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Abstract

Radiomic features achieve promising results in cancer diagnosis, treatment response prediction,
and survival prediction. Our goal is to compare the handcrafted (explicitly designed) and deep
learning (DL)-based radiomic features extracted from pre-treatment diffusion-weighted magnetic
resonance images (DWIs) for predicting neoadjuvant chemoradiation treatment (nCRT) response
in patients with locally advanced rectal cancer (LARC). 43 Patients receiving nCRT were included.
All patients underwent DWIs before nCRT and total mesorectal excision surgery 6—12 weeks after
completion of nCRT. Gross tumor volume (GTV) contours were drawn by an experienced
radiation oncologist on DWIs. The patient-cohort was split into the responder group (n = 22) and
the non-responder group (n = 21) based on the post-nCRT response assessed by postoperative
pathology, MRI or colonoscopy. Handcrafted and DL-based features were extracted from the
apparent diffusion coefficient (ADC) map of the DWI using conventional computer-aided
diagnosis methods and a pre-trained convolution neural network, respectively. Least absolute
shrinkage and selection operator (LASSO)-logistic regression models were constructed using
extracted features for predicting treatment response. The model performance was evaluated with
repeated 20 times stratified 4-fold cross-validation using receiver operating characteristic (ROC)
curves and compared using the corrected paired ¢-test. The model built with handcrafted features
achieved the mean area under the ROC curve (AUC) of 0.64, while the one built with DL-based
features yielded the mean AUC of 0.73. The corrected paired ¢-test on AUC showed P-value < 0.05.
DL-based features extracted from pre-treatment DWIs achieved significantly better classification
performance compared with handcrafted features for predicting nCRT response in patients with
LARC.

1. Introduction

Colorectal cancer is the third most common cancer diagnosed and the second most common cause of cancer
deaths in the US (Siegel ef al 2019). Rectal cancer accounts for about 30% of all colorectal cancer diagnoses
(Siegel et al 2019). Treatment for rectal cancer is based largely on the stage at diagnosis. Locally advanced
rectal cancer (LARC) is commonly treated with neoadjuvant chemoradiation therapy (nCRT) followed by
total mesorectal excision (TME) and adjuvant chemotherapy (Kapiteijn et al 2001, van de Velde et al 2014).
Tumor response to nCRT is associated with recurrence and survival and can serve as a prognostic factor
(Quah et al 2008, Trakarnsanga et al 2014). 15%-27% of patients who undergo such treatment achieve
pathologic complete response (pCR) (Maas et al 2010). TME is a highly invasive procedure with the potential
risk of morbidity and functional complications. Achieving early prediction of tumor response using
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pre-treatment noninvasive approaches may allow for design of individualized chemo-radiation treatment
and potential avoidance of TME following nCRT for patients.

Magnetic resonance imaging (MRI) is widely used in rectal cancer diagnosis and staging as it provides
excellent soft tissue contrast for tissue characterization. Specifically, increasing evidence has shown that
diffusion-weighted images (DWIs), providing tissue cellularity information, aids the assessment of rectal
cancer response to neoadjuvant treatment (Schurink et al 2019). DWTI is recommended to be routinely
acquired in clinical guidelines (Beets-Tan et al 2018). The interpretation of DWTI has gradually shifted from
qualitative evaluation to quantitative assessment. For example, the apparent diffusion coefficient (ADC) map
was one major quantitative map calculated from DWI. However, several studies showed that the mean
pretreatment tumor ADC value was not a reliable indicator for predicting treatment response (Kim
etal 2011, Amodeo et al 2018).

