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Abstract
We study the generation of high-harmonic beams by the non-collinear wave mixing of two
circularly or elliptically polarized fundamental beams. Changing the ellipticity of the two
fundamental beams changes the electric field structure in the focal plane, generating multiple high
harmonics beamlets. We show that the ellipticity dependence of the harmonic dipole modulates the
near-field harmonic intensity, resulting in the diffraction of the generated harmonics in the far-field.

Keywords: high harmonics generation, diffraction, non-collinear-wave mixing, elliptical
polarization
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1. Introduction

High-order harmonic generation (HHG) is a table-top
laboratory light source at extreme ultraviolet wavelengths
[1, 2]. To create high harmonics, an electron in a gas [3–5], a
solid [6–8] or a liquid [9] experiences an electric field from
the laser similar to the Coulomb field.

The mechanism of HHG from gases is explained by the
three-step model [10, 11] that shows that, as the polarization
of the driving laser beam changes from linear to circular, the
recombination probability and the harmonic yield both drop
dramatically [3–5]. Therefore, high-harmonic experiments are
generally performed with linearly polarized light, making
linearly polarized harmonics. Initially it was not obvious how
to generate the circularly-polarized harmonics that are in
demand for such applications as probing chiral molecule
[6–9, 12, 13], detecting magnetic circular dichroism [14–17].

However, studies have been conducted on generating cir-
cularly polarized high harmonics. Besides using a reflective
quarter-wave plate (QWP) [18] or a symmetry-controlled media
[19–21], one can control the polarization of the incident electric
field in such a manner as to control the polarization of the high

harmonics. For example one can use two-color counter-rotating
circularly polarized beams [15–17, 22–26], non-collinear wave
mixing [27–30] or vector beams [31]. We study non-collinear
wave mixing.

Non-collinear wave mixing experiments can be explained
by the momentum and spin angular momentum conservation
[32, 33]. This photon picture predicts the positions and
ellipticities of the generated high-harmonic beams. In terms of
the photon picture, the elliptically polarized beam is con-
sidered as the superposition of the right and left circularly
polarized photons [33]. Linearly or circularly polarized inci-
dent beams have been mainly used in experiments studying
conservation laws for high harmonics [24].

From a wave picture, non-collinear wave mixing forms a
grating-like field modulation in the focal plane [27]. When
the two incident beams are linearly polarized, the focused
beams are also linearly polarized everywhere. The intensity
distribution of the focused beams, however, forms an
‘intensity grating’, modulating the intensity distribution of the
harmonics in the near-field and diffracting the multiple
beamlets in the far-field. When it comes to circular polar-
ization, in the focal plane the intensity distribution is Gaussian
and the polarization is always linear with the polarization
rotating as a function of the lateral position. This creates a
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‘polarization-rotation grating’ [27], resulting in the two
beamlets in the far-field.

When the two incident beams are elliptically polarized, the
intensity and polarization profiles might be similar to those of
the circular polarization but the ellipticity oscillates forming an
‘ellipticity grating’ in addition to the ‘polarization rotation
grating’. The ellipticity grating creates the multiple beamlets in
the far-field. In addition, an elliptically polarized incident beam
modulates the electron trajectory in the continuum opening the
potential to probe the dynamics of the electron wave packet and
the symmetry of the molecular orbital [34–40].

In this paper, using a non-collinear geometry, we inves-
tigate high-harmonic generation by varying the ellipticities of
the two fundamental beams. Changing the ellipticity of the
incident beams modulate the ellipticity of the driving field in
the focal plane, influencing the local high harmonic yield. The
modulated harmonics are diffracted, creating multiple high-
harmonics beamlets. We use the wave picture to reveal the
underlying physics of the high-harmonics diffraction caused
by the ellipticity grating in the focus plane.

