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Abstract
We review the literature on the Pauli equation and its current density, dis-
cussing the progression from the original phenomenological version of Pauli
to its derivation by Lévy-Leblond from a linearization of the Schrödinger
equation. It was established conclusively by Lévy-Leblond’s work that the
spin of a spin-1/2 particle such as an electron is non-relativistic in nature,
contrary to what was often stated following Dirac’s derivation of a relativistic
wave equation, and his subsequent demonstration that Pauli’s spin interaction
term appeared in the non-relativistic limit. In this limit, the Gordon decom-
position of the associated probability current density was found to contain a
spin-dependent term. Such a term does not follow, however, from the usual
derivation of the current density from the Pauli equation, although various
physically motivated but otherwise ad hoc explanations were put forward to
account for it. We comment on the only exception to these of which we are
aware implying the spin term in the current was in fact non-relativistic in
nature. However, the earlier work of Lévy-Leblond had already shown, with
no additional assumptions, that this term was a prominent feature of the
current density derived from his equation. Hence, just as with the spin itself,
the spin current was non-relativistic, claims to the contrary notwithstanding.
We present a somewhat simplified derivation of the Lévy-Leblond equation
and its current density, commenting on possibilities for experimental work that
might indicate measurable consequences of the spin term in the current den-
sity. The presentation is at a level of quantum mechanics, electromagnetic
theory, and mathematical methods typical of courses taken by first-year
graduate students in physics, assuming some familiarity with Pauli spin
matrices and the Dirac equation. Calculations are presented in detail, making
the material suitable for use by teachers as supplementary problems for
assignments, and development of theoretical concepts peculiar to the Pauli
equation and its probability current density.
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1. Introduction

Pauli’s equation for the electron is a topic of general interest in quantum mechanics textbooks
[1–3] and journal articles [4, 5]. Although it explains many of the experimental results
associated with non-relativistic electrons, its probability current density turns out to include
an unexpected additional spin-dependent term (the spin current), which has received con-
siderable attention [5–9]. We begin with a selective review of some of the relevant ear-
lier work.

As background, in 1927 Pauli [10] introduced his famous spin matrices in modifying the
non-relativistic Schrödinger equation to account for Goudsmit and Uhlenbeck’s [11, 12]
hypothesis that spectral data explainable by half-integral quantum numbers implied a half-
integer spin angular momentum for the electron. His ansatz was to add a phenomenological
term to the usual Hamiltonian for an electron moving in an electromagnetic field, viz., the
interaction energy of a magnetic field with an electron magnetic moment proportional to its
intrinsic spin angular momentum. Introduction of spin matrices to describe this spin angular
momentum necessitated replacing the complex scalar wave function of the Schrödinger
equation by a two-component spinor wave function. The standard form of Pauli’s equation as
given in, for example, [2] (converted to SI units, used throughout the present work), is
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is the electron magnetic moment operator, where s is the Pauli spin vector with Pauli spin
matrices si, i=1, 2, 3, as components.

The following year Dirac [13] presented his relativistic wave equation for a free electron,
and by making use of the minimal coupling replacement to include electromagnetic inter-
actions showed that it contained two terms that ‘can be regarded as the additional potential
energy of the electron due to its new degree of freedom’. One of these was, of course, the term
involving the electron magnetic moment interacting with a magnetic field, introduced ‘by
hand’ in Pauli’s equation. This prediction, requiring no ad hoc assumptions, was a triumph of
the Dirac theory.
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After Dirac’s discovery it became common lore in many physics textbooks (see, for
example, the extensive list of quotations compiled by Lévy-Leblond [14]) to regard electron
spin as a relativistic phenomenon, although there were prominent exceptions to this stance
([14], p 141). Among these exceptions, e.g. [4, 15–17], the observation was made that the
spin 1/2 property could be incorporated into the spin-0 non-relativistic Schrödinger equation
by simply replacing the kinetic momentum operator p = -p Aqˆ ˆ appearing there with the
product s p· ˆ . To see how this is possible, we follow Sakurai [16] by beginning with the
spin-0 non-relativistic free-electron Schrödinger equation of wave mechanics:

Y = Y
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r r
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t E t
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where Ψ is Schrödinger’s complex scalar wave function. Recall the important spin-vector
identity

s s s= + ´a b a b a bi , 4( · ˆ)( · ˆ) ( ˆ · ˆ) · ( ˆ ˆ) ( )

where â and b̂ are any two vector operators that commute with s. For = =a b pˆ ˆ ˆ one finds
from equation (4) the operator identity s =p p2 2 ( · ˆ ) ˆ . Sakurai refers to the theory that results
from making this substitution in Schrödinger’s equation (3), and replacing the wave function
Ψ by a 2-component spinor ψ, as the Schrödinger–Pauli theory ([16], footnote, p 79), i.e.,
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which we refer to as the Schrödinger–Pauli equation. It has the plane wave solutions
cw-e k r ti( · ) , where c is a constant but otherwise arbitrary spinor, giving rise to the dispersion

