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Abstract.  We review the state of the art of the problem of heat conduction 
in one dimensional nonlinear lattices. The peculiar role of finite size and time 
corrections to the predictions of the hydrodynamic theory is discussed. The 
emerging scenario indicates that when dealing with systems, whose spatial 
size is comparable with the mean-free path of peculiar nonlinear excitations, 
hydrodynamic predictions at leading order are no more predictive. We 
can conjecture that one should take into account estimates of subleading 
contributions, which could play a major role in some regions of the parameter 
space in ‘small’ systems.

Keywords: transport processes / heat transfer

R Livi

Heat transport in one dimension

Printed in the UK

034001

JSMTC6

© 2020 IOP Publishing Ltd and SISSA Medialab srl

2020

20

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/ab7125

3

Journal of Statistical Mechanics: Theory and Experiment

© 2020 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

1742-5468/ 20 /034001+9$33.00

mailto:roberto.livi@unifi.it
stacks.iop.org/JSTAT/2020/034001
https://doi.org/10.1088/1742-5468/ab7125
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/ab7125&domain=pdf&date_stamp=2020-03-02
publisher-id
doi


Heat transport in one dimension

2https://doi.org/10.1088/1742-5468/ab7125

J. S
tat. M

ech. (2020) 034001

Contents

1. Introduction	 2

2. Models and results: the standard scenario	 3

3. The role of finite size eects	 4

3.1.  The FPU-β model with long-range interactions...............................................5

3.2.  Anharmonic chains with nearest-neighbor asymmetric interactions.................5

3.3.  Toda lattice with a harmonic substrate potential............................................7

4. Conclusions	 8

References	 8

1.  Introduction

In the last decades heat transport in low-dimensional systems has been quite a debated 
problem, being characterized by unusual features like divergence of heat conductiv-
ity, superdiusion, the peculiar role played by nonlinearity, integrability and disorder, 
etc. We can summarize the overall scenario by saying that, at variance with what was 
first naively conjectured on the basis of chaos theory in spatially extended dynamical 
systems, heat conduction in low-dimensional systems exhibits anomalous behavior, 
characterized by a power-law divergence of the heat conductivity κ with the system 
size L, namely

κ ∼ Lγ ,� (1)
with γ > 0. This important physical property was first pointed out in [1, 2]. Nowadays 
we have realized that it emerges as a combined eect of reduced space dimensional-
ity and conservation laws, yielding non standard relaxation properties even in a linear 
response regime. For instance, anomalous heat conductivity has been typically observed 
in hamiltonian lattices where energy and momentum are conserved, with some remark-
able exception, like in the case of the rotor model [3], or similar models with a bounded 
potential. A typical setup adopted to check relations like (1) is a hamiltonian chain 
with a moderate temperature gradient applied at its boundaries. By varying the size 
L of the system one can directly check the dependence of κ on L. Alternatively, one 
can exploit the linear-response approach and measure the correlation function of the 
total energy-current J(t) of the same hamiltonian chain in equilibrium conditions. This 
quantity is found to behave as [2]

〈J(t)J(0)〉 ∝ t−(1−δ)
� (2)

with 0 � δ < 1. Making use of the Green–Kubo formula one can conclude that the heat 
conductivity κ diverges, while the relation between the space and time exponents boils 
down to γ = δ .

https://doi.org/10.1088/1742-5468/ab7125
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Nowadays we have come to a satisfactory theoretical explanation of such power-law 
divergences. For instance, fluctuating hydrodynamics accounts for the basic features 
of anomalous heat conduction in chains of nonlinearly coupled oscillators [4, 5], while 
rigorous predictions of the anomalous behaviour in stochastic conservative evolution of 
similar chains have been obtained [6, 7].

In order to provide a more detailed account of the standard scenario expected for 
anomalous heat conduction in low dimensions, in the next section we shortly review 
the results obtained for widely analyzed models, discussing also a case with long range 
interactions. Then we shall describe various examples where finite-size eects yield 
non-standard scenarios for what heat conduction is concerned.

2. Models and results: the standard scenario

A widely investigated model is the celebrated Fermi–Pasta–Ulam (FPU) chain, whose 
Hamiltonian reads

H =
L∑

n=1

p2n
2m

+ V (qn+1 − qn)� (3)

with

V (x) =
1

2
x2 +

α

3
x3 +

β

4
x4.� (4)

The canonically conjugated variables qn and p n represent the displacement of the n-th 
anharmonic oscillator from its equilibrium position and its momentum, respectively. 

