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Abstract

General relativity reproduces main current cosmological observations, assuming the validity of the cosmic distance
duality relation (CDDR) at all scales and epochs. However, CDDR is poorly tested in the redshift interval between
the farthest observed Type Ia supernovae and that of the cosmic microwave background. We present a new idea of
testing the validity of CDDR, through the multiple measurements of high-redshift quasars. Luminosity distances
are derived from the relation between the UV and X-ray luminosities of quasars, while angular diameter distances
are obtained from the compact structure in radio quasars. This will create a valuable opportunity where two
different cosmological distances from the same kind of objects at high redshifts are compared. Our constraints are
more stringent than other currently available results based on different observational data and show no evidence for
the deviation from CDDR at z∼3. Such an accurate model-independent test of fundamental cosmological
principles can become a milestone in precision cosmology.

Unified Astronomy Thesaurus concepts: Radio loud quasars (1349); X-ray quasars (1821); Cosmological
parameters (339); Quasars (1319)

1. Introduction

As a fundamental relation rooted in the very ground of
modern cosmology, i.e., the validity of general relativity (or
more generally—the metric theory of gravity), the so-called
cosmic distance duality relation (CDDR) is very successful in
explaining many observational facts concerning our universe,
including large-scale distribution of galaxies and the near-
uniformity of the cosmic microwave background temperature
(Planck Collaboration 2018). More specifically, there are two
basic measurable distances useful in cosmology: the angular
diameter distance DA(z) and the luminosity distance DL(z). They
are related to each other according to + =D z z D z1 1A L

2( )( ) ( )
(Etherington 1933, 2007). This relation holds under three very
general assumptions: metric theory of gravity, assumption that
photons travel along null geodesics, and assumption that the
number of photons is conserved in the beam. Any deviation
from this relation would signal violation of these assumptions,
i.e., the new physics or that photon number is not conserved,
most likely because of the impact of intergalactic medium (Liao
et al. 2015; Qi et al. 2019).

Different methods have been used to test the validity of CDDR
(Cao & Zhu 2011; Cao & Liang 2011; Li et al. 2011; Costa et al.
2015; Liao et al. 2016; Holanda et al. 2017; Rana et al. 2017). All
these methods depend on the measurements of angular diameter
distance and luminosity distance to cosmological sources and each
of them have their own advantages or drawbacks according to the
objects observed. Most of the CDDR tests performed so far were
based on low redshift objects. For example, (Holanda et al. 2010;
Li et al. 2011; Yang et al. 2013) combined angular diameter
distances from galaxy clusters and luminosity distances from
Type Ia supernovae (SN Ia). Due to limitations concerning
availability of appropriate observational data it has been hard to
get distances (especially angular diameter distances) from high-
redshift objects. Liao et al. (2016) proposed a new method to test
the CDDR with strong lensing systems in which the angular

diameter distance ratio =R D DA ls s can be measured from image
separations, provided the stellar central velocity dispersion σ0 is
measured. In the above formula, Dls and Ds denote angular
diameter distances from the source to lens and from the source to
observer, respectively. Benefiting from the higher redshift
attainable in strong gravitational lensing systems (comparing to
galaxy clusters), this method was extended to gamma-ray burst
measurements (Holanda et al. 2017) and strong gravitational
lensing time delay measurements (Rana et al. 2017). Moreover,
the possibility of using the angular size–redshift relation from
compact radio sources (Kellermann 1993; Gurvits 1994; Jackson
& Jannetta 2006; Cao et al. 2015, 2017b) to get angular diameter
distances has recently attracted attention. In particular, Li & Lin
(2018) combined the ultra-compact radio sources with SN Ia to
test the validity of CDDR.
From the perspective of a CDDR test it would be

advantageous to have objects spanning a wide redshift range
with both angular diameter and luminosity distances measur-
able. A lot of attempts have been made to explore whether
quasars can be such a kind of probe. Their luminosity distances
were proposed to be assessed from the relation between the
broad line region (BLR) radius of the reverberation mapping
method and monochromatic luminosity (Watson et al. 2011),
the properties of super-Eddington accreting massive black
holes (Wang et al. 2013), the nonlinear relation between the
ultraviolet (UV) and X-ray luminosity (Risaliti & Lusso 2015).
On the other hand, angular diameter distances to the quasars
could be derived from the classical geometrical size of the BLR
(Elivs & Karovska 2002) or the angular size–redshift relation
of compact structures in intermediate-luminosity radio quasars
(Cao et al. 2017b). Although it is hard to test the CDDR on
individual quasars having both luminosity and angular diameter
distance measured, it is tempting to use already existing rich
statistical material of objects falling into separate classes:
standardizable candles and rulers. In this paper we will use
luminosity distances to quasars from the nonlinear relation
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between the UV and X-ray emission (Risaliti & Lusso 2019)
and angular diameter distances from the angular size–redshift
relation of compact radio sources (Cao et al. 2017b).

In Section 2, we briefly introduce the methodology of
deriving two different cosmological distances from quasar
measurements in X-ray, UV, and radio bands. In order to
discuss the influence of cosmological model on the theoretical
angular sizes and the sensitivity of Gaussian processes to the
choice of mean function, we assume the Hubble constant as

= - -H 70 km s Mpc0
1 1. In Section 3, we present our results

and discuss the advantages and disadvantages of our statistical
method. Finally, we summarize our conclusions in Section 4.