2. Experiment

The experimental setup is shown in figure 1. We use a Ti:
sapphire laser system (Coherent Legend, pulse width 35 fs,
central wavelength 780 nm, pulse energy 2 mJ). We split the
beam with a 50:50 Beam Splitter (BS) into Arm 1 and Arm 2.
In each optical path, the pulse energy and the angle of the linear
polarization are adjusted by a half-wave plate (HWP) and a
polarizer (P). We adjust the polarization of the two beams to be
orthogonal. The two beams are then combined by a squared
mirror (SM). The Arm 1 beam goes above the SM and the Arm
2 beam is reflected so that the two beams spatially and tem-
porally overlapped in the focal plane. The two beams then go
through a QWP and the polarizations are converted from the
orthogonally linear polarizations to the counter-rotating circular
or elliptical polarizations. Two beams go into the vacuum
chamber and are focused by a lens ( f=400mm) into a He gas
jet. The generated high harmonics pass through the entrance slit
of the spectrometer and are spectrally-separated by a grating,
before being detected by a micro-channel plate (MCP). The
florescent image of the MCP is collected by a camera.

3. Results

Figure 2 shows the polarization of the incident beams (a), (d)
and the angles of the semi-major axis of the electric field
ellipse (b), (e) and the ellipticities (c), (f). The angles and
ellipticities are calculated using a two-dimensional Fourier
transform based on the measured profiles of the beams. When
the two incident beams are counter-rotating circularly polar-
ized, the total electric field of the overlapped beams is linearly
polarized, rotating several times, depending on the lateral
separation between the two incident beams (figure 2(b)). For
two counter-rotating elliptically polarized incident beams, the
polarization angle (figure 2(e)) of the resultant field is almost
the same as that shown in figure 2(b). However, the mod-
ulation of the ellipticity (figure 2(f)) is different from that
shown in figure 2(c). When the circularly polarized beams are
focused, the polarization in the focal plane is linear every-
where (figure 2(c)), but the ellipticity oscillates between about
−0.04 and 0.04 when the elliptically polarized incident beams
are focused (figure 2(f)). This slight ellipticity modulation
makes a big difference; the diffraction of the generated high
harmonics as discussed below.

Figure 3(a) shows two high-harmonic beamlets generated
by the counter-rotating circularly polarized incident beams.
We fit the two beamlets to a Gaussian function and plot their
center positions in figure 3(b). The positions are consistent
with the theoretical lines also plotted in figure 3(b) (see
Discussion section equation (6)).

Compared to the high harmonics generated by the cir-
cularly-polarized beams (figure 3(a)), the high harmonics
from the elliptically polarized beams have their first order at
the same angle and also produces many more orders of dif-
fracted radiation in the vertical direction (figure 3(c)). We fit
the beamlets to a Gaussian function and plot their center
positions in figure 3(d). The zero position in the vertical
direction is defined by the center of the +1 and −1 diffraction
orders. The experimental results are consistent with the
theoretical positions of the beamlets written by the solid lines
in figure 6(d). (see Discussion section equation (6)).

We also measure the polarization of the two beamlets in
figure 3(a) and verify that the two beamlets are counter-
rotating circularly polarized [27].

Figure 1. Experimental setup. The beam of Arm 1 goes above a squared mirror (SM) and that of Arm 2 is reflected.
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In order to measure the polarization of the high harmo-
nics, a HWP is inserted before the lens and a polarizer con-
sisted of two Au mirror is introduced between the valve and
the slit. For each pixel of the image data, the ellipticity is
calculated based on the HWP’s angle dependence of the high
harmonic intensity. It should be noted that since we can
measure only the amplitude of the ellipticity with this method,
the range of the ellipticity is from 0 to 1. Figure 4 shows the
profiles of the intensity (a) and the ellipticity (b) of the 15th
order harmonic in figure 3(a). The ellipticity near the peaks of
the two beamlets is close to 1, which means the polarization
of the two beamlets is circular, while the ellipticity in the
region between the two beamlets is close to 0, indicating the
polarization is linear. These two results suggest that the two
beamlets are counter-rotating circularly polarized.

4. Discussion

Here we examine the mechanism of the high-harmonic gen-
eration in terms of the wave picture [27]. We work in the
normalized space for the qth order harmonic in figure 5,
where both focusing of the incident beams by the lens and the
propagation of the qth order harmonic are expressed by the

two dimensional Fourier transform. (We return to this prop-
erty at the end of the Discussion section.)

