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Abstract.  Upon cooling or densification, a supercooled liquid shows drastic 
slowing down toward its glass-transition point. The physical mechanism behind 
this slow glassy dynamics has been a matter of discussion for a long time, 
but there has still been no consensus on its origin. Recently, we have found 
that for systems mainly interacting with steric repulsions, glassy structural 
order (or, angular order) generally develops upon cooling and its correlation 

length, ξ, grows as ξ = ξ0[(T − T0)/T0]
−2/d (ξ0 is the bare correlation length, 

T is the temperature, T0 is the hypothetical ideal glass transition, and d is 
the spatial dimensionality). This ordering is dicult to detect by two-body 
density correlation since it is a consequence of sterically-induced (entropically-
driven) many-body correlation that lowers local free energy. Interestingly, the 
power-law growth of ξ with the exponent of 2/d is reminiscent of the Ising 
criticality. We also find that the structural relaxation time τα diverges as 

τα = τ 0α exp(Kξd/2/kBT ) (τ 0α: the microscopic relaxation time, K is a fragility 
index, kB is the Boltzmann constant), suggesting that glass transition is a 
consequence of Ising-like criticality with growing activation energy. Unlike 
ordinary critical phenomena, the activation energy of particle motion increases 

in proportion to the root of the correlation volume of ξd, implying that the 
particle motion is strongly correlated in that volume. This relation indicates 
that the impact of spatial fluctuations of the order parameter on slow dynamics 
is not perturbative but intrinsic. Although we need further study to confirm our 
claim, we hope that the discussion in this article would provide a good starting 
point for further consideration of the physical nature of glass transition.
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1.  Introduction

Glass transition takes place upon cooling or densification whenever crystallization is 
avoided. Liquid-crystal transition, or crystallization, is the most fundamental phase 
transition that takes place in any liquids upon cooling if the cooling speed is slow 
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enough. The critical fact is that both crystallization and vitrification take place for 
the same Hamiltonian, and the bifurcation is introduced only by the kinetic factor. 
This fact has not been taken seriously, and thus, most of the existing theories of glass 
transition have been developed independently from crystallization, focusing only on the 
vitrification branch. Our fundamental standpoint is that the theories of crystallization 
and vitrification should be developed on the same ground [1–5]. Thus, our approach is 
based on thermodynamics. Here it should be noted that there are also theories of glass 
transition purely based on the kinetic aspect [6–8].

Since crystallization is easier to understand compared to vitrification, we first 
consider the crystallization branch. In the liquid phase, the density ρ is spatially 
homogeneous and only weakly fluctuating around its average 〈ρ(�r)〉 due to the finite 
compressibility. In contrast, in the crystalline state, the density periodically oscillates 
with a Fourier series expansion in terms of reciprocal lattice vectors �G, reflecting the 
long-range translational order [9]:

〈δρ(�r)〉 = 〈ρ(�r)〉 − ρ0 = Σ�Gρ �G exp(i�G · �r),� (1)

where ρ0 is the average density and the vectors �G represent the relevant reciprocal 
lattice of the crystal. Since 〈ρ(�r)〉 must be a real quantity, it must satisfy the relation 

ρ∗�G = ρ− �G. The critical feature distinguishing the liquid and solid phases is translational 
(or, positional) order with periodic spatial modulations.

The density fluctuations in the liquid phase, which grow weakly reflecting thermo-
dynamic instability towards the crystal, have a maximum at non-zero wavenumber. 
Accordingly, the static structure factor of a liquid, S(k), has a distinct peak at a wave-
number of k0 = 2π/�, where � is the average interatomic distance. As the temperature 
T is lowered towards the freezing point, the magnitude of S(k0) increases. Thus, the key 
wave number characterizing the liquid structure is k0. Even with this simplification, an 
appropriate set of lattice vectors �G associated with the crystal from the liquid still has 
to be selected upon crystal nucleation. That is, the free energy must be minimized for 
ρ �G among all possible lattice candidates. It is a complicated task to find such a set of 
lattice vectors, but a plausible answer was derived by Alexander and McTague [10].

Although this type of approach to liquid-solid transition, focusing on translational 
ordering, ‘apparently’ looks very natural, we point out that there remains a very 
fundamental question: What is the role of orientational ordering in crystallization? 
For two-dimensional (2D) hard disks, it has been widely accepted that liquid-to-solid 
transition sequentially takes place in the order of hexatic ordering and translational 
ordering upon densification. This phenomenon is known as the Kosteritz–Thoules–
Halperin–Nelson–Young (KTHNY) scenario [11]. Here we note that it was recently 
shown convincingly that the first liquid-to-hexatic transition is weakly of first order 
[12]. Bond orientational order, or hexatic order, can be expressed by the distribution 
of bonds jointing a particle located at �r  to its nearest neighbors [11]. Expanding the 
density ρ(�r,ω) of points pierced by these bonds on a small sphere inscribed about �r , 
we have [11]

ρ(�r, Ω) = Σ∞
l=0Σ

m=l
m=−lQlm(�r)Ylm(Ω),� (2)

where Ylm(Ω) are spherical harmonics.
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We stress that the origin of bond orientational ordering is fundamentally dierent 
from that of translational ordering. We need at least three-body correlation to define 
orientational (or, angular) order, and thus, it intrinsically has many-body nature. In 
contrast, positional (or, distance) order can be described by two-body correlation. The 
bond orientational ordering originates from the geometrical constraint due to dense 
packing of disks (or spheres), which primarily interact with steric repulsions. We may 
say that this ordering is induced entropically (note that we may consider that the free 
energy of hard spheres consists only of entropy). For 2D hard disk systems, the most 
probable number of nearest neighbor particles under dense packing is six, and thus the 
relevant bond orientational order is represented by a hexatic order parameter. This 
example tells us that bond orientational order should always play an essential role in a 
densely packed liquid state, in which crystallization or vitrification usually takes place, 
provided that the particle size distribution is reasonably small.