relation w = k m22 characteristic of non-relativistic particles. The effects of spin manifest
by allowing the electron to interact with an electromagnetic field. This is accomplished by
introduction of the gauge invariant minimal coupling replacements of p̂ with p = -p Aqˆ ˆ ,
and Ê with e f= -E qˆ ˆ , in which case the Schrödinger–Pauli equation (5) takes the form
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Applying the identity (4) with p= = = -a b p Aqˆ ˆ ˆ ˆ , we have in the numerator of the last
line:
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where the cross products ´p pˆ ˆ and ´A A both give vanishing contributions,
we have replaced = - p iˆ , and used the well-known vector identity

y y y  ´ = ´ + ´A A A( ) ( ) , where  ´ =A B. Substituting equation (7)
together with e f= -E qˆ ˆ in equation (6) shows that the minimally coupled Schrödinger–
Pauli equation (6) reproduces precisely the Pauli equation (1). The result follows without
regard for the Dirac equation, obtaining Pauli’s spin interaction term directly from the
minimally coupled Schrödinger equation and the replacement of p̂ by s p· ˆ , as suggested by
Feynman [15].

The conclusion, then, is that the Pauli spin interaction term is an intrinsically non-
relativistic effect. Still, one may be left with the feeling that if not for the purely mathematical
and fortuitous existence of the spin identity, the Pauli equation would seem a slightly strange
concoction forced upon the Schrödinger equation. This situation is somewhat alleviated by
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the fact that the minimally coupled Schrödinger–Pauli equation, from which Pauli’s equation
follows, can be shown [3, 16, 20] to be the non-relativistic limit of Dirac’s equation. Such a
derivation is convincing, yet fails to satisfy the desire for a purely non-relativistic account.
The work of Lévy-Leblond, to be discussed later, seeks to fill this gap.

2. The missing term in the Pauli current density

As with the Schrödinger equation, one would hope to determine from the Pauli equation a
probability density ρ and current ¢J satisfying the probability conservation (or continuity)
equation

r


¶
¶

+ ¢ =J
t

0. 8· ( )

Such derivations are offered, for example, in [1, 2], and [4–7]. A canonical derivation of the
current density from Pauli’s equation is that of [2], p 340. Defining the probability density by
r y y= † , where y y y= 1 2* *( )† denotes the Hermitian conjugate or adjoint of ψ, the current
density is found there to be given (in our notation and SI units) by
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Since the Pauli equation is the non-relativistic limit of Dirac’s equation, one might expect
that equation (9) would be the corresponding non-relativistic limit of the current density of
Dirac’s equation, but such is not the case. Relativistic quantum mechanics shows that in this
limit there appears an additional term, referred to as the spin current density. The details are
given, for example, in Sakurai’s discussion [16], p 107, of the Gordon decomposition of the
Dirac current and its non-relativistic limit. It is found (see also [6]) that this limit yields
instead the following expression:

= ¢ +J J J , 10spin ( )

where

sy yº ´


J
m2

11spin ( ) ( )†

is the additional spin current density. This term must be a feature of the current density for
any spin-1/2 particle described by the Dirac equation, even when the particle carries no
charge, e.g. a neutron described by the Dirac equation with the addition of a non-minimal
coupling term (as in [20], p 241). It is important to note, with Nowakowski [6], that this spin
current is also manifest in the reduction of the Dirac equation for a free particle, i.e. in the
absence of any interactions.

Various writers have suggested methods for supplying the spin current missing from
equation (9). For example, in the venerable and oft-cited textbook of Landau and Lifshitz
[21], the problem of a charged particle moving in a magnetic field is considered. A variational
principle is applied, varying the expectation value of the Pauli Hamiltonian of equation (1)
(ignoring the scalar potential) under a variation in the vector potential A. From this they
derive the charge current density Jq , where J is given precisely by equation (10), including
the spin current. Without the minimal coupling to a magnetic field via A and the charge q,
however, such a derivation apparently would fail to provide the desired spin current term,
which we know from equation (10) should appear even in the absence of such an interaction.
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Of other works known to the present author, each relies in some way upon the following
line of reasoning. Since the continuity equation (8) involves only the divergence of the current
density, it is always possible to add a divergence-free term to the current density without
changing the equation. The spin current proportional to a curl is, of course, just such a term.
But since the Pauli equation does not provide this, one must rely on reasonable physical
arguments to supply it, which we note should hold even in the absence of interaction
potentials.

As an example, Mita [7] takes the novel approach of beginning with the expectation
value of the spin angular momentum s= S

2
, and showing that it can be written as the

volume integral of an angular momentum, viz.,

ò sy y= ´ = ´
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S r j jm
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4
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Mita considers this js to be ‘the virtual probability current density that gives rise to the spin
angular momentum of the electron.’ He also notes, however, that ‘the proper gyromagnetic
ratio of the particle cannot be obtained in the context of our analysis based on nonrelativistic
quantum mechanics.’ In fact, his current density gives a gyromagnetic ratio that is half the
correct value.

