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Abstract

The restoration of the initial state in the Raman interaction of the two atoms with the quantified
pump and Stokes (anti-Stokes) cavity modes is analytically obtained. For this the su (2)
symmetry representation of the bimodal field and a system of two atoms in scattering interaction
is proposed for the simplification of the problem. Using the proprieties of the generators su (2)
algebra the exact non-stationary solution of the system of two atoms in interaction with the
bimodal field is found, taking into consideration the initial disentangled state between the atomic
and field superposition. It is demonstrated that after this collapse and revivals of the inversion of
flying atoms in the processes of absorption and emission of the photons from Stokes and pump
modes the system atoms and field becomes entangled. The conditions of the restoration of the
initial state of the atom-field system were established as a function of the flying time through the

resonator possible. A set of discrete flying time intervals for the restoration of the initial

disentangled state was found.

Keywords: quantum entanglement and disentanglement, quantum reversibility, Raman

cooperative nutation, nonlinear cooperative cavity effects

(Some figures may appear in colour only in the online journal)

1. Introduction

The interaction of multi-level radiators with a two-mode cavity
field was in the focus of the attention of many experimental and
theoretical [1-7]. This investigation is connected with the appli-
cation of the multi-level system as g-bits in quantum computing
and quantum processing of information [8—10]. In many cases,
the distinguished ensembles of g-bits are used for the realization
of quantum registers [11-15]. In order to treat the interaction of a
multi-level atom with a cavity field of arbitrary detuning, a sui-
table quantum mechanical theory has been proposed in [16] and
developed for special situations in [17, 28]. Since the total
Hamiltonian connects the Fock states in the small region of the
Hilbert space, it can be solved in each subspace independently.
An attractive approach of the interaction of the atomic ensemble
with the single-mode cavity field with an arbitrary distribution of
the photons on the Fock states was proposed in [8—10].

0031-8949,/20,/055105+06$33.00

The Bose-Einstein condensation of atomic ensembles pro-
vides an opportunity to study ensembles of two-level atoms as an
indistinguishable ensemble of radiators [20-23]. According to the
principle of indistinguishably between the particles of quantum
mechanics, the 2V states of N two-level atoms can be reduced to
N + 1 states in the processes of coherent excitation of the system
situated in the volume with the dimensions than radiation
wavelength [8, 24-26]. This happens because the superposition
of two atomic states is considered as a single collective state:
atom, A, is in its excited state, B, in the ground state, and vice-
versa : (|04, 1g) + |14, 05))/~2 = |14). The similar conclu-
sions maybe given for two excitation in the ensemble of
three atoms, A, B and C, where the superposition of the three
states {|14, 1g. Oc) + |14, Op Ic) + [0s, 15, 1c)}/v/3 may
be considered as a single collective excitation state. It happens
when the system of atoms are situated in the volume less than
radiation wavelength. This cooperative effect can be exported for
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the ensemble of atoms in scattering resonance with the two-mode
cavity field.

The interaction of the pump field with nonlinear induced
Raman was the subject of theoretical and application studies
[27, 29-31]. For example in [27] the analytic and numerical
solutions were obtained for the equations describing the
propagation of several pulses of different frequencies through
a Raman medium. The transient case is treated, and the
analysis includes Stokes, pump, and anti-Stokes frequency
components. The effect of phase mismatch Ak between these
waves is investigated. An analytic solution is found that
describes the phenomenon of transient Stokes-anti-Stokes
gains suppression in the limit of Ak = 0. In [29] the authors
propose the classical aspects of the theory of superradiance
under Raman light scattering conditions allowing for pump
depletion in the single-mode approximation. The author
demonstrates that pump depletion imposes an additional
constraint on the observation of scattering super-radiance.

The quantum aspect of Raman conversion of the photons
between the above components and two-photon masers remains
in the center of attention in many investigations of many inves-
tigations [33, 28]. For example in the open micro-resonators with
a lifetime of atoms less than the Rabi frequency, the quantum
lasing effect was studied in [28, 32-34]. This approach proposed
to declare the two-mode states of the cavity as a possible laser
conversion of the total number of photons, n = 2j, between the
pump and anti-Stokes modes. From a physical point of view, it is
important to study the opposite situation when the flying time
To = /v of the atoms through the cavity is larger or comparable
with the inverse value of mean quantum Rabi frequency [26]
defined in the section 2. Here the / and v are the cavity length and
velocity of atom during the flying time through it. In this situa-
tion, we were limited to the ‘good cavity limit’ in which the
photon losses from the cavity x ~ c¢(1—r)/l is less than the
quantum Rabi frequency and atomic ‘losses’ from cavity 1/7g,
where r is the reflection coefficients of the mirrors. In other
words, the lifetime of the photons in the cavity is larger than the
flying time, 7, through the resonator. In this paper, we have
studied the behavior of the ensemble of N-atoms in cooperative
induced Raman interaction with the photons from a two-cavity
field named pump and anti-Stokes. In comparison with the
[33, 28] we have studied the nutation process of this ensemble in
the process of the photon conversion from one mode to another.
For n photons distributed between the pump field we name this
state by the ket vector |n),|0),, where |n), and |0), are the pump
and anti-Stokes states respectively. Acting with conversion
operator L = a%h on these states we can create with operator a°
the photon in the anti-Stocks mode simultaneously annihilating
the photon from the pump mode with operator b: £+|n>p|0>a =
npln — 1),|1),. Acting with this operator k times we convert k
photons from the pump to anti-Stokes modes (I:k|n>p|0>u =
nn—1)...0n—k+ 11 x2x3x..xkln—k),lk)).

