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Abstract

In this article we consider physical states in the hypercuboidal truncation of the
EPRL-FK spin foam model for Euclidean quantum gravity. In particular, these
states are defined on graphs which allow considering the entanglement entropy
(EE) associated to the bipartition of space. We compute the EE numerically
for some examples, and find that it depends on the coupling constant o within
the theory, which has recently been introduced in the face amplitude. We also
find that there appears a maximum of the EE within the region of the coupling
constant containing the non-Gaussian fixed point of the RG flow of the trun-
cated model. We discuss the relation of this behaviour with the restoration of
diffeomorphism symmetry at the fixed point.

Keywords: Loop Quantum Gravity, Spin Foam models, Entanglement entropy,
Numerics
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1. Introduction

Spin foam models (SFM) are certain proposals for the construction of transition amplitudes
for states defined on graphs. A prime example are the spin foam models for quantum gravity,
which have been developed as expressions for the physical inner product of spin network states
in loop quantum gravity (LQG), but also topological BF theory, or even (pure) lattice gauge
theory, can be formulated in terms of spin foam models [1-8].

Content from this work may be used under the terms of the Creative Commons
8Y Attribution 4.0 licence. Any further distribution of this work must maintain attribution
to the author(s) and the title of the work, journal citation and DOI.

1361-6382/20/094001+24$33.00 © 2020 The Author(s). Published by IOP Publishing Ltd  Printed in the UK 1


https://doi.org/10.1088/1361-6382/ab77ea
https://orcid.org/0000-0002-9215-2161
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/ab77ea&domain=pdf&date_stamp=2020-4-2
https://creativecommons.org/licenses/by/4.0

Class. Quantum Grav. 37 (2020) 094001 B Bahr

SFM therefore deliver proposals for physical states in LQG, in that they can be used to
define a rigging map, i.e. a bona fide projector from kinematical to physical states satisfying
the constraints [9, 10].!

As these SFM are defined on discrete structures, the question of the continuum limit natu-
rally arises. This limit is captured in a refinement of both the bulk lattices (2-complex), as well
as the boundary graphs, and leads to a notion of cylindrical consistency, allowing to construct
the full continuum Hilbert space as an inductive limit over graphs [11—18]. This programme is
a form of background-independent renormalisation, in which the coarseness of lattices plays
the role of the scale, since in quantum gravity usual parameters such as e.g. lattice lengths
are part of the dynamical fields themselves, which encode the geometry of space-time. In
this framework there are several choices of renormalisation scheme, and the precise choice
of boundary states, in particular ones stable under coarse graining, is an active field of research
[19-22].

One of the most widely used models for the transition of LQG spin network states is the
EPRL-FK model, which is defined on 2-complexes dual to 4d triangulations, and its KKL-
extension to general 2-complexes, allowing the use of arbitrary polytopes [23-25]. It relies
on a specific implementation of the so-called simnplicity constraints on topological SO(4)-BF
theory, building on a classical equivalence of GR with BF theory, in which the bivector field B is
constrained to be simple. This model has received much attention since its inception, although
the question of its renormalisation is still very much open.

In [26], a specific truncation of the EPRL-FK-KKL model was introduced in order to con-
struct a toy model, which serves as a laboratory for renormalisation®. Additionally to Newton’s
constant Gy and the cosmological constant A, the model depends on the Immirzi parameter ~y
(usually kept fixed) and a crucial parameter « introduced in the face amplitude. The parameter
« can, in the hypercuboidal setting, be associated with a factor of \/mﬁ for some f3 related
to a, and has also been considered e.g. in the dynamical triangulation path integral approach
[28].

In the hypercuboidal setting, Gy does not flow since there is no curvature, so A is fixed and
a becomes the only interesting coupling. The model restricts the fluctuating geometries to spe-
cific (hyper-)cuboidal geometries [29, 30]. Interestingly, it was found that the RG flow already
of this simple model is non-trivial, and induces a flow of the face amplitude, which governs
the powers of volume factors in the path integral measure [31, 32]. Using frustal geometries,
where also Gy and A begin to flow due to the excitation of curvature degrees of freedom, it
was found that the UV-attractive fixed point is non-Gaussian (NGFP), in the sense that it lies
at specific non-zero values of Newton’s coupling and the cosmological constant [33, 34].

In the hypercuboidal setting, the UV-attractive NGFP separates two regions of phase
space with vastly different geometric behaviour. Specifically, there are different (geometrically
equivalent) states which receive different weights in terms of regular/irregular subdivision of
polytopes. It is at the fixed point where these geometries are all treated equally, indicating
a restoration of diffeomorphism symmetry. That this symmetry is broken in the EPRL-FK
model has been known for some time [35]. In particular, it is broken in Regge calculus (RC),
which arises in a certain limit of the EPRL-FK model, and while the symmetry is restored

I As the SFM on the market in quantum gravity are usually derived directly from a quantization of the path integral
for GR, and not from the canonical quantum theory, the relation between the two is still subject to discussion.

