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Introduction

The importance of the biophysical properties of proton therapy beams have been substantially considered 
due to the variability of the relative biological effectiveness (RBE) (Paganetti 2014, Paganetti et al 2019) and 
its potential clinical consequences. The use of intensity modulated techniques in proton therapy (IMPT) is 
becoming the standard of care, and these types of techniques produce non-homogeneous dose-averaged LET 
(LETd) distributions (Grassberger et al 2011) that have been shown to be correlated with clinical outcomes 
(Peeler et al 2016). While the large variability of RBE in vitro experiments makes its determination, in general, 
indistinguishable from its associated uncertainty (Paganetti 2014), LETd is a physical quantity accurately 
computable (Romano et al 2014, Cortés-Giraldo and Carabe 2015) and directly correlated with RBE. This 
correlation may lead to a practical biophysical optimization of proton therapy treatments (Giantsoudi et al 2013, 
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Abstract
To calculate 3D distributions of microdosimetric-based restricted dose-averaged LET (LETd) and 
dose-mean lineal energy (yD) in order to explore their similarities and differences between each other 
and with the traditional unrestricted LETd. Additionally, a new expression for optimum restricted 
LETd calculation is derived, allowing for disregarding straggling-associated functions in the classical 
microdosimetric theory.

Restricted LETd and yD for polyenergetic beams can be obtained by integrating previously 
developed energy-dependent microdosimetric functions over the energetic spectrum of these 
beams. This calculation is extended to the entire calculation volume using an algorithm to determine 
spectral fluence. Equivalently, unrestricted LETd can be obtained integrating the stopping power 
curve on the spectrum. A new expression to calculate restricted LETd is also derived. Results for 
traditional and new formulas are compared for a clinical 100 MeV proton beam. Distributions of 
unrestricted LETd, restricted LETd and yD are analyzed for a prostate case, for microscopic spherical 
sites of 1 µm and 10 µm in diameter.

Traditional and new expressions for restricted LETd remarkably agree, being the mean differences 
0.05  ±  0.04 keV µm−1 for the 1 µm site and 0.05  ±  0.02 keV µm−1 for the 10 µm site. In the prostate 
case, the ratio between the maximum and the central value for central axis (CAX) profiles is around  
2 for all the quantities, being the highest for restricted LETd for 1 µm (2.17) and the lowest for yD for 
1 µm (1.78).

Unrestricted LETd, restricted LETd and yD can be analytically computed and compared for 
clinical plans. Two important consequences of the calculation of yD are: (1) its distribution can be 
verified by directly measuring it in clinical beams; and (2), optimization of proton treatments based 
on these quantities is enabled as well as future developments of RBE models based on them.
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Fager et al 2015, Unkelbach et al 2016, An et al 2017, Inaniwa et al 2017, Cao et al 2018, McMahon and Paganetti 
2018, Guan et al 2019, Sánchez-Parcerisa et al 2019).

The concept of LETd, nonetheless, contains some simplifications and disregards relevant aspects of the 
patterns of energy imparted in matter. LETd is traditionally calculated by employing data for collision stop-
ping power or unrestricted LET (Wilkens and Oelfke 2003, 2004, Marsolat et al 2016, Deng et al 2019), which is 
defined as the mean energy lost by the proton in electronic collision processes per unit path length (ICRU 2016). 
Nevertheless, to better characterize the concentration or density of energy deposition in biological structures, 
energy carried out away from them should be taken off this computation. In this context, the concept of restricted 
LET, L∆ arises, normally defined by using a threshold kinetic energy for secondary delta-rays, ∆, above which 
those are disregarded (ICRU 2016). However, in this work the restriction is defined spatially as explained below.

By using the microdosimetry formalism (ICRU 1983, Kellerer et al 1985) and the concept of site, spatially-
restricted LETd can be calculated. Furthermore, the microdosimetric concept of lineal energy (y) and its equiva-
lent version of LETd, called dose-mean lineal energy (yD) might better represent microscopic distribution of the 
energy depositions since they contain the information of the imparted energy patterns in small volumes instead 
of per track length  as done with the macroscopic concept of LET. In this sense, yD has been also related to RBE 
by means of the Microdosimetric–Kinetic Model (MKM) (Hawkins 1996, 2003) and their subsequent modifi-
cations (Kase et al 2008, 2013). In fact, efforts have lately been put to establish this connection (Newpower et al 
2019, Perales et al 2019) and enable the biophysical optimization of proton radiotherapy treatments in terms of 
yD. Nevertheless, determination of yD in clinical cases would require extremely lengthy Monte Carlo (MC) simu-
lations down to microscopic level, which has made its use impractical so far.

