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Abstract
Optical and quantum interference at the micro and nano-scales are of growing interest. Its
accurate description bases on the non-paraxial propagation of the spatial correlation, in which the
physical observable, determined by the square modulus of the optical and quantum wave
functions, is expressed as a modal expansion on a 3D non-paraxial geometric kernel, with the
spatial correlation as coefficient. The kernel plays the main role of the model and is deduced
from the optical wave equation in free-space as well as from the Schrödinger equation for
particle propagation in field-free regions. Two features are analyzed in detail, i.e. the physical
implications on the wave and particle interference due to the 3D spatial modulations provided by
the local and non-local components of the kernel at the micro and nano-scales, and the decay of
the kernel terms with the propagation distance which leads to a novel criterion for the kernel
accuracy. The interference modeling is implemented on a matrix algorithm and is illustrated by
some examples with nano-structured masks.

Keywords: optical interference, quantum interference, non-paraxial kernel, spatial correlation,
micro-scale, nano-scale

(Some figures may appear in colour only in the online journal)

1. Introduction

Devices at micro and nano-scales are currently developed in
optical and quantum technology. At these scales, non-paraxial
propagation of waves and particles as well as effects due to
the two-point correlation are unavoidable. The non-paraxial
description is required because of the short propagation dis-
tances, significantly shorter than the limit distance that assures
the validity of the paraxial approach. Two-point correlation
effects appear because of the spatial coherence length, whose
shortest value is of the order of the wavelength [1]. Further-
more, it has been shown that the interference modulation due
to two-point correlation disappears for pairs of points with
separation shorter than l 10 [2].

The theory of optical coherence [1] concerns the two-point
correlation in optical interference but, in spite of its general

formulation, it is usually applied under paraxial approach [1]
which is not applicable at micro and nano-scales. The standard
description of quantum interference does not take into account
explicitly the two-point correlation of the quantum wave function
and its non-paraxial propagation at such scales [3]. The use of the
paraxial approach in the standard description, for instance in the
Feynman’s path integral method [4], is presumably justified by
the very short de Broglie wavelengths. Indeed, interference
devices at the pico-scale, where the non-paraxial description is
required, are not yet achievable by the current technology.
However, the progress tendency is characterized by the attempts
to develop technology at the molecular and atomic scales, for
instance in electron nanoscopy for imaging biological nano-
samples [5], which supports the relevance of a non-paraxial
model to predict quantum particle interference. In addition, the
rigorous modeling of the particle path along the first wavelengths
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just after crossing the interference mask [6–9] requires a non-
paraxial model.

It should be underlined that the modeling of the two-
point correlation includes the propagation of the physical
observable, determined by the square modulus of both the
optical and quantum wave functions, as a component of the
two-point correlation function [1, 4]. Thus, the two-point
correlation accurately leads to the modeling of the energy
distribution of optical interference patterns as well as the
probability density function that predicts the built up of single
particle interference patterns.

In spite of the above reasons, to implement the non-
paraxial interference modeling under arbitrary spatial corre-
lation is mathematically hard challenging, because the phy-
sical observables are expressed in terms of multi-dimensional
modal expansions, whose kernel is complex valued and has
Lorentzian shaped amplitude and non-linear argument. This
complexity is an unavoidable accuracy requirement at the
micro and nano-scales, that makes unsuitable the customary
paraxial approached optical and quantum models. In addition,
the local and non-local kernel features have physical impli-
cations on the spatial behavior of the optical waves and
quantum particles in the setup volume, that the paraxial
approached models cannot account for.

The aim of this paper is to discuss the spatially correlated
non-paraxial modeling of both optical and quantum interference
at the micro and nano-scales. To this aim, the same 3D non-
paraxial, scalar, geometric and deterministic kernel is obtained
by solving, by the Green’s function method, the Helmholtz
equation corresponding to the (time-independent) spatial
component of the optical wave equation for free-space as well
as of the Schrödinger equation for field-free particle propaga-
tion. This kernel is defined in the volume delimited by the input
and output planes of the interference setup, and its mathematical
features and physical implications are analyzed in detail.

The fundamentals of the 3D non-paraxial kernel deduc-
tion are summarized in section 2. The importance of the non-
locality represented by the two-point correlation in optical
and quantum interference is discussed in section 3, and the
accuracy of the kernel is discussed in section 4. Some illus-
trative examples are shown in section 5, which were simu-
lated by means of a recently reported matrix algorithm [10],
and the conclusions are in section 6.

2. Fundamentals

Optical wave functions in free-space and quantum wave
functions in field-free regions fulfil, respectively, the wave
equation [1]
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with c the light speed in vacuum, and the Schrödinger
equation [3]

( ) ( ) ( )-  Y =
¶Y

¶



m

t i
t

t
r

r
2

,
,

, 2
2

2

with m the mass of the particle. In both cases, the time
component of the wave function ( )Y tr, is harmonic and of
the forms ( )wi texp for equation (1), with ω the angular
frequency of the wave, and ( )- iE texp for equation (2),
with E the particle energy; while the spatial component of

( )Y tr, is the solution of the Helmholtz equation

( ) ( ) ( )y y + =kr r 0 32 2

under the specific boundary conditions due to the setup
configuration. So, ( ) ∣ ( )∣ [ ( )]y y J= ir r rexp denotes the
eigen-functions of the Laplacian operator with eigen-values
-k ,2 being w=k c in optics and = k mE2 in quantum
mechanics.

The canonical form of the eigen-function is obtained
from the Helmholtz-Kirchhoff integral theorem in
equation (A2) (see appendix A). In order to use it for
describing optical and quantum interference, let us consider
the conceptual sketch in figure 1, i.e. the integration surface of
the theorem is defined as a sphere, centered at P and with
arbitrary long radius R, cut by the M plane, which is then
included as a segment of such surface, thus being a part of the
boundary condition. Furthermore, let us assume that the
optical wave disturbance or single particle emerging from any
point Q on the M plane is posteriorly detected at the point P
on the D plane. s and z denote respectively the distances
between the points Q and P, and between the planes M and D
which configure the setup, as usual in optical as well as in
quantum interference experiments.

Let us assume the well-known Kirchhoff’s boundary
conditions on the integration surface in figure 1 [11]. They
stablish that the eigen-function ψ and its derivative nullify
over the integration surface, except in the emitting region of
waves or particles at the M plane, which includes the point Q,
where ( ) ( )y y=Q iku uexp ,0 with y0 a complex number,
-k2 the eigen-value of equation (3) and u the distance from

Figure 1. Conceptual sketch to describe optical and quantum
interference with basis on the Helmholtz-Kirchhoff integral theorem.