2 As a side product, using the hypercuboidal geometries in this truncation, it was realised that in the EPRL-FK model
the volume-part of the simplicity constraints are insufficiently implemented, leading to non-metric degrees of freedom
in the path integral. These have been understood to be linked to conformal matching of boundary faces of 3d polytopes
in [27].
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in classical RC even for flat configurations, it is broken even for those in the quantum theory
due to the form of the path integral measure [26]. It was conjectured for some time that sym-
metries broken due to discretisation get restored at the coarse graining fixed point), and the
properties of the NFGP are an indication for this mechanism in the 4d quantum gravity theory
[12,36].

Still, many features of the NGFP are yet to be understood?. To alleviate this somewhat, in
this article we consider the entanglement entropy (EE) of physical states, at and away from
the fixed point. EE is a very general concept, which is of great interest for general many-body
systems [37]. For a physical system with local degrees of freedom, is measures the entangle-
ment of degrees of freedom inside of a spatial region A with the ones outside of A. Here in
particular the scaling behaviour of the EE is of interest: while generic states in the Hilbert
space of a theory lead to an EE scaling with the region volume, many ground states for inter-
esting physical Hamiltonian operators result in EE scaling with only the surface [37, 38]. It is
this property which is used to identify and construct such states, for instance by a multiscale-
entanglement renormalisation ansatz (MERA), or further developments building on this
concept [39, 40].

Also in LQG the concept of entropy has been considered in relation to black holes [41],
and in terms of EE of bipartitie systems for quite some time [42—-48], in particular in view
of isolated horizons. The spin network functions, which are defined on graphs thought of as
embedded in (or building up) 3-dimensional space, have a geometrical interpretation which is
ideally suited to discuss degrees of freedom associated to specific regions in space. However,
for a single spin network, the only entropy between nodes is between Gauss-gauge degrees of
freedom. If counting only gauge-invariant degrees of freedom, then the EE vanishes, and the
state essentially factorises over the nodes of the graph (see section 3).

However, for physical states this picture changes. A physical state arises as the image of a
kinematical one under the rigging map, and it can be represented as a superposition of different
spin networks. The precise superposition depends on the parameters of the model, i.e. on the
coupling constants.

In this article, we will compute the entanglement entropy S;“E) for physical states in the
hypercuboidal truncation of the EPRL-FK-KKL model. We will work in the large spin region
of state space, in which the expressions for the path integral amplitude will become numerically
manageable*. We will then investigate Sgg near the fixed point, and discuss its behaviour in
relation to the restoration of diffeomorphism symmetry.

The plan of the article is as follows: in section 2 we recap the EPRL-FK-KKI model, as
well as the hypercuboidal truncation. In section 2.6 we discuss the construction of physi-
cal states, using a dynamical embedding as rigging map. In section 3 we review the con-
cept of entanglement entropy, and derive expressions for S;E“E) for different physical states,
and in particular some scaling behaviour, which will help us to numerically compute the a-
dependence numerically in section 4. Finally, we will interpret and discuss our findings in
section 5.

2. The EPRL-FK spin foam model

A spin network function on a graph I' is defined on an oriented graph I, and is labelled by a
collection of spins k; € %N on the links ¢ of T, as well as invariant tensors (figures 1 and 2)

3 For instance, the question of a phase transition is still open.
#The full amplitude is quite cumbersome to compute numerically, see e.g. [49].
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Figure 1. Graphs I' with spins k;, and invariant tensors ¢, among links and nodes
constitute an orthonormals basis for the gauge-invariant Hilbert space of LQG.

Figure 2. Livinte—Speziale-intertwiners correspond to quantised 3d polytopes with
fixed areas.

€ Invsyo) [@ Vi@ X VZ{] 2.1

[n.0]=1 [n0)=—1

along nodes n in I', where [n, /] = 1, depending on whether a link ¢ is outgoing/incoming to
the node n. A widely-used overcomplete basis of the intertwiner spaces (2.1) for fixed spins
is given by the Livine—Speziale-coherent intertwiners, which depend on 3d normal vectors 7,
satisfying the closure constraint

Gy = > kiig — > kiiy = 0. 2.2)

[nl]=1 [nl]=—1
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Figure 3. Spin foam transition: a 2-complex A bounded by two graphs 'y, and Tgy.

With these, the Livine—Speziale coherent intertwiner is given by

Ly = / dggl> ® ‘k@, ﬁg)@ ® <k{, flﬂ (2.3)
SUQ)

[nl]=1 [nl]=-1

where |k,7) = gii|k, k) is the Perelomov coherent state defined by the action of gz €
SU(2), the SU(2)-rotation which rotates &, into #, on the highest weight vector of the
representation k.

The spin foam state sum is defined on a 2-complex A, consisting of 2d faces, 1d edges,
and 0d vertices. The 2-complex functions as a cobordism between two graphs (see figure 3),
which arise on its boundary, as those edges and vertices which touch only one face and edge,
respectively.

