
J
C
A
P
0
3
(
2
0
2
0
)
0
0
2

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Constant roll and primordial black
holes

Hayato Motohashi,a Shinji Mukohyamaa,b and Michele Oliosia

aCenter for Gravitational Physics, Yukawa Institute for Theoretical Physics,
Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
bKavli Institute for the Physics and Mathematics of the Universe (WPI),
The University of Tokyo Institutes for Advanced Study, The University of Tokyo,
5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan

E-mail: hayato.motohashi@yukawa.kyoto-u.ac.jp,
shinji.mukohyama@yukawa.kyoto-u.ac.jp, michele.oliosi@yukawa.kyoto-u.ac.jp

Received November 10, 2019
Accepted January 31, 2020
Published March 2, 2020

Abstract. The constant-roll inflation with small positive value of the constant-roll parameter

β ≡ φ̈

Hφ̇
= const. has been known to produce a slightly red-tilted curvature power spectrum

compatible with the current observational constraints. In this work, we shed light on the
constant-roll inflation with negative β and investigate how a stage of constant-roll inflation
may realize the growth in the primordial curvature power spectrum necessary to produce
a peaked spectrum of primordial black hole abundance. We first review the behavior of
constant-roll models in the range of parameters −3

2 < β < 0, which allows for a constant-
roll attractor stage generating a blue-tilted curvature power spectrum without superhorizon
growth. As a concrete realization, we consider a potential with two slow-roll stages, sepa-
rated by the constant-roll stage, in a way that satisfies the current constraints on the power
spectrum and the primordial black hole abundance. The model can produce primordial black
holes as all dark matter, LIGO-Virgo events, or OGLE microlensing events. Due to the range
of different scalar tilts allowed by the constant-roll potential, this construction is particularly
robust and testable by future observations.
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1 Introduction

Primordial black holes (PBH) can be generated from the direct collapse of a local peak
of primordial perturbations (from the tail of their distribution) at horizon reentry, if their
amplitude is sufficiently large. Masses of PBHs vary depending on the time of reentry at
primordial epoch e.g. during radiation domination, and hence the denomination “primordial”.
PBHs can fill a number of interesting roles (for a review see [1–3]), such as constituting all
or a fraction of dark matter, or being the origin of the LIGO-Virgo binary black hole merger
events [4, 5] or OGLE 5-year microlensing events [6], for the latter of which a potential
connection to “Planet 9” was also considered [7].

It was clarified that asking for a sharp increase in the power spectrum responsible for
production of PBHs in canonical single-filed inflation requires to go beyond the standard

slow-roll (SR) scenario where φ̈

Hφ̇
≈ 0 [8]. A scenario that has been explored in this context

is ultra-slow-roll (USR) [9, 10], which allows, with the relation φ̈

Hφ̇
= −3 and through an

extremely flat potential, for a scalar spectral tilt ns − 1 = 3. In addition to its intrinsic
interest, USR has been found in [8, 11] to be a good modelization of inflection-point-type
potentials (notably [12]), also believed to produce a spike in the scalar power spectrum. The
transient stage of USR is characterized by a growing mode of curvature perturbation on
superhorizon scales, which indeed allows for a steep growth of the power spectrum. However
this is by no means a necessary condition for a peak on small scales.

In the present work, we concentrate instead on a broader class of models, the constant-
roll (CR) inflation, which generalizes SR and USR, allows for red-/blue-tilted spectrum, and
does not necessarily yield the growing superhorizon mode [13]. The constant-roll models

possess exact solutions, for which the constant-roll condition, φ̈

Hφ̇
≡ β = const. for canonical

inflation, is exactly satisfied [14–17] (see also [18–21] for earlier attempts). The canonical
constant-roll inflation with parameter β ≈ 0.015 generates red-tilted spectrum compatible
with CMB constraints [14, 15] (see also [22]). On the other hand, the dynamics of the
inflaton with a different range of the constant-roll parameter has been also extensively studied
recently [23–25].
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In this work, we focus on the constant-roll inflation with the parameter range −3
2 < β <

0 and apply it to the generation of PBHs. We show that it indeed offers an alternative to
the transient USR stage as a way to increase the power spectrum rapidly, which in turn may
help model the generation of PBHs. With this parameter range, we can obtain not only the
tilt ns−1 = 3 of the scalar power spectrum in the USR limit,1 but also various blue tilts with
0 < ns−1 < 3. In contrast to USR models, we do not have superhorizon growth of curvature
perturbations. The possibility to adjust the tilt is also interesting in that it renders the PBH
production more robust to other observations. Near-future observations will provide precise
constraints on the primordial power spectrum on small scales, which will allow us to test the
constant-roll scenario.

