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Abstract
Nonlinear solitary waves are investigated for a plasma system at the night side of Titan’s
ionosphere. The plasma model consists of three positive ions, namely C2H

+
5 , HCNH

+, and
C3H

+
5 , as well as Maxwellian electrons. The basic set of fluid equations is reduced to a Korteweg

de-Vries (KdV) equation and linear inhomogeneous higher order KdV (LIHO-KdV) equation.
The solitary wave solutions of both equations are obtained using a renormalization method. The
solitary waves’ existence region and the wave profile are investigated, and their dependences on
the plasma parameters at the night side of Titan’s ionosphere are examined. The solitary waves’
phase velocities are subsonic or supersonic, and the propagating pulses are usually positive. The
effect of higher-order corrections on the perturbation theory is investigated. It is found that the
higher-order contribution makes the amplitude slightly taller, which is suitable for describing the
solitary waves when the amplitude augments.
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1. Introduction

Titan is the largest moon of Saturn, which was discovered by
Christiaan Huygens in 1655. It is considered the first known
Saturn moon, and is known as the sixth planetary moon, after
Earth’s moon and the four Galilean satellites of Jupiter. It is
the only moon with an intensive atmosphere in the solar
system. Titan is the only object in space except the Earth
where there is clear proof of the existence of stable bodies of
surface liquid. Its atmosphere is composed of molecular
nitrogen and methane, with minor amounts of many hydro-
carbons and nitrile species [1]. In the solar system, Titan is the
second-largest moon, where it comes in order after Jupiter’s

moon ‘Ganymede’, and it is larger than Mercury only by
about 40%. Titan is 50% larger than the Earth’s moon. The
nature of the climate in Titan, such as wind and rain, possibly
creates similar features to those found in the Earth as rivers,
seas, lakes and deltas (most likely consisting of liquid
methane and ethane), dominated by weather forms as on the
Earth. Measurement data from the Cassini spacecraft, which
has visited Saturn and its satellites since its arrival at the
planet in 2004, has been analyzed and investigated by many
authors [2–5].

Observations indicate that Titan’s ionosphere structure
may be the most complex in the solar system, with nearly 110
ions. Most of these ions are positive, but as a result of the
chemical reaction, a small amount of negative ions have been
observed in specific regions [6–8]. There are a reasonably
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small number of negative ions; however, the chemistry study
of the hydrocarbon atmospheres cannot neglect this inside the
Moon’s surface and the composition of Titan’s aerosols.
Observations show that the ionosphere of Titan is dominated
by HCNH+ and C2H

+
5 ions with densities 4.6×102 cm−3

and 2×102 cm−3, respectively, whereas all the other ion
species (in excess of 110 ion species) are present in densities
varying from 10−7 up to a few tens per cm3 [8]. Therefore, the
upper ionosphere of Titan consists of 60% of HCNH+ and
C2 H+

5 ions only. Different flybys indicate that at different
altitudes the ion concentration changes. For example, Cravens
et al 2006 showed that at an altitude of ≈1300 km, the main
ion components are HCNH+, C2H

+
5 , and C3H

+
5 [9].

In nonlinear dispersion media, the solitary waves appear
because of the balance between the dispersion and the non-
linearity. The solitary pulses could be either positive or nega-
tive. Negative pulse is due to the density rarefaction, resulting in
a rarefactive solitary wave, whereas positive dispersion due to
the density compression gives rise to a compressive solitary
pulse. Washimi and Taniuti (1966) first studied the propagation
of ion-acoustic solitary waves (IASWs) in a simple plasma
model by applying reductive perturbation theory to the basic
equations governing the plasma dynamics. Later, many exper-
imental and theoretical studies were carried out to examine the
behavior of the IASWs in different plasma environments
[10–14]. The aim of this manuscript is to investigate the
properties of electrostatic nonlinear IASWs in a plasma con-
taining three positive ions, and isothermal electrons at the night
side of Titan’s ionosphere.

The manuscript is organized as follows. In section 2, the
reductive perturbation method is used to reduce the basic
equations to an evolution equation called Korteweg–de Vries
(KdV). As the wave amplitude increases, the width and
velocity of the soliton deviate from the prediction of the KdV
equation, i.e. the breakdown of the KdV approximation. To
describe the soliton of larger amplitude, the higher-order KdV
equation is derived. The stationary solutions of both KdV and
higher-order KdV equations are obtained in section 3. In
section 4, a parametric analysis of the solutions is performed
using the observed data from the flybys. The results are
summarized in section 5.