Consider an oriented 2-complex A with a (not necessarily connected) boundary graph I'.
Then a state is an assignment of spins k; to 2d faces f of A, and of intertwiners ¢, to edges
e, from the tensor product of spins k; on faces f meeting at e. The vertices and edges on the
boundary form the nodes n and links ¢ of I", and touch exactly one face f, and edge ¢, in the
bulk respectively. Therefore, via ky = kgf and ¢, = v, the state {k/, ¢} induces a spin network
Ur {k,}.{u,} ON the boundary. The spin foam amplitude assigned to the state {k, ¢, } is given by

STf the normal vectors 7i; do not satisfy the closure condition (2.2), the state (2.3) is still an intertwiner, although its
norm is exponentially suppressed for large spins. In [50] it was shown that the resolution of identity can be restricted
to those intertwiner satisfying (2.2), if one includes an additional measure factor in the path integral.

5
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Figure 4. Quantum cuboids as specific LS-intertwiners arising in the hypercuboidal
truncation of the EPRL-FK-model.
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2.4)

where Ay, A, and A, are, respectively, the face-, edge-, and vertex amplitude of the model,
while the By, and B,, are the boundary amplitudes, which are usually chosen in such a way
that ZA behaves naturally under glueing [7].

The summation in (2.4) ranges only over spins and intertwiners in the bulk, while those on
the boundary are being kept fixed, as they are determined by the boundary state.

In this article we work with the EPRL-FK-KKL model, which amounts to a specific choice
for the amplitudes, described in detail in [26]. The model depends on the Barbero—Immirzi
parameter v, which in our case we allow to take values in v € (0, 1). To be precise, the sum in
(2.4) is restricted to range over those k; such that®

. 1+7 1
i o= | 5 ‘kf € EN. (2.5)

In what follows we are only interested in the amplitudes for a specific subset of states, which
comprise the hypercuboidal truncation of the model.

2.1. Hypercuboidal truncation

The model truncated on hypercuboids is essentially a restriction to a specific set of allowed
spins and intertwiners on a 2-complex A dual to the 2-skeleton of a 4-dimensional hypercubic
lattice. The intertwiners in question are so-called quantum quboids, which in the large spin limit
have the geometric interpretation of 3d cuboids with fixed areas (see figure 4). Each quantum

6 This is a peculiarity of the Riemannian signature model. The analogous condition for the Lorentzian version of the
model does not restrict the allowed spins [23, 51].
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Figure 5. Each hypercuboidal vertex is bounded by eight quantum cuboids. Thus a
vertex amplitude depends on six spins i, . . ., k¢.

cuboid is completely determined by three spins, and is given by

3
Uy by = /S L [@ ki, &)@ (ki a] (2.6)
i=1

where €; are the unit vectors pointing in the ith direction in R®. The quantum cuboids are only
defined when faces on opposite sides have equal spin, which restricts the sum in (2.4) to a
highly symmetric set, which has been described in detail in [26]. Still, there are quasi-local
propagating degrees of freedom, which have, however, no interpretation as curvature. At each
vertex there are 24 faces meeting, but due to the high amount of symmetry, quadruples of them
have equal spin. As a consequence, a vertex amplitude .4, depends only on six spins &, . . ., kg
(see figure 5).

A finite 2-complex of this form has eight boundaries (two in each major axis direction in
R*), and a face f touching only one of those gets assigned the boundary amplitude

1
By = (.Af) 2, 2.7)
while a face f touching two (i.e. on a ‘corner’ of the lattice) gets assigned
1
By = (A7, 2.8)

since this is then only a quarter of a full rectangular face. The edges never end in corners, so
we define for all boundary edges e that

B. = (A7, 2.9)
which is just the inverse of the norm of the boosted quantum cuboid intertwiner at that edge.

Due to the high amount of symmetry, one can split up and rearrange all the amplitudes,
associating them to vertices, writing

z =Y [[A (2.10)
ke v
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where the dressed vertex amplitude is given by

A, = AT AT (A) Q2.11)

eDv fov

This way, the boundary amplitudes are correctly taken care of.

2.2. The asymptotic expression of the amplitudes

In the following, we will give large spin asymptotic formulas for the hypercuboidal amplitudes.
These have been computed and discussed in [26, 32].

In the large spin limit, the asymptotic expression of the amplitude is, as is typical for the
Euclidean signature EPRL-amplitude, given by terms involving the Regge action of the poly-
tope geometry given by the boundary state, and the Hessian determinant D of the quantum
action. [52]. For hypercuboids, the Regge action vanishes, due to which the asymptotic ampli-
tude becomes independent of Newton’s constant, and can be written, up to a k;-independent
factor, as

11\’
Ay(ky, ... s k) = <D+D*> . (2.12)

where D is the determinant of the 21 x 21 Hessian matrix. It depends on the six spins k; via

D* =2 (ki(ky + ks) + kaka (ks + k)
+ k(B + (1 + Dkoks + K3)) (K3(ks + ks)
+ kaks(ks + ks) + ki (k5 + (1 + Dksks + k3)) (kskaks
+ ka(ksks + ka(ks + ks))) (K3(ks + ke) + kake(ks + ko)
+ ko (k3 + (1 + ikske + kg)) (K3(ks + ko)
+ ksko(ks + ko) + ka(k3 + (1 + ikske + kg)) (kskaks
+ ky(kske + k3 (ks + ko)) (kaksks + ki (kske + ka(ks + ke))),

where the branch cut to define D is put on the negative real axis. The omitted prefactor in (2.12)
contains all of the dependence of v, and can be ignored in what follows. The edge amplitude
is given by the inverse norm squared of the SU(2) x SU(2) intertwiner’ which can, up to an
irrelevant factor, be written in the asymptotic limit as

Ae(ki, koks) = (ka + k3)(ks + ki)(ky + k2). (2.13)
The asymptotic face amplitude is given by
Ap(k) = k>, (2.14)

where « is a free parameter in the model, which has been introduced in [26]. This parameter
will play a crucial role in the following investigations.

