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This paper extends our previous quantum Fisher information (QFI) based analysis of the problem
of separating a pair of equal-brightness incoherent point sources in three dimensions to the case of
a pair of sources that are unequally bright. When the pair’s geometric center is perfectly known in
advance, QFI with respect to the estimation of the three separation coordinates remains
independent of the degree of brightness asymmetry. For the experimentally more relevant case of
perfect prior knowledge of the pair’s brightness centroid, however, such QFI becomes dependent
on the pair separation vector in a way that is controlled by the degree of its brightness asymmetry.
This study yields potentially useful insights into the analysis of a more general superresolution
imaging problem involving extended incoherent sources with nontrivial brightness distributions.
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1. Introduction

In the photon counting limit, wavefront projections via spatial
demultiplexing (SPADE), as proposed recently by Tsang et al
[1, 2], can overcome the celebrated Rayleigh limit [3] for
resolving a symmetrical pair of incoherent point sources at
photon numbers that scale inverse-quadratically with separation
even at the smallest separations. This scaling law, which was
first derived in [1, 2] by applying quantum estimation theory to
the problem of estimating the pair separation in one and two
dimensions, seems to be entirely independent of the spatial
dimensionality of the problem, as we showed in two papers
[4, 5] via an analysis considerably more general than that of [6]
for full three-dimensional (3D) source pair separation and
localization using apertures of arbitrary shape and size. It
amounts to a qualitatively more modest requirement than that
entailed by intensity based detections of the source pair on an
image sensor for which this scaling law, for small separations, is
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no better than inverse quartic in separation. Extensions to
thermal source states [7] and general quantum source states [8]
have also been considered. A number of recent experiments
have confirmed the achievability of the quantum estimation
bound both for lateral [9—12] and axial [13] resolutions.

The dramatic difference in the scaling behaviors of the
sensitivity of wavefront and intensity based methods opens a
novel, highly sensitive approach of superresolution imaging of
relatively faint extended sources for which image intensity
based methods are likely to fail. More recently, SPADE has
been analyzed as a potentially sensitive approach for optically
acquiring an extended luminous object that is too faint and
small to be resolved and imaged by ordinary intensity based
methods. The method is essentially based on acquiring first,
second, and higher-order intensity moments of an extended
incoherent object [14—17] using a suitable projection basis.
Successful acquisition of such moments can enable one to
characterize the object in terms of its brightness attributes such
as centroid, size, ellipticity, skewness, etc. These methods can
be potentially generalized further to extended 3D sources.

© 2020 IOP Publishing Ltd  Printed in the UK
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An alternative approach for imaging an extended inco-
herent source might regard it as a collection of point sources
[18] with spatially varying intensity across it. The simplest
example of such an extended object with a nonuniform
brightness distribution is a pair of incoherent point sources of
unequal intensity. We consider in this paper the problem of
quantum limited superresolution of such a source pair. We
will use the concepts of quantum Fisher information (QFI)
and quantum Cramér Rao bound (QCRB) from quantum
estimation theory put forth by Helstrom [19] to evaluate the
fidelity of estimation of the separation vector for an arbitrary
ratio of the intensities of the two point sources. The problem
of calculating such a quantum limit on simultaneously esti-
mating the geometric center, separation, and relative intensity
of an unequally bright source pair using these concepts was
first tackled by ﬁehééek, et al [20, 21], but their work was
limited to one spatial dimension.

In the present paper, we will generalize the work by
Rehacek’s group, as well as our previous work [4] to an
asymmetrically bright source pair in all three dimensions.
Rather astoundingly, as we will show, the QFI whose inde-
pendence from pair separation is the basis of such scaling
remains independent of this separation even for an unequally
bright source pair when its geometric center is well deter-
mined and fixed a priori. But for the experimentally more
relevant scenario where only the brightness centroid, rather
than the geometric center, can be reliably determined in
advance, such independence obtains only for the equal-
brightness case for which the two centroids coincide. We
derive here the detailed dependence of QFI on the pair
brightness ratio and separation for estimating the latter under
these conditions.