2. Data and Methodology

2.1. Luminosity Distances from a Nonlinear X–UV Luminosity
Relation of Quasars

Benefiting from high luminosity and large redshift coverage,
quasars are very promising cosmological probes. One can assess
their luminosity distances indirectly from the correlations between
spectral features and luminosities (Watson et al. 2011; Wang et al.
2013; La Franca et al. 2014). Quite recently, the nonlinear relation
between the UV and X-ray luminosities of quasars has been used
to construct the “Hubble Diagram” (Risaliti & Lusso 2015; Lusso
& Risaliti 2016; Risaliti & Lusso 2017; Bisogni et al. 2018; Risaliti
& Lusso 2019) and test the cosmological model. From now on we
will use the abbreviation QSO [XUV] to denote this method. The
nonlinear relation between the UV and X-ray luminosities can be
expressed as g b= +L Llog logX UV( ) ( ) where γ is the slope and
β is the intercept. According to the flux-luminosity relation of

p=F L D4 L
2, it can be rewritten as a relation between the

observed fluxes:

g g
g p b

= + -
+ - +

F F Dlog log 2 1 log
1 log 4 . 1

X LUV ( )
( ) ( ) ( )

In order to be useful for cosmological inference, the LX–LUV
relation should not evolve with redshift, i.e., the slope γ and the
intercept β should be constant. While one is able to test the
redshift evolution of the slope on quasar subsamples in
different redshift intervals, it is still hard to check the intercept
before the solid physical understanding of the LX–LUV relation
is gained (for details see Risaliti & Lusso 2015). Another issue
worth consideration is the global intrinsic dispersion δ which is
much larger than typical uncertainties of observational fluxes.

After discarding the broad absorption line and radio-loud
quasars, which obviously deviate from the LX–LUV relation and
considering the influence of dust extinction, Risaliti & Lusso
(2015) extracted the “best sample” of 808 quasars suitable for
cosmological inference. Analyzing the redshift dependence of
the slope, they derived the average value of γ=0.6±0.02 and
dispersion δ=0.3. Most recently, Risaliti & Lusso (2019)
collected a sample of 7238 quasars with available X-ray and UV
measurements, and selected 1598 quasars suitable for cosmolo-
gical applications. Richer statistics resulted in more accurate
slope determination γ=0.633±0.002 and smaller dispersion
δ=0.24. X-ray and UV fluxes of the above mentioned two
samples are shown for comparison in Figure 1. Both of them
have large intrinsic dispersions; the slopes seem similar but the
intercept displays a deviating tendency. While using these
measurements to perform the Markov Chain Monte Carlo
estimation of cosmological model parameters, one should fix the

slope γ at the value that was estimated from narrow redshift bins
or treat it as a free parameter to provide consistent results
(Risaliti & Lusso 2015, 2019; Melia 2019). The intercept β,
however, needs to be cross-calibrated. We have used the most
recent compilation from Risaliti & Lusso (2019). As discussed in
more details in Section 2.3, we fixed the slope γ and treated the
intercept β as a nuisance parameter. The dispersion δ was also
treated as a free parameter contributing to the intrinsic scatter.

2.2. Angular Diameter Distances from Compact Radio
Quasars

The angular size–redshift (θ–z) relation of the compact
structure in radio sources has been useful for cosmological
studies. The angular size of compact sources at different
redshifts θ(z) can be written as

q =z
l

D z
, 2m

A
( )

( )
( )

where lm is the intrinsic metric length of the source and DA(z) is
the angular diameter distance. The angular size–redshift
relation was first proposed by Kellermann (1993) who
attempted to estimate the deceleration parameter based on 79
compact sources obtained using Very Long Baseline Inter-
ferometry (VLBI) at 5 GHz frequency where the angular size
was defined as a distance between the core and the component
of 2% core brightness. The method was extended by Gurvits
(1994) who used 337 active galactic nuclei observed at
2.29 GHz by Preston et al. (1985) to discuss the luminosity
and redshift dependence of their characteristic size and estimate
the deceleration parameter. Unlike the angular size definition of
Kellermann (1993), Gurvits (1994) used the modulus of
visibility G = S Sc t to express source compactness and the
characteristic angular size of radio sources can be calculated
through the expression of q p= - G qz B2 ln ln 2( ) where Bθ

Figure 1. Flog X vs. Flog UV diagram of quasars. Blue squares represent 808
data points from Risaliti & Lusso (2015), while the red circles represent 1598
data points from Risaliti & Lusso (2019).
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is the interferometer baseline, Sc and St are correlated flux
density and total flux density, respectively. Moreover, Gurvits
et al. (1999) used another sample of 330 VLBI contour maps at
5 GHz collected from the literature and discussed the influence
of dispersion in the “θ−z” relation and these data was widely
used for cosmological parameter inference (Chen & Ratra 2003;
Zhu et al. 2004). Then, Jackson (2004) tried to establish a
plausible model to understand the physical meaning of such
standard rulers using the compilations from Gurvits (1994) and
Gurvits et al. (1999).

Phenomenological dependence of the intrinsic length in
Equation (2) on the source luminosity and the redshift can be
expressed as

= +rl lL z1 , 3m
n( ) ( )

where l is the linear size scaling factor, ρ and n power-law
exponents capture the dependence of the intrinsic length on source
luminosity and redshift, respectively. In Preston et al. (1985), 917
radio sources were detected in several VLBI studies at 2.29 GHz
according to 1398 candidates selected from previous surveys
while some of them did not have the necessary information like
the total flux density or redshift. Then, Jackson & Jannetta (2006)
complemented these data with relevant information obtained from
the NASA/IPAC Extragalactic Database and contemporaneous
radio measurements catalog. The resulting compilation comprised
613 object in total. However, it was a mixture of extragalactic
objects including quasars, BL Lacertae objects, radio galaxies, etc.
As discussed in Cao et al. (2015), the dependence of the linear
size on luminosity and redshift is different in different classes of
objects. This conclusion was based on the Gurvits (1994) sample
under assumption of a standard ΛCDM cosmological model and
with best fitted parameters obtained from Planck/Wilkinson
Microwave Anisotropy Probe observations. Applying the selec-
tion criteria of flat spectral index −0.38�α�0.18 and
luminosity in the range of 1027 WHz−1�L�1028 WHz−1

to the Jackson & Jannetta (2006) sample, Cao et al. (2017b,
2017a) identified a sample of 120 intermediate-luminosity quasars
displaying negligible dependence on both source luminosity and
redshift (r » »- -n10 , 104 3∣ ∣ ∣ ∣ ). Therefore, the compact struc-
ture sizes of these quasars are potentially promising standard
rulers with multifrequency VLBI observations (Cao et al. 2018).
This subsample was successfully used in cosmological applica-
tions including the measurements of speed of light (Cao et al.
2017a, 2020) and cosmic curvature at different redshifts (Cao
et al. 2019), cosmological model selection (Li et al. 2017; Melia
et al. 2017), testing modified gravity models (Qi et al. 2017; Xu
et al. 2018) and interacting dark energy models (Zheng et al.
2017). We will use it in the present paper and denote it by the
abbreviation QSO [CRS]. Figure 2 displays the angular size–
redshift relation in this sample (red points with corresponding
error bars).

