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Abstract. We put forward a unimodular N = 1,d = 4 anti-de Sitter supergravity theory off
shell. This theory, where the Cosmological Constant does not couple to gravity, has a unique
maximally supersymmetric classical vacuum which is Anti-de Sitter spacetime with radius
given by the equation of motion of the auxiliary scalar field, i.e., S = % However, we see
that the non-supersymmetric classical vacua of the unimodular theory are Minkowski and de

Sitter spacetimes as well as anti-de Sitter spacetime with radius [ # L.
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1 Introduction

The N = 1,d = 4 supergravity theory whose maximally supersymmetric classical vacuum is
Anti-de Sitter (AdS) spacetime was introduced in reference [1]. Today, supergravity on Anti-
de Sitter spacetimes modulo some compact space play an important role in the gauge/gravity
duality [2, 3] program.

Unimodular gravity is a geometric theory of gravity which furnishes a Wilsonian solution
to the problem of the huge discrepancy that exists between the experimental value of the
Cosmological Constant and the theoretical value of the latter as obtained within the quantum
field theory framework. Indeed, in unimodular gravity the vacuum energy does not gravitate
— see references [4] to [25], for further information.

A chief feature of unimodular gravity is that its gauge group is not the group of diffeo-
morphisms but a subgroup of it, namely: the group of transverse diffeomorphisms. Currently,
gauge symmetries are viewed not as fundamental concepts but as redundancies introduced
so that locality is manifest in the Lagrangian formalism. These redundancies give rise to
unphysical degrees of freedom and one has to show that they do not contribute to the ob-
servables of the theory. From this point of view, unimodular gravity has fewer redundancies
than General Relativity and, hence, one has to deal with fewer unphysical degrees of freedom.

It has been shown in reference [26] that there is a unimodular counterpart of N = 1,
d = 4 Poincaré supergravity such that the supergravity algebra closes — off-shell — on trans-
verse diffeormorphisms, Lorentz transformations and unimodular supergravity transforma-
tions. As seen in [26], AdS is a non-supersymmetric vacua of the unimodular supergravity
theory introduced in [26]. This is, of course, at odds with the situation that one finds in the
standard — i.e., non-unimodular — N = 1,d = 4 Poincaré supergravity theory. It is thus
interesting to see whether a unimodular N = 1,d = 4 supergravity theory can be formulated
so that Anti-de Sitter spacetime be a maximally supersymmetric vacuum of that theory.

The purpose of this note is to show that there is a unimodular supergravity theory
that is, clearly, the unimodular counterpart of the N = 1,d = 4 AdS supergravity theory
introduced in [1]. Our starting point will be the unimodular gravity theory in [26] — to keep
the number of fields the same as in its standard counterpart, although there exist alternative
formulations of unimodular N = 1, d = 4 supergravity — see references [27, 28], which involve
the introduction of additional fields. In [28] de Sitter spacetime occurs as a supersymmetry
breaking vacuum. The coupling of 3/2-spin fermions to unimodular gravity has also been
discussed in reference [29] — see reference [30] for Dirac fermions.



2 Off-shell unimodular N = 1,d = 4 AdS supergravity

Let e}, and 1, be the graviton vierbein and the gravitino field, respectively, which satisty the
following constraints
e=dete, =1, ", =0. (2.1)

We define the action, Sy aqssugra, of the off-shell unimodular N = 1,d = 4 AdS supergravity
to be

Svadssucara = Susc + S, (2.2)

where
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In the previous equations S, P and A, are the auxiliary fields and y#1#2#3 = L5~ (—1)
AP ) () AH7(3) ;g being the signature of the permutation w. S is a scalar field. P is a
pseudo-scalar field and A, is a pseudo-vector field.

Let us introduce the following infinitesimal transformations
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The symbol w?(e<,1),) denotes the spin connection with torsion:

w“ab(eg’ %) = w“ab(eg) + K,uab(efﬂ 1/10),
b il i) Ta_ b b (2.5)
K™ (e w0) = i (@ =B + 994, )

wuab(eg) being the Levi-Civita spin connection for the vierbein ej;.



It has been shown in reference [26] that the transformations in (2.4) preserve the con-
straints in (2.1) provided the infinitesimal parameter e satisfies the following equation:

2
YWD w(es, vq)]e + i%(%ﬁbwahad)b + zzg(S — iy5P)e + i%%vl’eA,, =0. (2.6)

From now on we shall assume that e in (2.4) satisfies (2.6).