2

Phys. Scr. 95 (2020) 065502 R Castañeda et al



an external point source P0 to the point Q on the integration
surface. The segment ºP Q u0 makes an angle ( )n u, with the
normal to the integration surface at Q. It is reasonable that
Kirchhoff’s definition of ( )y Q has the same mathematical
form of the Green’s function of the system (appendix A),
which is an eigen-function of equation (3). Indeed, it is an
element of a base that allows expressing any boundary con-
dition on the M plane. It is also apparent that ( )y Q should be
necessarily defined from outside of the integration surface, in
order to assure that it takes a part strictly as a boundary
condition for the Helmholtz-Kirchhoff integral theorem in
equation (A2). It has the practical consequence that this
boundary condition can be experimentally controlled by
means of the illumination of the M plane. In this sense,
Kirchhoff’s definition of ( )y Q allows to assign suitable
amplitude and phase values to the boundary condition in
order to represent a wide variety of emission events at the M
plane, including optical waves, quantum particles, as well as
deterministic and statistical processes. Furthermore, it is
assumed that the condition

⎜ ⎟⎛
⎝

⎞
⎠
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due first to Sommerfeld [11], is achieved on the remaining
spherical surface. So, the Kirchhoff’s boundary conditions
together with the Sommerfeld’s condition assure that only the
emitting region on the M plane contributes to the eigen-
function ( )y P determined by the Helmholtz-Kirchhoff int-
egral theorem. It is well-known that such boundary conditions
are not mathematically rigorous; however, they lead to
accurate results and therefore, they are widely assumed in
interference modeling [11, 12].

The derivatives of the Green’s function in the Helmholtz-
Kirchhoff integral theorem in equation (A2) (appendix A) and
of ( )y Q give respectively
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In order to make the boundary condition in equation (4b)
independent from the position of the external point source, an
arbitrary long distance u is assumed, so that equation (4b)
reduces to

( ) ( )y
y

¶
¶

= -
n

ik Q c, 4

with ( ) ( )y y=Q ikuexp0 and ( ) = -n ucos , 1. Accordingly,
equations (A2), (4a) and (4c) yield
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where the integration is realized over the emitting region on
the M plane. By denoting the points Q and P respectively
with the position vectors x and r, figure 1, it follows

∣ ∣x= + -s z r and ( )
∣ ∣

= =
x+ -

n scos , .z

s

z

cz r
Elliminate

c in the denominator Accordingly, equation (5) takes the form
(in the following, the functions defined on a plane are suffixed
with the plane label and the modes defined in a volume are
suffixed by the labels of the planes that delimit the volume)

Figure 2. Conceptual sketch of the geometrical features of
equations (7) and (8). Reduced coordinates are depicted by the
arrows on the planes. The shadowed circles on the M plane represent
structured supports of correlation. The shadowed circle on the D
plane represents the detection area.
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This expression determines the eigen-function ( )y rD in terms
of a time-independent (static) modal expansion, whose kernel
denotes 3D non-paraxial, scalar, geometric and deterministic
modes, defined in the volume delimited by the M and D
planes. The values of the eigen-function ( )xyM at the
emission region determine the expansion coefficients.

3. Non-locality and spatial modulation

For the development below, let us take into account the fol-
lowing considerations:

(i) The positions of pair of points at the M plane are
denoted as ( )x x+ -, and expressed in reduced coordi-
nates x x x=  2,A D with xA specifying the position
of the midpoint in between and xD denoting the
separation vector of the pair, figure 2.

(ii) Single points on the D plane are denoted by r ,A in order
to have a uniform notation.

(iii) The fixed parameters ( )kz, explicitly appear in the
argument of the 3D non-paraxial modes, but they do not
appear in the arguments of the other functions.

The physical observable in both optical and quantum
interference is the energy delivered at the D plane by the
arriving wave disturbances or particles, whose spatial dis-
tribution is described by ∣ ( )∣y r .D A

2 This quantity is straight-
forwardly obtained by multiplying equation (6) by its
complex conjugate, and can be expressed as

∣ ( )∣ ( ) ( )òy x x= dr w r; , 7D A
M

A MD A A
2 2
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a 3D modal expansion in the volume delimited by the M and
the D planes, whose coefficients are given by the two-point
function ( ) ∣ ( )∣x x x x=+ - + -w w, ,M M [ ( )]J x xD + -iexp ,M =

( ) ( )⁎y x y x+ - ,M M with ( ) ( ) ( )J x x J x J xD = -+ - + -, ,M M M

defined over the emitting region on the M plane, and whose
kernel denotes the 3D geometric, scalar, deterministic and
non-paraxial modes
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defined in the volume delimited by the M and D planes, too.
So, equation (9) points out that there is a mode connecting a
given pair of points on the M plane, with midpoint xA and
separation x ,D with a specific point rA on the D plane. In turn,
the 3D modal expansion in equation (8) relates a specific
point xA on the M plane with a given point rA on the D plane,
by adding the contributions of all the pairs with midpoint xA
for which the non-local function ( )x x+ -w ,M takes on non-null
values. The region determined by the set of such pairs of
points is called the structured support of correlation [13, 14]
centered at x .A Finally, equation (7) indicates that ∣ ( )∣y rD A

2

results from the addition of the 3D modal expansions for all
points xA in the emitting region on the M plane.

It is worth noting that

(i) the non-paraxial modes and the non-local function have
Hermitic symmetry, i.e. ( )x xF =+ - kr z, ; ; ,MD A

( )⁎ x xF - + kr z, ; ; ,MD A and ( ) ( )⁎x x x x=+ - - +w w, , ,M M
with the asterisk denoting complex conjugate, and

(ii) the non-local function ( )x x+ -w ,M includes the local
component ( ) ∣ ( )∣x x y x=w , ,M A A M A

2 i.e. its values at
the individual points xA for x = 0.D

Consequently, the local component of the non-local
function ( )x x+ -w ,M is connected with the point rA by the real
valued and positive definite kernel modes
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so that, the modal expansion that this local component con-
tributes is given by

( ) ∣ ( )∣ ( ) ( )( ) x y x x= F kw r r z; ; ; , . 11MD
R

A A M A MD A A
2

In turn, the 3D modal expansion ( )( ) xw r; ,MD
V

A A given by
equation (8) for x ¹ 0,D adds the integrand values for the two
degrees of freedom in orientation of the separation vector xD
of each contributing pair of points on the M plane. So, by
taking into account the Hermitic symmetry of the integrand,
this modal expansion becomes
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with Re denoting the real part, and
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is the 3D non-paraxial kernel defined in the volume between
the M and D planes. It is apparent that ( )( ) xw r;MD

V
A A is real

valued too, but take on positive and negative values due to the
harmonic oscillations of the kernel. Furthermore,
equations (11) and (12) point out that the 3D non-paraxial
modal expansion in equation (8) can be expressed as

( ) ( ) ( ) ( )( ) ( )x x x= +w r w r w r; ; ; , 14MD A A MD
R

A A MD
V

A A

that reduces to ( ) ( )( )x x=w r w r; ;MD A A MD
R

A A for the pairs of
points at which the non-local function ( )x x+ -w ,M nullifies.