The bond orientational ordering of hard-sphere-like systems is driven by steric repul-
sions (or, entropically) and accompanied by the loss of local configurational entropy of 
the neighboring particles. Thus, it is natural to expect that its significance decreases 
with an increase in the spatial dimensionality d. For d  =  2, the number of nearest 
neighbors under dense packing is 6, but for d  =  3, it increases to 12. For d = ∞, it 
becomes infinity. This fact means that the loss of the configurational entropy upon 
the formation of the angular order of neighboring particles steeply increases with an 
increase in d [13–15] and eventually exceeds the gain of vibrational entropy obtained by 
forming a configuration of high packing capability. This tendency makes crystallization 
more dicult at higher dimensions [14]. Since the liquid density is homogeneous and its 
fluctuation is controlled by the compressibility, a configuration of high packing capabil-
ity means a large room for particle vibrations, leading to the gain of vibrational entropy. 
So the critical question is at which dimension dc the loss of the configurational entropy 
prevails the gain of vibrational entropy. From the d-dependence of the configurational 
entropy, we conclude that at least dc � 4. Thus, for d � 3, angular ordering should 
play a crucial role in determining the structure of a supercooled liquid. For d  =  3, it is 
established that the density functional theory does an excellent job for an equilibrium 
liquid, indicating that angular ordering may play a crucial role only in a supercooled 
liquid state. It is consistent with what we found for hard-sphere-like liquids [16, 17]: the 
static correlation length of bond orientational order, ξ, exceeds the particle size only in 
a supercooled state above the freezing volume fraction φf ∼ 0.494.

Here we emphasize that the angular ordering, or bond orientational ordering, in a 
supercooled liquid is a consequence of many-body steric repulsions since it is induced 
to increase the local packing capability, which cannot be detected by the two-body 
density correlation. We can easily understand this fact from that we need three par-
ticles to define an angle, whereas only two to define a distance. Thus, this type of order 
cannot be detected by the two-body density correlator, such as S(k) and the radial 
distribution function g(r). Here it is worth noting that there is often a splitting of the 
second peak of g(r) (see, e.g. [16–19]), which is a consequence of many-body correla-
tion. However, we cannot infer what kind of order forms, from g(r) alone, because of 
the intrinsic information loss upon the dimensional reduction from d to 1. Concerning 
the above point, it is worth noting that the mean-field theories of glass transition such 
as the mode-coupling theory [20] and the random first-order transition (RFOT) theory 
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[21–27] are constructed based on the two-point density correlation, or translational 
order. Although this approximation becomes exact in the limit of infinite dimensions 
d = ∞, their validity to realistic systems (d  =  2 and 3) is questionable, and thus, needs 
to be carefully examined.

In this article, we consider the role of many-body correlation in slow dynamics of 
glass-forming liquids and argue that the impact of the resulting structural fluctuations 
on the dynamics of a liquid is not perturbative, but intrinsic.

2. Nature of frustration in glass transition

The importance of frustration in glass transition has been recognized for a long time, 
particularly in connection to spin glass. However, the physical meaning of frustration 
has to be considered carefully. Here we discuss what the origin of frustration relevant 
for glass transition is.

2.1. Approach based on frustration of the single order parameter

In his seminal paper, Frank noticed that icosahedral structures are ‘locally’ more 
favored than crystal structures for Lennard-Jones liquids. Since icosahedral ordering 
intrinsically suers from the geometrical frustration, the importance of this type of 
‘internal’ frustration has attracted considerable attention, in analogy to the frustration 
in a spin system leading to spin glass. Steinhardt et al [28] proposed a theory of glass 
transition, based on the internal frustration of the bond orientational order parameter 
Q6, which represents icosahedral ordering. Along the same line, Tarjus et al [29] pro-
posed the frustration-limited domain theory, in which the critical point of the ordering 
transition is avoided by frustration. The idea based on such internal frustration of the 
single order parameter, or spin-glass physics, has been developed into the random first-
order transition (RFOT) theory, which is currently one of the most popular theories 
of glass transition [21–27]. It should be mentioned that this theory has been shown 
to have a fundamental link to the density functional theory [30], on which the mode-
coupling theory [20] is based.

2.2. Our approach based on frustration against crystallization, or competing ordering

The above approach assumes that the source of frustration in a supercooled liquid free 
from quenched disorder is the internal frustration of a glassy order parameter itself. 
This view may be a consequence that people put focus only on the liquid branch and 
put the crystallization branch out of consideration (i.e. assume ‘purely’ kinetic avoid-
ance of crystallization).

As we stressed in the above, we believe that the significant frustration leading to 
glass transition is against crystallization. This idea is quite natural on noting that if 
we can avoid crystallization, any system vitrifies upon cooling or densification. So, we 
regard crystallization as the main ordering and identify the tendency of local struc-
tural ordering incompatible to the crystalline order as the source of frustration against 
crystallization. This is the fundamental spirit of our two-order-parameter model  
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[1–5, 31–33]. The source of frustration can be energetic [34] and/or geometrical (e.g. 
polydispersity and binalization) [16, 18]. Hereafter we describe our scenario of glass 
transition based on this physical picture.

3. Role of many-body correlation in crystallization

First, we briefly review what we have found on the role of many-body correlation in 
crystallization so far. We found for monodisperse hard spheres that in a supercooled 
state the bond orientational order coarse-grained up to the neighbors [35], Q6, which 
is linked to fcc and hcp crystals, grows with an increase in the degree of supercool-
ing, or the volume fraction φ [36]: the correlation length of Q6, ξ6, is found to increase 
as ξ6 = ξ06 [(φ0 − φ)/φ]−2/d (ξ06 is the bare correlation length, φ0 is the hypothetical 
ideal glass-transition volume fraction) and the structural relaxation time τα diverges as 
τα = τ 0α exp(Kξd/2/kBT ) (τ 0α: the microscopic relaxation time, K is the fragility index, 
kB is the Boltzmann constant, and T is the temperature). As will be described later, 
we found the same relations for polydisperse [16–19] and bidisperse hard-sphere-like 
systems [37, 38], which vitrify instead crystallize upon densification. Interestingly, 
the glassy slowing down and the growth of structural order is most prominent for the 
monodisperse system with the weakest frustration. Here it is worth noting that even 
for monodisperse systems, icosahedral structures are formed, which is the source of 
frustration against crystallization. However, the amount of the icosahedral structures 
is smaller than that of polydisperse systems [39]. We note that the growth of crystal-
like angular order is strongest for monodisperse systems, because of both the absence of 
geometrical frustration originating from the particle-size distribution and the smallest 
fluctuations of the number of nearest neighbors.