Let us consider a pair of closely spaced incoherent point
sources that have unequal average intensities I, so the
quantum state of a photon emitted by such a source pair is
described by the density operator (DO)

def Ii

p=p |K) (K| + p|K) (K], = —,
P P+| (K] + p | Ko)( l, ps L+ 1

ey
in which p_ may be regarded as the probability of the photon
being emitted by the source in the state |K..), respectively. We
consider only those photons that are captured and detected by
the observing instrument, as only they can encode informa-
tion about the source pair that is recoverable by means of
measurements made on them. We further restrict attention to
the classically ideal regime of photon counting without any
detection noise under which the photons detected during a
fixed observation time have a Poisson number distribution. In
this regime, which applies to sources of small intensity fluc-
tuations per mode such as ordinary thermal sources posses-
sing a small degeneracy parameter, we may regard the
photons as arriving in a statistically independent fashion at the
instrument sensor. Consequently the Fisher information (FI)
for the problem of N photocounts, whether classical or
quantum, becomes simply N times the FI per photon. It is the
quantum version of this FI per photon, namely QFI, that we
set out to calculate. The diagonal elements of the inverse of
the QFI matrix with respect to (w.r.t.) a set of n system

parameters, {6y, ..., 6,}, on which p depends determine the
lowest possible variances for an unbiased estimation of these
parameters, regardless of any specific quantum measurement,
and depend only on the quantum state of the source photons.

2. Quantum limited estimation of source-pair
separation for known geometric center and relative
brightness

In the first half of the paper, we take the two point sources to
be located at £/, relative to their geometric center chosen to
be the origin. Subsequently we shall refer their locations
relative to the intensity centroid, a point that is likely to be
easier to locate based on image intensity measurements on a
pixelated sensor array when the sources are close together.

2.1. Photon wavefunction

As we have noted previously [4], the corresponding nor-
malized wavefunctions take the following form over the exit

pupil:
(ulKy) = exp(£ig) P(wexp[Fi¥(u; D], @)

in which P (u) is a generally-complex pupil function obeying
the normalization condition over the pupil plane

f Pu PP = 1, 3)

u is the normalized pupil-plane position vector, which for a
circular pupil is obtained by dividing the physical pupil-plane
position vector by the radius of the pupil, and the phase
function, W(u; ), for a low numerical-aperture system [22]
has the form

U(u; ) = 27u - I, + md?l, 4)

which is linear in the vector of 3D spatial-separation para-

meters, [ o (1, I,). We adopt a convenient convention of
writing 3D spatial vectors in terms of their 2D transverse
projections, such as [, and axial coordinates, such as /.. The
actual physical 3D separation coordinates are proportional to
these parameters via two different, transverse and axial, dif-
fraction scales, as [5]

_ Ny, Mg
RJ_ - ?ll» Z= Flza (5)

in which (R, Z) is half the physical 3D vector separating the
two sources, zp, z; are the average object-plane and image
plane distances from the exit pupil of the imager, A is the
optical wavelength, and R, for a circular pupil, is the radius of
the exit pupil. For a more general pupil shape, R could be
regarded as a characteristic size of the pupil. For a thin-lens
imager [22], the extrance and exit pupils coincide with the
lens aperture.

The phase constant, ¢, is conveniently chosen to make
the inner product, A & (K_|K.), real and positive, which
implies two equivalent relations for A

A = (KIK,) = (KK, ©)
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In view of relations (2) and (4) for the wavefunction and ¥,
this inner product may be expressed as

AY (K |K_) = exp(—2i¢) fdzu |P(u)]?
x exp(i4nl, - u + 27l u?). 7

Note that the phase constant, ¢, being half of the complex
phase of the integral on the RHS of equation (7), depends, in
general, on the pair separation vector, /. For the clear, unit-
radius circular aperture, the pupil function P(u) is simply
1/m times the indicator function for the aperture, but our
calculations make no reference to the actual form of the pupil
function, which is subject only to the normalization condi-
tion (3).