In order to interpret the 3D non-paraxial modal expan-
sions in equation (14) geometrically, let us consider a given
point xA on the M plane and all the points rA on the detection
area of the D plane. Thus, each modal expansion determines a
cone in the volume between the M and D planes, with vertex
on xA and basis on the detection area, as conceptually depicted
in figure 2. It can be exemplified at the scales of interest by
considering a pair of points on the emission region, at the
positions x = b 2,A so that x = b,D with b and z compar-
able with the wavelength, for instance ∣ ∣ l=b 3 and

l z0 5 , with l = 4 pm for quantum particles and
l m= 0.632 m for optical waves. Figure 3 illustrates impor-
tant geometric features of the cones corresponding to the 3D
modal expansions:

(i) The geometry of the cones is the same for optical waves
and quantum particles, but their scales clearly differ,
due to the parameter p l=k 2 . The cones ( )( ) xw r;MD

R
A A

have the same Lorentzian cross-section and angular
aperture no matter the position of their vertices at the M
plane, as shown in (a) and (e). The fringe modulation of
the cones ( )( ) xw r;MD

V
A A exhibits spatial frequency

chirping due to the non-linear argument of the harmonic
function of the modes in equation (13), and Lorentzian
envelope due to the coefficients of such harmonic
function, as shown in (b), (f).

(ii) The cones ( )( ) xw r;MD
R

A A are unable to produce inter-
ference spatial modulation as they overlap, as shown by

( ) ( )( ) ( )+ -w b r w b r2; 2;MD
R

A MD
R

A in (a) and (e).

Figure 3. Illustrating the geometrical features of equations (11), (12)
and (14) for a pair of points with separation ∣ ∣ l=b 3 , andl = 4 pm
for the column of the left and l m= 0.632 m for the column on the
right. Graphs on the top row are obtained for ( ) =w b 0.M Graphs on
the third and fourth rows are obtained by adding the corresponding
graphs on the top and the second row for the maximal value of

( )w bM (highest correlated pair of points) in (c), (g), and for a half of
this value (partially correlated pair of points) in (d), (h). The graphs
are enhanced for presentation purposes and the vertical profiles
describe the cross-section of the respective cones at l=z 5 , with
their Lorentzian envelopes in dotted lines.
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(iii) Interference spatial modulation results only by over-
lapping ( )( ) xw r;MD

V
A A on ( )( ) xw r; ,MD

R
A A as expressed in

equation (14). Indeed, the overlap of ( )( )w r0;MD
V

A in
(b) and (f) on the corresponding ( )( ) +w b r2;MD

R
A

( )( ) -w b r2;MD
R

A in (a) and (e) gives the interference
modulated cone ( )xw r;MD A A in (c), (d), (g) and (h).

(iv) The non-local function ( )x x+ -w ,M at the M plane weights

the spatial modulation contributed by ( )( ) xw r; .MD
V

A A In
order to explain it clearly, let us assume that the eigen-
function ( )y xM is normalized. As a consequence, 0
∣ ( )∣x x+ - w , 1.M So, the strongest modulation (high
contrasted interference), obtained by ∣ ( )∣x x =+ -w , 1,M is
smoothed (low contrasted interference) by ∣ ( )∣x x <+ -w ,M

1 and disappears completely by ∣ ( )∣x x =+ -w , 0,M as
illustrated in (c) and (g) for ( ) =w b 1,M in (d) and (h) for

( ) =w b 0.5M and in (a) and (e) for ( ) =w b 0.M

(v) The phase ( )J x xD + -,M of the non-local function only
shifts laterally the fringe modulation of the modes in
equation (13).

The emission of optical waves and quantum particles are, in
general, statistical processes. It confers statistical features to
optical and quantum interference [1, 15], whose individual rea-
lizations are characterized by equations (7) and (14). An indi-
vidual realization begins with the emission event of a wave
disturbance or a single particle at the external source, followed
by its crossing of the M plane and ends with its detection at the
D plane. Furthermore, in quantum interference there is only a
single particle moving in the setup in any individual realization,
and its behavior is not affected by the particles in preceding
individual realizations and cannot affect the behavior of the
particles in posterior individual realizations.

The experimental outcomes result by averaging the sta-
tistical ensemble of a great enough number of individual
realizations occurred during the detection. This ensemble
average, represented by the symbol á ñ, involves only the non-
local function ( )x x+ -w ,M in equations (11) and (12), because
the 3D non-paraxial modes in equations (10) and (13) are
deterministic functions.

Thus, the ensemble average gives the two-point corre-
lation ( ) ( )x x x x= á ñ+ - + -W w, ,M M at the M plane which leads
to the physical observable outcome ( ) ∣ ( )∣y= á ñS r rD A D A

2 at
the D plane. It is related to the spatial distribution at the D
plane of the power spectrum of the optical interference pattern
[1, 13], as well as of the expected detections of particles in
quantum interference [3, 15], respectively. In other words,
equations (10) and (13) characterize the 3D non-paraxial
kernel for the two-point correlation modelling in optical and
quantum interference at the micro and nano-scales.

This analysis leads to the conclusion that non-locality is a
necessary condition for both optical and quantum inter-
ference. Specifically, the geometry of the spatial modulation
is completely determined by the modes in equation (13),
while the modulation strength is determined by the values of
the associated ( )x x+ -w ,M for x ¹ 0,D in each individual
realization of the two-point correlation ( )x x+ -W , .M It means
that the emitted optical waves and quantum particles fill the

cones in equation (14) after a great enough number of indi-
vidual realizations, as illustrated in figure 3.

The requirement of non-locality in optical and quantum
interference underlines the relevance of the non-local function

( )x x+ -w ,M and the two-point correlation ( )x x+ -W ,M in the
theoretical description and modelling of such phenomena. This
description was performed in optics by the well-known theory
of optical coherence [1], but a useful non-paraxial modeling for
the micro and nano-scales has been not yet reported. To our
knowledge, a similar situation occurs in single particle quantum
interference, although the quantum theory of optical coherence
is well-stablished since a long time [16].

