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Abstract
We study the behavior of a quantum particle, trapped in localized potential, when the trapping
potential starts suddenly to move with constant velocity. In one dimension we have reproduced
the results obtained by (Granot and Marchewka 2009 EPL 86 20007), for an attractive delta
function, using an approach based on a spectral decomposition, rather than on the propagator.
We have also considered the cases of Pöschl-Teller and simple harmonic oscillator potentials (in
one dimension) and to the hydrogen atom (in three dimensions). In this last case we have
calculated explicitly the leading contribution to the ionization probability for the hydrogen atom
due to a sudden movement.
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1. Introduction

This paper focuses on a class of quantum mechanical pro-
blems where the Hamiltonian displays an explicit time–
dependence: a typical realization of this situation, the time–
dependence manifests itself through an interaction that is
acting upon the system over a finite interval of time. Appli-
cations of these problems can be found in standard text of
Quantum Mechanics. A different possibility, considered in
this paper, is that the time-dependence can enter in the pro-
blem in a less direct way, via the boundary conditions (for
instance a box whose walls start to move at a given time) or
because the potential itself in the Hamiltonian starts to move.
In a recent paper, [1], Granot and Marchewka have studied
the interesting problem of determining the behavior of a
quantum particle trapped in a localized potential, when the
potential suddenly starts to move at constant speed at t=0.
These authors used an attractive Dirac delta potential in one
dimension to model the problem, calculating exactly the

probability that the particle remains confined to the moving
potential or that it remains in the initial position. In addition to
these two possibilities, they also observed the probability that
the particle moves at twice the speed of the potential: for an
observer sitting in the rest frame of the potential at t>0+ this
phenomenon can be interpreted as a quantum reflection of a
particle moving to the left with speed −v from the well.

The problem considered in [1] is a special case of the
more general problem of a quantum system with a time–
dependent Hamiltonian, where the potential may change
continuously with time or may be subject to a sudden per-
turbation. A well–known example, with exact solution, is the
case of a particle in one–dimensional infinite square–well
with one wall moving at constant velocity, originally dis-
cussed by Doescher and Rice [2] long time ago (exact solu-
tions for infinite square-wells with a wall moving with
different laws were later found by Makowski and Dem-
binski [3]).

The time evolution of a quantum system in presence of a
sudden perturbation displays interesting behaviors, particu-
larly in relation to quantum transients (for a general
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discussion of quantum transient the reader may refer to
[4–6]). An example of this is the ‘quantum shutter’ studied by
Moshinski [7], corresponding to a beam of particles of mass
m and momentum p, initially confined in the negative semi-
axis by a totally absorbing shutter located at the origin, after
that the shutter is removed at t>0.

The technological advances are making increasingly rea-
listic the scenarios where a quantum particle, such as an atom,
can be trapped by suitable attractive potential (corresponding for
example to a tip of a needle in a scanning tunneling microscope
or a highly focused laser beam in an optical tweezer) and thus be
relocated in a different region [8–11]. As remarked by Granot
and Marchewka, the quantum nature of this process leads to
surprising results, as the possibility that the particle moves at
twice the speed of the needle.

The idea that the Hamiltonian of a problem can change
abruptly may of course be questioned, since the changes in the
potential (or in the boundary conditions) will not be instanta-
neous in an experimental situation. With this motivation, the
authors of [12] have modified the quantum shutter problem
considering a time–dependent shutter potential, which vanishes
asymptotically for  ¥t . In our case, as for the case of [1], the
transition probabilities calculated under the assumption of a
sudden motion may be considered an approximation to an
experimental situation only at small velocities. In a more realistic
description the system should first accelerate, and then stabilize
to a finite velocity. A more rigorous treatment of this process
would require applying acceleration transformations to the
quantum mechanical system (see for example [13]), whereas a
simpler treatment could approximate the acceleration with a
sequence of steps of increasing speed, up to a maximal speed. In
this paper we discuss this second approach for the case of the
simple harmonic oscillator (for which the complications arising
from having to deal with a continuous part of the spectrum are
absent), with just two times steps, showing that indeed the
probabilities are sensibly affected.

Keeping in mind these limitations, the present paper has
two different goals: first, to reproduce the analysis of [1]
using a more direct approach based on a spectral decom-
position rather than on the propagator; second, to extend this
analysis to a wider class of problems, in one and three
dimensions.

The paper is organized as follows: in section 2 we discuss
the general framework, using spectral decomposition; in
section 3 we consider several examples of potentials, with
spectra which can be either mixed or discrete, and calculate
explicitly the relevant probabilities for each case; finally in
section 4 we draw our conclusions.

