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Abstract
We present an strategy for the derivation of a time-dependent Dyson map which ensures
simultaneously the unitarity of the time evolution and the observability of the whole time-dependent
non-Hermitian Hamiltonian or parts of it. The time-dependent Dyson map is derived through a
constructed Schrödinger-like equation governed, in one case, by the non-Hermitian Hamiltonian
itself or, in another case, by its parts. In the former case, when the whole non-Hermitian
Hamiltonian is considered, our scheme ensures the time-independence of the metric operator despite
the time-dependence of the Dyson map, a necessary condition for the observability of the non-
Hermitian Hamiltonian. In the later case, however, when parts of the non-Hermitian Hamiltonian is
considered, our method ensures the simultaneous time-dependence of the Dyson map and the metric
operator. In this latter case what is ensured is the observability of the remaining part of the non-
Hermitian Hamiltonian that was not chosen for the derivation of the Dyson map. Illustrative
examples, for both cases, are derived from a driven non-Hermitian Harmonic oscillator.
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1. Introduction

Since the work by Bender and Boettcher [1] and further
developments by Mostafazadeh [2], pseudo-Hermitian
 -symmetric Hamiltonians have been extensively studied.
While in the former reference it was suggested that Hamilto-
nians invariant under space-time reflection symmetry
( -symmetry) can have real spectra, in the latter the notion of
pseudo-Hermiticity was introduced, establishing the grounds for
treating non-Hermitian  -symmetric Hamiltonians using
time-independent metric operators [3]. Aiming to extend the
scope of Hermitian quantum mechanics, the steps towards the
deepening of our understanding of non-Hermitian systems has
since been taken in virtually all fields of physics [3]. More
recently,  -symmetry (PTS) and PTS breaking has been

investigated in a variety of systems, such as waveguides [4],
optical lattices [5] and optomechanics [6]. Moreover, a variety
of phenomena such as disorder [7], localization [8], chaos [9]
and solitons [10] have been investigated within  -symmetric
systems and a linear response theory for a pseudo-Hermitian
system-reservoir interaction [11] has been recently developed.

Despite the overall consensus on handling pseudo-Hermi-
tian Hamiltonians through time-independent metric operators
[3], controversies emerged regarding the generalization to time-
dependent (TD) metric operators [12, 13]. Although it has been
demonstrated that a TD metric operator can not ensure the
unitarity of the time-evolution simultaneously with the obser-
vability of the Hamiltonian [12], some authors have disputed
this claim [13], failing however to ensure the unitarity of time
evolution by insisting on the observability of the Hamiltonian.
A contribution has been recently presented in [14] for dealing
with TD metric operators which, although in agreement with
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the theorem in [12], goes a step beyond; It has been demon-
strated that a TD Dyson equation and a TD pseudo-Hermiticity
relation (as first introduced in [14]) can be solved consistently at
the cost of rendering the non-Hermitian Hamiltonian to be a
nonobservable operator, but showing that any other observable
in the non-Hermitian system is derived in complete analogy
with the time-independent scenario. Non-trivial solutions to the
TD Dyson equation and the proposed TD pseudo-Hermiticity
relation have been presented, starting with a non-Hermitian
linearly driven harmonic oscillator and a spin chain [14], and
then going to the TD Swanson model [15] and a generalization
of the TD Swanson model including the linear amplification
term [16]. Many other interesting contributions to the subject of
TD non-Hermitian Hamiltoinans are found in [17].

