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Abstract
Very few problems are analytically solvable in quantum mechanics. We
present an analytical approximation to the expression for quantized energies of
a semiconductor quantum well placed in a constant electric field. The system is
studied under the influence of the BenDaniel–Duke boundary condition. We
obtain approximated scaling laws to understand the exact numerical results
obtained. We study the size dependence, field dependence and charge densities
on the mass ratio of electron outside and inside the well. We relate the
obtained results to quantum confinement Stark effect. The approach is suitable
to discuss in an undergraduate classroom.

Keywords: quantum mechanics, effective mass theory, approximation
methods

(Some figures may appear in colour only in the online journal)

1. Introduction

The technological importance of low-dimensional semiconductor systems can hardly be
overstated [1–3]. Due to the extremely small size of a quantum dot (QD), the charge carriers
in it are essentially trapped and can be modelled by the well-known problem of particle-in-a-
box. Further, the effective mass theory (EMT) must be considered to investigate the properties
of the system in which the effective mass of the particle inside the well is different from one
outside the well. Despite a long history, the effect of EMT on boundary condition, namely,
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BenDaniel–Duke (BDD) boundary condition [4] has not been studied extensively. Recent
advances in the synthesis of QDs with precise control over its shape and size has led to
possible applications of QDs in bio-sensing for probing properties of bio-molecules and
effective drug delivery, for photonics in the development of optical display, for photovoltaic
cells for example quantum dot solar cells and for several other applications. In the context of
many of these applications, it is desirable to study the effect of external electric field applied
to quantum dots with BDD.

An infinite one-dimensional quantum well is a standard textbook exercise in an under-
graduate quantum mechanics course. Linear perturbation (e.g. particle in a gravitational or
electric field) is often used to illustrate the importance of boundary conditions and the
perturbation theory. As a first step to studying the effect of electric field on confined systems,
in section 2, we model the conduction band of the quantum dot as a one-dimensional quantum
well with externally applied electric field. One may also model the valence band as a potential
barrier in an electric field but we currently present the modeling of the conduction band alone.
We incorporate mass discontinuity of the quantum well by using the BDD boundary con-
ditions instead of the conventional boundary conditions of wavefunction continuity. Thus the
mass ratio β=mi/mo plays an important role where mi is the mass inside and mo is the mass
outside the well respectively.

The approximate methods to study the behavior of the system under BDD without the
influence of the external field have been studied earlier [5, 6]. In section 3, we go beyond the
standard numerical results and obtain an approximate analytical expression for the energy
levels, which is valid in the limit of high potential barrier and strong electric field. Consider
the well of length L. Wavefunction decays exponentially outside L. As it is well known that
this can be viewed as infinite well with width (L+2δ) [7]. In section 3, this appealing picture
is reconstructed in the present case with L+2δ as an effective length. In the infinite well,
energy E∝1/L2. On the other hand, in a finite well E∝1/(L+2δ)2. Thus one can build a
complete pedagogy at the undergraduate level.

Section 4 consists of numerical results and understands it with the help of approximated
analytical expression obtained in the previous section. Finally we obtain the well-known
quadratic variation of energy relative to the average potential with variation in the electric
field. The last section constitutes the discussion.

2. Quantum well under the influence of an electric field

Consider a nanostructure in which a material with a lower bandgap is sandwiched between
the same materials on two sides with a higher bandgap (e.g. GaAlAs/GaAs/GaAlAs).
The boundary of the materials are chosen such that charges are confined in the x direction
and free in the perpendicular direction. Using the envelope function approach approx-
imation, wavefunction in the x and y, z direction can be described by the finite well
and the Bloch functions respectively [8, 9]. Thus, such nanostructures can be modeled
as a finite well in one direction and we are going to refer to it as a one-dimensional
finite well.

The Hamiltonian of an electron in such kind of one-dimensional well of length L using
the effective mass theory is given by
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The mass distribution of the electron is taken as a step function:
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where mi is the bare mass of the electron. We define β=mi/mo. If an electric field (F) is
applied inside the well, as shown in figure 1, the potential becomes
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The Schrodinger equation can be solved to obtain the bound states. For x<0
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and for x>L
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The equations (4) and (5) can be rewritten as

y k y y k y - =  - =- +0 and 0

where

( )k = - 
m

V E
2

.o
2

A general solution to this differential equation is

y = +- + -c e c e .k x k x
1 4

For x<0, c1=0. Therefore y = -c ek x
4 and for y> = - +x L c e, k x

1 .
Inside the well the Schrodinger equation in the presence of electric field inside the well

becomes

Figure 1. Quantum well with applied electric field F=107 V/m, V−=V+=0.5 eV,
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The solution of the above equation is well known in literature, which is the Airy’s functions
[10]:

( ) ( ) ( )y x x= +c Ai c Bi . 92 3

Note that Ai(ξ) is oscillatory for ξ<0 and dies exponentially for ξ>0. It is Bi(ξ) on the
other hand that is oscillatory for ξ>0 but grows exponentially for ξ>0 [11]. Unlike the
standard infinite quantum well in literature, the well discussed here has a finite barrier width
and electric field exists in this finite region. Thus we may not take c3=0 [12].

