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Abstract
The paper deals with the self-induction of two parallel infinitely long conductors of arbitrary
cross section connected to an ideal sinusoidal voltage source. The conductors do not move. A
quasi-stationary behavior is assumed, the displacement current is neglected and the permeability
of the conductors and their surroundings equals the permeability of vacuum. The subject matter
of the paper is the calculation of impedance, which in the theory of circuits with lumped
elements can replace 1m of conductors. The definition of inductance and the formulae for its
calculation that form part of textbooks on physics and electromagnetism have been the same for
such a long time that nobody doubts their correctness. Only the recently published method for
the calculation of current density in long parallel conductors allows calculating accurately the
equivalent impedance and self-inductance, and also evaluating critically the present knowledge.

Keywords: applied classical electromagnetism, induced currents, inductance, numerical
simulation

1. Introduction

The paper is concerned with the self-induction of two parallel
infinitely long conductors of arbitrary cross section, con-
nected to an ideal sinusoidal voltage source with angular
frequency ω. The conductors do not move. A quasi-stationary
behavior is assumed, the displacement current is neglected,
and the permeability of conductors and their surroundings
equals the permeability of vacuum μ0. In the chosen system
of coordinates xyz the conductors are parallel to the axis z;
their cross sections do not depend on z. Figure 1 gives an
example of the cross sections of the conductorsA1 andA2 in
the plane xy; the cross sections are marked with the same
symbols as the conductors. Conductor resistivity is a function
of x and y, ( )=  x y, . On the assumption that the con-
ductivity of the surroundings of conductors is zero, the two
conductors form a current tube. According to [1], entry no.
121-11-30, electromagnetic induction is a phenomenon dur-
ing which induced voltage or induced current is produced.
According to [1], 121-11-31, self-induction in a current tube
is caused by changes in electric current in the current tube.

The subject matter of the paper is the calculation of the
impedance Z , which in the theory of circuits with lumped
elements can substitute 1m of conductors when the above
assumptions are satisfied. The segment of the two conductors
between the planes z=z1 and z=z2, where z2>z1, can be
substituted by a circuit with lumped elements, see figure 2.
The equivalent circuit is a series connection of an ideal source
with voltage ( ) ( )-V z t V z t, ,1 2 , an ideal resistor with
resistance R, and an ideal inductor on which there is a voltage
dΦ/dt induced in the segment. The current I is given by the
current density. The equivalent impedance Z is determined
unambiguously by the current density in the conductors
and by the voltage drop between the conductors ( ) =U t
[ ( ) ( )] ( )- -V z t V z t z z, ,1 2 2 1 .

The considered segment of the two conductors in figure 2
can be replaced by the impedance

( ) ( ) ( )R I w= = + = +Z
U

I
Z Z Z R L, j j , 1s

where the underlined symbols denote phasors or complex
numbers. Using (1), L and Rs can be calculated for ω>0. For
ω=0 it holds Rs=R. Admittedly, the value L for ω=0 has
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no meaning but it is equal to the limit of the values w  +0
calculated using (1). An accurate calculation of Z for an
arbitrary shape of the cross sections of A A,1 2 and for an
arbitrary resistivity ( ) x y, can be performed using the
method recently published in [2].

The original contribution of this article is the presentation
of the results of calculating current density in a pair of con-
ductors A1 and A2, and the quantities L and Rs defined by
relation (1). The knowledge of accurate values L and Rs for a
pair of conductors of circular cross section allows a critical
analysis of hitherto obtained formulae for their calculation.

2. Current density in conductors and equivalent
impedance

This section is concerned with current density and equivalent
impedance for the conductors A1 and A2, whose cross

sections are illustrated in figure 1. The dimensions deter-
mining the cross sections are r=8mm, x1=2r,

- =x x 10 mm2 1 , h=24mm. The conductors are in con-
tact in the straight line ( )= = Î -¥ +¥x r y r z2 , , , , but
this contact is assumed not to be electrically conductive. The
amplitude of steady sinusoidal voltage ( ) ( )w=U t tsin is
ˆ =U 1 V·m−1. The temperature of the conductors is 300K.
On the conductor cross section the non-zero component of the
current density ( )J x y, is only ( ) ( )=J x y J x y, ,z , where

( ) ˆ ( ) [ ( )]w e= +J x y J x y t x y, , sin , .