First, however, we discuss why multiple beamlets are
diffracted by the elliptically polarized incident beams in terms
of the wave picture (figure 5(b)). The derivation in detail is
given in appendix B. As shown in figures 2(c) and (f), the
difference between the focused circularly and elliptically
polarized incident beams is the ellipticity modulation in the
focal plane, which is written as

( )e e» ¢ ¢t ysin 2 1const 2

with econst is a constant, ( )¢ ¢x y,2 2 are the coordinates of the
normalized space for the qth order harmonic in the focal
plane. This ellipticity oscillation modulates the intensity of
the harmonic in the near-field. The harmonic intensity ( )eI
depends on the ellipticity e expressed as [3–5]

⎛
⎝⎜

⎞
⎠⎟( ) ( )e

e
e

µ -I exp 2
th

2

2

with eth the threshold ellipticity dependent on the intensity of
the driving beam, the harmonic order, the wavelength, and the
ionization potential of the medium. The electric field of the

Figure 2. Experimental results of polarization and ellipticity of the two fundamental beams before and after focusing. (a) Polarization of the
circularly polarized incident beams. Each intensity is normalized. The ellipticity of both Arm 1 and 2 are 0.97. (b) The angle of the semi-
major axis of the electric field ellipse. (c) The ellipticity in the focal plane. (d) Polarization of the elliptically polarized incident beams. Each
intensity is normalized. The ellipticity of Arm 1 is 0.83 and that of Arm 2 is 0.89. (e) The angle of the semi-major axis of the electric field
ellipse. (f) The ellipticity in the focal plane.

3

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 094002 W Komatsubara et al



qth order harmonic in the near-field can be written as
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Here, the terms
⎛
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2

sin 2
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2
2

represent the polarization rotation (see appendix C) and the
amplitude modulation, respectively. The electric field of the

Figure 3. High harmonics images. (a) High harmonics generated by the counter-rotating circularly-polarized incident beams. The numbers under
the harmonic orders show how much the intensities are enhanced compared to the actual intensities. The beamlets in (a) are fitted by a Gaussian
function and their center positions are plotted in (b). Numbers of −1, +1 are the diffraction orders. (c) High harmonics generated by the counter-
rotating elliptically-polarized incident beams. The dashed lines in (c) represent each beamlet of the diffracted high harmonics. The beamlets in (c)
are fitted by a Gaussian function and their center positions are plotted in (d). Numbers of −5, −3, −1, +1, +3, +5 are the diffraction orders.

Figure 4. Profiles of intensity (a) and ellipticity (b) of the 15th order
harmonic in figure 3(a). The circle and square markers plotted in (a)
and (b) show the peak positions of the two beamlets.

Figure 5. Normalized space for the qth order harmonic. The
separation between the two incident beams is defined as ¢t2 .
(a) When the two incident beams are circularly polarized, two
beamlets are diffracted. The corresponding positions of the two
beamlets are expressed as ¢p .q, 1 The indices 1 represent the

diffraction orders of the two harmonic beamlets. (b) When the two
incident beams are elliptically polarized, the generated harmonics are
diffracted. The corresponding positions of the diffracted beamlets are
expressed as ¢ ¢ ¢  p p p, , .q q q, 1 , 3 , 5 The indices   1, 3, 5
represent the diffraction orders of the beamlets. The detail definition
of the normalized space for the qth order harmonic is written in
appendix B.
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qth order harmonic in the far-field can be then expressed as
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with ( )¢ ¢x y,q q3, 3, the coordinates of the normalized space for
the qth order harmonic in the far-field. TheC1 terms ( =k 1) in
equation (4) correspond to the diffracted beamlets ¢pq, 1

located at  ¢t . In the same way, the C3 terms ( =k 2) corre-
spond to the diffracted beamlets ¢pq, 3 located at ¢t3 and the

C5 ( =k 3) terms the diffracted beamlets ¢pq, 5 located at

 ¢t5 . It should be noted that each beamlet is actually ellip-
tically polarized, but due to the approximations, equation (4)
shows that each beamlet is circularly polarized. Therefore, the
positions of the beamlets ¢

pq n, can be written as

( )¢ »  ¢p nt . 5q n,

In the experimental space, equation (5) can be interpreted
in terms of the angle of the incident and qth harmonic beams
as follows: (see appendix B (B27))

( )q q= 
n

q
tan tan . 6q n,

Equation (6) can be also derived based on the spin and
momentum conservation laws of the photon.

