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Abstract
The unified processing and research of multiple network models are implemented, and a new
theoretical advance has been made, which sets up two new theorems on evaluating the exact
electrical characteristics (potential and resistance) of the complex m×n resistor networks by the
recursion-transform method with potential parameters, and applies to a variety of different types
of lattice structure with arbitrary boundaries such as the nonregular m×n rectangular networks
and the nonregular m×n cylindrical networks. Our research gives the analytical solutions of
electrical characteristics of the complex networks (finite, semi-infinite and infinite), which has
not been solved before. As applications of the theorems, a series of analytical solutions of
potential and resistance of the complex resistor networks are discovered.

Keywords: complex network, RT-V method, electrical properties, boundary conditions, Laplace
equation, mathematical physics

1. Introduction

Resistor network models are important in the field of physics
and engineering since the issues of various disciplines can be
studied by simulating resistor network, such as percolation
and conduction [1], Nonlinear localized modes in two-
dimensional electrical lattices [2], Electric circuit networks
equivalent to chaotic quantum billiards [3], photonic crystal
circuits [4], Manifesting the evolution of eigenstates from
quantum billiards [5], topological properties of linear circuit
lattices [6], three-dimensional printed meshes [7], topological
insulator surface [8], the mean field theory [9, 10], lattice
Green’s functions [11–14], resistance distance [15], a recur-
sion formula for resistance distances [16], and so on. In
particular, two important equations of Poisson equation and
Laplace equation [17, 18] can be simulated by resistor net-
work model [19]. In addition, a real plane network of gra-
phene exists in the real nature.

It is well known that calculating the equivalent resistance
between two arbitrary lattice sites in a resistor network is
always an important but difficult problem since it requires not
only the circuit theory but also the innovative algebra. For

example, when the boundary of resistor network is arbitrary,
it is usually very difficult to obtain the exact potential and
resistance of the complex networks with arbitrary boundaries.
In fact, the boundary is like a wall or trap, which affects the
solution of the problem. Therefore, the reality requires us to
create new theories to accurately calculate the electrical
characteristics (voltage and resistance) of the complex circuit
network.

Let’s review the research history of resistor networks. In
1845 Kirchhoff established the basic circuit theory (the node
current law and the circuit voltage law). After 150 years,
Cserti [20] calculated the two-point resistance of the infinite
network by Green’s function technique, which is mainly
focused on infinite lattices, and some applications of Green’s
function technique were obtained in later literature [21, 22].
In 2004 Wu [23] formulated a different approach (call the
Laplacian matrix method) and derived the explicit resistance
in arbitrary finite and infinite lattices with normative bound-
ary (such as free, periodic boundary etc) in terms of the
eigenvalues and eigenvectors of the Laplacian matrix, which
relies on two matrices along two vertical directions. Later, the
Laplacian matrix analysis has also been applied to impedance
networks [24], after some improvements, several new resistor
network problems have been resolved [25–27]. However, the
Laplacian approach cannot apply to the network with
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arbitrary boundary since it is impossible to give the explicit
eigenvalues for the arbitrary matrix elements (associating
arbitrary boundaries). But the boundary condition is impor-
tant since it is real case occurring in real life.

In 2011 Tan pioneered a new technique for studying
complex resistor networks [28], which now is called recur-
sion-transform (RT) theory of resistor networks [19]. Tan’s
RT method depends on one matrix containing one directions,
which is obviously different from the Laplacian method
which depends on two matrices along two directions. With
the development of the RT technique, many problems of non-
regular network with zero resistor edges have been resolved
[29–38]. In addition, the advantage of the RT method is that
all resistance results are in a single summation differs from
the Laplacian approach gave resistance results are in the form
of a double summation. Recently, the RT method has been
subdivided into two forms: one form is the matrix equation
expressed by current parameters [31–37], which is simply
called the RT-I method; another form is the matrix equation
expressed by potential parameters [19, 38], which is simply
called the RT-V method. Summarizing the previous applica-
tions of the RT (including RT-I and RT-V) method, it is not
hard to see that the previous studies have not solved all the
resistor networks, but only solved some personalized pro-
blems that depend on zero resistor boundary conditions, such
as the globe network [29, 37] belongs to cylindrical network
with two zero resistor boundaries, the cobweb network
[19, 33] belongs to cylindrical network with one zero resistor
boundary, the fan network [30, 38] belongs to nonregular
rectangular network with one zero resistor boundary, and the
hammock network [27, 36] belongs to nonregular rectangular
network with two zero resistor boundaries. Obviously, how to
study the complex network without zero resistor boundary by
the RT method is a question.

This paper developed the RT theory to allow us to study
arbitrary resistor networks without relying on zero resistor
boundary, which can derive the electrical properties (potential
and resistance) of the arbitrary m×n complex networks with
complex boundaries. Here we build two new theorems lead to
large problems to be resolved. Our study shows the universal
RT method is very interesting and useful to solve the complex
network. We focus on researching the electrical properties
(potential and resistance) of figures 1 and 2 on two complex
m×n resistor networks with two arbitrary boundaries by the
advanced RT-V method, which have not been resolved
before. It is worth emphasizing that the non-regular complex
networks with two arbitrary boundaries are the multi-purpose
network model because it can produce various geometrical
structure as shown in figures 4 and 5. Thus a large number of
problems of resistor networks will be resolved by this paper.

From the above analysis, professor Wu [23] was the first
to give several accurate equivalent resistance formulas for the
regular resistor networks by the Laplacian matrix method, for
the sake of comparative study, here we introduce two main
results of resistor networks from [23].

Case-1. Consider figure 1 with r1=r2=r0 is a regular
m×n rectangle network, where n and m are the maximum
coordinate values of (n, m), resistors r and r0 are bonded
respectively in the horizontal and vertical directions. The
resistance formula for figure 1 is
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where f= +C xcosx j k j,
1

2k ( ) , q p= +i m 1i ( ), f p= jj

+n 1( ) and d x y,1 1 1( ) and d x y,2 2 2( ) are arbitrary two nodes in
the network.