The choice of the examined conductors A1 and A2 may
seem artificial but it is not out of reality. The conductors have
been chosen such that it can be seen at a glance that no
method has so far been published (except [2]) that would
allow the calculation of current density and equivalent
impedance for the conductors mentioned. Moreover, all the
potentials of the method published in [2] are far from having
been fully exhausted, in particular as regards the shape of
conductor cross sections, their number, their resistivity and
the choice of U(t) in transient or steady state.

Variant 1
Both conductors are of copper, their resistivity

·= ´ W- 1.725 10 m8 [3], the frequency of voltage
source ( )w p= =f 2 50 Hz.

Variant 2
Unlike in Variant 1, in this variant f=103 Hz.
Variant 3
f=103 Hz. ConductorA1 is made of an alloy composed

of 75mass% of Cu and 25mass% of Al, its resistivity
·= ´ W- 1.76 10 m1

7 [3], conductor A2 is of copper.
Variant 4
f=103 Hz. Both conductors are of copper as in Variants

1 and 2, but their distance is not zero, =x 56 mm1 .
Variant 5
The conductors are the same as in Variant 3, the source

frequency f=106 Hz.
Figures 3–6 illustrate the current density using the

amplitude Ĵ and the initial phases ε for Variants 1–4. These
figures give plots of the functions ˆ ( )J x y, and ( )e x y, for a
constant y. The values y have been chosen such that the range
of the values of Ĵ and ε over the whole cross sections of the
conductors under examination should be evident. This is quite
obvious in figure 3 for ( )e x y, in the cross section A2. The
cross sectionA1 is not symmetrical with the cross sectionA2

while the cross section A1 is symmetrical with respect to the
straight line y=r and the cross section A2 is symmetrical
with respect to the straight line y=h/2. For two values of y
that are symmetrical with respect to either of these straight
lines the functions ˆ ( )J x y, and ( )e x y, , do not differ by much
as follows from figure 6, in which pairs of close curves can be
seen. For this reason the values of y chosen for the function

( )e x y, are lower than h/2 in figure 4.
With increasing frequency f the range of the values ε

increases. As the values ε are modified so as to be in the
interval (−180°, 180°], the curves ( )e x y, for some y in
figure 4 are discontinuous. In Variant 5, see figure 7,
f=106 Hz and the discontinuities are so numerous that the

Figure 1. Cross sections of the conductors A1 and A2.

Figure 2. The equivalent circuit of the segment of conductors.
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graph of function ( )e x y, is not clearly arranged and therefore
it is not shown. With increasing f the maximum and the
minimum values of amplitude Ĵ decrease. These values are to
a considerable extent affected by the conductor resistivity, as
is obvious from the figures. It follows from the comparison of
figures 4 and 6 and from [4] that with increasing conductor
distance -x r21 the minimum and the maximum values of
amplitude Ĵ decrease. The minimum value of ˆ ( )J x y, and the
number of phase ( )e x y, discontinuities depend, in addition,
on the dimensions of conductor cross sections. If, for exam-
ple, in Variant 1 the values r, x1, x2, and h increase fivefold,
then the graphs of ˆ ( )J x y, and ( )e x y, are at a glance the same
as in figure 4 and therefore they are not given in the article.

The current density in the conductors determines the
parameters of the conductor pair. The parameters are

∣ ∣ ˆ=Z Z R L I, , ,s 1 and β1, where

( ) ˆ ( )w b= +I t I tsin1 1

is the current in the conductor A1. For the current in the
conductor A2 it holds ˆ ˆ=I I2 1 and β2=180°+β1. The
parameters of the examined conductor pair for Variants 1–5
are given in table 1.

3. Faraday’s law, magnetic flux and self-inductance

By Faraday’s electromagnetic induction law, in an arbitrary
closed curve C time rate of change of magnetic flux induces

Figure 3.Variant 1: Dependence of the current density amplitude Ĵ and initial phase ε on x for a constant y in the conductorsA1 (with circular
cross section) and A2 (with rectangular cross section). The numbers at the curves are the values of y expressed in mm.