In previous articles, we have presented models to calculate microdosimetric quantities such as yD and 
restricted LETd in monoenergetic beams (Bertolet et al 2019a). Independently, we have developed and intro-
duced an analytical algorithm to determine the energetic spectrum for proton therapeutic beams in each voxel 
inside a calculation volume within a patient (Bertolet et al 2020). Here, we combine these two works to produce 
distributions of restricted LETd and yD in clinical proton therapy cases. This has led us to propose a simplified 
and optimized expression for restricted LETd. Analogies and differences between distributions of unrestricted 
LETd, restricted LETd and yD are here explored.

Methods and materials

In order to clarify the notation employed throughout this work and make the reading easier, table 1 shows a list of 

relevant variables, their symbols and their nature.

LET and its relation with microdosimetry
A site is a certain region of interest, with a given shape and size, in a particular medium in which the energy 
imparted by a particle in its electronic collisions is scored. Each incident charged heavy particle has a defined track, 
composed of its trajectory as well as those for the secondary electrons generated along its way. An interaction 
between a track and a site is called event. The amount of energy imparted to the site in a single event is notated 
by εs. This is a stochastic quantity, i.e. it varies from event to event even when the experimental conditions are the 
same. Therefore, εs is characterized by a probability distribution f (εs), with certain mean value εs  and variance 

σ2
εs

, which provides a measurement of the variability for the value of εs in an experiment. The variability on εs is 
influenced by three sources (Kellerer et al 1985): (i) the variability on the average energy imparted per unit length, 
characterized by means of the linear energy transfer (LET), that represents the ability of the particle to interact 
with the medium (i.e. interaction cross section); (ii) the variability on the segment length s , which is the distance 
travelled by the particle within the site (Bertolet et al 2019a); and (iii) the energy straggling, i.e. given an average 
energy imparted per unit length, the variability on the number of collisions and energy deposited in them due to 
stochastic nature of interactions between radiation and matter.

The quotient between the energy imparted in a single event εs and the mean segment length ̄s  of tracks in the 
site is called lineal energy:

y =
εs

s̄
.� (1)

Consequently, lineal energy is also a stochastic quantity, characterized by a distribution f (y) that includes 
information about the volumetric pattern of energy deposition. However, the deterministic concept of LET 
is generally employed instead, since it allows for a more simplistic approach in which track structure can be 
disregarded. In this context, when dealing with a polyenergetic or multi-particle beam, a distribution of different 
values for LET arises. In such a situation, it has been shown (Grassberger and Paganetti 2011) that for typical 
doses in proton therapy the dose-weighted average or dose-averaged LET, L̄D , is more representative of the 
biological effect than the simple average LET, traditionally called track-averaged or fluence-averaged LET, L̄T. 
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To clarify notation employed hereinafter, any weighted-average of stochastic quantity x with distribution f (x) is 
notated by the subscript D. In other words, x̄D represents the weighted-average for any stochastic quantity x. For 
further identification of each variable, see table 1. Dose-averaged restricted LET is related to dose-mean lineal 
energy ȳD by Bertolet et al (2019a)

L̄∆,D =
s̄

s̄D
ȳD − δ2

s̄D
� (2)

where ̄s  and ̄sD  are the average and the weighted average of the distribution of segment length, respectively, and 
δ2 is the weighted average of the distribution of the energy imparted per electronic collision εc  (Bertolet et al 
2019b). Additionally, the subscript ∆ is added to L̄D  to indicate that, by using this formalism, the obtained LET is 
restricted to a site dimension noted by ∆.

In previous works, we have developed analytical functions on the proton energy for the averages and vari-
ances of the microdosimetric distributions (Bertolet et al 2019a). By using these functions, the mean energy 

imparted, and the variance of the energy imparted for a polyenergetic proton beam σ2
εs,φ

 can be obtained, respec-
tively, as

εs =

´
εs (E) φE (E) dE´

φE (E) dE
� (3)

and

σ2
εs,φ =

´
σ2
εs
(E) φE (E) dE´
φE (E) dE

+

´ (
εs (E)− εs

)2
φE (E) dE´

φE (E) dE
� (4)

Table 1.  List of relevant quantities employed in the mathematical development throughout this work, with their symbols and nature. For 
LET-wise quantities, the combination of the subscripts here shown combine their nature: for example, L̄∆,D is the dose-average spatially 
restricted linear energy transfer.