It should be noted that, in the large spin expressions, all explicit dependencies of the Bar-
bero—Immirzi parameter v go into irrelevant prefactors, as all of the individual amplitude
functions are homogeneous functions of the j= in (2.5) of various degrees.

7 This follows from the fact that we sum over normalised intertwiners, since the edge operator is a projector, see e.g.
[26] for details.
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2.3. The state sum with the asymptotic amplitude

In what follows, we work in the large spin regime, where we make the following assumptions:

e We can replace the sum over spins k; by an integral, effectively treating the spins as
continuous variables.
e We can replace the exact amplitude by its asymptotic expression in the state sum.

Let us comment on these assumptions: The condition (2.5) restricts, for rational v = p/q,
the sum over spins to an infinite set of evenly spaced values k; = gn; with n, € N. Further-
more, in our analysis, we consider the isochoric transition, i.e. we fix the total 4-volume V of
the universe. This means that the sum over spins k; is bounded from above (say, by K max),
and this bound is determined by the boundary spins, as well as V. We set these large enough,
such that the distance between two neighbouring spins allowed by (2.5) is tiny compared to the
maximum spins, effectively letting the spins become continuous variables x; = k¢ /Ky max. The
sum is then converted to an integral over x; with the Lebesgue measure dx;, due to the even
spreading of the allowed spins. As continuous integrand we take the asymptotic expression of
the (dressed) vertex amplitudes.

When doing this, we make an error compared to the original state sum (2.4). The error
we make here come from those points in the resulting integral which sit at the boundary of
the integration range, which constitute the case in which at least one vertex amplitude has
arguments which correspond to small spins, since at these points the asymptotic formula for
the amplitudes does not necessarily hold.

However, numerical evidence suggests that these points to not contribute to the integral. This
has been observed in many instances, and can be understood as follows: in the hypercuboidal
setting, a point on the boundary corresponds to a point where at least one amplitude has small
spins, which means that its 4-volume is tiny. Consequently, other amplitudes have large 4-
volume, since the total is constant. But hypercuboidal amplitudes scale as ~;;*', so tend to
zero as spins become large. As it turns out, this is enough to suppress the integrand, compared
to points where the volume is distributed more evenly.

Indeed, given that o does not become too small, the boundary of the integration range is
suppressed in the integral. One can argue that the asymptotic integrand should dominate the
exact one, so the points where the asymptotic expansion is not valid do not contribute much
to the overall path integral. The dynamics, and in particular the isochoric transition, keeps the
main contribution to the path integral coming from those spins which are of the same order of
magnitude as the boundary spins.

While we feel that this argument is convincing, and is supported by numerical evidence, it is
by no means completely rigorous. A more thorough error analysis of the state sum is, however,
currently out of reach due to the complicated form of the exact amplitude. We hope to come
back to this point at some other time in the future.

2.4. Geometricity of the vertex amplitude

The set of spins k; distributed among the faces of the lattice, which comply to the hyper-
cuboidal symmetry, contains many elements with non-metric interpretation, in the sense that
they do not allow for a reconstruction of the 4d metric from the spins. The presence of these
configurations results from the insufficient implementation of the volume simplicity constraint
on non-simplicial vertex amplitudes. These non-metric configurations also appear on more
general vertices, and are generally characterised by the fact that, unlike twisted geometries
[53-55], they are not suppressed in the large-spin regime. They feature face-non-matching,

9
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Figure 6. The kinematical embedding map relates a coarse quantum cuboid to a
superposition of fine ones.
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but 2d angle-matching, i.e. there is a conformal mismatch between touching faces, preventing
glueing in 4d [26, 27, 56].

The conditions on the spins to remove these non-metric configurations can, for the hyper-
cuboid, be formulated in terms of the Hopf link volume constraint in [56], which result, for
each vertex v in the conditions

kke = koks = kaks. (2.15)

For large values of « the non-metric configurations appear to be dynamically suppressed [26],
but in general one can demand their absence from the start. In what follows, we will consider
both cases of present and absent non-metric degrees of freedom in the path integral.

2.5. Kinematical and dynamical embedding maps

A central part of background-independentrenormalization is the relation of degrees of freedom
on different graphs. This is connected to the ‘rescaling’ of degrees of freedom in the traditional
context, and to the ‘block spin transformations’ in the lattice theory context.

