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It is well known that the quantum Hall conductivity in the presence of constant magnetic field is
expressed through the topological TKNN invariant. The same invariant is responsible for the
intrinsic anomalous quantum Hall effect (AQHE), which, in addition, may be represented as one
in momentum space composed of the two point Green’s functions. We propose the
generalization of this expression to the QHE in the presence of non-uniform magnetic field. The
proposed expression is the topological invariant in phase space composed of the Weyl symbols
of the two-point Green’s function. It is applicable to a wide range of non-uniform tight-binding

models, including the interacting ones.
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1. Introduction

The topological nature of Hall conductivity is typically asso-
ciated with the TKNN invariant [1], which has been proposed
for the systems subject to constant external magnetic field. This
invariant is also relevant for the description of intrinsic anom-
alous quantum Hall effect in homogeneous systems. In [1] the
Hall conductivity has been expressed as an integral of Berry
curvature A over the magnetic Brillouin zone

Oy = éLdek[V x A(k)]
) h 27w
A(k) = —i(uk)|V |u(k)). ()

where k = (kj, ky), while [V x A(k)] = ¢YVjA;. Speaking
mathematically, this expression represents the first Chern class
of the U(1) principal fiber bundle on the Brillouin zone. Its
topological nature can be recognized by the following naive
argument. Since the compact Brillouin zone does not have
boundary, the application of Stokes theorem would give zero if
A is uniquely defined on the entire Brillouin zone. The nontrivial
topology makes only integer values possible (see, e.g. [2] and
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references therein). For the discussion of topology related to the
TKNN invariant see also [3-7].

The disadvantage of the TKNN invariant is that its
application is limited to the systems with constant magnetic
field or homogeneous quantum Hall insulators. Moreover, in
the presence of interactions this invariant is not defined at all.
The latter problem may be solved using the alternative form
of the TKNN invariant, in which it is expressed through the
two point Green’s function. The latter is well defined in the
presence of interactions, which allows to define the corresp-
onding topological invariant for the systems with interactions.

The simplest topological invariant composed of the two-
point Green’s function is responsible for the stability of the
Fermi surface in the 341 D systems:

1
M=t ——G(py. p)AG ' (py. ). @
¢ 2mi

Here C is an arbitrary contour, which encloses the Fermi
surface [8] in four-dimensional momentum space. Similarly,
the topological stability of Fermi points is protected by [8, 9]

1 e A A
Ny = s euptr j; dS'GO"G G GGG (3)

Here S is the surface encompassing all the Fermi points.
These invariants were shown to be applicable for the
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interacting systems, but the non-homogeneous ones are still
out of their scope.

It has been demonstrated that in the absence of the inter-
electron interactions the TKNN invariant for the intrinsic
QHE (existing without external magnetic field) may be
expressed through the momentum space Green’s function
[10, 11] (see also chapter 21.2.1 in [8]). In [12] the alternative
derivation of this expression has been proposed using the
Wigner-Weyl formalism, it was later repeated independently
and extended to multi-dimensional space-time in [13]. For the
241D fermions (embedded in 3+1D space-time) the Hall
conductivity is given by

S
H 271-’
where
Eijk 3 9G~'(p) 8G(p) OG'(p)
= dpTr| G .
3!47r2f b rl D o om

“

This expression is topological invariant in momentum space,
ie. it is not changed when the given system is modified
smoothly. Originally this representation for oy was derived
for the non-interacting systems. It is widely believed, how-
ever, that in the presence of interactions the expression of
[10, 11] remains valid, if the non-interacting two-point
Green’s function has been substituted by full two-point
Green’s function with the interaction corrections. In the 2
+1D QED this has been proved in [14, 15]. The corresp-
onding property is now referred to as non-renormalization of
the parity anomaly in 241D Quantum Electrodynamics by
the higher orders of perturbation theory. This is actually the
proof thatthe anomalous quantum Hall (AQHE) conductivity
in relativistic 241 QED does not have radiative corrections.
In a recent paper [16] the influence of interactions on the
anomalous quantum Hall (AQHE) conductivity in the tight-
binding models of 241D topological insulator and 341D
Weyl semimetal has been investigated. Several types of
interactions were considered including the contact four-fer-
mion interactions, Yukawa and Coulomb ones . It was shown
that in the one-loop approximation (i.e. in the leading order)
the Hall conductivity for the insulator is the topological
invariant, which is given by the expression of equation (35)
[10, 11] composed of the complete two-point Green’s func-
tion of the interacting model. However, this work only stu-
died anomalous quantum Hall conductivity in the absence of
magnetic field. Moreover, higher-order effects of the inter-
action were not taken into account. It is worth mentioning,
that the influence of interactions on the Hall conductivity in
external magnetic field has been discussed widely in the past
(see, for example [17-20] and references therein), however,
those considerations have been limited by the case of constant
magnetic field.