2. Formulation of the problem and derivation of
evolution equations

Let us consider the propagation of small but finite amplitude
ion-acoustic waves in an unmagnetized, collisionless plasma
composed of three different positive ions, namely C2H

+
5 ,

HCNH+, and C3H
+
5 (referred to by the subscripts 1, 2, 3), as

well as Maxwellian electrons (referred to by e). The dimen-
sionless basic equations for moving ions are governed by
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whereas the electrons are described by
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In equations (1)–(4) i=1, 2, 3, the mass ratio
m = m mi i 1, where m1, m2, and m3 are the masses of C2H

+
5 ,

HCNH+, and C3H
+
5 ions, respectively, s = T Ti i e. The

dependent variables ni and ui are the densities and velocities
of the three positive ions, f is an electrostatic potential, x is
the space coordinate, and t is the time variable. The densities
are normalized by n1

0( ), the distance is normalized by the
Debye length l p= k T en4D B e1 1

0 1 2( )( ) , and the time is nor-
malized by the ion plasma period w p=- m e n4p1

1
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2
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0 1 2( )( ) , the
electric potential is normalized by the thermal potential
k T eB e , and the velocities by the ion-sound speed =Cs1

k T mB e 1
1 2( ) , where kB, e, and Te are the Boltzmann constant,

electronic charge, and electron temperature, respectively.
In order to study the propagation of small but finite ampl-

itude electrostatic perturbations for ion-acoustic waves, we
employ the reductive perturbation method [15, 16]. This method
suggests the following stretching space-time coordinates
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where λ is the phase velocity to be determined later and ε is a
small parameter (ε=1). Furthermore, the dependent physical
quantities in equations (1)–(4) are expanded as follows
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Solving equations (9) with the aid of equation (8), we
finally obtain the Korteweg–de Vries (KdV) equation
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It is interesting to examine the sign of the coefficients A and
B. We use the data of Titan in Cravens et al 2006 at altitude
1000∼1300 km, where the main dominant species of ions are
HCNH+, C2H

+
5 , and C3H

+
5 with densities about 300 cm−3,

100 cm−3, and 80 cm−3, respectively. It is interesting to obtain
the behavior of the phase velocity λ and its dependence on the
density ratio (such as N2). It is found from figure 1 that λ can be
supersonic or subsonic (i.e. λ>1 or λ<1) depending on the
value of density ratio N2. We have noticed a broken line at
N2≈1, which means that the value of λ is imaginary and the
compatibility condition is not satisfied at these values of plasma
parameters. It is clear from the definition of A that it is always
positive, but B may be negative depending on the physical
parameters. Keep in mind that we have to use the neutrality
condition (7) and the compatibility condition (8b) into the
coefficient B. Figure 2 shows that the regions where B may
change its polarity versus λ and N2. It is found that B is generally
positive (red color regions) expect for small areas (indicated by

the yellow color) which have a negative sign. However, the
yellow zones do not satisfy the existence of λ (i.e. the com-
patibility condition (8b)) because λ does not pass through the
yellow regions; it passes through the red region only. It means
that the yellow (negative) B does not fulfill the compatibility
condition (8b). Later, this condition clears that we have a posi-
tive (compressive) wave only, as we will show in the next
section.

Equation (10) contains the lowest-order nonlinearity and
dispersion. The main limitation of perturbation theory is that
it can describe a wave of only small but finite amplitude.
However, as the wave amplitude increases, the width and
velocity of a solitary wave deviates from the prediction of the
KdV equation (10), i.e. the KdV approximation fails to
describe this situation. To describe the ion-acoustic solitary
waves of larger amplitude, this has led us to consider the
higher-order nonlinearity and dispersive. Therefore, the
higher-order approximation of the reductive perturbation
method is a powerful tool to provide adequate description of
this case. Using equation (10) into (9) with the aid of the first-
order results, we get
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where Di and Ei are given in the appendix.