2. Spectral decomposition

Our starting point is the time dependent Schrödinger equation
(TDSE)

( ) ( ) ( )  ¶Y
¶

= - DY + - Y
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i
t m

V r vt r t
2

, 1
2

where ( ) 
-V r vt is a potential moving with velocity


v .
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solution of the time independent Schrödinger equation (TISE)

( ) ( ) ( ) ( )
  

f x f x f x- D + =x

m

V E
2

2
2

It can be easily verified that
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is a solution to the time-dependent Schrödinger equation (1).

The physical situation studied by Granot and Marchewka
amounts to having a quantum particle at the initial time in the
ground state of the static potential and determining the
probability at later times t>0 that the particle can be found
in any of the modes of the moving potential. Although the
assumption of a sudden motion of the potential well over-
simplifies the experimental conditions, it is expected to pro-
vide a better description for small velocities, while allowing
one to obtain explicit (and simple enough) formulas.

For simplicity we will denote as ( )
y r t,n and ( )y r t,k the

eigenmodes of the moving potential and ( )f rn and ( )f rk the

eigenmodes of the static potential, where n and

k refer to

bound an continuum states, respectively. We also call ( )F r
the initial wave function at t=0 (for the specific case studied
in [1] this is the wave function of the ground state).

Let ( )
Y r t, be the wave function solution to the TDSE

with a moving potential at t>0, subject to the condition
( ) ( ) 

Y = Fr r, 0 ; this wave function can be naturally decom-
posed in the basis of the moving potential as
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where, using equation (3),
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In this way ∣ ∣å an n
2 is the probability that the particle

remains in a bound state when the potential starts moving,

whereas ∣ ( )∣
( )
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3 is the probability that the particle will

escape to the continuum6.
Calling N the number of bound states of the potential, we

define the physical amplitudes
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6 We are discussing here the three dimensional case, but the modifications
for the one and two dimensional cases are straightforward.
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The wave function at later times for a particle initially in
the ith state of the static potential will then be

( ) ( )
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Clearly ∣ ∣ij
2 represents the probability that the particle,

initially in the ith bound state ends up in the jth bound state;
similarly ∣ ( )∣ ( )


p k v d k, 2i

2 3 3 represents the probability that
the particle initially in the ith bound state ends up in the
continuum with momentum in an infinitesimal volume
about


k .

The conservation of total probability requires
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Similarly we define the amplitude

( ) [ ( )] ( )·
       

ò f f¢ º ¢
-¥

¥
-  k k v e k r k r d r, , , ,imv r 3

which is related to the probability that a particle initially with
momentum


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
¢k .

Of course these arguments can be generalized to the case
that the initial wave function is not a stationary state of the
static problem. In this case the time dependent wave function
is

( ) ¯ ( )

¯ ( ) ( )
( )

( )

 

  
ò

å y

y
p

Y =

+

=

-¥

¥





r t r t

k v k r t
d k

, ,

, , ,
2

7

j

N

j j
1

3

3

where

¯ [ ( )] ( )

( ) ˜ ( )
( )

¯ ( ) [ ( )] ( )

·

·

 

  

  

 

 

ò

ò

ò

å

f

p

f

º F

= +

¢ º ¢ F

-

=

-



 



 

 

e r r d r

a b k k v
d k

k v e k r r d r

,
2

, ,

j
imv r

j

i

N

i ij j

imv r

3

1

3

3

3

of which Equation (5) is a special case.

3. Applications

In this section we apply our general discussion to different
examples.

3.1. Attractive dirac delta potential

We consider the attractive Dirac delta potential studied in [1]:
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- - >
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V x t

x t
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,
, 0

, 0
8

To implement the procedure explained in section 2 we
first write explicitly the eigenfunctions of the static potential,
V(x,0)=−γ δ(x), reported in [14]
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where b g= m 2. Damert [15] and Patil [16] have proved
the completeness of the set of the energy eigenfunctions. Note
that the spectrum of V(x,0) is mixed with a single bound state
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The orthonormality relations for this set of functions are
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Using the prescription (3) one can obtain the solutions to
the time dependent problem for t>0 corresponding to the
static solutions of equations (9), (10) and (11):
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The initial wave function is the bound state of the static
delta potential

( ) ∣ ∣bY = b-x e x
0

and it can be decomposed in the basis of the time-dependent
potential as
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as explained in section 2.
The amplitude for transition to the bound state of the

moving well is given by
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where q gº v is the adiabatic Massey parameter [1, 17].
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Clearly, the probability that the particle remains in the
bound state of the moving well is simply given by