Greiner [2] and Parker [5], as well as Hodge et al [9] (following Greiner), call upon a
result from electromagnetic theory, viz., that a magnetization field M induces an additional
(electric) current density = ´J Mq M (see, for example [18, 19]). The expectation value of
the electron magnetic moment is

ò òm m sy y y y= =


r
q

m
rd

2
d , 13s s

3 3⟨ ˆ ⟩ ˆ ( )† †

the integrand of equation (13) defining the magnetic moment density, which these authors
identify with the magnetization M of electromagnetic theory. One thus finds for the associated
probability current density:

sy y = ´ = ´


J M
q m

1

2
, 14M ( ) ( )†

the correct expression for the spin current. As admitted in [9], referring to the current density,
‘This argument is not rigorous, but it does hint that another term should be added K.’

As a final example, we consider the work of Shikakhwa et al [8]. They discuss Now-
akowski’s [6] spin current term, denoting it by JM and referring to it as a magnetization
current. These authors are clearly aware that the spin current cannot be derived from the Pauli
equation (1) in the usual way (as, for example, in [2], p 340), so they instead begin with the
minimally coupled Schrödinger–Pauli equation (6), ignoring the scalar potential term:

s p
y

y
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¶
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m t2

i . 15
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The key to the success of their approach is to use equation (15) in deriving a probability
conservation equation before expanding s p 2( · ˆ ) (see equation (7)), since otherwise the Pauli
equation (1) follows. Note that although their goal is to obtain Nowakowski’s expression for
the non-relativistic limit of the current density for a free spin-1/2 particle, given in their
equation (2), they actually work with equation (15), above, for such a particle interacting with
a magnetic field. However, they emphasize more than once their use of p̂ as merely a
convenient bookkeeping device in arriving at the desired result; the vector potential is ignored
in the final step of their derivation. Their motivation for using p̂ rather than p̂, which naturally
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appears in the free particle Hamiltonian, is the concern that using p̂ in their derivation would
be problematic due to the commutation of its components. We show in the next section that
this concern can be addressed by a different derivation that avoids the problem.

In concluding our (in no way comprehensive) review of attempts to derive the spin
current term we draw attention to remarks of Shikakhwa et al [8] in the paragraph following
equation (12c) of their paper, which is their final result for the current density. Referring to the
derivation of this equation, they conclude: ‘Nevertheless, the fact that we can find the correct
term JM by not dropping a term that gives a vanishing contribution in the continuity equation
adds credence to the current approach.’ Note that their JM is the spin current density that we
denote by Jspin.

This last sentence we feel is the relevant conclusion of their paper. They have obtained
the current density, including the spin current term, in a form that is precisely the correct non-
relativistic limit of the Dirac current density.

However, prior to this conclusion we read: ‘It is possible to continue working with
equation (10) and to drop the terms that give vanishing contributions in  =J 0M· . In such
an approach we can obtain only the J0 contribution to the current. These kinds of ambiguities
are expected because we are not following the only correct methodology (that is, using a
covariance argument in the Dirac equation).’ Now, we know that since the spin current is
proportional to a curl, it will not make a contribution to the probability conservation equation;
only the familiar convection term ¢J (denoted by J0 in [8] in the absence of external
electromagnetic field interactions) contributes to probability conservation. And, if the Jspin

term is dropped, certainly all that is left in the current density in this case is ¢J . But why
would one consider dropping the Jspin term after finding it to be present in the derivation of
the current density? Nevertheless, it is clear from their discussion that the authors feel
ambiguities remain in their expression for the current density.

Their concern calls attention to the question of uniqueness of their result. In this regard,
we suggest that the work of Holland [22, 23] and Holland and Philippidis [24] goes far to
answer this, and to perhaps alleviate their concern. In particular, Holland [23] concludes
under very general conditions that, first, the Dirac current density is the unique Lorentz
covariant current of Dirac’s relativistic equation; second, since the Pauli equation is the non-
relativistic limit of the Dirac equation, the Pauli current density should be the non-relativistic
limit of the Dirac current; and third, ‘the Pauli current so obtained will be unique since we
have already proved its relativistic forebear to be unique’. It seems fair to summarize these
results by saying that Lorentz covariance assures the uniqueness of the relativistic Dirac
current density, while agreement with the non-relativistic limit of this current density assures
the uniqueness of the non-relativistic current density. Holland’s [23] work suggests that
Shikakhwa et al [8] have succeeded in deriving unambiguously the correct spin 1/2 current
density from the non-relativistic minimally coupled Schrödinger–Pauli equation of
equation (15), although just as with the spin, relativity is invaluable in confirming its exis-
tence and uniqueness. The situation is thus reminiscent of the claim by early proponents of the
Dirac equation that relativity was necessary to explain the electron’s spin and its correct spin
magnetic moment. The work of Shikakhwa et al [8] suggests that the claim that relativity is
required to explain the spin current density is similarly unfounded.
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3. Derivation of the spin current density from the Schrödinger–Pauli equation
for a free spin-1/2 particle

