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1.  Introduction

High-dose-rate (HDR) brachytherapy is a treatment modality for prostate cancer with excellent therapeutic 
outcomes (Bachand et al 2009, Fatyga et al 2009). In HDR prostate brachytherapy, catheters are implanted in 
the prostate. Within each catheter, a radioactive source can be temporarily stopped at multiple dwell positions 
to locally irradiate the surrounding tissue. Treatment planning is the process of determining the time this source 
stops at each dwell position, which is essential for delivering an effective treatment that optimizes the trade-
off between tumor control and normal tissue complications. The quality of a treatment plan is assessed by a 
visual inspection of the 3D dose distribution. In addition, and to quantify certain aspects, treatment planning 
criteria are often formulated in terms of dose-volume indices on the target volumes and organs at risk (OARs), 
derived from the dose-volume histogram (Hoskin et al 2013, RTOG 2016). The purpose of treatment planning 
is to obtain a plan that has desirable trade-offs between the planning criteria. Achievable trade-offs are however 
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Abstract
We present an automatic bi-objective parameter-tuning approach for inverse planning methods for 
high-dose-rate prostate brachytherapy, which aims to overcome the difficult and time-consuming 
manual parameter tuning that is currently required to obtain patient-specific high-quality treatment 
plans. We modelled treatment planning as a bi-objective optimization problem, in which dose-
volume-based planning criteria related to target coverage are explicitly separated from organ-sparing 
criteria. When this model is optimized, a large set of high-quality plans with different trade-offs 
can be obtained. This set can be visualized as an insightful patient-specific trade-off curve. In our 
parameter-tuning approach, the parameters of inverse planning methods are automatically tuned, 
aimed to maximize the two objectives of the bi-objective planning model. By generating trade-
off curves for different inverse planning methods, their maximally achievable plan quality can be 
insightfully compared. Automatic parameter tuning furthermore allows to construct standard 
parameter sets (class solutions) representing different trade-offs in a principled way, which can be 
directly used in current clinical practice. In this work, we considered the inverse planning methods 
IPSA and HIPO. Thirty-nine previously treated prostate cancer patients were included. We compared 
automatic parameter tuning, random parameter sampling, and the maximally achievable plan 
quality obtained by directly optimizing the bi-objective planning model with the state-of-the-art 
optimization software GOMEA. We showed that for each patient, a set of plans with a wide range of 
trade-offs could be obtained using automatic parameter tuning for both IPSA and HIPO. By tuning 
HIPO, better trade-offs were obtained than by tuning IPSA. For most patients, automatic tuning of 
HIPO resulted in plans close to the maximally achievable plan quality obtained by optimizing the  
bi-objective planning model directly. Automatic parameter tuning was shown to improve plan 
quality significantly compared to random parameter sampling. Finally, from the automatically-
tuned plans, three class solutions were successfully constructed representing different trade-offs.
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patient specific, which makes treatment planning in clinical practice difficult and time consuming (Venselaar 
et al 2012, Maree et al 2019).

Inverse treatment planning methods aim to aid in the planning process by reducing planning time and effort 
(Dinkla et al 2015). In these methods, treatment planning is modeled as an optimization problem and optim
ization software is used to obtain high-quality plans according to the specified model. Two clinically widely-
available planning methods are inverse planning simulated annealing (IPSA) (Lessard and Pouliot 2001) and 
hybrid inverse plan optimization (HIPO) (Lahanas et al 2003). In both IPSA and HIPO the treatment planning 
problem is modeled with a dose-penalty model. This model allows fast optimization, but resulting plans do not 
necessarily adhere to the planning criteria even when such plans exist (Holm et al 2012, Gorissen et al 2013). 
To overcome this, the planner needs to tune the parameters of the dose-penalty model and rerun the planning 
method, or adapt the plan manually using graphical optimization, either of which is difficult and time consum-
ing (Dinkla et al 2015, Maree et al 2019).

Instead of formulating the treatment planning problem by using a dose-penalty model, it can also be 
approached by optimizing the dose-volume indices directly (Morton et al 2008, Siauw et al 2011). One such 
approach uses a bi-objective planning model (Luong et al 2018a, Maree et al 2019). In the bi-objective planning 
model, the planning criteria in the clinical protocol are grouped into two separate objectives; one related to target 
coverage and one related to OAR sparing. Per objective, the grouped planning criteria are combined in a worst-
case manner such that optimization searches for satisfactory plans, i.e. plans that satisfy all planning criteria. The 
result of optimizing the bi-objective planning model is not a single best plan, but a large set of plans that we call 
the trade-off set, in which each plan has a different high-quality trade-off between the two objectives. Since the 
bi-objective planning model reduces all planning criteria to only two objectives, the trade-off set is easy to visual-
ize as a trade-off curve, which shows maximally achievable plan quality in an insightful way. The trade-off curve 
can be used in clinical practice to intuitively select the preferable plan from the trade-off set. It was shown in a 
retrospective observer study that optimizing the bi-objective planning model with the gene-pool optimal mixing 
evolutionary algorithm (GOMEA) (Bouter et al 2017) resulted in plans that were considered clinically acceptable 
for all patients considered (n  =  18) (Maree et al 2019). Furthermore, these automatically generated plans were 
preferred over the clinically used plans in 98% of the cases, based on inspection of the 3D dose distribution and 
the achieved planning criteria (Maree et al 2019).

In this work, we developed an automatic bi-objective parameter-tuning approach that automatically tunes 
the parameters of an inverse planning method, aimed to maximize the two objectives of the bi-objective plan-
ning model. By specifying the parameter settings of an inverse planning method, a single treatment plan is gener-
ated. When the parameter settings are varied, a different plan can be generated. A large set of different parameter 
settings therefore results in a large set of different plans. However, not all parameter settings will result in high-
quality plans. Our bi-objective parameter-tuning approach therefore automatically searches for multiple param
eter settings aimed at obtaining a set of high-quality plans. By this approach, maximally achievable trade-off sets 
can be generated with any inverse planning method. Corresponding trade-offs insightfully show the entire range 
of achievable high-quality plans of an inverse planning method. By comparing trade-off curves for different 
inverse planning methods, their maximally achievable plan quality can be insightfully compared.

We applied our automatic bi-objective parameter-tuning approach to the inverse planning methods IPSA 
and HIPO. We investigated how automatic parameter tuning differs from the maximally achievable plan qual-
ity obtained by directly optimizing dwell times with GOMEA and from the clinically used treatment plans. We 
furthermore compared automatic bi-objective parameter tuning to random parameter sampling, i.e. a straight-
forward approach to generate a trade-off set, but without further optimizing the resulting plans (Bélanger et al 
2019).

Our automatic parameter-tuning approach aims to overcome the need for manual tuning, but this approach 
is not yet available in clinical practice today. Therefore, we showed that trade-off sets generated by automatic bi-
objective parameter tuning can be used to construct standard parameter sets (class solutions) representing dif-
ferent plan trade-offs in a principled way. These class solutions can directly be applied in current clinical practice.

