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ABsTRACT: With increasing demand for high-resolution X-ray images, the super-resolution method
allows to estimate a single high-resolution image from several low-resolution images. Hybrid pixel
detectors provide high-quality and low-resolution images, which makes them particularly well suited
for super-resolution. However, such detectors consist of a limited number of pixels at high cost.

Applying super-resolution with hybrid pixel detectors shows that it is a viable method to obtain
high-resolution images. The point-spread function of such detectors can be idealised to be 1 pixel,
adding no blur into the image making such detectors the ideal choice for the application of super-
resolution X-ray imaging. However, there are charge sharing effects between the pixels caused by
the energy and impact position of incoming photons.

Utilising an X-ray source, which allows magnetic stepping of the X-ray spot, several slightly
shifted images can be obtained without requiring mechanical movements. Registering the shifts
between individual images with sub-pixel precision allows to estimate a high-resolution image. With
repeatable and equally spaced X-ray spot position patterns, sufficient information can be obtained
with only a few images. In this paper, we present the application of super-resolution for X-ray
imaging using a Pilatus 100K hybrid pixel detector from Dectris Ltd. and a prototype micro-focus
X-ray source from Excillum AB. Moreover, we analyse the image quality for applications in X-ray
radiography and tomography.

Using a sufficient number of low-resolution images allows us to achieve an increase in resolu-
tion, without introducing significant blur or artefacts into the image. Here we quantify the effects
on the quality of resulting super-resolution images using different methods of image interpolation,
interpolation factors, shifts of the sample on the detector, and amount of low-resolution images.

Keyworbs: Computerized Tomography (CT) and Computed Radiography (CR); Data processing
methods; X-ray detectors; X-ray generators and sources

!Corresponding author.

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of
2 Sissa Medialab. Original content from this work may be used under the
terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this httpS//dOIOrg/l O 1 088/1 748-022 1 /1 5/03/C03002

work must maintain attribution to the author(s) and the title of the work, journal citation
and DOL


mailto:till.dreier@med.lu.se
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1088/1748-0221/15/03/C03002

Contents

1 Introduction 1
2 Methods 2
2.1 Imaging setup 2
2.2 Super-resolution 2
2.3 Image quality analysis 3
3 Results 3
3.1 Super-Resolution images 3
3.2 Image quality 3
3.3 Super-resolution tomography 5
4 Discussion and conclusions 6

1 Introduction

For most imaging applications, resolution and contrast are the most significant aspects. Thus, their
enhancement is subject to continuous optimisation and development. Super-resolution describes a
method estimating one high-resolution image using several slightly shifted low resolution images [1].
This method provides an approach to increase the resolution using a series of images. However, for
biological samples, which suffer from radiation damage, efficiency needs to be considered as well.

Using a micro-focus solid anode source prototype from Excillum with a spot size of 10 wm
Sull width at half maximum (FWHM) and an acceleration voltage of 70 kV. Using the source’s
advanced electron optics allows to precisely deflect the electron beam resulting in a movable X-ray
spot [2]. Utilising a grid pattern of X-ray spot positions assures that sufficient new information are
contained in each individual image.

The use of hybrid pixel detectors is specifically beneficial for the application of super-resolution
imaging. Typically, super-resolution imaging requires post-processing of the estimated high-
resolution image using a deconvolution filter [1] to reduce blurring by the point spread function
(PSF) of the detector. Contrary to CMOS or CCD cameras, pixel detectors have a PSF of a single
pixel, i.e. the resulting image is not blurred by the detector’s PSF.

The source spot rescaled to the detector plane has to be smaller than the pixel size to avoid
blurring from the X-ray source. In this case, post-processing of the high-resolution image can be
neglected since no additional blur has been induced by the detector nor the source.



2 Methods

2.1 Imaging setup

The lab setup consists of an Excillum micro-focus prototype source with a solid anode. The source
allows precise electromagnetic stepping of the X-ray spot, which can be focused to 10 ym FWHM
at an acceleration voltage of 70 kV. As detector, a Pilatus 100K from Dectris Ltd. is used. The
detector consists of 487 x 195 pixels with a pitch of 172 um and a 1 mm thick Silicon sensor [3].
Further, the detector is placed 1.5 m away from the source [2].

In this paper, 2 different samples are used. A knife edge from a utility knife is used to evaluate
sharp features via the modulation transfer function (MTF). To analyse the image quality, a botanical
sample (rosebuds) are used. The sample position can be freely adjusted depending on the desired
magnification. Further, the samples are mounted on a rotation stage. Here we analyse the effects
of different interpolation methods (nearest neighbour, linear, cubic, makima, and spline), super-
resolution factors (interpolation factors), amount of low-resolution images, and the translation of
the sample on the detector on the resulting high-resolution images.

