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Abstract
The establishment of an MRI-only workflow in radiotherapy depends on the ability to generate an
accurate synthetic CT (sCT) for dose calculation. Previously proposed methods have used a
Generative Adversarial Network (GAN) for fast sCT generation in order to simplify the clinical
workflow and reduces uncertainties. In the current paper we use a conditional Generative
Adversarial Network (cGAN) framework called pix2pixHD to create a robust model prone to
multicenter data.

This study included T2-weighted MR and CT images of 19 patients in treatment position from
3 different sites. The cGAN was trained on 2D transverse slices of 11 patients from 2 different sites.
Once trained, the network was used to generate sCT images of 8 patients coming from a third site.
The Mean Absolute Errors (MAE) for each patient were evaluated between real and synthetic CTs.
A radiotherapy plan was optimized on the sCT series and re-calculated on CTs to assess the dose
distribution in terms of voxel-wise dose difference and Dose Volume Histograms (DVH) analysis.

It takes on average of 7.5 s to generate a complete sCT (88 slices) for a patient on our GPU. The
average MAE in HU between the sCT and actual patient CT (within the body contour) is
48.5± 6 HU with our method. The maximum dose difference to the target is 1.3%.

This study demonstrates that an sCT can be generated in a multicentric context, with fewer
pre-processing steps while being fast and accurate.

1. Introduction

Interest has been rapidly growing in complementing and even replacing Computed Tomography (CT) with
Magnetic Resonance Imaging (MRI) in the field of radiation therapy thanks to a superior soft-tissue contrast.
In addition, an MRI-only workflow avoids extra radiation to the patient and reduces errors related to
inter-modality registration. Currently, the main challenge is that MRI pixel values are not directly related to
electron density, which is needed in radiation therapy treatment planning systems (TPS) for dose calculation.

This problem is solved by converting an MRI to a so-called synthetic CT (sCT) or pseudo CT. Many
different sCT generation methods have been proposed in the literature. These techniques recently underwent
significant changes with the emergence of deep learning. Accuracy and velocity have dramatically increased
(Han 2017, Dinkla et al 2018). Generative Adversarial Networks (GAN) have boosted this trend with their
ability to learn generating any data distribution in a paired (Nie et al 2017, Maspero et al 2018) or unpaired
fashion (Wolterink et al 2017). So far, to the best of our knowledge no deep learning-based method described
in the scientific literature, has included data from different medical imaging centers using different CT
and MRI.
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Table 1. Acquisition settings for the three sites. TSE stands for turbo spin echo and FRFSE for fast recovery fast spin-echo, COL for
columns.

Site 1 Site 2 Site 3

Number of patients 8 7 4

CT
Manufacturer Siemens Toshiba Siemens
Model Somatom Definition AS+ Aquilion Emotion 6
Slice thickness (mm) 3 2 2.5
Kernel B30f FC17 B41s

T2-w
Manufacturer GE Siemens GE
Model Discovery 750 w 3 T − 1.5 T Signa PET/MR 3T
Sequence type FRFSE TSE FRFSE
Slice thickness (mm) 2.5 2.5 2.5
Bandwidth (Hz/pixel) 390 200 390
Encoding direction COL ROW COL
TR (ms) 6000–6600 12 000–16 000 6000–10 000
TE (ms) 97 91–102 65

In this paper, we discuss a new multi-scale approach by using an existing conditional GAN (cGAN)
(Wang et al 2018) with paired data coming from different sites. A proof of concept study is conducted by
creating a test set with images coming from a site not used in the train set. This will allow to cover a wide
range of possibilities (artifact, anatomical malformation, MRI intensity variability) in the training and thus
improve the generalizability of MRI to CT conversion. Finally, a dosimetric evaluation is performed to assess
the dose accuracy on the sCT.

2. Materials andmethods

2.1. Patients data collection
This study included pelvic MR and CT images of 19 male patients with prostate or rectal cancer. Images were
taken from the public dataset named the Gold Atlas project (Nyholm et al 2018) aimed to provide a source of
training and validation for segmentation as well as sCT generation methods. Patients with locally advanced
tumors were not included in this database. Radiotherapy planning for prostate cancer was carried out for all
patients. Indeed, these were early stage rectal cancers that did not deform the pelvic anatomy and allowed
realistic planning of prostate cancer radiotherapy.

