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Abstract — The charge and current densities of a structured particle are discussed and, for the
case of small particles, expressed in terms of the charge and the electric and magnetic dipoles
of the particle. The action for the motion of such particles in external electromagnetic fields is
studied and the corresponding energy and momenta are investigated. It is seen that these contain
the so-called hidden momenta, which do not vanish even when the particle is at rest.
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Introduction. — A particle (molecule) is said to be
structured if its configuration is not completely described
by the configuration of a point particle, that is, if it has
intrinsic properties as well. A well-known example is the
electron. The electron has, in addition to its translational
degrees of freedom, a spin degree of freedom, and the
translation degrees of freedom and the spin enter in the
evolution equations of each other. A charged molecule
(ion) consisting of charged point particles each without
any internal structure can be approximated by a point
particle with internal structure, so long as it is moving in
fields with characteristic lengths much larger than the size
of the molecule. Such approximations are well studied in
text books, [1] for example. Related to this is the subject
of rewriting the field equations in matter in terms of the
so-called free sources (of charge and current) and the aux-
iliary fields D and H, as well as evaluating the force and
power applied to matter in terms of free sources. Examples
of works of this kind are those of Einstein and Laub [2,3].

The simplest approximation beyond the structureless
point particle is when one incorporates the (electric and
magnetic) dipoles of the molecule as well. Such a con-
struction leads, among other things, to concepts like hid-
den momentum, a part of the momentum which is gauge
invariant and arises only when there is an external elec-
tromagnetic field. One of its peculiarities is that it may
be nonvanishing even when the molecule is at rest. The
concept of hidden momentum has been discussed in many
educational texts, among which [4-7]. But even as late as
2012, there have been claims that the Lorentz force law
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exerted on structured particles (to be more specific, mag-
netic dipoles) is not consistent with special relativity [8].
While it can be argued that the claim that the Lorentz
force law is not compatible with special relativity cannot
be mathematically correct ([9-12], for example), there has
still been debate about the origin of the so-called hidden
momentum, which should be taken into account in order
to resolve apparent inconsistencies, [13,14] for example.
It has also been argued that one should treat structures
like dipoles intrinsically differently from monopoles, and
write separate equations for the force (torque) acting on
them, not something derived from a microscopic descrip-
tion of the dipoles and the Lorentz force acting on point
charges [8].

The aim of this paper is to investigate the dipoles cor-
responding to a structured particle microscopically, i.e.,
based on considering a particle as a collection of structure-
less point particles, and applying the field and force equa-
tions corresponding to point particles to them. The final
results, however, would contain no trace of the structure
except for those expressible in terms of the total charges
and dipoles. So the results could be applicable to parti-
cles like the electron or proton (of course in regimes where
classical treatment is plausible). The equations are, of
course, Lorentz invariant. Defining the momentum of the
molecule as the derivative of its Lagrangian with respect
to its velocity (which is the usual definition of the mo-
mentum), it is explicitly shown that there are terms in the
momentum of the particle which correspond to the hidden
momentum. While the hidden momentum can be intro-
duced as something which should be in the momentum
in order to preserve the conservation of momentum, as
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in [12] for example, here it is derived at the particle level,
without the usage of the energy and momentum of the
electromagnetic field itself.

The scheme of the paper is the following. In the next
section, some conventions are introduced. In the third
section, the charge and current densities corresponding to
a structured molecule are discussed. In the fourth section,
the action corresponding to a structured particle moving
in an external electromagnetic field is studied. In the fifth
section an investigation of the energy and momentum of
such a particle is presented. The last section is devoted to
the concluding remarks.

Conventions. — A temporal component is character-
ized by a zero index, while spatial components are denoted
by Latin indices. Greek indices denote both temporal
(zero) or spatial components. Corresponding to the event
(t,x), the time t is denoted by 2. The Minkowski line
element ds is defined as

(ds)? = —c*(dt)* +dr - dr,
= Nagdrodr?,

(1)

where c is the speed of light, and r is the position vector.
Indices are lowered by 77, and raised by its inverse,

Xo = naﬁ%ﬁv

x* = n’xp. (2)

The proper time 7 is related to the above through

dr = [—c72(ds)?]"/?,

=~ Ldt, (3)

where 7 is the Lorentz factor

(e d_r)‘“

dt dt )

The velocity corresponding to the position x as a function
of time is denoted by v,

_dx

v= (5)

The zeroth component of such a velocity is denoted by v°,
and is equal to 1. The corresponding 4-velocity is denoted
by u,

da”
dr’
= yv®. (6)

If X is a function of £ and r, then X and (V%) mean deriva-
tives of X with respect to t and r, respectively. If X is a
function of a single variable, then (DX) is the derivative
of X.