Case-2. Consider figure 2 with r1=r2=r0 is a
cylindrical m×n resistor network, where n and m are the

Figure 1. An arbitrary m×n resistor network with two arbitrary
boundary resistors, where n and m are the maximum coordinate
values of (n, m). Bonds in the horizontal and vertical directions are
resistors r and r0 except for two arbitrary boundary resistors of r1
and r2.

Figure 2. A nonregular cylindrical m×n resistor network, where n
and m are the maximum coordinate value of (n, m), with the resistors
r and r0 in the respective horizontal and vertical (loop) directions
except for two arbitrary boundary resistors of r1 and r2.
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maximum coordinate values of (n, m), resistors r and r0 are
bonded respectively in the horizontal and vertical directions.
The resistance formula for figure 2 is
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where f= +C xcosx j k j,
1

2k ( ) , q p= +i m 1i ( )/ , f =j

p +j n 1( ).

The above results were found for the first time by Wu.
Later [25–27] improved the Laplacian matrix method to make
it applicable to regular cobweb and hammock networks.
However, the improved Wu method still cannot resolve the
resistor network with arbitrary boundary, such as the net-
works with two arbitrary boundaries of figures 1 and 2. In
addition, the equivalent resistances in equations (1) and (2)
are in the double summation but not in a single sum.

2. RT-V theory and Poisson equation

Consider two kinds of complex m×n resistor networks of
figures 1 and 2, where n and m are the maximum coordinate
values of (n, m). Assume A0 (0, 0) is the origin of the rec-
tangular coordinate system, and denoting nodes of the net-
work by coordinate (x, y). Assume the electric current J goes
from the input d1 (x1, y1) to the output d2 (x2, y2). Denote the
nodal potential of the sub-network is shown in figure 3,
and expressing the nodal potential at d (x, y) by

=´U x y V,m n x
y( ) ( ). We will study the complex resistor net-

works in four steps.

The first step, setting up discrete Poisson equation based
on the sub-network of figure 3. By Kirchhoff law
(å =-r V 0i k

1 ) to set up the nodal potential equations along
the vertical direction, we achieve a discrete static field
equation (or call Poisson equation) for any network
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y2 1 1( ) ( ) ( ) ( ) denote
second order discrete equation, and when ¹x xk , equation (3)
reduces to the discrete Laplace equation D + D =h Vx y x

y2 2( ) ( )

0. For the arbitrary network together with the upper and lower
boundary conditions, by equation (3) we are led to

d= - -+ + -V A V V Ir , 4k m k k k k x1 1 1 , ( )

where Vk and Ix are respectively two column matrixes, and
reads
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and +Am 1 is the matrix built along the vertical direction. For
figures 1 and 2, the +Am 1 is
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where =b r r0 3, and r3 is the resistor between (x, 0) and (x,
m) in figure 2, when b=0 = ¥r3( ), the +Am 1 belongs to
figure 1; when b=1 (r3=r0), the +Am 1 belongs to figure 2.
The purpose of introducing r3 is to express two different
resistor networks uniformly.

The second step, consider the boundary conditions of the
left and right edges in the network of figures 1 and 2.
Applying Kirchhoff’s law (å =-r V 0i k

1 ) to each of the left
and right boundaries, we obtain two matrix equations of
boundary conditions

= - -+V A E Vh h2 , 8m1 1 1 1 0[ ( ) ] ( )

= - -- +V A E Vh h2 , 9n m n2 1 1 2[ ( ) ] ( )

where = =h r r h r r,1 1 0 2 2 0, E is the + ´ +m m1 1( ) ( )
identity matrix, matrix +Am 1 is given by equation (7).

Equations (4)–(9) are all the equations we need to com-
pute the node potential. However, it is impossible for us to get
the solution of the above equations directly. Thanks to the RT
theory of Tan that gave the matrix transform method [19,
31–33] and we create the new technique here. In the fol-
lowing we are going to give the transformation technology
based on RT-V theory.

The third step, creating matrix transform. Firstly, we
work out the eigenvalue ti of matrix +Am 1, which is given by
solving determinantal equation of - =+A Etdet 0m 1∣ ∣ (just

Figure 3. The resistor sub-network with the potential and resistor
parameters.
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b=0 and b=1), yields

q= + - =t h h i m2 1 2 cos , 0, 1, , , 10i i( ) ( ) ( )

where q p= + +b i m1 1i ( ) ( )/ , and b=0 for figure 1,
b=1 for figure 2. Next to transform equations (4)–(9) by the
following approaches

=+ + +P A Pt t tdiag , , , , 11m m m m1 1 0 1 1{ } ( )

= =+ +
-X P V V P Xor , 12k m k k m k1 1

1( ) ( )

where =X X X X, , ,k k k k
m0 1 T[ ]( ) ( ) ( ) . Assuming Pi is the row

vectors of matrix +Pm 1, such as
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Thus, we multiply equation (4) from the left-hand side by
+Pm 1, we get
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where equations (11) and (12) are used.
Similarly, applying +Pm 1 to equations (8) and (9), we are
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The above equations (10)–(16) are all essential equations for
evaluating the node potential.

The fourth step, solving the matrix equations (13)–(16)
Selecting å = -= V x x rJi

m i
0 0

1

2 2 1( )( ) as the reference potential
(notice: the potential is a relative reference value that you can
artificially assume), by equations (14)–(16) we obtain after
some algebra and reduction the solution
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where b=0 for figure 1, b=1 for figure 2, and xτ is defined
in equation (28) below, and have
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where Ck i, , b k s
i
,

( ) , Gk
i( ) are, respectively, defined in

equations (19)–(25) below.
The RT-V theory. The above method of establishing

recursive matrix equations with voltage parameters, imple-
menting matrix transform and obtaining the solutions of
matrix equations is called RT-V theory. The detailed content
of the RT-V theory (recursion-transform theory with potential
parameters) can be found by the above four steps in
equation (3)–(18).