2.3. The Test of CDDR

The validity of CDDR can be tested by the determination of
the η(z) parameter

h =
+

z
D z

D z z1
, 4L

A
2

( ) ( )
( )( )

( )

where η(z)=1 corresponds to the standard Etherington
reciprocity relation and any statistically significant deviations
from it might signal the violation of any of the underlying
assumptions. In our study we derived luminosity distances and
angular diameter distances from QSO [XUV] and QSO [CRS],
respectively. The advantage of this approach is in covering the
wide redshift range and using the same population of objects
(the quasars) in the assessment of two different distance
measures. As discussed above, we used the compilation of
angular size measurements of compact radio quasars to
determine the angular diameter distance, and the quasar flux
measurements in X-ray and UV bands which can be used to
derive the luminosity distance. Redshift distributions of QSO
[XUV] and QSO [CRS] samples are shown in Figure 3. One
can see that the redshift range probed by quasars is
considerable and that two samples overlap sufficiently with
each other.
In order to test the CDDR, we use four parameterizations of

η(z)

h

h

h

h

=

+
+
+

+ +

h

+
z

z

z

z

1

1

1

1 ln 1

. 5z

z

0

2 1

3

1

( )
( )

( )

( )

⎧
⎨
⎪⎪

⎩
⎪⎪

There is no guidance from the theory of which parameterization
could be distinguished, but mutually consistent results for
different parameterizations would strengthen the robustness of
the conclusion.

Figure 2. Angular size θ vs. redshift z for the compact structure in 120
intermediate-luminosity quasars. Gray solid line, cyan dashed line, and
magenta dashed–dotted line illustrate theoretical angular size vs. redshift
relation calculated from the fiducial ΛCDM cosmology with Ωm=0.27, the
so-called =R cth cosmology, and the Mirage cosmology (W = 0.27m ,
w0=−0.7, w1=−1.09), respectively. The linear size of lm=11.42 pc
calibrated with SN Ia in Cao et al. (2017a) was used to calculate the theoretical
angular size.
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From Equation (1), theoretical expression of the luminosity
distance can be reformulated as

=

´

g g

p b g

- -

- + -

D z 10

10 . 6
L

F FQSO XUV log log 2 2

log 4 2 2 2

X UV( )
( )

[ ] ( ) ( )

[ ( ) ( )]

In principle, the parameters γ and β can be fitted to different
cosmological models in a manner analogous to the SN Ia light-
curve fitting (Betoule et al. 2014; Melia 2019). Another
approach is to derive the slope γ from the nonlinear relation
between the UV and X-ray luminosities with subsamples in
different redshift intervals and calibrate the β intercept on
external probes like SN Ia (Risaliti & Lusso 2015). Risaliti &
Lusso (2015) demonstrated that the γ parameter does not
display any significant redshift evolution pattern but is close to
a certain average value. While it is not possible to test the
redshift dependence of the intercept parameter β, one can
anchor it by means of the cross-calibration on the SN Ia sample
having redshifts overlapping with quasars. Following this
method, we assumed γ=0.633±0.002 derived in Risaliti &
Lusso (2019) but we treated the intercept β as a free parameter.

Similarly, according to Equation (2), angular diameter
distances can be calculated from observed angular sizes as

q=D z l z , 7A m
QSO CRS ( ) ( ) ( )[ ]

and we also treated the length scale lm as a free parameter. In
order to test the CDDR using different samples one should use
a redshift matching criterion Δz<0.005 (Li et al. 2011; Liao
et al. 2016). However, it turned out difficult to fulfill this
criterion in order to compare distances derived from QSO
[XUV] and QSO [CRS] directly. Therefore, proceeding in a
similar manner as Li & Lin (2018), we reconstruct QSO [CRS]
angular size as a function of redshift from the binned data. The
angular size of intermediate-luminosity quasars was grouped

into 20 redshift bins of width Δz=0.1 starting from the
smallest redshift of this sample. Median values of angular size
plotted against the mean redshift in each bin are shown in
Figure 4. The python package GaPP based on Gaussian
Processes (Seikel et al. 2012) was used for the reconstruction
process that depends on the mean function and the covariance
function k x x,( ˜). In order to discuss the influence of the choice
of these two prior functions, we studied four mean functions
and three covariance functions. The prior mean functions that
we discussed are the following: zero mean function, the
theoretical function of angular size calculated from the angular
diameter distance under the assumption of three cosmological
models: flat ΛCDM with Ωm=0.27, so-called Rh=ct
universe (Melia & Shevchuk 2012), and a Mirage model with
Ωm=0.27, w0=−0.7 and w1=−1.09 (Shafieloo et al.
2012). The linear size scaling factor lm=11.42 pc was
assumed as calibrated with SN Ia in Cao et al. (2017a). These
functions (except the zero mean function) are shown in
Figure 2. There are many possible covariance functions and
we studied the three most popular ones. They comprise: the
squared exponential function

s= -
-

k x x
x x

ℓ
, exp

2
, 8f

2
2

2
( ˜) ( ˜) ( )

⎛
⎝⎜

⎞
⎠⎟

the Materń

s= -
-

+
-

k x x
x x

ℓ

x x

ℓ
, exp

3
1

3
, 9f

2( ˜) ∣ ˜∣ ∣ ˜∣ ( )
⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

Figure 3. Comparison of redshift distribution of the samples studied. Blue and
red histograms represent redshift distributions of QSO [XUV] and QSO [CRS],
respectively.