Nineteen patients coming from three sites were selected and scanned in radiotherapy treatment position,
T2-weigthed MR and CT images were acquired following clinical protocol. Table 1 provides the acquisition
settings.

9 organs were segmented by five experts based on MRI, and consensus contours among the experts are
also available. The open source library ITK was used to perform a deformable registration on the CT to fit
the anatomy of the MRI, enabling the use of the delineations on the registered CT.

2.2. Image pre-processing
A mask excluding surrounding air was obtained on the CT and MRI using the external ROI option
(threshold level based) on Raystation (v7.0). Voxels outside the body were automatically assigned to
−1024 HU for CT and 0 for MR. Inter-scan differences (air pockets and structures) have not been taken into
account in this study. HU were normalized, MR intensities as well patient-wise. Finally, all dicom files were
converted to 16-bit grayscale images compatible with current deep learning frameworks. The first and last
slices were not taken into account for the training due to aliasing in MRI. This allowed the use of this dataset
consisting of aligned MR-CT as part of an image-to-image translation problem.

2.3. Network
2.3.1. cGAN baseline
GANs are characterized by two networks: the generator G(z) with z a noise vector and a discriminator D(y).
For the current application, y represents a CT image. All CT images are distributed according to an unknown
probability distribution py. G attempts to transform the vector z into images so that a sample of size n,{
G
(
z(1)

)
, . . . ,G

(
z(n)

)}
follows the probability distribution py. D attempts to separate the images actually

distributed according to py from those produced by his opponent G. Actually, D(x) is understood as the
probability that image x is a true CT.
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Figure 1. The discriminator D learns to classify a real CT from a synthetic CT while the generator G learns to fool D following a
min-max game.

To convert an MRI into a CT, the networks have to be conditioned with an MR image x. A simple way to
achieve this objective is to feed these two networks with x (as additional input). The generator and the
discriminator therefore become G(x, z) and D(x, y) respectively (figure 1). As the training progresses, G
must be able to generate samples that are more and more faithful to the distribution py, making it more and
more difficult for D to detect fakes CT images. G and D are trained alternately and share the same objective
function. The discriminator tries to maximize it while the generator tries to minimize it. The objective
function LcGAN is the following expected cross-entropy:

LcGAN (G,D) = Ex,y [logD(x,y)]+Ex,z [log(1−D(x,G(x,z)))] . (1)

This network is optimized following the standard approach of Goodfellow et al (2014) by alternating the
gradient ascent/descent steps between the generator and the discriminator. z is induced by dropout (Hinton
et al 2012) in both the training and test phases.

2.3.2. The pix2pixHD network
The cGAN introduced by Wang et al (2018) used in this work improves photorealism and resolution on four
important aspects.

• Coarse-to-fine generator: the generator which has an encoder-decoder architecture is separated in two sub-
networks G= {Gglobal, Glocal}. The first one is the center of an encoder-decoder architecture and is thus
itself a (smaller) encoder-decoder. It is pre-trained on low resolution images. The local generator (the entire
encoder-decoder structure) is then fine-tuned on high resolution images.

• Multi-scale discriminators: G has to fight against several discriminators D= {D1, D2, D3}. Each of these
discriminators works at a different image scale.

• A feature matching loss LFM (Wang et al 2018) is added in order to stabilize the training of the generator
by matching intermediate representations (feature maps) in the different layers of the discriminators from
real and synthesized images. The idea behind this additional loss term is that the generator will be forced to

produce images with more natural statistics at different scales. If we denote D(i)
k the i-th layers of Dk, LFM6

is then calculated as:

LFM (G, Dk) =
N∑
i=1

MAE(D(i)
k (x,y) ,D(i)

k (x,G(x,z))), (2)

• where N is the total number of layers.
• Instead of the usual cross-entropy cGAN loss, the authors recommend the Least Square GAN (LSGAN) loss
(Mao et al 2017), a quadratic version. This loss address the problem of vanishing gradient when updating
the generator (Arjovsky et al 2017) for sample lying on the ‘True’ decision boundary but still far from the
real data distribution. LSGAN loss penalises these samples enabling faster convergence and more realistic
image generation.