The authors of [8] derived the non-relativistic current density for a free spin-1/2 particle
beginning with the minimally coupled Schrödinger–Pauli equation, and later set =A 0 in the
result. We show here that the current density can be derived directly from the free-particle
Schrödinger–Pauli equation (5). From this equation we have

s
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and its Hermitian conjugate equation:
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At this point, our derivation departs from the one given in [8], where our momentum operator
p̂ in equation (16) was replaced by the kinetic momentum p̂ in their corresponding equation
(8b). We instead retain p̂ and introduce an auxiliary spinor χdefined by

sc y= - p
mc

1

2
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the speed of light c included only to ensure dimensional consistency (in no way to be
construed as introducing a relativistic concept into the theory). Equation (16) can then be
written as

s s
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allows us to replace the right-hand side of the last equation, yielding
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From equation (17) and its adjoint, however, we have

s sc y c y = = -
 

mc mc

i

2
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2
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which, when substituted in the previous equation eliminates the last two terms, bringing it to
simply
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Substituting for χ and c† in (18) (thereby eliminating the dimensional factor of c) yields
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summation over repeated indices being understood. Using the Pauli matrix identity
s s d s= + ii j ij ijk k, the current density components can be written as
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the correct current density for an external interaction-free spin-1/2 particle.

4. The Lévy-Leblond equation

Nearly 40 years after Pauli and Dirac’s seminal work, in a paper [25] ‘devoted to a detailed
study of non-relativistic particles and their properties, as described by Galilei invariant wave
equations,’ J-M Lévy-Leblond, inspired by Dirac’s heuristic derivation [13] of his relativistic
wave equation for the electron, obtained from the free-particle Schrödinger equation a non-
relativistic analog now referred to as the Lévy-Leblond equation. From it the Pauli equation
follows as an immediate consequence after calling upon the minimal coupling replacement. In
addition, the probability current computed from the Lévy-Leblond equation includes the
correct spin current contribution.

A derivation of the Lévy-Leblond equation eventually involves the introduction of a
4-component spinor (bispinor), and 4× 4 matrices satisfying the Dirac algebra, which may be
considered at too high a level to be introduced in an early course on quantum mechanics. As
we show, however, these matrices are easily constructed from the Pauli matrices, so if the
Pauli theory has been introduced, there is really no great hurdle to be overcome in using them.
Even so, if the decision is made to avoid their use, we should mention that having made
plausible the Pauli equation by, e.g. the Sakurai argument leading to equation (6), a coupled
set of equations linear in the momentum operator, i.e. first order in the spatial derivatives, can
be obtained by simply introducing, similar to what was done in the last section, an auxiliary
spinor χ defined by

sc y= - -p A
mc

q
1

2
, 21[ · ( ˆ )] ( )
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It then follows from equation (6) that

s c f y y- - + =p Ac q q E . 22[ · ( ˆ )] ˆ ( )

This pair of equations is precisely the system derived by Lévy-Leblond in [25], that is, the
Lévy-Leblond equations follow from the Pauli equation. Lévy-Leblond’s distinguished
contribution, on the other hand, was to provide a derivation of these equations from the non-
relativistic Schrödinger equation, from which Pauli’s equation then follows. A derivation
based on his insights is offered in what follows.

4.1. Linearizing the Schrödinger equation

We begin with the Schrödinger equation (3) for a free particle of mass m, multiplying both
sides by 2m to write it in the more convenient form

d - Y =rp p mE t2 , 0. 23i j ij( ˆ ˆ ˆ) ( ) ( )

Following Lévy-Leblond [25], we seek a wave equation linear in both the energy and
momenta operators:
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where Â, Ĉ , and =B i 1, 2, 3i
ˆ ( ) are dimensionless linear operators to be determined. They

are assumed to depend on neither the spatial coordinates nor time, hence commute with Ê and
each pî, but not necessarily with each other. The factors c1 of Â, and mc of B̂, where c is an
arbitrary constant speed, are introduced to insure the correct units of linear momentum in each
term. It will later be identified with the speed of light for compatibility with the non-
relativistic reduction of the Dirac equation. From equation (24) we obtain, by operating on
both sides with q̂,
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In doing so we have departed from Lévy-Leblond’s [25] and other derivations (e.g. [2],
chapter 13, and [26, 27]) by omitting primed counterparts of the operators Â, Bi

ˆ , and Ĉ .
Conditions are now set on these operators by requiring that equations (23) and (25) agree.
Squaring the linear operator, we obtain

d
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where the fourth term on the left-hand side was obtained by interchanging summation indices
to rewrite it as a symmetrized sum. This polynomial equation in Ê and the pî is satisfied for all
Â, Ĉ , and Bi

ˆ if and only if each of its coefficients is zero, yielding
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d