Figure 4. Angular size vs. redshift relation reconstructed from binned data with
different covariance functions and zero mean function. Red points represent
median values of 20 redshift bins with width Δz=0.1 starting from the
smallest redshift of the intermediate-luminosity quasars. Green solid line, blue
dashed line, and black dashed–dotted line show the reconstructed angular size
with squared exponential, Materń , and Cauchy covariance function, respec-
tively. The green range shows the 1σ uncertainty band of the reconstructed
angular size based on the squared exponential covariance function.
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and Cauchy covariance function

s=
- +

k x x
ℓ

x x ℓ
, , 10f

2
2 2

( ˜)
( ˜)

( )

where σf and ℓ are hyperparameters that control the amplitude
of deviation from the mean function and the typical length scale
in x-direction, respectively. It is instructive to discuss the
effects of the mean function and covariance function selection
(prior assumptions) on the reconstruction. In order to show the
impact of covariance function choice, we fixed the zero mean
and preformed reconstruction with three different covariance
functions mentioned above. The result obtained under the
assumption of squared exponential covariance function is
illustrated in Figure 4, where the green solid line represents the
reconstructed θ(z) relation and the green region around it
represents a 1σ uncertainty band. The blue dashed line and
black dashed–dotted line represent the reconstructed θ(z)
relation with the Matérn and Cauchy covariance functions,
respectively. Their uncertainty bands are not shown in order to
not blur the picture since they are similar to the one displayed.
One can see that differences between reconstructions per-
formed with different choices of covariance function are
insignificant. Similarly, we checked sensitivity of reconstruc-
tions with respect to the choice of the mean function fixing the
covariance as a squared exponential one and using three main
functions mentioned above. It turned out that the impact of
mean function choice on the reconstruction was even smaller
than that of the covariance function. Therefore for further
calculations we assumed the zero mean function and the
squared exponential covariance function to get the recon-
structed θ(z) function (i.e., the green line and region in
Figure 4). Using this reconstructed relation we were able to
have a one-to-one matching between the QSO [CRS] angular
diameter distance and the QSO [XUV] luminosity distance at
the same redshift.

Now the observed CDDR parameter ηobs(z) can be expressed
as

h

q

=
+

= + g g- - -

z
D z

D z z

B z z

1

1 10 , 11

L

A
F F

obs

QSO XUV

QSO CRS 2

2 log log 2 2X UV

( )
( )

( )( )
( ) ( ) ( )

[ ]

[ ]

( ) ( )

where = p b g+ - -B l 10m
log 4 2 2 2 1[ ][ ( ) ( )] is the nuisance para-

meter containing both the linear size scaling factor lm and the
intercept β. Concerning the uncertainty budget, we considered
uncertainties of θ(z), Flog X , γ, and an intrinsic scatter σint,
which is meant to capture the global intrinsic dispersion δ in
QSO [XUV] data and other unconsidered uncertainties.
Intrinsic scatter was treated as a free parameter. The uncertainty
of Flog UV is negligible compared to the uncertainty of s Flog X

hence we ignored it. So the total uncertainty of η(z) can be
expressed as

s s s s s= + + +h q g , 12int
2 2

logF
2 2

X
( )

where the subsequent components are as follows:

s q

s q

g
g

s q

g

=
+

=
+

´
-
-

=
+

´
-

q
g g

g
g g

g g

- -

- -

- -

B

z
d z

B

z
z

F F
d

B

z
z

d F

1
10

1
10

ln 10
log log

2 1

1
10

ln 10
1

2 1
log . 13

F F

F F

X

F
F F

X

2
log log 2 2

2
log log 2 2

UV
2

log 2
log log 2 2

X

X

X
X

UV

UV

UV

( )
( )

( )
( )

( )

( )
( )

( )
( )

( ) ( )

( ) ( )

( ) ( )

Free parameters in our calculations included: the nuisance
parameter B (in units of 10−13), the CDDR parameters ηi
( =i 0 ,..., 3) corresponding to four parameterizations of
Equation (5), and the intrinsic scatter parameter σint. We fitted
the free parameters by maximizing the likelihood function


ps

h h
s

= -
-

h h
 p

1

2
exp

1

2
14obs th

2

2
( )

( )
( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

using the Python package of emcee (Foreman-Mackey et al.
2013) to do the Markov Chain Monte Carlo analysis. We
assumed the following uniform priors for these parameters:

=P B U 0, 1( ) [ ], h = -P U 1, 10( ) [ ], s = U 0, 2int [ ].

3. Results and Discussion

The best fitted parameter values and corresponding 1σun-
certainties are listed in Table 1 and shown in Figure 5. One can
see that there is no evidence for the CDDR violation in none of
the parameterizations considered. Hence, the conclusion of
CDDR validity seems robust. This is consistent with the
conclusions of other works including the comparison between
luminosity distances derived form SN Ia and angular diameter
distances to galaxy clusters (Holanda et al. 2010; Li et al.
2011), gas mass fraction of clusters (Goncalves et al. 2015),
Baryon Acoustic Oscillations (Wu et al. 2015) at low redshifts,
strong gravitational lensing systems (Liao et al. 2016), gamma-
ray bursts (Holanda et al. 2017), or compact radio sources (Li
& Lin 2018). Recently some authors made forecasts concerning
CDDR testing based on the simulated luminosity distances of
standard sirens detectable in the future by the Einstein
Telescope combined with strong gravitational lensing systems
(Yang et al. 2019) or simulated compact radio quasars (Qi et al.
2019). Assuming η(z)=1+η0z parameterization they show

Table 1
Results of CDDR Test Using Four Parameterizations According to

Equation (5)

h z( ) B×10−13 ηi σint

h+ z1 0 -
+1.61 1.12

1.97
-
+0.01 0.04

0.04
-
+1.56 0.03

0.03

+ hz1 1( ) -
+1.66 1.11

1.84
-
+0.02 0.09

0.09
-
+1.57 0.03

0.03

h+ +z z1 12 ( ) -
+1.48 1.02

1.74
-
+0.13 0.21

0.26
-
+1.56 0.03

0.03

h+ +ln z1 13 ( ) -
+1.65 1.15

1.84
-
+0.04 0.09

0.10
-
+1.57 0.03

0.03

Note. B is the nuisance parameter containing both the linear size lm of QSO
[CRS] standard rulers and the intercept β for QSO [XUV] standard candles, ηi
is the CDDR parameter, and σint is the intrinsic scatter.
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that the 1σ uncertainty level can reduced to 0.035 and 0.0093,
respectively. Using a single population of objects, Holanda
et al. 2012 tested the cosmic distance duality at low redshift
(0.14<z<0.89) according to the measurements of the gas
mass fraction of galaxy clusters from Sunyaev–Zeldovich and
X-ray surface brightness. They obtained the following results:
η0=−0.06±0.16 and η2=−0.07±0.24 after excluding
objects with questionable reduced χ2. Comparing to other
independent approaches mentioned above, our method is
competitive and our results support the validity of CDDR.
Underlying our approach is the use of the same kind of objects