This paper is organised as follows. In section 2, we review the CR scenario and the
properties of its primordial power spectra. In section 3, we explore a three-stage potential,
in particular considering constraints on the curvature power spectrum. In section 4 we show
with a three-stage potential how a viable PBH abundance can be produced. Finally, in
section 5 we discuss our results.

2 Blue-tilted spectrum from constant-roll

In this section we review the canonical constant-roll inflation [14]2 and the possibility of
obtaining a blue-tilted spectrum. We first review the constant-roll background dynamics in
section 2.1, in particular for the parameter region −3

2 < β < 0, and then scalar and tensor
perturbations in section 2.2.

2.1 Background dynamics

The dynamics of canonical single-field inflation is governed by the Einstein equations

3M2
PlH

2 =
1

2
φ̇2 + V (φ) , (2.1)

−2M2
PlḢ = φ̇2 , (2.2)

and the Klein-Gordon equation

φ̈+ 3Hφ̇+ Vφ = 0 , (2.3)

where MPl ≡ (8πG)−1/2 is the reduced Planck mass, a(t) is the scale factor of a
flat Friedmann-Lemâıtre-Robertson-Walker spacetime with the measure ds2 = −dt2 +
a2(t)δijdx

idxj , H ≡ ȧ/a is the Hubble rate of expansion, an upper dot denotes a deriva-
tive w.r.t. t, and derivatives of the potential are denoted with subscripts, i.e. Vφ ≡ ∂V/∂φ.

In the standard slow-roll approximation one neglects φ̈ in (2.3), whereas in the ultra-

slow-roll inflation one sets Vφ = 0. Hence they correspond to requiring φ̈

Hφ̇
≈ 0 or φ̈

Hφ̇
= −3,

1Note that ns−1 = 3 is obtained without considering other stages of inflation. Matching the USR potential
to a SR pre-transient stage leads to the maximum tilt ns − 1 = 4 [26]. An even steeper tilt was found in [27],
making use of a non-SR pre-transient stage.

2Our definition of constant-roll is the condition (2.4), based on the original work [13, 14]. Note that some

variant of the CR condition has been considered in the literature, e.g. in [28] the case φ̈

Hφ̇
∼ const. . −3 was

considered to describe a potential with a small barrier. Within the scope of the present work, this situation
can indeed be understood as an approximate CR behavior. However, since the CR parameter space and the
potential studied are rather different, the respective conclusions are a priori independent.
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respectively. The constant-roll inflation generalizes these cases, and is defined by a constant
rate of roll

β ≡ φ̈

Hφ̇

!
= const. , (2.4)

where β is a constant parameter characterising the model. (In other works on CR inflation
other notations have been used, notably α ≡ −(3 + β) in [14] and η ≡ −β in [25].) In
particular, the SR limit corresponds to β → 0, and the USR limit is β → −3. Depending
on the value of β, the CR condition (2.4) leads to several sets of potential and background
evolution, which can be obtained as exact solutions of the system of differential equations
by using the Hamiltonian-Jacobi formalism. A cos-type potential with β ≈ 0.015 generates
a slightly red-tilted spectrum with a small tensor-to-scalar ratio compatible with the latest
observational constraints [14, 15]. On the other hand, here we focus on a cosh-type potential
for β < 0 (see eq. (19) of [14]) i.e.

V (φ) = 3M2M2
Pl

{
1− 3 + β

6

[
1− cosh

(√
2|β| φ

MPl

)]}
, (2.5)

for which the exact solution for the background evolution is given by

φ = MPl

√
2

|β|
ln

[
coth

(
|β|
2
Mt

)]
, (2.6)

H = M coth(|β|Mt), (2.7)

where M is the energy scale of inflation. Out of all possibilities, we focus here on the range
−3

2 < β < 0, which allows for frozen super-Hubble curvature modes and a blue-tilted power
spectrum, as reviewed further on.

While the CR potential (2.5) allows the exact solution (2.6), the background evolution
of the inflationary system for various initial conditions has to be checked numerically. For
convenience in the numerical integration, we use dimensionless variables ϕ ≡ φ/MPl and
h ≡ H/M , and the e-folding number N ≡ ln a

ai
. Solving for a range of initial conditions

{ϕ(0), ϕ′(0)} with a prime denoting the derivative w.r.t. N , we obtain the phase space tra-
jectories that characterize the background dynamics. It was clarified in [25] that for the CR
potential for a given value of β < −3/2 the numerical integration shows that the value of
φ̈

Hφ̇
approaches to −(3 + β), and hence in that case (including USR with β = −3) the CR

analytical solution (2.6) is not the attractor solution. In the present case, with −3
2 < β < 0,

the CR analytical solution (2.6) is the attractor of the system, which can then be simply
used to deduce the behavior of other quantities of interest. To illustrate the dynamics for
the parameter range we are interested in, we depict in figure 1 the phase space trajectories
for β = −1.4 and the corresponding CR analytical solution.