In the present paper we review the results obtained with
the participation of the authors on the Hall conductivity in the
non-homogeneous systems including those with varying
magnetic field. The main result of this study as we see it is the

proposition [21] of a new expression for the Hall con-
ductivity. It is a topological invariant composed of the Wigner
transformed two-point Green’s functions. This proposition
has been developed in [22], where the condensed matter
systems with Z, invariance (graphene, in particular) were
considered in the presence of elastic deformations. Besides, in
[23] the proof was presented that in the presence of interac-
tions the Hall conductivity is still given by the expression
proposed in [21], in which the interacting two point Green’s
function is substituted. The whole development reviewed in
the present paper is based on the version of the lattice Wigner-
Weyl calculus summarized in [24].

The Wigner-Weyl formalism was proposed originally by
Groenewold [25] and Moyal [26] in the context of the one-
particle quantum mechanics. The main notions of this form-
alism are the Weyl symbol of operator and the Wigner
transformation of function. This calculus accumulated the
ideas of Weyl [27] and Wigner [28]. In quantum mechanics
the Wigner-Weyl formalism utilises instead of wave function
the so called Wigner distribution, which is the function of
both coordinates and momenta. The operators of physical
quantities are described by their Weyl symbols. The product
of operators in this calculus becomes the Moyal product of
their Weyl symbols [29, 30]. Wigner-Weyl calculus has been
widely applied in quantum mechanics [31, 32].

In the recent decades various modifications of Wigner-
Weyl formalism were proposed [33—39]. In particular, the
Wigner-Weyl formalism was modified in order to be applied
to the Quantum Field Theory. The analogue of the Wigner
distribution was introduced in QCD [40, 41]. It has been used
in the field-theoretic kinetic theory [42, 43], in non-
commutative field theories [44, 45]. Certain applications of
the Wigner-Weyl formalism were proposed to several fields
of theoretical physics including cosmology [46—48].

In the works of one of the authors of the present paper the
Wigner-Weyl formalism has been applied to the study of the
nondissipative transport phenomena [12, 49-53]. In part-
icular, it was shown that the response of nondissipative cur-
rents to the external field strength is expressed through the
topological invariants that are robust to the smooth defor-
mations of the system. The absence of the equilibrium chiral
magnetic effect [54] was demonstrated within the lattice
regularized field theory [52]. The anomalous quantum Hall
effect was studied in [53]. The chiral separation effect was
derived [55] within the lattice models [49, 51]. The same
method was also applied to the investigation of the phases of
high density QCD [12]. In addition, the scale magnetic effect
[56] was considered using the same technique [50].

It is worth mentioning, that momentum space topological
invariants were widely used in the context of condensed
matter physics theory [S7-61]. They appear to be responsible
for the topological protection of gapless fermions at the edges
of the topological insulators [62, 63] and the gapless fermions
in Weyl semi-metals [8, 61]. The fermion zero modes related
to topological defects in *He are described by momentum
space topology as well [64]. In the context of elementary
particle theory the topological invariants in momentum space
were considered in [8, 10, 65-72].
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The paper is organized as follows. In section 2 we recall
the basic notions of Wigner-Weyl calculus. In section 3 we
express electric current through the Wigner transformation of
the two-point Green’s function. In section 4 we present the
expression for Hall conductivity through the topological
invariant in phase space composed of the Wigner transformed
Green’s function. In section 5.1 we rederive the expression
for the Hall conductivity using Kubo formula. In section 5.2
the role of inter-fermion interactions is discussed. In
section 5.3 we discuss the systems with elastic deformations.
In section 5.4 we give the iterative solution of the Groene-
wold equation. In section 6 we end with the conclusions.