Let us show that Syagssugra in (2.2) is invariant under the transformations in (2.4).
We have to show that the variation, d.5;, of St under these transformations vanishes, for it
has already been shown in reference [26] that S in (2.3) is invariant under the transformations
in question.

In the sequel we shall take advantage of the identity

i
I = 2 s, (27)
where €12 = 1 and 4" = %[fy“,fy’j].
It is not difficult to show that
6 [d*x S = _% / d*r P @5y, Dby — ig / diz eysy N Ay, (2.8)

Next, taking into account that é.(v*1,) = 0, one gets
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after using
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Finally, applying a Fierz rearrangement to the second summand in (2.10), one gets that
0eSL =0,

upon some Dirac algebra. We thus have shown that the transformations in (2.4) leave the
unimodular N = 1,d = 4 AdS action in (2.2) invariant provided the infinitesimal parameter
€ is a solution to equation (2.6).

It can be shown — the reader is referred to reference [26] for the proof — that if F
denotes generically the fields in the transformations in (2.4), and €; and ey are infinitesimal
parameters satisfying (2.6), then

[0er, 0ca) F = 0PV F 4 60 F 4 60 F. (2.11)



Here 5?313) is a transverse diffeomorphism with parameters &, 6/(\Lorentz) denotes a Lorentz

transformation with parameters A% and dx is given by the supergravity transformations
in (2.4) with parameter X instead of €. £, A% and X are given by the following equations
p_ o
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&* is such that 0,£" = 0 and X satisfies (2.4). It is thus clear that the transformations in (2.4)
can be rightly called off-shell unimodular N = 1,d = 4 supergravity transformations.

3 Unimodular N = 1,d = 4 AdS supergravity and its classical solutions

The equation of motion of the auxiliary fields S, P and A, in the action in (2.2) read

3
S=—, P=0 d A,=0 3.1
— and A, =0, (3.)
respectively. Let us remove the auxiliary fields S, P and A, from the action in (2.2) by
imposing their equations of motion. Thus, we obtain the following action

SO0 = 1 fats [Rlute vp)) +24] = 5[4, Dulu(eh 6,y + o7 [at 50,
(3.2)
where the A = —3/L? and e = 1 and y#%,, = 0. Notice that the Cosmological Constant does
not couple to gravity as befits a unimodular theory of gravity.
The supergravity transformations that leave S(©N) invariant are obtained by imposing
the equation of motion in (3.1) on the transformations in (2.4). Thus one obtains
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The classical solutions — the classical vacua — of the theory whose action is S(©ON)

in (3.2) are those field configurations, (ef;, ), for which the action S (ON) i5 stationary and
1, = 0. Hence, these field configurations (eZ, ¥, = 0) are solutions to the unimodular gravity
equations in vacuum

1
Ry — 7Ry = 0. (3.5)

R,, and R denote the Ricci tensor and the scalar curvature for the unimodular metric
Juv = €,€av, respectively. It is well known that the space of solutions to (3.5) is the space of
Lorentzian Einstein manifolds. Hence, Minkowski, de Sitter and Anti-de Sitter are classical
vacua of the theory with action S(ON) in (3.2). However, both Minkowski and de Sitter



spacetimes break supersymmetry, whereas Anti-de Sitter with radius L is maximally su-
persymmetric. Indeed, given a gravitational background, ej;, ¥, = 0 is invariant under a
supergravity transformations with parameter e if and only if

0= K6ty = Dulu (€l + srome = Dlih(eh, vlle+ grope =0 (3.)

Hence, ¢ must be a Killing spinor of the gravitational background in question. Notice that
when v, = 0, the Killing spinor equation in (3.6) implies equation (3.4), so there is no clash
between them.

It is well known that for Minkowski and de Sitter spacetimes no € exists that solves the
killing equation in (3.6). Hence, they are not supersymmetric vacua. On the other hand, if
the gravitational background is Anti-de Sitter with radius L, there exists a maximal number
of independent solutions to (3.6). Notice that if the radius, [, of the anti-de Sitter spacetime
is not L, we still have a solution to (3.5) — i.e., a classical vacuum, but, this vacuum breaks
supersymmetry in a maximal way. Indeed, the integrability condition for the killing equation
n (3.6) reads

1
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whereas we have RZ?/ = l%(e/‘jeg - eﬁei) for a d = 4 Anti-de Sitter spacetime with radius /.