—quasars—visible at high redshifts. This might alleviate some
systematics coming from different physical properties of
different populations of objects. Even though the accuracy of
our results is poorer than that forecasted from the simulated
data, our method provided constraints on CDDR violation more
stringent than other currently available results based on real
observational data.
The linear size parameter lm and the intercept β are hard to

determine precisely due to, respectively, the ambiguous
interpretation of the compact structure size in radio quasars
and the variation of slope in X–UV luminosity relation of

Figure 5. Two-dimensional and marginalized distributions of the nuisance parameter B, the CDDR validity parameter η and the intrinsic scatter σint in four
parameterizations of η(z) according to Equation (5).
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quasars. Therefore, it is necessary to calibrate the values of lm
and β separately before using them to investigate cosmological
parameters. The linear size parameter lm was previously
calibrated with Type Ia SN (Cao et al. 2017a) and with
Hubble parameters (Cao et al. 2017b), while the calibration of
β was discussed by Risaliti & Lusso (2015). Being focused on
the CCDR parameters, we entangled lm and β in a single
nuisance parameter B. However, we have checked the influence
of lm and β on the CDDR parameters using the priors based on
the above mentioned calibrations. It turned out that it very
slightly modified the results presented in this paper. The
advantage of the approach we have taken here (i.e., using a
nuisance parameter B) was that we avoided external calibra-
tions that might be cosmological model dependent and
introduce tacit assumptions leading to circularity of reasoning.

Our result, i.e., confirmation of CDDR validity suggests to
use it as an assumption and discuss the consistency between
distances derived from QSO [XUV] and QSO [CRS]. The
proper framework for this purpose is set by the crossing
statistics approach as introduced in Shafieloo et al. (2013; for
more detailed description of the method see the references
therein). Instead of smooth reconstructed distances we will use
distance moduli μsmooth derived from them. Following
Shafieloo et al. (2013) we represent the crossing function by
a second order Chebyshev polynomial

= + + -F C C z C
z

z
C

z

z
, , 1 2 1 , 15II 1 2 1

max
2

max

2

( ) ( )
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

where C1, C2 are the hyperparameters and zmax is the maximum
redshift in the data compilations. Then, we fit the data to the
functions of m m= ´z F C C z, ,F

IIsmooth smooth 1 2
II ( ) ( ) based on χ2

statistics. For comparison, we first use Union2.1 SN Ia data
(Suzuki et al. 2012) to reconstruct μsmooth using Gaussian
processes and then use this function to fit SN data itself, QSO

[XUV] data and QSO [CRS] data. The QSO [CRS] linear size
parameter l=11.42±0.28 pc and the QSO [XUV] intercept
parameter β=8.24±0.02 were used to derive corresponding
distances and both of them were calibrated from the same
supernovae compilation (Union2.1). The final results of the
hyperparameters fitting are shown in Figure 6. The confidence
contours of C1

SN and C2
SN are centered around the (0,0) point as

expected because the prior of the smooth mean function is
derived from SNe data itself. According to the same smooth
mean function, the confidence contours of (C1

QSO CRS[ ],
C2

QSO CRS[ ]) and (C1
QSO XUV[ ], C2

QSO XUV[ ]) turn out inconsistent
with (C1

SN, C2
SN) while having a good overlap region with each

other. Inconsistency between supernova and QSO [CRS](or
QSO [XUV]) data suggest that it might be some systematics in
these data not properly accounted for. Moreover, this incon-
sistency implies that the cosmological models best fitted to these
data compilations may be different. This issue is very important
and will be investigated in a future work. Let us note that the
QSO [CRS] and QSO [XUV] data, both having large intrinsic
dispersions are hard to smooth directly except by using the
redshift binned data and this process may result with systematics
and impact the result. It is remarkable that the confidence
contours of QSO [CRS] and QSO [XUV] are consistent with
each other, which further supports the validity of our method.

4. Conclusion

As a fundamental relation rooted in the very ground of
modern cosmology, i.e., the validity of general relativity (or
more generally—the metric theory of gravity), the CDDR is very
successful in explaining many observational facts concerning
our universe (Planck Collaboration 2018). However, its slight
violations might also signal non-conservation of photon numbers

Figure 6. Distance modulus and confidence contours of the crossing statistics hyperparameters based on Union2.1 SN, QSO [XUV], and QSO [CRS] data
compilations. The QSO [CRS] linear size parameter l=11.42±0.28 pc and the QSO [XUV] intercept parameter β=8.24±0.02 were used to get a corresponding
distance modulus and both of them were calibrated from the same SN compilation (Union2.1).
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on the way from the source to the observer. Such an effect could
be due to photons decaying to axions or due to less exotic causes
like absorption by intergalactic medium. Therefore, it is very
important to test it on available observational material. So far it
has been tested mainly at lower redshifts where the observational
measurements are abundant and it started to be extended to
higher redshifts (Liao et al. 2016; Holanda et al. 2017). An
interesting approach is to use for this purpose the gravitational
wave measurements of coalescing compact binaries (Qi et al.
2019; Yang et al. 2019). However, we should wait for the future
third generation GW detectors until the statistics and the redshift
coverage will be sufficient to get competitive results.