The beamlets position ¢pq n, in the case of n>0 is calcu-
lated based on the momentum conservation law as shown in
figure 6. The nth beamlet of the qth order harmonic absorbs

( )++ -q n1

2

1

2
incident photons corresponding to the upward

arrows and ( )-+ +q n1

2

1

2
incident photons corresponding to

the downward arrows, resulting in

( )q
q
q

q
= =
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q

n

q
tan
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cos

tan
. 7q n,

1

1

1

Here we consider the elliptically polarized beam as
including both right- and left-handed circularly polarized
photons [33]. We also examine the validity of equation (5)
(see appendix C.2).

Next, we think about the two circularly polarized incident
beams, which are the special case of the elliptically polarized
beams. The reason why the circularly polarized beams gen-
erate only two beamlets in the far-field is because of the lack
of the ellipticity oscillation. When the two incident beams are
circularly polarized, the focused beams are linearly polarized
everywhere, i.e. e = 0 in the focal plane. This makes the

amplitude modulation term ( )- e
e

¢ ¢exp
t y1

2

sin 2

th

const
2 2

2
2 always 1 in

equation (3), resulting in no beamlets corresponding to
C C, ,3 5 except for C1 in equation (4). Therefore, there are

only two beamlets with counter-rotating circular polarization
in the far-field when the two incident beams are circularly
polarized.

We can understand the reason why the circularly polar-
ized beams generate only two beamlets in the far-field dif-
ferently. As mentioned above, in this normalized space,
focusing of the incident beams by the lens and the propaga-
tion of the qth order harmonic are expressed as the same two-
dimensional Fourier transform as follows:
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where ( )
 

¢ ¢E x y,f 2 2 is the electric field in the focal plane,

( )
 

¢ ¢E x y,in 1 1 is the incident electric field, ( )
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¢ ¢E x y,far q q q, 3, 3, and

( )
 

¢ ¢E x y,near q, 2 2 is the qth order harmonic electric field in the
far- and near-field, respectively, and ( )¢ ¢x y,1 1 are the coordi-
nates of the lens of the normalized space for the qth order
harmonic. In this space, the two circularly polarized incident
beams are written as

( ) ( )( ) ( ( ) )
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2
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2
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2

Therefore, focusing of the incident beams by the lens and
the propagation of the qth order harmonic are expressed as the
same two-dimensional Fourier transform in equations (8) and
(9). Therefore, the incident beams ( )

 
¢ ¢E x y,in 1 1 should be the

same as the qth harmonic in the far field ( )
 

¢ ¢E x y, ,far q q q, 3, 3,

which indicates that the position of the incident beam ¢t and
that of the qth harmonic ¢

pq, 1 are also the same:

( )¢ »  ¢p t . 11q, 1

Figure 6. Beamlets positions based on the photon picture.
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This relationship can be also derived using spin and
momentum conservation laws of the photon (see
equation (7)). We examine the validity of equation (11) with
numerical calculations (see appendix C.1).

5. Conclusion

Typically, experiments studying the ellipticity dependence of
high-harmonic generation have used spatially uniform polar-
ization beams. In contrast we show that focused beams with
ellipticity leads to a modulated high harmonics intensity in the
near-field. The diffracted high harmonics then propagate to
form multiple beamlets in the far-field. These multiple
beamlets are generated at the same place in the far-field as
when the incident beams are linearly polarized. When the
incident beams are circularly polarized, the diffracted beam-
lets vanish. Two circularly polarized fundamental beams
create only a polarization rotation grating, generating only
two beamlets in the far-field. In contrast, the two elliptically
polarized beams form both a polarization rotation grating and
an ellipticity grating in the focal plane. The ellipticity grating
enforces multiple diffracted beamlets in the far-field.

The ellipticity dependence of the harmonic intensity has
many applications [34–40]. Elliptically polarized beams modulate
the electron trajectory in the continuum [34], helpful for probing
the dynamics of the electron wave packet. This manipulation of
the electron trajectory has an influence on the recombination
probability and will be applicable to probing the property of the
molecular orbitals, especially in chiral systems [8].