Figure 4. Variant 2: Dependence of the current density amplitude Ĵ and initial phase ε on x for a constant y in the conductorsA1 andA2. The
numbers at the curves are the values of y expressed in mm.
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the voltage

( ) ( )=
F

U
t

t

d

d
, 2C

C

where ΦC is the flux of the vector B through a continuous
oriented surface SC bounded by the curve C. ΦC does not
depend on the shape of the surface SC and therefore the term
‘linked flux to C’ is used in the following text. If the whole
curve C lies in an electrically conductive medium, then UC

will produce a conductive electric current, i.e. induced
current.

Current density in conductors can be considered as
superposition of two current densities. The first density is
produced by the voltage source; the second density is the
density of induced current. Current is induced in each loop of

a current filament [5] that is a closed curve C, and either
AÌC 1 or AÌC 2, or the curve has two parts, È=C C C1 2,

and it holds A AÌ  ÌC C1 1 2 2. All such curves are taken
into consideration in the calculation of the current density
published in [2]. Magnetic fluxes linked to two different
curves can have the same value but generally they are dif-
ferent. The quotient of the magnetic flux and the current I(t)

( )
ˆ ( )

[ )
w b

=
F

+
ÎL

t

I t
t f

sin
, 0, 1 ,C

C

1 1

takes all the values in the interval ( )-¥ +¥, because the
current goes twice through zero. With the assumed perme-
ability μ0 and for a constant current I (independent of t) the

Figure 5. Variant 3: Dependence of the current density amplitude Ĵ and initial phase ε on x for a constant y in the conductorsA1 andA2. The
numbers at the curves are the values of y expressed in mm.

Figure 6. Variant 4: Dependence of the current density amplitude Ĵ and initial phase ε on x for a constant y in the conductorsA1 andA2. The
axis x at the point marked by the arrow ends in the value x=16mm and continues with the value x=56mm. Between these values is the
gap between the conductors and the current density is zero.
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magnetic field and the flux ΦC are directly proportional to I
and therefore LC is constant for the given C.

Faraday’s law is closely connected with the term ‘self-
inductance’, which in textbooks on physics and electro-
magnetic field theory is defined for a loop formed by the
current. This loop is called

• circuit carrying a steady current I [6];
• conductor, wire, current loop [7];
• thin loop, the condition of current-conductor thinness is
fundamental [8];

• line current loop I flowing through contour C [9];
• circuit [10, 11];
• closed conducting circuit of one turn of wire [12];
• coil [13];
• loop of thin wire [14].

In the literature, the loop is usually replaced by a closed curve
C (speaking strictly mathematically) with the direct current I
and the self-inductance

· ( )ò=
F

F = B SL
I

, d , 3C
C

S
C

C

where B is the vector of the magnetic field produced by the
current I; the dependence of B on I is assumed to be linear.

A real circuit cannot be a curve because real conductors
have non-zero cross sections. The assumption of dc current
[15], 131-11-22, is a bit strange because a constant current I
(independent on t) can produce only a constant (or undefined)
magnetic flux ΦC, for which it holds F =td d 0C . From an
analysis of relation (3) it follows that to define self-inductance
is problematic. Of fundamental significance in the study of
the phenomenon of self-induction is the law (2), according to
which the induced voltage is for the dc current I zero and thus

there is nothing to be studied. However, in the quoted lit-
erature, and elsewhere, a constant I is assumed. As regards the
cross section of the loop conductor, there are in essence three
possibilities:

1. The loop conductor is a current filament with zero
cross section.

Current in the conductor is constant and of finite mag-
nitude. According to [5], the conductor is the current filament-
1, and the integral in (3) is improper and divergent, as proved
in [5]. The definition of L (3) does not make sense but this
definition is still used to derive, for example, the Neumann
formula and the relation between the inductance and the
energy of magnetic field. The divergence of the integral in (3)
is no secret. For example, in [14], p. 218, it is said: ‘... the flux
linked to the curve C diverges, F  ¥. The inductance is
also  ¥L ; there is no sense in introducing it’. Therefore it
is assumed in [14] that the conductor cross section is small
but not zero. This assumption, however, is not always satis-
fied in [14], maybe because it is irresistible due to its sim-
plicity. The book [14] is often quoted because it was written
only recently and in the list of references it has 104 items,
most of which are textbooks on electromagnetism.