2.  Materials and methods

2.1.  Patient data and treatment protocol
Between November 2014 and December 2018, 39 prostate cancer patients were treated in our medical center 
with a single-dose HDR brachytherapy of 13 Gy delivered a week after external beam radiation treatment with a 
dose schedule of 20  ×  2.2 Gy. Catheter implantation was performed using transrectal ultrasound under general 
or epidural anesthesia according to a preplan, made in the operating room in Oncentra Prostate (version 4.2.2, 
Elekta AB, Stockholm, Sweden) based on ultrasound imaging (Pieters et al 2006). A transurethral catheter with 
a bladder balloon was used to enhance visibility of the urethra. After catheter implantation, three orthogonal 
pelvic T2-weighted turbo spin echo magnetic resonance imaging (MRI) scans (Ingenia 3.0T Philips Healthcare, 
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Best, The Netherlands) with an in-plane resolution of 0.6  ×  0.7 mm and 3.0 mm slice thickness with 0.3 mm gap 
were acquired and used for treatment planning. Imaging was done in supine position, similar to the treatment 
position. These images were loaded into Oncentra Brachy (version 4.3–4.5, Elekta AB, Stockholm, Sweden) and 
used for catheter reconstruction, delineation of the volumes of interest (prostate, vesicles, bladder, rectum, and 
urethra) and further treatment planning. The median prostate volume defined on these images after catheter 
placement was 31.5 (range: 16.6–74.2) cm3.

Treatment planning criteria, as shown in table 1, are based on the dose-volume indices, which are adapted 
from the GEC-ESTRO HDR Prostate Guidelines (Hoskin et al 2013). As starting point for treatment planning, 
dwell positions were activated inside the target volumes plus a 5 mm margin, excluding dwell positions located 
within 1 mm of the urethra. A median of 17 (range: 14–20) catheters were implanted with a source-step of 

2.5 mm, which resulted in a median of 230 (range: 121–353) active dwell positions.
Clinically used treatment plans of all 39 patients were used for comparison. Clinical treatment planning 

started with an initial plan constructed with a class solution. This plan was then manually fine-tuned using 
graphical optimization. Initial plans of patients treated before mid-2015 were constructed using a class solution 
for IPSA (patients 1–3, 19, 23–29), plans of patients treated after mid-2015 were initialized with a class solution 
for HIPO (Maree et al 2019). Quality checks were done by a medical physicist and final plans were assessed for 
clinical acceptability by a physician using the planning criteria (table 1), and by a visual inspection of the dose 
distribution. Clinical plans of four patients (10, 11, 16, and 17), satisfied all planning criteria, additionally, 24 
patients satisfied all coverage criteria, but violated at least one sparing criterion. The remaining 11 patients (4, 5, 
7, 12, 14, 19, 20, 23, 24, 30, and 31) violated at least one sparing criterion and one coverage criterion.

2.2.  Dose-volume calculations
We compared different approaches to generate treatment plans, i.e. a list of dwell times, either obtained using 
an inverse planning method, or using GOMEA. To compute the dose distribution and dose-volume indices 
corresponding to a list of dwell times, we used our in-house developed TG-43 (Rivard et al 2004) dose engine, 
which was validated against Oncentra Brachy (van der Meer et al 2019). This dose-engine is based on randomly 
sampled dose-calculation points within each volume of interest. Using more dose-calculation points results 
in a more accurate estimate of the dose-volume index values, but also requires more computation time and 
more computer memory. In this work, we chose to use a larger number of dose-calculation points than would 
be strictly necessary in clinical practice to show the maximally achievable performance of the methods. During 
optimization of the bi-objective planning model, 105 dose-calculation points were used for both the bladder 
and the prostate, 5  ×  104 for the rectum, and 2  ×  104 for both the vesicles and urethra, which were heuristically 
chosen based on the average size of each volume to provide sufficiently accurate computations of the dose-
volume indices (van der Meer et al 2019). To overcome a bias towards the dose-calculation points used in the 
optimization process, all obtained plans were afterwards re-evaluated based on newly sampled dose-calculation 
points; 105 for each of the five volumes of interest. This is the same number of dose-calculation points as used in 
the dose-volume histogram calculations of Oncentra Brachy in clinical practice in our medical center.

2.3.  Dose-penalty model setup
The dose-penalty model, used by IPSA and HIPO, can be optimized efficiently, but does not directly relate to 
the planning criteria (Gorissen et al 2013). To set up the dose-penalty model, the planner specifies lower and/or 
upper dose limits per volume of interest, together with a corresponding importance weight for each limit. Then, 
when a dose-calculation point receives a dose that is lower than the lower dose limit or higher than the upper dose 
limit, a penalty is given. Finally, all penalties are multiplied by the corresponding importance weight, and the 
final score of a plan is the sum of all these weighted penalties (Lessard and Pouliot 2001, Lahanas et al 2003). The 
optimization software within IPSA and HIPO then searches for a plan with the lowest total score.

Table 1.  HDR BT prostate protocol of a single planning-aim dose of 13 Gy. Volume (V) indices are expressed in percent of the planning-
aim dose, and have unit volume percentage. Dose (D) indices are expressed in volume percentage or absolute volume (cm3), and have unit 
Gy. Equivalent dose (EQD2) computed with an α/β-ratio  =  3.

Volume Use Criteria

Coverage criteria Prostate Target V100%  >  95% 42 Gy EQD23 D90%  >  100% 42 Gy EQD23

Vesicles Target V80%  >  95% 28 Gy EQD23

Sparing criteria Prostate Organ V150%  <  50% 89 Gy EQD23 V200%  <  20% 150 Gy EQD23

Bladder Organ D1 cm3  <  86% 32 Gy EQD23 D2 cm3  <  74% 24 Gy EQD23

Rectum Organ D1 cm3  <  78% 27 Gy EQD23 D2 cm3  <  74% 24 Gy EQD23

Urethra Organ D0.1 cm3  <  110% 50 Gy EQD23
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We defined a lower dose limit on the target volumes (prostate and vesicles), and an upper dose limit on the 
OARs (bladder, rectum, and urethra). Setting an upper dose limit on the target volumes was found to be deterio-
rating plan quality in preliminary experiments on a limited number of patients, and these limits were thus not 
set. This setup results in two parameters that need to be specified per volume of interest: a dose-limit value and its 
corresponding weight. Tuning both the dose limit and weight at the same time complicates parameter tuning, as, 
for example, decreasing the upper dose limit has a similar effect as increasing the corresponding weight. There-
fore, only one of the two is tuned, and the other is set based on the following reasoning.

For the target volumes, the planning criteria are defined in terms of volume-indices, i.e. V prostate
100%  and Vvesicles

80%  
(see table 1). The maximum value for these indices (100% of the volume) can be achieved if the lower dose limit 
is set to the corresponding dose, i.e. 100% and 80% of the planning-aim dose respectively, and the corresponding 
weight is tuned to be large enough.