When the angular order developing in a supercooled liquid shares the same rota-
tional symmetry as the equilibrium crystals, it lowers the free energy barrier for crystal 
nucleation and thus promotes crystal nucleation [36, 40, 41]. We indeed found that 
crystal nucleation always takes place in pre-ordered regions with high crystal-like ori-
entational order. Later, it was proven that this is exclusively due to the reduction of 
the interfacial tension γ due to the symmetry matching [42]. As mentioned above, even 
in monodisperse hard spheres, icosahedral order also forms spontaneously [43, 44], but 
because of its intrinsic internal geometrical frustration, its correlation length never 
grows [45]. It acts as a source of frustration against crystallization, but its eect is not 
strong enough to prevent crystallization for monodisperse hard spheres.

Here we note that the local version of the bond orientational order parameter of a 
particle, q6, is sensitive to both crystal and icosahedral symmetries. However, the one 
coarse-grained up to its neighbors, Q6, is sensitive to crystal-like symmetries but not to 
icosahedral order because icosahedral order cannot extend beyond its neighbors due to 
the internal geometrical frustration. This leads to the growth of the correlation length 
upon cooling for Q6 [16, 17], but not for q6 [46] because of spatially random distribution 
of icosahedral clusters [45]. This dierence between Q6 and q6 leads to opposite con-
clusions on the role of the structural order in the slow glassy dynamics: the structural 
analysis using Q6 indicates the growth of structural order in a supercooled state upon 
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densification [16, 17], whereas the one using q6 suggests little growth [46]. This example 
tells us that we need special care on the choice of the structural order parameter to 
detect glassy structural order responsible for slow dynamics [35].

4. Role of many-body correlation in the glass-forming ability

The glass-forming ability is, by definition, linked to the ease of crystallization, and 
both are determined by the free-energy barrier for crystal nucleation ∆G. According 
to the classical nucleation theory [47], β∆G ∝ (βγ)3/(βδµ)2 (β = 1/kBT ) for d  =  3. We 
use the interfacial tension γ and the chemical-potential dierence between the crystal 
and the liquid, δµ, scaled by the thermal energy kBT  in the above expression of β∆G. 
It is because the physical factors competing in the adimensional free energy dierence 
β∆G is βγ and βδµ, and not the bare γ and δµ. In other words, these quantities should 
be considered relative to the available thermal energy kBT . On the details of the 
justification of this claim, please refer to our original paper [42].

We found that the glass-forming ability is controlled predominantly by βγ for 
two systems, a liquid with tunable tetrahedrality and a binary mixture of hard disks, 
in which the glass-forming ability is maximized around the melting-point minimum 
as a function of tetrahedrality and composition, respectively [42]. We correlated the 
increase of βγ negatively with the degree of angular order linked to crystalline orders 
in a supercooled-liquid state: if the supercooled liquid tends to have angular orders 
similar to those of crystals, βγ is small, and thus the barrier to crystal nucleation is 
low, leading to the poor glass-forming ability. In contrast, if it does not have angular 
orders similar to crystals, or has random disordered structures, βγ becomes large, and 
thus the barrier also becomes high, leading to the high glass-forming ability. We note 
that the degree of crystalline order developed in a supercooled liquid state is negatively 
correlated with the configurational entropy of the liquid [42].

The above result can also be naturally understood in the two-order-parameter model 
[4] from the following general relation between βγ and the order parameter gradients:

βγ =

∫
dx

[
1

2
Kρ

(
∂ρ

∂x

)2

+
1

2
KQ

(
∂Q

∂x

)2
]
,� (3)

where ρ and Q are the density and structural order parameters, respectively, x is the 
coordinate perpendicular to the interface, and Kρ and KQ are positive coecients asso-
ciated with the free-energy cost due to the spatial gradients of ρ and Q, respectively. 
Our result also clearly indicates the crucial impact of orientational ordering developed 
in a supercooled liquid on crystallization: we cannot explain the behavior of βγ by a 
density change across the interface alone. The above scenario of glass-forming ability 
can also explain the experimental results on the glass-forming ability of aqueous salt 
solutions naturally [48, 49].

Our physical picture leads to a simple, yet appealing scenario of the glass-forming 
ability of liquids [42]: if angular orders similar to those of equilibrium crystals are 
developed in a supercooled state, the glass-forming ability is low; otherwise, high. We 
speculate that this scenario may be universally valid to any system, which is supported 
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by the fact that for many systems, the glass-forming ability is maximized around the 
melting-point minimum. However, this is not always a case. For example, for some 
metallic glass formers, the glass-forming ability is not maximized around the melting-
point minimum, i.e. a deep eutectic point. In the two examples mentioned above, we 
consider the case in which the primary source of frustration is the competition between 
dierent types of crystalline orders. Some metallic glass formers are known to tend 
to form icosahedral order upon cooling, which can also act as the source of frustra-
tion against crystallization. In such a case, we should take this ordering into account 
in addition to crystalline orderings [50, 51]. For a system tending to form icosahedral 
order, if the tendency is not too strong, icosahedral ordering tends to prevent crystal-
lization, but if it is too strong, it may even lead to the formation of quasi-crystals and 
some of the Frank–Kasper (FK) phases [4, 50, 51].