2. The loop conductor cross section is not negligible.
Let us consider two infinitely long conductors parallel to

the axis z. Both conductors have a circular cross section of
radius r. The axes ofA1 andA2 go in the plane xy through the
points (0, 0) and (c, 0), respectively; c�2r. There is a
constant current density J in the conductors. In this case self-
inductance depends on the position of the curve to which the
magnetic flux is linked. The self-inductance of conductors can
be determined by calculating the magnetic flux Φ linked to the
curve C12, which is formed by line segments connecting the
points (x1, 0, z1), (x1, 0, z2), (x2, 0, z2) and (x2, 0, z1), where
−r�x1�r, - + c r x c r2 , z2>z1. According to (3)

( ) ( ) [ ( ) ( )]

( ) ( ) ( ) ( ) ( )
òF = - +

= F + F + F + F

x x z z B x B x x

x x x x

, d

, 4
x

x
y y1 2 2 1 1 2

1 1 2 2 3 2 4 1

1

2

where By1 and By2 are y-components of magnetic field pro-
duced by the conductors A1 and A2, respectively. According
to Ampere’s circuital law [11]

⎜ ⎟

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

ò

ò

ò

ò

p
m
p

p
m
p

p
m
p

p
m
p

F
-

= = -

F
-

= =

F
-

= = -
-

F
-

= =
-

-

-

x

z z I r J
B x x

x

r

x

z z I r J
B x x

x

r

x

z z I r J
B x x

c x

r

x

z z I r J
B x x

c x

r

1
d

4
1 ,

1
d

2
ln ,

1
d

4
1 ,

1
d

2
ln ,

x

r

y

r

x

y

c r

x

y

x

c r

y

1 1

2 1
2 1

0 1
2

2 2

2 1
2 1

0 2

3 2

2 1
2 2

0 2
2

4 1

2 1
2 2

0 1

1

2

2

1

The values of

( )
( )

( )=
F

-
L

x x

z z I

,
512

1 2

2 1

for some x x,1 2 and c are given in table 2.
3. The diameter of the loop conductor cross section

converges to zero.

Figure 7. Variant 5: Dependence of the current density amplitude Ĵ
on x for a constant y in the conductors A1 and A2. The numbers at
the curves are the values of y expressed in mm.
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According to (3), (4) and (5),  +¥L12 for  +r 0 or
for  +¥c if r is constant.

It follows from the three above possibilities that the
definition (3) does not allow an accurate calculation of self-
inductance. The first possibility holds quite generally for an
arbitrary curve C and does not make sense. The other two
possibilities were demonstrated on a pair of parallel cylind-
rical conductors. Basically the same result could also be
derived for a pair of conductors of other than circular cross
section, but the result could not be expressed by simple for-
mulae. Of fundamental significance in the definition (3) is the
curve C, which in a real conductor can be chosen in infinitely
many ways and it is a priori not known which the correct
one is.

A drawback of the definition (3) and formula (5) is that
the resistivity of the real loop conductor is not taken into
consideration. By table 1, self-inductance in the current tube
greatly depends on conductor resistance, which shows in
particular when the conductor cross section is small. Table 3
gives the parameters of the conductors in Variant 2 for several
values of the number κ, if the conductor cross sections are
determined by κ r, κ x1, κ x2 and κ h. With the value of κ
decreasing, the value L first increases until it reaches the value
L0=305.76 nH·m−1, which is the value of inductance for
f=0. This inductance value is preserved even when κ con-
tinues decreasing. This means that the imaginary component
of impedance ( )I Z also does not change while ( )R Z
increases. The consequence is that the induced voltage and
the induced current are negligible. The current density in the
conductors is practically constant and the initial phase β1 of
the current is equal to zero. The values in table 3 were
determined using the formula (1), in which the phasor I was
calculated using the current density obtained by a method
published in [2]. Further calculations have confirmed that the
described dependence of parameters on κ is similar even for
other pairs than A A,1 2.