2. Wigner-weyl formalism

We start with a very brief introduction to the Wigner-Weyl
formalism. We put aside many questions, including alter-
native formulations and recent developments of the formalism
such as those that gave rise to the rapidly developing area of
deformation quantization.

Wigner-Weyl formalism was proposed almost as early as
the operator formulation of Quantum Mechanics (QM), but
without operators and Hilbert spaces [25-2825-28]. It can be
understood as the correspondence between the QM operators
and the functions in phase space,

A=AR.p) < Aw=Aw(x.p),
such that
(AB)w = Ay * By, (5)
trA = TrAy (6)
Tr(Aw * Bw) = Tr(AwBw) (7)

with appropriate definitions for s*—product (associative, non-
commutative) and Tr operation.

Actually, the formalism can be formulated totally inde-
pendent from ordinary QM, with Schrodinger equation
replaced by the Moyal equation

Jdp Hxp—pxH
ot i%
Here p is the Wigner function, i.e. Weyl symbol of the density

matrix p. For an arbitrary operator A in D dimensional con-
tinuous theory the Weyl symbol can be defined as

[aPq e/ (p + q/241p - q/2).

®)

Notice, that the definition of a similar object for the lattice
models is accompanied by certain difficulties (see discussion
below). Moyal product is defined as

= {{H, p}}.

A
W(x’I’) (2 f)D

% — e%(axa,,— 8,,6,(). 9)

In the following we will use the relativistic system of units,
where h is substiituted by 1. The trace operation Tr then
stands for the integration over the whole phase space and

summation over the inner indices, if any

dPxdPp
@mP

TrAw (x, p) = f P Ay (x, p). (10)

The above property of (6) may be easily proved in this case.
On the lattice we define Weyl symbol of operator A as:

Aveep) = [ dPPeR(p + DA~ F). (D)

The Q-integral goes over the first Brillouin zone M
corresponding to the lattice in configuration space, i.e. in M
we identify the points that differ by vectors of reciprocal
lattice, g/,

Now let us consider the Weyl symbol (AB)y (x, p) of the
product of two operators A and B such that their matrix ele-
ments <p + %lfilp - §> and <p + %Iélp - %> are nonzero
only when gremains in the small vicinity of zero. Then

AByw(x,p)= [, d°P [ d"Re*2
x (p + ZIAR) (RIBIp — )
= 2% [, d°PdPKee
<o+ S~ 5) {p S0~ $)
i—z | [, dPqd ke
x (p +
x (p -
— [, d%adk[ e (p + 2iAlp ~ 2]
x et %‘3[ w(p + %1BIp — §>]

=/, que”‘" (p+ YAIp - §>]

k A
+51Blp — 4

TENENYEN

k~ q k
+3Alp = 3+ 3)
_k

2

)

X e
X [fMdeeixk<p + glﬁlp — §>]

BIS

12)

Here the bra- and ket- vectors in momentum space are defined
modulo vectors of reciprocal lattice g(?, as it is inflicted by
the periodicity of the lattice. In the second line we changed
variables

Q=q+k, K=q-k
Q9+ K Q- K

qi ) k*

2 2
with the Jacobian
1 1 D
= = 2P,
/ ‘—1 1‘

This results in the factor 2P in the third line. Here D is the
dimension of space. In the present paper it may be either 2
or 3.
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Hence, the Moyal product may be defined similar to the
case of continuous space

(AB)y (x. p) = Ay (x, p)e>Od By (x. p).

Notice, that for the chosen form of Wigner transformation on
a lattice the above equality is approximate and works only if
the operators A, B are close to diagonal.

In practice, the above lattice Weyl symbol works as a
good approximation for the systems subject to slowly varying
external electromagnetic field and/or in the presence of weak
elastic deformations [22, 24]. In particular, the value of
external magnetic field B should be much smaller than 1/a?
(where a is the typical lattice spacing), i.e. B < 10000 Tesla
for the real crystal lattices. In the artificial lattices, this value
may be much smaller, see e.g. [73].