4 Conclusions and outlook

We have shown that there exists a unimodular N = 1,d = 4 AdS supergravity where the
supergravity transformations involve a length L. This theory has AdS with radius L as
its maximally supersymmetric classical vacuum. An yet, Minkowski spacetime, de Sitter
space-time and anti-de Sitter with radius [ # L are classical vacua of the theory, which —
spontaneously — break supersymmetry in a maximal way. Further, as in non-supersymmetric
unimodular gravity the vacuum energy does not gravitate.

It will be very interesting to develop a superconformal approach to unimodular su-
pergravity by adapting or generalizing the standard — see chapter 16 of [31] — approach
to supergravity. Thus one will be able to properly compare the family of theories —
parametrized by L, the AdS radius — presented here with the family of supergravity the-
ories constructed in [32, 33]. Notice that the family of supergravity theories in the unitary
gauge and parametrized by f and m — see eq. (4.10) of [32] — presented in [32, 33] admits
Minkowski and AdS as vacua, these vacua are always maximally supersymmetric; wehereas
in the unimodular supergravity theory introduced in this paper, Minkowski spacetime and
AdS with appropriate radius are vacua which break supersymmetry. It would appear that
the family of unimodular supergravity theories we have put forward here is not altogether
equivalent to the family of theories in [32, 33]. However, as we have just said, to settle this
issue properly will demand the construction of a superconformal approach to unimodular
supergravity and this lies outside the scope of this paper.



Acknowledgments

We are very much indebted to Prof. E. Alvarez for countless enlightening discussions on
unimodular supergravity. This work has been partially supported by the Spanish Ministerio
de Ciencia, Innovacién y Universidades through grant PGC2018-095382-B-100. This work has
also received funding from the Spanish Research Agency (Agencia Estatal de Investigacion)
through the grant IFT Centro de Excelencia Severo Ochoa SEV-2016-0597, and the European
Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grants agreement No. 674896 and No. 690575. We also have been partially supported by
FPA2016-78645-P (Spain). RSG is supported by the Spanish FPU Grant No. FPU16/01595.

References

[1] P.K. Townsend, Cosmological Constant in Supergravity, Phys. Rev. D 15 (1977) 2802
[INSPIRE].

[2] M. Ammon and J. Erdmenger, Gauge/gravity duality: Foundations and applications,
Cambridge University Press (2015) [INSPIRE].

[3] H. Nastase, Introduction to the ADS/CFT Correspondence, Cambridge University Press (2015)
[INSPIRE].

[4] J.J. van der Bij, H. van Dam and Y.J. Ng, The Ezchange of Massless Spin Two Particles,
Physica A 116 (1982) 307.

[5] W. Buchmiiller and N. Dragon, Finstein Gravity From Restricted Coordinate Invariance, Phys.
Lett. B 207 (1988) 292 [nSPIRE].

[6) W. Buchmiiller and N. Dragon, Gauge Fizing and the Cosmological Constant, Phys. Lett. B
223 (1989) 313 [InSPIRE].

[7] M. Henneaux and C. Teitelboim, The Cosmological Constant and General Covariance, Phys.
Lett. B 222 (1989) 195 [INSPIRE].

[8] G.F.R. Ellis, H. van Elst, J. Murugan and J.-P. Uzan, On the Trace-Free Einstein Equations as
a Viable Alternative to General Relativity, Class. Quant. Grav. 28 (2011) 225007
[arXiv:1008.1196] [INSPIRE].

[9] G.F.R. Ellis, The Trace-Free Einstein Equations and inflation, Gen. Rel. Grav. 46 (2014) 1619
[arXiv:1306.3021] INSPIRE].

[10] L. Smolin, The Quantization of unimodular gravity and the cosmological constant problems,
Phys. Rev. D 80 (2009) 084003 [arXiv:0904.4841] INSPIRE].

[11] E. Alvarez, Can one tell Einstein’s unimodular theory from FEinstein’s general relativity?, JHEP
03 (2005) 002 [hep-th/0501146] [INSPIRE].

[12] J. Kluson, Canonical Analysis of Unimodular Gravity, Phys. Rev. D 91 (2015) 064058
[arXiv:1409.8014] [NSPIRE].

[13] I.D. Saltas, UV structure of quantum unimodular gravity, Phys. Rev. D 90 (2014) 124052
[arXiv:1410.6163] [INSPIRE].