3. Two theorems of resistor networks

3.1. Several definitions

In order to facilitate and simplify the expression of the
solutions of matrix equations, we define several variables of

Ck i, and l l,i i¯ for later uses
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The above definitions are applicable to the entire article.
All of these definitions are meant to illustrate the following
two fundamental theorems, and we always assume that the
electric current J goes from the input d x y,1 1 1( ) to the output
d x y,2 2 2( ) in our entire paper.

3.2. Two fundamental theorems

Theorem 1. Consider the arbitrary ´m n resistor networks
of figures 1 and 2 whose maximum coordinate value is n m,( ).
Then the potential of node d x y,( ) in the ´m n resistor
network can be written as
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equation (13), zy i,
¯ is the conjugate complex of zy i, , and Xk
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is the solution of the matrix equation (14) together with the
boundary condition equations. Formula (26) is a general
formula which is suitable for any resistor network model.

In particular, when selecting å = -= V x x rJi
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and Xk
i( ) is given by (18) which is the solution of

equations (13)–(16).

Theorem 2. Consider the arbitrary ´m n resistor networks
of figures 1 and 2 whose maximum coordinate value is n m,( ).
Then the resistance between any two nodes d x y,1 1 1( ) and
d x y,2 2 2( ) in the network is given by
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where Xk
i( ) is the solution of the matrix equation (14) together

with the boundary condition equations, Formula (29) is a
general formula which is suitable for any resistor network
model.

In particular, for the networks of figures 1 and 2, the
resistance between two nodes d x y,1 1 1( ) and d2 (x2, y2) can be
written as
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where b=0 is the case of figure 1, and b=1 is the case of
figure 2, and Xk

i( ) is given by (18) which is the solution of
equations (13)–(16).

The above two new theorems contain a wide variety of
geometric structure of the network model, which can produce
many new results of potential and resistance, we are going to
prove the correctness of two theorems.

3.3. Proof of theorems

Consider the m×n resistor network with two arbitrary
boundaries shown in figures 1 and 2, in the introduction, we
have built the key equations (4)–(9) by the RT-V theory, and
converted the equations to equations (14)–(16) and derived
equations (17) and (18). Now we will work out the exact
eigenvalues of matrix +Am 1 in equation (7). Equation (10) can
be derived by solving equation - =+A Etdet 0m 1∣ ∣ , and
then we need to consider two cases below.

One is for figure 1, substituting equation (10) into (11)
with b=0 in +Am 1, we get the eigenvectors
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Thus, the term zk i, appearing in equation (13) can be
specifically rewritten as
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Another is for figure 2, substituting equation (10) into
(11) with b=1 in +Am 1, the eigenvector is obtained after
some algebra and derivation
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Thus, the term zk i, appearing in equation (13) can be
specifically rewritten as
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We find that equations (32) and (36) can be rewritten as a
unified form below

z z

z z

z z

z

z

z z z

=+
-P

1

,
, 39m

k i k i

m

m

m m m m

1
1

, ,

0,0 0,1

1,0 1,1

0,

1,

,0 ,1 ,

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( ¯ )

¯ ¯
¯ ¯

¯
¯

¯ ¯ ¯

( )





   


where z z z z= å =,k i k i k
m

k i k i, , 0 , ,( ¯ ) ¯ , and zy i,
¯ is the conjugate

complex of zy i, . Equation (39) is an important innovation
which is the key to our unified study of resistor networks.

Using equation (12), we have = +
-V P Xk m k1

1( ) , expand-
ing this matrix equation, then we get

åz z
z z= +

=

V X X
1

,
, 40k

y

k i k i
k y

i

m

k
i

y i
, ,

0
,0

1
,

⎛
⎝⎜

⎞
⎠⎟( ¯ )

¯ ¯ ( )( ) ( ) ( )

Equation (40) agrees with the formula (26) that we need to
verify.

Further, we get z z = + -m b, 1 2k i k i, ,( ¯ ) ( ) ( ) by com-
paring equation (39) with equations (32) and (36). And when
selecting å = -= V x x rJi

m i
0 0

1

2 2 1( )( ) , we have equation (17).
Substituting equations (17), (33) and (37) into equation (40),
then equation (27) can be verified immediately.

Next, we verify equations (29) and (30) by Ohm’s Law,
we have

= -´R d d
J

V x y V x y,
1

, , . 41m n 1 2 1 1 2 2( ) [ ( ) ( )] ( )

Substituting equation (26) with =x x x,1 2{ } and =y y y,1 2{ }
into equation (41), we therefore obtain equation (29).

5

Commun. Theor. Phys. 72 (2020) 055001 Z-Z Tan and Z Tan



Substituting equation (27) with =x x x,1 2{ } and =y y y,1 2{ }
into equation (41), we immediately obtain equation (30).
Thus, two theorems are verified.

In subsequent sections we consider applications of the-
orems to arbitrary lattices. In all applications, we stipulate all
parameters in equations (18)–(39) apply to all resistor net-
works, and denote the resistors along the two principal
directions by r and r0 except for resistors on the left-right
boundaries, and the input and output nodes of current are
respectively at d x y,1 1 1( ) and d x y,2 2 2( ).