We can also explain by this scenario why water is a poor glass former, but silica 
is a good glass former despite that both tend to have similar tetrahedral orientational 
ordering [52]. We found that water’s tetrahedral order is much more regular than 
silica’s one. This dierence reflects the dierence in the stability of the elementary 
structure between H2O and SiO2. The molecular structure of H2O is rigid, and the 
fluctuation of the H–O–H angle (close to the tetrahedral angle) is small since it is stabi-
lized by covalent bonding that is far stronger than hydrogen bonding forming tetrahe-
dral order. This feature leads to a high tetrahedral order. In contrast, the structure of 
SiO2 is much more flexible, and the fluctuation of the O–Si–O angle is more substantial 
since it is stabilized by the same type of interactions of covalent and ionic nature, 
which lead to tetrahedral order. Thus, the local tetrahedral structure of liquid water is 
much more regular and thus closer to the crystal structure compared to that of silica. 
This dierence in the regularity of tetrahedral order also leads to the dierence in the 
liquid-state anomalies. Please see [52] on the details.

These studies unambiguously demonstrate the existence of a deep intrinsic link 
between crystallization and vitrification, which can be characterized by the degree of 
frustration between crystal structures and low-free-energy structural motifs spontane-
ously formed in liquid. These findings support our claim that vitrification should not be 
discussed independently from crystallization. Thus, we should pay special attention to 
this link when developing a theory of glass transition [4, 34]. The link is of significant 
importance to understand the physics behind the glass-forming ability, which is crucial 
in the fields of pharmaceuticals, metallic glasses, and phase-change materials.

5. Role of many-body correlation in slow dynamics near glass transition

5.1. General growth of static structural order when approaching glass transition

Now we consider a central question on the very origin of slow dynamics near the glass-
transition point [23, 53, 54]. We studied this problem based on the expectation that 
glass transition should have a link to crystallization, particularly for a system where the 
degree of frustration against crystallization is rather weak. As such systems, we studied 
model systems for which we can control the degree of frustration against crystallization 
in a systematic manner: 2D spin liquids favoring pentagonal order in various degrees 
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[34, 55] and weakly polydisperse hard spheres [16–19, 45]. In both systems, we found 
that when the degree of frustration is weak, angular order linked to the symmetry of 
the equilibrium crystal grows when approaching the glass-transition point. The cor-
relation length of the angular order, ξ, increases as ξ = ξ0[(X −X0)/X0]

−2/d (ξ0 is the 
bare correlation length, X0 is the value of X at the hypothetical ideal glass transition) 
and the structural relaxation time τα diverges as τα = τ 0α exp(Kξd/2/kBT ). Here X is T 
for 2D spin liquids and 1/φ for polydisperse hard spheres (both d  =  2 and 3). We define 
the hypothetical ideal glass-transition point as the diverging point of the structural 
relaxation time τα, i.e. the correlation length of ξ. However, its real presence is highly 
questionable, as will be discussed later.

We also found the same relations for polydisperse Lennard-Jones liquids [16]. The 
power-law divergence with the exponent of 2/d is reminiscent of Ising criticality. It 
should be noted that similar Ising-like behavior was also observed for binary Lennard-
Jones system by Mosayebi et al [56].

In these studies, we also confirmed that the static correlation length ξ grows in 
the same manner as the dynamical one ξ4, which characterizes the spatial scale of 
the dynamical heterogeneity [57, 58]: ξ ∼= ξ4. We also found the negative correlation 
between the degree of coarse-grained angular order and the particle mobility. This cor-
relation suggests that the dynamical slowing down is a consequence of angular ordering 
with spatial coherence.

Later, we made a non-trivial extension of structural (or, angular) order parameter 
to make it applicable to any systems interacting mainly with steric repulsions, includ-
ing strongly frustrated systems, e.g. binary mixtures of particles with the size ratio of 
1.4 [37, 38]. Under strong geometrical frustration, structural order growing in a super-
cooled liquid may not have a link to that of the equilibrium crystals. For example, for 
binary mixtures of spherical particles with a rather large size ratio (e.g. 1.4, which is 
often used to study the problem of glass transition [59]), phase separation is necessary 
for crystallization to take place. This fact means that there is no direct thermodynamic 
link between a supercooled state and a crystalline state since it is cut by another 
thermodynamic transition, i.e. phase separation [4]. More practically, standard bond-
orientational order parameters are not useful for such a system since its validity relies 
on small fluctuations of the number of nearest neighbor particles: in binary systems, 
the number of nearest neighbors strongly fluctuates depending upon the composition 
of neighboring particles, i.e. how many large and small particles are in the neighbors 
around a particle.

The central idea behind the introduction of the new structural order parameter is 
that the local free energy is a decreasing function of local vibrational entropy, which 
is determined by the packing capability of the configuration of neighboring parti-
cles around a central particle [37]. The basic physics is the same as that behind the 
introduction of a bond-orientational order parameter, and thus, the bond-orientational 
order parameter can be regarded as a special case of our generalized order parameter, 
i.e. local packing capability Ψ. We can define this order parameter for both d  =  2 and 
3. By using this order parameter, we have extracted the static correlation length, ξ, 
by comparing the spatially coarse-grained order-parameter field with the mobility field 
obtained by the isoconfigurational ensemble. We found that the correlation between 
the two fields has a distinct maximum for a particular coarse-graining length, ξ, and a 
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particular elapsed time, τ  [37]. Interestingly, we again obtained the relations of ξ ∼= ξ4 
and τ ∼= τα. Although we used the mobility field to estimate the static correlation 
length ξ, the operation to obtain ξ itself is purely static, and thus we argued that the 
correlation length ξ should be regarded as the static correlation length.