An important consequence of the formalism is the
Groenewold equation relating the Weyl symbols of the lattice
Dirac operator, 0, and its Green’s function, G. At the operator
level they are simply inverse,

0G =1.
Calculating Weyl symbol of both sides and using (5), we
obtain

13)

(14)

(OG)w = Ow * Gy = 1. (15)

This equation can be solved iteratively, for the detailed
treatment see [24]. For the purposes of the present paper we
will only need the obvious first approximation in the deri-
vative expansion

GwrGY -GV x 0 G, (16)
valid for Qy ~ Qv(‘?) + QV(VU . Here Q‘ﬁ,l) is linear in the
external electric field.

3. Wigner-weyl field theory

In this section we closely follow [21-23]. Partition function
of a general model with fermions may be written in Euclidian
space-time as

zZ= f DUDWeSI-T) (17)

with the action

S, 81 = [P+l aP g W (p)0(p, W), (18)

where the integration measure and normalization are understood
to be chosen appropriately for model under consideration.

As usual, the Dirac operator, Q and its inverse, the
Green’s function, G = QMI,
related by

acting in the Hilbert space H are

06 = (19)

or, equivalently,

(plOGlg) = 8PV (p — ¢).

in terms of their matrix elements. D is the dimensionality
of space. The basis of H is normalized as (p|g) =

8(Ppy1 — dps 0P (P — @). One can see that the action may
be represented as the trace of the product of operators
S[W, ¥] = w(W[¥, 110), (20)
where W [¥, U] is the Wigner operator
W = ) (U], 1)
Variation of partition function may then be written as
§7 = f DIDV &5 tr(Wé0) = Zte((W)60), (22)
where the usual vacuum expectation value was used,
(0) = % f DIDV OeSW-T, (23)

Further employing Peierls substitution, i.e. noting that intro-
duction of an electromagnetic (EM) potential A simply shifts
the momenta, p — p — A(x), we obtain for the slowly
varying A:

60 = —0,0 SAy,

and using the basic Weyl transformation properties (6) and
(7), we come to

(24)

) D+ldD+ x tr(Gw (x, p)

X 8,,ka(x p)éA(x))
:zde+ 5A(x)f

87 = Zf

o L Gy (x. )3, Qwx. p).

Thus the current density is

dD+
(k) = = [ty Gwte PO Quts ) (29

Note that it is not the topological invariant, it must be aver-
aged over the whole area/volume of the sample to have this
property. Indeed, the total integrated current,

J = f AP (S () = —Tr(Gw * 9,0w), (26)

is topological invariant: under the small variations of lattice
Dirac operator the Weyl symbol, Qw ~ Qw + 6Qw, the
Green’s function varies accordingly, Gy ~ Gy + 6Gy, and
then
OTr[Gw * 6kaW]
=Tr [GW * 31,k5QW + 6GW * 8kaw].
Given that 6Gyw = —Gw * 6Qw * Gy, which follows from
equation (15), the latter two terms become
Tr[Gw * 0,60w — Gw * 0Qw * G * 0, Ow]
=Tr[Gw * 0, Q0w * Gw * 6Qw
- GW * 6QW * GW * akaw]

where we integrated by parts and used that 0,Gy =
—G % 0,0w * G. Now the simple cyclic transformation
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inside the trace proves that

6J = 0. 27)

4. Conductivity

To obtain expression for the conductivity let us consider the
current density (25), and represent the electromagnetic field A
as a sum of the two contributions:

A =AM 4 AE)
where A®) is responsible for the constant external electric
field while A produces the magnetic field and contains the

electric potential of impurities. Provided that the former
contribution is weak, we obtain

dP*p
)=~/ Gyt O )0y Qux. )

~ jO 4 jWAB! 4 jO @ (28)
The first term here is expected to be zero if the Bloch theorem
is valid (which occurs for the majority of the systems dis-
cussed here), while the second should be absent due to the
gauge invariance.

