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Abstract
A chain of harmonically interacting particles confined between two sinusoidal substrate
potentials has been analysed. When the top substrate is driven through an attached spring with a
constant velocity, the influence of the system parameters on the kinetic friction force was
examined in the system with commensurate substrates. It was shown that the friction reached its
maximum value when the equilibrium distance of the intermediate particles was an integer
multiple of the space period of the upper and lower substrate potentials, which led to the
maximum energy loss. This loss can be reduced by the increase of interparticle interaction of the
middle layer.
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1. Introduction

When two objects are sliding relative to each other, there is a
force between the contacts that blocks the sliding of the
objects. This force is called kinetic friction, and it is a leading
cause of the energy losses in the system. Understanding
friction in the microcosm and how to reduce energy losses are
the problems that have been attracting the interest of
researchers for years [1–3]. In the theoretical descriptions, the
Frenkel-Kontorova model best captures the essence of friction
phenomena [4–15].

The standard FK model, a chain of harmonically inter-
acting particles subjected to an external periodic substrate
potential, provides a good description of a ‘dry friction’
[3, 16, 17]. However, in the studies of friction phenomena,
particularly interesting are the three layer systems, which
contain a layer, the so called ‘third body or bodies’, between
the substrate potential and the chain. It acts like a lubricant
film, and it has been described as a series of atomic chains
confined between two substrate potentials by O M Braun et al
[3]. It was shown that when the upper substrate potential was
driven by a constant moving spring, the Golden mean

structure was more favourable to sliding than the Spiral mean
structure. The golden mean and the spiral mean structures: the
upper substrate potential period is c, the interatomic equili-
brium is b, the bottom substrate potential period is a; for
golden structure, =a b 233 144,/ / =c a 144 89;/ / for spiral
mean structure, =a b 351 265,/ / =c a 265 200./ / Kinetic
friction was studied intensively in incommensurate systems
[3], while on the other hand, three-layer models with com-
mensurate substrates were seldom studied.

In the present paper, we modelled a one-dimensional
system of two rigid sinusoidal substrates and a chain of
interacting particles embedded between them. We will
examine the influence of the lattice constant and the interac-
tion strength of the middle layer on the kinetic friction force
when the top substrate of mass M is driven by a constant
moving spring. In the examination of the lattice constant
dependence, the kinetic friction force decreases as the inter-
action strength increases while it oscillates with the lattice
constant. Dependence of the kinetic friction force on the
lattice constant and the interaction strength will be also
investigated. We will show that when the lattice constant is
taken near the positive integer, the kinetic friction force
reaches the maximum value.
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This paper is organized as follows. The model is intro-
duced in section 2. The numerical results are presented and
analyzed in section 3. The conclusion is given in section 4.

2. Model

In our study the friction phenomena, we will consider the
three-layer model, as shown in figure 1.

The middle layer consists of a chain of particles inter-
acting harmonically, while both the upper and lower layer are
rigid substrates. The upper layer is pulled by a spring with the
elastic constant Kext. The spring is connected to a stage that
moves with a velocity Vext. The dynamic is described by the
following system of equations:
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here, =x i N1, 2, 3, ...,i ( ) represents the coordinate of i-th
particles of the middle layer, while Xtop is the coordinate of
the particle in the upper substrate potential. The mass of the
particles of the rigid substrates and the middle layer are M
and m, respectively. The period of the substrate potentials are
equal, i.e., = =a c 1, where we use dimensionless units. In
the equations (1) and (2), the damping force is described by
the terms with damping coefficient g(in this system, we
choose g = 0.2). The interaction potential between particles
in the middle layer has the following form:

= -V X
k

X b
2

, 32( ) [( ) ] ( )

where k is the interaction strength between particles and b is
the lattice constant. X is the difference of the coordinates
between the nearest neighbours. The sine terms of
equations (1) and (2) represent the interaction between

particles and the substrate potential. The equations have been
integrated by using the fourth-order Runge–Kutta method. In
order to enforce a fixed density condition for the chain, we
introduce periodic boundary conditions [16–18]:

= ++x x Nb, 4N 1 1 ( )

= -x x Nb, 5N0 ( )

At the beginning, the middle particles are placed at rest at
uniform separation b. The upper substrate potential is rigid, so
at the initial time we set its coordinates =X 0.top After
relaxing the starting configuration, spring starts to move at
speed Vext. Given enough time for the system to reach a
stable state, we start to measure the relevant data.

3. Results and discussion

In tribology, one of the main problems is the energy loss
caused by kinetic friction force F ,kin which in our model could
be easily determined. If in some time t, the substrate potential
of the upper layer moves the distance DXtop [3], then the
energy loss of the system can be calculated as

= D = DE F X F X t, 6loss kin top kin top ( )

In our system, all of energy loss [3], comes from the g-
damping terms:
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whereD = -t t t .2 1 According to equation (6) we obtain that
the kinetic friction force of the system [3] is

òå g= + -
= D ¥

F x x X X dtlim , 8kin
i

N

t t

t

i i top top
1

2 2

1

2

[ ( ) ] ( )/  

Figure 1. Schematic of the model. The model parameters
are = = = = -a c Vext Kext1.0, 0.3, 0.03.

Figure 2. Dependence of the kinetic friction force Fkin on the lattice
constant b for different values of the interaction strength k.
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Dependence of the kinetic friction force Fkin on the lattice
constant b for different values of the interaction strength k is
presented in figure 2. As we can see the kinetic friction force
Fkin decreases as k increases while it oscillates with the lattice
constant b.

In order to further examine the influence of the lattice
constant and the interaction strength on the kinetic friction
force, in figure 3 the kinetic friction force is presented by
different colors in -k b plane. The dependence of the kinetic
friction force on the parameter b is quasi-periodic, where the
period is approximately equal to 1. Therefore, when the lattice
constant is taken near the positive integer, the kinetic friction
force reaches the maximum value, and the energy loss of the
system is also maximum. We can also see that the value of the
kinetic friction force Fkin decreases with the increase of k.

4. Conclusions

In conclusion, the kinetic friction of a three-layer system was
modelled, where the influence of the lattice constant and the
interaction strength of the middle layer on the friction force
was examined. The results have shown that the system
exhibited maximum energy loss when the lattice constant was
taken near the positive integer, and the kinetic friction force
reached the maximum value. The increase of the interaction

strength led to the decrease of the kinetic friction force, and
therefore to the reduction of the energy loss of the system.
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