The physics behind this argument is as follows: the critical structural feature deter-
mining the future development of dynamic heterogeneity after τα already exists in the 
static structure at t  =  0; in other words, the development of the mobility field as a func-
tion of time is already determined by the static order parameter field at t  =  0. Particles 
with the lowest packing capability (i.e. the lowest structural order) start to move first 
(we may refer these regions to defective regions), and then the mobility field evolves 
following the structural order-parameter field. These defective regions may correspond 
to the so-called soft spots [60]. However, this mobility field does not ‘locally’ follow 
the order parameter field, since the motion of particles in a region of relatively high 
packing capability should be correlated spatially: the motion of particles cannot take 
place independently but cooperatively, since a configuration of high packing capability 
is stabilized entropically, or by steric repulsions.

On the other hand, the amplitude of the local vibrational mode (i.e. cage-rattling) 
known as the fast β relaxation was found to be negatively correlated with the local 
packing capability in a direct (or, local) manner [37]: a particle with higher packing 
capability has higher local Debye–Waller factor (or, more solid-like). This fact implies 
that the intrinsic link between the fast β relaxation and the structural (or, α) relax-
ation through local structures, as suggested previously [18, 19, 61, 62]. This direct 
negative correlation between the local packing capability and the amplitude of the fast 
β motion at the local level casts doubt on the validity of the mean-field approximation 
in the sense that the spatial fluctuations are essential in both the fast and slow dynam-
ics of a supercooled liquid.

For both 2D and 3D binary mixtures, we also discovered the same relations for the 
growth of ξ and τα when approaching the glass-transition point as for the weakly frus-
trated systems mentioned above [37]: the correlation length of local packing capability 
Ψ, ξ, is found to increase as ξ = ξ0[(X −X0)/X0]

−2/d and the structural relaxation time 
τα diverges as τα = τ 0α exp(Kξd/2/kBT ). Thus, we almost universally found the same 
scaling relations to any glass-forming systems interacting with spherically symmetric 
potentials, covering from weakly frustrated (e.g. polydisperse systems) to strongly frus-
trated systems (e.g. binary mixtures). Thus, we may say that the order parameter Ψ is 
‘order-agnostic’.

Very recently, we have applied the above order parameter Ψ characterizing the 
packing capability to an instantaneous liquid structure at a finite temperature instead 
of its inherent structure at zero temperature [38]. Then, we find that this order param
eter Ψ eectively acts as an intensive thermodynamic variable (temperature or pres
sure): (Ψ−Ψ0)/Ψ0 ∝ (T − T0)/T0, where Ψ0 is the value of Ψ at the hypothetical ideal 
glass-transition temperature T0. Thus, a Vogel–Fulcher–Tammann (VFT)-like relation 
generally holds between the structural relaxation time τα and the order parameter Ψ, 
at least for any supercooled liquids whose interparticle interactions are isotropic. More 
importantly, we discover that such a VFT-like relation between Ψ and τα is statistically 
valid even at a particle level if we spatially coarse-grain Ψ over the correlation length ξ.
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This fact suggests that the spatial correlation of structural order is the origin of 
the cooperativity of dynamics, providing the physical mechanism connecting a growing 
length scale with the dynamical slowing down at a particle level. We stress that this 
physical mechanism behind slow glassy dynamics, where the spatial fluctuations of the 
structural order parameter are coupled with the local dynamics (or, transport), is fun-
damentally dierent from that of critical slowing down in ordinary critical phenomena, 
where the local dynamics is not aected by order-parameter fluctuations.

The point-to-set length, which is based on translational correlation, was also claimed 
to be order-agnostic [63–66], but it was shown that orientational order developed in 
weakly polydisperse hard disks cannot be detected by it [67]. For solving this problem, 
some modifications were proposed [68, 69]. However, the necessity of some modifications 
depending upon a system means that it is not order-agnostic any more. Here it should 
be noted that in general, the decorrelation of the static length scale detected by a par
ticular method with the dynamic one (see, e.g. [65, 70–72]) does not necessarily mean 
that the decorrelation of the static and dynamic length scales: it might be only because 
the relevant static structural order is not captured by that particular method [4, 73]. 
Thus, we argue that such a decorrelation is a necessary condition for the irrelevance of 
static structural order to slow dynamics, but not a sucient condition.

5.2. The nature of the spatial correlation of static structural order

Here we consider the nature of the spatial correlation of static structural order. When 
we calculate the spatial correlation length of static structural order, ξ, for weakly poly-
disperse systems, we use the correlation function of the ‘complex’ orientational order 
parameter in both d  =  2 and 3 [16–19, 45]. Thus, this length reflects the coherence 
length of the angular part of the order parameter rather than the correlation length of 
its amplitude. For the order parameter characterizing the local packing capability, we 
employ spatial coarse-graining to detect its correlation with dynamic heterogeneity. 
Both operations suggest that what controls slow glassy dynamics is the spatial coher-
ency of packing capability. Such spatial coherency may be responsible for the high 
activation barrier for particle motion since it is the source of cooperativity of particle 
motion: under such spatial coherency, the motion of a particle must involve correlated 
motion of its neighbors, which further requires the same for their neighbors. In this 
way, the spatial coherency may determine the characteristic size of the dynamical cor-
relation. The fact that the particles in such a correlation volume δV  with a linear size of 
ξ must move coherently may be the origin of the high activation barrier in proportion 
to δV 1/2 = ξd/2, as will be discussed in the next section.

We also note that even though we use the complex orientational order parameter, 
the rotational symmetry cannot be broken by the hypothetical ideal glass transition. It 
is because geometrical frustration does not allow a system to have a particular angular 
order upon the transition. So, the ideal glass-transition point may be regarded as an 
avoided critical point. Such transformation of the phase ordering from (Heisenberg-
type) continuous to Ising (Z2) symmetry due to frustration and random disorder eects 
has also been known for spin systems [74–76], implying the generality of frustration 
and random disorder eects on the nature of the ordering. Langer [77, 78] also proposed 
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a simple argument supporting Ising nature. However, this problem remains for future 
investigation.