Symbol Quantity Nature

εs Energy imparted per event Stochastic (event-wise)

εs Mean energy imparted per event Average of distribution of εs per event

σ2
εs

Variance of the energy imparted per event Variance of distribution of εs per event

s Segment length for an event Stochastic (event-wise)

s̄ Mean segment length Average of distribution of s  per event

s̄D Weighted-average segment length Weighted average of distribution of s  per 

event

y Lineal energy for an event Stochastic (event-wise)

ȳD Dose-mean lineal energy Weighted average of distribution of y per 

event

εc Energy imparted per collision Stochastic (collision-wise)

εc ≡ δ1 Mean energy imparted per collision Average of distribution of εc  per collision

δ2 Weighted-average energy imparted per collision Weighted average of distribution of εc  per 

collision

S (E) Stopping power for protons of energy E Function of proton energy

εs (E) Mean energy imparted per event for protons of energy E Function of proton energy

σ2
εs
(E) Variance of the energy imparted per event for protons of 

energy E

Function of proton energy

φE (E) Differential spectrum for a beam: distribution of particles 

with energy E

Distribution per proton energy

εs ≡ εs(E) Average of mean energy imparted per event for a polyen-

ergetic beam

Average of distribution of εs  per proton 

energy

σ2
εs
≡ σ2

εs
(E) Average of the variance of the energy imparted per event 

for protons of energy E
Average of distribution of σ2

εs
 per proton 

energy

σ2
εs
≡ σ2

εs(E)
Variance of the mean energy imparted per event Variance of distribution of εs  per proton 

energy

L̄T Track-average linear energy transfer Average of distribution of LET per particle

L̄D Dose-average linear energy transfer Weighted average of distribution of LET 

per particle

L∞ Unrestricted linear energy transfer Deterministic

L∆ Spatially restricted linear energy transfer Deterministic
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where φE(E) represents the spectral fluence of the beam as a function of the energy, εs(E) and σ2
εs
(E) are the 

average and variance of εs calculated for monoenergetic protons of energy E. A demonstration for equation (4) 
is included in the Appendix. Similarly, averages and variances of the overall distributions of segment length s  
and energy imparted per electronic collision can be obtained. In equation (3) note the double average since the 
obtained mean energy is the averaged value over the different energies present in the beam, which, in turn, have 
their own average value for the microdosimetric distribution of energy imparted. Equation (4), on the other 

hand, is composed by two terms: the first term is the mean variance across the energies present in the beam, σ2
εs

, 
and the second is the variance of the averages of the microdosimetric distributions of energy imparted, σ2

εs
.

Unrestricted LETd
Dose-averaged LET can be obtained regardless microdosimetric considerations by employing the concept 
of collision or electronic stopping power S or unrestricted LET, L∞, in which the energy lost by the particle in 
electronic collisions is considered instead of the energy imparted in a certain region as microdosimetry does. 
Stopping power is a deterministic concept, which means it has no stochastic variability. Therefore, given a particle 
with energy E, we can note it as

S(E) =
dε∞(E)

ds
� (5)

where dε∞(E) is the mean energy lost by the particle in an infinitesimal distance ds . Note that dε∞ here is a 
deterministic quantity. As the dose imparted by a particle with a given stopping power S can be considered 
proportional to S, the dose-averaged electronic stopping power or unrestricted dose-averaged LET can be 
obtained by weighting the electronic stopping power by itself so that

L̄∞,D =

´
S2 (E) φE (E) dE´
S (E) φE(E) dE

� (6)

where φE(E) represents again the spectral fluence.

Connection between restricted and unrestricted dose-averaged LET
If we consider a virtual site that is infinitely large to contain all the energy lost by the particle, then ∆ → ∞, and 
dε∞ in equation (5) coincides with the microdosimetric mean energy imparted, εs → dε∞. This situation occurs 
as long as secondary electrons do not travel a distance from the primary track comparable with the dimensions 
of the site. Equivalently, if a virtual site infinitely small is considered, then s̄ → 0. In practice, this happens if 
stopping value does not appreciably change along the path of the particle within the site. Now, in the case of this 
double-ideally virtual site, equation (6) can be expressed in terms of microdosimetric quantities means as

L̄∞,D = lim
∆ → ∞

s̄ → 0

1

s̄

´
εs

2 (E) φE (E) dE´
εs (E) φE(E) dE

= lim
∆ → ∞

s̄ → 0

1

s̄

σ2
εs
+ εs

2

εs
= lim

∆ → ∞
s̄ → 0

εs

s̄

Ç
1 +

σ2
εs

εs
2

å
� (7)

where we have used the general relation σ2
x = x2 − x̄2, applied for the case x = εs , so that we have εs

2 = σ2
εs
+ εs

2
. 