To calculate j'», which eventually defines the con-
ductivity, we recall, that for the slowly varying field A the
expression for Qy may be represented as [24]

Ow ~ QY (0) ame (U)A (E) (29)

The Groenewold equation (15) that relates Gy, and Qy has the
form

GW*QW:1~

It can be solved iteratively giving

Gw =Gy + Gy * (9, OPVAP) « G (30)
Further expanding the stars in the above expression, which

contains the derivatives in x acting on A®), we have

1 E 2 E
Gw~GY +GPAY +G)L0AF,
where
1 0 0 0
G =Gy = 0,00 * G,

2 i 0 0 0 0 0
Gl =G+ 0,0 + G 0,00 + G

Upon substitution of (29) and (30) into (28) we obtain

iF(E) (x) dD+1
<Jk (x)> ~ Im Dpl
2 Qm)P+
x (G + 0,00 * G 0,08 * G - 9,08,

€1y

where the last product is an ordinary one. Notice that
oW = 0P (x, p), G = G (x, p). Assuming that the
external field is constant across the system, Flsf) = const, one

may calculate the total current averaged over the area A and
also averaged in time

T = ﬁLAde“x(Jk(x» WinkF (%, (32)
i dP+1p
Wi = D+1
Imk = 26-/4 f(zﬂ_)D+l Xt

0 0
X (G x 0500 * Gy x 0y, 05 x Gy + 0, 0.

(33)

Here 8 = 1/T is the inverse temperature, T is assumed to be
small. Measure dx contains both integration over spacial
coordinates and over the imaginary time. In the above
expression we restored the *—product in the last factor using
once again (7). From now on we will omit the superscript (0)
for brevity.

Averaged conductivity (proportional to conductance) is
given now by

(34)

It is anti-symmetrized with respect to the indices, and thus
never gives rise to normal conductivity, only to the Hall one.
This can be understood by noting that in the conducting phase,
where the longitudinal conductivity would be non-zero, the
Green’s function entering (33) has a pole, thus giving rise to
the uncertainty in the calculation of V. Therefore, the
expression derived above is not applicable to this regime.

Depending on the dimensionality of the system (33) can
describe a nontrivial magnetotransport effects as well. In the
two dimensional case (i.e. with 241D fermions embedded in
3+1D space) for a system in the presence of electric field
along the x, axis we have

Omk = WOmk - WOkm

MARES ﬁEz.
2w
Here
Te,,k \ 90w (x, p)
% aGW(-x, P) * aQW(‘Xj, p)
6pj Py AB — 0
(33)

This expression represents the averaged Hall conductivity.

In principle one may also consider the coefficient of
proportionality between J and constant external magnetic
field B (now F; (E) corresponds to magnetic field instead of
electric field). Notlce that B; ; do not produce any current in 2
+1D via (32). The only possible non-trivial component is for
B3, the magnetic field perpendicular to the plane,

TP = Bs(Wiao — Whio) ~ 512B3, (36)

i.e. in this case the magnetic field may induce the excess of
electric charge density in the system (compared to the charge
density in the absence of the external magnetic field). In this
expression we use the cyclic property of (33). For the 341D
fermionic system the pattern is more complicated. Let us
suppose that the magnetic field along x, axis is present, B,,
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encoded by F4) of (32). Then,

TE =By Wiz — Wa) =0 37
due to the cyclic property of (33). However,
TE = By Wiz — Win) (38)

may, in principle, be nonzero. In practise, however, in the
majority of equilibrium systems the total electric current
without external electric field is zero (which is the content of
the Bloch theorem [74]). In particular, in [52] it has been
proved that the equilibrium chiral magnetic effect is absent,
i.e. the corresponding coefficient in equation (38) vanishes for
the homogeneous system of lattice regularized Dirac fermions
in the presence of chiral chemical potential.

N given by (35) or, equivalently, & of (34) is the
topological invariant in phase space, as it can be readily
checked in the way similar to (27). The variations under
which it remains invariant must be ‘small’, i.e. should not
change the behavior of the system at spatial infinity. It is
important to observe that (35) is a more general invariant than
the classical TKNN [1] being applicable to the non homo-
geneous and non-uniform systems.

