) according to the shown values in

table 1.

value of J

4 Value of a

05
Value of &

Figure 5. Exact, numerical, and absolute value of error by using quintic B—spline scheme on equation (5) according to the shown values in

table 2.

where L is a linear operator, i € [—3, n 4+ 3]. Thus, the
approximate solution is given by

This method depends on auxiliary equation (7) that has a
general solutions which is given by

V,'(a) = 8573 + 120 6[72 + 1191 6,'71 + 2416 U,‘ + 1191 U,‘+1 + 120 U,‘+2 + U[+3.

Substituting equation (44) into equation (5), obtains a system
of equations. Solving this system, gives the following data
that are shown in the next table 3.

3. Result and discussion

This section is divided into two main parts. First, one is
studying the computational solution and make a comparison
between them and other obtained results in previous work.
While the second part is making a comparison between the
obtained numerical solutions in our paper to show and explain
which one of them is more accurate than the other.

1. Analytical solutions:
¢ The obtained solutions(8)—(35):

(44)

©(0)

J4ao — (2 tan (%(Cl log(K)y4ao — 32 + 6y4ao — [32)) —-B

20

log(K)

-1 L2y Y xa F 2yeln()a — ppt®

u(x, t)=—|p + 2 tanh
2y

10

. (45)

where ¢, is arbitrary constant. Thus, all other solutions
that are obtained and discussed in this paper are special
forms of solutions which got by putting special
conditions on equation (45). Moreover, we represent
the equivalence between modified Khater method and
some other recent methods.
* In [48] Hashemi et al, applied the simplest equation
method to equation (5) and they obtained many kind of
solutions. Comparison between our obtained solutions
and that obtained in [48], yields equivalence between
the following equation

(46)
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Figure 6. Exact, numerical, and absolute value of error by using septic B—spline scheme on equation (5) according to the shown values in

table 3.

0.000040
0.000035
0.0000307
0.0000257
0.000020

0.000015

0.000010

de UIS
walyeof

value of &

Figure 7. Comparison between the absolute value of error that obtained by each of B—spline schemes (cubic & quintic & septic).

. —p _ Nolp—2ako) —y [ 2kd?
and equation (14) When[27 =, = 'Taa a,

4

& =0 a0 _ ¥
0 ’ 2y 49k’ 4y a

. \/—aak(2p—4ak0)],

whileall other obtained solutions in our paper are different from
those obtained in [48]. That shows the superiority of our used
computational method in this paper, which obtains many
solutions and covers the solutions that can be obtained by other

methods.

* The superiority of the modified Khater method is
shown and discussed in detail in [36-42]. Now, we
give the headline of this superiority as following:

(a The(%)— expansion method:

We can see that our new method is exactly

!

same to the (%)- expansion method when

[aﬂo - (%) a=—puB=-\ o= 1].

But, the (%)—expansion method give only three

kinds of solutions (hyperbolic, parabolic and
rational ) while our new method gives thirty
different solutions.

(b) The ¢~ ¢ 9)- expansion method:

We can see how both equation are very closed
however Khater method take the general form of
exponential function of the (¢ %- expansion
method. But now, we will show how Khater
method is more general than the (79 9-

11

(e) The improved mn(

expansion method. Under specific condition which
is

[af© = ei0©) o=y o= —1, = —)\]
both method are similar but the e~ ¢ ) - expansion
method gives only five kind of solutions while our
new method gives thirty different solutions.

(¢c) The extended tanh-function method:

Both methods are so closed to each other
when [a/® =¢,a=b, 3=0,0=1]. But
the extended tanh-function method gives only
three kind of solutions while our new method
gives thirty different solutions.

(d) The Kudryashov and modified Kudryashov

methods:
both  methods are similar  when
[a/®©=¢,a=08=—0c=—In(@)]. But

the Kudryashov and modified Kudryashov
methods give four solutions at most while our
new method gives thirty different solutions and
also Kudryashov method obtain only solitary
wave solution and can not obtain elliptic
solutions whilst Khater method obtain both of
these solutions. That give another advantage of

Khater’s method about Kudryashov method.
(&

>)
We find both of methods are similar to each
other when [af(f) = tan(¢), a= (b + c),

) expansion method:

2
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Table 1. Exact, numerical, and absolute value of error by using cubic
B-spline scheme on equation (5).

Value of 8 Approxi. Sol. Com. Sol.  Absolute value of error

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

444089 x 1076
1.33455 x 1073
240574 x 107°
3.18056 x 1073
3.63691 x 1073
3.76505 x 107°
0.000 035 681
3.061 66 x 1073
227269 x 107°
123759 x 107°
222045 x 1071°

2.64575 2.64575
2.55923 2.55922
247315 247312
2.38791 2.387 87
2.30392 2.303 89
222158 222154
2.14122 2.141 18
2.063 16 2.06313
1.987 68 1.987 66
1.91501 1.915

1.845 34 1.845 34

Table 2. Exact, numerical, and absolute value of error by using
quintic B—spline scheme on equation (5).