∣ ∣
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( )
q

= =
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P
16

4
13bound 11

2
2 2

in agreement with the equation (13) of [1].
Similarly we can calculate the coefficients ( )( ) k v,e

1 and
( )( ) k v,o

1 , representing the amplitudes for transitions to a
state in the continuum (even and odd states, respectively) with
momentum k
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where b q= mv .
As a result the probability that the particle ends up in the

continuum is

A straightforward integration of this expression using the
residue theorem provides the final result

( )
( )

q
= -

+
P 1

16

4
16continuum 2 2

The total probability correctly sums to 1:

= + =P P P 1total bound continuum

The solution at t>0 is then obtained using equation (5):
using this expression we were able to reproduce figure 3 of
[1] performing a numerical integration of this equation (notice
however a typo in the second equation of (15) of [1]).

3.2. Simple harmonic oscillator

The simple harmonic oscillator

( ) ( )w=V x m x
1

2
172 2

is possibly the most important example of quantum
mechanical problem for which exact solutions are known.

In this case the spectrum is discrete, with bound states of
energy
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where Hn(x) is the Hermite polynomial of order n.
We define the dimensionless parameter

( )k
w

º

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2
20

2

representing the ratio between the kinetic energy associated
with the motion of the well and a quanta of energy w .

Assuming that the particle is initially in the ground state
of the static potential, the amplitudes can be obtained expli-
citly
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In this case the probability ∣ ∣ n0
2 of exciting the state n

follows a Poisson distribution
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and it reaches a maximum for a velocity given by
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or equivalently
( )k = n 24

The probabilities of transition from the ground state of
the SHO to an excited state, due to a sudden movement of the
well, are plotted in figure 1. The vertical lines in the plot
correspond to the condition (24). It is worth noticing that at
κ=n, ∣ ( )∣ ∣ ( )∣= - n nn n0,

2
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2, for n>1. The proof of
this property can be found in appendix appendix.
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As we already mentioned in the Introduction, a better
description of the physical process would require a smooth
transition from zero velocity up to a maximal velocity. Ide-
ally, this should be done using an acceleration transformation
(see for instance [13]), but a simpler approach could involve a
sequence of time steps where the velocity takes a constant
value at each step. We briefly discuss this approach for the
simple harmonic oscillator, where the complications of the
continuum part of the spectrum are absent, and for the special
case of just two time steps. We assume that the particle is in
the ground state at time t=0, when suddenly the potential
starts moving with velocity v1=η v (with 0<η<1) up to
t=t1, and for t>t1 finally moves with velocity v. The
probability that the particle will be in the ground state at
t>t1 can be calculated as

( ) ∣ ( ) ( )∣ ( )åk k k=
=

¥

   25
j

j j0 0
0

0, 1 ,0 2
2

where k wº mv 21 1
2 and ( )k wº - m v v 22 1

2 .
A simple calculation yields the result
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- + - e I 2 1 260 0
2 2

0
2

where In(x) is the Bessel function modified Bessel function of
the first kind (notice that this expression correctly reduces to
the previously considered case for η=0 or η=1).

Taking into account the asymptotic behaviour of I0(x) for
 -¥x (and assuming h ¹ 0 and h ¹ 1), one obtains
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k
p h hk

»
-

h k



- -


e
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270 0

1 2 2

which decays more weakly than in the original case (observe
in particular that for η=1/2 the exponential decay dis-
appears). Notice also that the probability is maximal for
η=1/2: for this value, the condition ( )k > 1 20 0 is met
for κ  1.75.

This example shows that the probabilities of excitation
depend crucially on the details of the movement of the potential

and therefore any realistic description of the experiments should
first start with a good modeling of the acceleration stage.

3.3. Pöschl-Teller potentials

The second example that we want to consider is the Pöschl-
Teller (PT) potential
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for which exact solutions are available.
The potential (28) provides a nice generalization of our

discussion for the attractive delta potential, both because it
has a mixed spectrum, with λ bound states (λ integer), and
because it is known to be reflectionless [18].

The eigenfunctions of the bound states read
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where ( )lP xj is the associated Legendre polynomial; the

corresponding eigenenergies are = - Ej
j

a m2

2 2

2 . Here  j is a
(dimensionless) normalization constant.

As an example we consider the case λ=1, for which
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and assume that the particle is in the ground state of the static
potential at t=0.

The amplitudes for the transition to the bound state and to
the continuum states of the moving potential can then be
calculated explicitly as
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where k º amv .
Similarly to what done for the simple harmonic oscilla-

tor, we see that for κ<0.95, the probability that a particle
would stay in the ground state, after the well starts to move,
will be higher than 1/2.