Consequently, the preparation of the non-local function
( )x x+ -w ,M at the boundary condition specified on the M plane

(in usual experiments it is a mask with openings) is the key to
obtain interference patterns at the D plane (see appendix B for
details). Such patterns are determined by the cross-sections at
such plane of the overlapped modulated cones ( )xw r; ,MD A A
described by equation (8), which are filled by the optical waves
and the quantum particles after a great enough number of
individual realizations. It is expressed as

( ) ( ) ( ) ( )( ) ( )= +S S Sr r r , 15D A D
R

A D
V

A

whose terms are obtained, respectively, by replacing
equation (14) in equation (8) and then by applying the ensemble
average. So, ( )( ) S r 0D

R
A is determined by the cross-section of

the overlapped cones ( )( ) xw r; ,MD
R

A A as illustrated by the vertical
profiles in figures 3(a), (e), while ( )( )S rD

V
A is determined by the

cross-section of the overlapped cones ( )( ) xw r; ,MD
V

A A which takes
on positive and negative values, as illustrated by the vertical
profiles in figures 3(b), (f). It implies a restriction on the 3D
non-paraxial kernel due to the condition ( ) ∣ ( )∣( ) ( )S Sr rD

R
A D

V
A

for ( )( ) <S r 0,D
V

A because equation (15) is positive definite.
Indeed, equations (8) and (15) yield

∣ ( )∣ ( )

( )

( )

( )

ò ò ò
ò ò

y x x

x x

=

+

d r d d r

d d r

r w r

w r

;

; ,

D
A D A

M
A

D
A MD

R
A A

M
A

D
A MD

V
A A

2 2 2 2

2 2

with

( )

∣ ( )∣ ( )

( )ò ò
ò ò

x x

x y x x= F

d d r

d d r k

w r

r z

;

; ; , ,

M
A

D
A MD

R
A A

M
A M A

D
A MD A A

2 2

2 2 2

according to equation (11), and

( )

( )

( )

( )ò ò
ò ò

ò

x x

x x x x

x x

=

´ F

x ¹
+ -

+ -

d d r

d d w

d r k

w r

r z

;

,

, ; ; ,

M
A

D
A MD

V
A A

M
A M D M

D
A MD A

2 2

2

0

2

2

D

according to equation (12). These expressions together with the
energy conservation law

∣ ( )∣ ∣ ( )∣ò òy x y x=d r dr
D

A D A
D

A M A
2 2 2 2
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for each individual realization, yield

( ) ( )ò xF =d r k ar z; ; , 1, 16
D

A MD A A
2

and

( ) ( )ò x xF =+ -d r k br z, ; ; , 0 16
D

A MD A
2

for the cross-section of the 3D non-paraxial mode associated to
any pair of points ( )x x+ -, , at any distance z from the M plane.
The vertical profiles illustrated in figures 3(a), (e) and (b), (f) are
in accordance with conditions in equations (16a) and (16b)
respectively. In spite that images in figure 3 illustrate a particular
case of equations (11), (12) and (14), they are of general interest,
because the geometrical features of the contributions of any
spatially correlated pair of points to both optical and quantum
interference have similar shape (i.e. Lorentzian envelopes and
fringe modulation whose spatial distribution depends on the pair
separation). So, in accordance with the modal expansion in
equation (8), the spatial modulation of interference with any set
of correlated points can be obtained by overlapping the con-
tributions of all the pairs of points in the set, whose geometric
features are similar to those illustrated in figure 3.

It is worth remarking that the 3D non-paraxial kernel of the
two-point correlation is the same for both optical and quantum
interference, thus offering a unified framework to describe the
spatial features of these physical phenomena. Because the kernel
is essentially determined by the boundary conditions imposed by

the setup, it gives a central role to the experimental arrangement,
i.e. the spatial modulation established by the kernel in the setup
volume emerges as the necessary cause of interference. Specifi-
cally, the spatial modulation in the volume delimited by the M
and D planes is mainly due to the configuration of the mask
placed at the M plane and is activated by the non-local function
prepared at this plane. As explained in appendix B, the prep-
aration of the non-local function occurs in the volume delimited
by a previous S plane and the M plane, and closely depends on
the configuration of the effective source of waves or particles
placed at the S plane. It suggests that the setup configuration is
crucial to determinate the non-locality required by interference, a
feature conventionally attributed only to the optical field and to
the quantum wave function. In addition, the model accounts for
each individual experimental realization and describes the inter-
ference pattern formation as the accumulation of the detection
events of such individual realizations. These features provide a
new physical insight for both optical and quantum interference.

4. Accuracy discussion

Let us estimate the contributions of the terms of
equations (10) and (13) to the 3D non-paraxial kernel along
the propagation z-axis. It is relevant because the difference in
the decay rate of such terms along this axis should provide a
criterion to determine the size of the region in which their
contributions cannot be neglected. For instance, the terms of

Figure 4. Descriptors in equations (19) and (20) for a ring of radius l=R 2 and N vertices of ( )( ) xw r;MD
R

A A -cones uniformly distributed on
the M plane in (a) and (b). A ring of increasing radius ( )l l R40 and =N 9 uniformly distributed vertices is considered in (c) and (d).
Full spatial correlation is assumed in all the graphs and ( )l l z40 2 . The comparison performed in (a) and (d) is for optical waves of
l m= 0.632 m, and in (b) and (c) is for particles of de Broglie wavelength l = 4 pm.
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equation (10) decay like -z 2 and -z 4 respectively, while in
equation (13) the cosine terms decay like -z 2 and -z 4

respectively, and the sine terms decay like -z .3 It is apparent
that the first terms of equations (10) and (13) have the same
decay along the z-axis, with the slowest decay rate. Therefore,
these terms should characterize the kernel. However, this
paper is focused on short propagation distances, in which all
the terms should be taken into account to provide an accurate
prediction.

A comparative analysis is performed by means of two
descriptors, which compare the power spectrum ( )S r ,D A obtained
with the whole kernel in equations (10) and (13), with the power
spectrum ( )¢S rD A obtained with the reduced kernel of terms

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟( )

∣ ∣
∣ ∣

( )x
p

x
x

F¢ =
+ + -

+ -
k

k z
r z

z r

z r
; ; ,

4
, 17MD A A

A A

A A

2

2

2

and

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟ ⎛

⎝⎜
⎞
⎠⎟

( )

[ ( ) ( ( ))]

∣ ∣
∣ ∣

∣ ∣
∣ ∣

( ∣ ∣ ∣ ∣ ( ))

¢ x x J x x

p

x

x
x

x

x x J x x

F D

=
+ + -

+ -
+ + -

+ -

´ + - - + - + D

+ - + -

+

+

-

-

+ - + -

18

k i

k z z

k k

r z

z r

z r
z r

z r

z r z r

2 Re , ; ; , exp ,

2
4

cos , .