In this paper, we proposed to test the CDDR using high-
redshift quasars that can provide both luminosity distances and
the angular diameter distances. The angular diameter distances
we used come from the angular size measurements of compact
structures in intermediate-luminosity radio quasars (Cao et al.
2017b) and the luminosity distances come from the nonlinear
relation between the UV and X-ray emission (Risaliti &
Lusso 2019). We used four different CDDR parameterizations:
linear in redshift η(z)=1+η0z, power law η(z)=(1+z)η1,
linear in scale factor h h= + +z z z1 12( ) ( ), and logarithmic
h h= + +z z1 ln 13( ) ( ). The linear size parameter lm of
compact structure and the intercept parameter β in the X–UV
relation should in principle be calibrated independently.
However, it is currently very hard to achieve due to a lack of
solid physical understanding of the X–UV relation and why the
intermediate-luminosity quasars could be standardizable rulers.
Moreover, external calibrators might introduce other systema-
tics and hidden assumptions influencing the results. In order to
circumvent these problems, we entangled both lm and β
parameter into one external parameter B, which was further-
more treated as a free parameter to fit and was marginalized
over. Our results, which support the validity of the CDDR at
z∼3, turned out to be more competitive than other approaches.
Given the wealth of available high-z quasars in the future,
we may be optimistic about detecting possible deviation from
the CDDR within our observational volume. Such accurate
model-independent measurements of the CDDR can become a
milestone in precision cosmology.

This work was supported by the National Key R&D Program
of China No. 2017YFA0402600; the National Natural Science
Foundation of China under grant Nos. 11690023, 11633001,
and 11920101003; the Strategic Priority Research Program of
the Chinese Academy of Sciences, grant No. XDB23000000;
Beijing Talents Fund of Organization Department of Beijing
Municipal Committee of the CPC; the Interdiscipline Research
Funds of Beijing Normal University; and the Opening Project
of Key Laboratory of Computational Astrophysics, National
Astronomical Observatories, Chinese Academy of Sciences.
This work was performed in part at Aspen Center for Physics,
which is supported by National Science Foundation grant
PHY-1607611. This work was partially supported by a grant
from the Simons Foundation. M.B. is grateful for this support.

ORCID iDs

Xiaogang Zheng https://orcid.org/0000-0002-7588-1127
Kai Liao https://orcid.org/0000-0002-4359-5994

Marek Biesiada https://orcid.org/0000-0003-1308-7304
Shuo Cao https://orcid.org/0000-0002-8870-981X
Zong-Hong Zhu https://orcid.org/0000-0002-3567-6743

References

Betoule, M., Kessler, R., Guy, J., et al. 2014, A&A, 568, 22
Bisogni, S., Risaliti, G., & Lusso, E. 2018, FrASS, 4, 68
Cao, S., Biesiada, M., Jackson, J., et al. 2017a, JCAP, 02, 012
Cao, S., Biesiada, M., Zheng, X. G., et al. 2018, EPJC, 78, 749
Cao, S., Biesiada, M., Zheng, X. G., & Zhu, Z.-H. 2015, ApJ, 806, 66
Cao, S., & Liang, N. 2011, RAA, 11, 1199
Cao, S., Qi, J. Z., Biesiada, M., et al. 2019, PDU, 24, 100274
Cao, S., Qi, J. Z., Biesiada, M., Liu, T. H., & Zhu, Z.-H. 2020, ApJL, 888, L25
Cao, S., Zheng, X. G., Biesiada, M., et al. 2017b, A&A, 606, A15
Cao, S., & Zhu, Z.-H. 2011, SCPMA, 54, 2260
Chen, G., & Ratra, B. 2003, ApJ, 582, 586
Costa, S. S., Busti, V. C., & Holanda, R. F. L. 2015, JCAP, 10, 061
Elivs, M., & Karovska, M. 2002, ApJL, 581, L67
Etherington, I. M. H. 1933, PMag, 15, 761
Etherington, I. M. H. 2007, GReGr, 39, 1055
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASA,

125, 306
Goncalves, R., Bernui, A., Holanda, R. F. L., & Alcaniz, J. 2015, A&A,

573, A88
Gurvits, L. I. 1994, ApJ, 425, 442
Gurvits, L. I., Kellermann, K. I., & Frey, S. 1999, A&A, 342, 378
Holanda, R. F. L., Busti, V. C., Lima, F. S., & Alcaniz, J. S. 2017, JCAP,

09, 039
Holanda, R. F. L., Goncalves, R. S., & Alcaniz, J. S. 2012, JCAP, 06, 022
Holanda, R. F. L., Lima, J. A. S., & Ribeiro, M. B. 2010, ApJL, 722, L233
Jackson, J. C. 2004, JCAP, 11, 007
Jackson, J. C., & Jannetta, A. L. 2006, JCAP, 11, 002
Kellermann, K. I. 1993, Natur, 361, 134
La Franca, F., Bianchi, S., Ponti, G., Branchini, E., & Matt, G. 2014, ApJL,

787, L12
Li, X., & Lin, H. N. 2018, MNRAS, 474, 313
Li, X. L., Cao, S., Zheng, X. G., et al. 2017, EPJC, 77, 677
Li, Z. X., Wu, P. X., & Yu, H. W. 2011, ApJL, 729, L14
Liao, K., Avgoustidis, A., & Li, Z. X. 2015, PhRvD, 92, 123539
Liao, K., Li, Z. X., Cao, S., et al. 2016, ApJ, 822, 74
Lusso, E., & Risaliti, G. 2016, ApJ, 819, 154
Melia, F. 2019, MNRAS, 489, 517
Melia, F., & Shevchuk, A. S. H. 2012, MNRAS, 419, 2579
Melia, Y. B., Zhang, J., Cao, S., et al. 2017, EPJC, 77, 891
Planck Collaboration 2018, arXiv:1807.06209
Preston, R. A., Morabito, D. D., Williams, J. G., et al. 1985, AJ, 90, 1599
Qi, J. Z., Cao, S., Biesiada, M., et al. 2017, EPJC, 77, 502
Qi, J. Z., Cao, S., Pan, Y., & Li, J. 2019, PDU, 26, 100338
Qi, J. Z., Cao, S., Zheng, C. F., et al. 2019, PhRvD, 99, 063507
Rana, A., Jain, D., Mahajan, S., Mukherjee, A., & Holanda, R. F. L. 2017,