2.2. Pair-Separation QFI

The QFI matrix, H, is defined [19, 23-25] to have elements
H. o Re Tr (fJI:#I:,,), where Re denotes the real part and
LAN is the symmetric logarithmic derivative of the DO w.r.t. the
pth parameter. The QFI matrix elements may be readily
shown [4] to have the form

H/w = Re I—I/w’ (8)

in which H,,, may be expressed as

4 Agy A
H/w = Z f<ei|aupaup|ei>

i=+ €i

4
+ Z Z[ 2 —]<€,~I3Nﬁ|e_,-> (ejl0uple:).
i=+j=+ (e + ej) e ©

Here e, and |eL) are the two non-vanishing eigenvalues and

the corresponding eigenstates of DO (1), respectively, and

def . L
oy =9 / 00, denotes the first order partial derivative w.r.t. the

parameter 6, of the quantity that immediately follows it.? By
decomposing the double sum in equation (9) into its diagonal
(i = j) and off-diagonal (i = j) terms and noting that (see [4],
supplement)

<ei|8u/3|ei> = auei (10)
and the DO trace norm relation
ey +e_ =1, (11
we may express equation (9) as
4 PP
H#V = Z —<e,<|8#p8,,p|e,-> - a,ueqLaueJr
e eie_
—4 Z (e_ - el) etlauﬁlej> <ej|al/ﬁ|ei>' (12)
li] i
Lje{+.—}

2 We avoid the use of parentheses to ease notation except when the
derivative is to be taken of multiple quantities which we enclose in
parentheses.

The range space of p is spanned by the two states |K,.) in
which we may find its eigenstates as the linear combinations
lex) = ax|Ky) + BlK). (13)
The coefficients, a.y, (., as well as the eignevalues e, may
be determined by substituting expressions (13) and (1) into
the eigen-relation
Plex) = exles), (14)
comparing coefficients of the two linearly independent states
|K+) on both sides of this equation, and requiring that the
determinant of the underlying homogeneous linear system of
equations in these coefficients vanish, we arrive, after some

algebraic simplifications, at the following expressions for e,
and coefficients oy, O4:

& Jop? + N1 — o),

_ [mée + 5,9)]1/2’ b j[[p«se T @)]”2, )
be(l + be) be(l +£ be)

ey = %(1 =+ be), be

in which ée = e, — e_and p = p_ — p_are the differences
between the two eigenvalues and the two state probabilities,
respectively. Note that since A?, p? < 1, it follows
from equation (15) that |dp| < de < 1. Equivalently,
e, > max(p,_, p) > e_ > 0. The unit normalization of the
eigenstates, namely

(erles) =1, (16)

which in view of eigenstate expansion (13) and definition (7)
of A is equivalent to the requirement,

ol + 4L 4+ 20.8:A =1, (17)

was used to fix the overall normalization of expressions (15)
for the two pairs of coefficients.

One may easily evaluate the partial derivative of
expression (15) for the eigenvalues w.r.t. a parameter 0, as

/J k

oer = +
nox 26e

(18)

which allows the second term on the RHS of equation (12)
to be evaluated in terms of a product of derivatives of
the state-overlap function, A. We may thus simplify
equation (12) as

4 3N (1 — &p?)?
Hu: — iaLAayA i _—8 AaVA
A 12 . (€il 0.0, ple:) 62(1 — 6e2) "
“4 5 (L o e @it
i,je{-‘:,—} l e
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By using expression (1) for DO in terms of the
corresponding derivatives of the single-source emission
states, |K.), we may evaluate its derivatives and their bilinear
products as

Oup = p.(OulK) (Ki| + |K4) 9 (K4
+ P (OulK-) (K| + |K-) 9, (K-D);
0updup = [P} (OulK ) (K 10,K ) (K| + 0ulK 1) D, (K]
+ 1K) O (K4 |0,K ) (K| + 1K) O (K4 |K ) 9, (K1)
+ P+P_(5;L|K+> (K10, IK-) (K_| + 6#|K+> A, (K|
+ 1K) O (K+|0,1K-) (K| + |K+) 9, (K 1K) O, (K_])
+ terms obtained by + <> — interchange].
(20)