The predicted value of the divergence exponent is γ = 1
3 [8]. This exponent identifies 

a universality class of models, including the alternate-mass hard-point gas [9, 10], 
the alternate-mass hard-point chain [11] and any other model exhibiting a leading 
cubic nonlinearity. When the cubic nonlinearity is suppressed (i.e. α = 0) the predicted 

divergence exponent is γ = 1
2
 [12], which has been found to be in common with other 

models like the harmonic chain with conservative noise [13], the alternate-mass hard-
point chain at zero pressure [11] and the FPU chain with zero compressibility [14]. It 
can be argued that all of the latter models have in common an eective leading quartic 
nonlinearity, at variance with the previously mentioned models.

Some eorts have been devoted also to study heat transport in chains with long-
range interactions (e.g. see [15–18]). This problem has been investigated for Hamiltonian 
chains of the form (3), with interaction potential

V =
1

2N0(α)

N∑
i=1

N∑
i �=j

v(qi − qj)

|i− j|α
,� (5)

where the generalized Kac factor

N0(α) =
1

N

N∑
i=1

N∑
j �=i

1

|i− j|α� (6)
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guarantees the extensivity of the Hamiltonian. Note that for α = 0 (mean-field inter-
action) N0(0)  =  N  −  1 reproduces the standard Kac prescription, while for α → +∞ 
(nearest-neighbor interaction) one has N0(+∞) = 1. Overall, for any fixed chain size N, 
N0(α) is a monotonic decreasing function of α, while the interval 0 < α < 1 identifies 
the parameter region corresponding to non-additive interactions in one dimension.

In two recent papers [19, 20] the authors considered the long-range versions of the 
rotors chain, namely

v(qi − qj) = 1− cos(qi − qj)� (7)
and of the FPU-β model

v(qi − qj) =
1

2
(qi − qj)

2 +
1

4
(qi − qj)

4 .� (8)

In fact, the nearest-neighbor versions (i.e. α → +∞) of the former model exhibits stan-
dard diusion of energy [3], while the latter is characterized by anomalous diusion 

with γ = 1
2
.

Nonequilibrium measurements of the rotors chain (7), with thermal reservoirs at 
dierent temperature, T1 > T2, acting at the chain ends, indicate that for α > 1 the 
resulting temperature profile interpolates linearly between T1 and T2. Despite the long 
range nature of the interaction this is a strong indication that a standard diusive 
process still governs energy transport through the chain, as in the limit α → +∞. For 
α < 1 the temperature profile progressively flattens, until reaching a constant bulk 
temperature T = (T1 + T2)/2 in the ‘mean-field’ limit α → 0+. In fact, in this limit 
the energy exchanged among rotors is irrelevant with respect to the amount of energy 
directly exchanged by each rotor with the thermal baths. Accordingly, any rotor even-
tually have to compromise between the two dierent temperatures imposed by the res-
ervoirs [19]. In this sense, the heat transport process is dominated by a sort of ‘parallel’ 
energy transport mechanism, because the transfer of energy from the reservoirs to the 
rotors is instantaneous, irrespectively of the distance of any rotor from the reservoirs. 
Said dierently, in this regime the mechanism of energy transport by sound waves is 
practically immaterial.

For α < 1 a similar scenario characterizes model (8). In fact, flat temperature profiles 
are observed also in this case and it has been checked that the same ‘parallel’ energy 
transport mechanism observed for rotors is at work. On the other hand, the scenario 
is definitely more complex for α > 1 and it seems to be strongly aected by finite size 
eects. In the next section we discuss this case as a first example of a gallery of cases 
where such eects play a crucial role in determining sizable deviation of transport  
properties from the standard scenario.

3. The role of finite size eects

In this section we illustrate several examples of how finite size eects may yield sizable 
modifications of heat transport in low-dimensional systems.

https://doi.org/10.1088/1742-5468/ab7125
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3.1. The FPU-β model with long-range interactions