For further convenience, and in order to further characterize the dynamics, one may
estimate using the analytical solution (2.7) the slow-roll parameters in the Hubble hierarchy
εn (n = 1, 2, 3, · · · ), defined as customary

ε1 ≡ −
Ḣ

H2
, εn+1 ≡

ε̇n
Hεn

. (2.8)

While |εn| � 1 for the SR case, for the CR solution (2.7) for β < 0, these parameters
approach (in the limit N � 1) [14]

2ε1 = ε2n+1 ' −2βa2β , ε2n ' 2β . (2.9)
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Figure 1. Phase space evolution of the inflaton for the potential (2.5) with β = −1.4, where ϕ ≡
φ/MPl and ϕ′ ≡ dϕ/dN . The analytical CR solution (2.6) (dashed black) is the attractor solution
since in this case − 3

2 < β < 0.

In particular, ε2n may take a non-negligible, asymptotically constant value, while the odd-
indexed parameters, instead, quickly become very small. Hence, the asymptotic behavior is
2ε1 = ε2n+1 → 0 and ε2n → 2β, which is actually the same as those at the limit Mt → −∞
of the CR model for β > 0 with the cos-type potential.

In general, the production of PBHs as DM in canonical single-field inflation requires the
no go of slow roll [8]

− ∆ ln ε1
∆N

> O(1). (2.10)

Using the slow-roll parameters (2.9), this condition reads −2β > O(1). The USR β = −3 is
a particular example that satisfies the condition. More generally, it is actually possible for
the CR scenario with general β to satisfy this requirement.

The previous results allow us to estimate

1

z

d2z

dτ2
= a2H2

(
2− ε1 +

3

2
ε2 +

1

4
ε22 −

1

2
ε1ε2 +

1

2
ε2ε3

)
' (1 + β)(2 + β)

τ2
≡ ν2 − 1/4

τ2
, (2.11)

where τ is the conformal time with dt = a dτ , z ≡ a
√
ε1, and ν ≡ |β + 3/2|. Here, the first

equality exactly holds without any approximation, and the ' sign holds when ε1 and ε3 are
negligible and ε2 ' 2β. This result is useful for characterizing the perturbation equations
(see section 2.2).

As a preparation for the numerical study of perturbations, one may also ask how well the
CR analytical solution approximates a generic field-space trajectory. To answer this question
we check the evolution of 1

a2z
d2z
dτ2

for different initial conditions, and find that the analytical
solution supports a wide basin of attraction (see figure 2) and that it is reached within O(1)
e-folds. Therefore, even if one starts from initial conditions that are away from the attractor
solution, after several e-folds, the analytical solution describes the system very well.

2.2 Primordial power spectra

The curvature perturbations in Fourier space follow the Mukhanov-Sasaki (MS) equation

d2vk
dτ2

+

(
1

z

d2z

dτ2
+ k2

)
vk = 0 , (2.12)
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Figure 2. Evolution of the background contribution (2.11) to the Mukhanov-Sasaki equation (2.12)
for β = −1.4 with various sets of initial conditions. All converge within O(1) e-folds towards the
analytical solution.

where the first term in the parenthesis was determined in (2.11). The friction term is removed
by using the MS variable vk ≡

√
2MPlz ζk, instead of directly using the curvature perturbation

ζk in the comoving gauge. When working in dimensionless variables, it is convenient to use
k̃ ≡ k/M . Finally, the initial condition for each mode function is taken to be the Bunch-
Davies one, i.e.

vk
∣∣
kτ→−∞ =

1√
2k
e−ikτ . (2.13)

Using eq. (2.11), which defines the constant ν, one may predict the scalar curvature power
spectrum. As confirmed in [13, 14], for β > −3/2 the superhorizon solution of curvature
perturbations consists of a constant and a decaying mode, and there is no superhorizon
evolution in contrast to the case of USR. Hence, it is possible to maintain a CR stage for a
long time without incurring an excessive growth of perturbations. Given the standard form
of (2.11), the mode functions are given by the Hankel functions of the first type, i.e. [14]

vk(τ) =

√
−πτ
2

H(1)
ν (−kτ) . (2.14)

Then the scalar power spectrum is given by the standard result

∆2
ζ(k) ≡ k3

2π2
|ζk|2 =

H2

8π2M2
Plε1

22ν−1Γ(ν)2

π

(
k

aH

)3−2ν
, (2.15)

where |ζk| is evaluated at the horizon exit assuming that it is frozen on superhorizon scales.
From this expression one can predict the tilt of the scalar power spectrum as

ns − 1 = 3− 2ν = 3− |2β + 3| . (2.16)

Therefore, naively it would imply that the power spectrum is scale-invariant for β = 0 or −3,
i.e. SR or USR, red tilted for β < −3 or β > 0, and blue tilted for −3 < β < 0.