4. Electrical properties of complex rectangular
network

4.1. Nodal potential of complex rectangular network

Consider the non-regular m×n resistor network shown in
figure 1, where the maximum coordinate is (n, m), selecting
å = -= V x x rJi

m i
0 0

1

2 2 1( )( ) as the reference potential, the
potential of any node d(x, y) in the finite and sem-infinite
networks can be written as

å
b b

q

=
-
+

+
+

´
-

-

t´

=

 

U x y

J

x x

m
r

r

m

C C

G
C

,

1 1

1 cos
,

42

m n

i

m
x x
i

y i x x
i

y i

i n
i y i

0

1

, ,
,

1 1 2 2

( ) ¯

( )

( )( ) ( )

( )

å
l l

q

=
-
+

+
+

´
-

+ - -

t´¥

=

- -

U x y

J

x x

m
r

r

m

C C

h h
C

,

1 1

1 cos 1
,

43

m

i

m
i

x x
y i i

x x
y i

i

y i
1

, ,

2
,

1

1

2

2

( ) ¯

¯ ¯

( )

( )∣ ∣ ∣ ∣

where q p= +i m 1i ( )/ , and Ck i, , b k s
i
,

( ) , Gk
i( ) are, respectively,

defined in equations (19)–(25). For equation (43), there be
 ¥n ,  ¥x x,1 2 with finite -x xk .
In particular, when x2=x1 (means the input and output

nodes of currents are at the same vertical axis), formulae (42)
and (43) reduce to

å
q

b=
+

-

-
´

=


U x y

J

r

m

C C C

G

,

1 1 cos
, 44m n

i

m
y i y i y i

i n
i x x

i0

1

, , ,1 2

1

( ) ( )
( )

( )( )
( )

å
l

q
=

+

-

+ - -
´¥

=

-
U x y

J

r

m

C C C

h h

,

1 1 cos 1
.

45

m

i

m
i

x x
y i y i y i

i1

, , ,

2

1

1 2( ) ¯ ( )

( )
( )

∣ ∣

Proof of equation (42). For figure 1, substituting equation (34)
with =y y y,k 1 2{ } into (18), we achieve

b b
=

-

-
   X

C C

t G
rJ k n

2
, 1 . 46k

i k x
i

y i k x
i

y i

i n
i

, ,1 1 2 2

( )
( ) ( )( )

( ) ( )

( )

Substituting equation (46) and (34) into (27) with b=0, we
therefore achieve equation (42).

For proving equation (43), when  ¥n ,  ¥x x,1 2

with finite -x xk , it can be got a limit by using
equations (20)–(25)

b l
l l

= -
-¥

¥


-

G
tlim 2 . 47

n
x

x x
i

n
i i

k
x x

i i

k
k

( )
¯

¯ ( )
( )

( )

∣ ∣

So, substituting equation (47) into (42) with  ¥n , we
therefore verified equation (43).

Formula (42) is a meaningful result because the network
of figure 1 is very complex and has not been resolved before,
which contains a lot of different network models since the
different boundary resistors can produce different geometric
structures. Here several special applications of formula (42)
are given below.

Application 1. When = =r r r1 2 0, figure 1 degrades into a
regular ´m n rectangular network, the potential of a node
d x y,( ) in the network is

å
b b

q

=
-
+

+
+

-

-

t

=

 

+

U

J

x x

m
r

r

m

C C

F
C

1

1 1 cos
, 48

x y

i

m
x x
i

y i x x
i

y i

i n
i y i

,

0

1

, ,

1
,

1 1 2 2

¯

( )
( )

( )

( ) ( )

( )

where b x x
i
, s

( ) reduces to b = D D -F Fx x
i

x
i

n x
i

, s s

( ) ( ) ( ) .

In particular, when =x x2 1, potential formula (48)
reduces further to

å
q

b=
+

-

-
´

= +


U x y

J

r

m

C C C

F

,

1 1 cos
. 49m n

i

m
y i y i y i

i n
i x x

i0

1

, , ,

1

1 2

1

( ) ( )
( )

( )( )
( )

Application 2. When = =h r0 01 1( ), figure 1 degrades into a
Fan network as shown in figure 4(a), where r and r0 are the
respective resistors along longitude (radius) and latitude (arc)
directions, and the resistor element on the outer arc is r2 (an
arbitrary boundary resistor). The potential of a node d x y,( ) in
the ´m n Fan network can be written as

å
b b

=
-
+

+
+

-

D + - D

t

=

 

-

50

U x y

J

x x

m
r

r

m

C C

F h F
C

,

1

2
1 1

,
i

m
x x
i

y i x x
i

y i

n
i

n
i y i

1

, ,

2 1
,

1 1 2 2

( )

( ) ¯

( )

( ) ( )

( ) ( )

Figure 4. Two resistor network models. (a) is a Fan network with an
arbitrary boundary resistor r2; (b) is an arbitrary hammock network.
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where we redefine b a= - F x xifx x
i

x
i

n x
i

s2,s s
( )( ) ( ) ( ) and b =x x

i
s

( )

a - F x xifx
i

n x
i

s2,s
( )( ) ( ) .

Please note that a non-regular Fan network (the outer arc
resistor r2 is arbitrary) is a scientific conundrum, which has
not been solved before. Reference [19] has researched just the
regular Fan network (the outer arc resistor is =r r2 0), but our
formula (50) with =r r2 0 is different from the result in [19]
because two results depends on the different matrices along
the orthogonal direction.

Application 3. When = =r r 01 2 , figure 1 degrades into a
hammock network as shown in figure 4(b), the potential of a
node d x y,( ) in the ´m n hammock network can be written
as

å
b b

=
-
+

+
+

-

t

=

 
51

U x y

J

x x

m
r

r

m

C C

F
C

,

1

2

1
,

i

m
x x
i

y i x x
i

y i

n
i y i

1

, ,
,

1 1 2 2

( )

( ) ¯

( ) ( )

( )

where we redefine b = - F F x xifx x
i

x
i

n x
i

ss s
( )( ) ( ) ( ) and b =x x

i
s

( )

- F F x xifx
i

n x
i

ss
( )( ) ( ) .