MD A M

A

A

A

A

A A M

2

2 2

The descriptors are

( ) [ ˜ ( ) ˜ ( )] ( )ò= - ¢rms z
D

d r S Sr r
1

, 19
D

A D A D A
2 2

where D is the integration area on the D plane, and ˜ ( )S rD A and
˜ ( )¢S rD A are the normalized versions of ( )S rD A and ( )¢S rD A

respectively, i.e. ˜ ( ) ˜ ( )ò ò= ¢ =
D

d r S
D

d r Sr r
1 1

D
A D A

D
A D A

2 2

1. So, the descriptor ( )< <rms z0 1 compares the morphology
of ( )S rD A and ( )¢S rD A on the D plane for >z 0, i.e. along the
propagation axis; and

( ) ∣ ( ( ) ( ))∣ ( )D = - ¢A z A z A z1 20S S

with ( ) ( )ò= ¢¢A z
D

d r S r
1

S
D

A D A
2 and ( ) ò=A z

D

1
S

D

( )d r S r ,A D A
2 and the integrals are performed on the same area at

the D plane for >z 0. Thus, the descriptor ( )< D <A z0 1
compares the area under the curves ( )S rD A and ( )¢S rD A along the
propagation axis. Therefore, ( ) rms z 0 and ( )D A z 0
mean ( ) ( )@ ¢S Sr rD A D A so that the reduced kernel, whose terms
are given by equations (17) and (18), is accurate enough for 3D
non-paraxial description of the wave and particle propagation.
This accuracy is assured in more than 99% for ( ) rms z 0.01
and ( )D A z 0.01.

Figure 5.Descriptors of equations (19) and (20) for three parallel slits at the M plane, each one enclosing a uniform linear array of 10 vertices
of ( )( ) xw r;MD

R
A A -cones with spacing l 10, for optical interference with waves of l m= 0.632 m. The curves were calculated for different slit

spacing d under maximal spatial correlation.

Figure 6. Descriptors in equations (19) and (20) for a thin slit at the M plane enclosing a uniformly distributed linear array of vertices of
( )( ) xw r;MD

R
A A -cones for quantum interference with particles of de Broglie wavelength l = 4 pm. In (a) the array contains 10 vertices with

different spacing d under maximal correlation. In (b) the array of length l contains 8 vertices under Gaussian correlation controled by the
standard deviation s. The horizontal axis in both graphs is z [pm].
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Figures 4–6 show that both descriptors tend asymptotically
to null as z increases, independently from specific features (i.e.
number and density of cone vertices distributed on the M plane,
geometry of the vertices distribution, spatial correlation pre-
pared at the M plane, wavelength). This behavior allows to
estimate the limit propagation distance z0 such that the condi-
tions ( ) rms z 0.01 and ( )D A z 0.01 are fulfilled for z z0

for any considered feature. It means that the reduced kernel can
be regarded as exact for z z ,0 while the complete kernel
should be taken into account for <z z .0 The limit distance

l=z 20 achieves these requirements, as illustrated in
figures 4–6. As a consequence, the reduced kernel can be

regarded as exact for describing the propagation of both optical
waves and quantum particles at the micro and nano-scales.

Furthermore, the descriptors point out that the differences
between ( )S rD A and ( )¢S rD A for l<z 2 are mainly in area
under the curves, while the morphology differences are not
significant. It means that the reduced kernel gives also a well-
approached description for l<z 2.

The vertices of ( )( ) xw r;MD
R

A A -cones are uniformly dis-
tributed on a ring under full spatial correlation in figure 4. The
radius of the ring is fixed in (a) and (b) and the number of
vertices grows, thus increasing the vertex density. The kernel
morphologies are compared for optical interference in (a), while

Figure 7. Honeycomb grating for optical interference ( )l m= 0.632 m under full spatial correlation. (a) Mask with 10 identical hexagonal
frame openings in thick solid white line on an area of l l´4 4 . Blue dots represent the vertices of ( )( ) xw r;MD

R
A A -cones and red dots are the

vertices of ( )( ) xw r;MD
V

A A -cones. Pseudo-color is used for the power spectrum of the interference patterns, described by equation (15), are
shown for l=z 2 in (b) and l=z 1000 in (c).
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the areas under the curves are compared for quantum inter-
ference in (b). Similar graphs of the rms and the

( )DA z -descriptors are obtained for quantum and optical inter-
ferece respectively, with the appropriate scales on the z-axis. In
(c) and (d), the number of vertices of ( )( ) xw r;MD

R
A A -cones is

fixed and the ring radius increases. Now, the kernel morphol-
ogies are compared for quantum interference in (c), while the
areas under the curves are compared for optical interference in
(d). Once more, similar graphs of the rms and the

( )DA z -descriptors are obtained for optical and quantum inter-
ference respectively, with the appropriate scales on the z-axis.
All the graphs in figure 4 confirm the l 2-criterion.

The kernel morphologies and their areas under the curves
are compared in figure 5 for optical interference produced by
three thin parallel slits with different spacing. Each slit encloses
a uniform linear array of vertices of ( )( ) xw r;MD

R
A A -cones, under

full spatial correlation. The graphs confirm the l 2-criterion in
all cases, and the same result is obtained for quantum inter-
ference with the only difference in the scale of the z-axis, in
accordance to the de Broglie wavelenght.

The descriptors in figure 6 compare the kernel
morphologies (a) and the areas under the curves (b) for
quantum interference produced by single particles that cross a
thin slit, enclosing a uniform linear array of vertices of

( )( ) xw r;MD
R

A A -cones. The number of vertices is fixed in all
graphs, and different vertex spacing and full spatial correla-
tion is considered in (a), while the vertex spacing is fixed and
variable Gaussian spatial correlation is assumed in (b). Once
more, the l 2-criterion is confirmed in all situations. The
same result is obtained for optical interference with the only
diference in the in the scale of the propagation z-axis, in
accordance with the optical wavelenght.

Although particular experimental situations have been
considered in figures 4–6, they confirm the l 2-criterion
independently from specific features involved in both optical
and quantum interference. So, the general validity of this
criterion is expectable, and allows us to use the reduced
kernel for the exact modeling of both optical and quantum
interference at the micro and nano-scales.

It is interesting to note that the spatial correlation kernel and
the kernel for modeling the non-paraxial propagation of the
optical and the quantum wave functions are related, as shown by
equations (6)–insert (9). Both kernels predict exactly the same
physical observable, determined by the square modulus of the
wave function, in fully spatially correlated interference. So, they
have the same accuracy in such cases. Nevertheless, the wave
function kernel cannot account for partially correlated inter-
ference, and therefore the spatial correlation kernel should be
considered as a more general kernel. Indeed, the fully spatially
correlated interferece that the wave function kernel models, is a
particular case of modeling for the spatial correlation kernel.