Substituting expressions (20) and expansions (13) of the
eigenstates |e;) into equation (19), we can now straightfor-
wardly calculate its sums, which involve the matrix elements
(€+10,p0, plex) and (e, |0, ple_). This process is greatly sim-
plified by noting from the form of the wavefunctions (2) that
matrix elements like (K4|0,|K,) are purely imaginary and
those like 0,(K.|0,|Ky) purely real, since each partial deri-
vative of a wavefunction w.r.t. a separation coordinate [,
w=1, 2, 3, generates a purely imaginary factor. Further,
since according to expression (2) the phases of (u|Ky) are
equal but oppositely signed, a partial derivative of both sides
of the equality, (Ki|Ky) = A, yields the simplified real
expression, (K4|0,|K+) = (1/2)9,A, which is also needed
for the calculation of QFI. We thus obtain the following final
expressions for the real parts of the various matrix elements in
terms of the eigenvector expansion coefficients, o, O:

Re ((e:19,ple-) (e-10,ple:)) = g1 (K 1la.K )
X (K 0,IKy) + 80,A0,A;

Re (e418up0,les) = h{" (K. 10,IK ) (K110,1K )
+ hy V0K 10,K ) + hi"'Re 8,(K,10,IK-)
+ h{D9,A0,A;

Re (e-10,p0,ple-) = h{ (K 10,1K,) (K |0.IK )
+ hz(_)au<K+|au|K+> + h3(_)Re Ou(K+10y1K-)

+ h{0,00,A, 1)

where

&1 = —(Oé_ﬂ+ - a+ﬂ—)2A2;
1
8=l fi+ 0 ) + 2000 + paca)P;
h® = pf oA+ pPpi + 2aiﬂiA(1ﬁ +p> +pp);
D = p2(as + BLAP + pP(asA + B
h3(i) = 2p+p7(ozi + BLA) (LA + (1)

W= pPol £ 25 4 2+ asBA)
(22)

In view of expressions (19) and (21), we may express the
QFI matrix element (8) in terms of four nontrivial matrix
elements involving the single-source emission states, |K.), as

o)

X (K4|0uK ) (K+|0,IK )

h(-‘r)
H#V = 4|: ! +

e é_

h2(+) hz(*)
+4| = + — a,u,<K+|8l/|K+>
e e_
hH W)
+ 4| =— + —=—|Re 9,(K.|0,|K_)
e e_
[ h () L) 1
Y ke S T S 2 -1
| ey e_ e e_
2 _ 232
BETIT 0 FUVIN o3
be2(1 — 8e?)

in which we used the trace norm condition (11) to simplify
the multipliers of g; and g,.

The most remarkable fact about the various coefficients
in equation (23) is that when they are evaluated using
expressions (15) for o, B, the last two vanish identically
and the first two evaluate to be equal to 4, independent of A,
P+, and the separation vector [, i.e.

H;u/ = 4(<K+|811|K+> <K+|61/|K+> + 8/1 <K+|81/|K+>) (24)
Indeed, this means that the QFI matrix elements become
identical to those calculated in [4] for the problem of a pair of
equally bright point sources. The independence of QFI on the
relative brightness of the two sources and their separation
supports our previous conjecture [4] that the determination of
the separation of two point sources when their geometric
center is known and fixed a priori (here at the coordinate
origin) reduces fundamentally to a photon localization pro-
blem, independent of the nature, brightness, or locations of
the point sources. This amounts, in effect, to the irrelevance
of which source emits the photon. Rather, the only essential
property of relevance to the estimation of pair separation
w.r.t. a fixed geometric center is that the photon carrying the
information about the sources was in fact emitted and
observed by the measuring device.