= = + = -
+ = + =

+ = =

A C AC CA I

AB B A CB B C

B B B B I i j

0, 0, 2 ,

0, 0,

2 , , 1, 2, 3 . 26
i i i i

i j j i ij

2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ( ) ( )

where Î is the identity operator.
Along with the operators Bi

ˆ , whose anticommutation relations are satisfied by the three
Pauli spin matrix representations s=Bi i (the ‘hat’ will be omitted in denoting matrix
representations of operators), two additional operators Â and Ĉ have been introduced. We see
in equations (26) that the matrix representations of both operators must anticommute with
each of the Bi matrix representations, but unlike the Pauli matrices, they neither anticommute
with each other nor does each square to the identity matrix (both are in fact singular).
Noticing that anticommutation with the Bi is maintained when the representations A andC are
each replaced by any linear combination of the two, we seek such linear combinations, B4 and
B5, having the same anticommutation relations as the Pauli matrices in order to take advantage
of their well documented properties. It is not difficult to demonstrate that they must have the
general forms, up to a choice of sign on i,

= + = - -B
A

a

C

b
B

A

a

C

b

1

2
,

i

2
, 274 5⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ ( )

provided the nonzero dimensionless constants a and b satisfy

= -ab2 1. 28( )

That is, when A, C, and the Bi satisfy equations (26), then equations (27) and (28) insure that
the five matrices Bμ, m = ¼1, ,5, satisfy the anticommutation relations

d m n+ = = ¼m n n m mnB B B B I2 , , 1, ,5. 29( )

Our situation is reminiscent of Dirac’s derivation of his relativistic wave equation, where
he found that the three 2×2 Pauli matrices were not sufficient to satisfy his anticommutation
relations. It was necessary to generalize the three Pauli matrices to four 4×4 matrices ap,
= ¼p 1, ,4, for which

a a a a d+ = = ¼I p q2 , , 1, 4, 30p q q p pq ( )

where I is the 4×4 identity matrix (a demonstration of the necessity for 4× 4 matrices is
given in, for example [20], p 8). We see now, in light of equation (29), that our proposed
linearization of the Schrödinger equation can be completed by finding five complex 4×4
matrices satisfying Dirac’s algebra. The definitions of equation (27) are then easily inverted to
get expressions for the original matrices A and C of equation (24), viz.,

= + = -A a B B C b B Bi , i . 314 5 4 5( ) ( ) ( )

Fortunately, if four initial matrices satisfying equation (30) are known, then the matrix
=B B B B B5 1 2 3 4 is the desired fifth matrix, i.e. a calculation using the properties of the Bp

matrices, =p 1 ,..., 4, shows that =B I5
2 , and = -B B B Bp p5 5 for each p taken separately.

For example, the demonstration that =B I5
2 can be accomplished in three steps: (1) focusing

on the first factor of B5 in the square, use the anticommutation relations to move B1 three
places to the right, and replace =B I1

2 , (2)move B4 two places to the right, and replace
=B I4

2 , and (3) commute B3 with B2, replacing = =B B I2
2

3
2 in the result. Each odd
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commutation changes the sign on the product, so we have

=

=-
=-
=-
=-
= =

B B B B B B B B B

B B B B B B B
B B B B B B

B B B B B
B B B B

B B I

,

,
,

,
,

.

5
2

1 2 3 4 1 2 3 4

2 3 4 1
2

2 3 4

2 3 4 2 3 4

2 3 2 3 4
2

2 3 2 3

2
2

3
2

( )( )

By similar manipulations, one finds that = -B B B Bp p5 5 for each p taken separately.
We emphasize that our matrices Bμ, m = ¼1, ,5 are not the same as those introduced by

either Lévy-Leblond in [25], Greiner in [2] (chapter 13), Hladik [26], or Du Toit [27]. In all
four references their matrices are intimately tied to primed counterparts that we have not
introduced (and, incidentally, are different in each reference), and products with their primed
counterparts do not satisfy the anticommutation relations (29) of the Dirac algebra.

4.2. Constructing representations of the Dirac algebra

The first four of our five matrices could be chosen to be Dirac’s original matrices, i.e.
a=Bp p, = ¼p 1, ,4. They can be constructed as Kronecker products of Pauli matrices

[28–30], where the Kronecker product of two 2×2 matrices M and N is a 4×4 matrix
defined by

Ä = Ä =

=

M N
m m
m m N

m N m N
m N m N

m n m n m n m n
m n m n m n m n
m n m n m n m n
m n m n m n m n

,

. 32

11 12

21 22

11 12

21 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

( )
( )

Recalling the Pauli matrices in their standard representation,

s s s= = - =
-

0 1
1 0

, 0 i
i 0

, 1 0
0 1

, 331 2 3( ) ( ) ( ) ( )

Diracʼs original matrices are the following Kronecker products ( =i 1, 2, 3):

a s s s
s

s
= Ä = Ä = a0 1

1 0
, 34i i i

i

i
1

0

0

⎛
⎝⎜

⎞
⎠⎟( ) ( )

b a s= = Ä =
-

Ä =
-

b1 0
0 1

, 344 3
0

0
  

( ) ( ) ( )

where0 is the 2×2 zero matrix, and  is the 2×2 identity matrix introduced earlier. A fifth
matrix of the Dirac algebra is then given by

a a a a= = -B i
i

, 355 1 2 3 4
0

0


( ) ( )

using the Pauli spin matrix identity s s s = i1 2 3 . One easily verifies that any pair of the five
matrices a=Bi i, =i 1, 2, 3, a=B4 4, and B5 satisfies equation (29).