JCAP, 07, 010
Risaliti, G., & Lusso, E. 2015, ApJ, 815, 33
Risaliti, G., & Lusso, E. 2017, AN, 338, 329
Risaliti, G., & Lusso, E. 2019, NatAs, 3, 272
Seikel, M., Clarkson, C., & Smith, M. 2012, JCAP, 1206, 036
Shafieloo, A., Kim, A. G., & Linder, E. V. 2012, PhRvD, 85, 123530
Shafieloo, A., Majumdar, S., Sahni, V., & Starobinsky, A. A. 2013, JCAP,

04, 042
Suzuki, N., Rubin, D., Lidman, C., et al. 2012, ApJ, 746, 85
Wang, J. M., Du, P., Valls-Gabaud, D., Hu, C., & Netzer, H. 2013, PhRvL,

110, 081301
Watson, D., Denney, K. D., Vestergaard, M., & Davis, T. M. 2011, ApJL,

740, L49
Wu, P. X., Li, Z. X., & Yu, H. 2015, PhRvD, 92, 023520
Xu, T. P., Cao, S., Qi, J. Z., et al. 2018, JCAP, 06, 042
Yang, T., Holanda, R. F. L., & Hu, B. 2019, APh, 108, 57
Yang, X., Yu, H. R., & Zhang, T. J. 2013, JCAP, 06, 007
Zheng, X. G., Biesiada, M., Cao, S., et al. 2017, JCAP, 10, 030
Zhu, Z.-H., Fujimoto, M. K., & He, X. T. 2004, A&A, 417, 833

8

The Astrophysical Journal, 892:103 (8pp), 2020 April 1 Zheng et al.