Figure 1. The phase velocity λ versus the density ratio N2, where
μ2=0.97, μ3=0.68, σ1,2,3=0.1, and N3=0.1. Figure 2. The polarity of the nonlinear term B versus N2. The red

region refers to the positive B while the yellow regions refer to
negative B, and the blue lines refer to λ, where μ2=0.97,
μ3=0.68, σ1,2,3=0.1, and N3=0.1.
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The next-order of ε gives
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Solving equations (12) with the aid of equations (9) and (11),
we obtain a linear inhomogeneous KdV-type equation for the
second-order perturbed potential f(2) as
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where -H1 4 are given in the appendix. Thus, we have reduced
the basic equations (1)–(4) to the KdV equation (10) for f(1)

and a linear inhomogeneous KdV-type equation (13) for f(2).
Solving equations (10) and (13) is the toolbox to describe the
solitary wave either for lower or higher amplitudes, as we will
discuss in the next section.

3. The stationary solutions

It is shown that the higher-order approximation is given by a
linear inhomogeneous KdV-type equation (13) with an
inhomogeneous term (a source term), but this equation has a
resonant term that leads to secular solution. To remove the
secular behavior, we apply the renormalization method
[17, 18]. As a result of this method, we add equations (10) to
(13) as
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Equations (15) and (16) are the KdV and KdV-type equations
in renormalized form.

The following independent variable
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We get the stationary soliton solution from equation (18),
where we integrate equation (15) using the boundary condi-
tions for h  ¥∣ ∣ as
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where the maximum amplitude f n= AB30( ) and the width
n=D A2 . Applying the same procedure to obtain the

stationary solution of equation (16). Thus, it can be written as
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The source term of (20), using (19), can be written as follows
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To remove the secular term, we put

dn n= H A4 ,4
2 2

to get the solution of (20) with the source term (21). Let that

m h= Dtanh . 22( )

Using equation (22) into (20), we obtain an associated
inhomogeneous Legendre equation as
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The two independent solutions of the homogeneous part
of equation (23) are given by the associated Legendre func-
tion of first and second kind:
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To get the particular solution of equation (23), by using
the variation of parameters which can be written as
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As a result of the vanishing boundary condition the constant
C2=0 for fh

2( ) as h  ¥∣ ∣ . The rest of fc
2( ) is nothing but the

secular term, which is eliminated by renormalization of the
amplitude. Substituting (29) in terms of η, so the final solution
of (23) is given by
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Thus, we finally obtain the total stationary solution
(f f+1 2( ) ( )) in terms of the variable η as

Figure 3. The contour plot of (a) the maximum amplitude f(0) and
(b) the width W of the IASWs with N3 and σ1, where μ2=0.97,
μ3=0.68, N2=0.25, s = 0.12,3 , and λ=0.5.
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4. Numerical results and discussion

We recall that observations showed that Titan’s ionosphere is
composed of many ion species, depending on the altitude. For
altitude 1000∼1300 km, there are three main dominant ion
species, namely HCNH+, C2H

+
5 , and C3H

+
5 , with densities

about 300 cm−3, 100 cm−3, and 80 cm−3, respectively [9].
From figure 2, we pointed out that B is always positive and
from equation (19) the polarity of the maximum amplitude
depends on the sign of B, which indicates that only positive
solitary waves can exist. The yellow areas represent the
regions that have rarefactive (negative) pulses, which are not
physical since at these areas the compatibility condition is not
fulfilled. Note that the blue lines pass only through the red
zones. Thus, the compressive (positive) pulses can only
propagate in our system. It is interesting to investigate the
dependence of the solitary pulses profile (i.e. amplitude and
width) on various plasma parameters, as well as the effect of
higher-order perturbation correction as depicted in the fol-
lowing figures.

Figure 3 shows the soliton amplitude and width profile
with the density ratio =N n n3 3

0
1

0( )( ) ( ) and temperature ratio
(s s s= = = T Ti e1 2 ). It is seen that the temperature ratio
plays a significant role in changing the solitary pulse ampl-
itude. On the other hand, for small σ�0.083 the positive
pulses amplitude decreases until it vanishes for the blue and
brown regions of figure 3(a). For higher σ�0.09 the positive
pulses become shorter. The width of the solitary waves also
changes with σ, which it increases for s » 0.085 and then
decreases for σ>0.085. Note that the white zone indicates
that the potential and width are very high compared to the
colored regions. The mathematical program cannot match the
colors for very low and very high values, so the anomalies’
values take the white color. The effect of the density ratio of
N3 on the pulse width and amplitude is approximately neg-
ligible, so we do not include this behavior here.