This procedure can’t be continued till infinity because the
number of photons in pump mode is considered finite so that
(LHym+ In),|0), = 0. As follows from this representation the
conversion procedure can be easily be described by the

angular momentum state |m, j), where m is the difference
between the number of photons in the anti-Stokes and Pump
modes m = N, + Np.

Following the single-mode approach proposed in the [8]
we export this conception to the induced scattering con-
version between the two egan states of cavity modes (see
figures 1, 2). The exact solution of the ensemble formed
from one -five radiators can be analytically obtained. in the
process of quantum exchange of energy with a single-mode
cavity field [8]. The reversibility problem with the increas-
ing number of atoms in the cavity becomes a complicated
problem from analytically points of view. This effect con-
sists of in the restoration of the initial disentangled state
of atoms and filed after the flying time of the atomic
ensemble through the cavity. In section 2 we develop such a
method for undistinguished atoms in the scattering reso-
nance with two-cavity modes. Following this approach, we
proposed the new type of correlations between the photons
of the pump and anti-Stokes modes in the process of
cooperative conversion in the induced Raman process The
dynamical reversible conditions for two undistinguished
atoms flying through the bimodal cavity in the Raman are
obtained. The exact solution of the Schroédinger equation
for two-level radiators in the Raman induced interaction
with the bimodal quantified electromagnetic field has been
obtained.

2. Non-equilibrium approach for the description of
cooperative interaction of N two-level atoms with a
cavity field

Let us consider N two-level atoms in the scattering interaction
with two-cavity modes of a resonator with the frequencies w, and
wy, (see figure 2). The Hamiltonian of the system which describes
this interaction can be represented in the following form

H = 7woS. + 7wl + Mi(STL™ + L787). (1)

Here w = w,—uw, is difference between the frequencies of
the modes b and a; and /wy = E, — E; is the energy dif-
ference between the second excited and ground states of
atoms. The scattering transition takes place through the
virtual state |3) of three- level systems represented in
figure 1. In the Hamiltonian (1) is introduced the following
notations S, = Z?’(|ej> (ef] — |gj> (gj|)/2 is the collective
inversion operator for two level system in interaction
with cavity modes; § = > e} (gl and S~ = Y-V|g) (¢)] are
the collective excitation and lowering operators of two
atoms which satisfy the following commutation relations:
[§+, S 1= 2§z and [SZ, §i] = j:fi. The similar operators
may be introduced for two modes of electromagnetic
field in the cavity. The expressions L, = b'b — ata) / 2 and
Lt = &Tl;, [ = &I;T are the bi-boson operators of two mode
fields which represent the photon difference between the
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Figure 1. The ensemble of two atoms in the scattering resonance
with two cavity modes a and b. The excitation process takes place
with the absorption of a photon from the mode a and emission of
another quantum in the mode b.

numbers of quanta in each mode and the conversions of
photons from the a to b modes of cavity respectively. The
creation 5T, 4% and annihilation, l;, a, operators describe the
processes of simultaneous annihilation of photons in one of
the mode and creation of such a photon in another mode.
The new field bi-operators satisfy a similar commutation as
atomic operators: [I:+, I:f] = ZI:Z, [I:z, I:i] — 40

We consider the situation in which the flying time
through the resonator 7 is shorter than the photon lifetime of
photons in it, 7,, = I/[c(1—r)]. In this approximation, we
consider that the total number of atomic and field excitation in
such resonator is conserved during the flying time. Let us
consider that in the time moment, f,, the system of atoms,
concentrated in the volume less than the wavelength,
achieved the resonator. As the interaction of the atom with the
cavity field is larger than its interaction with the external field,
we neglect the last type of interaction [26]. So the system of
atoms begin to interact with cavity field during the flying time
T < To.

i AN(ty + 7))

ot H|W(tg + 7)) ©))