In SFM this is encoded in the embedding map, which maps the Hilbert space of a coarse
graph I to a refined graph T".

brp: Hr — Hp, (2.16)

where I" can be either the boundary of A, or the boundary of a single vertex v in A, in order
to renormalise single amplitudes (figure 6).

In [31, 32, 34], a kinematical embedding map was used which commutes with the electric
fluxes of the EPRL-FK model. For a quantum cuboid state on the coarse graph I' with spins
K; on squares /, and an embedding into quantum cuboid states with fine spins k;, the map can
be written as

St = NIEZ ( I o (KI—Zk,)) Ve 2.17)

ki coarse squares / icl

where Ny is a normalisation constant, since the embedding map is an isometry. This kinemat-
ical embedding map is an intermediate step in constructing the continuum theory.
2.6. The physical inner product

The spin foam state sum (2.4) is used as a proposal for the physical inner product of quantum
gravity. As it is defined, it provides a linear map on the boundary Hilbert space Hr. If the
boundary graph consists of two separate components I' = I'i, U 'y, then this can be rewritten

10
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as a transition map
ZA Hpin — Hrou[' (2.18)

Here by T',u we denote the graph I',, with reversed link orientations, which turns the Hilbert
space to its dual. We therefore have

WinlYoudonss = Za [Vn@0lu] - (2.19)

The definition (2.19) depends on the choice of A, which needs to be removed to make the
physical inner product well-defined. The traditional idea is to sum over all possible A, which
naively is not well-defined and comes with many problems [57], while a reorganisation in terms
of a GFT might be a possibility (see e.g. [58]). Another way to remove the dependence on A
is to make the model A-dependent to ensure mutual consistency of the physical inner prod-
ucts. This line of thinking led to the programme of background-independent renormalisation
[15, 16, 59], and it is a way to at the same time encompass the continuum limit of the boundary
Hilbert space, by refining boundary and bulk simultaneously.

The physical inner product functions as a bona fide projector from the kinematical® to the
physical Hilbert space via the rigging map n: D — D* from a dense subspace D C Hyiy to its
algebraic dual, given by

NPl = (|d)phys- (2.20)

The physical Hilbert space is then derived by dividing D* by the kernel of (2.19) and com-
pletion [10]. As such, physical states arise as (equivalence class of) linear combination of
kinematical states on different graphs. The coefficients are given by the physical inner product
itself.

In the hypercuboidal model, due to the high amount of symmetry, there are no transitions
between Hilbert spaces on different graphs, i.e. by construction a priori I'y, = I'qy. However,
one can use the kinematical embedding map (2.17) to define a transition between differently
refined graphs. As such, one can compute the physical state 1(v;,) of a single quantum cuboid
(i.e. a graph with one node and toroidally compactified links, describing a torus geometry) by
first embedding it into a finer graph I with more nodes, and then mapping it with the spin
foam state sum. This will give the projection of 7(1i,) to one specific graph I

Wiy, = Za 0 trrlt] 2.21)

where Zx is interpreted as the map (2.18).

It is these (projections of) physical states on refined graphs I which we are consider-
ing in what follows. We are in particular interested in the entanglement entropy of these
states regarding a separation of the fine graph into two halves, each containing half the nodes
of TV,

3. Entanglement entropy

Entanglement entropy is a property of quantum states which has received increased interest in
recent years. Measuring the entanglement of degrees of freedom within a region A with those
outside of A, in particular its scaling property with increasing the size of A is important. While

8 The kinematical Hilbert space here is taken to be the direct sum of . for all graphs.

1
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for generic states the entanglement entropy S4 grows with the volume of A, there is a specific
class of states for which it only grows with its surface area. These arise e.g. as the ground states
of physically interesting Hamiltonians. These also play a crucial role in the renormalisation
procedure for discrete systems [40].

Assume that a Hilbert space H can be decomposed as H = Ha @) Hp, where H, contains
all degrees of freedom associated to a region A, and H g those outside of A. The reduced density
matrix of a state [1)) w.r.t. A is then given by

pa = trg (|0)(¥]), 3.1
and the entanglement entropy S4 between A and B is
Sa = —tra(pa In pa). (3.2)

If H does not factorise according to the region A and its complement B, but rather takes on the
form of a sum

H=@@ (H§>®Hg)), (3.3)

then

) = > ailwi) (34)

with normalised states |1);), each of which has an associated entanglement entropy
Y = tway (Pa; In pa) (3.5)

with pa; = trg; (|1i) (11]). The total entanglement entropy associated to A can then be defined
as [60]

Sao= > Sy — > piIn(p). (3.6)
with p; = |gi|*, i.e. the weighted sum of the individual entanglement entropies, plus the von

Neumann entropy of the state decomposition according to (3.3). It can be shown that the
expression is symmetric under exchange of A and B. See in particular [61-63].

