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Abstract
In this study, a harmonic oscillator with position-dependent mass is investigated. Firstly, as an
introduction, we give a full description of the system by constructing its classical Lagrangian;
thereupon, we derive the related classical equations of motion such as the classical Euler–
Lagrange equations. Secondly, we fractionalize the classical Lagrangian of the system, and then
we obtain the corresponding fractional Euler–Lagrange equations (FELEs). As a final step, we
give the numerical simulations corresponding to the FELEs within different fractional operators.
Numerical results based on the Caputo and the Atangana-Baleanu-Caputo (ABC) fractional
derivatives are given to verify the theoretical analysis.

Keywords: position-dependent mass, harmonic oscillator, Euler–Lagrange equations, fractional
derivative

(Some figures may appear in colour only in the online journal)

1. Introduction

In various branches of physics one can find many models that
are suggested to study real-world systems; among these
models we find those involving particles in which mass
depends on position. These have many applications in semi-
conductor research, nanophysics, nuclear physics, etc [1–4].

Many classical and quantum systems with position-
dependent mass have been already investigated [5–7]. The
Mathews–Lakshmanan oscillator is a prominent example in
which a particle with position-dependent mass defined by

l= +m x1 1 2( ) moves in a harmonic potential [8]. For
more details about these models, refer to [9–11]. In addition,
for the point moving along the well-known Lemniscate curve

in classical mechanics [12, 13], the effective mass can be
obtained from = +m x1 1 4( ).

Fractional calculus dates from more than 300 years ago
[14]. It deals with derivatives and integrals to any order, not
only integer. In the last 40 years, fractional calculus has found
a wide range of applications in many branches of science and
engineering [15–21]. New aspects of complicated dynamics
with memory trace in many physical systems can be taken
into account by fractional calculus. Nevertheless, the singu-
larity of the classical fractional operators means that nonlocal
dynamical behavior of real-world physical systems cannot be
displayed exactly. To overcome this difficulty, various kinds
of fractional derivatives and integrals have been introduced
whose kernel is nonsingular and, hence, they can specify
nonlocal dynamics accurately. The fractional differential
operator with the Mittag–Leffler (ML) kernel, introduced by
Atangana and Baleanu (ABC) [22], is one of the most
applicable. The nonlocality of real-world complicated phe-
nomena can be more accurately modeled by the ABC
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derivative compared with classical fractional derivatives
[23–26]. Moreover, since the dynamical behavior of practical
physical systems is studied via the Lagrangian or Hamiltonian
in a fractional framework, it is important to find a high-per-
formance numerical method for solving the related fractional
Euler–Lagrange equations (FELEs) in the ABC sense. Note
that, because of the effect of memory, the numerical solving
methods in fractional calculus are not a straightforward
extension of the related classical methods. Thus, designing
numerical schemes for solving real-world dynamics with
related fractional models should be considered. In this paper,
we investigate the free motion of a harmonic oscillator with
position-dependent mass by applying its new fractional for-
mulation. The derived FELEs in the ABC concept and the
numerical procedure for solving them that are suggested for
the harmonic oscillator are new and include more accurate
information compared with their equivalent fractional
equations in the standard form.

This paper is organized as follows. The basic definitions
and preliminaries are discussed in section 2. The descriptions
of the 1D and 2D systems are illustrated and discussed in
section 3. In section 4, the system is solved numerically using
the fractional derivative operator ABC. The results and dis-
cussions are presented in section 5, and we conclude the paper
in section 6.

2. Basic definitions and preliminaries

In this section, we represent the fractional derivatives in the
concept of Caputo [14] and ABC [22]. For a function

a < <f a b: , , 0 1n[ ] , the left and right fractional
derivatives of order α in the concept of Caputo are respec-
tively defined by [14]
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where Γ(.) is the Euler’s Gamma function. Moreover, for
Îf H a b,1( ) and 0<α<1, the left and right fractional

derivatives of order α in the concept of ABC are respectively
determined as [22]
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is the ML function,

and M(α) is a normalization function with M(0)=M(1)=1.

3. The physical system

3.1. 1D system

We start this section by introducing a definition to our phy-
sical system of interest. As a starting point, let us take a point
mass that moves along the Lemniscate of Bernoulli, as shown
in figure 1. In 1694, Jacob Bernoulli published an article
about a curve shaped like figure 1, or a knot or bow of a
ribbon. This curve is called the Lemniscate of Bernoulli,
which has the following Cartesian equation

+ = -X Y X Y
1

2
. 52 2 2( ) ( ) ( )

Assume that the bead is subjected to the harmonic potential
given by

= +U X Y 2. 62 2 2( ) ( )

This means that a stretched rubber band sticks the bead to the
origin. The kinetic and the potential energies equations for the
bead are respectively described by [27]
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A main feature of the harmonic potential considered here is
that it preserves its form after pullback. Therefore, the clas-
sical Lagragian of the system reads
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equation (CELE)
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Note that the last equation is classified as the quadratic Lie-
nard-type equation. However, as was mentioned in [28], the
theory of the calculus of variations cannot capture many laws

Figure 1. A bead on a Lemniscate.
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of the natural phenomena; for instance, the behavior of non-
conservative systems cannot be described properly by dyna-
mical equations derived based on the traditional energy
approach. On the contrary, the fractional calculus has over-
come this limitation as it can characterize the behavior of
many complex physical systems, including hereditary effects.
Therefore, following the procedures explained in [29, 30], we
can generalize the classical Lagrangain (9) in the sense of the
fractional calculus. As a result, equation (9) is fractionalized
as follows

= -a 
L x m x m x x
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. 11f a t
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Figure 2. Simulation results of x(t) for the 1D case when x(0)=0.1 and ò=1.
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As a  1, the FELE (12) reduces to the CELE (10).