As, by definition, L̄∞,D = lim
∆ → ∞

s̄ → 0

L̄∆,D
, it follows

L̄∆,D =
εs

s̄

Ç
1 +

σ2
εs

εs
2

å
.� (8)

Note that the microscopic spatially-restricted L̄∆,D from equation (8) will differ from the macroscopic unre-
stricted L̄∞,D in equation (7) as much as the real microdosimetric site considered deviates from the doubly ideal 
situation represented by the twofold limit in equation (7). The expression in equation (8) according to the equa-
tions (3) and (4), only needs two microdosimetric energy-dependent functions: the average energy imparted per 
event εs(E) and the average segment length ̄s(E), instead of the six functions necessary to compute L̄∆,D through 

equation (2). Note that, according to y definition in equation (1), the expression for ȳD ≡ ȳF(1 + σ2
y/ȳ2

F) is quite 
similar to equation (8):

ȳD ≡ εs

s̄

Ç
1 +

σ2
εs,φ

εs
2

å
=

εs

s̄

Ç
1 +

σ2
εs
+ σ2

εs

εs
2

å
� (9)

where the second equality is obtained directly from equation (4) and segment length is now double-averaged to 
take into account the most general case, in which it can depend on the particle energy: ̄s =

´
s̄ (E) φE (E) dE. 

However, this can be approximated by simply ̄s  as long as the fraction of particles with range shorter than the site 
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dimension is negligible, which turns out to be most of the cases for typical energies and site dimensions in proton 
radiotherapy. Under this assumption, an expression for δ2 can be obtained from equations (2), (8) and (9) as

δ2 =
σ2
εs

εs
− σ2

s

s̄2

Ç
εs +

σ2
εs

εs

å
.� (10)

As seen in equation (8) a third microdosimetric energy-dependent function needs to be incorporated to consider 
the spread of the energy imparted around its mean value: the variance of the energy imparted per event σ2

ε(E)-or, 
equivalently, its squared root–.

Revision of the needed microdosimetric functions to be modeled
In Bertolet et al (2019a) we presented analytical models to recreate the microdosimetric quantities correspondent 
to different monoenergetic proton beams. The microdosimetric patterns of energy deposition were obtained by 
using MC simulations, done with Geant4-DNA, of monoenergetic proton beams up to 100 MeV penetrating 
into spherical sites of 1 µm, 5 µm and 10 µm in-diameter. From these results, a series of analytical functions of the 
beam energy were derived. Namely, analytical forms for those site dimensions were obtained for the quantities 
ε̄s(E), σεs(E), s̄(E), s̄D(E), δ1(E) and σδ(E), where the two latter are the average and standard deviation of the 
distribution of energy imparted per collision, respectively. Note that, as shown in that work, δ2 = δ1 (1 + σ2

δ/δ
2
1) 

and, therefore, from the six previous functions, it is possible to calculate L̄∆,D according to equation (2).
Now, according to equation (8), three functions modelled in that work are not necessary anymore: s̄D(E), 

δ1(E) and σδ(E), being the latter two the average and standard deviation of the distribution of energy imparted 
per collision, respectively. This is especially convenient since that distribution needs to be obtained from mono-
energetic independent simulations (Bertolet et al 2019b). In this work, we show that equation (8) is equivalent to 
equation (2) to obtain restricted LETd from microdosimetry in a more efficient and compact way.

Furthermore, we calculate three-dimensional distributions of ȳD according to equation (9). The interest on 
ȳD is twofold: first, ȳD is a measurable quantity as long as a microdosimeter capable to store energy deposition 
distributions is available, while L̄∆,D is not. This can be understood just looking at the difference between equa-

tions (8) and (9): σ2
εs

 is the actual variance of the measured distribution whereas σ2
εs

 is the variance of the mean 
energies imparted if the problem is decomposed in its spectral components, which needs the knowledge of the 
specific energetic spectrum measured by the microdosimeter. Second, as it has been pointed out (Grassberger 
and Paganetti 2011), ȳD can be a more representative quantity to characterize the energy imparted and even-
tual biological damage in patients than L̄∆,D, which, indeed, disregards the volumetric pattern of deposition of 
energy reducing the problem to a unidimensional one. Nevertheless, as multiple models for biological effect are 
based on LETd, we keep calculating this quantity in its two versions, unrestricted and restricted; their differences 
between each other and with respect to ȳD are here explored.