The wavefunction can be written as
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We make an important change here. In addition to the boundary condition of continuity of
wavefunction, we use the BDD boundary condition [4], namely
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where the superscripts − and + denote the left and right hand limit respectively. Above
equations yield
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Roots of the above equation give the quantized energy states of the system which can be
obtained numerically. In the next section we obtain an approximate analytical solution which
is valid for large barrier heights.

3. An analytical approach

One must accept the fact that not every problem in physics can be solved analytically. Often,
judicious use of approximations is used to derive an expression to see the effect of various
variables present in the problem. The approach presented here is doable at the level of lower-
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division courses. At the end of this section, we shall be able to separate the effect of
confinement and electric field on the energy levels of the charged particles.

We assume the asymptotic form of the Airy functions [13]. After truncating higher order
terms,
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We assume V?E (see table A1 in the appendix) so that k »- - mV2 and
k »+ + mV2 . We define abk =+ +eF and abk =- -eF . Equation (13) can be
written as

( )
( )

( )
( )

( )
z p

z p
z p

z p
+ -

+ +
=

+ +
- +

-

-

+

+







z

z

z

z

tan 4 1

tan 4

tan 4 1

tan 4
181 1

1 1

2 2

2 2

where z1=−E/α and z2=(eFL−E)/α and ζ is as defined before. Let us assume
( )g=G z tan , hence ( )g = »-  z ztan 1 . Using this approximation for both the

arguments in the above equation, an estimate is obtained:

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
g
g

g
g

+
-

=
-

+
a

a

b

b

tan tan

1 tan tan

tan tan

1 tan tan
191

1

2

2

where a=ζ1+π/4 and b=ζ2+π/4. Above form can be further reduced to
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We consider the case when eFL?E. We can apply binomial approximation in eFL/ E, up to
second order. Equation (20) evolves into
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In order to solve this equation, we define
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The order of magnitude of the last term is lesser than the other terms (see table A2 in the
appendix for the justification of the approximation). Hence, dropping the constant term, we
end up with a simple quadratic equation. The solution of this quadratic equation gives the
approximate analytical expression for quantized energy as
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Plugging back the respective expressions for α,  and  yields the final expression:

⎜ ⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )

( )
( )

p
b bk

p a bk bk

= + +

´ + + +

+

+

-

-

+ +

+

-


E

n e F

m eFL L

V

V

n

eFL

L L

V

V

2
1

1
1

1
1

1
2

1
1

. 26

o

2 2 2 2 2

2

2

2

3

The final expression for the energy eigenvalues for the system is thus given by equation (26).
To further investigate the dependence of the energy on the width of the well, electric field and
mass ratio, we consider a special case pertaining to V+=V−=V. Equation (26) can be
further simplified as
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where s bk= +L . We have separated the confinement effect and the electric field effect in the
above expression. Further for σ?1, we can write the first term of equation (28) as

( )
p

d+
n

m L2 2i

2 2 2

2

where

d s= L

which is same as equation (21) of Singh and Kumar [14].
Undergraduate students are familiar with the textbook example of infinite well in which

energy goes as 1/L2. Here we have reconstructed the analogy in the finite well which can be
thought as an infinite well of length L+2δ. In literature δ is called penetration depth [14, 7].
In such a well, according to equation (28), confinement part of the energy goes as
1/(L+2δ)2 and linear in electric field strength. This kind of interpretation is well suited for
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the students where one can separately see the confinment and electric field effects in the first
and second terms of the equation (28).

The effect of BDD condition is also evident here. Due to finiteness of the well, charge
can penetrate the boundary and presence of β (BDD boundary condition) enhances this
penetration. This perticular aspect will be absent had we have only replaced m by m*in
building the Hamiltonian in the beginning of this section. In the following section, we will
compare the equation (28) with the numerical results (equation (13)).

4. Results

4.1. Energy variation with length

Since we attempt to model a semiconductor nanocrystals, an appropriate range of L and β is:
L∼1–100Å, β∼0.05–1 and V−or V+∼0.1–5 eV, while the appropriate range of applied
field is usually F∼105–107 V/m. In order to verify the asymptotic analysis, in figure 2, we
plot the variation of the ground and first excited state energies (E0 and E1 respectively)
obtained from the exact numerical solution (equation (13)) and from the asymptotic analysis
(equation (28)). We consider two different cases of β=0.5 and 1 as shown in the figure 2.
Note that β=1 refers to the case when mass is not discontinuous, thus, the absence of BDD
in the calculations.