For the OARs, however, the planning criteria are defined in terms of dose-indices, e.g. Dbladder
2 cm3 < 74%. When 

one would set the bladder upper dose limit to 74% of the planning-aim dose and the corresponding weight large, 

the best value that can be achieved is Dbladder
2 cm3 = 74%, but never Dbladder

2 cm3 < 74%, as the underlying dose-penalty 
model does not assign penalties below the upper dose limit. Therefore, for planning criteria based on dose-indi-
ces, the upper dose limit needs to be tuned, which we denote with Lb, Lr, and Lu for respectively the bladder, 
rectum, and urethra. Note that there are two planning criteria specified for the bladder and rectum in the clini-
cal protocol (table 1), but only one upper dose limit can be specified per volume of interest in the dose-penalty 
model. Therefore, this dose limit needs to capture both criteria.

We setup the dose-penalty model as similar as possible to the behavior of the bi-objective planning model, 
to be able to transfer as good as possible the strengths of the bi-objective planning model to the dose-penalty 
model, and to allow for a fair comparison to directly optimizing the bi-objective planning model. Therefore, 
similar to the bi-objective planning model, where the trade-off between coverage and sparing criteria is explicitly 
taken into account, a single weight WOARs  was used for all OARs and a separate single weight was used for all tar-
gets. The latter was fixed to a value of 1, such that WOARs  models the importance of the OARs with respect to the 
targets. Then, for example, when WOARs = 0.5, the target volumes are two times as important as the OARs, and 
when WOARs = 3, the OARs are three times as important as the target volumes.

2.3.1.  IPSA setup
IPSA is an inverse planning method that uses simulated annealing to optimize the underlying dose-penalty 
model (Lessard and Pouliot 2001). We set up IPSA as shown in table 2. Upper dose limits on OARs were only 
specified on the surface. As there are no dwell positions activated within the OARs, the highest dose will occur 
at the surface, and reducing surface dose will result in reduced total dose. The other methods discussed in this 
work optimize the active dwell positions. IPSA however handles dwell position activation internally, and the user 
must specify activation margins. We set these activation margins as currently specified in our clinical protocol 
(see section 2.1), to minimize the difference between methods. However, internal computations by IPSA might 
still result in a slightly different set of activated dwell positions. The number of dose-calculation points that IPSA 
uses internally cannot be controlled. Finally, a dwell time deviation constraint (DTDC) can be specified for IPSA. 
The DTDC aims to increase dose homogeneity by constraining dwell-times differences within a catheter. Dose 
homogeneity is not a planning criterion in our clinical protocol, and enabling the DTDC potentially deteriorates 

plan quality (Balvert et al 2015). The DTDC is therefore disabled.

2.3.2.  HIPO setup
HIPO is an inverse planning method that uses the limited-memory Brodyen–Fletcher–Goldfarb–Shanno 
(L-BFGS) algorithm to optimize the underlying dose-penalty model (Milickovic et al 2002). The parameter 
setup used for HIPO is shown in table 2. Dose limits are applied to both the surface and the volume depending 
on the sample point settings. According to our clinical practice, for each OAR, 500 surface points and 500 volume 
points were used. For each target, we used 1000 volume points, plus surface points with a density of 8 cm−2. 
Compared to IPSA, HIPO requires two additional dose limits; an upper dose limit on normal tissue dose and an 
upper dose limit on the primary target volume (prostate). To reduce the differences between the optimization 
aims in IPSA and HIPO, we effectively disabled these by setting the dose limit to 400% and the corresponding 
weight to 0.001, the lowest value possible. Furthermore, HIPO does not accept overlapping volumes. Therefore, 
the intersection between the prostate and the urethra was set to only belong to the urethra. This is different from 
the interpretation by IPSA, Oncentra Brachy, and our dose engine, as there, intersections between volumes are 
considered part of both volumes. Similar to the DTDC of IPSA, the dwell time gradient restriction (DTGR) in 
HIPO was disabled.

Phys. Med. Biol. 65 (2020) 075009 (16pp)
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2.4.  The bi-objective planning model
In the bi-objective planning model, the planning criteria are grouped into one coverage objective and one sparing 
objective (Luong et al 2018a, Maree et al 2019), that are referred to as the least coverage index (LCI) and least 
sparing index (LSI), as follows,

LCI = min
¶

V prostate
100% − 95, Vvesicles

80% − 95
©

,

LSI = 13 Gy ×min




86 − Dbladder
1 cm3 , 74 − Dbladder

2 cm3 ,

78 − Drectum
1 cm3 , 74 − Drectum

2 cm3 ,

110 − Durethra
0.1 cm3 , 150 − D prostate

50% ,

200 − D prostate
20%




.

Both LCI and LSI are constructed by combining the coverage or sparing criteria in table 1 in a worst-case 
manner. For example, maximizing the LCI implies that the least-fulfilled criterion is improved. The criterion that 
is least fulfilled changes during the optimization process, thus, ultimately, all criteria are improved. This is similar 
to how planners were observed to typically perform manual optimization of clinical plans, by trying to improve 
the least-fulfilled criterion iteratively (Maree et al 2019). An important property of the bi-objective planning 
model is that when both LCI  >  0% and LSI  >  0 Gy, the plan is satisfactory. Optimization of the bi-objective 
planning model thus aims directly for satisfactory plans. This is a property that does not hold for the weighted-
sum approaches of IPSA and HIPO, where unfulfilled criteria can be compensated by fulfilled criteria.

Adding the sparing criteria V prostate
150% < 50% and V prostate

200% < 20% directly to the LSI would lead to a comparison 
of planning criteria with different quantities (volume and dose), which could give unexpected results as these are 
not directly comparable. In previous related work (Maree et al 2019), these two criteria were not included in the 
LSI, but added as hard constraints. It was found that these hard constraints did not influence the results, as these 
were never found to be violated in the considered patient set, which is a subset of the patients considered in this 
work. However, it cannot be guaranteed that these hard constraints are not violated on additional patients and 
with different planning strategies considered in this work. For completeness, the planning criteria are therefore 

not added as hard constraints but rewritten in terms of dose-indices so that they can be directly added to the LSI. 

The sparing criteria V prostate
150% < 50% and V prostate

200% < 20% are therefore replaced by respectively D prostate
50% < 150% 

and D prostate
20% < 200%.

2.5.  Trade-off set generation
2.5.1.  Trade-off set generation via automatic bi-objective parameter tuning
Using the setup of the dose-penalty model in table 2, four parameters need to be tuned, i.e. Lb, Lr, Lu, and WOARs  
for either IPSA or HIPO (distinguished by a superscript). These four parameters were automatically tuned by 
optimizing the bi-objective planning model, i.e. by finding a set of plans with different high-quality trade-offs 
in the LCI and LSI. For this, the evolutionary algorithm MAMaLGaM (Rodrigues et al 2014) was used (full-
covariance version). By automatic parameter tuning that entails running IPSA or HIPO, the dose distribution 
can no longer be quickly updated, and therefore, MAMaLGaM, a similar type of algorithm as GOMEA, has 
better performance (Luong et al 2018a). MAMaLGaM was used to perform the automatic bi-objective parameter 

Table 2.  Used parameter settings for the inverse planning methods IPSA and HIPO. For both methods, four parameters remain to be set 
by automatic parameter tuning: the dose limits Lb, Lr, and Lu for respectively the bladder, rectum, and urethra, and an overall weight WOARs  
representing the importance of the OARs with respect to the targets. Dose limits are given in percentage of the planning-aim dose of 13 Gy. 
Weights have no unit.