Expression (24) for QFI, as we saw in [4], may be
expressed in terms of derivatives of the phase function, ¥, and
phase constant, ¢. In view of the wave function (2), we may
write

<K+|a#|K+> = i<aﬂ¢ - 8#\1/>;

311<K+|81/|K+> = <(8/L¢ - a;ij)(ay¢ - 81/\11»7 (25)

in which the angular brackets on the RHS denote pupil-plane
averages of the quantity they enclose

@) = [ @ lpwrfw, 26)
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for any function f (u) of the pupil coordinates. When expressions
(25) are substituted into the RHS of equation (24), we can see that
the derivatives of the phase constant, namely 9, ¢, 0, ¢, which do
not depend on u and can thus be pulled out of such pupil
averages, cancel out exactly, reducing QFI to the simple form
H,, = 4((0,¥ 0,¥) — (0,V) (0, V)). 27
For a clear circular aperture, we may evaluate these averages

further and thus obtain [4] the following diagonal form of the QFI
matrix:

472 0 0
H=10 4720 (28)

2

0 0 %

3. Quantum limited pair separation for known
intensity centroid and relative brightness

A more realistic and experimentally meaningful problem
involving the separation of a closely spaced source pair is that
in which the intensity centroid, rather than the geometric
center, of the pair is known to be at a fixed non-random
location. Such centroid can be well localized experimentally
by finding the centroid of the photon counts recorded by a
simple spatial image intensity based array sensor on which the
pair is imaged. The intensity centroid, by its very definition, is
closer to the brighter source, as for a bright star around which
a faintly illuminated planet might be revolving. For the same
single-photon DO of the previous section, given by
equation (1), the intensity centroid of the pair of sources
located at ry. is at R given by

R=pr, +pr, (29)
which implies the following location vectors for the two
sources relative to R:

def

pr=r.—R==pr, (30)

in which

r=r.—r, (€29)

is the separation vector of the two sources. Since the intensity
centroid location, R, can be assumed to be known well in
advance, as we just noted, we may pick it to be the origin of
coordinates, relative to which p . represent the individual
source location vectors that are simply proportional, via
equation (30), to the pair separation vector, r, which is to be
estimated from source-pair photon measurements.

The single-photon wavefunctions for single-source
emission, namely (u|K.), may be expressed in terms of these

QCRB, forl =0

Top: 6p?=0.95
Middle: §p®=0.75

(a)
QCRB_for | = +1
X Z

Top: o‘p2=0.95
Middle: §p®=0.75
-' }}’f&ft\\’{lﬂ', \

".".“‘\\\'b £

1 —— 4
2 2
(b)
QCRB_forl_=+2
X z
Top: 6p?=0.95
3. Middle: §p®=0.75

Bottom: d’p2=0

(c)

Figure 1. Surface plots of QCRB for /, as a function of (I, ) for
(@, =0, (), = =1, (c) I, = £2, and for three different values of
8 p*, namely 0 (bottom surface), 0.45 (middle surface), and 0.95 (top
surface).
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relative source position vectors as equation (23) to the value
) ) . f~l(+) hN(—) 1
(ulK.) = exp(£ip,¢)P(Wexp[Fip, U(w; 1)],  (32) f, =420 gl( - 1)
e e_ e.e_
with the phase function ¥(u; r) being the same as that defined x (K+10.K+) <K+|8”|K+>
in equation (4) with / replaced by separation vector r. The hz(ﬂ h2
choice of the phase constant, ¢, is such that the overlap int- +4 e, + o 0 (K110,1K )
egral between the two wavefunctions “ o
h
+ 42—+ —]Re 0,(K+|0,|K_)
A = (KiIK-) = exp(~ig) [@u |P@P expliv(u; )], e e
[ ~(H) 7 (=)
(33) Ll B —§2( 1 _1]
e e_ e e
in which we used the probability normalization, p_ +p = 1, 3A(1 — §p2)>
becomes not only independent of p. but also real and posi- - |9AdA. (37
= Se2(1 — be?)

tive. For this to happen, ¢ must be chosen to be the phase of
the complex integral on the RHS. In view of the form of the
wave function (32), we also note the following important
correspondences:

P
= <K+|8;L|K+> >

r

<K+|8#|K,> #< |K+> - p+a A
<K—|@L|K+> ;1<K+|K—> =P 6/LA

(K_|0,|K_) = —

(34)