The asymptotic solution, despite various approximations and basic order of magnitude
analysis is able to provide a very accurate match with the exact solution in desirable range of
L and β. When BDD condition is not applied (β=1), results from the approximation and the
exact numerical analysis are almost identical (relative error is 1%). Relative error increases for
for the lower β value i.e. when the particle effectively feels lighter inside the well. The effect
of BDD condition is evident. Energy almost doubles when β is changed from 1 (no BDD) to
0.1 (BDD effect). That indicates that applying the BDD condition has a strong effect on the
system. In the following sections, we present only the numerically exact results.

4.2. Transition energies

Transition energies are important from the point of view of experiments. In figure 3 we plot
the differences between the ground state and first excited state (ΔE01), second and the first
excited state (ΔE21), and between second excited and ground state energies (ΔE20). In all the
cases, transition energies decreases with increasing well length L. On the transition energies,
the effect of lowering the value of β is more pronounced than increasing the electric field. For
example, in the case of β=0.1, the curves of electric field 107 V/m is indistinguishable from
106 V/m. This can be explained with the help of approximate expression equation (28) where
the electric field dependent second term does not depend on β. Once again the asymptotic
analysis proved to be a versatile tool in explaining the physics of the problem.

4.3. Variation of energy with electric field

When an electric field is applied, the conventional square potential in the quantum well
acquires a tilt as shown in figure 1. Figure 4 shows the variation of ground state and first
excited state energy levels with variation in applied electric field using exact solution
(obtained in terms of Airy functions as given by (13)). Clearly, as the applied external field
increases the energy value of either state increases. Such a trend is observed for all desired
values of β and L.
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4.4. Ground state vs β

It is also interesting to note the variation of the ground state energy with the increase in the
value of β. Figure 5 shows that the energy eigenvalue increases as the mass ratio decreases.
Such variation in the energy value with the mass ratio is noteworthy since it is usually not
accounted for in conventional variational methods or studied in reduced mass models.

4.5. Effect of electric field and mass ratio on the charge density distribution

We investigate the variation of the charge density ( ∣ ∣r y= e 2) with variation in the mass ratio
β and the variation in the electric field applied externally. Figure 6 shows the distinct charge

Figure 2. Variation of E0, E1 obtained through exact solution (denoted by subscript
’numerical’) and asymptotic analysis (denoted by subscript ’app’) for two different
cases of β being 0.5 and 1; where F=107 V/m and V+=V−=5 eV. Note that
β=1 implies no BDD.

Figure 3. Variation of transition energies with the well length for β=0.1,1 and two
values of electric field 106 and 107 V/m. Barrier height is taken to be 1 eV.
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density distribution corresponding to the ground state for three different values of the mass
ratio. Also, the corresponding energy values are indicated by dashed lines in the figure.

The charge density distribution shown in figure 6 discloses several noteworthy features.
First, we observe that the charge density distribution is continuous but not differentiable at the
boundaries (at x= 0 and x= L), i.e. the slope of ρ changes abruptly, owing to the mass
discontinuity. From the solution of equation (13) for fixed values of F, L and V−(=V+), we
note that the ground state, the first and the second excited state are the only bound states. The
charge density distribution is skewed towards the left with increasing β. It is known that a
charged particle trapped in a potential well tends to acquire lower potential. The more the
charge density is skewed to the left, the lower the potential energy of the charge.

Figure 4. Variation of E0 and E1 with an externally applied electric field of strength F.
Other parameters are kept constant as: β=0.07, V+=V−=0.5 eV and L=10 nm.

Figure 5. Variation of ground state energy E0 with β for L=3 nm, V+=V−=5 eV
for three different values of F.
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We observe that with th increase in the value of β, the peak of the charge density
distribution sharpens (peak becomes thinner and the peak value increases). This indicates that
the probability of finding the charged particle at a particular location increases. From the
uncertainty principle, we infer that if the position of the charged particle becomes more
certain and the probability of finding it in a certain position increases, then the uncertainty in
its momentum increases and the kinetic energy decreases. Also, the dashed lines which
indicate the energy value of the ground state show that the energy of the ground state
decreases with the increase in β. The same has been demonstrated by the plot of energy
variation with β in figure 5.