However, a caveat is that the power spectrum (2.15) is evaluated at the horizon exit.
For β < −3/2 the curvature perturbation actually grows on superhorizon scales until the end
of the CR stage, which should be taken into account for the evaluation of the amplitude and
tilt of the final power spectrum, in addition to the above calculation evaluated at the horizon
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exit. As emphasized above, it is also important to note that the CR (or USR for the limit
β → −3) solution for β < −3/2 is not the attractor solution.

On the other hand, the CR models with β > −3/2 are closer to the standard one since
it does not have the above subtleties. From (2.16) we see that β ≈ 0.015 can indeed explain
the observed red-tilted spectrum ns ≈ 0.97 [14, 15]. Here, instead, we focus on a possibility
for the CR stage to produce a blue-tilted spectrum on small scales, and hence focus on the
parameter range −3/2 < β < 0, for which the CR solution is the attractor and the spectrum
is blue with the tilt 0 < ns − 1 < 3 with curvature perturbation frozen on superhorizon
scales. The adjustable blue tilt in the CR inflation is useful for PBH production within
the framework of canonical single-field inflation, which shall be discussed in more detail in
sections 3 and 4 below.

One may repeat the previous steps for tensor perturbations, yielding a scale-invariant
spectrum [14]

∆2
t (k) =

2H2

π2M2
Pl

. (2.17)

3 Constructing a multi-stage potential

Building upon the results reviewed in section 2, in this section we construct a potential that
transits from a standard SR potential, which we here choose as the Starobinsky inflation [29],
which is favored by the Planck CMB data, to the CR potential (2.5) responsible for producing
a blue tilt, and then to the final SR stage that impedes the overproduction of PBHs and leads
to end of inflation. The first SR stage allows to satisfy the CMB constraints3 while having
a chance to produce PBHs from the CR stage. The Starobinsky potential in the Einstein
frame is given by

VSR1(ϕ) = m2M2
Pl

(
1− e−

√
2/3(ϕ−ϕs)

)2
, (3.1)

where m is the mass scale of the Starobinsky stage of inflation. Here we shifted the potential
by a constant ϕs to adjust the transition to the CR stage. Since we are mostly interested
in the peak value of the power spectrum generated during the CR stage as well as in the
typical behavior at the transition, and less in what occurs during the later stage of inflation,
we simply approximate the second SR stage by a linear potential

VSR2(ϕ) 'WSR2 ϕ+ ΛSR2 , (3.2)

with WSR2, ΛSR2 = const. For a more realistic model one should instead implement a po-
tential that smoothly transitions to a stage of reheating, which is however beyond the scope
of the present paper. Naturally, this latter stage should also ensure that the total number of
e-folds of inflation is sufficient (i.e. Ntot & 50).

Finally, as a phenomenological model for the transitions, we employ a tanh-type smooth
step-function,

Θ̃d(x) ≡ 1

2

[
1 + tanh

(x
d

)]
, (3.3)

with an adjustable width d.

3Note that alternatively one may consider a two-field model such as a curvaton scenario [30–32], in which
the curvaton would dominate the perturbation spectrum on CMB scales, and the CR field produces blue tilted
spectrum on small scales. In this work we do not explore further this simple alternative.
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Figure 3. The three-stage potential (3.4) with its different contributions, leading to the first SR
stage for ϕ & ϕ1, then the CR stage for ϕ1 . ϕ . ϕ2, and finally the second SR stage for ϕ . ϕ2.
The parameters are chosen as in (3.5).

The previous considerations lead ultimately to the full potential

V (ϕ) ≡ VCR(ϕ)Θ̃d1(ϕ1 − ϕ)Θ̃d2(ϕ− ϕ2)

+ VSR1(ϕ)Θ̃d1(ϕ− ϕ1)

+ VSR2(ϕ)Θ̃d2(ϕ2 − ϕ) , (3.4)

with ϕ1 > ϕ2, where d1 and d2 are two constants determining the width of the first and
second transitions. The potential VCR(ϕ) denotes the CR potential (2.5) expressed as a
function of ϕ ≡ φ/MPl. The potential (3.4) for the parameter set (3.5) below is represented
in figure 3.