3.1. Entanglement entropy in LQG

In LQG, entanglement entropy has been considered for quite some time [42—48], as a spin
network’s degrees of freedom are localise on a graph I', which can be naturally split into
regions. Initial computations have identified some entanglement between gauge degrees of
freedom, while on the gauge-invariant level, the states carry no entanglement entropy, which
can also be seen as follows: Consider the boundary Hilbert space

Hr = P (@Hr{,f?}>, 3.7

{je} n

where Hij"} is the space of intertwiners for fixed spins on the node n. Consider a separation of
nodes N(I') of I into A and B, then any state with fixed spins

=Rt = Q) ua@)u (3.8)

neA neB
12
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Figure 7. In case 1, one quantum cuboid is transitioned into two.
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Figure 8. The bulk of case 1 consists of two hypercuboids, whose boundary is partially
depicted. There are a priori ki, . ..,k as possible spins.

factorises over the nodes, and has therefore vanishing entanglement entropy (3.6).

For linear combinations, however, the situation changes. In particular, in the hypercuboidal
truncation model presented in section 2, the projections of physical states (2.21) can be rep-
resented as finite linear combinations of spin networks. We will therefore write them as
states within the kinematical Hilbert spaces. For a separation of nodes into regions A and
B = N(I")\A, the entanglement entropy S4 will in general not vanish.

We consider two cases in what follows:

3.2. Case 1

First we consider the projection of one quantum cuboid state to two quantum cuboids: I,
consists of one node, with three loops as links, defining a toroidally compactified geometry
depending on thee spins K|, K», and K3. The refined state I, consists of two nodes connected
by one link, resulting from one cuboid dissected into two (figures 7 and 8). There are five

independent spins &, . . ., ks. The (projected) physical state is, after normalisation, given by
Nk, Kk k31 = N(a) Z Ckl ,,,,, s Ly o ks @k ey ks (3.9)
K1.K2.K3 k...,
with
(@) _ A () 1)
Chyks = Z ‘Akl,kz,kykﬁqk%kx ki kg ks ko k10k11 (3.10)
kes-- 11
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and

(3.11)

From the properties of the kinematical embedding map (2.17) we can see that the sums in (3.9)
and (3.11) is restricted to

Ki = ki, Ky =hky+ksy K3 =ks+ks. (3.12)
Due to correct glueing of the 4-dim hypercuboids, the sum (3.10) has to range over
ke = ko, k7 = kio (3.13)

We consider two more simplifications:

e Volume-simplicity: We impose the Hopf-link-volume-simplicity constraint discussed in
section 2 [56], leading to the additional conditions

kiks = koky = ksks,
kikyy = kskig = ksko. -1
Note that the Hopf-link constraints impose face-matching for each vertex separately, but
this also leads to face-matching on the boundary Hilbert spaces, effectively restricting the
Hilbert spaces to those which correspond to torsion-free geometries [26].
e Ischoric transition: We furthermore restrict the allowed transitions to those which fix the
total 4d-volume V, which in this case is given by

_ kikg + kaks + ksks n kikyy + kakio 4 ksko

1% 3 3 (3.15)
Note that this leads to the constraints

kg + ki1 = Ks, k¢ = K4, k7 = Ks (3.16)
where K4, K5, K¢ are the spins of the coarse hypercuboid, which satisfy

V = K1Ks = Kb2Ks = K3Ky (3.17)

due to the volume-simplicity constraint.

Together with (3.14), this leads in total to a sum over one single boundary spin and no bulk
spin, i.e.

K
Nk, .61 = WZ ) LK, kkK /Ky LK, (Ky—k).(Ka—k)K3 /Ko (3.18)
=0
with
d” = AW A (3.19)

Ks v v v Ky v v 1%
Kl’k’kKiz’E’K_z’kKlKZ KlvK27k*(K27k)TZ’E’K_’(K271{)K1K2
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K.
K Ky
ks

Figure 9. In case 2, one quantum cuboid is transitioned into four, two of which form
the regions A and B, respectively. In this figure these are the two right and the two left
ones.

and

2
@ (3.20)

N(a) Z

k

From the form (3.18) one can see that the physical state lies in the direct product Hilbert space
for fixed k| = K

Nk, k631 € HaQHs (3.21)
with
Ha = ® span (Lkl,kz,k3) ., Hp = ® span (Lkl,k4,k5) , (3.22)
ka.k3 kg ks

With this, using (3.18) and tracing subsequently over degrees of freedom in A and B, one
straightforwardly arrives at
In (’ @|*

In the second case we consider the subdivision of one quantum cuboid into four. Two of them,
respectively, form the regions A and B (see figure 9). The final state therefore is of the form

SO = In (V)

zz‘m)

N(“) ) . (3.23)

3.3. Case 2

_ (@)
77[¢K1 ,Kz,Ka] - E : Cr; Lkyko ks & Lky ke ki @ Lk kg kg @y kg ky (3.24)
ki

Due to the embedding map (2.17) the coefficients will be zero unless

ki + ks = Ky,
kr + ky = K>, (3.25)
ks + ke + k7 + ks = K3,

while geometricity will enforce

kiky kaky

ks = Kz, ke = K,

1]?]1? Il?fz (3.26)
ky = 2Ky kg = K.

KK, KK,
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From this one can see that k; and k, are the only independent variables in the coefficients of
the physical state (3.24).