Lower dose Upper dose

Volume Usage Weight Limit Limit Weight

IPSA Prostate surface & volume Primary target 1 100%

Bladder surface Organ LIPSA
b W IPSA

OARs

Rectum surface Organ LIPSA
r W IPSA

OARs

Urethra surface Organ LIPSA
u W IPSA

OARs

Vesicles surface & volume Target 1 80%

HIPO Prostate Primary Target 1 100% 400% 0.001

Bladder Organ LHIPO
b WHIPO

OARs

Rectum Organ LHIPO
r WHIPO

OARs

Urethra Organ LHIPO
u WHIPO

OARs

Vesicles Target 1 80%

Normal tissue — 400% 0.001

Phys. Med. Biol. 65 (2020) 075009 (16pp)
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tuning throughout this work, while GOMEA was only used for direct optimization of the bi-objective planning 
model.

Per patient, MAMaLGaM was run for 25 iterations with a standard population size of 410 solutions, resulting 
in about 104 runs of each of the inverse planning method. This number of iterations was determined based on 
preliminary testing on a limited set of patients, and obtained trade-off curves were found to be non-improving 
for the last five iterations in all runs. The typical values for WOARs  that were found by preliminary testing were 
between 0 and 2. Therefore, for the start of the automatic parameter tuning, WOARs  was initialized randomly in 
the interval [0, 2]. However, to make sure that this range is not too restrictive, we set a higher upper bound (or 
maximum value) of 10. Weights cannot be negative. This means that initially, dose penalties for the OARs were 
at most twice as important as the target coverage penalties. The upper dose limits for the OARs were initialized 
around the target value stated in our clinical protocol in table 1. That is, Lb and Lr are initialized randomly in the 
range 60%–100%, and Lu in the range 100%–110%. Dose limits were bounded between 0% and 400%. The ini-
tialization ranges for the bladder and rectum are relatively large because both these volumes have two planning 
criteria specified in the clinical protocol (table 1). Additionally, these planning criteria are specified for a larger 
volume compared to that for the urethra, i.e. 1 cm3 and 2 cm3 compared to 0.1 cm3, which implies that a higher 
dose than the planning criterion is allowed, as long as the volume receiving that higher dose is not too large. To 
incorporate this in the dose-penalty model, we used a larger initialization range.

MAMaLGaM is a stochastic algorithm, that, depending on the initialization of the random number genera-
tor, finds a different trade-off set every run, although previous work shows the variation in outcome to be small 
(Luong et al 2018a). We reduced the effect of this randomness by running MAMaLGaM ten times per patient for 
each inverse planning method, and since we aim to compare to the best possible trade-off set, the resulting ten 
trade-off sets were combined into a single trade-off set by maintaining only the best plans. We refer to the result-
ing trade-off sets obtained by as IPSA-tuned and HIPO-tuned.

2.5.2.  Trade-off set generation via random sampling
As alternative to trade-off set generation via automatic parameter tuning, we generated 1000 treatment plans by 
randomly sampling values for the parameters of the dose-penalty model (i.e. Lb, Lr, Lu, and WOARs) for both IPSA 
and HIPO, similar as in (Bélanger et al 2019). Parameter values were sampled uniformly random in the same 
ranges as those that were used for the initialization of automatic bi-objective parameter tuning. The resulting 
trade-off set is then the subset of plans with only the best trade-offs. As no further optimization is performed 
in this approach, we did not repeat it multiple times like we did for MAMaLGaM. We refer to the trade-off sets 
generated via this approach as IPSA-random and HIPO-random.

2.5.3.  Trade-off set generation with GOMEA
The bi-objective planning model is non-convex, non-linear, and non-smooth, and to optimize plans according 
to it, the state-of-the-art multi-objective real-valued GOMEA, was used (Luong et al 2018a, Bouter et al 2019). 
GOMEA exploits that the dose distribution can be quickly updated when only few dwell times change. GOMEA 
does not require any patient-specific parameters to be set, and a single run results in a trade-off set of hundreds 
of plans. For the experiments in this work, GOMEA was run for 10 min on a GPU (NVIDIA Titan X). In clinical 
practice, it was shown that a runtime of 30 s was sufficient (Bouter et al 2019). A longer runtime was however 
chosen here since we aimed to show maximally achievable plan quality, and because we increased the number of 
dose-calculation points, see section 2.2.

GOMEA is a stochastic algorithm, like MaMaLGaM, and therefore, parameter tuning was repeated ten 
times per patient, and the resulting trade-off sets were combined into a single trade-off set, which we refer to as 
GOMEA-direct.

2.6.  Method comparisons
For each of the 39 patients, trade-off sets were automatically constructed using the three approaches discussed 
above, which results in five trade-off sets per patient (IPSA-tuned, HIPO-tuned, IPSA-random, HIPO-random, 
and GOMEA-direct). These trade-off sets were visually compared as trade-off curves, together with the clinically 
used plan, in the same figure. We compared the best obtained results of IPSA and HIPO (IPSA-tuned and HIPO-
tuned) with GOMEA-direct. Additionally, we investigated the added value of performing parameter tuning by 
comparing IPSA-tuned with IPSA-random, and similarly HIPO-tuned with HIPO-random.

2.6.1.  Trade-off performance measure: hypervolume
When a trade-off set is visualized as a trade-off curve, the area under this curve can be used as a performance 
indicator which is known as the hypervolume (Zitzler et al 2003, Auger et al 2009). A larger area (hypervolume) 
implies that the planning method achieved better trade-offs. The hypervolume is a performance measure that in 
itself may be hard to interpret, because its value depends on a reference point, i.e. the lower cutoff values of the 
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trade-off curve, and because it has no interpretable unit (in our case, dose times volume). It does however allow 
for a straightforward comparison of multiple trade-off curves, where a larger hypervolume is better. Differences 
in hypervolume were tested for statistical significance by a Wilcoxon signed-rank test with α = 0.05.

2.6.2.  Random parameter sampling versus automatic parameter tuning
All plans corresponding to the randomly sampled parameters were visualized as a scatterplot in the same 
figure (and not just the plans in the trade-off set, that have the best trade-offs). This gives insight in how many of 
the resulting plans are satisfactory (i.e. plans that satisfy all planning criteria), and whether the plans satisfy a large 
variety of different trade-offs. Further, the percentage of satisfactory plans was computed, which is an estimate of 
the probability that a randomly sampled parameter set results in a satisfactory plan, similar as in (Bélanger et al 
2019).