We set initial conditions and adjust the transition period to make the scalar and tensor
power spectra generated during the first SR stage compatible with observational constraints.
In order to obtain the first transition approximately at the intended ϕ1, we adjust ϕs and
the ratio m/M . In particular, it is convenient to minimize the difference in the slope of
the potential between the first SR and CR stages. One may also adapt the width of the
transition, which we keep relatively small in this work.

To fix the details of the second transition from CR to SR, one needs to consider the PBH
distribution function. The second transition should indeed let the power spectrum decrease
shortly after reaching the threshold amplitude for sufficient PBH production. This guarantees
that the PBH mass distribution is peaked enough to satisfy the thin windows allowed by cur-
rent constraints, and also that the curvature power spectrum satisfies constraints on smaller
scales. Leaving the details of the PBH distribution to section 4, we specify here how to fix the
parameters in the potential: the two constants WSR2 and ΛSR2 are fixed in such a way that
the potential is continuous at ϕ = ϕ2 in the limit d2 → 0, i.e. VCR(ϕ2) = WSR2ϕ2 + ΛSR2 yet
that the slope of the potential increases enough to guarantee a drop in the power spectrum,
i.e. V ′CR(ϕ2) < WSR2; d2 is fixed such that the second transition is short enough (since the
field value becomes exponentially small in N during CR).
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Figure 4. Numerical evolution (black) of the first two SR parameters ε1,2 and the ratio ϕ̈/(Hϕ̇) for
the set of parameters (3.5). The analytical CR asymptotic values are also represented (dashed, green).
For these background quantities, the transitions last O(1) e-folds. The colored areas correspond to
the respective stages of our model (SR1, CR, SR2 ).

As an example realization, demanding that

β = −1.4 ,
m2

M2
= 3.13,

WSR2

V ′CR(ϕ2)
= 5 ,

ϕs = −5 , ϕ1 = 0.175, ϕ2 = 4.5× 10−6 ,

d1 = 10−2, d2 = 10−7, (3.5)

yields the potential and the background evolution shown in figures 3 and 4, respectively. In
figure 4, while SR stages are simply characterized by |ε1,2| � 1, the CR stage is recognized
by representing the condition (2.4). Each transition lasts for O(1) e-folds. In particular
the ratio m/M , as well as ϕ1 and ϕ2 were fixed from the requirement of the first transition
occurring about 5 e-folds after the CMB scales exit the horizon to satisfy the observational
constraints, and the second transition occurring after sufficient e-folds of CR to produce a
chosen abundance of PBHs (see section 4 for more details).

Turning to perturbations, the same set of parameters (3.5) leads to the curvature power
spectrum of figure 5. As for modes that exit the horizon during the first SR stage, scalar and
tensor perturbations satisfy the observational constraints. As expected, the power spectrum
on scales that exit the horizon during the CR stage is enhanced up to ∆2

ζ = O(10−2) to

– 8 –
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Figure 5. Scalar curvature power spectrum for the set of parameters (3.5) along with the constraint
on the scalar tilt and tensor-to-scalar ratio on CMB scales. The power spectrum respects the ob-
servational constraints such as that from Planck CMB measurements [33], µ-distortions (reproduced
from [26]), the European Pulsar Timing Array (EPTA) [34], or big bang nucleosynthesis (BBN)-
related measurements [35]. The latter two constraints are reproduced from [36]. Oscillations affect
the power spectrum near both transitions, for an effect lasting O(1) orders of magnitude in k. The
colored three stages of our model (SR1, CR, SR2 ) are represented according to the horizon crossing
scales, i.e. the scale kcross(N) ≡ a(N)H(N), where N is chosen in accordance to the same zones as
figure 4.

produce PBHs. The analytically predicted spectral tilt depicted as dashed line in figure 5
fits the numerical result well.

The transient behavior in the background shown in figure 4 is reflected to oscillations
in the power spectrum in figure 5. The power spectrum stabilizes to a nearly constant tilt
after the oscillatory behavior lasting O(1) magnitude orders of k. This oscillation can be
understood as follows. As is shown in figure 4, both the transition from SR1 to CR and
that from CR to SR2 are in fact characterized by the sharp increase in ε1 at the end of the
transient regimes. The increase causes a time dependence of the mass term 1

a2z
d2z
dτ2

, leading
to oscillations in the evolution of the norm of each complex curvature modes that cross the
horizon at the transitions. This leads to an elongated inspiral of the mode in the complex ζ
plane, which appears as oscillations in the power spectrum.