MicroCalc: an analytical algorithm based on spectral fluence models
In order to obtain the integrations over the spectrum given in equations (3), (4) and (6), we have developed an 
analytical algorithm to reproduce the spectra at the voxel level in proton particle therapy. This algorithm has been 
presented in previous articles (Bertolet et al 2019c, 2020), in which calculations of unrestricted LETd as well as 
dose are shown and benchmarked against Monte Carlo computations, and can be briefly summarized as follows:

Transport of monoenergetic proton beams with energies in the clinical range (50–250 MeV) in water was cal-
culated by means of MC simulations. Different types of particles are separated depending on their spectra: pri-
mary protons, secondary protons and other secondary particles. The dependency of the fluence of each one both 
on depth and laterally was modeled using analytical functions. At the same time, spectra for each one is assumed 
to be Gaussian and the mean and the standard deviation of these Gaussian spectra are, respectively, analytically 
modeled as functions of the depth and the lateral distance to the beam axis. The combination of these two models 
yields the spectral fluence for each species. Then, the integration given in equation (6) can be performed for each 
one of the species. The average LET is obtained as the fluence-weighted average of these results. More details can 
be obtained elsewhere (Bertolet et al 2020).

Here, we reproduce the unrestricted LETd calculation done in Bertolet et al (2020). The above algorithm 
is now used to obtain φE(E) at each position to perform the integrations in equations (3) and (4) to eventually 
calculate restricted LETd and ȳD for spherical sites of 1 µm and 10 µm using the microdosimetric functions 
developed in Bertolet et al (2019a). These functions are valid up to a beam energy of 100 MeV, being extrapolated 
beyond this point. The algorithm is already deployed as a script in the treatment planning system (TPS) Eclipse 
v15.6 of Varian Medical Systems, which allows for calculations in clinical cases. This script is used to produce 
results for: (i) L̄∆, D according to equation (2) and to equation (8); (ii) L̄∞,D according to equation (6); and (iii) 
ȳD according to equation (9).

To assess the equivalency between equations (2) and (8), a simple case is evaluated: a pristine Bragg peak for 
a beam with nominal energy equal to 100 MeV produced with the Ion Beam Applications (IBA) Pencil Beam 
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Scanning (PBS) system installed in Roberts Proton Center at the Hospital of the University of Pennsylvania. This 
energy is selected to disregard possible discrepancies coming from the extrapolation of the microdosimetric 
functions for beam energies beyond 100 MeV.

On the other hand, a prostate cancer clinical case is considered to illustrate and analyze the different distribu-
tions of unrestricted LETd, restricted LETd and ȳD. The calculated plan consists of two lateral beams optimized 
individually to produce a uniform dose distribution over the target, with a prescription dose of 70.2 Gy in 39 frac-
tions. Although MicroCalc considers non-homogeneities in the fluence model, results for L̄∆, D, L̄∞,D and ȳD are 
referred to water. Additionally, results shown here only encompass primary and secondary protons.

Results

Figure 1 shows the profiles for LETd at the central axis for a beam of 100 MeV as nominal energy as well as for a 
SOBP beam with range 20 cm and 10 cm of modulation. Three different calculations are presented: unrestricted 
LETd or L̄∞, D  according to equation (6) and restricted L̄∆,D for two different microdosimetric sites, both 
spherical and with diameter of 1 µm and 10 µm, respectively. Results corresponding to equations (2) and (8) are 
compared to assess the equivalency of the methods. The mean difference along the profiles taking samples stepped 
by 1 mm, between these two curves, are 0.05  ±  0.04 keV µm−1 for the 1 µm case and 0.05  ±  0.02 keV µm−1  
for the 10 µm case, respectively, where the uncertainties correspond to the standard deviation of the difference 
samples.

Differences between ȳD and both versions of LETd are illustrated in figure 2 for the same 100 MeV proton 
beam. While L̄∆,D remains almost independent of the site dimension, ȳD is clearly higher for the 1 µm case than 
for the 10 µm case.

An axial plane at the middle of the prostate is selected to show the computed distributions. Dose and unre-
stricted LETd are the same for the two considered sites, meanwhile restricted LETd and ȳD distributions are dif-
ferent depending on the site dimension selected. Figure 3 shows the projection of the mentioned distributions 
upon the chosen axial plane.