This model, introduced at the end of the previous section, for α > 1 should be expected 

to reproduce the standard anomalous behavior with γ = 1
2
, predicted for its short range 

version (α → +∞). On the other hand, careful numerical investigations provide an 
overall scenario, where an anomalous diusion mechanism sets in, characterized by 

an exponent γ, which is much closer to the value 25, the one predicted by first-order 
mode-coupling theory [21]. Only for very large values of α (e.g. α = 5) and by perform-
ing very long numerical simulations on systems with very large values of L one can 

observe a slow increase of the estimate of γ from 25. This testifies at the strong eect 
of finite size corrections in the long-range version of this model, with respect to the 
standard scenario characterizing its short-range version, although no theoretical argu-
ment is presently available to explain the reason why the long-range version of the 
FPU-β model singles out the first order mode-coupling exponent, rather the expected 
one. As a further ‘surprise’, for α = 2 one finds that a flat temperature profile sets in, 
although, as clearly shown by numerics, the mechanism of transport along the chain 
certainly dominates over the parallel transport process. One could conjecture that 
this apparently ‘ballistic’ regime (similar to the one characterizing integrable models) 
emerges because for α = 2 the model is close to some (presently unknown) integrable 
approximation. Anyway, even by increasing the chain size L to the largest numerically 
available values the flat shape of the temperature profile is quite robust. In this sense 
we can guess that if finite size eects are again at work, in this case they are definitely 
more relevant than for any other value of α > 1.

Moreover, the structure factors of this long-range model for α > 1 indicate that the 
dynamical exponent z depends on α in a way that is certainly dierent form the one 
that could be expected on the basis of the theory of Lévy processes [20]. Last, but not 

least, by adding to potential (8) the cubic term v(qi − qj) =
1
3
(qi − qj)

3 one recovers the 
same dependence of z on α, up to α = 5. This is also a surprise, because in the limit 
α → +∞ the cubic and quartic versions of the short-range FPU-model should converge 
to dierent values of z. It is a matter of fact that no theoretical explanation is, at pres-
ent, available to cope with this puzzling scenario.

3.2. Anharmonic chains with nearest-neighbor asymmetric interactions

Several numerical investigations (e.g. see [22]) have pointed out that finite size cor-
rections are particularly relevant in anharmonic chains with asymmetric interactions, 
represented by Hamiltonian models of the following form:

H =
L∑

n=1

p2n
2m

+ V (qn+1 − qn)� (9)

with V (x) �= V (−x). A typical example in the Fermi–Pasta–Ulam model (4). For 
instance, there is a range of parameters where out of equilibrium measurements of the 
heat conductivity of this specific model are consistent with Fourier’s law, i.e. with a 
finite thermal conductivity. As shown in [23, 24] this eect is quite robust and persists 
for relatively large values of L (and, consistently, for large values of the simulation 

https://doi.org/10.1088/1742-5468/ab7125
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times). In fact, the expected theoretical prediction of a diverging heat conductivity (1) 
with γ = 1

3 can be recovered in simulations performed only for exceedingly large values 
of L in this region of the parameter space. It has been argued that this crossover from 
standard diusion to the expected anomalous regime can be read as a consequence of 
the relatively long relaxation time of mass inhomogeneities induced by the asymmetry 
of the interaction potential. Such density fluctuations are supposed to behave as scat-
terers of phonon-like waves and they are sizable only over large but finite space and 
time scales, until they are eventually relaxed. Anyway, a reliable theoretical estimate of 
these scales, based on the computation of higher order corrections to the hydrodynam-
ics in this regime, is stil lacking.

The intricate scenario of heat transport in anharmonic chains has been enriched 
by the contribution contained in [25], where the authors study a model where the 
Hamiltonian (9) has an additional local ‘pinning’ potential of the form

U(qi) =
1

2

L∑
n=1

q2n.� (10)

By varying the nonlinear coupling β one observes a crossover from a ballistic transport, 
typical of an integrable model, to an anomalous diusive regime ruled by and exponent 
of the time correlation function, which corresponds to a value of γ ∼ 0.2. The crossover 
occurs in the parameter region 0.1 < β < 1. Numerical simulations performed for a 
chain of a few thousands of oscillators show that by further increasing β , also γ seems 
to increase. The overall outcome completely challenges the basic theoretical argument, 
which predicts that an anharmonic chain equipped by a local potential should exhibit 
normal diusion. For the sake of completeness it is worth mentioning that in this paper 
the model under scrutiny is compared with the so-called φ4-model, where the nonlin-
ear term in Hamiltonian (9), β(qn+1 − qn)

4 is substituted with βq4n. Also for this model 
one observes, in the same parameter region, a crossover from a ballistic regime to an 
anomalous diusive regime, but, for β > 1, the exponent γ seems to vanish, so that 
the expected diusive behavior is recovered. Also these results have a logical interpre-
tation only if we invoke the role of finite size corrections combined with nonlinearity. 
Actually, in the φ4-model there is no way to argue that a ballistic regime should be 
observed for any finite, even if small, value of β . The ballistic behavior observed in both 
models for β < 0.1 seems to suggest that for small nonlinearities one needs to explore 
definitely much larger chains and integrate the dynamics over much longer times, 
than those employed in [25], before in both chains phonon-like waves may experience 
the scattering eects due to the local potential. Moreover, the weaker quadratic pin-
ning potential of the original model seems to be still aected by finite size corrections, 
even in the region β > 1. A problem that one should investigate systematically is the 
dependence on β of the chain length and of the integration time necessary to recover 
standard diusive transport, at least in the crossover region 0.1 < β < 1, where one can 
expect to perform proper numerical analysis in an accessible computational time.