The exact solution for a large ensemble of atoms becomes
complicated when the number of atoms in the system increases
[8]. In this paper, we are interested in the restoration of the
initial states of the atomic ensemble after the flying time
through the cavity. Due to the increase of the degree of free-
dom in the interaction In the atomic system, we limit our model
to the system of two identical atoms in interaction with the
cavity bimodal field. For this, we introduce the new collective
states like in the Dicke super-radiance [24] described in the
introduction, |G) = |g, &); |I) = [lg, e2) + lew, &)1/¥2
and |E) = |ey, e), which corresponds to three-level system
represented in the figure 2. The new operators are represented
through the collective states S = ~/2 (|E) (I| + |I)(G]); S~ =

V2(G) (| + |I)(E]) and S. = |E)(E| — |G)(G]. In the reso-
nance case w = wy, the Hamiltonian part Hy = /aw (S, + L;)
commutes with interaction Hamiltonian part H; = A\ (S™
L= + L=S7) of the total Hamiltonian (1). In this case, we can
regard the Schrodinger equation (2) to similar equation in
interaction picture with the time-independent interaction part of
Hamiltonian

in 22O D) g 4 ) 3)
T

Let us consider that at time moment, %, the system of atoms
achieved the cavity. In this case we considered that both atoms
are prepared in the superposition of ground and excited states
[W(t0)) = calei)cilg), i = 1, 2. This initial superposition easily
can be extended to the collective atomic system states:
[Ua(t9)) = «|E)BII)~|G). Taking into consideration that the
cavity field satisfies the similar commutation relations, we con-
sider that at initial stage of the interaction of atoms with the two
modes of the cavity field is prepared in the similar superposition
of angular momentum states, |Ur(f)) = 22:7} Cylm, j), as
the two atom ensemble (see figure 3). Here the collective photon
states, |m, j) of the two-cavity modes are similar to the angular
momentum states described in quantum mechanics [28]. If we
consider that the total number of photons in the system is n, we
observe that the quantum number j = n/2. The equations of L
operators of the bimodal cavity field on the collective states
|m, j) is well described in the quantum mechanics.

For analytical representation of the Schrodinger equation,
W(to + 7)) = e 7 |U(t)), we introduce the fallowing
three operator-vectors £(7) = e A7|E), $(1) = e~ #7|I) and
2(r) = e~ il T|G), which depends on the field operators of the
system. Following the method developed in the [25, 8, 10],
this operator-vectors satisfy the closed system of differential
equation

EO _ gyt
dr

DO _ et — igt (L
dr

ED gyl @
dr

After the time derivation of the second equation of the
system of operator equation (4) and introducing the first and
the third equation in it we obtain the simple second order
equation with constant operator coefficients

Solving this equation and taking into consideration the initial
conditions for these vectors, £(0) = |E), $(0) = |I) and
2(0) = |G), we obtain the following solutions for the system
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Figure 2. Energy level diagram showing the states involved in Raman excitation consists of three collective stats |E), |I) and |G).

of operator equations (4)

£(7) = —igly 328D ¢

cos(QT) -1
~2

+2{EVL +|G)L") L" + |E)

P (1) = —igl|l) cos(Qr)
—ig{IE)L” + |G)LT}O % x sin(Q7);

2(7) = —igh) 2L

+R(E)L + |G>£*}7(°°S§(T)’ i

+IE) — RUE)L +1G) L L + 1G).
& %)

In this equation the expression, ) = g/L'L™ + LLT, is the
operator of the Rabi nutation frequency.

Acting on the ket-vectors the su(2), L |m, J)=
JG +m+ DG = mm + 1, j) L7|m, j) =
\/(j +m)(j —m+ 1)|m — 1, ), the the wave function is
simply represented to the vector operators |U(z + 7)) =
[af(T) + B9 (1) + ’Yf(T)]Zﬁj;j Cplm, j). Introducing the
solutions (5) of the system of equations we obtain the fol-
lowing analytic representation of wave function

and

[ty + 7)) = X1E) |Im, j)
X {aCu{g?(j —m)(j+m+ 1)
X ®m+1,7) + 1}
— iBCusJ(j+m+ DG —m)Fm + 1, 7)g

+ YCn+28*
x ®m + 1, 7))

+ M) Im)

x {—aigC,, . \J(j +m)(j—m — 1)F(m, 7)

+ BC,cos(Qm)T) + igyF (m, 7)Cyy_1}

+ 3,1G) Im) {aCyy28*®(m — 1, 7)

X JG+m+3)G+m+HG—m+2(G—m+ 1)
—iB8C,, G+ m)(G—m+ DF(m—1,7)

+ YCu{g*(j — m)(j — m + D®(m — 1, 7) 4 1}.

(6)

input
F(b)

COm) | -

output

F(tott)

A =60

M1 M1

Figure 3. The flaying of the system of two-atoms in the scattering
resonance with two cavity modes. It is required that in the input time
t < t, the atomic ensemble is disentangled relative to cavity modes.
The conditions for the restoration of the initial disentangled state of
atomic and field systems are found as a function of flying time, 7o,
and superposition preparation of the atomic and cavity field.