Another drawback of the definition (3) and formula (5) is
that self-inductance does not depend on the frequency of
current I. It follows from figures 3–7 and, in particular, table 1

that the dependence of I and L on f is not negligible for higher
frequencies. What is considered to be high depends on the
required parameter accuracy, on the size and shape of the
cross sections of the conductors, and on their mutual position.

4. Definition of energetic self-inductance

Using the relation (3), which in the literature is considered to
be also valid for conductors of a small cross section, relation
is derived among L, the current I flowing through the loop C,
and the energy Wm of the magnetic field produced by the
current I

( )=W LI
1

2
. 6m

2

In [14], p. 297, it is said: ‘relation (6) for the energy of the
magnetic field of a thin loop will by way of definition be
extended to massive loops. The self-inductance of a massive
loop is then defined by the equation’

( )=L
W

I

2
. 7ener

m
2

(7) is the definition of energetic self-inductance. Relation (3)
does not make sense, as argued above, and it is thus inad-
missible to derive anything using (3), even if relations (6) and
(7) are valid. The validity of relation (6) can be derived in a
correct way. If the current ( ) ˆ w=I t I tsin flows through an
inductor with the inductance L, the voltage on the inductor is

( ) ˆ ( )w w p= +U t LI tsin 2L

and the instantaneous power is

( ) ( ) ( ) ( ) ˆw w= = =Q t U t I t L I t I Isin 2 , 2.L L eff
2

eff
2 2

The energy of the inductor magnetic field is

( ) ( ) [ ( )]ò w= = -W t Q x x L I td
1

2
1 cos 2 .

t

Lm
0

eff
2

Therefore (6) and (7) hold for the constant current.
By [1], 121-11-64, the energy Wm in a volume V in a

linear medium is given by the integral

· ( )ò= H BW V
1

2
d . 8

V
m

The volume V in the integral (8) denotes part of the space in
which there is a non-zero magnetic field produced by the
current I, i.e. the whole space. According to the literature,
Lener can be assigned to any part of the space ÌV V;1 it

Table 1. Parameters of the conductors in Variants 1–5. R1 and R2 are the resistances of conductors A1 and A2, respectively.

Variant R1 R2 Z Rs L Î1 β1
μΩ·m−1 μΩ·m−1 μΩ·m−1 μΩ·m−1 nH·m−1 A °

1 85.794 71.875 189.82 164.42 301.94 5268.1 −29.98
2 85.794 71.875 1282.6 604.35 180.06 779.65 −61.89
3 875.35 71.875 2011.4 1272.8 247.88 497.17 −50.74
4 85.794 71.875 4816.8 365.59 764.41 207.61 −85.65
5 875.35 71.875 288 849 103 470 42.921 3.4620 −69.01

Table 2. The values of L12 in 10−7H·m−1, for some x1, x2 and c.

x1 x2 c=2r c=10r

r c−r 0 4 ln 9
0 c +2 4 ln 2 +2 4 ln 10
-r c+r 4 ln 3 4 ln 11
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suffices to replace V by V1 in the integral (8). Such replace-
ment does not constitute any problem from the mathematical
viewpoint, in contrast to the physical viewpoint.

For two infinitely long cylindrical conductors parallel
with the axis z, a formula is derived in [14] for the calculation
of the energetic self-inductance of 1m of conductors

⎡
⎣⎢

⎤
⎦⎥ ( )

m
p

= +
-

L
c r

r
0.25 ln , 9lit

0

where r is the radius of the conductor cross section; the
conductor axes go in the plane xy through the points (0, 0) and
(c, 0) and there is a constant current density in the conductors.
According to [14], (9) holds for c?r. It follows from table 4
that for low frequencies the quantity Llit is usable for only
c?r; another drawback of this quantity is that it does not
depend on f.