As shown in figure 5, the power spectrum should satisfy observational constraints on
different scales, in particular the most stringent one on CMB scales. We consider here the
Planck CMB measurements [33], which constrain the power spectrum, its tilt and the tensor-
to-scalar ratio, the µ-distortion (reproduced from [26], and note that y-distortion will place
a constraint on scales between those constrained by CMB and µ-distortion, which does not
affect the constraint on scalar tilt in the present case), as well as, along the lines of [36],
observations from the European Pulsar Timing Array (EPTA) [34], big bang nucleosynthesis
(BBN)-related measurements, and aLIGO measurements.

One may notice that in figure 5 the scalar power spectrum remains at ∆2
ζ ∼ 10−3 on

small scales after the peak. This originates from the linear approximation (3.2) of the second
SR potential VSR2(ϕ). As mentioned above, a more realistic choice of VSR2(ϕ) will transition
to a reheating stage, and will lead to a different small-scale power spectrum. However, the
PBH production primarily depends on the peak value of the power spectrum on scales that
exit the horizon during the CR stage. For this purpose the linear approximation (3.2) of the
potential VSR2(ϕ) is sufficient.
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Figure 6. The scalar power spectrum for three different values of β are impacted differently by the
Planck and µ-distortions constraints. The intermediate case β = −0.83 has both the CMB and the
µ-distortion constraints being relevant. Other constraints on smaller scales (not shown here), such as
those from gravitational waves, will have an impact for the lower tilt values (see e.g. figure 7).

One may also notice, on the latter half of the sharp increase of the power spectrum of
figure 5, that there is a gradually increasing deviation from the tilt expected for a pure CR
case. This behaviour can be understood as follows. In general, curvature modes continue
to evolve a few e-folds after the horizon exit. Without the transition from CR to SR2, this
evolution would allow the modes continue to grow and reach to the analytical prediction.
In the presence of the transition, this evolution is prevented, which causes the suppression
of the power spectrum observed in figure 5. Since the CR to SR2 transition occurs close
to the horizon exit on small scales, the amount of would-be enhancement prevented by the
transition increases. This is the reason why the suppression becomes larger on small scales
in figure 5.

As highlighted in section 2, the blue tilt of the scalar power spectrum is adjustable for
the CR inflation, which is one of the differences from the USR inflation. Hence, one can
obtain different ranges of PBH masses depending on the value of β. First, in order to reach
the largest PBH masses, one should consider large values of the tilt ns, therefore the limit
β → −3

2 . On the other hand, either a milder tilt or a later transition will both lead to
smaller PBH masses (this is also illustrated later in figures 7 and 8). Once β is chosen, other
parameters are adjusted to fit the constraints. Depending on the value of the tilt, different
sets of observational constraints will be relevant when calculating the maximum PBH mass
(which is simply related to the largest scale at which the amplitude of the perturbations
reaches the threshold value ∆2

ζ,PBH ≈ 10−2).
As an example, let us focus on the constraint on the power spectrum from CMB and

µ-distortions. Assuming a transition of ∼ 1 order of magnitude in terms of wavenumber
(indeed, one cannot simply connect both constraints, due to the oscillations in the curvature
power spectrum that occur at the transition), we can estimate the critical tilt

nµ+CMB ≈ 2.7 . (3.6)

corresponding to β = −0.83 at which both constraints (primarily upper bounds on ϕ1) from
CMB and µ-distortion are marginally satisfied, as depicted in figure 6. For tilts larger than
nµ+CMB, the principal constraint will be that from µ-distortions. On the other hand for mod-
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Figure 7. Scalar power spectrum for the three-stage potential (3.4) for values of β corresponding to
quasi-maximum and quasi-minimum tilts (solid and dashed, respectively) for each peak. Modes that
exit the horizon during the first SR stage corresponds to the CMB scales, while the intermediate CR
stage allows for the power spectrum to increase up to the threshold for PBH production. Here the
only restriction on the final SR stage is that the slope of the potential increases enough to ensure a
slight drop of the power spectrum after it reaches the threshold.

els with ns < nµ+CMB, the CMB, as well as other small scale constraints (such as that from
gravitational waves) will constrain the maximum PBH mass. This highlights the fact that
the CR inflation accommodates various possibilities of PBH production within the frame-
work of single-field inflation, and that it is robust to future improvements of observational
constraints and/or detections.

4 Primordial black hole production

In section 3 we presented the three-stage potential (3.4) that transits as SR1 → CR → SR2,
and highlighted that it allows various blue-tilted scalar spectra with the adjustable scalar
spectral tilt. In this section we connect these results to PBH abundance and compare it with
observational constraints.