Radiomics is an emerging field of studies where a large number of medical image features are extracted in
order to achieve better clinical diagnosis or decision support (Lambin et al 2017). The conventional
radiomics analysis typically involves extraction and analyzing quantitative imaging features from the
previously defined region of interests (ROI) on one or multiple image modalities with the ultimate goal to
obtain predictive or prognostic models. Previous studies showed that handcrafted, or explicitly designed,
features extracted from the ADC ROI have predictive power for early nCRT treatment response in LARC
patients (Nie ef al 2016, Horvat et al 2018). However, handcrafted features are lower-order image features
and limited to current expert knowledge. Another type of radiomic feature is deep learning (DL)-based
extracted from the pre-trained convolutional neural networks (CNN) via transfer learning (LeCun et al 2015,
Afshar et al 2019). Several studies have demonstrated that the DL-based features showed promising
performance in breast cancer diagnosis, ovarian cancer recurrence prediction, and glioblastoma multiforme
survival prediction (Lao et al 2017, Antropova et al 2017, Wang et al 2019). To our knowledge, no published
study has investigated the DL-based features for managing LARC patients.

In this work, we first aimed to construct radiomics classifiers based on the handcrafted and DL-based
radiomic features extracted from pre-treatment DWIs. Then, we compared the performance of the two
classifiers to predict post-nCRT response in patients with LARC.

2. Materials and methods

2.1. Dataset
We identified 43 consecutive patients with locally advanced rectal cancer (LARC) treated from December
2015 to December 2016 at a single institution. All patients received concurrent capecitabine with a total
prescription dose of 50 Gy in 25 fractions, followed by the TME surgery after 6—12 weeks of the nCRT
completion. The resection specimens were evaluated by an expert pathologist. Patients were separated into
good responders (GR) and non-GR groups based on the postoperative pathology report, MRI or
colonoscopy. The GR group consisted of patients with either complete response (evaluated by pathology or
MRI and colonoscopy) or partial response (assessed by pathology), and the non-GR group consisted of
patients with stable disease (assessed by pathology) and progressive disease (confirmed by CT/MR).

All patients underwent pre-treatment DWIs before the nCRT. The DWI images were acquired using
single-shot echo planar imaging (ssEPI) sequence on two 3-Tesla MR scanners (Discovery MR750 and Signa
HDxt, GE Healthcare). MR imaging parameters are summarized in table 1. For each patient, the ADC map

800

b-values of 0 s mm ™2 and 800 s mm 2. Gross tumor volume (GTV) of the primary tumor was manually
delineated on the DWI image with the b-value of 800 s mm 2 by a board-certified oncologist with 5 year
experience.

was computed using the equation ADC = — ;- In (s%) , where Sy and S correspond to MR voxel intensities at

2.2. Feature extraction

2.2.1. Handcrafted features

105 handcrafted features were extracted from the ADC map within the GTV contour for each patient using
PyRadiomics package (version 2.1.2) (van Griethuysen et al 2017). Extracted features consisted of 14
shape-based features, 18 first-order statistic features, and 73 textural (second-order statistic) features. The
methods used for extracting textural features were gray level co-occurrence matrix, gray-level size zone
matrix, gray level run length matrix, gray level dependence matrix, and neighborhood gray-tone difference
matrix. Shape-based features describe the shape characteristics of the GTV contour. First-order statistic
features describe the distribution of voxel intensities within the GTV contour. Textural features describe the
patterns or second-order spatial distributions of the voxel intensities.
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Table 1. MR imaging parameters.

Transvers spatial

Scanner  Patient Field of resolutzion Slice thickness

model number TR/TE (ms) Matrix  view (mm?) (mm”) (mm) b value (s/mm?)
Discovery 36 2600/74 256 x 256 380 or  1.48” or 1.56° 5 0, 500,
MR750 400° 800, 1000
Signa 7 4500-6000/64-67 256 x 256 320°—400>  1.25°-1.56° 50r6 0, 800
HDxt

Depth:64

4096

Depth:128

Depth:256

Depth:512 Depth:512

1000
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1472

ADC — .
’ ROI ' Conv+ReLu D’ Max-pooling |:|Fu11y—connccted IAverage—pooling

Figure 1. VGG19 architecture and feature extraction scheme. It contained 5 max-pooling layers inserting across 16 convolutional
layers and 3 fully-connected layers. Feature maps and feature vectors, following each layer, are shown as cuboids and rectangles,
respectively. The feature map depth and feature number are shown. For feature extraction, the network took an ADC ROI as
input. 1472 DL-based features were extracted from max-pooling feature maps by average-pooling along the spatial dimensions.
Conv, convolutional layer; ReLu, rectified linear unit.