It is crucial to realize that the glassy order parameter intrinsically suers from 
frustration eects since the stabilization of a glassy state is a consequence of frustra-
tion against frustration-free crystalline ordering. This fact implies that the critical-like 
behavior may be only ‘apparent’, and the ideal glass transition may be avoided by 
the frustration eects. Once the frustration eects stop the growth of ξ, the dynamics 
should become Arrhenius-like. Concerning the Kauzmann paradox [54, 79], we note 
that the ideal glass transition may never be visited in reality since crystallization (or, 
in some cases, phase separation) should always take place before the supercooled liquid 
state is equilibrated [80].

5.3. Role of static structural ordering in slow dynamics: intrinsic or perturbative

5.3.1.  Spatial correlation of steric (or, entropic) origin.  In the above, we have described 
that we find the universal relation between the static correlation length ξ and the struc-
tural relaxation time τα in the form of τα = τ 0α exp(Kξd/2/kBT ). This relation implies 
that the activation energy of the structural relaxation increases in proportion to ξd/2. 
Then, it can be derived from a straightforward argument that the typical amplitude 
of fluctuations of the free energy of a system, δG is controlled by the characteristic 
correlation volume of δV . Here, δG is measured from the reference of a homogeneous 
liquid of ξ = ξ0 = a (a: the particle radius). Then, we have the following relation from 
the general statistical-mechanics formula:

〈δG2〉δV = ρkBT
2cV δV ,� (4)

where cV  is the heat capacity at constant volume. Then, we assume that the average 
activation barrier ∆ should be related to (〈δG2〉δV )1/2 with δV ∼ ξd. Faster/slower 
relaxation with a small/large correlation volume should be controlled by the lower/
higher barrier. Then, we obtain

∆ ∝ (ρkBT
2cV )

1/2ξd/2,� (5)

implying K ∝ (ρkBT
2cV )

1/2. This relation indicates that a liquid with a more significant 
rate of the entropy decrease upon cooling, or the larger cV , should be more fragile.

The above relation indicates that the spatial fluctuations of structural ordering, or 
many-body correlation, is not perturbative, but intrinsic at least for d  =  2 and 3. The 
physical message of the relation is as follows: the motion of particles suers from a high 
activation barrier associated with a large correlation volume of ξd because particles 
there must move coherently. Although the structure order itself fluctuates around its 
average, the impact of the structural fluctuations looks intrinsic and not perturbative. 
Which of the increase of the average structural order or the spatial correlation of struc-
tural order plays a more dominant role in slow glassy dynamics is the crucial remaining 
question, although the above relation itself is suggestive of the latter. This question is 
also related to the relevance of the mean-field approach to the glass-transition prob-
lem. As mentioned above, at high dimensions, there is little growth of angular order, 
and thus the mean-field theory may be relevant; for example, at d = ∞, the two-body 
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description becomes exact. However, at low dimensions (d  =  2 and 3), the contribu-
tion of the mean-field background may be much smaller than that of structural order 
parameter fluctuations [4]. This point needs to be clarified in the future.

5.3.2.  Spatial correlation of energetic origin.  Recently we studied the dynamics of 
water [81–85], which shows the dynamic anomaly known as ‘fragile-to-strong trans
ition’ [86–92]. At high temperatures, water ‘apparently’ exhibits strongly non-Arrhe-
nius behavior typical of fragile liquids. In contrast, at low temperatures, it shows 
the Arrhenius-like behavior typical of strong liquids. We revealed [83–85] that the 
origin of this anomaly is nothing to do with the glass transition, but a consequence of 
the Arrhenius-to-Arrhenius crossover reflecting the two-state feature of water: at high 
temperatures, liquid water has disordered normal liquid structures, whereas, at low 
temperatures, it predominantly has locally favored tetrahedral structures. At inter-
mediate temperatures, water can be regarded as a dynamical mixture of these two 
structures [81, 82, 93]. Here it is worth mentioning that the onset of the non-Arrhenius 
behavior is located far above Tg (for water, it occurs around  ∼2Tg), which is a clear 
indication that it is not associated with glass transition. We also showed that the vio-
lation of the Stokes–Einstein–Debye relation in supercooled water can be explained in 
terms of the simple two-state model without relying on glass-transition phenomenology 
[84, 85].

We argue that this crossover behavior is a generic feature of any liquids that tend 
to form directional energy-driven locally favored structures, which are, for example, 
tetrahedral structures for oxide (see, e.g. [87, 94]) and chalcogenide liquids (see, e.g. 
[95, 96]). Unlike entropy-driven structures discussed above, the formation of directional 
energy-driven structures is generally accompanied by the significant loss of entropy, 
and thus these structures cannot easily grow to increase their correlation length. In 
extreme cases, such as water and silica, such local structures do not possess an angu-
lar correlation between them and are localized, leading to the lack of cooperativity 
in motion. In such cases, since the motion is controlled locally and not cooperatively, 
directional energy-driven local structural ordering makes liquid stronger. However, in 
the intermediate case, the orientational order may be able to grow in its correlation 
length even if energetic directional interactions induce structural ordering, and the bal-
ance between energetic and entropic contributions may determine the liquid fragility 
[34]. If the static structural order stops growing below a particular temperature due 
to the entropic penalty or the internal frustration, the activation energy may also stop 
growing. Then, the structural relaxation time should obey the Arrhenius law below 
that temperature.

Similarly, icosahedral structures cannot grow their size because of a dierent rea-
son, i.e. geometrical frustration. If quasi-crystals or some of the Frank–Kasper phases 
are not formed, the system may show a two-state feature as in water and silica. We 
speculate that the fragile-to-strong transition claimed for metallic glass-formers (see, 
e.g. [91, 97–100]) may also be explained by the two-state model. This point needs fur-
ther study.

https://doi.org/10.1088/1742-5468/ab6f61


Role of many-body correlation in slow dynamics of glass-forming liquids: intrinsic or perturbative

14https://doi.org/10.1088/1742-5468/ab6f61

J. S
tat. M

ech. (2020) 034003

5.3.3. Mean-field background for the dynamics.  In the above, we have argued that for 
liquids with entropy-driven structural ordering, the static correlation length grows, and 
the dynamics becomes more cooperative when approaching the glass-transition point. 
In contrast, for liquids with directional energy-driven structural ordering, the static 
correlation does not grow, and the dynamics is controlled locally. In other words, the 
spatially extensive heterogeneity of static structural order is intrinsic to the former, but 
not for the latter. Even for the former, there should be a contribution of the mean-field 
nature, but we speculate that its contribution is much weaker than the contribution 
coming from spatial structural heterogeneity, at least for hard-sphere-like systems at 
d � 3.