Value of 8 Approxi. Sol. Com. Sol.  Absolute value of error

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

444089 x 1076
571978 x 107
1.28855 x 1078
1.726 11 x 1078
1.98253 x 1078
202479 x 1078
1.8733 x 1078
1.541 x 1078
1.08092 x 1078
441804 x 107°
4.44089 x 107'°

2.64575 2.64575
2.55922 2.55922
247312 247312
2.38787 2.387 87
2.303 89 2.303 89
222154 222154
2.14118 2.141 18
2.06313 2.06313
1.987 66 1.987 66
1.915 1.915
1.845 34 1.845 34

Table 3. Exact, numerical, and absolute value of error by using septic
B—spline scheme on equation (5).

Value of 8 Approxi. Sol. Com. Sol.  Absolute value of error

0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

2.64575 2.64575 4.44089 x 10716

2.55922 2.55922 1.11866 x 107!
247312 247312 2.28364 x 107!
2.38787 2.387 87 278315 x 107!
2.303 89 2.303 89 3.12879 x 107"
222154 222154 3.07567 x 107!
2.14118 2.141 18 279203 x 107!
2.063 13 2.063 13 222311 x 107!
1.987 66 1.987 66 1.60598 x 10~

1915 1.915 6.66134 x 10712

1.845 34 1.845 34 222045 x 1071°

B=a,0=(—>b)] but the improved

tan (%)-expansion method gives only Seventeen

solutions while our new method gives thirty
different solutions.

(f) The novel (%)- expansion method:

The novel (%I)— expansion method is one

of the methods which give many solutions like

khater method but khater method more power-
ful, effective, felicitous and fabulous method

than the novel (%)- expansion method and both

methods are similar to each other when
[@/© = (d + ¥(©), a = p,
B=Xo=w— 1]
(g) The improved (%)- expansion method:
Both methods are similar to each other
when

[ — I = — =
[a é+(g),a W, o 1, 3 O].

But the improved (%)- expansion method gives

only three kind of solutions while our new
method gives thirty different solutions.

* The relation between the used model and genetic
models is given in detail in [19, 49]

* Representation of the obtained solutions We obtained
some novel analytical solutions of the nonlinear FKPP
equation and the physical meaning of them is given in
the following form:

1 Equations (8), (9), (12), (13), (20), (22), (23), (26), (27)

are trigonometric solutions.

2 Equations (10), (14), (24), (29), (30) are compacton

hyperbolic solutions.

3 Equations (11), (15), (16), (16), (17), (25), (28) are

Peakon hyperbolic solutions.

4 Equations (18), (19), (21), 31), (33), (34), (32) are

rational solutions.

Now, we give the definition of some solutions for further
information about them

(a) Compacton:

In 1993, compacton waves were introduced
by Rosenau and Hyman and were defined as
solitons with finite wavelength or solitons free
of exponential tails. Compacton wave is a
solitary wave with the remarkable soliton
property with compact spatial support where
the nonlinear dispersion limits to a finite core
and also, keeps its property after colliding with
other compacton waves where it returns with the
same coherent shape.

(b) Peakons:

Peakon wave is a peaked solitary wave that
retain their speed and shape after interacting in
case of these solutions are smooth except for a
peak at a corner of its crest. It has a finite jump
in derivative of the solution H(x, t) where it is
the point at which spatial derivative changes
sign. In this text, you can see discontinuities in
the x—derivative in peakons waves, and at the
same time, there exist both one—sided deriva-
tives differ only by a sign.

2. Numerical solutions:
The comparison between these types of solution
depends on showing which one of the used schemes get
the smallest value of the absolute value of error. To



Phys. Scr. 95 (2020) 055213

M M A Khater et al

figure out these values, figure 7 shows the comparison
between the obtained value of the absolute value of
error in each used methods, explains the septic B—spline
scheme is the more accurate than the other types of B—
spline schemes for this model.

4. Conclusion

This article studied the computational and numerical solutions
of the nonlinear FKPP equation by applying the modified
Khater method, and B-spline schemes. The computational
solutions are successfully obtained, and some of them are
sketched to explain more physical properties of the model
(figures 1-3). Moreover, the obtained computational solutions
are used to find the approximate solutions by applying the B—
spline schemes (cubic & quintic & septic). The comparison
between the obtained distinct types of solutions is explained
and investigated to show the absolute value of error between
them and that is described in the shown (tables 1-3) and
(figures 4-7). The performance of both computational and
numerical schemes shows powerful, effective, and its ability
for applying to many and various forms of nonlinear evol-
ution equations.
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