The bulk consists of four hypercuboids, i.e. in the 2-complex there are 4 vertices. Similarly
to case 1, the isochoric constraint of fixing the total 4-volume V = V| + V, + V3 + V4, which
results in

(@) — () A A
c = C = A k k A K| —k ke
k k1.ky k],kg,kS,th,Kflle,KféKé k3 ,kp ke Ky, lKl 1 KSﬂK*22K6

b Kk, A Ki—kj o Ky—k
kl,k4,kg,K4,k11—K5,—2K2—2K(, k37k47k77K4’—1K1_1K5’—2[(2_2K6
with

\% \% \%
Ky = —, Ks = —, Kg= —. 3.27
T TR e (3.27)

With (3.25) and (3.26) these can be written entirely in terms of k; and k;. In the graph Iy,
there are four nodes, two of which we regard as being in region A, while the other two are in
region B (see figure 9). Therefore the physical state is in

MYk kil € > HEP @MY (3.28)
ky
with
H = @ span (g ky ks @ i, 4y i) (3.29)
ko ks ke
H = @ span (1 kks @ ik, iy hyiy) (3.30)
k4,k7,kg

The physical state is therefore not in a Hilbert space which is a tensor product over the regions
A and B, but rather a direct sum of those products. We therefore use the generalised expression
(3.6) for the entanglement entropy. We write

Nk, k.x] = quﬁkl (3.31)
ki

with real coefficients
i, = —+ (3.32)

and normalised states

1
_ E (@)
7/)k1 - Nk Ck(:,kQ Lky ko ks ®Lk3,k2,k6 ®Lk1 Jkg.kg ®Lk3,k4,k7 s (333)
1 ks

where k3, . . ., kg are determined by k1, k;, via (3.25) and (3.26), and where

16
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2 _ ()
Nkl _Z Chy ko
ky
5 (3.34)
2 _ ()
N _Z Chy ko
k],kQ

For a fixed k;, the entanglement entropy SX“) can be computed similarly to (3.23), and
yields

Sy = (N) — Z | el (3.35)
The total entanglement entropy, with (3.6), can be computed to be
S, = ]L’?l In N? (@) (@) N Tk N :
A= Z N2 ky ™ N2 Z Chiky | ™| Chy ey Z N2 N2
“ (3.36)
=In N? - N2 Z cg((ll)kz cg((ll)kz

ky ks

4. Numerical computations

In what follows we will present numerical results on the entanglement entropy for cases 1
and 2 from the last section. We work entirely in the large-spin-asymptotic regime, and assume
that we can neglect the boundary contributions from small spins, that the spins are so large
that the summations can be turned into integrals, even when taking the EPRL-FK quantisation
condition (2.5) into account’, and one can use the asymptotic expressions for the amplitudes
(2.12-2.14). Since the asymptotic formulas are homogenous under simultaneous scaling of the
spins

ANk, ..., M) = NAD Ky, ..., ke) 4.1

with 8 = 12« — 9 [26], the entanglement entropy S, has a specific scaling behaviour with
respect to K1, K>, K3.
First we treat case 1: we have

(@A SR B L S L
S, = 1In N° — N J, dk [c”| In|c; 4.2)
with
Kl 2
N? = / dk || . (4.3)
0
Denoting by §'"” ! the entanglement entropy of the physical state 7[¢ A K AK; > We get
SN = 59 4 In X (case 1) (4.4)

9 See also discussion in section 2.
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Figure 10. Entanglement entropy S depending on «, for case 1 with K| = K, = K3
=10, and V = 10'°.

Similarly, the scaling of the entanglement entropy in case 2 can be computed as
SN = 59 4 In A\ (case 2). 4.5)

This scaling!? of S is very useful when it comes to numerical investigations.

Using the scaling behaviour (4.4) and (4.5), we can numerically evaluate the integrals (3.23),
(3.36) for different values of initial spins K, K», K3. We use numerical integration techniques
from the GNU scientific library (GSL), which can be straightforwardly implemented in C + +.
In figures 10—12, we present the dependence on the coupling constant « for various fixed K;,
for either case.

One can see a clear behaviour of the entanglement entropy, which has a maximum around

Omax & 0.51 (4.6)

where the precise value depends on the (ratios of the) K;. The contour is qualitatively robust,
however, and S4 decreases rapidly for smaller values of . It also decreases for larger values,
albeit more slowly.

This behaviour can be directly understood when taking a closer look at the coefficients c,(f“)
and c,({??kz. In figure 13 we have depicted the graph of the coefficients for different oe. One can

clearly see that for small a, c,((‘l“?k2 is sharply peaked around few values of ki, k,, indicating

that the physical state is a superposition of only few states with definite spins, resulting in
low entanglement entropy. For large values of «, the coefficients are also concentrated around
specific values of spins k;, albeit with a larger spread. There is an intermediate regime in which
the coefficients are spread out over a much larger regions of spins, indicating that the physical

101t should be noted at this point that this scaling is in no way related to the question of whether the entanglement
entropy scales with the area or the volume. In particular, even though the spins K; are related to the areas, equation (4.4)
should not be interpreted as an area scaling law. Such a law could only be inferred by keeping the spins K; fixed and
increasing the lattice sites, and computing the scaling of S, with regards to this increase. This is an interesting question
outside the scope of this article, which we leave for future investigations.
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Figure 11. Entanglement entropy S depending on a, for case 1 with K| = K, = K3 =
10°,and V =2 x 10'°,
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Figure 12. Entanglement entropy S depending on a, for case 2 with K| = K, = K3 =
10, and V = 10'°.

state is a coherent superposition of a large number of different spins k, k>, which leads to a
large entanglement entropy.