A straightforward implementation of these correspondences
modifies expressions (21) and (22) into the form

Re ((e(|0,ple-) (e_0,ples)) = & (K|0,IK )
x (K{0,Ky) + §,0,A0,A;

Re (e49,p0yples) = " (K104 K +) (K+10,1K )
+ iy 0, (K 10,IK ) + b3 Re 0, (K 10,IK )
+h70,00,A:

Re (e |0,pduple) = i (K:1OuK.) (KL 10,IK )
+hy 9, (KAOLIK) + by Re 8, (K10,IK-)

+h70,00,A, (35)
where
g =—4p (e By — ay BP0
2P2 [(a_By + a 8) + ABL- + ara )P
h“” P2l + B + 6a.BiA);
fiy? = Pl + BO + (axA + B
WY =2 p (s + BB (s + Ba);
hi? = pPp*lad + B+ 2(1 + aLBid)].
(36)

These new expressions for the coefficients modify the final
form of the QFI matrix elements presented earlier in

Since h( ) h(i) = 0, the third term in expression (37) is
1dent1cally zero. The coefficients of the other three terms no
longer evaluate to forms that are independent of the pair
separation vector r or the relative intensities of the two
sources, as measured by the probability difference, dp. Their
dependence on r arises through the involvement of the state
overlap function, A, and its partial derivatives.

In view of the eigenstate normalization condition (17) ,
we can immediately simplify the expressions for the coeffi-

cients A, ) R (i), and ﬁii) given by equation (36) to the form

= PPl + 4asBiA);
hy ' = pia + A (s + B
hy? =3p?p (38)

Using the fact that ﬁ;i) =0 and substituting the
expressions for g and g, given by equation (36), and
expressions (38) into equation (37), we may express the
coefficients of the latter in terms of the eigenvector expansion
coefficients, o and [, which we may evaluate by using
their values given by equation (15). The final expression for
the QFI matrix elements thus obtained is the following:

. 1+ 6p N6p?
H;w=4(1 — (51))[(1 + T (K110,1K )

X <K+|8V|K+> + au<K+|aV|K+>

— &p*( = p* oA GVA]. 39)
Note that, as expected, for equal-brightness sources for which
op = 0, expression (39) reduces to the simpler form (24)
since the geometric and intensity centroids coincide in
this case.

Expression (39) for QFI for estimating the 3D pair
separation vector when the pair centroid is well localized may
be expressed in terms of the derivatives of the phase function
W, as we did in the previous section. Note, however, that
because of unequal coefficients of the first two terms in this
expression, the derivatives of the phase constant ¢ no longer
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drop out from the final result obtained in this way. In view of
form (32) of the single-photon wavefunctions, the analogs of
equations (25) are the following:

(K+0uK ) =ip (9¢ — 9,9);

(K0 K ) = p* (8 — 0, W) (0,0 — D1)),  (40)

which when substituted into equation (39) yield the following
expression for the QFI matrix elements in terms of such
derivatives:

H, =0 - {0,V 0,9) — (9,V)(5,¥))

Az
- 5172(1 - 5P2)[m(<6qu> - 3;@)

x ((0,¥) — 0,¢) + 0, A 61,A]. (41)
By differentiating the equality,
Aexp(ig) = (exp(iV)), (42)

which follows from equation (33), then dividing the result by
Aexp(i¢), and subsequently evaluating the real and imagin-
ary part of the resulting expression, we may calculate 9,A
and J,¢ as

0, A=—-ATm M .
' (exp(iV))
_ Re | {9 exp(0))
%_Re[ (exp(iD)) ] 43)

Use of these equalities and the equality, A = |{exp(i¥))|, in
equation (41) turns it into an expression composed of pupil-
plane averages of form (26) of quantities involving only the
phase function VU, given by equation (4), and its derivatives.