5. Some illustrative examples

Optical and quantum interference modelling at the micro and
nano-scales, based on the two-point correlation and the
reduced kernel, is illustrated with some examples.

A mask with a nano-structured hexagon honeycomb
opening for optical interference is considered in figure 7. Uni-
form illumination and maximal spatial correlation is assumed.
The nano-structured opening is composed by 10 identical thin
hexagon profiles covering an area of l l´4 4 , as shown in (a).
It encloses 45 (blue dots) vertices of ( )( ) xw r;MD

R
A A -cones, placed

at the hexagon vertices and the midpoint of their largest sides.
The red dots represent the vertices of ( )( ) xw r;MD

V
A A -cones. The

power spectrum of the interference patterns described by
equation (15) are shown in pseudo-color in order to improve the
details, near the mask in (b) and far away from the mask in (c).
It is worth noting that the pattern in (c) resembles the diffraction
pattern produced by a circular opening, known as Airy pattern
[11]. It is due to the approximated rotation-symmetry of the
nano-structured contour and the distribution of the blue dots in
the opening, in such a way that the separation of any con-
secutive pair of blue dots is shorter than l [17].

This example suggests the application of the proposed
model to accurately simulate the recently reported experi-
ments on particle diffraction through graphene lattices [18].

The nano-structured mask in figure 8(a) is composed by a
central hole and two concentric thin rings with diameter l4
for the outer ring. The uniform distribution of blue dots
represents the vertices of ( )( ) xw r;MD

R
A A -cones contained in the

ring openings. The red dots represent the vertices of
( )( ) xw r;MD

V
A A -cones. Uniform illumination of the nano-struc-

tured mask and full spatial correlation is assumed.
The rms-descriptor in figure 8(b) compares the morphology

of the patterns produced by the masks in figures 7(a) and 8(a),
which are described by equation (15), along the z-axis. The
profile tends asymptotically to null thus pointing out that the
patterns become closely similar as the propagation distance
increases. Indeed, the pattern morphologies are similar in more
than 95% for lz 5 . This result stresses the relevance of the
symmetries in the design of nano-structured masks for photonic
applications.

It is specially appreciated in the optical interference mod-
elling by using elaborated nano-structured masks, as illustrated
in figure 9(a). The mask has a snowflake nano-structured

Figure 8. (a)Nano-structured mask composed by a central hole and two
thin concentric rings with outer diameter l4 ( )l m= m0.632 . 45
vertices of ( )( ) xw r;MD

R
A A -cones are uniformly distributed, 31 on the outer

ring, 13 on the inner ring and 1 in the hole. The red dots represent the
vertices of ( )( ) xw r;MD

V
A A -cones. The mask is uniformly illuminated

under maximal spatial correlation. The rms-descriptor in (b) compares
the diffraction patterns produced by the masks in (a) and in figure 7(a),
described by equation (15), along the propagation z-axis.
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opening, whose main diagonal length is l2 . 85 vertices of
( )( ) xw r;MD

R
A A -cones distribute uniformly along the opening

contours, and uniform illumination under full spatial correlation
is assumed.

The morphologies of the power spectrum patterns near
the mask in figures 7(b) and 9(b) are clearly different, but
they become similar far away from the mask, as shown by
graphs 7 (c) and 9 (c). Results in figure 9 illustrate the
capability of the 3D non-paraxial reduced kernel to model
accurately optical interference produced by exotic nano-
structures.

Figure 10 illustrates the simulation of the Fresnel diffrac-
tion pattern produced by single electron interference [19].
Electrons prepared with de Broglie wavelengthl = 4 pm cross
a circular opening of radius l3 , and the pattern build-up is
simulated at l=z 3 by accumulating electron arrivals at each
detector pixel. An ideal detector with pixels of size 0.04 pm
was modeled. The counts of electron arrivals at each pixel are
shown on the colored bar on the right side of each graph and the
red dot in the graph represents the last single electron arrival.

The pattern has circular symmetry as expected, and
exhibits a local minimun at its center. Altought the size of the

Figure 9. (a) Snowflake nano-structured mask for optical interference ( )l m= 0.632 m , with main diagonal length l2 . The mask opening
contains 85 uniformly distributed vertices of ( )( ) xw r;MD

R
A A -cones (blue dots). Uniform illumination of the mask under full spatial correlation is

assumed. The vertices of ( )( ) xw r;MD
V

A A -cones are omitted for illustration purposes. Diffracted light produces the patterns described by
equation (15), near the mask ( )l=z in (b) and far away from the mask ( )l=z 1000 in (c). The patterns are presented in pseudo-color for
enhancing the morphological details.
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diffracion mask and the detector, as well as the propagation
distance are yet not achievable by the current technology, this
example clearly illustrates the capability of the reduced kernel
to model the behavior of single particles in quantum inter-
ference, very near from the mask. It also stresses the perti-
nence of the spatial correlation based modelling of optical and
quantum interference at the micro and nano-scales.

6. Conclusions

Optical and quantum interference at the micro and nano-
scales were described in terms of the modal expansion of the
non-local function ( )x x+ -w ,M on the same 3D non-paraxial
geometric kernel. This kernel was rigorously deduced from
both the optical wave equation for free-space propagation and
the Schrödinger equation for field-free propagation, and its
geometrical interpretation offers a unified framework to
describe the spatial features of optical and quantum inter-
ference. It was shown that non-locality at the input plane is a
necessary condition for interference, which results from a
spatial modulation described by the kernel. This condition is
established in the framework of the spatial (two-point) cor-
relation and accounts for individual experimental realizations
as well as for the experimental outcomes after a significant
number of individual realizations. Because the kernel is
essentially determined by the boundary conditions imposed
by the setup, the model gives a central role to the exper-
imental arrangement in the interference of waves and
particles.

The kernel is composed by terms of different decay rates
along the propagation axis, and it was showed that the term
with the slowest decay can be considered as exact for

lz 2 while for l<z 2 it provides a relatively small
departure in the outcome values. This criterion was discussed
for different boundary conditions and experimental para-
meters. Therefore, the reduced kernel can be used to describe
optical and quantum interference at the micro and nano-
scales, as well as to predict accurately the experimental

outcomes of both individual realizations and whole experi-
ments with a significant number of individual realizations.
Furthermore, the same kernel can be used for diffraction by
appropriately shortening the spacing of cone vertices dis-
tributed on the input plane.

Examples of non-paraxial optical and quantum inter-
ference modeling with the reduced 3D kernel and by con-
sidering nano-structured masks were discussed, and the
capability of the kernel to describe the behavior very near
from the mask was stressed.