In real liquids such as molecular liquids, there should be contributions from both 
entropic and energetic structural ordering, which may lead to intermediate behaviors 
between the fragile- and strong-limit. Such behavior was observed in 2D frustrated spin 
liquids [34]. For example, directional bonding should automatically lead to an increase 
in the activation energy of the Arrhenius behavior and eectively make liquids stron-
ger [4]. In 2D spin liquids, we can control the liquid fragility over a wide range just by 
changing the strength of directional interactions [34]. For this type of liquid, the mean-
field contribution can be revealed as the Arrhenius behavior above the onset temper
ature, below which the cooperativity starts to play an important role. The activation 
energy of the high-temperature Arrhenius behavior is just controlled by the energetic 
local interactions between particles at a two-body level.

6. Structural ordering above the so-called mode-coupling critical point

Concerning the above question, here we mention that significant structural ordering 
is already observed above the mode-coupling Tc or below the mode-coupling φc, which 
are empirically determined by the power-law fitting to the temperature dependence 
of τα [23]. Here we do not touch a problem of whether the mode-coupling criticality 
has physical relevance or not. In particular, for colloidal suspensions, or hard-sphere 
systems, it is often argued that φc is located at φ ∼ 0.58. In the context of the RFOT 
theory, this volume fraction is interpreted as φd, below which metastable liquid is made 
by a single state but above which many metastable glassy states appear. The crucial 
point is that our structural ordering takes place already below φc for hard-sphere 
systems (emerging around the freezing point φf ∼ 0.494). This fact indicates that the 
slowing down is not due to two-body eects but a consequence of many-body eects 
already below φc or φd. The nearly one-to-one correspondence between the static cor-
relation length ξ and the dynamic correlation length ξ4 also seems inconsistent with 
the prediction of the mode-coupling theory [20] and the random-first-order-transition 
(RFOT) theory [21–27], both of which are based on the mean-field picture of the glass-
transition phenomena. The correlation between the local packing capability and the 
Debye–Waller factor at a particle level [37] also suggests the non-mean-field nature. 
Since this is a crucial point to elucidate the very origin of slow glassy dynamics, further 
careful study is necessary.
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Here it is also worth noting that the scaling argument based on the RFOT theory 

[21–23] also predicts the relation of τα = τ 0α exp(Kξ
d/2
mos/kBT ). However, this slowing 

down is caused by the growth of the characteristic size of ‘mosaic structures’, ξmos, but 
such structures are supposed to emerge only below the mode-coupling Tc reflecting the 
emergence of a new metastable free-energy minimum. Since mosaic structures appear 
only below Tc or above φc (or φd), the RFOT theory predicts a decoupling between static 
and dynamic length scales above Tc or below φc (or φd), where a supercooled liquid is 
made of a single state without mosaic structures. This scenario looks like being sup-
ported by the point-to-set length analysis (see, e.g. [23, 64–66, 70–72]) and other local 
structure analyses (see, e.g. [101] for review); however, our studies unambiguously show 
that the static and dynamic lengthscales grow coherently and suggest that the spatial 
fluctuations of static order parameter is the origin of dynamic heterogeneity even above 
Tc or below φc (or φd). Our study suggests that there are critical-like fluctuations of 
structural order in a supercooled state. We also note that the local packing capability 
is directly correlated with the local Debye–Waller factor, or the amplitude of the fast 
β motion. We stress that the mean-field scenario cannot explain such local structure-
dynamics correlation.

Concerning this issue, we should note that there was a proposal to consider dynamic 
heterogeneity above Tc as a consequence of critical phenomena of the MCT order param
eter, or fluctuations of the (two-body) dynamical correlation [102–104]. In this scenario, 
the dynamic susceptibility of the four-point density correlation diverges toward the 
mode-coupling Tc or φc below a specific spatial dimension. However, we emphasize that 
in this theory, the fluctuations are purely of dynamic origin and not of static origin, 
and thus the physical nature of fluctuations is fundamentally dierent from what we 
observed.

7. Relevance of structural ordering to the dynamics of a supercooled liquid under 
spatial confinement eects and during aging

Here we mention that our structural ordering scenario of glass transition can also 
naturally explain spatial-confinement eects on slow dynamics of a supercooled liq-
uid [105]. We found that when a weakly polydisperse hard-sphere liquid is confined 
between two flat parallel plates, the presence of the wall leads to the enhancement of 
bond-orientational order, reflecting the enhancement of the coherency of the angular 
order by the presence of the flat walls. The wall eects, or the penetration depth, is 
found to decay exponentially with the spatial correlation length of ξ: this enhance-
ment of the correlation length near the wall along the direction perpendicular to the 
wall, ξ⊥, leads to slower dynamics near the wall, just obeying the relation found above 
locally: τα(z) = τ 0α exp(Kξ⊥(z)

d/2/kBT ), where z is the distance from the wall. When we 
use a circular confinement with a rather large curvature for 2D weakly polydisperse 
systems, on the other hand, the wall curvature is not consistent with the bond-orien-
tational order, i.e. impose geometrical frustration on hexatic order [11]. Thus, the wall 
eects decay much quickly compare to the flat wall case with the decay length of the 
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translational (or, positional) correlation ξp, which is almost insensitive to the degree 
of supercooling. In this case, we also have the same relation for the local structural 
relaxation τα(z) and the local correlation length ξ⊥(z) with ξ⊥(z) ≡ ξp(z). These results 
strongly suggest that the structural relaxation in a particular local region is always 
controlled by the spatial correlation length of the static glassy structural order in that 
region. Here we note that such a link between the curvature and the dynamics can be 
explained straightforwardly by considering structural order but is dicult to explain 
by a purely dynamical scenario.