5. Other results

5.1. Connection to kubo formula

To restore the more familiar expression for the Hall con-
ductivity, one may use Weyl representation in momentum
space (8) substituted into (35), and notice that the p-derivative
acting on Weyl symbol becomes the sum of derivatives acting
on the matrix elements of operator Gy such that:

0, Gw = (Gow (39)
with
G(P, R) = (0p, + Or)G (P, R).
The topological invariant becomes
N= % f (@) pd*PlG L, k) (Dx, + D)
X Q(k, p)(0p, + 04)G (P, @)(04, + 01)Q(q, D].
(40)

For the non-interacting systems, Hamiltonian H has energy
eigenstates |n): H|n) = &,|n). Then for O = iw — H we have

0(p. 9) = (plOlg) = (6@ (p — @)iw, — (pIHIq))
X 0 (wp — wy), 41
where we restricted ourselves to the 241D system,

P = (P> P2> P3) = (P, wp). At the same time

(pIn) (nlg)6(w, — wy).  (42)

n p n

1
G(p, q) :Z—E

Applying the two given above formulas in (40), the usual
Kubo formula is restored,

B 1(27r) Zf e

_ 21(27r)3Z 0(— 5n)0(5k)
87‘(‘2./4 K v (& — 5n)2

nl[H £ k) (k|[H, %1|n)
- &E)*(w — &)

(43)

where the coordinate operator has the meaning of the deri-
vative in p

£5¥(p) = (pI%j|¥) = i0,(p|¥) = 10, ¥(p).

5.2. Introduction of interactions

According to [21] equation (35) gives the average Hall con-
ductivity in the presence of the non-homogeneous magnetic
field and non-homogeneous electric potential of impurities,
but with the interactions neglected. It is natural to suppose
also, that equation (35) remains valid in the presence of the
electron-electron interactions. One may consider following
[23] the Euclidean lattice action in momentum space

S = [d**'pi, 0(p, i0))¥
+ O‘dedequDHk@erqu V(q){pkw'ﬁk'

For definiteness we may take the Coulomb interaction with
V(x) = l/|x| = 1/\/)c12 + x7, for x = 0. However, the
consideration of the other types of interactions that occur due
to the exchange by bosonic excitations is similar. Then

~ eiq-x
Vig) = Zx m

the self-energy of the fermions,
contribution is proportional to a.

The results of the calculations presented in [74] demon-
strate, that the (averaged over the system area) Hall con-
ductivity in the presence of inhomogeneous magnetic field,
inhomogeneous electric field, and Coulomb interactions is
proportional to the topological invariant in phase space of
equation (35). In the presence of interaction one simply has to
substitute to equation (35) the complete two-point Green’s
function with the contribution of interactions included. The
present derivation of equation (35) (see also [21, 22] where
this derivation has been given in the absence of interactions)
is valid for the gauge field potential that varies slowly at the
distances of the order of lattice spacing. This corresponds to
the values of magnetic field much smaller than thousands
Tesla and the wavelengths much larger than several Ang-
stroms. In the region of analyticity in « the Hall conductivity
does not depend on « at all and is still given by the same
expression as without Coulomb interactions.

(44)

The Coulomb interaction contributes to

and the leading order

5.3. Hall conductivity in the presence of elastic deformations

In [22] the technique discussed above was applied to the tight-
binding model of graphene in the presence of both inhomoge-
neous magnetic field and nontrivial elastic deformations. The
majority of the results obtained in [22] may be applied to the
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family of two-dimensional honeycomb lattice materials (gra-
phene, germanene, silicene, etc), and to the rectangular lattice
crystals, see [22]. In the mentioned cases the electrons may jump
only between the nearest neighbors and there is the Z, sublattice
symmetry. The lattice consists of the two sublattices O; and O,.
For each x € O, site x + b € O, with fixed vectors b\,
where j = 1, 2,...,M. For the honeycomb lattice M = 3, for the
2D rectangular lattice M =4, for the 3D rectangular lat-
tice M = 8.