To our knowledge, this kernel and its geometric analysis
is proposed for the first time for single particle quantum
interference and its application to optical interference at the
micro and nano-scales is a novelty too.
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Appendix A. The helmholtz-kirchhoff integral
theorem

Let us consider the volume V contained in a closed surface S
and a continuous and differentiable vector field A, defined in

Figure 10. Build-up of the Fresnel diffraction pattern by single electrons with de Broglie wavelength of l = pm4 . Electrons cross a circular
opening of radius l3 , under full spatial correlation and the pattern is simulated at l=z 3 . Graph (a) shows the pattern after 12500 electron
arrivals, and graph (b) shows the pattern after 80000 arrivals.
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that volume and its surface. It must fulfil the divergence

theorem ∮· ·ò  =dV dA A S.
V S

Let us define the vector

field as y y=  - G GA , with y the eigen-function of
equation (3) to be determined, and G a further eigen-function
of equation (3) called the Green’s function of the system [20].
Accordingly, · y y =  -  =G GA 02 2 holds, and the
divergence theorem yields the Green’s theorem [20],
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with ¶ ¶n the derivative along the normal to the integration
surface. The Green’s theorem determines the value ( )y P at the
point P in the volume enclosed by its integration surface, by
isolating it into a sphere of arbitrary small radius d, centered at
P, as conceptually sketched in figure A1. It is the simplest
isolating volume compatible with the isotropic swept of the
integration surface from P. Therefore, the integration surface in

equation (A1) can be expressed as { }Èd
º


¢ S S Slim

0
.

The most suitable mathematical form of the Green’s
function for this boundary condition should have spherical
symmetry, i.e. ( ) ( ∣ ∣) ∣ ∣=G ikr r rexp , with ∣ ∣r the distance
from P to any arbitrary point Q on the integration surface.
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where d= WdS d ,2 with Wd the differential solid angle that
subtends the differential surface on S from P. Furthermore,
¢ S S as d  0. Consequently, equation (A1) yields
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which is known as the Helmholtz-Kirchhoff integral theorem
[20]. It gives the values of the eigen-function y at any point in
the volume enclosed by the integration surface in terms of a
modal expansion, whose kernel is determined by the Green’s
function of the system and its derivative, while the coeffi-
cients are the values of y and its derivative on the integration
surface, i.e. on the considered boundary condition.

It should be stressed that the kernel modes are scalar,
geometric and deterministic functions, defined in the volume,
which connect the point P with the integration surface.
Therefore, they must be compatible with the specific bound-
ary conditions imposed to equation (3).

Appendix B. Preparation of the non-local function

Let us consider the arrangement of the additional stage in
figure B1, preceding the setup in figure 2. The preparation of
the nonlocal function ( )x x+ -w ,M can be described by
applying the Helmholtz-Kirchhoff integral theorem, too.

To this aim, the S plane is included in the boundary
conditions and the M plane is within the volume delimited by
the integration surface in figure 1. Thus the eigen-function at
the M plane can be expressed as

and similarly interpreted as equation (6). So, the nonlocal
function ( )x x+ -w ,M straightforwardly results from multi-
plying equation (B1) by its complex conjugate at two points
( )x x+ -, . It can be denoted as

( ) ( ) ( )ò x xx x = ¢ ¢ ¢+ - + -w d r kw r z, ; , ; , . B2M
S

A SM A
2

Figure A1. Conceptual sketch of the integration domain for the
Green´s theorem in equation (A1).
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Therefore, ( )x x+ -w ,M is the cross-section at the M plane of
overlapped cones ( )x x¢ ¢+ - kw r z; , ; ,SM A with vertices at the
emitting points ¢r A on the S plane and the same basis,
centered at a given point x ,A that is the midpoint of the pairs
for which ( )x x+ -w ,M takes on non-null values.

For similar reasons as those in the analysis of
equation (14), these cones can be expressed as

( ) ( )

( ) ( )

( )

( )

x x
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the cone component contributed by the local values
( ) ∣ ( )∣y¢ ¢ = ¢w r r r,S A A S A

2 at the S plane, and

( )

( )

( ) ( )

( )

ò

¢

¢ ¢ ¢ ¢

x x

x x

¢

= ¢ F ¢

+ -

¢ ¹
+ - + - + - B5

k

d r w k

w r z

r r r r z

; , ; ,

, , ; , ; , ,

SM
V

A

S D S SM

r 0

2

D

the cone component contributed by the nonlocal function
( ) ( ) ( )⁎y y¢ ¢ = ¢ ¢+ - + -w r r r r,S S S centered at the emitting point

¢r A on the S plane. So, the integration domain of
equation (B5) is the emitting region around the point ¢r A that
is the midpoint of the pairs at which the nonlocal function

( )¢ ¢+ -w r r,S takes non-null values. The kernel of the modal
expansion in equation (B5) is given by the 3D non-paraxial

modes in the volume between the S and the M planes
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and the kernel in equation (B4) is obtained by locally evaluating
equation (B6) at the S plane, i.e. for ¢ =r 0.D Therefore, the
prepared non-local function at the M plane can be expressed as

( )( ) ( ) ( )( ) ( )x x x x x x= ++ - + - + - B7w w w, , , ,M M
R

M
V

whose terms are obtained by respectively replacing
equations (B4) and (B5) in equation (B2). Thus, the component

( )( ) ∣ ( )∣ ( )( ) ò ¢ ¢ ¢x x y x x= F ¢+ - + - B8w d r kr r z, ; , ; , ,R
R

S
A S A SM A

2 2

is contributed by the local values ( )¢ ¢w r r,S A A at the S plane, while
the non-local values of ( )¢ ¢+ -w r r,S for ¢ ¹r 0D contribute the
component ( )( ) x x+ -w , .M

V This result underlines the role of the
3D non-paraxial geometric modes ( )x xF ¢ ¢ ¢+ - + - kr r z, ; , ; ,SM in
the determination of the prepared nonlocal function ( )x x+ -w , .M

Specifically, equation (B8) points out that non-locality at the S
plane is not a necessary condition to prepare ( )x x+ -w , .M It
means that ( )x x+ -w ,M has a fundamental geometric meaning on
account of the modes ( )x xF ¢ ¢ ¢+ - + - kr r z, ; , ; , ,SM which are
essentially determined by the boundary conditions at the S plane.
This geometric meaning is not altered by the non-locality of the
component ( )( ) x x+ -w , ,M

V which should be taken into account if
the effective source of waves or particles attached at the S plane
is spatially correlated. In this case, the corresponding modes, also
determined by the boundary conditions, are selected by such
correlation properties, i.e. ( )¢ ¢+ -w r r,S behaves like a modal
filter [13, 14].