2.6.3.  Plan comparison
We aimed to investigate maximum performance of each inverse planning method, and therefore, IPSA-tuned, 
HIPO-tuned, and GOMEA-direct are compared in more detail. To assess quality of individual plans, three 
reference plans were selected from each trade-off set. For this, the following selection rules were used: a left (L) 
plan with an LCI-value of approximately  −2%, a middle (M) plan with an LCI-value of approximately 1%, and 
a right (R) plan with an LCI-value of approximately 4%, corresponding with plans that have a target coverage of 
at least 93%, 96%, and 99% respectively. Of these selected plans, dose-volume indices of the planning criteria on 
which the LCI and LSI are based (section 2.4) were compared. Differences were tested for statistical significance 
by a Wilcoxon signed-rank test with α = 0.05, and Bonferroni correction was applied for the 60 pairwise tests 
performed (IPSA/HIPO versus GOMEA for plans L/M/R for each of 10 dose-volume indices), resulting in a 
corrected α = 0.0008.

2.7.  Constructing class solutions
Class solutions, i.e. standard parameter sets for IPSA or HIPO, can be used to potentially overcome patient-
specific parameter tuning, or to function as a good starting point for manual parameter tuning. A class solution 
for a specific inverse planning method can be easily constructed from a set of plans of previously treated patients, 
when these plans are constructed by that inverse planning method, and the corresponding parameter values are 
known, by taking e.g. for each parameter its average value.

We used plans obtained via automatic parameter tuning of IPSA and HIPO (IPSA-tuned and HIPO-tuned) 
as reference plans to construct multiple class solutions for IPSA and HIPO. By averaging the four parameters (Lb, 
Lr, Lu, and WOARs) of the reference plans L, M, and R over all patients, we constructed three class solutions CS-
L, CS-M, and CS-R, representing different trade-offs. Plan quality of these class solutions was compared to the 
automatic per-patient tuned results (IPSA-tuned or HIPO-tuned). We recorded how many of the resulting plans 
were satisfactory, and analyzed the obtained dose-volume index values. To prevent overfitting to the current 
patient set, leave-one-out cross validation was applied. A class solution was constructed by removing one patient 
from the set of 39 patients, and constructing a class solution from the remaining 38 patients. This class solution 
was then validated on the patient that was left out. We repeated this procedure by leaving each patient out once. 
Only results on the validation sets are shown. The dataset is rather small with only 39 patients. Therefore, leave-
one-out cross validation is a good choice, as the training set is kept as large as possible (38 patients). Leave-one-
out cross validation is however often time consuming as it needs to be repeated for each data point (patient), 
thus 39 times. Since constructing class solutions by taking means is extremely fast, as there is no need to re-do the 
IPSA/HIPO-tuning, this was not an issue.

3.  Results

3.1.  Trade-off curves
Trade-off curves based on the trade-off sets generated by automatic parameter tuning of IPSA and HIPO (IPSA-
tuned and HIPO-tuned), and by GOMEA (GOMEA-direct) are shown in figure 1.

Parameter tuning of IPSA had a median runtime of 3 h per patient (range 1.5 h–5 h) and of HIPO 23 h (range 
11.5 h–42 h), using the clinical software implementation of both methods. Computations were performed on 
different machines, which affected runtime, but computation time is patient dependent and relates mainly to the 
number of active dwell positions, i.e. the number of variables that IPSA or HIPO need to optimize.

For all patients, GOMEA obtained plans with the best trade-offs, i.e. in no case a plan obtained by automatic 
parameter tuning of IPSA or HIPO outperforms a plan obtained by GOMEA in both objectives simultaneously. 
For many patients, results obtained by automatic parameter tuning of HIPO were close or similar to results 
obtained by GOMEA, but larger differences can be observed for a few patients (4, 8, 10, 12, 23, 25, and 33). Only 
for patients 10 and 33, automatic parameter tuning of IPSA achieved somewhat better trade-offs than that of 
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HIPO for lower LCI values, i.e. on the left side of the trade-off curve. For all other patients, trade-offs obtained 
by automatic parameter tuning of IPSA were inferior to trade-offs obtained by both automatic parameter tun-
ing of HIPO and by GOMEA. The hypervolume of GOMEA-direct was, on average over all patients, 29.7 (range: 
7.7–37.9), while the hypervolume of HIPO-tuned and IPSA-tuned were significantly lower (p   <  0.01) with aver-
age values of respectively 27.6 (range: 7.0–37.0) and 24.6 (range: 0.2–35.8).

Obtained trade-off curves differ clearly for different patients in shape and maximally achievable plan qual-
ity (see figure 1). For 28/39 patients (72%), all three methods obtained satisfactory plans. Plans obtained by 
automatic tuning of HIPO were satisfactory for two additional patients (8 and 31), resulting in 30/39 (77%) 

Figure 1.  Trade-off curves based on the trade-off sets obtained by automatic parameter tuning of IPSA and HIPO (IPSA-tuned and 
HIPO-tuned) for all 39 patients, compared to maximally achievable plan quality obtained by optimizing the bi-objective planning 
model with GOMEA (GOMEA-direct). Each obtained plan is visualized as a single dot, however, for many patients, individual dots 
cannot be distinguished. Triangles are the plans obtained by the class solutions (CS) L (<), M (^) and R (>), in the corresponding 
color of the method. The black squares represent the trade-off of the clinical plan, outlined in the color of the inverse planning 
method from which treatment planning was initialized (IPSA in blue, HIPO in red). Some clinical plans and class solution plans fell 
outside the figure range because it violated one or multiple planning criteria too much.
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patients with satisfactory plans. GOMEA obtained satisfactory plans for four additional patients (8, 14, 24, and 
31), resulting in satisfactory plans for 32/39 (82%) patients. Finally, for seven (18%) patients (4, 18, 19, 20, 23, 30, 
and 34), none of the methods obtained satisfactory plans. Worst plans were observed for patient 19, in one region 
of the prostate, the catheters were not placed deep enough. To be able to fully cover the prostate, the planning 
criteria on the bladder or urethra were largely violated. There was no structural difference observed in prostate 
volume between patients without satisfactory plans (median 29.3 cm3) and the rest (median 31.5 cm3).

For almost all patients, all three methods outperformed the clinical plan by obtaining plans with a better 
trade-off than the trade-off of the clinical plan. Exceptions are patients 22 and 29, where automatic parameter 
tuning of IPSA was not able to outperform the clinical plan, while automatic tuning of HIPO and direct optim
ization with GOMEA did obtain a better trade-off.

3.2.  Random parameter sampling versus automatic parameter tuning
For two example patients (8 and 36) that are representative for the patient set, plans obtained by randomly 
sampling parameters are shown in figure 2, together with the corresponding trade-off sets IPSA-random and 
HIPO-random, in which only the plans with the best trade-offs were maintained. A gap can be observed between 
the IPSA-tuned and IPSA-random trade-off curves, and similar for HIPO-tuned and HIPO-random. The mean 
hypervolume for IPSA-random was 22.2 (range: 0.0–33.7), which is lower than the hypervolume of IPSA-tuned 
(p   <  0.01). Similar, the hypervolume for HIPO-random was 25.4 (range 5.4–36.0), which is lower than the 
hypervolume of HIPO-tuned (p   <  0.01). Comparing the 28 patients for which both with automatic parameter 
tuning of IPSA and HIPO satisfactory plans were obtained, a median of 7.5% (range: 0%–63%) of the IPSA-
random plans were satisfactory. For HIPO-random, this was 14.5% (range: 0%–78.5%).

