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Abstract
Discovering chaotic systems with special features is of interest in the recent years. In this paper
we introduce a new class of simple hyperjerk systems with infinitely coexisting chaotic
attractors usually termed as megastability. The novelty of the proposed systems is that the
systems shows megastability without external excitation which was not the case in most of the
existing megastable attractors discussed in the literatures. Various dynamical properties of one
of the proposed systems like the stability of equilibrium points, bifurcation and Lyapunov
spectrum are discussed. Also, a circuit realization using off-the-shelf components is shown to
prove the implementation feasibility of the systems. In addition, microcontroller based
embedded design with graphic LCD of obtained new simple hyperjerk megastable oscillators
was realized. Thus, the obtained new oscillators can be used both in a variety of real digital
applications such as random number generators, encryption, communication and for
educational purposes.

Keywords: chaos, megastable, hyperjerk, bifurcation, microcontroller-based embedded design,
electronic circuit implementation
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1. Introduction

If a physical variable at time‘t’ is denoted with ( )x t then the

third derivative d x

dt

3

3 represents the jerk and the fourth derivative
d x

dt

4

4 can be represented as hyperjerk as defined mainly by Sprott
et al [1, 2]. Jerk oscillator which holds chaotic behavior finds its
attraction in secure communication because of its simple con-
figuration. Many encryption algorithms were developed using

such oscillators [1, 3]. Compare to jerk oscillators, hyperjerk
oscillators show intricate characteristics with similar simple
algebraic equation [4].

Hyperjerk systems are found in various real time systems
such as secure communication, neuron modeling, etc, In
application point of view many hyperjerk oscillators found
with chaotic attractors, which are very useful to model neu-
rons [5]. In order to mimic neuron synapse, researchers seek
complex dynamical systems which shows different special
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properties. Hyperjerk systems found more suitable for such
applications [4]. Recently some literatures display hyperjerk
oscillators possess special properties like multi scroll [6],
multi wing [7] chaotic attractors, coexistence of multiple
attractors, symmetricity [8] etc.

Multistability represents the existence of more than one
attractor in a nonlinear dynamical system and transition from
one state to other by changing the initial condition [9]. It
increases the flexibility of a system to deal among different
coexisting states without changing parameters. The attracting
state of a multistable system highly sensitive to the initial
conditions compared with monostable systems. Multistability
can be categorized into two; Extreme multistability which
holds infinite uncountable number of coexisting attractors
[10] where as Megastability refers infinite countable number
of coexisting attractors [11].

Megastability is identified and categorized by Sprott
et al [12], while investigating a periodically forced oscillator
with a spatially periodic damping term. It has been portrayed
with coexisting attractors including limit cycles, tori and
chaotic attractors which form a layered cabbage-like
structure. Wang et al [13] developed a novel oscillator
with infinite coexisting asymmetric attractors. Tang et al
[14, 15] designed a chaotic system with megastable type
which is similar to a carpet-like structure. Li et al [16–18]
construct 2D and 3D in a Programmable Chaotic Circuit
and studied the behavior of Infinitely Many Attractors.
Vo et al proposed two-dimensional nonlinear oscillator
which holds feature of having layer–layer self excited and
hidden coexisting attractors and proved that the complexity
of the system behavior increases with such special proper-
ties [19].

In circuit designs with analog circuit devices, tolerance
values of analog devices vary depending on temperature.
Furthermore, it is difficult to update analog circuit designs. In
embedded system circuit designs, the temperature-dependent
tolerance value is very small and the circuit design is much
easier to update. In addition, today’s embedded system
designs consume much less energy. For these reasons,
nowadays, embedded system devices have started to be used
in the design of chaotic systems [20–25].

Motivated from the above discussion in this paper we are
proposing a family of simple hyperjerk chaotic system with
megastable property. The novelty of the proposed system is
there is no external excitation.

2. Simple hyperjerk megastable oscillators (SHMO)

Discovering chaotic attractors with infinite number of coex-
isting attractors [16–18] is of interest in the recent years. Of
these some of them are named as ‘Megastable’ after [12]. But
most of these megastable oscillators are 3D nonautonomous
systems and excited by periodic or quasiperiodic forcing
[26–29]. Hence we are interested in proposing a few new
megastable oscillators which are 4D hyper jerk systems
showing megastability without external excitation. The
dimensionless model of the SHMO is,

( ) ( ) ( )






=
=
=
= +

x y
y z
z w
w f y z w nx, , acos 1

and depending on the various selections of function
( )f y z w, , , we can derive different cases of SHMO as

shown in table 1.
The Jacobian matrix of the SHMO system can be

derived as,

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥( )
( )

-an nx f f f

0 1 0 0
0 0 1 0
0 0 0 1
sin

2

y z w

where the functions f f f, ,y z w are given in table 2.
It can be verified that the equilibrium points of the

SHMO systems are ( )( )p+ , 0, 0, 0k

n

2 1

2
where k is an arbitrary

integer number. Using the equilibrium points with the Jaco-
bian matrix (2), the characteristic polynomial is

( ) ( )l l l l- - - +f f f an nxsin 3w z y
4 3 2

Table 1. Various cases of SHMO.