ORCID iDs

Román Castañeda https://orcid.org/0000-0002-1805-3958
Jaime Moreno https://orcid.org/0000-0001-5947-2932
Daniel Colorado https://orcid.org/0000-0002-8585-4034
Julián Laverde https://orcid.org/0000-0002-4403-390X

References

[1] Mandel L and Wolf E 1995 Optical Coherence and Quantum
Optics (Cambridge: Cambridge University Press)

[2] Castañeda R and Moreno J 2019 Three-dimensional
nonparaxial characterization of physical point sources
J. Opt. Soc. Am. A 36 1657–62

Figure B1. Conceptual sketch for the preparation of the nonlocal
function ( )x x+ -w , .M Reduced coordinates are depicted by the
arrows on the planes. The shadowed circles represent the regions
around given points ¢r A on the S plane and xA on the M plane where
the nonlocal functions ( )¢ ¢+ -w r r,S and ( )x x+ -w ,M takes on non-null
values, respectively.

14

Phys. Scr. 95 (2020) 065502 R Castañeda et al

https://orcid.org/0000-0002-1805-3958
https://orcid.org/0000-0002-1805-3958
https://orcid.org/0000-0002-1805-3958
https://orcid.org/0000-0002-1805-3958
https://orcid.org/0000-0001-5947-2932
https://orcid.org/0000-0001-5947-2932
https://orcid.org/0000-0001-5947-2932
https://orcid.org/0000-0001-5947-2932
https://orcid.org/0000-0002-8585-4034
https://orcid.org/0000-0002-8585-4034
https://orcid.org/0000-0002-8585-4034
https://orcid.org/0000-0002-8585-4034
https://orcid.org/0000-0002-4403-390X
https://orcid.org/0000-0002-4403-390X
https://orcid.org/0000-0002-4403-390X
https://orcid.org/0000-0002-4403-390X
https://doi.org/10.1364/JOSAA.36.001657
https://doi.org/10.1364/JOSAA.36.001657
https://doi.org/10.1364/JOSAA.36.001657


[3] Feynman R, Leighton R and Sands M 1965 The Feynman
Lectures on Physics (Menlo Park: Addison–Wesley) vol 3

[4] Feynman R and Hibbs A 1965 Quantum Mechanics and Path
Integrals (New York: McGraw-Hill)

[5] Robichaux M A, Potter L, Zhang Z, He F, Liu J,
Schmid M F and Wensel T G 2019 Defining the Layers of a
Sensory Cilium with STORM and Cryo-Electron Nanoscopy
PNAS 23562–72 https://ssrn.com/abstract=3155933

[6] Brand C, Debiossac M, Susi T, Aguillon F, Kotakoski J,
Roncin P and Arndt M 2019 Coherent diffraction of
hydrogen through the 246 pm lattice of graphene New J.
Phys. 21 033004 Accepted

[7] Li Z Y 2019 Atom interferometers with weak-measurement
path detectors and their quantum mechanical analysis Chin.
Phys. B 28 060301 (21 pages)

[8] Vieira C H S, Costa H A S, de Souza G, Sampaio M and
da Paz I G 2019 Fringe visibility of exotic trajectories for
matter waves in a double-slit experiment Mod. Phys. Let. A
34 1950233 (15 pages)

[9] Kocsis S, Braverman B, Ravets S, Stevens M J, Mirin R P,
Shalm L K and Steinberg A M 2011 Observing the Average
Trajectories of Single Photons in a Two-Slit Interferometer
Science 332 1170–3

[10] Catañeda R, Laverde J and Moreno J 2020 Matrix algorithm
for 3D nonparaxial optical field modeling under arbitrary
spatial coherence Appl. Opt. 59 D21–30

[11] Born M and Wolf E 1993 Principles of Optics 6th edn (Oxford:
Pergamon)

[12] Van Boxem R, Partoens B and Verbeeck J 2013 Dirac
Kirchhoff diffraction theory ArXiv1303.0954v1 [quant-ph]
5 Mar

[13] Castañeda R 2017 Interaction description of light propagation
J. Opt. Soc. Am. A 34 1035–44

[14] Castañeda R and Matteucci G 2017 New physical principle for
interference of light and material particles Advances in
Imaging and Electron Physics ed P W Hawkes (AP:
Elsevier) vol 204, p 1

[15] de Martini F, Denardo G and Zeilinger A 1993 Proc. of the
Adriatico Worshop on Quantum Interferometry (Singapore:
World Scientific)

[16] Glauber R J 1963 The quantum theory of optical coherence
Phys. Rev. 130 2529–39

[17] Castañeda R 2017 Discreteness of the real point emitters as a
physical condition for diffraction J. Opt. Soc. Am. A 34
184–92

[18] Zhao W et al 2017 Low-energy transmission electron
diffraction and imaging of large-area graphene Sci. Adv. 3
e1603231 (8 pages)

[19] Matteucci G 1990 Electron wavelike behavior: a historical and
experimental introduction Am. J. Phys. 58 1143–7

[20] Arfken G 1970 Mathematical Methods for Physicists 2nd edn
(New York: Academic)

15

Phys. Scr. 95 (2020) 065502 R Castañeda et al

https://doi.org/10.1073/pnas.1902003116
https://doi.org/10.1073/pnas.1902003116
https://doi.org/10.1073/pnas.1902003116
https://ssrn.com/abstract=3155933
https://doi.org/10.1088/1367-2630/ab05ed
https://doi.org/10.1088/1674-1056/28/6/060301
https://doi.org/10.1142/S021773231950233X
https://doi.org/10.1126/science.1202218
https://doi.org/10.1126/science.1202218
https://doi.org/10.1126/science.1202218
https://doi.org/10.1364/AO.381010
https://doi.org/10.1364/AO.381010
https://doi.org/10.1364/AO.381010
http://1303.0954v1
https://doi.org/10.1364/JOSAA.34.001035
https://doi.org/10.1364/JOSAA.34.001035
https://doi.org/10.1364/JOSAA.34.001035
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1364/JOSAA.34.000184
https://doi.org/10.1364/JOSAA.34.000184
https://doi.org/10.1364/JOSAA.34.000184
https://doi.org/10.1364/JOSAA.34.000184
https://doi.org/10.1126/sciadv.1603231
https://doi.org/10.1126/sciadv.1603231
https://doi.org/10.1119/1.16489
https://doi.org/10.1119/1.16489
https://doi.org/10.1119/1.16489

	1. Introduction
	2. Fundamentals
	3. Non-locality and spatial modulation
	4. Accuracy discussion
	5. Some illustrative examples
	6. Conclusions
	Acknowledgments
	Author contributions
	Competing interests
	Appendix A.The helmholtz-kirchhoff integral theorem
	Appendix B.Preparation of the non-local function
	References