A more convenient set of matrices, however, is obtained from the following Kronecker
products ( =i 1, 2, 3):
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s s s
s

s
= Ä =

-
Ä =

-
B a1 0

0 1
, 36i i i

i

i
3

0

0

⎛
⎝⎜

⎞
⎠⎟( ) ( )

s= Ä = Ä =B b0 1
1 0

, 364 1
0

0
  

( ) ( ) ( )

in which case the fifth matrix is

= =
-

B B B B B ci
i

. 365 1 2 3 4
0

0


( ) ( )

These matrices also satisfy equations (29), and with their choice the matrices A and C of
equations (31) take the simple forms

= =A a C b2 , 2 . 370 0

0

0

0 0
( ) ( ) ( )

4.3. The Lévy-Leblond and Pauli equations

In the representations of equations (36a) and (37) the linearized Schrödinger equation (24)
takes the matrix form

s

s

d

s
s

+ + Y

= +
-

+ Y

=
-

Y =
p

p

A

c
E B p mc C

a

c
E p bmc

c

c bmc

a E c
0

2
2 ,

1 2

2
,

38

i j ij

i

i
i

2

^ ^

^ ^

^

^ ^

0 0

0

0

0

0

0 0






⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( ) ( )
·

·

( )

where we have omitted the position and time arguments of Ψ for convenience, and note that Ψ
must now be a bispinor, i.e. a 4-element column matrix of complex functions (0 is the zero
bispinor). Equation (38) is the Lévy-Leblond equation for a free particle of mass m. Various
forms of it can be found in the literature, depending on the choices made for a and b subject to
condition (28). We write the bispinor Ψ as

y
cY = , 39⎜ ⎟⎛

⎝
⎞
⎠ ( )

where ψ and χ are two-component spinors (sometimes referred to as semispinors), to obtain
the component equations

s

s

y c

y c

+ =

- + =

p

p

bmc

a E c

0

0

2

2 .





· ˆ
ˆ · ˆ

When we choose = -a 1 2, hence b=1, these reduce to Lévy-Leblond’s equations (25) of [25],
up to missing factors of c required for correct SI units. Both Greiner’s ([2], equation (13.28)), and
Hladik’s [26], versions of the Lévy-Leblond equations correspond to the choice =a i 2, hence
b=i, while Du Toit’s equations [27] correspond to =a 1 2, hence = -b 1. In all that follows,
we adhere to Lévy-Leblond’s original equations (providing the missing factors of c), hence

s y c+ =p mc a02 , 40· ˆ ( )

sy c+ =pE c b0, 40 ˆ · ˆ ( )
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in agreement with the non-relativistic limit of the Dirac equations if c is identified with the
speed of light.

If the particle has a charge q and is moving in an external electromagnetic field derived
from a vector potential A and scalar potential f, then equations (40) are modified to include
the interaction using the minimal coupling prescription, as was done in equation (6):

s y c- + =p Aq mc a02 , 41· ( ˆ ) ( )

s c f y- + - =p Ac q E q b0. 41· ( ˆ ) ( ˆ ) ( )

Eliminating χ between the two equations by multiplying equation (41b) by 2m, then using
equation (41a) to replace cmc2 in the result, we obtain a wave equation for the spinor ψ:

s y f y- - - =p Aq m E q 02 , 422 [ · ( ˆ )] ( ˆ ) ( )

the factors of c obligingly falling out (showing once again that special relativity is not involved).
Dividing both sides by 2m, we see that this is precisely the minimally coupled Schrödinger–Pauli
equation, equation (6), from which we have shown that Pauli’s equation (1) follows directly.
Thus, as emphasized by Lévy-Leblond in [25], the linearized non-relativistic (Galilean covariant)
Schrödinger equation together with minimal coupling predicts the correct value for the intrinsic
magnetic moment of a spin-1/2 particle: spin is not an intrinsically relativistic phenomena.

5. Derivation of the spin current density from the Lévy-Leblond equation

It seems not well known, although Lévy-Leblond published it over 40 years ago, that his
equation predicts unambiguously the form of the spin current showing that, like the intrinsic
spin itself, it is an inherently non-relativistic phenomena.