If one increases the electric field, the peak of the charge density distribution would shift
towards the lower potential (to the left) and also sharpens (peak value of ρ increases). As,
discussed earlier, sharpening of the peak essentially implies lowering of the kinetic energy of
the charged particle while the shift of the peak to the left implies lowering of the potential
energy. On the whole, the energy of the charged particle is suppressed with increase in the
electric field. Such suppression of the energy in the presence of an external electric field is
known as quantum-confined Stark effect (QCSE) [15], discussed in detail in the next section.

4.6. Quantum-confined Stark effect (QCSE)

QCSE refers to suppression of the energy of the system of electron-hole pair confined in a
potential well due to reduction in their Coulomb interaction in the presence of an external
electric field. In their well-known study, Miller et al [15] have described the QCSE phe-
nomena in great detail and have also presented a theoretical model for the same. They have
shown that for high values of F, the suppression in the energy of the individual charged
particles with respect to the average potential energy of the system is the dominant
contribution to QCSE.

Figure 6. Charge density distributions (plotted along the right y-axis) for different
values of β superimposed on the quantum well potential (blue solid line, plotted along
the left y-axis). The solid lines (red, violet, green) represent the charge density
distribution for different cases: (i)β=0.1, (ii) β=0.4 and (iii)β=1.2 respectively;
while the dashed lines (in corresponding colors) show the ground state energy level for
each case. Other parameters are: L=2.5 nm, V+=V−=1 eV, F=5×107 V/m.
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As discussed earlier, through figure 4, the absolute energy of the ground state seems to
increase with increasing electric field. But through shifts in the charge density distribution, we
infer that the energy of the charged particle decreases. Such contrast can easily be explained.
Since increasing the value of electric field implies that we are adding energy to the entire
system, the eigen-energy (of the ground state) will also increase. Such an increase of absolute
energy of the ground state is evident form the curve in figure 4. Further, to understand the
shift in charge density curves on increasing the electric field, it is important to investigate the
variation of the energy of the charged particle alone, with variation in the electric field. One
can obtain such information by analysing the change in energy of the ground state apart from
the increase induced by the externally applied electric field [15]. We thus define ΔE as the
difference in the energy of the ground state and the average potential energy of the system.
Figure 7 shows the variation of ΔE with increasing electric field.

On excluding the effect of increasing average potential energy, we observe a suppression
in the energy of the ground level, similar to that reported in several studies [15, 16]. As
explained by the study of Miller et al [15], for electric field in the range >3×106V/m, the
suppression of the energy of the individual electron (and hole) in the conduction (and
valence) band is the dominant effect causing QCSE. Hence it is expected that the energy of
the charged particle confined inside a quantum well will decrease with increasing electric field
(excluding the increase in the average potential energy); which is well captured in our model.

5. Discussion

The paper discusses the quantum mechanics of a one-dimensional well in the presence of
electric field. Though the problem is a textbook problem it is not discussed in detail when
effective mass theory is properly applied. This brings the importance of the BenDaniel–Duke
boundary condition on the energy levels. We have demonstrated that applying the condition
significantly alters the transition energies and charge densities. We also derived an
approximated expression for large quantum well which matches in some range with the exact
results. The effect of various parameters such as length of the well, barrier height, mass ratio,
and the electric field obtained from the numerical analysis but their trends can be well

Figure 7. Variation of the ground state energy relative to the average potential energy
of the quantum well (ΔE) with variation in the applied electric field (F).
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explained using the approximated analytical expression. At the end we also demonstrated the
usefulness of BDD in QCSE. We hope that such exercises are useful in undergraduate classes
to enrich the knowledge of quantum mechanics.
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Appendix A. Justification of approximations

We justify the approximation used in section 3.

1. V?E
Let us consider a typical example where V−=V+=0.8 eV, L=10 nm, β=0.07 and
F=8×106V/m. For these values, equation (13) can be solved numerically to obtain
the quantized energy levels at 0.0272eV, 0.1108eV and 0.2825eV for the ground, first
excited and second excited states respectively. We therefore consider the order of
magnitude for energy eigenvalue of the system to be 0.1 eV.
For β=0.5, L=1 nm, F=107 V/m, V=1 eV, energy E0=0.27 eV. For V=0.1 eV
we get E0=0.11 eV and for V=5 eV, E0=0.4 eV. So the assumption of V?E is
valid up to V=0.5 eV.

2. Neglecting constant term in equation (22) we see that the order of magnitude of the
constant term +  82 is much lesser than that of other terms (refer table 2).

Table A2. Order of magnitude of various terms.

Term Order of magnitude (in SI units)

 1

+ and - 0.1
( )+ +- +   x4 10
(nπ) x3 10

( )++  x
2 4

2
2

10

+ 
8

2
0.1

Table A1. Order of magnitude of various terms.

Term Order of magnitude (in SI units)

β 0.1
L 10−9

E 10−20

α 10−21

eFL 10−21
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