The momentum 4-vector p is defined with

u® =

P’ =c¢*h,

(7)

where h is the energy, and the spatial components are
equal to the spatial components of the momentum p. The
current density 4-vector J is defined with
JO = Ps (8)

where p is the charge density, and the spatial components
are equal to the spatial components of the current density
J. The 4-potential A is defined with
Ao = -9, 9)

where ¢ is the scalar potential, and the spatial compo-
nents are equal to the spatial components of the vector

potential A. The field strength tensor F' is defined as an
antisymmetric 4-tensor with

Fyo = F;
F;j = €1 B, (10)
where E and B are the electric and magnetic field
strengths, respectively, and ¢ is the Levi-Civita tensor.
The field strength is related to the 4-potential through
Fop = 0,45 — 0A,. (11)
SI convention is used, so that the dimension of the mag-
netic field is equal to that of the electric field divided by
the dimension of speed.

Charge and current densities in terms of mi-
croscopic multipoles. — Consider a collection of point
charges in particles. The charge of the point a is denoted
by .. The position of the point a is denoted by (x + @),
where « and x, denote the position of the particle and the
position of the point a relative to that of the particle. One
notes that the position of a particle is somehow arbitrary.
It is somewhere not far from the positions of the points
within that particle. The charge density corresponding to
the particle is denoted by p, and one has

p(t,r) = ané[r —x(t) — x4 ()], (12)

where the summation runs over the charges belonging to
the particle. Similarly, the current density corresponding
to the particle is denoted by J, and one has

J(t.1) =Y qalv(t) +va(£))3[r — 2(t) — za(t)], (13)

where v and v, are the time derivatives of x and x,,
respectively.
The Taylor expanding relation for a function 2 reads
Ay + z) = [exp(z - V)]2A(y). (14)

So, Taylor-expanding the Dirac delta in x,, p can be
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rewritten as
p = an[exp(fma -V)]o(r — x),
<Z qa> o(r —x)

-Vv. {Z Gaal§(xo - V)]0 (r — m)} , (15)

where the function § is defined through

1- exp(—x).

§(x) = (16)

x
The multiplier of the Dirac delta in the first term is clearly
the total charge of the particle. Denoting this charge by
q, and defining II(¢, 7) through

IT = anwa[S(wa : V)](S(T —T), (17)

one arrives at

p=qé(r—x)— V- IL (18)

IT is called the electric polarization of the particle. Ex-
panding §, it is seen that IT contains the dipole density,
the derivative of the quadruple density, and so on, corre-
sponding to the particle. In chapter 6 of [1], a derivation is
presented which gives the lowest-order terms (dipole and
quadrupole). Neglecting higher multipoles is equivalent
to Taylor-expanding § and keeping only the lowest terms.

Keeping only the zeroth term, one arrives at
IT = wi(r — x), (19)

where o is the electric dipole of the particle,
w = Z GaTq.
a

Performing a similar analysis for the current density,
one arrives at

(20)

7= aul @t o)1 (@0 V)3(2a - V)]5(r—a). (21)
Using )
= 3 gu{lve — 2o V)3 V)]
Ca(ve - V) [(DF) (@ - V)il — ), (22)
VIl =) i@, V)[Fx.- V)s(r—=z),  (23)
a (24)

(v V) =Y gaiwa(v - V)[§(xa - V)]5(r — z),
one arrives after some algebra at
J =v[gd(r —x) -V -I] + (v V)II + IT
+> ga{vall = §(@a - V) = (X0 - V)F(2a - V)]

—Za(va - V)[(DF)(@a - V)[}o(r — ). (25)

Using the identity

z(DF)(z) =1 - §(z) — 2§(x), (26)
one arrives at
J =vgd(r —x) -V -] + (v- V)T + II
+ ZQa[va(wa : V) - ilia(’l)a : V)]
x[(DF)(za - V)]o(r — ). (27)

Defining M and M (the magnetization and the intrinsic
magnetization of the particle, respectively) through

M = %Z qaZq X 'Ua[_Q(Dg)(ma ’ V)]é(r - ), (28)

M = M +1I x v, (29)

one arrives at

J =v[gd(r—x)-V -T+(v- V)II+II+V x M, (30)
J=vp+(v-V)II+ I+ V x M, (31)
J = qui(r —x) + 11+ V x M. (32)