To demonstrate this we replace the energy operator in the components, equations (41), of
the Lévy-Leblond equation, yielding

s
y

c f y
¶
¶

= - -
 

p A
t

c
q q a

i i
, 43· ( ˆ ) ( )

sc y= - -p A
mc

q b
1

2
, 43· ( ˆ ) ( )

obvious generalizations of the free particle equations introduced as an ansatz in section 3. In
this form we see that χ plays an auxiliary role, as it is given in terms of the component ψ
through the constraint (43b). On the other hand, equation (43a) is a true dynamical equation
describing the time evolution of the state Ψ via its independent component ψ. Defining the
probability density again by r y y= † , we have

r
y

y y
y

¶
¶

=
¶
¶

+
¶
¶t t t

. 44( )†
†

The adjoint of (43a) is

s
y

c f y
¶
¶

= - - +
 

p A
t

c
q q

i i
, 45[ · ( ˆ ) ] ( )

†
† †
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hence from equations (43a), (45), and (44):

s s

s s s

s

r
y c c y

y c c y y c

c y

 

¶
¶

= - - -

= + -

-





p A p A

A

A

c t
q q

q

1 i
,

i

,

{ [ · ( ˆ ) ] [ · ( ˆ ) ] }

( · ) ( · ) { [( · ) ]

[( · ) ] }

† †

† † †

†

the terms involving qf canceling out. The first two terms can be rewritten in terms of a
divergence, to obtain

s s s s

s s

r
y c c y y c c y

y c c y

  
¶
¶

= + - -

- -


A A

c t
q

1

i
. 46

· ( ) ( · ) ( · )

{ [( · ) ] [( · ) ] } ( )

† † † †

† †

From equation (43b) and its adjoint, however, we have

s

s

c y

c y

=- -

=- -

p A

p A

mc
q

mc
q

1

2
,

1

2
,

[ · ( ˆ ) ]

[ · ( ˆ ) ]† †

which, when substituted in the last two terms of equation (46) involving A yield

s s

s s

s s

s s s s

s s

s s

y c c y

y y

y y

y y y y

y y

y y

 

- -

= -

- -

= +

-

-







A A

A p A

A p A

A A

A A

A A

q

q

mc
q

q
q

mc
q

mc

i

i

2
,

2
i

2
.

2

{ [( · ) ] [( · ) ] }

{ [( · ) · ( ˆ ) ]

[( · ) · ( ˆ ) ] }

{ [( · )( · )] [( · )( · )] }

{ [( · )( · )]

[( · )( · )] }

† †

†

†

† †

†

†

Here and in what follows we will make frequent use of the fact that s A· is Hermitian, in
which case the last two terms vanish, leaving

s s

s s s s

y c c y

y y y y 

- -

= +


A A

A A

q

q

mc

i

2
.

{ [( · ) ] [( · ) ] }

{ [( · )( · )] [( · )( · )] }

† †

† †

Substituting this result in equation (46) then gives

s s s

s s s

s s

r
y c c y y c

c y y y

y y

 

 



¶
¶

= + -

+ +

+

A

A

c t
q

mc

1

2
. 47

· ( ) [( · )

( · )] { [( · )( · )]

[( · )( · )] } ( )

† † †

† †

†

We next focus attention on the second term, in brackets, of equation (47). Substituting for
χand c† in this term yields
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s s

s s

s s

s s s s

s s

s s

y c c y

y y

y y

y y y y

y y

y y

 





   





+

=- -

+ -

= -

+

+



p A

p A

A

A

mc
q

q

mc
q

mc

1

2

i

2

2
.

( · ) ( · )

{( · ) [ · ( ˆ ) ]

[ · ( ˆ ) ] ( · )}

{( · ) ( · ) ( · ) ( · )}

{( · ) ( · )

( · ) ( · )}

† †

†

†

† †

†

†

The first two terms on the right cancel, so we can substitute the last two in equation (47) to
obtain an expression with two additional terms in braces:

s s s s

s s s s
s s

r
y c c y y y

y y y y
y y

 

 


¶
¶

= + +

+ -
-



 


c t

q

mc

1

2

,

· ( ) { [( · )( · )]

[( · )( · ) ] ( · ) ( · )
( · ) ( · )}

† † †

† †

†

and again, since s A· is Hermitian, the terms involving A vanish, leaving simply

s s
r

y c c y
¶
¶

= +
c t

1
,· ( )† †

hence the current density can be identified as

s sy c c y= - +J c . 48( ) ( )† †

Substituting once more for χand c†, we obtain from equation (48):

s s s s

s s s s

s s s s

y y y y

y y y y

y y y y

 

= - + -

=- -

- +



J p A p A

A A

m
q q

m
q

m

1

2
i

2

2
.

{ [ · ( ˆ ) ] [ · ( ˆ ) ] }

[ ( · ) ( · ) ]

[ ( · ) ( · ) ]

† †

† †

† †

From the derivation leading to equations (19) and (20), the first two terms in braces can be
replaced to yield

s

s s s s

y y y y y y

y y y y

  =- - + ´

- +

 
J

A A

m m
q

m

i

2 2

2
.