4. Numerical results for a circular aperture

The results we have derived in the previous section apply to
an arbitrarily-shaped aperture possesing any pupil function,
P(u), with the only constraint on the latter being the nor-
malization condition (3). We illustrate our results with a
numerical evaluation of equation (41) for the special case of a
clear circular pupil of radius R, for which u = p/R and
|P(u)|? is simply 1 /7 for |u|< 1 and O otherwise. For this pupil
geometry, we see easily from its inversion symmetry the
following pupil averages:

(0.0) ~ (uy) = 0; (O,F) ~ (uy) = 0; (9. V) = m(u?) =

ENENIE

4)

Similar integrations over the pupil yield the following pupil
averages:

2

T, H=v=xy
<8H\I’8V\I’> = 772/3’ w=v=z (45)
0, otherwise.

Results (44) and (45) imply the following diagonal form for
the difference of averages on the first line of equation (41):

2

T W=V=2Xx,Y
(0,90,%) — (9.9) (0,¥) = 72/12 p=v=z -
0 otherwise

which thus contribute the terms (1 — §p?)72(1, 1, 1/12) to
the three diagonal elements of the QFI.

The other terms in equation (41), which only contribute
for an unequal-brightness pair (ép = 0), may be evaluated, as
equation (43) shows, by calculating the three pupil-plane
averages

A = [{exp(D))[;
(0, Wexp(iV)) =27 (u cos ¢, exp(i2mu - I} )exp(imu?l,));
(0, W exp(iP)) =27 (u sin ¢, exp(i27u - I )exp(imu’l,));
(0, exp(iW)) = 7 (u? exp(i27u - 1)) exp(imu?l)).

(46)

These averages, which are pupil-plane integrals over the cir-
cular aperture, may be simplified by use of the angular-int-
egral identities

¢ do, exp(i2mu - 1)) = 27y (2mul,),
$ d, cos ¢, exp(i2ru - 1) = i2m cos ¢, Ji (2mul,),

y§ d¢, sin ¢, exp(i27u - I,) = i27 sin ¢,;J, 27ul,), “a7)

in terms of Bessel functions, J; and Jj, to the following radial
integrals:

1
(exp(i®)) = 2fdu udo2mul))exp(imu?l,),
0
1
(0, ¥ exp(iV)) = 4im cos ¢, j;du wJi2mu 1) exp(imu?l,),
I
(0, ¥ exp(il)) = 4i sin ¢, j(;du uJi2mu 1) exp(imu?l,),

1
(0, Wexp(i®)) = 2 fdu w3y 2mu 1)) exp(imul,).
0
(48)

We numerically evaluated these radial integrals in Matlab
using its built-in integral code, from which by taking the real
and imaginary parts of the ratios involved in equation (43) we
were able to calculate all of the terms occurring on the second
and third lines of equation (41). After evaluating all of the
QFI matrix elements in this way, we were able to invert this
3 x 3 matrix to calculate the QCRBs as the diagonal ele-
ments of this inverse matrix. These QCRBs serve to provide
the lowest possible bounds on the variance of unbiased esti-
mation of the three separation coordinates of the pair per
photon. Dividing the QCRB per photon for each coordinate
by the total photon number involved in the measurement then
generates the overall QCRB corresponding to the estimation
of that coordinate.

In figures 1, we display, using a surface plot, QCRB per
photon for the estimation of the x coordinate of the transverse
separation as a function of (/,, /,) for three different values of
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&p?, namely 0, 0.75, and 0.95, corresponding to the ratio of
source brightnesses taking the values 1:1, 14:1, and 78:1,
respectively. The three different sub-figures refer to /, taking
values 0 (in-focus), 1, and £2 units, respectively. Figures 2,
on the other hand, capture the numerically evaluated values of
QCRB for the estimation of the axial separation coordinate, /,,
for the same conditions as in figures 1. Apart from the dif-
ference by a factor of 4 corresponding to a difference by a
factor 2 in the definitions of the separation vector between [4]
and the present section, the three QCRBs for the equally
bright source pair, corresponding to ép = 0, are the same
constants as those obtained in [4], namely 1/ 72 for estimating
each of the two transverse separations and 12/7* for esti-
mating the axial separation, independent of the actual value of
the separation vector. These results are represented by the
bottom flat surface in each sub-figure.