Since the intensities of the beamlets depend on the threshold
ellipticity eth in equation (2), which is relevant to the medium,
the ellipticity dependence of each diffracted beamlet will provide
new insight into the medium. Although the diffracted beamlets
of the diffraction orders 1 are generated by both linearly and
elliptically/circularly polarized incident beams, the other dif-
fracted beamlets vanish when the incident beams are circularly
polarized, which means the background free measurement of the
ellipticity dependence. We believe that elliptically polarized
beams can combine the ellipticity dependence experiments to
create a new ‘ellipticity grating spectroscopy’ [41].
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Appendix A.

Efficiency of HHG in the noncollinear configuration

To investigate the efficiency of HHG, we compare the high
harmonics generated in the noncollinear geometry by the two
counter-rotating circularly polarized fundamental beams (a)
with those generated by the linearly polarized fundamental
beam of the Arm 1 (b) (the fundamental beam of the Arm 2 is
blocked). The total pulse energies of the incident beams are
the same ((a) Arm 1: 0.5 mJ, Arm 2: 0.5 mJ, (b) Arm 1: 1 mJ).
In spite of the same total pulse energy, the cutoffs of the
high harmonics are different: about 40 for (a) and about
90 for (b). From these cutoffs, the effective intensities of
the focal point are estimated at (a) ´ -2.0 10 W cm14 2 and
(b) ´ -5.2 10 W cm .14 2 The estimated effective intensity for
(a) is lower than that for (b) because of the difference in the
configurations and the polarizations of the incident beams.
Therefore, it is suggested that the efficiency of HHG in the
noncollinear geometry is about one third lower than that in
the general experiment with using the single linearly polar-
ized fundamental beams in terms of the effective intensity of
the focal point.

Appendix B. Derivation of the beamlets positions when the
incident beams are counter-rotating elliptically polarized

The elliptically polarized beam is generally written as

( )= =qE a e E a, B1x
i

y1 2

with a a,1 2 and q1 real numbers. Since here we consider the
elliptically polarized beams as almost the circularly polarized

Figure A1. High harmonics spectra generated in (a) the noncollinear
geometry by the two counter-rotating circularly polarized funda-
mental beams and (b) by the linearly polarized fundamental beam of
the Arm 1. The number ‘21’ in figure A1 means the harmonic order.
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ones, we can assume

( )q
p

» » a a
2

and . B21 2

Next, we define the normalized space for the qth order
harmonic in figure B1. In this space, focusing of the incident
beams by the lens and the propagation of the qth order har-
monic are expressed by the same two-dimensional Fourier
transform of equations (8) and (9). The coordinate of the lens
( )x y,1 1 in the experimental space is normalized such

( )¢ = ¢ =x
x

a
y

y

a
and B31

1
1

1

with a, the incident beams’ radius. The coordinate of the focal
plane ( )x y,2 2 in the experimental space is normalized such
that

( )¢ = - ¢ = -x
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f
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f
yand B42

1
2 2

1
2

with k1 the wave vector of the incident beams and f the focal
length. The coordinate of the far field ( )x y,q q3, 3, in the
experimental space is normalized such that

( )¢ = ¢ =x
fk
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yand B5q
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q

q
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1
3 3,
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3

with kq the wave vector of the qth order harmonic and L the
distance between the focal point and the screen in the far field.

The non-collinear counter-rotating elliptically polarized
incident beams are expressed by

⎛
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where ( )¢ =t t

a
is the normalized positions of the two incident

beams as shown in figure B1. E E E, ,x y x1 1 2 and E y2 are the
amplitudes of the two incident beams ( >E E E E, , , 0x y x y1 1 2 2 )
and q q,1 2 are the phases, respectively. In this experiment,

q= = =E E E E: 1: 1.08, 1.40, : 1: 1.02x y x y1 1 1 2 2 and q =2

1.69, which is consistent with the assumption of
equation (B2). The focused beams can be obtained by two
dimensional Fourier transform as follows:
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Here, we substitute q q» »p p,1 2 2 2
based on equation (B2)

into (B7) and get
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Figure B1. Relationship between the coordinate of the experimental space and that of the normalized space for the qth order harmonic.
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By calculating the Stokes parameter, we can obtain the
ellipticity