System ( )f y z w, , Parameters

SHMO-1 - - + -by dw cz ez5 = = = = = =d b c a e n1, 2, 9, 2, 0.7, 1
SHMO-2 - - -by cz dw = - = = = =a b c d n13, 5, 5, 5, 3
SHMO-3 - - -by z w = = =a b n1, 0.7, 1
SHMO-4 ( )- - - -y z cw b zsin = = = =a b c n1, 0.1, 5, 1
SHMO-5 ( )- - -z w b ysin = = =a b n1, 1, 1

Table 2. Functions used in the Jacobian matrix (2).

System Functions of (2)

fy fz fw

SHMO-1 -b ˆ-c ez5 4 -d
SHMO-2 -b -c -d
SHMO-3 -b -1 -1
SHMO-4 -1 ( ) -b zcos 1 -c
SHMO-5 ( )-b ycos -1 -1

2
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As per the Routh-Hurwitz criterion the principal minors are
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and the principal minors have to be positive for the system to
be stable. The condition for principal minors for positive the
conditions are,

(( ( )) )
(( ( )) )

( (( ( )) ) ) ( )
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Figure 1. Phase portrait of SHMO systems ((a)–(e) for SHMO-1 to SHMO-5 respectively) for 26 initial conditions located on the x-axis (from
= -x 50 to = +x 50 with steps equal to 4) while the other states initial conditions are kept to 0.

Figure 2. (a) The bifurcation of the SHMO-3 system with parameter
b; (b) The corresponding Les.
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We can easily verify that the principal minors are not
positive for the parameter values in table 1 and confirm that
the SHMO systems are unstable. The phase portraits of the
SHMO systems for different initial conditions selected from
-  x50 50 with a step of 4 are shown in figure 1. It
should be noted that all the attractors shown in figure 1
(different colors) are chaotic and never disintegrates to a torus

as like in many other cases of megastable oscillators [26–29].
From figure 1 we could see that when the initial conditions for
the state variable x is shifted, the attractor also changes to the
environment around the equilibrium and thus shows infinitely
coexisting attractors.

To analyze the dynamical behavior of the SHMO sys-
tems, we considered the SHMO-3 system. The bifurcation
plot of the SHMO-3 system is derived for the parameter b and
the local maxima of the state variable z is plotted. We could
see that the system shows period doubling and inverse period
doublings in the bifurcation plot shown in figure 2(a). To be
more specific, the SHMO-3 system shows chaotic oscillations
for the values of [ ]Îb 0.257, 0.289 , [ ]0.312, 0.367 ,
[ ]0.38, 0.505 , [ ]0.5868, 0.857 , [ ]0.885, 0.993 . It can be noted
that every time the SHMO-3 enters chaotic region by period
doubling route and takes an inverse period doubling exit from
chaos. The corresponding finite time Lyapunov exponents
(LEs) using the Wolfs algorithms [30] for a finite time of
20000 s are shown in figure 2(b).

3. Microcontroller based embedded design of the
SHMO systems

In this section, microcontroller based embedded design with
graphic LCD was designed in order to use the obtained

Figure 3. The designed microcontroller based embedded system circuit diagram for SHMO.

Table 3. Values of DSW1 dip-switch (1-On, 0-Off).

000 SHMO-1 system
001 SHMO-2 system
010 SHMO-3 system
011 SHMO-4 system
100 SHMO-5 system

Table 4. Values of DSW2 dip-switch (1-On, 0-Off).