To obtain the PBH abundance, we follow the treatment of [37] (and references therein)
that models the collapse of an overdense region with some simplifying assumptions. The
procedure consists in first evaluating the variance [38]

σ2(MPBH(k)) =
16

81

∫
d ln qW 2(q/k) (q/k)4 ∆2

ζ(q) , (4.1)

of the density contrast for the PBH mass of MPBH(k) coarse-grained by a window function
W (x), which we take the Gaussian W (x) = e−x

2/2. It then allows for an estimation within
Gaussian statistics of the formation rate

βPBH(MPBH) ' 1√
2π

σ(MPBH)

δc
e
− δ2c

2σ2(MPBH) , (4.2)

where the PBH mass MPBH is related to the wavenumber k via

MPBH(k)

1020 g
'
( γ

0.2

)( g∗
106.75

)− 1
6

(
k

7× 1012 Mpc−1

)−2
, (4.3)
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Figure 8. PBH abundance for several values of β, with the same parameters as in figure 7. Di-
verse observational constraints are represented, including that on extra-galactic radiation (EGγ) [1],
femto-lensing [40], long-livedness of white dwarfs (WD) [41], microlensing by the Subaru HSC [42],
Kepler [43] and by EROS-2 and previous related searches [44], the survival of ultra-faint dwarf (UFD)
galaxies [45], and the accretion on the CMB [46–49]. We also include the allowed parameter space
assuming a detection by OGLE [6]. Note that these constraints are constantly updated and improved:
for example, the femto-lensing and WD constraints have been contested in [50], and a further con-
straint in the same range of masses [51] has also been proposed. As an other example it has recently
been proposed that the HSC constraint be reconsidered [52].

in which g∗ is the number of relativistic degrees of freedom at PBH formation, and the
factor γ relates the cosmological horizon mass to the mass of the corresponding PBH. The
latter factor depends on the particulars of the formation process and has been the subject
of research, see e.g. [39], but we do not favor any specific value here, since several other
parameters (note the large sensitivity on the details of the inflationary background) have
still large error margins. Finally, the abundance of PBH over logarithmic mass intervals can
be approximated by

fPBH(MPBH) ≡ ΩPBH(MPBH)

Ωc
(4.4)

=

(
β(MPBH)

8× 10−15

)(
0.12

Ωch2

)( γ

0.2

) 3
2

(
106.75

g∗

) 1
4
(
MPBH

1020g

)− 1
3

.

Again, the calculations here can only be taken as rough approximations. Some approxima-
tions taken here (and thus partly in [37]) are that of spherical symmetry, constant PBH mass
after formation neglecting accretion and merger, and g∗ being almost equal to g∗s. However,
these estimations are sufficient to show the effectiveness of the PBH production in the CR
model.

Using the above relations, we convert various blue-tilted scalar power spectra shown in
figure 7 to the PBH abundances depicted in figure 8. Exact values of parameters character-
izing the potential (3.4) employed for figures 7 and 8 are listed in appendix A. We set other
parameters as the same proxy values (e.g. γ = 0.2, etc.) as given in (4.3) and (4.4).

The possibility to adjust the tilt of the power spectrum renders the CR model robust to
observations. Although the tilt of the power spectrum may be changed, this only marginally
affects the width of the PBH distribution function. In particular for large PBH masses, this
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is limited by the widest range of tilts allowed by the different constraints on the scalar power
spectrum. While a marginal difference may be produced nevertheless, as seen in figure 8,
for a given set of the PBH mass and abundance, the CR model allows a range of the scalar
tilt. In figure 7 are shown large tilt with β = −1.4, which is close to the maximum tilt with
β → −1.5, and quasi-minimum tilt for each peak.

In figures 7 and 8, we focused on three different PBH mass scales, each of which cor-
responds to PBHs as LIGO-Virgo events (red), OGLE events (purple), and all dark matter
(green), the first two of which could be possible detections of primordial black holes. First,
the LIGO-Virgo black holes, which, if shown to be PBHs, would necessitate the abundance
fPBH ∼ 10−3 at about 30M� [5]. In particular, the red solid line corresponds to the example
set of parameters (3.5). Next, OGLE reported a series of observations possibly consistent with
PBHs, which would imply a peaked distribution at fPBH ∼ 10−3/2 at about 1026–1028 g [6].
We have also chosen to reproduce this value in figure 8. Finally, we provided an example of
peak corresponding to PBH as all dark matter scenario at the window around 1021 g. Since
in this case the required PBH mass is lightest among the three examples, the widest range of
the scalar tilt is allowed as depicted in figure 7. Since for each case the transient CR scenario
allows various tilts of the power spectrum, it can be distinguished from the transient USR
scenario and be tested by future observations.