The profiles along the dashed line marked in figure 3(a) for these quantities are shown in figure 4. Two types 
of comparisons are shown: on the one hand, restricted and unrestricted LETd are displayed in figure 4(a). Unre-
stricted LETd is markedly higher along the whole profile than both restricted versions of LETd, being the 10 µm-
site-restricted LETd curve slightly above the 1 µm-site-restricted LETd. On the other hand, figure 4(b) shows the 
differences between unrestricted LETd and ȳD. In this case, ȳD for the site of 1 µm in diameter is clearly superior 
to ȳD for the site of 10 µm. As expected according to equations (2) and (9), ȳD curve is above L̄D  curves at every 
point. To evaluate the relative shape of each distribution, the ratio between the peaks and the plateau, at the center 
of the profiles, yields the values: (a) 1.90 for L̄∞,D; (b) 2.17 for L̄∆,D (1 µm); (c) 2.15 for L̄∆,D (10 µm); 1.78 for yD  
(1 µm); and 2.01 for yD (10 µm).

Discussion

Results in figure 1 seem to endorse the expression for restricted LETd from microdosimetry given in equation (8). 
Although both calculations share, essentially, the models for single-event average energy imparted per event 
ε̄(E) and mean segment length s̄(E), the use of equation (2) includes the other four quantities modelled in 
Bertolet et al (2019a), i.e. standard deviation for the single-event energy imparted in the site σε(E), weighted-
mean segment length ̄sD(E) and average and standard deviation for the energy imparted in the site per collision, 
δ1(E) and σδ (E), respectively. These latter two are obtained from independent MC simulations (Bertolet et al 
2019b), making results from equations (2) and (8) independent as well. Since our models were developed up to  
100 MeV, it looks fair to restrict the comparison between these two equations until that limit. Otherwise, spurious 
differences due to extrapolations of the different functions would miss-represent the equivalency of the two 
equations.

Although results here shown only consider primary and secondary protons, disregarding the contribution 
from heavier nuclear fragments, our algorithm allows for further incorporation of different particle species, as 
shown in Bertolet et al (2020). The process to add the contribution from any other particle p is essentially the 
same as for protons: (a) model the spectral fluence φE (E; p); and (b) model the microdosimetry patterns of 

energy deposition, characterized by the functions ε̄s(E; p), σ2
εs
(E; p), etc. No other particles apart from protons 

are here considered because of simplicity. Comparative analysis between relative ȳD, L̄∞,D and L̄∆,D is expected 
to stand as valid, since other particles’ contributions should affect similarly to the three quantities. However, 
if absolute values of any of these quantities are applied to clinical models, relevant contributions from other 
particles, such as alpha particles and deuterons (Grassberger and Paganetti 2011), need to be included in the 
calculation. Thus, a limitation of this work in its current version is the lack of consideration for these secondary 
contributions.

Phys. Med. Biol. 65 (2020) 075011 (12pp)
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All results here shown are reported in terms of energy imparted to liquid water. Unrestricted LET in terms 
of energy imparted to other media can be obtained by using the stopping power ratio for each energy integrated 
along the pre-calculated beam spectrum. However, the correct calculations of restricted LET and microdosimet-
ric quantities would require models for the functions ε̄(E), σ2

ε(E), etc after MC simulations in those media. This 

Figure 1.  Profiles at the central axis for unrestricted LETd and restricted LETd calculations using the MicroCalc algorithm and 
considering only primary and secondary protons, using equation (6) for unrestricted LETd, and (2) and (8) for restricted LETd, 
respectively for a beam with nominal energy equal to 100 MeV. Left panel is obtained using the microdosimetric models for spherical 
sites of 1 µm in diameter meanwhile right panel shows the same results for spherical sites of 10 µm in diameter. Legends: ——— 
L̄∞,D from equation (6); ………L̄∆,D from equation (2); – – –L̄∆,D from equation (8).

Figure 2.  Profiles at the central axis for unrestricted LETd, restricted LETd and dose-mean lineal energy for two different 
microdosimetric sites, spheres with diameters of 1 µm and 10 µm, for a 100 MeV beam considering only primary protons and 
secondary protons. Unrestricted LETd, restricted LETd and ȳD  are calculated according to equations (6), (8) and (9), respectively. 
Legends: ——— L̄∞,D; ◦◦◦◦◦L̄∆,D- 1 µm site;  +++  +  + L̄∆,D- 10 µm site; –-–-– ȳD-1 µm site; – – – ȳD-10 µm site.
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represents another limitation of our method for now, although it is a potential future improvement to imple-
ment. In any case, the trends observed here are not expected to be substantially different, thus we can use similar 
concepts for such improvements.