3.2. 2D system

Following the derivation given in [27], we can write the
classical Lagrangian of the 2D systems as

f= + -

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where the mass is again position-dependent as =
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Figure 3. Simulation results of r(t) for the 2D case when r(0)=0.1, f(0)=0 and ò=1.
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Again, equation (13) can be generalized as
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As was the case in the 1D system, the FELEs read
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Again, as a  1, the FELEs (17)–(18) reduce to the CELEs
(14)–(15).

4. Numerical procedure

In this section, we propose an impressive numerical method
which solves the FELEs in equation (12) and equations (17)–
(18) for the 1D and 2D systems, respectively. The fractional
derivative operator ABC with several values of α is
taken into account. Also, we rewrite equation (12), and
similarly equations (17)–(18), by considering the new
variables f f= = = = =a ax x x x r r r r, D , , D ,a t a t1 2 1 2 1
and f f= aDa t2 as follows:
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Exerting the ABC integral operator [22] into
equations (19) and (20), we obtain the following
fractional integral equations
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where x1(a), r1(a) and f1(a) are the initial values and
x2(b)=r2(b)=f2(b)=0. Now, we consider the length
of time step = -ℓM

b a

M
for a uniform partition on [a, b]

where M is a positive integer that can be selected
optionally. Moreover, we represent the numerical
approximations of xp(tq), rp(tq), and fp(tq) by x r,p q p q, , ,
and fp q, , respectively, where p=1, 2, and =tq
+  a qℓ q M, 0M is the time instant at the q-th node.

Afterwards, the fractional Euler approach [31] is applied
to discretize the convolution integrals in equations (21)–
(22); as a result, the following linear algebraic equations
system is obtained
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5. Simulation results and discussion

In this section, the behavior of the FELEs of motion for the
harmonic oscillator with position-dependent mass for both the
1D and 2D cases are investigated by considering different
values of the fractional order α. To this aim, we consider the
following cases for the physical system under investigation.

Case one (1D system with x(0)=0.1 and ò=1):
simulation results for x(t) against time t are shown in figure 2
for the fractional orders α=0.85, 0.88, 0.91, 0.94, 0.97, and
1.0. It is clear from figure 2 that, as the fractional order α
approaches 1, the fractional simulations become closer to the

classical simulation, and they coincide with each other for the
case α=1. Also, figure 2 indicates that the simulation results
for x(t) nearly look like a damping oscillator for the fractional
values of α, while behaving like a harmonic oscillator
when α=1.0.

Case two (2D system with r(0)=0.1, f(0)=0 and
ò=1): simulation results for r(t) against time t are shown in
figure 3 for the fractional orders α=0.85, 0.88, 0.91, 0.94,
0.97, and 1.0. Again, it is clear from figure 3 that, as the
fractional order α approaches 1, the fractional simulations
become closer to the classical simulation, and they coincide
with each other for the case α=1. Also, it is apparent from
figure 3 that the simulation results for x(t) nearly look like a
damping oscillator for the fractional values of α, whereas they
behave like a harmonic oscillator for α=1.0. Furthermore,
simulation results for f(t) versus time t are shown in figure 4
for the fractional orders α=0.85, 0.88, 0.91, 0.94, 0.97, and
1.0. Figures 2–4 indicate that the FELEs numerical solution
demonstrates various asymptotic behaviors considering dif-
ferent values of the fractional order α. Moreover, the frac-
tional solution becomes closer to the classical integer-order
related solution as α approaches 1. In addition, taking the new
fractional operators such as the ABC derivative can present
quite different and hidden aspects of the considered physical
system compared to the classical Caputo derivative or the
ordinary time-derivatives. In other words, the complicated
behaviors of real-world dynamical phenomena can be detec-
ted more accurately through the new fractional operators.

6. Conclusion

This research considered the significance of the integrals and
derivatives in fractional form to investigate the motion of a
mass in a system called a harmonic oscillator with a position-
dependent mass. We established the Lagrangian equation in
both classical and fractional form and concluded the FELEs in
the concept of the newly introduced fractional operator with
an ML kernel. Then, for solving the aforesaid fractional
equations, we designed an efficacious approximation
approach wherein the Euler convolution quadrature rule was
utilized for discretizing the related convolution integral.
Simulation results demonstrated that the behavior of the
FELEs is modified based on the various values of the frac-
tional order as well as the types of fractional differential
operators. Moreover, the relevant classical solution was
recovered as a  1. Accordingly, the fractional calculus
reveals the new aspects of the harmonic oscillator with mass
dependent on position, which are hidden when the relative
ordinary differential equations are considered. Thus, the new
fractional operators can present more accurate and flexible
models of real-world dynamical systems.
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