Figure 2.  Plans obtained via random parameter sampling are illustrated by scattered dots (IPSA/HIPO-random), compared to the 
maximally achievable trade-offs obtained by automatically tuning IPSA/HIPO (IPSA/HIPO-tuned), and the maximally achievable 
trade-offs for that patient, obtained by GOMEA (GOMEA-direct). Illustrated for patients 8 (top) and 36 (bottom). Squares indicate 
the clinical plan. To highlight the differences between these approaches, the areas under the curves are shaded. Note that the areas 
overlap, e.g. the area under the curve of GOMEA-direct also includes the area shaded in blue/red.
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3.3.  Plan comparison
Table 3 shows the average dose-volume index values over all patients obtained by directly optimizing the bi-
objective planning model by automatic tuning of IPSA and HIPO (IPSA-tuned and HIPO-tuned), and GOMEA 
(GOMEA-direct) for the three reference plans L, M, and R. In all cases, plans obtained by GOMEA spared the 

urethra and bladder better while similar prostate coverage V prostate
100%  was achieved, compared to IPSA-tuned and 

HIPO-tuned plans. Plans resulting from the automatic tuning of HIPO have lower high-dose regions within 
the prostate compared to plans resulting from direct optimization by GOMEA or by automatic tuning of IPSA. 

IPSA-tuned and HIPO-tuned plans exhibit significantly better vesicle coverage Vvesicles
80% , albeit all three methods 

achieved values well above the planning criterion of 95%. The values obtained for the planning criteria on the 

rectum were well below their aim for all patients by all three methods.

3.4.  Class solutions
The three class solutions (i.e. standard sets of parameters) obtained for both IPSA and HIPO, based on the three 
selected plans from the trade-off sets IPSA-tuned and HIPO-tuned are shown in table 4. The obtained dose-
volume index values, as a result of leave-one-out cross-validation, are shown in table 5. Further, the corresponding 
trade-offs are visualized in figure 2. Combined, the three IPSA class solutions resulted in satisfactory plans for 
four patients. HIPO class solutions resulted in satisfactory plans for 18 patients in total, with class solutions based 
on plan M as the single best class solution with satisfactory plans for 13 patients. The class solutions based on plan 

R, aimed to result in plans with 99% coverage, violated the sparing criteria in all but one case.
For both IPSA and HIPO, standard deviations between obtained class solution parameters were larger 

for bladder and rectum limits Lb and Lr, and notably for the IPSA bladder limit, while the standard devia-
tion for the urethra limit Lu was small. Compared to IPSA, HIPO class solutions had lower limits Lb and Lr for 
all plans, but somewhat higher Lu. In figure 1, it can be seen that the ordering of the class solutions such that 
LCI ( plan L) � LCI ( plan M) � LCI ( plan R) was largely maintained. The class solutions were aimed to result 
in plans with a coverage of 93%, 96%, and 99% respectively, which was achieved on average, but the standard 

deviation of V prostate
100%  (and Vvesicles

80% ) was found to be large compared to the standard deviations in table 3.

4.  Discussion

We introduced an automatic bi-objective parameter-tuning approach for inverse planning methods such as 
IPSA and HIPO. With this approach, the maximally achievable plan quality is automatically obtained, and the 
resulting set of plans provides the possibility for insightful comparison of the patient-specific trade-offs between 
the coverage of the targets and the sparing of the OARs. We showed that, when HIPO is properly tuned by use 
of this approach, plans with fairly similar trade-offs can be obtained as was maximally achievable by direct 
optimization of the bi-objective planning model using GOMEA for most, but not all, patients.

Plans obtained by automatic tuning of HIPO and by direct optimization of the bi-objective planning model 
with GOMEA outperformed the trade-off of the clinical plan for all patients, while plans obtained by automatic 
tuning of IPSA outperformed the clinical plan for all but two (22 and 29) patients. We would like to note that 
according to our clinical practice, planners often choose for a clinical plan with a higher coverage than strictly 
required to satisfy the coverage criteria, at the cost of (slightly) violating one or more sparing criterion, even 
though satisfactory plans might have been achieved for those patients by manual parameter tuning. For seven 
patients, it was not possible to obtain satisfactory plans with any of the approaches, which was caused by unfa-
vorable implant geometry. There was no relation found between prostate volume and satisfactory plans.

The algorithms that are used for optimization in this work, GOMEA, MAMaLGaM, and also the simulated 
annealing algorithm within IPSA and L-BFGS within HIPO, are heuristic search algorithms that have no math-
ematical guarantee that maximum plan quality is reached. However, these methods do aim to obtain a high-
quality solution within a reasonable amount of time and effort. Previous work indicates that the obtained results 
of GOMEA and MAMaLGaM on these and similar problems, are indeed of high quality and therefore (near-) 
maximally achievable quality. Throughout the article we, for simplicity, referred to this as maximally achievable 
plan quality achievable (Rodrigues et al 2014, Luong et al 2018a, Bouter et al 2019).

The random sampling approach we used was similar to the approach used in (Bélanger et al 2019), albeit on 
a different protocol and patient set. In that work, no notion of distance to maximally attainable values was given. 
Here, we showed that plan quality can be further improved by performing automatic parameter tuning.

The ultimate goal of treatment planning is to obtain a treatment plan that represents the best trade-off 
between (local) tumor control and normal tissue complications, and ideally, that is what is directly optimized 
for. The bi-objective parameter tuning approach presented in this work does not depend on the objectives that 
are optimized. Therefore, instead of using the LCI and LSI as objectives, the tumor control probability (TCP) 
and normal tissue complication probability (NTCP) could be used. To compute the TCP and NTCP, biological 
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Table 3.  Dose-volume indices as described in section 2.1 of selected plans from IPSA-tuned and HIPO-tuned. Mean and standard deviation (between brackets) shown over all 39 patients. (+) indicates a statistically significant better 
value compared to GOMEA plans, (−) indicates a significant worse value. Volume-indices (V) in volume percentage, dose-indices (D) in Gy.

Plan Method V prostate
100% Vvesicles

80% Dbladder
1 cm3 Dbladder

2 cm3 Drectum
1 cm3 Drectum

2 cm3 Durethra
0.1 cm3 D prostate

50% D prostate
20% D prostate

90%

Criteria   >  95%   >  95%   <  11.2 Gy   <  9.6 Gy   <  10.1 Gy   <  9.6 Gy   <  14.3 Gy   <  19.5 Gy   <  26 Gy   >  13 Gy

L GOMEA 93.0(0.1) 97.0(2.5) 9.6(0.8) 8.6(0.7) 8.7(0.9) 7.7(0.9) 13.5(0.5) 15.8(0.6) 19.9(1.4) 13.3(0.1)

IPSA 93.0(0.4) 98.6(2.2)  +   9.9(0.6)  −   9.0(0.5)  −   9.0(1.1)  −   8.0(1.0)  −   13.8(0.7)  −   16.2(0.9)  −   20.8(2.3)  −   13.3(0.2)  +  