In the left plot of figure 2 we plot the probability that a
particle initially in the bound state of the Poschl-Teller
potential with λ=1 stays trapped as the well starts to move
with constant velocity (blue curve), ( ) ∣ ∣k = Pbound 11

2, and
the probability that the particle ends up in the continuum (red
curve), ( ) ∣ ( )∣òk =

p-¥

¥
P k v,continuum

dk
1

2
2
. The integral over

momentum is performed numerically and it is verified within
the numerical accuracy that Pbound(κ)+Pcontinuum(κ)=1.

Figure 1. Probability of transition from the ground state to an excited
state for the simple harmonic oscillator, due to a sudden movement.
The vertical lines correspond to the condition (24).
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The situation is qualitatively similar to the case treated in [1],
but with Pbound(κ) decaying now exponentially for κ?1.

The wave function at t>0 can be then obtained as
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Since the Pöschl-Teller potential is reflectionless we expect
that the wave function would be qualitatively different from the
wave function of the moving delta well, due to the absence of a

peak moving with velocity 2v. The time evolution of a wave
function for a particle initially in the bound state of the PT
potential, which suddenly starts to move with constant velocity,
is displayed in the right plot figure 2. We have used

k= = = =a m 1; the probability density is plotted at four
different times t=0, 5, 10, 15. In this case it is evident the
absence of the reflected wave, as expected, given the nature of
the potential. We also appreciate that the peak is moving at
velocity v, and the corresponding wave function is not dispersing.

The plots in figures 3 are the analogous of the plots in
figures 2, but for a potential with λ=2; in this case the
potential possess two bound states and, as the potential starts
to move, the probability of exciting the first excited state of
the well grows up to a maximum (for κ≈1.5) and then
decreases (see the left plot in figure 3). The conservation of
total probability is verified numerically to hold.

The location of the maximum of the probability of
exciting a different bound state approximately corresponds to
absorbing the kinetic energy of the particle and make a

Figure 2. Left plot: Probability that a particle initially in the bound state of the Poschl-Teller potential with λ=1 stays trapped as the well
starts to move with constant velocity (blue curve); the red curve is the probability that the particle ends up in a state of the continuum. Right
plot: Probability density at four different times t=0, 5, 10, 15 for a particle initially in the bound state of the static potential with λ=1. We
have used k= = = =a m 1.

Figure 3. Left plot: Probability that a particle initially in the bound state of the Poschl-Teller potential with λ=2 stays trapped as the well
starts to move with constant velocity (blue and green curves); the red curve is the probability that the particle ends up in a state of the
continuum. Right plot: Probability density at four different times t=0, 5, 10, 15 for a particle initially in the bound state of the static
potential with λ=2. We have used k= = = =a m 1.
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transition to the other bound state

( ) ( )m l- - =

ma

mv
2

1

2
33

2

2
2 2 2

or equivalently

( )k l m= - 342 2

For the case in the left plot of figure 3, λ=2 and μ=1, and
therefore the maximum corresponds to k = 3 .

In figure 4 we display the time evolution of the wave
function for λ=2 but for κ=2, at which the components
of the bound states are comparable: in this case one can
appreciate the asymmetric time-dependent shape of the peak,
which reflects the fact that the particle is not in a stationary state.

3.4. Hydrogen atom

Let us now consider a hydrogen atom, initially at rest in the
ground state, which is suddenly kicked and the proton starts
to move with constant velocity


v .

The wave function of the bound states of the (static)
hydrogen atom read
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with n�1, 0�l�n−1 and ∣ ∣ m l.
Based on our general discussion, the amplitude for the

transition from the ground state to any excited state reads7
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i
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where μ here is the mass of the electron.

Using the partial wave decomposition of a plane wave
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one can reduce the expressions to a one dimensional integral
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We have calculated explicitly the amplitudes for
1�n�10; their expressions (not reported here) depend
uniquely on the dimensionless parameter k º =

p
v

e 42
0

m va0 (a0 is the Bohr radius). Just to get an idea, κ=1
corresponds to a speed v≈0.007892c; using the root mean
square speed for hydrogen gas =v k T M3rms B we can
associate a temperature T≈2.2×108K. To obtain a sizeable
ionization effect on the atoms of a gas trapped in a container
by means of the elastic collisions of the individual atoms with
the walls of the container, one should reach incredibly high
temperatures8.