( )e a= tan , B9

where

( )
( )a

j j
=

-
+

b b

b b
sin 2

2 sin
. B101 2 1 2

1
2

2
2

Here, j jb b, , ,1 2 1 2 are given by

⎛
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⎞
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´
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j
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x y b e

b e
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4
, B11f
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2
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2
2
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2

( )= + + ¢ ¢b E E E E y2 cos 2 , B12x x x x1 1
2

2
2

1 2 2

( )= + - ¢ ¢b E E E E t y2 cos 2 , B13y y y y2 1
2

2
2

1 2 2

( )
( )j =

+ ¢ ¢E E t y

b
sin

cos
, and B14x x

1
1 2 2

1

( )
( )j =

- + ¢ ¢E E t y

b
sin

sin
. B15

y y
2

1 2 2

2

Now the elliptically polarized beams are almost circularly
polarized. That is:

( )» » » »E E E E E. B16x y x y1 1 2 2

We substitute equations (B12), (B13), (B16) into (B10) and
we get

Based on equations (B9) and (B17), we obtain

⎜ ⎟⎛
⎝

⎞
⎠( ( )) ( )e j j= ¢ ¢ -t ytan

1

2
arcsin sin 2 sin . B182 1 2

Here, we substitute equation (B16) into (B14) and (B15)
and get

( )j
p

j
p

» » -
2

,
2

B191 2

and we can assume

( ) ( )j j¢ ¢ -t ysin 2 sin 1. B202 1 2

Therefore, we obtain
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In summary, the period of the ellipticity modulation can
be calculated as

( )e e= ¢ ¢t ysin 2 B22const 2

with econst a constant dependent on the incident beams (see
equation (B21)). Here, because the ellipticity modulation is
very weak (see figure 2(f) and equation (B21)), we assume
that the ellipticity oscillation have an influence only on the
harmonic intensity, not the polarization. In other words, we
can approximate the polarization of the near-field qth order
harmonic ( )

 
¢ ¢E x y,near q, 2 2 as linear, and ( )

 
¢ ¢E x y,near q, 2 2 is

proportional to the product of the focused counter-rotating
circularly polarized beams
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2

while the amplitude modulation term equation (2) as
follows:
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It should be noted that in equation (B24) we approximate
the amplitude profile of the harmonics by the focused incident
beams to simplify the equation. This approximation is vali-
dated by numerical calculation of appendix D.2.
Equation (B23) is derived from equation (B8) by using
equation (B16). The electric fields of the high harmonics in
the far-field can be then written as:
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The C1 terms in equation (B25) correspond to the dif-
fracted beamlets ¢pq, 1 located at ¢t . In the same way, the C3

terms correspond to the diffracted beamlets ¢pq, 3 located at
 ¢t3 and the C5 terms the diffracted beamlets ¢pq, 5 located at
 ¢t5 . Each beamlet is actually elliptically polarized, but due
to the approximations, equation (B25) shows that each
beamlet is circularly polarized.

Equation (B25) shows that the positions of the beamlets
¢
p ,q n, written as

( )¢ »  ¢p nt , B26q n,

yields

( )q q

= ¢ »  ¢ = 
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q
Ltan tan . B27

q n q n

q n

, ,

1 ,

Equation (B27) is consistent with the photon picture of
equation (B7).

In equation (B25) we have used the following relation-
ships:
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+ +
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c x

cos exp sin 2 cos cos 3
cos 5 , and B28
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1 3
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Equations (B28) and (B29) can be derived as follows:

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
( )

( )
( )

!
( )

( )
!

( )
!

( ) ( )

( )
!

( ) ( )( )

å

å

å å

å å

-

=
-

=
- -

=
-

=
- -

=

¥

=

¥ -

=

¥

=

- -

=

¥

=

- +

e a x

e
a

n
x

e
a

n

e e

i

e
a

n
n
k i

e e

a

n
n
k

e

exp sin

sin

2

2 1

2

1

4
2 . B30

ix

ix

n

n
n

ix

n

n ix ix n

ix

n

n

k

n n
ix k ix n k

n

n n

k

n
ix k n

2

0

2

0

2

0 0

2 2
2

0 0

2
2 1

The real and imaginary part of equation (B30) show
equations (B28) and (B29), respectively.