In the literature, Llit is usually given as the energetic
definition of inductance but from a comparison of the third
and the fourth columns of table 4 it follows that the relation

L Llit ener holds for only c?r, as is also given in [14].
This is because when deriving the formula (9) the magnetic
field energy was used only partially. The conductors are
infinitely long and inductance is determined for 1m of con-
ductors and therefore the relation (8) has the form

( ) · ( )ò= - H BW z z x yd d , 10
xy

m 2 1

where - =z z 12 1 m. When deriving (9), the plane xy in the
integral (10) was divided into two parts. One part is the cross
sections of the two conductors, the other part is the remainder
of the plane xy. In the calculation of the magnetic field in each

of the conductors the magnetic field produced by the other
conductor is neglected, which is only possible for c?r. The
integral over the other part of the plane xy is replaced by the
value of the quotient Φ/I, Φ is the magnetic field flux through
the rectangle [ ] [ ]´ -z z r c r, ,1 2 in the plane xy. Such
replacement is evidently incorrect; in the case of c=2r it
holds Φ=0, while the energy of the magnetic field in the
other part of the plane xy is obviously non-zero, as is evident
from a comparison of L and Llit on the first line of table 4.

5. Characterization of self-induction in a loop

The subject of the present article is self-induction in a pair of
long conductors and therefore it would be useful to propose a
quantity that characterizes self-induction quantitatively. The
first to come to mind is the self-inductance L. The value L is
the highest for f=0, then the self-induction phenomenon
does not arise and therefore the value L is no suitable as a
characteristic of self-induction. Another quantity that comes
into consideration is the inductive reactance ωL or the induced
voltage amplitude ˆwLI on the inductor. With increasing f, the
values L and Î decrease while the values ω and ωL increase.
With increasing ω the value ˆwLI converges to Û . In view of
the fact that Î is directly proportional to Û , the quantity that
characterizes self-induction appears to be the quotient of
induced voltage and exciting voltage amplitudes

L L
ˆ

ˆ [ ] ( )w
= Î

LI

U
, 0, 1 . 11

table 5 gives the values of L in dependence on f and on the
distance c of the conductor axes. The pattern of the depend-
ence of L on f and on c is shown in detail in figure 8.

6. Real component of equivalent impedance

Self-induction in the current tube considered is characterized
not only by the inductance L or the characteristic L but also
by the real component ( )R =Z Rs of the equivalent impe-
dance Z . The value of Rs depends on the resistivity of the
current tube and on the frequency of the voltage source, as
follows from the analysis in [4], and is determined by the
relation (1). However, using the relation (1) is conditional on
the knowledge of the current density in the conductors.

Table 3. Parameters of the conductors in Variant 2 and their dependence on κ. R is the resistance of a segment of both conductors.

κ R Rs L Î1 β1
Ω·m−1 Ω·m−1 nH·m−1 A °

10 1.577×10−6 1.407×10−4 51.83 2819 −66.64
1 1.577×10−4 6.044×10−4 180.1 779.6 −61.89
0.5 6.308×10−4 1.043×10−3 258.7 517.7 −57.31
0.1 1.577×10−2 1.580×10−2 305.6 62.83 −6.93
0.01 1.577 1.577 305.8 0.6341 −0.07
0.005 6.308 6.308 305.8 0.1585 −0.02
0.001 157.7 157.7 305.8 6.341×10−3 0.00

Table 4. Dependence of inductance on the conductor distance c for
r=10mm. The values L L, ener and Llit hold for f=0 while the
values LkHz and LMHz hold for f=1kHz and f=1MHz,
respecitvely.

c L Lener Llit LkHz LMHz

mm μH·m−1 μH·m−1 μH·m−1 μH·m−1 μH·m−1

20 0.377 0.377 0.1 0.205 0.035
50 0.744 0.744 0.655 0.672 0.628
100 1.021 1.021 0.979 0.959 0.918
200 1.298 1.298 1.278 1.239 1.199
500 1.666 1.664 1.657 1.606 1.566
1000 1.942 1.941 1.938 1.883 1.843
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In [16, 17] two methods were proposed and compared for
the calculation of the real component Rs of impedance and the
inductance L of a pair of long copper strip conductors, whose
conductivity 56MS·m−1 is constant over the conductor cross
section. In [18], the formulae are given for the calculation of Rs

and L but, unlike in [16, 17], the formulae have been extended
to include the dependence of Rs and L on the dimensions of
conductor cross sections and on their distance. The results in
[16–18] and in the papers quoted therein were not obtained
using accurate current density values. It is assumed that for low
values of f the current density in the conductor cross section is
constant while for higher f the current flows through a thin
layer near the conductor surface. The assumption of constant
current density is acceptable in strip conductors for lower
frequencies, as given in [19], section 4.3. The values of the real
component of impedance and of inductance given in [16–18]
are erroneous because in their calculation via (1) inaccurate
values of current were used. Current in the conductors had
been calculated using inaccurate values of current density.