Again, keeping only the zeroth term in the Taylor expan-

sion of (DF), one arrives at
M = id(r — ), (33)

where f is the intrinsic magnetic moment of the particle,

o= % za: JaTq X Vg. (34)
Also,
M = pé(r — x), (35)
where p is the magnetic moment of the particle,
B = X v+,
= Z GaZa X (%va + v) (36)

When such small size approximations apply, one has the
following expression for the charge and current density
corresponding to the particle:

p=qi(r—z)— (w-V)ir—x). (37)

J = qui(r —x)+wé(r—x) —v(w - V)i(r —x)
—( x V)i(r — x). (38)
J =vp+wdlr—x)—(x V)i(r—x). (39)

J = qui(r —x)+wi(r—xz) —w(v-V)i(r —x)
(e x V)i(r — x). (40)
The electric polarization IT and the magnetization M
can be combined in an antisymmetric tensor N, the po-
larization tensor
N — IT¢
N = giikpfp,
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It is shown, in the appendix, that N actually transforms
as a 4-tensor. wo and p could be combined in a tensor, in
a similar manner. However, as shown in the appendix, it
is that tensor times v which transforms as a 4-tensor. The
dipole tensor n is hence defined as

nz() _ ,yw17

n" = ~ve""% .

The action. — The Lagrangian of a particle in an ex-
ternal electromagnetic field is

LO:K—i—/dV(J-A—pcz)), (45)

where L is the Lagrangian, and K is the kinetic part of
the action,

K =—-mc*\/1—c2v-v,

where m is the mass of the particle. Using the expres-
sions for the charge and current density of a particle, one
arrives at

K+qv-A—-¢)
—w-Vop+w-A+(v-V)(w-A)+p-(VxA),
d(w - A)
e’
(47)

(46)

Lo =

=K+q¢v- A-¢)+w-E+pn-B+

where (d/dt) is the complete (or comoving) time

derivative,
d 0
—:=—=—+v-V.
a o
Discarding the last term (which is a total time deriva-
tive) in the above Lagrangian, one arrives at an equivalent

Lagrangian L

(48)

L=K+qv-A-—¢)+w-E+p-B. (49)

The first two terms are those of the Lagrangian of a point
particle. The third and fourth terms correspond to the
energies of the electric and magnetic dipoles in electric
and magnetic fields. So essentially this is what one could
expect from the beginning. The point is that here this
Lagrangian has been obtained from first principles. This
Lagrangian can be written in terms of 4-tensors,

1
L=~"1 (—mc2 + qu®A, + EnO‘BFag) . (50)

The above Lagrangian looks gauge-invariant, apart from
the second term. Applying the gauge transformation

Al = Ay + OaXs (51)
the Lagrangian L is changed into L°®, with
L* = L+~ 'qudax,
d(gx)
=L+ —=. 52
+ =4 (52)

So the Lagrangian changes under the gauge transforma-
tion by a total time derivative, hence the gauge transfor-
mation is in fact a Noetherian symmetry of the system, as
it should be.

The momentum and the energy. — The momentum
is the derivative of the Lagrangian with respect to the
velocity. Writing the Lagrangian (50) as

L=~7'L, (53)
one arrives at ~
pj = —ciQVUjL + Dy, (54)
where B
oL
~ 1YL
Also,
po = L —v'pj,
where -
- OL
5 1,52~
Po ==y v (57)
So,
Pa = —¢ 2unL + Pa, (58)
%P = 0. (59)

The velocity dependence of L, apart from u, comes from
the tensor n, as the dipoles are functions of the rest-frame
dipoles as well as the velocity. The change of n in terms
of the velocity change is a special case of the change of a
tensor-valued degree of freedom of the particle in terms of
the velocity change. To obtain this dependence, one con-
siders the tensor as a function of the rest-frame tensor and
the velocity of the particle. The change of the tensor as
a result of the velocity change is the change of the tensor
when the change of the rest-frame tensor is zero. This is
given by the Fermi-Walker transport: the no-change con-
dition for the rest-frame tensor is the condition that the
tensor is Fermi-Walker—transported, [15] for example.