HIPO 93.0(0.2) 98.1(2.2)  +   9.8(0.6)  −   8.9(0.6)  −   9.0(0.9)  −   8.0(0.9)  −   13.6(0.5)  −   15.4(0.5)  +   19.4(1.6)  +   13.2(0.1)  −  

M GOMEA 96.0(0.1) 98.2(1.5) 10.2(1.0) 9.1(0.9) 9.1(1.1) 8.0(1.1) 14.0(0.7) 16.1(0.7) 20.3(1.6) 13.6(0.3)

IPSA 95.9(0.8) 99.2(1.3)  +   10.5(0.7)  −   9.5(0.7)  −   9.3(1.2)  −   8.3(1.2)  −   14.4(0.9)  −   16.8(1.0)  −   21.7(2.4)  −   13.8(0.3)  +  

HIPO 96.0(0.0) 98.8(1.3)  +   10.4(0.8)  −   9.4(0.7)  −   9.2(1.1) 8.2(1.1) 14.1(0.7)  −   15.7(0.6)  +   19.9(1.8)  +   13.5(0.2)  −  

R GOMEA 98.9(0.4) 99.7(0.4) 11.4(1.1) 10.3(1.0) 9.6(1.3) 8.6(1.3) 15.0(1.0) 16.8(0.9) 21.4(2.0) 14.2(0.5)

IPSA 98.6(1.4)  −   99.7(0.7) 11.7(0.9)  −   10.5(0.8) 9.9(1.4) 8.8(1.3) 15.6(0.9)  −   18.1(1.0)  −   23.4(2.4)  −   14.8(0.5)  +  

HIPO 98.9(0.5) 99.7(0.4) 11.5(1.0) 10.4(0.9)  −   9.9(1.2) 8.9(1.2)  −   15.1(0.9)  −   16.4(0.8)  +   20.9(2.1)  +   13.9(0.4)  −  
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models have been developed (Baumann and Petersen 2005). These models however depend on a number of 
radiobiological parameters which are unknown or uncertain in practice. Although these models give a correct 
description of the main characteristics of the radiation response, caution has to be taken if these models are 
to be applied to patients (Brahme 2001, Karger 2006, Dinkla et al 2013). When the clinical planning criteria  
(table 1) are formulated in terms of TCP/NTCP, this can be rather straightforwardly incorporated into our auto-
matic parameter tuning. However, to obtain the best treatment plans in terms of the current clinical protocol that 
is formulated in terms of D and V indices, it is logical to directly optimize for the latter, which is achieved by the 
current formulation of the bi-objective planning model.

Other (dose-volume based) multi-objective approaches exist (Milickovic et al 2002, Lahanas et al 2003, Cui 
et al 2018a, 2018b), but the bi-objective planning model specifically allows for a direct optimization of the dose-
volume-based planning criteria without having too many objectives. Optimizing all planning criteria as separate 
objectives results in a many-objective optimization problem, and solving these problems by presenting a repre-
sentative trade-off set is difficult and time consuming, even with state-of-the-art algorithms (Luong et al 2018b). 
Additionally, visualization of the trade-off set when using four or more objectives is no longer straightforward. 
In practice, besides the planning criteria, planners also look at the 3D dose distribution to assess plan quality. 
It was shown in a retrospective observer study that optimizing the bi-objective planning model with GOMEA 
resulted in plans that were considered clinically acceptable (Maree et al 2019). However, because of fundamental 
differences in how plans are generated by IPSA and HIPO, structural differences in the dose distribution might 
have occurred that are harder to quantify, besides the observed differences in the obtained values for the planning 
criteria.

Well-spread high-quality trade-off sets were obtained when applying automatic bi-objective parameter tun-
ing to both IPSA and HIPO. This suggests that the chosen parameter setup, with only four parameters of the 
dose-penalty model that were automatically tuned, was sufficiently flexible. We chose in this work not to include 
upper dose limits for the prostate in IPSA and HIPO, mainly based on prior observations with using GOMEA to 

solve the bi-objective problem formulation that the planning criteria on the V prostate
150%  and V prostate

200% , as specified in 
our clinical protocol (table 1), are rather easy to satisfy (Maree et al 2019). The results in table 3 show that, even 
without upper dose limits on the prostate, the planning criteria are well below their aim. Hence, these planning 

criteria do not play a role in the automatic parameter tuning process of IPSA and HIPO, nor in the optimization 

process of GOMEA. For HIPO, the obtained V prostate
150%  and V prostate

200%  values are even better than with the other 
methods. This shows that it is indeed not required for IPSA and HIPO to furthermore add upper dose limits 
for the prostate, and that the other upper dose limits reduce high-dose regions in the prostate below their aim. 

However, if the planning criteria on the V prostate
150%  and V prostate

200%  would have been stricter in our clinical protocol, 
it might have been required to use upper dose limits for the prostate. Despite this observation, including more 
parameters of the dose-penalty model in the automatic tuning process could potentially improve resulting plan 
quality. However, this increases computation time of the automatic tuning process, as more parameters need to 
be tuned. It would furthermore complicate the tuning process, as multiple parameters have the same effect on the 
obtained plan, of which we gave an example in section 2.3. Increasing planning complexity increases the risk of 
ultimately achieving inferior plans, both for manual and automatic parameter tuning. When applying automatic 
bi-objective parameter tuning to a different clinical protocol, for a fair comparison between IPSA, HIPO, and 
GOMEA, the parameter setup needs to be reconsidered. The reasonings and results in this work could be used as 
guidelines to do so.

Automatic bi-objective parameter tuning resulted for IPSA in inferior trade-offs compared to HIPO for 
many patients, although a similar setup of the dose-penalty model was used. For this work, we used the clinical 

Table 4.  Obtained class solutions (CS) for IPSA and HIPO by averaging selected plans obtained by automatically tuning of respectively 
IPSA and HIPO (trade-off sets IPSA-tuned and HIPO-tuned). Dose limits Lb, Lr, and Lu corresponding to the bladder, rectum and urethra 
respectively, are expressed in percentage of the planning-aim dose of 13 Gy. WOARs  is expressed as relative importance of the OARs to 
the target volumes, see table 2. Standard deviations of the corresponding parameters over all patients are provided between brackets. 
‘Satisfactory plans’ indicates for how many of the 39 patients, plans that satisfy all planning criteria were obtained with the given class 
solution.

CS Lb Lr Lu WOARs Satisfactory plans

L IPSA 107(91) 104(65) 102(5) 1.7(2.0) 4

HIPO 69(17) 93(24) 106(3) 1.4(1.0) 11

M IPSA 129(105) 106(58) 106(6) 1.4(1.7) 3

HIPO 78(34) 100(37) 110(5) 0.9(0.6) 13

R IPSA 181(116) 127(75) 114(7) 0.8(1.6) 0

HIPO 84(39) 121(50) 117(6) 0.7(1.5) 1
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Table 5.  Dose-volume index values of class solutions (CS) for IPSA and HIPO. Results were obtained by leave-one-out cross validation. Average and standard deviation (between brackets) computed over all 39 patients, volume-indices 
(V) in volume percentage, and dose-indices (D) in Gy.