2.2 Super-resolution

Super-resolution is achieved by registering the shift between individual images with sub-pixel
precision [4], interpolating the images on a high-resolution grid [5], and averaging the interpolated
images [1, 2, 5]. Using pixel detectors, this method is sufficient to obtain high quality images [2].
However, using a CCD or CMOS camera will require post-processing using a deconvolution filter,
e.g. a Wiener filter [1], Richardson-Lucy filter, regularisation filter [6], or a blind deconvolution [6—
8]. Considering conventional cameras, the blur kernel (PSF or a Gaussian) can also be extracted
from the image resulting in a blind method [6, 7]. We remove pixel errors and apply flat-field
correction before processing [2]. Sroubek et al. [6, 8] state that the theoretical resolution increase
R is given by:

R = [\img] - 1. 2.1)

Where [ represents the ceil function and 7y, the amount of low-resolution images.

There are several alternative methods to obtain super-resolution. Irani et al. proposed an
iterative back-projection algorithm [9] and Sroubek et al. utilise a unified approach related to image
regularisation [6]. The method to estimate super-resolution images can be tailored to the specific
setup or sample. Greenspan et al. proposed a method based on projection onto convex sets (POCS)
to be used in medical super-resolution imaging [10]. Viermetz et al. showed that super-resolution
improves spatial resolution to a higher degree than increasing geometric magnification using a
Talbot interferometer and a biological sample [11]. We employ a generalised approach that does
not rely on detailed knowledge on the sample nor the setup, as described by Milanfar [1] adjusted
for pixel detectors as described above [2].

The described approach can be applied to computed tomography (CT) as well [2]. For every
projection, one super-resolution image is estimated. After preparing the projections, the sample can
be reconstructed. In this paper, we use the MuhRec software set to cone beam geometry for 360°
rotation, applying tilt correction, ring filtering, and cropping [12].



2.3 Image quality analysis

To quantify the quality of sharp features in an image, the slanted edge method [13] is used, which
utilises the MTF. For this method a sharp edge is tilted by a few degrees. From a region of interest,
a column or row is chosen giving an edge spread function (ESF). From the ESF, a spatial frequency
response (SFR) can be created, which is then derived to obtain the line spread function (LSF).
Finally, the MTF is obtained via Fourier transformation of the LSF. The resulting MTF is truncated
using the FWHM obtained by applying a Gaussian fit to the LSF [13-15].

The signal to noise ratio (SNR) and contrast to noise ratio (CNR) are methods to determine
the quality of an image without requiring a reference image. The SNR is defined as:

SNR =20 % log ——. (2.2)
NRMS

Where s is the mean value of a region containing the sample and nrys is the root mean square
(RMS) of a region without sample, which is defined as: nrRMs = V7meanZ Where fimean is the mean
value of the region without sample.
The CNR is defined as:
oNR = o 2.3)

On

Where s is the mean value of a region containing the sample, » is mean value of a region without
sample, and o, is the standard deviation of the region without sample [16]. The regions are equally
sized and manually chosen. The same regions can be used for both SNR and CNR calculations.

For an additional quantitative comparison of the image quality, the radial power spectrum is
used. Therefore, the images are Fourier transformed, radially integrated, and plotted in double
logarithmic representation as function of the spatial frequency. The resulting power spectrum
is truncated at the Nyquist frequency [17] and maximum and minimum spatial frequencies are
obtained via equations (2.4).

iz~ B} (pix * Psize) ™!
fnyquist = pSIZ; s Jmax = Psize : > Simin = % . (2.4)

Where pgize is the pixel size in mm and 7, is the amount of pixels in x direction.

3 Results

3.1 Super-Resolution images

Compared to a single image, super-resolution has in all our tests improved the image regardless of the
interpolation method, amount of images, translation of the sample on the detector, or interpolation
factor. Good results have been achieved using 4 X 4 images with a sample translation of 3 pixels and
4 times spline interpolation (see figure 1(a)). In figure 1(b), it can be observed that cubic, makima,
and spline interpolation appear sharper than linear or nearest neighbour interpolation.

3.2 Image quality

When comparing different interpolation methods, the MTF (figure 2(a)) shows that spline performs
best on sharp features. Nearest neighbour interpolation performs better than expected in this case,
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Figure 1. (a) Super-resolution image (rosebuds) created from 4 x 4 images, 3 pixels sample translation, and
4 times spline interpolation. The red and blue squares have been used for SNR and CNR calculations. (b)
Zoom of the green square shown in (a) with different interpolation methods as indicated.

while linear interpolation yields the poorest MTF. However, the observed differences are very
small. Considering the SNR and CNR (figure 2(b)), it can be observed that cubic and makima
interpolation provide a slightly higher CNR and the SNR is almost unaffected. The radial power
spectrum (figure 2(c)) is very similar for all methods and degrades for higher spatial frequencies.