Restricted LETd is logically below unrestricted LETd, although no great differences are observed between 
the restrictions for 1 µm and for 10 µm. Differences between restricted and unrestricted LETd tend to disap-
pear when LET grows, i.e. near the end of the range, due to the short range of the secondary electrons around the 
proton track. However, when superposing beams, as in figures 3 and 4, restriction on the energy has an impact on 
the curves for L̄∆,D due to the contribution from the low LET part of each beam to the high LET part (end of the 
range) of the opposing beam. This effect also produces the different ratio peak-plateau in the sagittal profiles for 
the two opposed beams in figure 4 for restricted and unrestricted LETd.

An important element to the discussion of the results is related to the use of these parameters for biophysical 
optimization of proton plans. Whether they all equivalent or there is a more optimal configuration, it is logical 
to think that, if biological damage (end point) is related to the deposition of energy in a given volume, the speci-
fication of the dose quality inducing such effect should reflect the dimension of the volume, and for that reason 
restricted magnitudes should be better equipped to represent optimization biological damage that ultimately 
should represent an increase of the therapeutic window. Furthermore, when considering the difference in peak-
to-plateau ratios, it seems that restricted LET provides the highest ratios, which translates into this parameter 
providing the highest gradients for biophysical optimization purposes. However, previous works  (Grassberger  
et al 2011) have indicated that ȳD would be a more representative quantity to characterize biological effect.

Figure 3.  Projections of the calculated distributions with the MicroCalc algorithm as a script in Eclipse for (a) dose; (b) L̄∞,D; (c) 
L̄∆, D-1 µm site; (d) ȳD-1 µm site; (e) L̄∆, D-10 µm site; and (f) ȳD-10 µm site on an axial plane for a prostate cancer clinical case with 
two lateral beams. L̄∆, D distributions are calculated using equation (8). Structures present in this plane are represented by color 
lines: CTV—orange; PTV—purple; Bladder—yellow; Whole rectum—brown; Rectal anterior wall—pink. Color maps represent, in 
each case, the values given by the scale at the right of the figures. The maximum value for the plane is indicated in red in keV µm−1, 
except for the dose distribution (a), in which case is given in percentage of dose prescription. The dashed line in the dose distribution 
(a) indicates the position of the lateral profiles shown in figure 4.
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Looking at equation (9), it can be argued that while ȳD includes: (a) the variability in the energy imparted in 

a site for a monoenergetic beam, due to straggling and chord length variability, expressed in the term σ2
εs

; and (b) 
the variability in the energy imparted due to different beam energies, i.e. beams with different LET, given by the 

term σ2
εs

. On the other hand, as expectable, L̄∆,D only includes the last term, associated to LET variability, accord-
ing to equation (8). Thus, δ2 can be calculated in equation (10), obtained by comparing equations (2), (8) and (9) 
without need for specific MC simulations, as done so far.

The extra term σ2
εs

 in ȳD with respect to L̄∆,D justifies that the first one is larger than the second one in fig-
ures 2–4. As mentioned, this term is related to the variability on the energy imparted in a site even when there is 
no LET variability, i.e. due to energy straggling and different chord lengths in each event. The magnitude of the 
difference between ȳD and LETd is thus related to the relative relevancy of those two effects with respect to the 
variability on particles’ LET itself. As LET becomes more spread near the end of the range, its relative importance 
against the other two effects increases so that ȳD tends to approximate LETd. Additionally, ȳD is considerably 
higher for the smaller site (1 µm) than for the 10 µm-site. This can be explained using the same reasoning: the 
smaller the site, the more relevant energy straggling becomes with respect to LET variability. This result can be 
turned around by saying ȳD tends to restrict LETd as the site dimension increases, so at the macroscopic level, 
they both coincide.

These considerations should be taken into account when performing experimental measurements for LETd. 
Usual microdosimeters (Lindborg and Waker 2017) as tissue-equivalent proportional counters (TEPC) or 
silicon-based diodes, collect distributions of energy imparted without the ability to discriminate the energetic  

Figure 4.  Sagittal profiles for the distributions in the prostate case shown in figure 3. (a) Profiles for unrestricted LETd and restricted 
LETd; and (b) profiles for unrestricted LETd and ȳD  for spherical sites of 1 µm and 10 µm in diameter. In both cases, the dose profile 
is also shown. Legends: (a): ………. Dose; ———L̄∞,D;–-–-–L̄∆,D- 1 µm site; – – –L̄∆,D-10 µm site. (b) ………. Dose; ——— L̄∞,D; 
–-–-– ȳD-1 µm site; – – – ȳD-10 µm site.
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spectrum so that the distinction between variance terms given in equation (3) is not available. Therefore, they 
provide ȳD measurements according to equation (9) and, consequently, the expectable value for that quantity 
should be—for considerably small devices—higher than the traditionally calculated unrestricted LETd. None-
theless, our calculation provides with actual values for ȳD and L̄∞, D  so that difference can be assessed in a 
straightforward way without needing the knowledge of the energy spectrum.