Appendix C. Numerical calculation

We calculate the high harmonics based on the Lewenstein
model [42].

C.1. Counter-rotating circularly polarized incident beams

The focused incident beams are expressed by equation (B23).
The peak intensity of the focused beams is ´ -1.0 10 W cm .14 2

The near-field electric field of the qth order harmonic is then
written as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( )

 
¢ ¢ » ¢ ¢

¢ ¢

- ¢ ¢
E x y E x y

t y

t y
, ,

cos

sin
, C1near q HHG q, 2 2 , 2 2

2

2

where ( )¢ ¢E x y,HHG q, 2 2 is the calculated amplitude of the qth order
harmonic. It should be noted that in order to simplify the pro-
blem, we do not consider the effect of phase-matching [43, 44]
and we assume that the phase of the near-field harmonic electric
field

 
Enear q, is the same as that of the focused incident

beams
 
Ein circular, as shown in equation (C1). The far-field

electric field of the qth order harmonic is calculated according to
equation (9).

Figure C1.Numerical calculation results of the high harmonics generated by the counter-rotating circularly polarized incident beams. The left
column shows the intensity and ellipticity profile of the incident beams and the others those of from the 15th to 29th order harmonics.
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Since we pay attention to the peak positions of the high
harmonics, we normalize each intensity of the incident beams
and high harmonics. Figure C1 shows that the peak positions of
the upper and lower incident beams are almost the same as those
of the two beamlets of the high harmonics, respectively. Also,
the ellipticity profiles in figure C1 show that the ellipticities of
the two beamlets are counter-rotating circular polarization.

We fit the intensity profiles in figure C1 by a Gaussian
function and the peak positions are plotted in figure C2. The
two dashed lines show the peak positions of the upper and
lower incident beams, respectively. As shown in figure C2,
the peak positions of the two beamlets are independent of the
harmonic order and consistent with those of the two incident
beams, which supports the conclusion of equation (11).

C.2. Counter-rotating elliptically polarized incident beams

The focused incident beams are expressed by equation (B7). The
peak intensity of the focused beams is ´ -1.3 10 W cm .14 2 The

near-field electric field of the qth order harmonic is written as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

( ) ( )

( )

 

e
e

¢ ¢ »
¢ ¢

- ¢ ¢
¢ ¢

´ -
¢ ¢

E x y
t y

t y
E x y

t y

,
cos

sin
,

exp
1

2

sin 2
. C2

near q HHG q

th

, 2 2
2

2

, 2 2

const
2 2

2
2

The difference between equation (B24) and equation (C2) is
the amplitude term. In the former case, we approximate the
amplitude profile of the harmonics by using the focused incident
beams. Here, we use the calculated amplitude of the harmonic

( )¢ ¢E x y,HHG q, 2 2 generated by the linearly polarized beams.
Though the polarization of the focused beams is not precisely
linear, the ellipticity modulation is very small, which enables us
to consider the polarization of the high harmonics as linear. The
amplitude modulation is expressed by the term equation (2).
Each threshold ellipticity in equation (2) is calculated for each
order harmonic based on [5]. The propagation is calculated in
the same way as appendix C.1.

Figure C2. Peak positions of the two beamlets.

Figure C3. Numerical calculation results of the high harmonics generated by the counter-rotating elliptically polarized incident beams. The
left column shows the intensity profile of the incident beams and the others that of from the 21st to 35th order harmonics.
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We normalize each intensity of the incident beams and
high harmonics. Figure C3 shows the amplitude modulation
expressed in equation (B24) diffracts the harmonic beamlets.

We fit the intensity profiles in figure C1 by a Gaussian
function and the peak positions are plotted in figure C2. The six
dashed lines show the peak positions of the upper and lower
incident beams ¢t , and their odd multiple positions ¢  ¢t t3 , 5 ,
respectively. As shown in figure C4, the peak positions of the
diffracted beamlets are independent of the harmonic order and
almost the same as those of the incident beams and their odd
multiple ones, which supports the conclusion of equation (5).
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