CS V prostate
100% Vvesicles

80% Dbladder
1 cm3 Dbladder

2 cm3 Drectum
1 cm3 Drectum

2 cm3 Durethra
0.1 cm3 D prostate

50% D prostate
20% D prostate

90%

Criteria   >  95%   >  95%   <  11.2 Gy   <  9.6 Gy   <  10.1 Gy   <  9.6 Gy   <  14.3 Gy   <  19.5 Gy   <  26 Gy   >  13 Gy

L IPSA 93.7(4.5) 97.3(9.0) 10.6(1.2) 9.6(1.3) 9.6(1.3) 8.6(1.3) 14.2(1.4) 16.6(0.7) 21.8(1.8) 13.4(0.7)

HIPO 93.2(3.0) 98.8(1.3) 9.5(0.7) 8.6(0.7) 9.2(1.1) 8.3(1.1) 13.6(0.1) 15.4(0.4) 19.7(1.2) 13.2(0.3)

M IPSA 95.5(4.3) 97.5(8.9) 11.3(1.5) 10.2(1.4) 9.7(1.4) 8.7(1.3) 14.6(1.3) 17.1(0.7) 22.5(1.9) 13.8(0.7)

HIPO 96.1(2.4) 99.4(0.8) 10.1(0.7) 9.3(0.8) 9.6(1.2) 8.7(1.2) 14.0(0.2) 15.7(0.4) 20.2(1.3) 13.4(0.2)

R IPSA 97.7(3.5) 98.9(4.0) 12.3(1.8) 11.0(1.7) 10.4(1.7) 9.2(1.6) 15.8(2.0) 18.4(1.1) 24.4(2.5) 14.7(0.9)

HIPO 98.1(1.7) 99.6(0.6) 10.6(0.7) 9.7(0.8) 10.2(1.4) 9.2(1.4) 14.9(0.2) 16.4(0.6) 21.4(1.5) 13.8(0.3)
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software implementation of IPSA and HIPO, and there are multiple fundamental differences between those two 
methods that could be the cause of these differences. In HIPO, a quadratic dose-penalty model is used, while 
in, IPSA a linear dose-penalty model is used. Because of these model differences, different solvers were used to 
optimize them. In HIPO, L-BFGS is used, while the simulated annealing algorithm is used in IPSA to optimize 
the dose-penalty model. Later improvements on IPSA showed that linear programming is capable of solving this 
dose-penalty model with higher accuracy, with up to about one percent improvement in dose-volume indices of 
the prostate and urethra for some patients, but this version is not clinically available (Alterovitz et al 2006). Other 
differences between the two methods are that for IPSA, dose-calculation points were only sampled on the surface 
of OARs, as only surface dose limits were specified, whereas for HIPO dose-calculation points were also sampled 
within the OAR volumes. Further, in IPSA the delineated contours specified by the planner were directly used to 
sample dose-calculations points, while in HIPO, the contours were converted in a 3D mesh of the organ surface. 
Even when there are many delineated contours, the latter approach is closer to how dose-volume indices are 
evaluated within Oncentra Brachy, and in our in-house-developed dose engine. Different dose-point sampling 
and volume reconstruction methods have been shown to affect computed plan quality (van der Meer et al 2019).

When looking into the dose-volume index values of the optimized plans, it was noted that direct optim
ization of the bi-objective planning model with GOMEA resulted in a lower vesicle dose than automatic tuning 
of IPSA and HIPO, albeit all obtained values were well above their aim. When GOMEA optimizes the bi-objec-
tive planning model, it applies an internal weighting mechanism of the planning criteria aimed to prevent that 
the second-worst objective is not further optimized when the worst objective cannot be improved (Bouter et al 
2019). This mechanism was not applied in the automatic parameter tuning of IPSA and HIPO. However, it seems 
not to be required, as the obtained vesicle dose was found to be higher than obtained with GOMEA. This might 
be a result of how the dose-penalty model was set up in the automatic parameter tuning approach, by using a 
single weight for both target volumes.

Automatic patient-specific parameter tuning, i.e. its application to daily clinical cases, as performed in this 
work, is not possible in current clinical practice due to the required computational effort. For that, GPU-based 
versions are required, which are starting to become available (Bélanger et al 2019, Bouter et al 2019). A recent 
study showed that a GPU-based version of IPSA is able to compute 1000 plans within 10 s (Bélanger et al 2019), 
which suggests that our automatic parameter-tuning approach can be run within approximately 4 min, and most 
likely even faster. GOMEA was shown to be able to optimize the bi-objective planning model in 30 s on a GPU 
(Bouter et al 2019), or within 5 min on a central processing unit (CPU) (Luong et al 2019). This is all well within 
the time limits of the clinical practice, especially since manual graphical optimization often takes 30 min or more 
(Maree et al 2019).

For clinical practice today, class solutions could therefore be used for IPSA or HIPO. With the construction 
of class solutions based on the obtained HIPO-tuned (or IPSA-tuned) plans, we showed that multi-objective, 
i.e. trade-off representing, class solutions can effectively be obtained in a principled way. However, subsequent 
(automatic) patient-specific parameter tuning is still clearly required for IPSA and HIPO to obtain the highest-
possible quality plans. Construction of class solutions can be further extended by splitting the patient set based 
on anatomical features, e.g. prostate size, and constructing a class solution for each subset might increase plan 
quality. Alternatively, patient features could be correlated to the method’s parameters, as was done for IPSA in 
recently published works (Cui et al 2018a, 2018b). Also then, high-quality reference plans are required for all 
patients that are generated by the inverse planning method of interest, as the corresponding parameters must 
be known. In practice, treatment plans may have been adapted manually, so that the corresponding parameter 
values are not known, or the plans may be suboptimal because of the manual treatment planning process that has 
to be performed in limited time (Maree et al 2019). Our bi-objective parameter-tuning approach is then still an 
essential tool that can generate high-quailty reference plans automatically.

The three obtained class solutions for HIPO (table 4) are currently being introduced in our clinical practice 
for which we will follow the following strategy: first, class solution M is applied. If the coverage of the resulting 
plan is too low, class solution R is applied, else, if the resulting coverage is too high, class solution L is applied. 
Then, manual parameter tuning or graphical optimization is performed to further improve plan quality. If man-
ual parameter tuning is performed by a planner, it is recommended to follow the same strategy of adapting only 
the four parameters in table 2. However, the observed difference in performance between the results from auto-
matic parameter tuning and random parameter sampling do indicate that this is likely still not trivial to do.

5.  Conclusion

We successfully developed an automatic bi-objective parameter tuning approach that when applied to IPSA and 
HIPO, results in a set of plans with a wide range of trade-offs. By tuning HIPO, better trade-offs were obtained 
than by tuning IPSA. For most patients, automatic tuning of HIPO resulted in plans close to the maximally 
achievable plan quality obtained by optimizing the bi-objective planning model directly with GOMEA. 
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Automatic parameter tuning was furthermore shown to improve plan quality significantly compared to 
random parameter sampling. Finally, from the automatically tuned plans, three class solutions were successfully 
constructed representing different trade-offs that are being introduced in our clinical practice.
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