In particular, when d y0,1 1( ) and d n y,2 2( ) are respec-
tively at the left and right poles, the potential of equation (51)
reduces to

=
-
+

U x y

J

n x

m
r

, 2

2 1
. 52

( )
( )

( )

Please note that the hammock network has been solved
by [36], but our formula (51) is different from the result in
[36] because two results depends on the different matrices
along the orthogonal direction.

Application 4. Assume figure 1 is a semi-infinite ¥ ´ n
network, and  ¥m but n, x and y are finite. Consider
d y0,1 1( ) is on the left edge, and d n y,2 2( ) is on the right edge,
when = =r r r1 2 0, the potential of a node d x y,( ) in the semi-
infinite ¥ ´ n rectangular network is

òp q
q=

D - D

-

p
¥´ -

+

U x y

J

r F C F C C

F

,

1 cos
d , 53n n x y x y y

n

0

0 1

1 2( ) ( )
( )

( )

where q= +C ycosy k
1

2k ( ) , l l l l= - -Fk
k k( ¯ ) ( ¯ ) with

l q q= + - + + - -h h h h1 cos 1 cos 12( ) . Please
note that these definitions apply to all such issues as appear
below.

4.2. Resistance of complex rectangular network

Consider an m×n rectangular network with two arbitrary
boundaries shown in figure 1, where the maximum coordinate
is n m,( ). Defining b b=k s

i
x x
i

, ,k s

( ) ( ) , the resistance between two
nodes d x y,1 1 1( ) and d x y,2 2 2( ) in the finite and semi-infinite

networks are respectively

å
b b b

q

=
-
+

+
+

- +

-

´

=
54

R d d
x x

m
r

r

m

C C C C

G

,
1

1

2

1 cos
,

m n

i

m i
y i

i
y i y i

i
y i

i n
i

1 2
2 1

0

1

1,1 ,
2

1,2 , , 2,2 ,
2

1 1 2 2 ( )

( ) ∣ ∣

( )

( ) ( ) ( )

( )

å
l

q

=
-
+

+
+

+ -

+ - -

´¥

=

-

R d d
x x

m
r

r

m

C C C C

h h

,
1

1

2

1 cos 1
,

55

m

i

m
y i y i i

x x
y i y i

i

1 2
2 1

1

,
2

,
2

, ,

2

1 2

2 1

1 2

( ) ∣ ∣

¯

( )

( )∣ ∣

where q p= +i m 1i ( )/ , and Ck i, , Gk
i( ) are, respectively,

defined in equations (19)–(25) For equation (55), there be
 ¥n ,  ¥x x,1 2 with finite -x x1 2. Equation (55) can

be derived by taking the limit  ¥n in equation (54).

Proof of equation (54). For figure 1, substituting equation (42)
with =k x x,1 2 into (41), then equation (54) is verified.

Equation (54) is an exact expression which still contains
a variety of resistance results with all kinds of boundary
conditions because the left and right boundaries are the
arbitrary resistors. For clearly understanding formula (54), we
set h1 and h2, m or n as special values, and give several
special cases to understand its application and meaning.

Case 1. When =h 11 , the network of figure 1 degrades
into a rectangular m×n network with an arbitrary right
boundary, then formula (54) reduces to

å
b b b

q

=
-
+

+
+

- +

- + -

´

= +

56

R d d
x x

m
r

r

m

C C C C

F h F

,
1

1

2

1 cos 1
,

m n

i

m i
y i

i
y i y i

i
y i

i n
i

n
i

1 2
2 1

0

1

1,1 ,
2

1,2 , , 2,2 ,
2

1 2

1 1 2 2

( )

( ) ∣ ∣

( )[ ( ) ]

( ) ( ) ( )

( ) ( )

where b k s
i
,

( ) reduces to b = D D + --F F h 1k s
i

x
i

n x
i

, 2k s
[ ( )( ) ( ) ( )

D - -Fn x
i

1s
]( ) .

Case 2. When = =h h 12 1 , the network of figure 1
degrades into a normal m×n rectangular network, then
formula (54) reduces to

å
b b b

q

=
-
+

+
+

- +

-

´

= +

57

R d d
x x

m
r

r

m

C C C C

F

,
1

1

2

1 cos
,

m n

i

m i
y i

i
y i y i

i
y i

i n
i

1 2
2 1

0

1

1,1 ,
2

1,2 , , 2,2 ,
2

1

1 1 2 2

( )

( ) ∣ ∣

( )

( ) ( ) ( )

( )

where b k s
i
,

( ) reduces to b = D D -F Fk s
i

x
i

n x
i

, k s

( ) ( ) ( ) . This problem has
been researched in [23], and gave equation (1) with a double
sums. Clearly, our result (57) is different from equation (1).
This also shows that the equivalent resistance can be
expressed in different forms.

Case 3. When =h 01 , the network of figure 1 degrades
into a non-regular m×n Fan network with an arbitrary
boundary as shown in figure 4(a), by equation (54), we obtain
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the resistance of a Fan network

å
b b b

=
-
+

+
+

- +

D + - D

´

= -

R d d
x x

m
r

r

m

C C C C

F h F

,
1

2

1

2

1
,

58

m n

i

m i
y i

i
y i y i

i
y i

n
i

n
i

1 2
2 1

1

1,1 ,
2

1,2 , , 2,2 ,
2

2 1

1 1 2 2

( ) ∣ ∣

( )

( )( ) ( ) ( )

( ) ( )

where b k s
i
,

( ) is re-defined as b = D +-F Fk s
i

x
i

n x
i

, k s
[( ) ( ) ( )

- D - -h F1 n x
i

2 1s
( ) ]( ) .