Finally, the calculation of RBE from the physical quantities computed here is beyond the scope of this work. 
However, our method is qualified to produce a number of distributions for different quantities directly related 
with already stablished RBE models. Indeed, not only track-related quantities as the three presented here can be 
computed from the microdosimetric models: weighted-average specific energy, z̄D may be obtained from the 
ε̄(E) function with an expression similar to equation (9), as well as combinations of these quantities. As there are 
RBE models based on z̄D published in the literature (Kase et al 2006, Inaniwa et al 2018), this puts forward the 
possibility of deployments of new models for analytical calculations of RBE in a TPS.

Conclusions

Unrestricted LETd, restricted LETd and ȳD 3D distributions in clinical cases are analytically computable by 
using a fluence-based algorithm in combination with our models for microdosimetric functions dependent 
on the energy. These three distributions are similar, but differences can be observed depending on the size of 
the microdosimetric site considered. Particularly, ȳD and LETd are more different as the microdosimetric 
site becomes smaller. This work provides direct distributions of ȳD that can be compared with experimental 
measurements and, at the same time, opens the possibility of using microdosimetric derived quantities 
–restricted LETd and ȳD—to drive biophysical optimization in proton therapy treatments as well as further 
development of RBE models for RBE based on them.

Acknowledgments

This project is supported by Varian Medical Systems, Palo Alto, California; M A Cortés-Giraldo has been funded 
by the Spanish Government under Grant No. RTI2018-098117-B-C21.

Appendix.  Demonstration of equation (4)

According to equation (4), the variance of the weighted sum of distributions dependent on the same variable 
is the mean of the variances of each individual distribution plus the variance of the means of the individual 
distributions around the global mean. To prove this, let us consider, for the sake of simplicity, just two distributions 
dependent on the variable x, f1(x) and f2(x), and a weighted sum of them:

F (x) = ω1f1 (x) + ω2f2(x)� (A.1)

with the condition ω1 + ω2 = 1. The mean of the individual and the averaged distributions is, respectively:

x̄1 =

ˆ
x f1 (x) dx,� (A.2)

x̄2 =

ˆ
x f2 (x) dx,� (A.3)

and

x̄F =

ˆ
x F (x) dx = ω1x̄1 + ω2x̄2� (A.4)

as shown in equation (3). The variances of these three distributions are, respectively:

σ2
1 =

ˆ
x2 f1 (x) dx − x̄2

1 = x2
1 − x̄2

1,� (A.5)

σ2
2 =

ˆ
x2 f2 (x) dx − x̄2

2 = x2
2 − x̄2

2,� (A.6)

and

σ2
F =

ˆ
x2 F (x) dx − x̄2

F = ω1x2
1 + ω2x2

2 − (ω1x̄1 + ω2x̄2)
2.� (A.7)
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Using equations (A.5)–(A.7) becomes

σ2
F = ω1σ

2
1 + ω2σ

2
2 +

(
ω1 − ω2

1

)
x̄2

1 +
(
ω2 − ω2

2

)
x̄2

2 − 2ω1ω2x̄1x̄2.� (A.8)

On the one hand, the first two terms summed correspond to the mean of the individual variances, 

σ2
x = ω1σ

2
1 + ω2σ

2
2. On the other hand, the variance of the individual means around the global mean x̄F  is

σ2
x̄ = ω1(x̄1 − x̄F)

2
+ ω2(x̄2 − x̄F)

2
= ω1x̄2

1 + ω2x̄2
2 + (ω1 + ω2) x̄2

F − 2x̄F (ω1x̄1 + ω2x̄2)� (A.9)

where using equation (A.4) and the condition ω1 + ω2 = 1, it follows

σ2
x̄ = ω1x̄2

1 + ω2x̄2
2 − x̄2

F =
(
ω1 − ω2

1

)
x̄2

1 +
(
ω2 − ω2

2

)
x̄2

2 − 2ω1ω2x̄1x̄2� (A.10)

where the last equality is obtained by substituting x̄F  by its expression in equation (A.4). This expression coincides 
with the last term in equation (A.8), so that we can conclude

σ2
F = σ2

x + σ2
x̄� (A.11)

result which is recursively applicable to a sum of an arbitrary number of distributions, as long as the resulting 
distribution is normalized (i.e. the condition 

∑
ωi = 1 is required). This is done in equation (4) by introducing 

the denominator ́ φE (E) dE, that ensures that the resulting distribution is normalized.
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