We also studied the aging dynamics of 2D and 3D polydisperse hard-sphere systems 
[106]. Here we observed little change in the two-body correlation function, i.e. g(r), 
but observed the temporal growth of the correlation length of the bond-orientational 
order parameter, ξ, with the aging time, tw, for both d  =  2 and 3. Then, the structural 
relaxation time at the waiting time tw, τα(tw) was found to obey the following relation: 
τα(tw) = τ 0α exp(Kξ(tw)

d/2/kBT ). Furthermore, this relation was equivalent to the one 
for an equilibrium supercooled state if we replace tw by φ. This result also suggests that 
the structural relaxation time is always determined by the static correlation length of ξ 
in the system. A recent study using machine learning [107] supported this conclusion.

These studies on the spatial confinement and aging eects on slow glassy dynamics 
further support our scenario that slow dynamics is a consequence of critical-like phe-
nomena with unique activated dynamics [4, 16, 77, 78].

8. Non-conserved nature of glassy structural order parameter

Here we discuss the dynamical nature of glassy structural ordering. Unlike the density 
order parameter, glassy structural order parameters discussed above are non-conserved 
quantities. It is because such an order can be formed and annihilated independently 
without the constraint due to its conservation. For example, we confirmed that the 
bond-orientational order parameter (or, hexatic order parameter) in polydisperse hard 
discs obeys critical-like dynamics characteristic of model A, which is the dynamical uni-
versal class of a non-conserved order parameter such as magnetization in a spin system, 
in the Hohenberg–Halperin classification [108]. Since the density, which is a conserved 
quantity, is a crucial order parameter describing a liquid state, this means that the 
dynamics of liquids should be described by a two-order-parameter model (or, model C) 
[4, 109, 110]. The density field is generally subordinate to the angular order param
eter. For systems of entropy-driven ordering, such as hard spheres, the only channel of 
local density relaxation is the cooperative particle motion of diusive nature (particle 
exchange). In contrast, for systems of energetic bond-driven ordering, the local density 
relaxation can be accomplished by the exchange between two states (ordered and dis
ordered states) locally [84, 85]. This dierence leads to the diusive and non-diusive 
dynamics around the interparticle distance for the former and latter, respectively  
[111–113]. Here we note that in the low wavenumber limit, the density fluctuation 
should always obey the diusive behavior due to its conserved nature.
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9.  Impact of structural ordering on slow glassy dynamics: entropy-driven versus 
directional energy-driven interactions

So far, we have focused mainly on systems interacting mainly with steric repulsions. 
In this type of system, structural ordering, or many-body correlation, is induced by 
steric repulsions to lower the local free energy. This ordering can also be explained by 
the increase of the total entropy of the system by structural ordering, which leads to 
an increase in vibrational entropy with the expense of configurational entropy. Since 
the ordering is driven entropically, its correlation length can increase without the 
entropic penalty. On the other hand, if the interaction between particles is directional, 
such directional energy-driven ordering must be accompanied by the significant loss of 
entropy [35]. This feature tends to prevent the growth of the correlation length of struc-
tural order. It is because spatially-extended structural ordering leads to a significant 
loss of entropy. We indeed confirmed this for water and silica; for both systems, struc-
tural ordering toward tetrahedral symmetry is driven by directional bonding (hydrogen 
bonding for the former and covalent bonding for the latter). In these systems, struc-
tural ordering is always local, and there is little growth of the spatial correlation of the 
structural order parameter, or little development of the spatial coherency of the order 
[84, 85, 114, 115]. As mentioned above, for this type of system, we found an apparent 
fragile-to-strong transition. This transition has often been explained in the framework 
of the glass-transition phenomenology. However, we found that it is actually a conse-
quence of a crossover from a high-temperature Arrhenius behavior with low activation 
energy to a low-temperature one with high activation energy [83–85]. It is worth men-
tioning that this crossover is nothing to do with the glass-transition phenomena, but is 
associated with a crossover from a high-temperature liquid with little structural order 
to a low-temperature liquid with high local tetrahedral order.

In this way, we can understand the two extreme cases: entropically-driven (or, ste-
rically-driven) and directional-interaction-driven structural ordering. The former corre-
sponds to the fragile limit, whereas the latter corresponds to the strong limit. The key 
remaining question is what happens in the intermediate case in which both energy and 
entropy play essential roles in structural orderings of liquids. The most straightforward 
expectation is that the dynamics is controlled by both the Arrhenius-like behaviors 
coming from directional bonding and cooperativity due to the growth of coherency due 
to steric repulsions. It is an interesting problem for future investigation.

10. Summary

In this article, we express our opinion on the physical origin of slow glassy dynamics 
focusing on the universal tendency of structural ordering in a supercooled liquid, which 
originates from many-body correlation. Because of intrinsic many-body nature, it is not 
so easy to develop an analytical theory based on this idea. However, we may at least 
construct a phenomenological scenario: development of critical-like fluctuations with 
special activated dynamics. The crucial dierence from ordinary critical phenomena 
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[47] is the origin of slow dynamics. In ordinary critical phenomena, slow critical dynam-
ics is a simple consequence of the increase in the lifetime of growing critical fluctuations 
while keeping the local dynamics unchanged. In contrast, in glass-transition phenom-
ena, slow glassy dynamics is a consequence of the slowing down of local dynamics due 
to the coherency of motion that is required under particle-level structural ordering in 
a highly packed situation.

In this article, we describe our specific physical idea to explain the origin of slow 
glassy dynamics, but there are many other interesting ideas. We hope that this article 
would stimulate further discussion on the origin of slow glassy dynamics.
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