Weyl symbol of lattice Dirac operator (i.e. the operator 0
that enters the action Zx,y\IlXQx,y\Ify) has been calculated in the
presence of elastic deformations:

Ow =iw — 1> (1 — Bu ()b b")
j

i(ph) —AD (r))
¢ ) (45)

0
e,ﬁ@[,(j) —AWD (1)) 0
where u;; is the tensor of elastic deformations while

) x+bD /2
Ar@ = [T Ay,

—bD /2

5.4. Solution of the groenewold equation

There are two possible ways of solving the Groenewold
equation (15). First of all, the standard perturbation solution,
build upon small perturbation of the Dirac operator

Ow, p)~ 0¥ + o + ... (46)
Then, quite trivially,
G, )~ GY -~ GV« o x GV +..., (47)
where
G+ 0 = 1. (48)

Alternatively, a kind of gradient expansion can be con-
structed, if the modification of Qy cannot be written as a
small perturbation. It is essentially based on the expansion of
the pseudo-differential *—operator (9) in powers of

~ 1 «—— ——
A= E(GX Op — 0p 0.
Constructing the appropriate iterative scheme and performing

resummation of the latter, see [24], we obtain the following
expression for Wigner transformation of electron propagator:

G, p) = 3 L05'(1 — eM0wl Q' (1 — e)0w] ... (I — e Qw0
k=0

of equation (35) with the above presented expressions for Qy,
and Gy.

6. Conclusions

To conclude, in this paper we review the results obtained by the
group of the authors and published earlier in the series of papers
[21-24]. Below we summarize the main obtained results

1. Wigner-Weyl calculus for the lattice models has been
developed for the case of the slowly varying external
fields [22, 24]. Wigner transformation of the two-point
Green’s function and Weyl symbol of lattice Dirac
operator are defined. The principal way to calculate
both of them is proposed.

2. It is shown that the Hall conductivity averaged over the
system area in the 241 D systems is proportional to the
topological invariant of equation (35) [21] for the case
of varying magnetic field and varying electric potential
of impurities.

3. The influence of interactions on the Hall conductivity is
investigated. It has been shown, that it is still given by
equation (35) with the complete two-point Green’s
function substituted instead of the non-interacting
one [23].

4. The influence of elastic deformations on the Hall
conductivity in graphene-like materials has been
investigated. It was shown, that it is still given by
equation (35) [22, 75]. The corresponding expression
for the Weyl symbol of lattice Dirac operator has been
calculated. The iterative solution of the Groenewold
equation for the Wigner transformation of the Green’s
function has been given [22, 24].

It is worth mentioning again, that the original TKNN
invariant has been derived for the uniform magnetic field
(constant both as a function of time and space coordinates).
The expression for the Hall conductivity proposed in the
mentioned series of papers is an extension of the TKNN
invariant to the case of varying (in space) magnetic fields, or
otherwise inhomogeneous systems. Therefore, its considera-
tion is important. The nonrenormalization of the Hall con-
ductivity (given by the original TKNN invariant) by
interactions has been discussed earlier. But it was limited by
the case of constant magnetic fields as well. We gave the
proof that the QHE conductivity (given by our extension of

(49)

It is also valid in the presence of slowly varying magnetic

field and arbitrary elastic deformations [22, 75].
Correspondingly, in [22] it has been shown that the Hall

conductivity in these systems is given by the same expression

k brackets

the TKNN invariant) is robust to the introduction of interac-
tions in the case of varying magnetic field. This result has
never been obtained in the past, to the best of our knowledge
as well as the result on the influence of elastic deformations
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on the Hall conductivity in the presence of varying magn-
etic field.

The mathematical form of the topological invariant in phase
space discussed here is somehow similar to the one of the
topological invariant in momentum space composed of the
twopoint Green’s function. The latter topological invariant and
its variations are used widely (see [8]). Now the Green’s func-
tion is substituted by its Wigner transformation depending on
both space coordinates and momentum. The ordinary products
are therefore changed to the Moyal (star) product, thus leading to
the beautiful mathematical structure. The Green’s functions with
larger number of legs do not contribute to the Hall conductivity.

M.A.Z. is indebted for valuable discussions to G.E.
Volovik.
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