The geometric interpretation of this becomes clear when one considers the 3-volume. Since
we are working in the isochoric framework, the total 4-volume V is fixed in the transition
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a < Qmax QX Qmax Q> Qmax

(@)

2
Figure 13. Coefficient Chy ey ‘ of the physical state in case 2, for various a.

between the in- and out-state, and hence, in the hypercubic setting, also the spatial 3-volume
is. Different values of k; therefore correspond to different states in which the 3-volume

v® = VK K:K; 4.7

is distributed differently between the regions A and B. In the case 1 one can directly see that

Vy = K%VG) (4.8)

Vy = KlTj"v@ 4.9)
and for case 2:

Vo = Vkikoks + \/koksks = %V<3> (4.10)

Ve = VVkiksks + \/ksksky = K-k yo (4.11)

From this and figure 13, one can see that the main contribution to the physical state for
a < amax comes from either of the four extremal cases

(k1,k2) = (0,0), (0,K3), (K1,0), (K1, K3). (4.12)

Two of these cases correspond to V4 = 0, Vz = V¥, and two to V4 = V&,V = 0.
Conversely, the regime o > aumax leads to the main contribution coming from an area around

K K>
(k17k2) ~ (27 2) ’ (4.13)

which corresponds to
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%E)
Vg~ —, (4.14)

Va >

Q

i.e. where the 3-volume is distributed equally between the regions A and B.

Between these two extremal cases there is an intermediate regime in which almost all pos-
sible distributions of 3-volume among A and B occur with roughly equal probability in the
physical state. This is the state with maximal entanglement entropy.

These features appear to occur for various different initial spins K;, and both cases 1 and
2. From investigations with larger lattices it can be expected that the peak of S4 at & = amax
becomes even more pronounced as the number of lattice sites increases. This is due to the fact
that the coefficients c,(:) of the physical states, as product of more and more amplitudes A,
become more and more sharply peaked.

5. Summary and discussion

In this article we have considered the entanglement entropy of physical states in the EPRL-FK
spin foam model, where we have worked in the hypercuboidal truncation. In the large-spin
regime this model depends on only one parameter «, and has a manageable set of degrees
of freedom, which makes this truncation an interesting toy model for the full, untruncated,
theory.

Rather than single spin network functions, we considered physical states as given by the
spin foam transition, which in this setting arise as linear combination of spin networks. The
boundary graph are dual to cubic 3d lattices, describing a Cauchy surface with the topol-
ogy of a 3-torus. We have considered graphs with an even number of nodes, such that the
‘universe’ could be separated into two similar regions A and B. We then numerically com-
puted the entanglement entropy S, of these states with regards to the separation of space into A
and B.

We were specifically interested in the dependence of S4 on the parameter «, for different
physical states. We have found that S4, generically has a maximum around oy, ~ 0.51. It
therefore lies in the ‘critical regimes’ of ~ 0.5-0.65, where the model generically undergoes a
qualitative change in behaviour. This regime has been found to have several interesting features,
and in particular contains the fixed point of the background-independent RG flow [31, 33].
This is the point where the diffeomorphism symmetry gets restored, which is broken in the
EPRL-FK model due to the discretisation [12, 26].

It is this restoration of diffeomorphism symmetry which we conjecture to be the reason for
the maximising of the entanglement entropy in this region. In particular, the physical states
are superpositions of spin network functions which—in the large spin regime we are consid-
ering—are all on the same orbit of the classical vertex translation symmetry group, which is
the lattice version of the diffeomorphism group which arises e.g. in Regge calculus [12, 26,
64-66]. For o = amax, these diffeomorphically equivalent degrees of freedom of the kinemat-
ical (spin-network) states are becoming maximally entangled with one another, which here
arises as another feature of the restoration of diffeomorphisms at the RG fixed point. It can in
particular be regarded to be a consequence of the fact that the subdivision of space into two
regions A and B is being performed not with regards to any physical property of the system,
but with regards to the nodes of the graph, which functions as external structure here. Thus, the
separation of space into A and B is not diffeomorphism-invariant, in line with the discussion
in [26].

This findings could be used for future investigations, also in the full theory. Those points
in parameter space with maximal entanglement entropy indicate interesting behaviour with
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regards to the diff symmetry, and therefore could be used to find e.g. fixed points of the RG
flow. This would be far less effort than computing the RG flow in the full theory, which is still
an unsolved problem.

In the future, it would be interesting to check whether the behaviour of the entanglement
entropy is persistent when relaxing the hypercuboidal truncation of the model. In particular
including curvature degrees of freedom is necessary in order to solidify the results of this
analysis. We hope to come back to this point in another article.
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