2.2.2. DL-based features

The publicly-available pre-trained CNN, VGG19 (Simonyan and Zisserman 2014), was used to extract
DL-based features. The network was trained using approximately 1.2 million images from the ImageNet
database (Russakovsky e al 2015) for classifying nature images into 1000 objects. As the natural objects used
for training VGG19 varied in their physical size, the extracted DL-based features using pre-trained VGG19
may be less sensitive to image spatial resolution (pixel size) compared to other factors like image gradients.
Figure 1 shows the network architecture. It contained 16 convolutional layers followed by 3 fully-connected
layers. 5 max-pooling layers were inserted across convolutional and fully-connected layers to reduce model
parameter number for controlling overfitting and help achieve partial invariance to small translations. For
each patient, a 2D square region of interest (ROI) was selected from the transverse slice that contains the
largest tumor area. The ROI center was set as the center of the smallest bounding box covering the 2D tumor.
The ROI size was set as the maximum dimension of the smallest bounding box. The ADC ROI was
extrapolated to 224 by 224 for matching the original VGG19 design. The intensities of the ROI were
converted to the range [0, 255]. Resampled ROI was copied into a 3-channel image and then inputted into
the pre-trained model for feature extraction. We adopted the feature extraction method proposed by
Antropova et al (2017). As shown in figure 1, five DL-based feature vectors were extracted by average-pooling
the feature maps after max-pooling layers. Each feature vector was normalized with its Euclidean norm and
then concatenated to one feature vector, which was normalized again to acquire the feature vector consisting
of 1472 features. After extracting features for all patients, a cutoff on feature variance was used to pre-select
105 DL-based features out of 1472 features with the highest variance to train the prediction models.

2.3. Classification and evaluation

The least absolute shrinkage and selection operator (LASSO) penalized logistic regression (Tibshirani 1996,
Wau et al 2009) was used for classification using radiomic features (Python version 2.7.13). The LASSO
regularization was selected to handle the high feature dimension. The handcrafted classifier and DL-based
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Table 2. Patient clinical characteristics; GR, good responder, nGR, non-good responder, SD, standard deviation.

Characteristic GR (n=22) nGR (n =21) Total (n = 43)
Gender (male/female) 14/8 14/7 28/15

Age (mean, SD, in years) 53.7 (9.1) 54.9 (10.9) 54.3 (10.3)
Pre-nCRT TNM staging

T stage (2/3/4) 1/18/3 1/16/4 2/34/7

N stage (0/1/2) 5/11/6 0/9/12 5/20/18

DWI b=800
2.5
GR
1.25
Non-GR 0
%103 mm?/s

Figure 2. Comparison of the DWI (b = 0, 800 s mm ~2) slice and the ADC slice for the representative GR and non-GR patients.
The GTV contours are demonstrated in red. The color bar of the ADC slices is shown.

classifier were trained using handcrafted features and DL-based features, respectively. Regularization
parameter was optimized by grid searching with repeated 20 times stratified 4-fold cross-validation. For each
cross-validation, stratified random sampling was used to split the patient cohort was into 4 folds, where 3
folds were used as the training set to train the classifier and the remaining one as the testing set for evaluation.

The performances of the handcrafted and DL-based classifiers were evaluated using the average area
under the receiver operating curve (AUC) of 20 cross-validation repetitions. The corrected paired ¢-test
(Bouckaert and Frank 2004) was conducted to compare the AUC results for two classifiers. P-value < 0.05
was considered to indicate a significant difference.

3. Results

3.1. Patient characteristics
Table 2 summarizes the clinical characteristics of our patient cohort. 22 (51.2%) patients achieved GR after
nCRT. Among the 22 GR patients, there were 14 (63.6%) men and 8 (36.4%) women. Among 21 non-GR
patients, there were 14 (66.7%) men and 7 (33.3%) women.