[14] A. Eichhorn, The Renormalization Group flow of unimodular f(R) gravity, JHEP 04 (2015)
096 [arXiv:1501.05848] [INSPIRE].

[15] E. Alvarez, S. Gonzélez-Martin, M. Herrero-Valea and C.P. Martin, Quantum Corrections to
Unimodular Gravity, JHEP 08 (2015) 078 [arXiv:1505.01995] [INSPIRE].

[16] R. Bufalo, M. Oksanen and A. Tureanu, How unimodular gravity theories differ from general
relativity at quantum level, Eur. Phys. J. C 75 (2015) 477 [arXiv:1505.04978] [INSPIRE].


https://doi.org/10.1103/PhysRevD.15.2802
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D15,2802%22
http://inspirehep.net/record/1376202
http://inspirehep.net/record/1415011
https://doi.org/10.1016/0378-4371(82)90247-3
https://doi.org/10.1016/0370-2693(88)90577-1
https://doi.org/10.1016/0370-2693(88)90577-1
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B207,292%22
https://doi.org/10.1016/0370-2693(89)91608-0
https://doi.org/10.1016/0370-2693(89)91608-0
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B223,313%22
https://doi.org/10.1016/0370-2693(89)91251-3
https://doi.org/10.1016/0370-2693(89)91251-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B222,195%22
https://doi.org/10.1088/0264-9381/28/22/225007
https://arxiv.org/abs/1008.1196
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1196
https://doi.org/10.1007/s10714-013-1619-5
https://arxiv.org/abs/1306.3021
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3021
https://doi.org/10.1103/PhysRevD.80.084003
https://arxiv.org/abs/0904.4841
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4841
https://doi.org/10.1088/1126-6708/2005/03/002
https://doi.org/10.1088/1126-6708/2005/03/002
https://arxiv.org/abs/hep-th/0501146
https://inspirehep.net/search?p=find+EPRINT+hep-th/0501146
https://doi.org/10.1103/PhysRevD.91.064058
https://arxiv.org/abs/1409.8014
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8014
https://doi.org/10.1103/PhysRevD.90.124052
https://arxiv.org/abs/1410.6163
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.6163
https://doi.org/10.1007/JHEP04(2015)096
https://doi.org/10.1007/JHEP04(2015)096
https://arxiv.org/abs/1501.05848
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05848
https://doi.org/10.1007/JHEP08(2015)078
https://arxiv.org/abs/1505.01995
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.01995
https://doi.org/10.1140/epjc/s10052-015-3683-3
https://arxiv.org/abs/1505.04978
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04978

[17]
[18]
[19]

[20]

[21]
[22]

23]

24]
25]
26]
[27)
28]

[29]

E. Alvarez, S. Gonzalez-Martin and C.P. Martin, Unimodular Trees versus Finstein Trees, Eur.
Phys. J. C 76 (2016) 554 [arXiv:1605.02667] INSPIRE].

C.P. Martin, Unimodular Gravity and the lepton anomalous magnetic moment at one-loop,
JCAP 07 (2017) 019 [arXiv:1704.01818] INSPIRE].

A.O. Barvinsky and A.Y. Kamenshchik, Darkness without dark matter and energy —
generalized unimodular gravity, Phys. Lett. B 774 (2017) 59 [arXiv:1705.09470] [INSPIRE].

S. Gonzalez-Martin and C.P. Martin, Do the gravitational corrections to the B-functions of the
quartic and Yukawa couplings have an intrinsic physical meaning?, Phys. Lett. B 773 (2017)
585 [arXiv:1707.06667] [INSPIRE].

R. de Leén Ardén, N. Ohta and R. Percacci, Path integral of unimodular gravity, Phys. Rev. D
97 (2018) 026007 [arXiv:1710.02457] [INSPIRE].

R. Percacci, Unimodular quantum gravity and the cosmological constant, Found. Phys. 48
(2018) 1364 [arXiv:1712.09903] [INSPIRE].

S. Gonzélez-Martin and C.P. Martin, Unimodular Gravity and General Relativity UV divergent
contributions to the scattering of massive scalar particles, JCAP 01 (2018) 028
[arXiv:1711.08009] [INSPIRE].