For a vector W, one has

(W - Au u-W)Au

ApwW = AW + &

) — (

, 60
T (60)
where the Fermi-Walker transport corresponds to the van-
ishing of the left-hand side. So the change of the inter-
nal vector W with the rest-frame vector kept fixed is the
following:

u(W - Au) — (u- W)Au

AW = —

L_LE (61)

The change of the 4-velocity u can be expressed in terms
of the change of v,

Au” =~(0% + e 2uju”) Avd (62)
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One then arrives at

AW = ¢ 2y (Wju® — 6§u, W) Avl. (63)
Similarly, for the tensor n,
An®P = 2y (n;Pu® — 5jo»‘ul,n”ﬁ
+n§‘u6 - (5§3uyno"’)Avj. (64)

The coefficient of (Av?) in the right-hand side is in fact
the partial derivative of (An®?) with respect to (Av?). So,

Do = ¢ 2[(no’ Fap — na” Fyp)u®
+ q(upu® Ay — ugu®Ay)]. (65)

Dy = [m — 2 <quO‘Aa + %n“ﬁFag)] Uy + Do (66)
This is the complete form the momentum of a structured
particle in external fields. Although parts of this momen-
tum (in addition to the momentum of a point particle)
has been already discussed, to my knowledge the complete
form has not been presented yet.

The final result is

Po = MUy + qAa + Po, (67)
where
—2 1 af
m=m-—c o Fus |, (68)
e = 0_2(ngﬂFag — naﬁFgg)u“. (69)

m is essentially an effective mass, [16]: (mc?) is the rest-
frame energy. (¢A) is the usual gauge contribution to the
momentum. The quantity (p — ¢A), which is equal to
(mu + p), is the gauge-invariant part of the momentum,
just as (p — qA) is the gauge-invariant part of the momen-
tum for point particles. p is a nontrivial contribution to
the momentum, arising from the structure of the particle.
Decomposing these in terms of 3-quantities,

m=m-c y(w-E+p-B), (70)
bo = —1Pv-(—wx BrcluxE),  (7])

p =7 (—wxB+c uxE)
+c 270 x (w x E+ pu x B). (72)

The rest-frame quantities are

my =m—c *(w-E+p-B), (73)
port = 0, (74)
py=-—wxB+c uxE. (75)

It is seen that a particle at rest does have a non-vanishing
gauge-invariant momentum.

Concluding remarks. — A particle was studied, which
contains a collection of point particles. The charge and
current densities of the particle were investigated and ex-
pressed in terms of the total charge and the electric and
magnetic dipoles. The corresponding action was presented

and from which expressions were deduced for the energy
and momentum of the particle. It was shown that these
contain the so-called hidden momentum. This part in the
momentum comes from the internal structure of the parti-
cle, and is a result of the dependence of that structure (the
dipoles) on the velocity of the particle. It was seen that to
obtain that part of the energy and momentum, no special
treatment of the structure of the particle is needed: there
is no need to consider forces other than the usual Lorentz
force to arrive at that.
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Appendix: the transformation properties of the
polarizations and the dipoles. — J transforms as a
4-vector. One way to see that, is to note that J is the sum
of terms like

Ue(t,r) = Qu(t)d[r — =(t)], (A1)

or

U (t,7) = Que(t) (A2)
where x is some position and () is some Lorentz scalar.
Now consider the Lorentz transformation corresponding

to the velocity V. The corresponding Lorentz factor is
denoted by I'. One has

S[r — &' ()] = T[1 + ¢ 2V - w(t)]d]r — z(t)], (A.3)

where 7" and [/, 2'(t")] are the Lorentz transformeds of r
and [t, z(t)], respectively. One also has

V()
(1)
where v and «/ are the Lorentz factors corresponding to

v and v, respectively, and v’ is the Lorentz transformed
of v,

=T[1+c 2V -v(t)], (A.4)

V() = 3 {TIV + v (1)) + vo ()} (A.5)
So,
S[r" — ' (t')] B 5[r — x(t))
T BT (4.6)

This, combined with the facts that w transforms as a
4-vector and @ is a Lorentz scalar, shows that U trans-
forms as a 4-vector. As a result, J transforms as a
4-vector.

The current and charge densities corresponding to a
structured particle could be decomposed into those cor-
responding to a point particle and a so-called polarization
current and charge density, J,,

J(t,r) = qu(t)d[r —x(t)] + Jp(t,7r), (A7)
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where
0
Jp = -V .-1II, (A.8)
J, =1I1+V x M. (A.9)

The point particle current is of the form (A.1), so it trans-
forms as a 4-vector. Hence the polarization current should
transform as a 4-vector as well. In terms of the polariza-
tion tensor N, one has
J3 = 9sNP. (A.10)

So the polarization tensor transforms as a 4-tensor.

Finally, taking into account only the first nonzero terms
of the polarization tensor corresponding to a small parti-
cle, one has

o[r —=(t)]
v(t)

and as the second factor on the right-hand side transforms
as a Lorentz scalar, n transforms as a 4-tensor.

NB(t,r) = n*P(t) : (A.11)
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