https://doi.org/10.1088/1742-5468/ab7125
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3.3. Toda lattice with a harmonic substrate potential

We conclude this section by discussing the case of a Toda lattice, equipped with a sub-
strate potential, whose hamiltonian reads

H =
N∑
i=1

[ p2i
2m

+ exp(qi+1 − qi) +
ν2

z
|qi|z

]
.� (11)

Let us recall that the unpinned Toda chain (i.e. ν = 0) is integrable and, accordingly, 
heat transport is ballistic due to the finite–speed propagation of Toda solitons. These 
are localized nonlinear excitations which are known to interact with each other by a 
non–dissipative diusion mechanism, due to the stochastic sequence of spatial shifts 
experienced by a soliton as it moves through the lattice and interacts with other exci-
tations without momentum exchange [26]. Actually, the calculation of the transport 
coecients by the Green–Kubo formula indicates the presence of a finite Onsager 
coecient, which corresponds to a diusive process on top of the dominant ballistic one 
(e.g. see [27] and [28]).

When the pinning term is at work for any integer value of z � 2 the Toda chain 
becomes chaotic, as one can easily conclude by measuring the spectrum of characteris-
tic Lyapunov exponents (see [29]).

Anyway, the case z  =  2 exhibits some peculiar features. In fact, only in this case one 
can easily check that, only in this case, the ‘center of mass’ 

hc =
1

2

L∑
n=1

( p2n + q2n)

is an additional conserved quantity, beyond total energy. Nonequilibrium simulations 
of model (11), where heat reservoirs at dierent temperature, T1 > T2 act at its bound-
aries, yield, as expected, a linear profile of temperature, compatible with standard 
Fourier’s law, apart the remarkable exception of the case z  =  2, where the temperature 
profile in the bulk of the chain flattens at T = (T1 + T2)/2. The latter scenario is the 
one expected for the unpinned Toda chain, but it is fully inconsistent with the basic 
consideration that the presence of any pinning term breaks translation invariance and 
total momentum is no more conserved. This notwithstanding, in order to observefor 
z  =  2 a temperature profile in the form of a linear interpolation between T1 and T2 (i.e. 
Fourier’s law) one has to simulate the dynamics of very large chains over very long 
times: typically L ∼ O(104) and t ∼ O(106), when all the parameters of the model are 
set to unit.

Equilibrium measurements based on the Green–Kubo relation, i.e. on the behavior 
of the energy current correlator, provide further interesting facets of this scenario. By 
comparing the Toda chain with quadratic and quartic pinning potentials one observes 
in the latter case clear indications of a diusive regime, i.e. a finite heat conductiv-
ity, and a practically negligible influence of finite size corrections, while in the former 
case the power spectrum (i.e. the Fourier transform of the energy current correla-
tor) is found to exhibit a peculiar scaling regime (with a power  −5/3), before eventu-
ally reaching a plateau that indicates a standard diusion. In the same region of the  
spectrum the FPU model (where the parameters α and β have been chosen in such a 

https://doi.org/10.1088/1742-5468/ab7125
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way to correspond to a Taylor series expansion of the Toda chain) with the addition 
of (10) is found to converge to a plateau, in the absence of any preceeding power-law 
scaling.

Further details about the unexpected transport regimes encountered in the Toda 
chain equipped with the quadratic pinning can be found in [29, 30].

One should point out that many of them are still waiting for a convincing theor
etical interpretation.

4. Conclusions

In this short review we have summarized the standard scenario of heat transport in 
nonlinear lattices, based on numerical investigations and nonlinear fluctuating hydro-
dynamics. We have also discussed a series of typical cases where strong finite size 
eects significantly modify this standard scenario. We want to point out that this is 
not a purely academic problem. When dealing with low dimensional materials one typi-
cally has in mind nano-wires and polymers, that are usually made of a relatively small 
number of atoms. Accordingly, we can expect that a reliable theory of heat conduction 
in these real materials should take seriously into account the role of finite size correc-
tions, which, as we have discussed here, is typically amplified by peculiar long-living 
nonlinear excitations.
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