In particular, when = =h h0, 11 2 , the network of
figure 1 degrades into a normal m×n Fan network, then
formula (58) reduces to

å
b b b

=
-
+

+
+

- +

D

´

=

R d d
x x

m
r

r

m

C C C C

F

,
1

2

1

2
,

59
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i
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y i

i
y i y i

i
y i

n
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1 2
2 1

1

1,1 ,
2

1,2 , , 2,2 ,
2

1 1 2 2

( ) ∣ ∣

( )

( ) ( ) ( )

( )

where b k s
i
,

( ) is re-defined as b = D -F Fk s
i

x
i

n x
i

, k s

( ) ( ) ( ) . This case has
been researched in [30], but the result is different from
equation (59), however they are equivalent to each other. The
reason is that they choice the different matrix along different
direction. This also shows that the equivalent resistance can
be expressed in different forms.

Case 4. When d y0,1 1( ) is on the left edge and d n y,2 2( ) is
on the right edge, formula (54) reduces to

å
a a

q

=
+

+
+

´
- +
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´

=

R y n y
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m

h C h h C C h C
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2

1 cos
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m
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2
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( ) ( )

( )

where a = D + - D -F h F1k n
i

n
i

k n
i

, 1( )( ) ( ) ( ) .
In particular, when = =h h 11 2 , equation (60) reduces to
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q
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1
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Case 5. When d x , 01 1( ) is at the bottom edge and
d x m,2 2( ) is on the top edge, then formula (54) reduces to

å
b b b

q
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-
+

+
+
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´
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R x x m
x x

m
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m G
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( ) ( ) ( )
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where b k s
i
,

( ) and Gn
i( ) are defined in (24) and (25).

Case 6. When d 0, 01( ) and d n m,2 ( ) are two diagonal
nodes, by (54) we have the resistance between two maximally
separated nodes

å
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where a = D + - D -F h F1k n
i

n
i

k n
i

, 1( )( ) ( ) ( ) , q p= +i m 1i ( )/ .

In particular, when = =r r r1 2 0, equation (63) reduces to
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Please note that equation (64) is a desired equivalent resist-
ance between two maximum separated nodes in an arbitrary
m×n resistor network. This is an interesting result because it
is simple and easy to research the asymptotic expansion for
the maximum resistance. References [39, 40] studied the
asymptotic expansion by making use of the result (1).
Obviously, the concise equation (64) is more conducive to the
study of the asymptotic expression of the maximum
resistance.

From the above derivation, we find that formula (54) is a
generalized result, which is applicable to many network
problems and summarized a variety of complex network
models since it contains six arbitrary elements r r r, , ,0 1(
r n m, ,2 ).

5. Electrical properties of complex cylindrical
network

5.1. Nodal potential of complex cylindrical network

Consider the non-regular m×n cylindrical network shown in
figure 2, where the maximum coordinate is n m,( ), selecting
å = -= V x x rJi

m i
0 0

1

2 2 1( )( ) as the reference potential, defining
q p= +i m2 1i ( ), and q= --C y ycosy y k ik

( ) , the potential
of any node d x y,( ) in the finite and sem-infinite networks can
be written as

å
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where b k s
i
,

( ) , Gk
i( ) are, respectively, defined in equations (22)–

(25). For equation (66), there be  ¥n ,  ¥x x,1 2 with
finite -x xk . Equation (66) can be derived by taking the limit
 ¥n in equation (65).

In particular, when =x x2 1 (means the input and output
nodes of currents are at the same vertical axis), formulae (65)
and (66) reduce to

å
q

b=
+

-

-
´

=

- -


U x y

J

r

m

C C

G

,

2 1 1 cos
, 67m n

i

m
y y y y

i n
i x x

i0

1

1 2

1

( )
( ) ( )

( )( )
( )

8

Commun. Theor. Phys. 72 (2020) 055001 Z-Z Tan and Z Tan



å
q

l=
+

-

+ - -

´¥

=

- - -

U x y

J
r

m

C C

h h

,

2 1 1 cos 1
.
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1
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∣ ∣

Proof of equation (44). For figure 2, substituting equation (38)
into equation (18), we achieve  k n1( )

b q b q
=

-

-
 X

y y

t G
rJ

exp i exp i

2
. 69k

i k x
i

i k x
i

i

i n
i

1 21 2
( ) ( )

( )
( )( )

( ) ( )

( )

The substitution of (69) into equation (27) yields

å

å

b b

q

b q b q

q

=
-
+

+
+

´
-

-
+

+

´
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-

t

=

 -  -

=

 

U x y

J

x x

m
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r

m
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G

r

m

y y y y

G

,

1 1

2 1 cos
i

1

sin sin

2 1 cos
. 70

i

m
x x
i

y y x x
i

y y

i n
i

i

m
x x
i

i x x
i

i

i n
i

0

1

0

1

1 2

1 1 2 2

1 2

( ) ¯

( )
[( ) ] [( ) ]

( )
( )

( ) ( )

( )

( ) ( )

( )

Because the elements rk in the network is real number, the
potential U x y,( ) must be real number. Thus, extracting the
real part of equation (70) to produce equation (65).

Formula (65) is a meaningful result because the network
of figure 2 is very complex and has not been resolved before,
contains a lot of resistor network models, where each of the
different boundary resistor represents a different network
structure. So Formula (65) can create many interesting results.
In the following applications we always assume that the
current J goes from d x y,1 1 1( ) to d x y,2 2 2( ) except for special
instructions.