Once more, as explained in section 3, constant values of ∆2
ζ appeared in figure 7 on

small scales after the peaks are not important as they originate from the linear potential
approximation (3.2) of the second SR stage. Ultimately, a more realistic potential should
be implemented for the second SR stage to realize a smooth transition to a reheating stage,
which will also change the small-scale behavior of the power spectrum. However, the modi-
fication would not affect the estimation of PBH abundance very much. The linear potential
approximation is also sufficient to extract the typical effect of the transition on the power
spectrum.

5 Discussion

The constant-roll inflation with β ≡ φ̈

Hφ̇
≈ 0.015 has been known to produce a slightly red-

tilted scalar power spectrum compatible with the observational constraints. In this work, we
have instead shed light on the CR inflation with a different parameter range, −3

2 < β < 0,
for which a blue-tilted curvature power spectrum is generated during the CR attractor stage
without superhorizon growth of curvature modes, and have investigated how a stage of CR
inflation may lead to the production of PBHs. Indeed, PBHs may be generated once a (mildly
k-dependent) threshold value (approximately ∆2

ζ ∼ 10−2) for the curvature power spectrum
is reached, which can be easily realized in the CR model since the tilt is adjustable within
the range of 0 < ns − 1 < 3 for the aforementioned parameter range.

We have constructed a specific potential (3.4) with three stages. Indeed, the CR stage
generating the blue-tilted spectrum should be preceded and followed by SR stages with red
tilts in order to satisfy the existing constraints on the curvature power spectrum and on the
PBH distribution. We have implemented these three stages by using a Starobinsky inflation
— as a proxy for a SR stage satisfying the CMB constraints — in the region φ & φ1, the CR
stage in the region φ2 . φ . φ1, and finally a linear potential approximation in the region
φ . φ2 — again a proxy for a SR stage to prevent overproduction of PBHs. The matching
positions φ1 and φ2 are chosen to satisfy various observational constraints and to partially
regulate the PBH mass. We find that it is possible for the model to satisfy the observational
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constraints, and also to induce the PBH abundances necessary in case of a detection via e.g.
the growth of the family of LIGO-Virgo black holes, or the OGLE microlensing events [6], or
all of dark matter for MPBH ∼ 1021 g.

PBH production in the context of single-field inflation has already been studied in
several realizations, yet our construction has its own particularities. A stage of the CR
inflation, contrary to models which rely on a transient USR stage (such as some analyses
of the inflection point potential), in particular has several advantages: that the curvature
modes are frozen on superhorizon scales as in the standard SR inflation — which reduces
the amount of tuning needed for a desired blue-tilted stage —, that one does not need to
be apprehensive for a possible ambiguities in the USR model from stochastic effects on the
plateau of the potential, and that the tilt of the curvature power spectrum can be simply and
freely adjusted. The first and second features make the CR model theoretically economical,
whereas the third one implies that the CR model is robust to more precise observations,
for instance on the curvature power spectrum. Conversely, future observations constraining
small-scale power spectrum such as those planned by the next generation ground- and space-
borne gravitational wave observatories (see e.g. [36]) will allow further observational tests of
our model. We therefore find that the CR model is an interesting new way to modelize PBH
production at scales of interest.

Several further questions are left for future works. First, it would be interesting to
investigate non-Gaussianity of the three-stage CR model. While, a priori, one may expect
that it has a negligible impact on the PBH production (as is the case within USR, see [53]), a
dedicated study would be appropriate. It would be also interesting to replace the transitions
in the potential by a multi-field model, such as curvaton scenario, capable of generating the
desired power spectrum on every scale of interest. Finally, while we focused on the parameter
range −3

2 < β < 0 throughout the paper, it would be interesting to further explore the
possibilities offered by a wider range of CR models.
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A Example parameters

In this appendix, we report the parameters used to obtain the power spectra in figure 7, and
the PBH abundances in figure 8, up to normalization.

MPBH[g] 1021 1021 1028.5 1028.5 1034.5 1034.5

β − 3
10 −7

5 −101
40 −7

5 −4
5 −7

5

m2

M2
511
165

12940
4131

7770
2497

12940
4131

890
285

12940
4131

WSR2
V ′
CR(ϕ2)

2 5 5 5 5 5

ϕs −101
20 −5 −5 −5 −5 −5

ϕ1
177
1238

95
543

95
543

115
596

95
543

95
543

ϕ2
619

24988373
1

270396
429

28438807
68

16107079
83

10546385
223

50550681

d1 10−3 10−2 10−2 10−3 10−2 10−2

d1 10−7 10−7 10−7 10−7 10−7 10−7

Note that these exact values are only intended as an example, and in particular other pa-
rameters can yield comparable results.
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