000 x-y phase portrait
001 x-z phase portrait
010 x-w phase portrait
011 y-z phase portrait
100 y-w phase portrait
101 z-w phase portrait

4
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SHMO systems in various digital applications and for edu-
cational purposes. Microchip PIC18F4550 product was used
as microcontroller in the design. The PIC18F4550 micro-
controller features 25KB program memory, 2KB data mem-
ory, 48Mhz operating speed, built-in USB module. The
designed circuit diagram of microcontroller based embedded
system is given in figure 3. The design has a 128×64 gra-
phic LCD and two dip-switches to monitor the phase portraits
of SHMO systems for educational purposes. DSW1 dip-
switch used in the design can select which SHMO system to
operate. By using DSW2 dip-switch used in the design, it is

possible to select which phase portrait of the SHMO system
will be drawn on the graphic LCD. Tables 3 and 4 as pre-
sented below show the values of the DSW-1 and DSW-2 dip-
switches, respectively.

State variables (x, y, z, w) calculated by microcontroller
can be transferred to computer by asynchronous serial com-
munication. In this way, the results of the selected SHMO
system can be used in various digital applications. The
microcontroller program is written according to the CCS C
compiler, which is based on the standard C programming
language. Euler method was used to calculate the systems

Figure 4. The flow diagram of the microcontroller program.

5
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Figure 5. Phase portraits of Matlab and microcontroller results and graphic LCD views, of the SHMO systems, respectively (a)–(c) SHMO-1
(d)–(f) SHMO-2 (g)–(i) SHMO-3 (j)–(l) SHMO-4 (m)–(o) SHMO-5.
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state variables. The flow diagram of the program loaded on
the microcontroller is given in figure 4.

For testing purposes, 3,000,000 data were obtained from
microcontroller and Matlab numerical simulation for each the
SHMO systems. Initial conditions of the SHMO systems were
taken as (x0, y0, z0, w0)=(0, 0, 0, 0). In the microcontroller
calculation, step size h=0.0001 is taken. There is difference
between the numerical computational and trigonometric (sine,
cosine) calculation algorithm sensitivity of the Matlab program
and the computational sensitivity of the microcontroller. This
difference occurred due to the very sensitive dependence of
chaotic systems on values. It was seen that only x state variable
had higher difference between Matlab and microcontroller
results than other state variables. The phase portraits of the
systems were drawn from these data and the numerical simu-
lation results obtained from the Matlab program. In figure 5,
Matlab numerical simulation results, microcontroller results and
graphical LCD views of some phase portraits of the SHMO
systems are given. When the figure 5 is examined, the numerical
analysis results of the Matlab program, the results obtained from
the microcontroller output and the results displayed on the gra-
phic LCD confirm each other. Due to the difference between
Matlab program and microcontroller calculation accuracy, very
small calculation differences were observed. With DSW-1 and
DSW-2 dip-switch devices on the circuit, the user can select the
desired SHMO system and see the path of the desired phase
portraits of the selected system on the graphic LCD and take the
system state variables values from the computer.

4. Circuit implementation

It is possible to design an electronic circuit for System SHMO-3
(see figure 6). The circuit is based on four operational amplifiers
( -U U1 4), which are connected as integrators [31–34]. As can
be seen in figure 6, the voltages of such four integrators are
X Y Z, , , andW . The components in circuit are =R 1001 kW,

Figure 6. A possible circuital design for emulating System SHMO-3.

Figure 7. Attractor observed in the circuit for the duration of
time 300 ms.
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= = = = = =R R R R R R 102 3 5 6 8 k W, =R 14.284 k W,
=R 1.257 k W, =R 259 k W, = -V V1 ,DC1 and
= = = =C C C C 101 2 3 4 nF. By implementing the circuit in

PSpice, the circuit’s attractor is reported in figure 7. As can be
seen in figure 7, the designed circuit displays multi-scroll
attractor. It is noted that the observed attractor in figure 7 is
chaotic. There is an agreement between the theoretical results
and circuit-based ones.

5. Conclusion

A new class of hyperjerk chaotic systems showing megastability
is discussed. The novelty of the proposed work is that these
systems exhibit megastability without external excitation which
was not the case in the megastable oscillators discussed in the
literatures so far. Secondly, most of the megastable systems
discussed in the literatures have the character of disintegrating in
to a non-chaotic attractor (tori) as the initial conditions are
changes whereas the proposed systems are always chaotic irre-
spective of the initial conditions. Also it is worthy to mention that
this is the first type of hyperjerk system showing megastability as
all the megastable systems in the literatures are jerk type systems.
Various dynamical behavior of one of the proposed system is
discussed using Lyapunov spectrum and bifurcation plots. A
PSpice simulation is conducted for one of the proposed systems
whose circuit realization is done using off-the-shelf components.
In addition, microcontroller based embedded design with graphic
LCD was designed in order to use the obtained SHMO systems.
Thus obtained SHMO systems can be used in various digital
engineering applications such as encryption, communication,
random number generator and also for educational purposes.
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