M. Herrero-Valea, What do gravitons say about (unimodular) gravity?, JHEP 12 (2018) 106
[arXiv:1806.01869] [INSPIRE].

G.P. De Brito, A. Eichhorn and A.D. Pereira, A link that matters: Towards phenomenological
tests of unimodular asymptotic safety, JHEP 09 (2019) 100 [arXiv:1907.11173] [INSPIRE].

J. Anero, C.P. Martin and R. Santos-Garcia, Off-shell unimodular N =1, d = 4 supergravity,
JHEP 01 (2020) 145 [arXiv:1911.04160] [INSPIRE].

H. Nishino and S. Rajpoot, Unimodular supergravity, Phys. Lett. B 528 (2002) 259
[hep-th/0107202] [INSPIRE).

S. Nagy, A. Padilla and 1. Zavala, The Super-Stickelberg procedure and dS in Pure
Supergravity, arXiv:1910.14349 [INSPIRE].

D. Blas, Transverse Symmetry and Spin-3/2 Fields, Class. Quant. Grav. 25 (2008) 154009
[arXiv:0803.4497] [INSPIRE].

[30] Y. Bonder and C. Corral, Unimodular Finstein-Cartan gravity: Dynamics and conservation

[31]

[32]

[33]

laws, Phys. Rev. D 97 (2018) 084001 [arXiv:1802.04795] [INSPIRE].

D.Z. Freedman and A. Van Proeyen, Supergravity, Cambridge University Press (2012)
[INSPIRE].

E.A. Bergshoeff, D.Z. Freedman, R. Kallosh and A. Van Proeyen, Pure de Sitter Supergravity,
Phys. Rev. D 92 (2015) 085040 [Erratum ibid. D 93 (2016) 069901] [arXiv:1507.08264]
[INSPIRE].

F. Hasegawa and Y. Yamada, Component action of nilpotent multiplet coupled to matter in 4
dimensional N =1 supergravity, JHEP 10 (2015) 106 [arXiv:1507.08619] [INSPIRE].


https://doi.org/10.1140/epjc/s10052-016-4384-2
https://doi.org/10.1140/epjc/s10052-016-4384-2
https://arxiv.org/abs/1605.02667
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.02667
https://doi.org/10.1088/1475-7516/2017/07/019
https://arxiv.org/abs/1704.01818
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.01818
https://doi.org/10.1016/j.physletb.2017.09.045
https://arxiv.org/abs/1705.09470
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.09470
https://doi.org/10.1016/j.physletb.2017.09.011
https://doi.org/10.1016/j.physletb.2017.09.011
https://arxiv.org/abs/1707.06667
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.06667
https://doi.org/10.1103/PhysRevD.97.026007
https://doi.org/10.1103/PhysRevD.97.026007
https://arxiv.org/abs/1710.02457
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.02457
https://doi.org/10.1007/s10701-018-0189-5
https://doi.org/10.1007/s10701-018-0189-5
https://arxiv.org/abs/1712.09903
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.09903
https://doi.org/10.1088/1475-7516/2018/01/028
https://arxiv.org/abs/1711.08009
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.08009
https://doi.org/10.1007/JHEP12(2018)106
https://arxiv.org/abs/1806.01869
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.01869
https://doi.org/10.1007/JHEP09(2019)100
https://arxiv.org/abs/1907.11173
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.11173
https://doi.org/10.1007/JHEP01(2020)145
https://arxiv.org/abs/1911.04160
https://inspirehep.net/search?p=find+EPRINT+arXiv:1911.04160
https://doi.org/10.1016/S0370-2693(02)01214-5
https://arxiv.org/abs/hep-th/0107202
https://inspirehep.net/search?p=find+EPRINT+hep-th/0107202
https://arxiv.org/abs/1910.14349
https://inspirehep.net/search?p=find+EPRINT+arXiv:1910.14349
https://doi.org/10.1088/0264-9381/25/15/154009
https://arxiv.org/abs/0803.4497
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.4497
https://doi.org/10.1103/PhysRevD.97.084001
https://arxiv.org/abs/1802.04795
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.04795
https://inspirehep.net/search?p=find+IRN+9669132
https://doi.org/10.1103/PhysRevD.93.069901
https://arxiv.org/abs/1507.08264
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08264
https://doi.org/10.1007/JHEP10(2015)106
https://arxiv.org/abs/1507.08619
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.08619

	Introduction
	Off-shell unimodular N = 1, d = 4 AdS supergravity
	Unimodular N = 1, d = 4 AdS supergravity and its classical solutions
	Conclusions and outlook