Figure 2 shows the transverse slices of DWIs and ADC maps for the representative GR and non-GR
patients. Both patients are male with rectal cancer at the same clinical stage of T3N1. No significant visual
differences were observed.

3.2. Classification performance

Figure 3(a) compares the boxplots of the mean AUC results of 20 cross-validation repetitions for two
classifiers. Large deviations were observed due to the small sample size. The AUC of a single repetition varies
from 0.51 to 0.73 for the handcrafted classifier, and from 0.58 to 0.80 for the DL-based classifier. The average
ROC curves of the two classifiers are shown in figure 3(b). The handcrafted classifier achieved the mean AUC
of 0.64 (standard error [SE], 0.08) using repeated 20 times 4-fold cross-validation, while the DL-based
classifier achieved 0.73 (SE, 0.05). The p-value of the corrected paired ¢-test was 0.049, suggesting a
significant difference in the AUC results for the handcrafted classifier and DL-based classifier.
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Figure 3. (a) Boxplots of the AUC results of 20 cross-validation repetitions for the handcrafted and DL-based classifiers. The
minimum (bottom line), 25th percentile (bottom of the box), median (central line), 75th percentile (top of the box), and
maximum (top line) are shown. An outlier is drawn as a diamond sign. (b) The ROC curves for two classifiers in predicting good
response versus non-good response using repeated stratified 4-fold cross-validation. AUC results are averaged over 20 X 4 testing
sets.

4. Discussion

In this study, we compared the performance of the classifiers built with the handcrafted and DL-based
features, extracted from pre-treatment DWI, for predicting the post-nCRT treatment response for a cohort
of LARC patients. To our knowledge, this is the first study investigating DL-based features for this
application. Compared to the handcrafted features, the DL-based features consisted of more abstract
high-level information extracted from DWI images. Our study indicated that the DL-based classifier
achieved a significantly better predictive performance than the handcrafted classifier in nCRT response
prediction for rectal cancer. Studies showed that the DL-based features achieved better performance in breast
cancer diagnosis and glioblastoma survival prediction than the handcrafted features (Lao et al 2017,
Antropova et al 2017). The DL-based features are expected to achieve better performance and

more generalizable results in diagnosis, recurrence and survival prediction for other sites

as well.

We conducted repeated 4-fold cross-validation for evaluating the model performance as it stabilizes the
accuracy estimation (Bouckaert and Frank 2004, Kim 2009). The handcrafted classifier achieved the mean
AUC of 0.64 for predicting GR vs non-GR, while the DL-based classifier achieved an improved mean AUC of
0.73. Additionally, a fused classifier was constructed by averaging prediction scores of two classifiers. The
fused classifier achieved the mean AUC of 0.71, which is better than that for the handcrafted classifier. Nie
et al (2016), using a single run of 4-fold cross-validation, reported the mean AUC of 0.73 for GR and
non-GR prediction using DWT handcrafted features on a similar size cohort of 48 patients. The standard
error of the mean AUC was not reported. To investigate the cross-validation variation caused by the different
data partitions for a small dataset, we conducted 20 independent cross-validation trials using our dataset. It
should be noted that 20 independent cross-validation trials are different from the repeated 20
cross-validation since each cross-validation trial has its own optimal hyperparameters, while all 20
cross-validation repetitions need to have the same hyperparameters. The mean AUC of each cross-validation
trial ranged from 0.56 to 0.79 for the classifier built with the handcrafted features, and from 0.63 to 0.82 for
the one built with the DL-based features. Given a relatively small patient size, a single run of cross-validation
may have large bias. Also, different classification models, evaluation protocols, patient number, and response
label ratio may result in different prediction accuracy.