Another method for the calculation of Rs was published in
[20–22]. The results given in [20–22] are often quoted and used,
for example [23], and they have led to the introduction of the

term skin effect. In [20–22], Art. 689, Maxwell describes the
method for the calculation of current density in a long solitary
conductor of circular cross section. Although he uses the word
circuit several times in the text, he only considers one conductor
and does not concern himself with the existence of such
arrangement. A solitary conductor is not a suitable model for the
calculation of self-inductance, as proved in [24–26], because it is
a conductor connected to the ideal current source [27]. In
[20–22], the calculation is performed of the resistance of a
conductor segment as a quotient of the voltage on this segment
and the current flowing through the conductor, with the
assumption that the voltage on a conductor segment of finite
length is of finite magnitude. This is impossible in the case of
conductor connected to the ideal current source and therefore the
calculated value of resistance cannot be correct either. Thomson
prepared the publication of the book and he added an extensive
note to Art. 689 in [22], in which he applies Maxwell’s method
to the calculation of Rs for the sinusoidal dependence of current
on time. This calculation is not correct either.

7. Conclusion

Two long parallel conductors and a source of sinusoidal
voltage form a long loop. The mathematical model of a loop
segment characterized by one or more relations between int-
egral quantities is a circuit element [15], 131-11-03. These
integral quantities for the loop under examination are the
source voltage U(t) and the loop current I(t). The method for
the calculation of current density [2] allows the calculation of
I(t) in the loop for an arbitrary (not only sinusoidal) U(t). The
relation between the sinusoidal voltage U(t) and the current I
(t) is given by the impedance (1), which replaces 1m of loop.
The imaginary component of equivalent impedance deter-
mines the loop inductance L. A quantityL was proposed (see
(11)) whose value aptly characterizes self-induction in a loop.

From the analysis of the existing definitions of L and of
the methods for calculating its value it follows that they are
inaccurate. They start from the magnetic flux linked to a loop,
but we have shown that magnetic flux cannot uniquely be
assigned to a pair of conductors of finite cross section and
furthermore it is not even given in [1]. The inductance L, the
same as the real component Rs of impedance (1), depends,
among other things, on the frequency of the voltage source
and on the resistivity of the loop conductors. In the literature,

Table 5.Dependence ofL on frequency f and on distance c of conductor axes for conductors of rectangular (rec) cross section 10×32 mm2

and cylindrical conductors (cyl) of 20mm in diameter.

f (Hz) rec c=2cm cyl c=2cm cyl c=10cm cyl c=1m

0.01 2.108×10−4 2.175×10−4 5.888×10−4 1.120×10−3

0.1 2.108×10−3 2.175×10−3 5.888×10−3 1.120×10−2

1 2.107×10−2 2.175×10−2 5.878×10−2 0.1113
10 0.2059 0.2114 0.5069 0.7456
100 0.8771 0.8276 0.9825 0.9952
103 0.9860 0.9054 0.9990 0.9997
105 0.9999 0.9203 1.0000 1.0000

Figure 8. Dependence ofL on the frequency f and on the distance c
of conductor axes for conductors of rectangular cross section 10×32
mm2 (×) and cylindrical conductors of 20mm in diameter (lines).

8

Phys. Scr. 95 (2020) 065503 O Coufal and L Radil



except [4, 19, 24], this dependence is not respected for L and
it is not correct for Rs either.

Equivalent impedance (1) completely describes self-
induction in the considered long loop, which is the simplest
possible arrangement of a pair of conductors. For a more
complex arrangement of conductors, for example for con-
ductors of finite length, no method for the calculation of
current density in conductors, which is indispensable for the
calculation of equivalent impedance, is currently available.
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