Here Q(m) = g\2[i(j + 1) — m?], m = —,
eigenvalue of operator of the Rabi nutation frequency Q) on
the vector state |m, j). In the solution (6) it is introduced the
following notations : ®(m, 7) = (cos[Q(m)7] — 1)/Q(m),
F(m, 7) = sin[Q(m) 7] /Q(m).

We are interested in the restoration of the initial state of the
system after the flying time 7 = 7. The restoration conditions
consist in the conservation of uncoupled density of the states for
the cavity field and population of the atomic states. According to
this condition we request that after the discrete interaction
time interval 7, the wave function of the pairs of atoms is
restored so that only the phases of the coefficients a, 3, 7,
:|\I/A([0)> = |\I]A/(tm’)> and |\IIF(IO)> = |\I/F(tnr)>» where |\I/A/(tnr)>
= aexp(ig)|E) + Bexp(ipy)|l) + vexp(iy,)|G). The pha-
Ses @, P and ., is determined from the restoration conditions.

Let us chose the phase for excites state |[E) in the Esp. (6).
Indeed, considering that phase ¢, is equal to 27n (n integer
number) we obtain the following expression for dynamical
trapping condition exp[—iH;1|E) = «|E)

sin[(Q(m + 1)1/2]
Q(m + 1)

..., j are the

—agC,J(j —m)(j+m+ 1)

+ iBCps1cos[Q2(m + 1)719/2]
— VCni28J(j +m+2)(j—m— 1)
y sin[Q(m + 1)7y/2] _0
Qm + 1)

)

We must obtain a similar expression for the intermediary state,
|7). This is possible if we chose the phase, ¢z = (1 + 2n),
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where n is integer number. According to this expression we
replace the coefficient in the solution (6) exp(—iH;m)|l) =
—all)

— angfl\/(j —m+ )(j+ m)%nz)m/z]
+ i8C,, cos[Q(m) 1y /2]
sin[Q(m) 1 /2]

Q(m)

= 8VCn+1 JG+m+1D(G—m =0 (8)

The condition for ground state |G) is obtained in a similar way

as the excited state exp(—iH;t + 7)|G) = «a|G)

sin[Q(m — 1)7y/2]
Qm — 1)

—aCp g J(j—m+2)(G+m — 1)

+ iBC,,—1cos[Q(m — 1)1y /2]

. - sinQ(m — 1)1
— _— 1 ————————
8C,\J(j + m)(j —m + 1) T— 0

As follows from the Exps. (7)—(9) during the flying time 7,
calculated from one of these equations the quantum system
formed from the bimodal cavity field and ensemble of two atoms
restore their initial disentangled state. All recurrence expressions
(7)—(9) are same. And the coefficients can be easily find from the
recursion relation

ig - -
= — — 1 + —
+ WG+ m 4+ 1) (G — m) Gy} tan[Q(m) 1/ 2].

This time interval becomes periodical. All three Exps.(8, 9)
are similar to the relation (7) if we make the substitution m—1
and m—1 through m in them respectively. We may find the
stationary trapping condition [34, 35] from the Exps. (7)—(9).
Indeed, dividing the Exp. (7) on the g sin[Q2(m)7y/2]/2(m)
and considering that intermediary state is unpopulated G = 0,
we obtain the stationary trapping condition

~aCy (G — m + DG+ m)
~ACui G+ m + DG — m) =0.

This Exp. (10) describes the stationary trapping for the three-
level system in interaction with the bimodal cavity field. It
describes the preparation of the cavity field according to the
preparation of the inversion of excited state relative to the
ground one.

(10)

3. Conclusions

The new solutions of two undistinguished two-level atoms
with a bimodal electromagnetic field in the Raman interaction
are proposed. This solution was simplified due to the fact that
the bimodal field was reduced to a ‘single’ mode system of
particles belonging to su(2) algebra. The exact solution of the
Schrodinger equations (3) described by matrix, representation
was analytically found.

The dynamical trapping condition and stationary one are
obtained. These effects may be applied for conditional proces-
sing of information as the function of trapping time [18, 19, 36]

obtained from one of the Exps (7)—(9), and preparation of the
atomic inversion of two undistinguished atoms flying through
the bimodal resonator. Such a three-level system can be used to
study the basic principles of interaction of single atom [36] and
an ensemble of atoms with radiation in Raman induced pro-
cesses [37]. Another application of trapping condition and cav-
ity-enhanced Raman transitions involving localized excitation
could potentially be used for gaining quantum control over the
nanomechanical motion of atoms or molecules and open a route
for molecular cavity optomechanics [37, 38].
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