Using a varying amount of images with 4 times interpolation and 3 pixels sample translation
shows that the effect on the MTF is small, but spline performs well for 4 X 4 and 5 X 5 images
(figure 3(a)). Again, the SNR (figure 3(b)) is almost unaffected, while the CNR increases with the
amount of images. Figure 3(c) shows that the power spectrum performs slightly better for super-
resolution images compared to a single position (reference image). Increasing the interpolation
factor considering 4 X 4 images with 3 pixels sample translation shows that the interpolation factor
can be increased up to factor 5 before the MTF shows significant changes (figure 4(a). Figure 4(b)
shows that SNR and CNR are almost unaffected. The radial power spectrum (figure 4(c)) degrades
with increasing interpolation but performs slightly better than a single position (reference image).

Considering the total translation of the sample on the detector using 4 X 4 images, the MTF
and power spectrum for 3 pixels perform well (figures 5(a) and 5(c)) Again, the SNR is almost
unaffected and the CNR increases with the sample translation (figure 5(b)).
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Figure 2. Different interpolation methods using 4 X 4 images, 3 pixels sample translation, and 4 times
interpolation. (a) MTF. (b) SNR and CNR. (c) radial power spectrum.
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Figure 3. Varying the amount of low-resolution images using 3 pixels

SNR and CNR

7.565 4
¢ + 140
3
7.560 4
g H o 120
=7.555 <
< N i L1003
&
7.550 4 H
® SNR * linear [ 80
7.5454 o o R 4 cubic
e spline ¢ nearest
T T T —- 60
2x2 3x3 ax4 5x5
amount of images

interpolation. (a) MTF. (b) SNR and CNR. (c) radial power spectrum.

MTF of a knife edge

1.00
Z0.99
£
20.98 4
S 0.97 4
2
©
50964 — 1 — spline
'8 2 == linear

0954 — 3 e cubic
= —_—a =+ nearest

0944 °

T T T T
0.0 0.2 0.4 0.6 0.8
cycles per pixel
(@)

8.895 4

8.890

~8.885 ¢

[e2]

=
8880

=z

W 8.875 4
8.870

8.865

SNR and CNR

linear [
4+ cubic
- nearest |

4 5 6 7
upscaling factor

(b)

Fourier amplitude [norm.]

— 100 4
£
=
5]
L1074
)
°
21024
a
E 1034 — 22— spline
= 3x3 == linear
2 —— 4x4  -ee cubic
51044 — 5x5  —- nearest
2 —= ref
T T T
10-2 00

107! 1
Spatial frequency [1/mm]

(©
sample translation, and 4 times

Radial power spectrum

107 i
i

6x 1075

3x10°

— 1 == ref
2 — spline

— 3 == linear
—_—a e cubic
—— 5 —- nearest
T T T
102 o

107t 10
Spatial frequency [1/mm]

©

Figure 4. Varying the interpolation factor using 4 X 4 images, 3 pixels sample translation. (a) MTF. (b) SNR

and CNR. (c) radial power spectrum.
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Figure 5. Varying the translation of the sample on the detector using 4 X 4 images and 4 times interpolation.
(a) MTF. (b) SNR and CNR. (c) radial power spectrum.

3.3 Super-resolution tomography

This demonstration has been performed with 360 projections. To reduce the scan time, 2 X 2 images
with a sample translation of 3 pixels and 2 times spline interpolation are used. In figure 6(a) a regular
CT is shown and in figure 6(b) the super-resolution CT of the same sample is shown. Comparing
both scans shows that more details can be observed in the super-resolution CT, e.g. thorns on the
stems (figures 6(c) and 6(d)). Further, artefacts in the reconstruction are also reduced due to longer

total exposure of each individual projection in the super-resolution CT.
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Figure 6. Reconstruction of 2 rosebuds from 360 projections. (a) regular CT. (b) super-resolution CT using
2 x 2 images. (c-d) zoom of the highlighted areas in (a) and (b).

4 Discussion and conclusions

It has been demonstrated that hybrid pixel detectors are well suited for super-resolution imaging.
The method can be applied to CT as well increasing the amount of detail in the reconstruction.

The most significant visual improvement of the estimated high-resolution images comes from
the chosen interpolation method. Spline and cubic interpolation seem to be a good choice consid-
ering visual and measurable features. As expected, SNR is largely unaffected by the interpolation
method or the amount of images. The MTF also shows only very minor changes. Also, the power
spectrum only show very minor differences. The CNR, however, is a good measure to judge image
quality in these experiments regardless of interpolation method.

Theoretically, it should be sufficient to translate the sample for a maximum of 1 pixel to
obtain sufficient details. However, our experiments have shown that 3 pixels might be more suited
considering 4 x 4 images. This case is less sensitive to tolerances of the X-ray spot positions,
accounts for difference between individual pixels and the 3D structure of the sample. Shifts
between individual images should always be a fraction of a pixel for maximum new information.
Being able to precisely control the X-ray spot position is highly beneficial for such applications.
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