We investigated the radiomic features extracted from a single imaging modality of DWTI in this study.
Several studies showed that including the handcrafted features from T2-weighted MR images and dynamic
contrast-enhanced images improved predictive power (Nie et al 2016, Horvat et al 2018). The DL-based
feature extraction scheme can be applied to other MR imaging modalities and may further help improve the
prediction accuracy. Comparing the handcrafted and DL-based features extracted from multiparametric MR
images for treatment response prediction would be an interesting study to work on in the future.
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The GTV contours used for feature extraction were manually delineated by a single radiation oncology.
The effect of inter-observer delineation variabilities on the extracted features were not investigated in this
work. Several studies suggested that the inter-observer delineation variability resulted in many unstable
handcrafted radiomic features (Pavic et al 2018, Fiset et al 2019) and hence possibly less robust prediction
models. Such delineation uncertainty may also lead to unstable DL-based features. The robustness of
prediction models generated from the handcrafted and DL-based features can be investigated and compared
using the intraclass correlation coefficient (ICC). A higher ICC indicates a better reproducibility. A cutoff on
ICC could be used to select stable handcrafted and DL-based features that may result in more robust models.
Alternatively, automatic tumor segmentation methods may be utilized to establish robust prediction models
by reducing delineation variability.

The ROI used for extracting DL-based features was set based on tumor size, so the resampled ROIs would
have different spatial resolutions across patients even if the spatial normalization was applied before the
feature extraction. We believe it is unnecessary to conduct spatial normalization before extracting DL-based
features in this study. To investigate the effect of the spatial normalization on handcrafted features, we
resampled ADC maps to 1.56 x 1.56 x 5.00 mm? and re-extracted handcrafted features from the resampled
ADC maps. The mean AUC achieved by the classifier trained using the updated handcrafted features was
0.65. Corrected paired ¢-test showed that no significant difference in AUC was observed between the
classifiers trained with original or updated handcrafted features (p = 0.49).

Our study has several limitations. First, the study sample is relatively small, which may lead to unstable
estimation and suboptimal model performance. A repeated cross-validation method was utilized to reduce
the bias, and LASSO regularization was implemented to reduce overfitting. In this work, we investigated
DL-based features extracted via transfer learning. Another popular DL approach for response prediction
is to train CNN’s from scratch or using finetuning. However, overfitting may become a major issue in
this method especially when patient size is small. Our results, in concordance with other studies (Anon 2016,
Huynh et al 2016, Lao et al 2017), showed that DL-based features extracted via transfer learning achieved
promising results in various prediction tasks in the medical field. Second, our dataset only contained 9
patients with pathological complete response (pCR). The pCR is defined as the absence of viable tumor cells
in the primary and lymph nodes. The small number of pCR patients and unbalanced labels resulted in a large
standard deviation on the AUCs using either handcrafted features or DL-based features for predicting pCR
vs non-pCR. We chose to construct and evaluate the predictive model with the classification labels of GR
and non-GR in this preliminary study. A larger dataset is desirable to provide a more reliable estimation for
the AUC of pCR and non-pCR prediction. We expect to see better performance from the DL-based features
than the handcrafted features in predicting pCR on a larger dataset. Lastly, the current study focused on the
pre-treatment prediction of tumor response based on a single time point, due to the unavailability of during-
and post-nCRT images for some patients. Given the primary focus of this work is mainly on comparing
handcrafted features to DL-based features, we illustrated the earlier prediction for post-nCRT response, based
on pre-treatment images, such early prediction will provide advantages for chemo-radiation treatment design
and schedule. It may be beneficial to assess the response by combining images at other time points, such
as during- and post-nCRT images for higher prediction accuracy. We expect to see better performance from
the DL-based features than the handcrafted features using other MR images acquired at different time points.

5. Conclusion

Our preliminary study showed that the DL-based radiomic features extracted via transfer learning from
pretreatment DWIs achieved significantly better classification performance for predicting post-nCRT
treatment response in LARC patients, in comparison to the handcrafted radiomic features. Future work
involves validation with a larger dataset and investigating the predictive power of the DL-based features
extracted from multiparametric MR images (pre-, during-, and post-nCRT).
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