https://orcid.org/0000-0002-7588-1127
https://orcid.org/0000-0002-7588-1127
https://orcid.org/0000-0002-7588-1127
https://orcid.org/0000-0002-7588-1127
https://orcid.org/0000-0002-7588-1127
https://orcid.org/0000-0002-7588-1127
https://orcid.org/0000-0002-7588-1127
https://orcid.org/0000-0002-7588-1127
https://orcid.org/0000-0002-4359-5994
https://orcid.org/0000-0002-4359-5994
https://orcid.org/0000-0002-4359-5994
https://orcid.org/0000-0002-4359-5994
https://orcid.org/0000-0002-4359-5994
https://orcid.org/0000-0002-4359-5994
https://orcid.org/0000-0002-4359-5994
https://orcid.org/0000-0002-4359-5994
https://orcid.org/0000-0003-1308-7304
https://orcid.org/0000-0003-1308-7304
https://orcid.org/0000-0003-1308-7304
https://orcid.org/0000-0003-1308-7304
https://orcid.org/0000-0003-1308-7304
https://orcid.org/0000-0003-1308-7304
https://orcid.org/0000-0003-1308-7304
https://orcid.org/0000-0003-1308-7304
https://orcid.org/0000-0002-8870-981X
https://orcid.org/0000-0002-8870-981X
https://orcid.org/0000-0002-8870-981X
https://orcid.org/0000-0002-8870-981X
https://orcid.org/0000-0002-8870-981X
https://orcid.org/0000-0002-8870-981X
https://orcid.org/0000-0002-8870-981X
https://orcid.org/0000-0002-8870-981X
https://orcid.org/0000-0002-3567-6743
https://orcid.org/0000-0002-3567-6743
https://orcid.org/0000-0002-3567-6743
https://orcid.org/0000-0002-3567-6743
https://orcid.org/0000-0002-3567-6743
https://orcid.org/0000-0002-3567-6743
https://orcid.org/0000-0002-3567-6743
https://orcid.org/0000-0002-3567-6743
https://doi.org/10.1051/0004-6361/201423413
https://ui.adsabs.harvard.edu/abs/2014A&A...568A..22B/abstract
https://doi.org/10.3389/fspas.2017.00068
https://ui.adsabs.harvard.edu/abs/2017FrASS...4...68B/abstract
https://doi.org/10.1088/1475-7516/2017/02/012
https://ui.adsabs.harvard.edu/abs/2017JCAP...02..012C/abstract
https://doi.org/10.1140/epjc/s10052-018-6197-y
https://ui.adsabs.harvard.edu/abs/2018EPJC...78..749C/abstract
https://doi.org/10.1088/0004-637X/806/1/66
https://ui.adsabs.harvard.edu/abs/2015ApJ...806...66C/abstract
https://doi.org/10.1088/1674-4527/11/10/008
https://ui.adsabs.harvard.edu/abs/2011RAA....11.1199C/abstract
https://doi.org/10.1016/j.dark.2019.100274
https://ui.adsabs.harvard.edu/abs/2019PDU....24..274C/abstract
https://doi.org/10.3847/2041-8213/ab63d6
https://ui.adsabs.harvard.edu/abs/2020ApJ...888L..25C/abstract
https://doi.org/10.1051/0004-6361/201730551
https://ui.adsabs.harvard.edu/abs/2017A&A...606A..15C/abstract
https://doi.org/10.1007/s11433-011-4559-7
https://ui.adsabs.harvard.edu/abs/2011SCPMA..54.2260C /abstract
https://doi.org/10.1086/344786
https://ui.adsabs.harvard.edu/abs/2003ApJ...582..586C/abstract
https://doi.org/10.1088/1475-7516/2015/10/061
https://ui.adsabs.harvard.edu/abs/2015JCAP...10..061S/abstract
https://doi.org/10.1086/346015
https://ui.adsabs.harvard.edu/abs/2002ApJ...581L..67E/abstract
https://ui.adsabs.harvard.edu/abs/1933PMag...15..761E/abstract
https://doi.org/10.1007/s10714-007-0447-x
https://ui.adsabs.harvard.edu/abs/2007GReGr..39.1055E/abstract
https://doi.org/10.1086/670067
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F/abstract
https://ui.adsabs.harvard.edu/abs/2013PASP..125..306F/abstract
https://doi.org/10.1051/0004-6361/201424429
https://ui.adsabs.harvard.edu/abs/2015A&A...573A..88G/abstract
https://ui.adsabs.harvard.edu/abs/2015A&A...573A..88G/abstract
https://doi.org/10.1086/173999
https://ui.adsabs.harvard.edu/abs/1994ApJ...425..442G/abstract
https://ui.adsabs.harvard.edu/abs/1999A&A...342..378G/abstract
https://doi.org/10.1088/1475-7516/2017/09/039
https://ui.adsabs.harvard.edu/abs/2017JCAP...09..039H/abstract
https://ui.adsabs.harvard.edu/abs/2017JCAP...09..039H/abstract
https://doi.org/10.1088/1475-7516/2012/06/022
https://ui.adsabs.harvard.edu/abs/2012JCAP...06..022H/abstract
https://doi.org/10.1088/2041-8205/722/2/L233
https://ui.adsabs.harvard.edu/abs/2010ApJ...722L.233H/abstract
https://doi.org/10.1088/1475-7516/2004/11/007
https://ui.adsabs.harvard.edu/abs/2004JCAP...11..007J/abstract
https://doi.org/10.1088/1475-7516/2006/11/002
https://ui.adsabs.harvard.edu/abs/2006JCAP...11..002J/abstract
https://doi.org/10.1038/361134a0
https://ui.adsabs.harvard.edu/abs/1993Natur.361..134K/abstract
https://doi.org/10.1088/2041-8205/787/1/L12
https://ui.adsabs.harvard.edu/abs/2014ApJ...787L..12L/abstract
https://ui.adsabs.harvard.edu/abs/2014ApJ...787L..12L/abstract
https://doi.org/10.1093/mnras/stx2810
https://ui.adsabs.harvard.edu/abs/2018MNRAS.474..313L/abstract
https://doi.org/10.1140/epjc/s10052-017-5238-2
https://ui.adsabs.harvard.edu/abs/2017arXiv170808867L/abstract
https://doi.org/10.1088/2041-8205/729/1/L14
https://ui.adsabs.harvard.edu/abs/2011ApJ...729L..14L/abstract
https://doi.org/10.1103/PhysRevD.92.123539
https://ui.adsabs.harvard.edu/abs/2015PhRvD..92l3539L/abstract
https://doi.org/10.3847/0004-637X/822/2/74
https://ui.adsabs.harvard.edu/abs/2016ApJ...822...74L/abstract
https://doi.org/10.3847/0004-637X/819/2/154
https://ui.adsabs.harvard.edu/abs/2016ApJ...819..154L/abstract
https://doi.org/10.1093/mnras/stz2120
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489..517M/abstract
https://doi.org/10.1111/j.1365-2966.2011.19906.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.2579M/abstract
https://doi.org/10.1140/epjc/s10052-017-5461-x
https://ui.adsabs.harvard.edu/abs/2017EPJC...77..891M/abstract
http://arxiv.org/abs/1807.06209
https://doi.org/10.1086/113869
https://ui.adsabs.harvard.edu/abs/1985AJ.....90.1599P/abstract
https://doi.org/10.1140/epjc/s10052-017-5069-1
https://ui.adsabs.harvard.edu/abs/2017EPJC...77..502Q/abstract
https://doi.org/10.1016/j.dark.2019.100338
https://ui.adsabs.harvard.edu/abs/2019PDU....2600338Q /abstract
https://doi.org/10.1103/PhysRevD.99.063507
https://ui.adsabs.harvard.edu/abs/2019PhRvD..99f3507Q/abstract
https://doi.org/10.1088/1475-7516/2017/07/010
https://ui.adsabs.harvard.edu/abs/2017JCAP...07..010R/abstract
https://doi.org/10.1088/0004-637X/815/1/33
https://ui.adsabs.harvard.edu/abs/2015ApJ...815...33R/abstract
https://doi.org/10.1002/asna.201713351
https://ui.adsabs.harvard.edu/abs/2017AN....338..329R/abstract
https://doi.org/10.1038/s41550-018-0657-z
https://ui.adsabs.harvard.edu/abs/2019NatAs...3..272R/abstract
https://doi.org/10.1088/1475-7516/2012/06/036
https://ui.adsabs.harvard.edu/abs/2012JCAP...06..036S/abstract
https://doi.org/10.1103/PhysRevD.85.123530
https://ui.adsabs.harvard.edu/abs/2012PhRvD..85l3530S/abstract
https://doi.org/10.1088/1475-7516/2013/04/042
https://ui.adsabs.harvard.edu/abs/2013JCAP...04..042S/abstract
https://ui.adsabs.harvard.edu/abs/2013JCAP...04..042S/abstract
https://doi.org/10.1088/0004-637X/746/1/85
https://ui.adsabs.harvard.edu/abs/2012ApJ...746...85S/abstract
https://doi.org/10.1103/PhysRevLett.110.081301
https://ui.adsabs.harvard.edu/abs/2013PhRvL.110h1301W/abstract
https://ui.adsabs.harvard.edu/abs/2013PhRvL.110h1301W/abstract
https://doi.org/10.1088/2041-8205/740/2/L49
https://ui.adsabs.harvard.edu/abs/2011ApJ...740L..49W/abstract
https://ui.adsabs.harvard.edu/abs/2011ApJ...740L..49W/abstract
https://doi.org/10.1103/PhysRevD.92.023520
https://ui.adsabs.harvard.edu/abs/2015PhRvD..92b3520W/abstract
https://doi.org/10.1088/1475-7516/2018/06/042
https://ui.adsabs.harvard.edu/abs/2018JCAP...06..042X/abstract
https://doi.org/10.1016/j.astropartphys.2019.01.005
https://ui.adsabs.harvard.edu/abs/2019APh...108...57Y/abstract
https://doi.org/10.1088/1475-7516/2013/06/007
https://ui.adsabs.harvard.edu/abs/2013JCAP...06..007Y/abstract
https://doi.org/10.1088/1475-7516/2017/10/030
https://ui.adsabs.harvard.edu/abs/2017JCAP...10..030Z/abstract
https://doi.org/10.1051/0004-6361:20034327
https://ui.adsabs.harvard.edu/abs/2004A&A...417..833Z/abstract

	1. Introduction
	2. Data and Methodology
	2.1. Luminosity Distances from a Nonlinear X–UV Luminosity Relation of Quasars
	2.2. Angular Diameter Distances from Compact Radio Quasars
	2.3. The Test of CDDR

	3. Results and Discussion
	4. Conclusion
	References