Application 1. Consider an arbitrary ´m n cylindrical
network of figure 2 with = =r r r1 2 0 , by (65) we have the
nodal potential

å
b b

q

=
-
+

+
+

-

-

t

=

 -  -

+

U x y

J

x x

m
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m
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F

,

1

2 1 1 cos
, 71

i

m
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y y x x
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y y
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i

0

1 1

1 1 2 2

( ) ¯

( ) ( )
( )

( ) ( )

( )

where b x x
i
, s

( ) reduces to b = D D -F Fx x
i

x
i

n x
i

, s s

( ) ( ) ( ) .
In particular, when =x x2 1, potential formula (71)

reduces further to
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
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r
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F

,

2 1 1 cos
. 72

i

m
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i n
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( )
( ) ( )

( )( )
( )

Application 2. Consider an ´m n cylindrical network of
figure 2. When =r 01 , figure 2 degrades into an ´m n
cobweb network as shown in figure 5(a), by (65) we have the
nodal potential

å
b b

=
-
+

+
+

-

D + - D
t

=

 -  -

-
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J
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m
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m
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n
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n
i

1 2 1

1 1 2 2( ) ¯
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( ) ( )

( ) ( )

where b x x
i

s

( ) is redefined as b a= - F x xifx x
i

x
i

n x
i

s2,s s
( )( ) ( ) ( ) and

b a= - F x xifx x
i

x
i

n x
i

s2,s s
( )( ) ( ) ( ) .

In particular, when d y0,1 1( ) is at left edge, and d n y,2 2( )
is at right edge. Equation (73) reduces to

å
q

=
-
+

-
+

-

D + - D= -

U x y

J

n x

m
r

r h

m

F y y

F h F

, 2

2 1

1

cos

1
. 74

i

m
x
i

i

n
i

n
i

2

1

2

2 1

( )
( )

( )
( )

( )
( )

( ) ( )

Please note that the cobweb network with an arbitrary
boundary has not been resolved before, the previous work
only studied the normal cobweb network (the boundary
resistor is =r r2 0) [19], equation (74) is an original result.

Application 3. Consider an arbitrary ´m n globe network
shown in figure 5(b). That is to say that figure 2 degrades into
a globe network when = =r r 02 1 , from (65) we have the
nodal potential

å
b b

=
-
+

+
+

-

t´

=

 -  -

U x y

J

x x

m
r

r

m

C C

F

,

1

1
, 75

m n

i

m
x x
i

y y x x
i

y y

n
i

1

1 1 2 2

( ) ¯

( )
( ) ( )

( )

where we redefine b = - F F x xifx x
i

x
i

n x
i

ss s
( )( ) ( ) ( ) and b =x x

i
s

( )

- F F x xifx
i

n x
i

ss
( )( ) ( ) .

In particular, when d y0,1 1( ) is at left pole, and d n y,2 2( )
is at right pole, equation (75) reduces to

=
-
+

U x y

J

n x

m
r

, 2

2 1
. 76

( )
( )

( )

Formula (76) is very simple and very interesting because
the potential distribution is only related to the x and has
nothing to do with y, which shows the nodal potential is equal
in the same latitude.

Application 4. Consider a non-regular ´m n cylindrical
network of figure 2. Assume d y0,1 1( ) is on the left edge, and
d n y,2 2( ) is on the right edge. By (65) we have the nodal

Figure 5. Two resistor network models. (a) is a cobweb network with
an arbitrary boundary resistor r2; (b) is an arbitrary globe network.
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potential

å
a a

q

=
-
+

+
+

-
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- - -

U x y

J

n x

m
r

r

m

h C h C

G

, 2

2 1

2 1 1 cos
, 77

i

m
n x

i
y y x

i
y y

i n
i

0

1

1 2, 2 1,1 2

( )
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( ) ( )
( )

( ) ( )

( )

where a = D + - D -F h F1k x
i

x
i

k x
i

, 1( )( ) ( ) ( ) is defined in
equation (23), and q= --C y ycosy y k ik

( ) .

In particular, when = =h h 11 2 , equation (77) reduces
to

å
q

=
-
+

+
+

D - D
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- - -

+

U x y

J

n x

m
r

r

m
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2 1 1 cos
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i

m
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i
y y x

i
y y

i n
i
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( )
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( ) ( )
( )

( ) ( )

( )

when = =h h 11 2 , =y y2 1, equation (77) reduces to

å
q

=
-
+

+
+

D - D
-=

-

+
-

U x y

J

n x

m
r

r

m

F F

F
C

, 2

2 1

2 1 1 cos
. 79

i

m
n x

i
x
i

i n
i y y

0

1 1
1

( )
( )

( ) ( )
( )

( ) ( )

( )

One know the potential function have important appli-
cation value for solving the Laplace equation. In this paper,
the analytical solutions of node potential functions under
various conditions are given, which provides a new theory for
practical application.

5.2. Resistance of complex m � n cylindrical network

Consider an m×n cylindrical network with two arbitrary
boundaries shown in figure 2, where the maximum coordinate
is n m,( ). Defining b b=k s

i
x x
i

, ,k s

( ) ( ) , the resistance between two
nodes d x y,1 1 1( ) and d x y,2 2 2( ) in the finite and semi-infinite
networks are respectively

å
b b q b

q

=
-
+

+
+

- +

-

´

=

R d d
x x

m
r

r

m

y

G

,
1

2 1

2 cos

1 cos
, 80

m n

i

m i i
i

i

i n
i

1 2
2 1

0

1

1,1 1,2 2,2

( ) ∣ ∣

( )
( )

( )
( )

( ) ( ) ( )

( )

å
l q

q

=
-
+

+
+

-

+ - -

´¥

=

-

R d d
x x

m
r

r

m

y

h h

,
1

1

1 cos

1 cos 1
, 81

m

i

m
i

x x
i

i

1 2
2 1

1
2

2 1

( ) ∣ ∣

¯ ( )
( )

( )
∣ ∣

where q p= +i m2 1i ( )/ , = -y y y2 1, b k s
i
,

( ) and Gk
i( ) are,

respectively, defined in equations (24)–(25). For equation (81),
there be  ¥n ,  ¥x x,1 2 , with finite m. Equation (81) can
be derived by taking the limit  ¥n in equation (80).

Proof of equation (80). For figure 2, substituting equation (65)
with =k x x,1 2 into equation (41), we therefore achieve (80).