[ ( ) ] ( )

[ ( · ) ( · ) ]

† † †

† †

The ith component of the terms involving A can be written, making use of the Pauli matrix
identity s s s s d+ = 2i j j i ij, very simply as

y s s y y s s y y s s s s y

y d y y y

+ = +

= =

A A A

A A2 2 ,

i j j j j i i j j i j

ij j i

( ) ( ) ( )† † †

† †

which, when substituted in the previous equation, yields the correct non-relativistic current
density for a spin-1/2 particle interacting with an external electromagnetic field:
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sy y y y y y

y y

  =- - + ´

-

 
J

A

m m
q

m

i

2 2

, 49

[ ( ) ] ( )

( )

† † †

†

verifying equations (10) and (11).

6. Does the spin current have measurable consequences?

Although the spin current has no effect in the probability conservation equation, it has been
convincingly demonstrated to be an inherent feature of the probability current density of a
spin-1/2 particle described by the Schrödinger–Pauli equation. If the particle carries a charge
q, then it should contribute to the charge current density, hence be measurable in experiments
sensitive to the effects of such currents. After all, paraphrasing Nowakowski in [6], electric
current is a physical observable.

In [6] an interesting experiment is proposed and analyzed to demonstrate the relevance of
the spin current. It is determined that in such an experiment there would be a contribution to
the electric current density ‘which is of purely quantum mechanical origin and which can be
traced back to the ‘spin term’ K.’ The author further speculates that ‘this term might play a
role in problems concerning conductivity in solids.’

Du Toit, in his honors thesis [27], discusses a simpler experiment, an electron in a
homogeneous magnetic field (the Landau problem). His analysis is rather inconclusive, the
main effect being described as a ‘swirl’ of charge current creating a current loop/dipole
moment that could possibly interact with the field to produce a torque on the dipole, pre-
sumably observable as some sort of precessional motion.

A field of physics where the current density plays a critical role is Bohmian mechanics
(or de Broglie–Bohm theory; see [31]–[33] for excellent general accounts). Well-defined
concepts of point particles and trajectories are fundamental features of this theory, where
particle motion takes place along trajectories that are integral curves of a velocity field
proportional to the current density ([33], chapter 10). Thus, a particle’s equations of motion
are directly determined by the current density itself, hence the spin term can directly influence
its motion. In recent work [34, 35] directed toward the prediction of arrival times in time-of-
flight experiments, the possibility of observing rather remarkable effects of the spin term is
discussed. In these papers, time-of-flight experiments are proposed and carefully analyzed for
electrons prepared in various initial states, moving in a cylindrical waveguide. Analytical and
numerical methods are used to obtain predictions of their arrival time distributions at a
detector. For a particular initial state, with spin vector oriented perpendicular to the wave-
guide axis, the predicted distributions show a striking result, a cutoff, or maximum arrival
time, after which no further electrons would be detected. Such an experiment, or one similar
to it, seems to be well within the scope of present day technology. The results would be a
welcome test of the ability of Bohmian mechanics to predict arrival times of spin-1/2 par-
ticles, given that a standard quantum mechanical prediction of the same is still ambig-
uous [36].

Finally, as further examples of the possible impact of the spin term, we mention recent
publications [37, 38] applying the Dirac theory to experiments with relativistic electron
beams. In these, a velocity field of probability flow is defined by precisely the same equation
used in Bohmian mechanics to describe particle trajectories, i.e. proportional to the current
density, and used to describe results of such experiments (or suggested ones). As in the non-
relativistic case, the spin term makes a definite contribution that cannot be ignored.
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7. Concluding remarks

After reviewing previous work, our goals here were two-fold. First, to emphasize that
although the Pauli equation can be constructed from the Schrödinger equation by judicious
use of spin operator identities, thus demonstrating the non-relativistic nature of the electron
spin, Lévy-Leblond pointed the way to a direct derivation of the Pauli equation via a line-
arization of the Schrödinger equation, from which the non-relativistic nature of the electron
spin naturally follows. Second, to direct attention to the work of Shikakhwa et al [8], who we
have argued showed conclusively and unambiguously that the spin term of the probability
current density is a non-relativistic phenomenon derivable from the Schrödinger–Pauli
equation, contrary to what is sometimes claimed in the literature [6]. Furthermore, we
emphasized the importance of the Lévy-Leblond theory in this regard, showing that the spin
term is directly derivable from his equation, which is properly viewed as a precursor of the
Pauli equation.

We conclude by cautioning readers about the casual use of the ubiquitous minimal
coupling prescription in this and other work, invoking electromagnetic potentials that are
inherently relativistic (since they originate in the Lorentz covariant Maxwell equations), and
using them in a non-relativistic quantum theory involving the Schrödinger, Pauli, or Lévy-
Leblond equations. Constraints on the allowable electromagnetic fields as a result of requiring
Galilean covariance of both the quantum theory and electromagnetism were first discussed by
Lévy-Leblond in [25], p 305. His results have been sharpened and developed considerably in
later work [39–44], but a discussion of these important articles is beyond the scope of the
present paper. A review of this work is highly recommended to anyone applying non-
relativistic quantum theories to the analysis of experimental results involving electromagnetic
interactions.
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