As the two source brightness values begin to differ from
each other, QCRB with respect to the estimation of each of
the transverse and axial separation coordinates shows sig-
nificant variations at small transverse separations. These
variations tend to be characterized by peaks and valleys over a
considerable range of such short separations. They result from
diffraction generated blurring of the wavefronts passing
through a finite aperture, which is represented by the oscil-
latory behavior of Bessel functions of low order. When one
source is considerably fainter than the other, then the two
sources would be harder to separate from each other if the
former were to lie close to a maximum of the transverse
diffraction pattern of the latter. The same considerations apply
to axial separations as well since there is a diffraction-gen-
erated oscillatory spreading in the axial dimension as well.

These oscillatory peaks and valleys are accentuated by
increasing asymmetry of source brightness levels, particularly
at short axial and lateral separations, as a comparison of the
three surfaces in each figure shows. As the sources get well
separated in their transverse dimensions, QCRB becomes
asymptotically independent of separation as the sources then
lie well outside the diffractive footprint of each source and
can be well distinguished from each other. The asymptotic
values of QCRB are, however, larger the larger the brightness
asymmetry, since locating the fainter source—and thus esti-
mating its separation from the brighter source—becomes
noisier the larger such asymmetry.

The values of QCRB for the estimation of the second
transverse separation coordinate, /,, are identical to those in
figures 1 when they are rotated by 7/2 because of the full
Iy < [, symmetry of QCRB obtained by a 7/2 rotation about
the optical (z) axis, followed by a mirror reflection in one of
the transverse axes. As such, we do not plot such QCRB
values separately.

We also note that figures 1 and 2, corresponding to the
estimation of the lateral and axial separation coordinates,
respectively, differ in the asymptotic values of the two dif-
ferent QCRBs by a factor of 12 by which the two estimation
variances differ from each other. This can be seen from the
inverse of the diagonal QFI matrix corresponding to the first
line of terms in equation (41). The second and third lines of
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Figure 2. Surface plots of QCRB for /, for the same parameter values
as in figure 1.
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terms in that equation tend to vanish in the asymptotic limit of
large separations.

5. Concluding remarks

This paper has computed the quantum lower bounds on the
variances for estimating the three components of the vector
separation of a pair of incoherent point sources of unequal
brightness. For the case of fixed intensity centroid of the source
pair, the QFI matrix with respect to these three components and
its inverse, whose diagonal elements furnish the said lower
bounds, are both diagonal and independent of the specific values
of the separation parameters only when the sources are equally
bright. On the other hand, when the source pair’s geometric
center is well determined a priori, then QFI becomes indepen-
dent of the separation coordinates as well as the brightness ratio
for the pair, reducing to the previously obtained simple form [4]
for an equally bright pair of sources. The latter result supports
the conjecture that for fixed geometric center of the pair, a
photon bringing the information about the location of either
source to the imager can be interrogated with a fidelity that is
independent of which source emitted it, since the two, by the
very definition of the geometric center, have equal but oppo-
sitely signed vector separation from it. The experimental use-
fulness of this result is somewhat limited, however, since the
more asymmetric the brightnesses of the two sources, the more
difficult it would be to locate their geometric center precisely.
The intensity centroid, by contrast, can be more readily and
precisely located within the standard imaging protocol by
computing the centroid of the photon counts observed on an
array imaging sensor.

In [4] we demonstrated, by means of a numerical simu-
lation, the use of low-order Zernike modes to saturate QCRB
for the case of a symmetrical pair in the limit of small
separations. We expect the Zernike projection basis to
saturate QCRB regardless of the pair’s brightness asymmetry,
since the dependence of the phase of the photon wavefunction
on separation, as seen from equation (32), is formally invar-
iant under a change of such asymmetry represented by a
change of p, away from 1/2.

Future work will enlarge the scope of the problem to
include the quantum bound on the fidelity for the estimation
of the brightness ratio for the source pair and for separating
more than two unequally bright point sources in close vicinity
of one another with a known brightness centroid. Such studies
could be important as a first step in calculating the quantum
limits on 3D superresolution imaging of extended continuous
sources.
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