In our sCT generation implementation, pre-training the smaller resolution generator (Glocal) proved to
be counterproductive and led to poorer results. The generator G used here follows the architecture proposed

6Note that for y, ŷ ∈ Rn, MAE(y, ŷ) = 1
n

n∑
i=1

|y− ŷ|.
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by Johnson et al (2016) and learns to synthesize a CT. We chose to work with K = 2 discriminators working
at different scales, both of them being trained to differentiate real and synthesized CT images. The first
discriminator D1 operates at standard scale while the second D2 operates with downsampled images by a
factor 2. These discriminators have identical architectures with different receptive fields. They follow the
PatchGAN architecture (Isola et al 2016) forcing the generator to produce consistent images while
encouraging finer details. Training this model tends to produce realistic CT images but regarding HU,
performances do not seem as good as they visually do. To overcome this difficulty without adding a
post-processing step, we propose to add an additional L1 reconstruction loss (MAE) term between the
generated sCT and the true CT. The full objective function is then calculated as:

min
D

∑
k=1,2

Ex,y[Dk (x,y)− 1]2 +Ex,z[Dk (x,G(x,z))]2,

min
G

Ex,y,z [λ.MAE(y, G(x,z))]+
∑
k=1,2

[Dk (x,G(x,z))− 1]2 +
µ

K
.LFM (G,Dk) ,

(3)

with λ= 10 and µ= 5 are two hand-tuned hyperparameters.

2.3.3. Training of the network
The 19 patients were separated into a training set containing 7 patients from site 2 and 4 patients from the
third one. The 8 patients coming from the site 1 were used as testing set. The network was trained using
Adam optimizer with an initial learning rate of 0.0002 for 100 epochs, then for another 100 epochs with a
linearly decay learning rate to zero.

Training took on average 17 h on an Nvidia Quadro P6000 with a batchsize of 1. Data augmentation was
performed by horizontal flip increasing the size of the training set to 2008 image pairs.

2.4. sCT evaluation
Once the network was trained, each sCT was generated using only the generator on the GPU. The images
files created are then converted to a DICOM format, allowing their use on a treatment planning system.

2.4.1. Image comparison
Synthetic CT and registered CT were compared on a voxel-wise basis using theMAE and the Mean Error7

(ME). Considering the voxels within the body contours,MAE and in HU were calculated for each patient.
A 16-bit implementation of a vanilla pix2pix (Isola et al 2016, Maspero et al 2018) was trained in the same

multicentric configuration.MAE andME of the sCT generated by pix2pix is also calculated for each patient.

2.4.2. Dose comparison
Tomotherapy treatment plans were optimized on each sCT in Raystation (v7.0) using the Collapsed Cone
(v3.5) algorithm on a grid of 1× 1× 1mm3. The prescription was 39× 2Gy to the planning target volume
(PTV) (prostate with 5mm uniform margin). The resulting plans were then recalculated on the CT for dose
comparison.

A dose volume histogram (DVH) analysis was performed after copying the structures (PTV, femoral
heads, bladder wall and rectum wall) to CT. The chosen DVH points were D98, D50 and D2. Voxel-wise
absolute dose differences in percentage were computed within a dose threshold of 90%, 50% and 10% of the
prescribed dose Dp.

3. Results

3.1. Image comparison
CT synthesis took on average 7.5 s on GPU. Figure 2 shows an example of one of our test patients. As
expected, differences are most pronounced in the bone structures. Staircase patterns are visible on the bone
in the frontal view. This may be due to the 2D generation technique used that does not take into account
adjacent slices.

The proposed method produced an averageMAE of 48.5± 6HU and an average ME of−18.3± 9HU for
our 8 patients. Vanilla pix2pix produced an averageMAE of 62.0± 12HU and an average ME of
−11.4± 19HU. Table 2 provides the averageMAE andME for target volumes and organs at risk (OAR) for
pix2pixHD and pix2pix.

7Note that for y, ŷ ∈ Rn, ME(y, ŷ) = 1
n

n∑
i=1

y− ŷ.
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Figure 2. From left to right, MR image, CT, sCT and difference (CT—sCT). The images on top represent the axial plane, on the
bottom, the frontal plane.