Formula (80) is an exact and exciting result because the
network of figure 2 is very complex and has not been resolved

before, and contains a lot of resistor network models, where
each of the different boundary resistor represents a different
network structure. In particular, when taking some specific
value for r1 and r2, equation (80) gives rise to a series of
special cases below.

Case 1. Consider a non-regular m×n cylindrical net-
work of figure 2. When =r r1 0, the resistance of
equation (80) reduces to

å
b b q b

q

=
-
+

+
+

- +

- + -

´

= +

R d d
x x

m
r

r

m

y

F h F

,
1

2 1

2 cos

1 cos 1
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i

n
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1

1,1 1,2 2,2
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( ) ∣ ∣

( )
( )

( )[ ( ) ]
( )

( ) ( ) ( )

( ) ( )

where b k s
i
,

( ) reduces to b = D D + - D- - -F F h F1k s
i

x
i

n x
i

n x
i

, 2 1k s s
[ ( ) ]( ) ( ) ( ) ( ) .

Case 2. Consider a normal m×n cylindrical network of
figure 2 with = =r r r2 1 0, the resistance of equation (80)
reduces to

å
b b q b

q

=
-
+

+
+

- +

-

´

= +

R d d
x x

m
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r
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,
1
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i
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( )

( ) ( ) ( )
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where = -y y y2 1, b k s
i
,

( ) reduces to b = D D -F Fk s
i

x
i

n x
i

, k s

( ) ( ) ( ) . This
problem has been researched in [23], and gave equation (2)
with a double sums. Clearly, our result (83) is different from
equation (2). This also shows that the equivalent resistance
can be expressed in different forms.

Case 3. Consider a non-regular m×n cylindrical net-
work of figure 2, when =h 01 , the left boundary collapses to
a pole, the network of figure 2 degrades into a cobweb net-
work with an arbitrary boundary resistor r2 as shown in
figure 5(a), we have the equivalent resistance

å
b b q b

=
-
+

+
+

- +

D + - D

´
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R d d
x x

m
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r

m

y
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1
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1
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1
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( )

( )
( ) ( ) ( )

( ) ( )

where b k s
i
,

( ) is re-defined as b = D + --F F h 1k s
i

x
i

n x
i

, 2k s
[ ( )( ) ( ) ( )

D - -Fn x
i

1s
]( ) .

In particular, when = =h h0, 11 2 , the network of
figure 5(a) degrades into a regular cobweb network, the
resistance of equation (84) reduces to
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b b q b

=
-
+

+
+
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D

´

=

R d d
x x

m
r

r

m

y

F

,
1

1

2 cos
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n
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( )
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where b k s
i
,

( ) is re-defined as b = D -F Fk s
i

x
i

n x
i

, k s

( ) ( ) ( ) .
Please note that Case 2 has been researched in [30], but the

result is different from equation (85), however they are equivalent
to each other. The reason is that they choice the different matrix
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along different direction, where [30] set up matrix along the
longitude, but this paper set up matrix along the latitude.

Case 4. When = =h h 01 2 , the left and right boundary
collapse respectively to two poles, the network of figure 2
degrades into an m×n globe network as shown in
figure 5(b), we have

å
b b q b
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-
+

+
+

- +

´

=

R d d
x x

m
r
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y

F

,
1

1

2 cos
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where b k s
i
,

( ) is re-defined as b = -F Fk s
i

x
i

n x
i

, k s

( ) ( ) ( ) .
Please note that Case 4 has been researched in [29], but

the result is different from equation (86), however they are
equivalent to each other. The reason is that they choice the
different matrix along different axes. This also shows that the
equivalent resistance can be expressed in different forms.

Case 5. Consider a non-regular m×n cylindrical net-
work of figure 2, when both d x , 01 1( ) and d x , 02 2( ) are on the
same horizontal axis, we have

å
b b b

q
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Case 6. Consider a non-regular m×n cylindrical network
of figure 2, when d 0, 01( ) is on the left edge and d n y,2 ( ) is on
the right edge, the resistance between two edges is
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In particular, when = =h h 11 2 , equation (88) reduces to
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And when =h 01 , equation (88) reduces to
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From the above results we know formula (80) is a general
results which, contains many results in a variety of lattice
structures, can produce many new resistance formulae.

6. Conclusion and comment

This paper developed the RT-V theory (RT theory with
potential parameters) and reveals the basic principle of elec-
trical characteristics of complex resistor networks for the first

time, such as two theorems of theorems 1 and 2 are proposed,
and the explicit electrical characteristics (potential and
resistance) formulae of the complex networks are given,
which contains the results of finite and infinite networks. As
applications of two theorems, the analytical solutions of the
electrical characteristics (potential function and equivalent
resistance) in the complex m×n resistor networks with
arbitrary boundaries are given, and many interesting results of
the various types of resistor networks are produced.

It must be emphasized that the previous theories (Mainly
refers Green’s function technique and Laplacian matrix
method) cannot solve resistor networks with complex
boundaries, because the Green’s function technique is usually
used to solve infinite network problems, and the Laplacian
matrix method depends on the solution of two eigenvalues
which relies on two matrices along two orthogonal directions.
Using Tan’s RT-V method to study resistor networks just
relies on one matrix along one vertical directions, which
avoids the confusion of another matrix with arbitrary ele-
ments that cannot be solved explicitly, and also gives concise
results in a single summation, such as the all equations given
by this paper.

In addition, resistance formulae (54), (55), (80) and (81) et al
can be extended to impedance networks since the grid elements
rk can be either resistors or impedances in figures 1 and 2.
For example, assume w w= = + = = -r Z R j L r Z j C,L C0 ,
then we can therefore study the arbitrary m×n RLC network if
we do a plural analysis [24, 34] to the resistance results obtained
in this paper.
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