Figure 4 shows the behavior of the density ratio N2 and
phase velocity λ with the solitary pulses’ amplitude and
width. It is seen that the amplitude has a complex behavior
with λ and N2 for small λ<0.5, i.e. the amplitude sig-
nificantly varies with the change of λ and N2. However, for
λ>0.5 it does not change with N2, but it slightly increases
with λ. The solitary pulses’ width has a straightforward
behavior with λ and N2. On the other hand, the pulses’ width

becomes wider for λ<0.55, but becomes narrower for
λ>0.55. The effect of N2 only changes the pulses’ width for
small λ�0.4.

Finally, the effect of higher-order contribution on the
perturbation theory is depicted in figure 5, i.e. we have plotted
f(1) and f f+1 2( ) ( ). It is obvious that the effect of higher
order in the perturbation theory leads to slight enhancement of
the amplitude, which indicates that as the wave amplitude
increases, the width and velocity of the solitary wave deviates
from the prediction of the KdV equation. The main reason to
consider the high-order correction is that the usual KdV
equation contains the lowest-order nonlinearity and disper-
sion, and consequently can describe a wave of only small
amplitude. As the wave amplitude increases, the width and
velocity of a soliton deviate from the prediction of the KdV

Figure 4. The contour plot of (a) the maximum amplitude f(0) and
(b) the width W of the IASWs with N2 and λ, where μ2=0.97,
μ3=0.68, N3=0.1, and σ1,2,3=0.1.
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equation; thus it may lead to the breakdown of the KdV
approximation. Therefore, to describe the soliton of larger
amplitude, the higher-order nonlinearity and dispersion have
to be taken into account, and the higher-order approximation
of the reductive perturbation method has been known to be a
powerful tool. In the present model, the higher-order correc-
tion has little effect, but in other models its effect may be
influential. When we started this work we did not know the
effect of higher-order correction, but after we performed the
numerical analysis we found that the higher-order correction
has minimal effect and we can conclude that the lower-order
KdV is sufficient to describe the present physical phenom-
enon. Thus, we introduce this result to the readers as we
found it. It may be that for other physical situations the effect
of higher-order correction is significant; thus it should be
taken into account to describe the phenomenon correctly and
successfully.

5. Summary

We adopted a theoretical model appropriate for describing the
nonlinear ion-acoustic solitary waves at the night side of
Titan’s ionosphere at altitude 1000 to 1400 km. The plasma
model consists of three positive ions, namely C2H

+
5 , HCNH

+,
and C3H

+
5 ions, as well as Maxwellian electrons. The basic

fluid equations are reduced to the KdV and a linear inho-
mogeneous KdV-type equations. The stationary solutions of
these equations have been obtained using a renormalization
method. We have numerically examined the existence regions
for the solitary pulses and studied the relevance of the phy-
sical parameters to the amplitude and the width of the KdV
soliton solution. It is found that the phase velocity of the

propagating wave can be subsonic or supersonic. Further-
more, the propagating pulses are usually positive, and no
negative pulses exist. The maximum amplitude and width of
the solitary waves are affected by the density ratio between
HCNH+ and C2H

+
5 (via N2), temperature ratio between

positive ions-to-electrons (via σ), and phase velocity λ.
However, the the density ratio between C3H

+
5 and C2 H

+
5 (via

N3) has no significant effect on the soliton profile. Finally, the
effect of higher-order correction on the perturbation theory is
investigated. It is seen that the higher-order contribution
makes the amplitude slightly taller, which is suitable for
describing the solitary wave when the amplitude increases,
and therefore the width and velocity of the solitary wave
deviates from the prediction of the KdV equation. The results
presented here may be useful to have a deep understanding
of the nonlinear electrostatic structures in Titan’s lower
ionosphere.

Appendix. Coefficients of equations (11) and (13)
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Figure 5. A graph of f(1) (red color) and f f+1 2( ) ( ) (black color) versus ζ, where μ2=0.97, μ3=0.68, N2=0.22, N3=0.1, σ1,2,3=0.1,
and l = 0.8.
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