Using these expressions we can calculate exacly the
probability of a transition ( ) ( ) n l1, 0 , , with n N , due to
a sudden movement with velocity


v 9

∣ ( )∣ ( )åå=
= =

-

P v 38n N
n

N

l

n

n l
0 0

1

1,0; ,
2

Of course the probability of not ionizing the atom cor-
responds to using  ¥N in the expression above. Repeating
the qualitative estimate done for the simple harmonic oscil-
lator and for the Pöschl-Teller potentails, we see that
Pn=1<1/2 implies κ<0.87.

At small velocities (κ = 1) we may obtain the leading
behavior of this probability

( )

k k
k k
k k
k k
k k

» - - + ¼

» - - + ¼

» - - + ¼

» - - + ¼

» - - + ¼











P

P

P

P

P

1 0.302617 0.576334

1 0.297702 0.572154

1 0.294468 0.569285

1 0.292225 0.567241

1 0.290603 0.565735 39
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2 4
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The coefficients of the contribution of order κ2 form a
nice monotonic sequence, so that one can use extrapolation to
estimate its value for  ¥N accurately. Moreover, since
these coefficients receive contributions only from the trans-
ition ( ) ( ) n1, 0 , 1 , a larger number of coefficients can be
calculated with limited effort.

Figure 4. Probability density at four different times t=0, 5, 10, 15
for a particle initially in the bound state of the static potential with
λ=2. We have used = = =a m 1 and κ=2.

7 Since the quantum number for the third component of angular momentum
needs to vanish, m=0, we express the amplitudes as functions of n and l
alone.

8 Of course, this argument is only qualitative since the boundary conditions
for that problem would be different and the wave functions for the moving
and static systems would not be related by equation (3).
9 Notice that for the hydrogen atom there is an infinite number of bound
states.
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We have used Richardson extrapolation on the sequence
of the first 20 coefficients obtaining

( )

-

-

+ + ¼

N

N

0.283 412 215 955 169 520 94

0.78146725925265723860
1

0.781 467 259 252 511 902 51
1

40

2

3

showing that the ionization probability for the hydrogen atom
goes as 0.283 412 215 955 169 520 94κ2 for k  0.

This result can be confirmed by using the wave functions
of the continuum, ( )Y rklm . In this case

( ) ( ) ( ) ( ) 
ò y= Y- m q

 
k e r r d r 41i

klm 1,0,0
3vr cos

is the amplitude for the transition from the ground state to the
continuum (i.e. its modulus square is the probability of
ionizing the atom).

The direct calculation of the ionization probability
requires using the continuum wave functions. These wave
functions are reported for instance in [19] and read:
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where (note that the radial wave functions Rl(k, r) obey the
k/(2π) normalization)
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Using these wave functions we obtain the exact expression
for the leading behavior of the ionization probability as κ→0

The value obtained using the extrapolation of the com-
plementary probabilities provides a very accurate estimate
(with an error approximately of 4.7×10−20).

4. Conclusions

We have extended the one dimensional model of Granot and
Marchewka in [1] for an atom displacing with a moving tip
(represented by a Dirac delta function) to a number of

potentials with different spectrum (both discrete and mixed)
and in one and three dimensions. Our calculations are based
on a spectral decomposition, rather than on the direct use of
the propagator (as done in [1]) and, for the case discussed in
[1] we reproduce the probability that the particle stays trapped
calculated by Granot and Marchewka.

The remaining examples that we discuss present new and
interesting features, not found in the example considered in [1]:
for instance, for the case of Pöschl-Teller potentials we show that
the reflected peak moving with velocity 2v found in [1] is absent,
due to the reflectionless nature of PT potentials; moreover, for the
case of potentials with more than one bound state, there is a
probability that the particle gets to an excited bound state, rather
than to the continuum and we have found a simple criterium
based on energy conservation to identify the maxima of this
probability. Finally, we have calculated exactly the leading
contribution in the velocity v to the probability that a hydrogen
atom gets ionized due to a sudden movement of the proton.

For the case of a simple harmonic oscillator, we have
calculated the probability that a particle initially in the ground
state will be found in the ground state at t>t1, after that the
potential suddenly starts to move with velocity v(t)=θ(t)
v1+θ(t−t1) (v−v1), with t1>0. Our calculation shows that
this probability is strongly affected, particularly for large
velocities. Future extensions of the present work should take
into account the effects of an acceleration, to allow a more
realistic description of the physical process.
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Appendix A. Amplitudes for the simple harmonic
oscillator

We can understand this result in terms of the creation and
annihilation operators â and ˆ†a ; calling ∣ ñn an eigenstate of the
Hamiltonian of the simple harmonic oscillator we have
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Following [20] we define
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follows.
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