Table 2. Average MAE and ME in HU (± σ) between sCT and real CT for different locations when training with pix2pixHD based
model and pix2pix.

MAE ME

pix2pixHD pix2pix pix2pixHD pix2pix

Bladder wall 49.4± 12 61.6± 10 − 23.9± 23 − 0.6± 31
Rectum wall 101.8± 78 109.8± 78 − 77.6± 90 − 85.2± 80
Anal canal 30.3± 14 36.0± 13 − 24.6± 18 − 26.4± 16
Penile bulb 28.1± 9 56.5± 16 − 19.2± 15 38.6± 25
Femoral Heads 90.5± 9 112.7± 23 − 25.9± 47 45.7± 44
Seminal Vesicles 44.7± 15 54.8± 11 − 14.0± 26 13.1± 19
Prostate 47.1± 6 62.3± 9 − 11.6± 12 17.5± 29

Figure 3. DVH parameter differences between dose on CT and sCT for the PTV and OARs.

3.2. DVH analysis
The absolute difference between the DVH points on sCT and CT were always below 1.4%. Figure 3 shows a
boxplot of the DVH point difference for the PTV and the OARs.

3.3. Dose difference
Mean absolute dose differences were computed with several dose thresholds. Differences only appear in high
dose regions and the body contour as shown on figure 4. The sCTs tend to have higher Hounsfield units
(HU) resulting a global decreased dose inside the body. Inner negative dose differences are often due to lower
HU on the sCT in bone area or air pocket not generated in sCT.

Table 3 reports the statistics in terms of mean dose difference related to the prescribed dose calculated on
a threshold of 10%, 50% and 90% of the prescribed dose.
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Figure 4. From left to right, dose calculated on CT, sCT and dose difference (CT− sCT).

Table 3.Mean dose difference (± σ) between CT and sCT and range of values.

Volume |DCT−DsCT|
DPresc

(%)

Body 0.01± 0.01
[0.01; 0.03]

Dose > 10% 0.12± 0.07
[0.00; 0.22]

Dose > 50% 0.49± 0.29
[0.03; 0.92]

Dose > 90% 0.68± 0.35
[0.19; 1.23]

4. Discussion and conclusion

Maspero et al (2018) showed that conditional GANs can synthetize CT fromMRI. In the current work, a
good performance is achieved with a limited dataset with a coarse-to-fine approach, by incorporating a
feature matching loss and the use of the Least Square GAN loss.

This paper shows for the first time a robust neural network trained and tested with data coming from
different medical imaging centers. Without ever having seen an image from the test site, our model learns to
synthetize a clinically acceptable sCT, which may be generalized to different MRI manufacturers. This process
has the capability to tackle the images variability problem in clinical practices, since changes can happen in
image acquisition parameters or with machine replacement for instance. This study was done using standard
morphological sequence (T2-w Spin Echo) without the need of any dedicated sequences.

Results look promising although a presence of artifact patterns can be noted. This may be partially due to
the low amount of data and to the transposed convolutions used in the decoder part in the generator. The use
of a third discriminator seems to get rid of this problem without improving quantitative results. The average
MAE (48.5 HU) and the dosimetric evaluation (dose differences within 1.4%) obtained in this study
compare similarly with other state-of-the-art single center results (Nie et al 2017, Maspero et al 2018) in the
literature for the pelvic area. These small differences would be suitable for clinical implementation. It is a
well-known fact that deep learning models can benefit from more training data, which leads to the
expectation that better results will be obtained when feeding our algorithm with more datasets. A direct
comparison with other studies is sensitive and complex since distinct datasets are used. The size of the
dataset, the sequence(s) used, the diversity (artifact, specific case, etc) and the misalignment between the sCT
and the CT are some of the numerous factors that make a direct comparison difficult.
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Improvements need to be introduced in order to mitigate the discontinuity across the slices and therefore
improve image quality. The use of 3D convolution leads to questionable results in the community, since they
are greedy and not so effective. As a future perspective, we plan to improve sCT generation via Recurrent
Neural Contextual Learning. Such models are expensive, and their benefits will have to be balanced with
their increased complexity.

A multi-center study based on the conversion of MR intensities to HU includes uncertainties related to
the different image value to density table (IVDT). Direct conversion to electron density would avoid these
errors but the benefit remains to be studied.
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