In the present contribution, however, we present a strategy
to go even beyond [14], enabling us to account for the unitarity
of the time-evolution simultaneously with the observability of a
TD non-Hermitian Hamiltonian. To this end a Schrödinger-like
equation is constructed from which we derive the TD Dyson
map (i) from the TD pseudo-Hermitian Hamiltonian itself or (ii)
from parts of it. In the former case i) our scheme remarkably
ensures a time-independent metric operator despite the time-
dependence of the Dyson map, a necessary condition for the
observability of the whole pseudo-Hermitian Hamiltonian [12].
The distinction established between the time-dependence of the
Dyson map and that of the metric operator is therefore central in
that: although we are in agreement with the main premise in
[12, 14], that a time-independent metric operator is needed for
assuring the unitarity of the time evolution simultaneously with
the observability of the pseudo-Hermitian Hamiltonian, here a
TD Dyson map is considered, and this is an important point
since for a TD non-Hermitian Hamiltonian, a time-independent
Dyson map may result in severe restrictions on the time-
dependent parameters of the Hamiltonian. In the latter case ii)
where only parts of the non-Hermitian Hamiltonian is con-
sidered for the derivation of the Dyson map, our method
ensures the simultaneous time-dependence of the Dyson map
and the metric operator, without conflicting with [12]. In fact,
what is ensured in this case is the observability of the remaining
part of the non-Hermitian Hamiltonian that was not chosen for
the derivation of the Dyson map, and not the whole non-Her-
mitian Hamiltonian. Therefore, this latter case enabled us to
expand the scenario presented by Mostafazadeh [12] for treating
TD non-Hermitian Hamiltonian: If in the case i), where the
observability of the non-Hermitian Hamiltonian is assured, we
were in agreement with the Mostafazadeh theorem by assuring
also a time-independent metric operator, in case ii) we expand
the scenario presented by Mostafazadeh [12], advancing a new
treatment for TD non-Hermitian Hamiltonians in which both
the Dyson map and the metric are TD operators.

Our Schrödinger-like equation applies, however, to a more
general scenario than the one for which it was constructed; apart
from the TD non-Hermitian Hamiltonians, it also applies to
time independent non-Hermitian Hamiltonians, in the latter case
recovering exactly the standard procedure for handling non-
Hermitian quantum mechanics as we show below. It also helps
with unitary transformations within Hermitian quantum
mechanics, providing us with the transformation operator from

the Hamiltonian itself. As an illustration of our method we
revisit the non-Hermitian linearly driven harmonic oscillator,
deriving the TD Dyson map from the constructed Schrödinger-
like equation and showing the time-independence of the asso-
ciated metric operator. Finally, after deriving an eigenvalue
equation for a TD non-Hermitian system, we analyze the
 -symmetry breaking process.

2. A Schrödinger-like equation for the evolution of
the TD Dyson map

Starting with a brief review of the developments in [14], we
consider a non-Hermitian TD Hamiltonian H(t) associated
with the Schrödinger equation y y¶ ñ = ñi t H t tt∣ ( ) ( )∣ ( ) . A TD
Dyson map η(t) thus leads to the TD Dyson relation, i.e., the
transformed Hamiltonian

h h h h= + ¶- -h t t H t t i t t , 1t
1 1( ) ( ) ( ) ( ) [ ( )] ( ) ( )

which generates the evolution of the equation f¶ ñ =i tt∣ ( )
f ñh t t( )∣ ( ) , where f h yñ = ñt t t∣ ( ) ( )∣ ( ) . Due to the gauge-like

term in equation (1) the non-Hermitian H(t) and its Hermitian
counterpart h(t) are no longer related by means of a similarity
transformation, resulting in that H(t) is not a self-adjoint
operator and, therefore, not observable. The Hermiticity of h
(t) leads however, as referred to in [14], to the TD pseudo-
Hermiticity relation

r r r r h h- = ¶ =H t t t H t i t t t t, ,
2

t( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

† †

which replaces the usual relation r r=H H† for a time-
independent metric. Assuming ρ(t) to be a positive-definite
TD metric operator, it is straightforward to verify that the
generalized equation (2) leads to the expected relation
between the TD probability densities in the Hermitian and
non-Hermitian systems, given by

y y y r y f fá ñ = á ñ = á ñrt t t t t t t . 3t( )∣ ˜ ( ) ( )∣ ( )∣ ˜ ( ) ( )∣ ˜ ( ) ( )( )

From the above observation one concludes, as in [14], that even
for TD Dyson maps, any observable o(t) in the Hermitian
system possesses a counterpart O(t) in the non-Hermitian one—
except for the non-Hermitian Hamiltonian itself—given by

h h= -O t t o t t , 41( ) ( ) ( ) ( ) ( )

in complete analogy for time-independent Dyson maps.

2.1. Case i): A time-independent metric from a TD Dyson map

Our strategy to restore a similarity transformation from
equation (1) and, consequently, to restore the observability of
H(t)—thus going beyond [14]—, is to impose the gauge-like
term h h¶ -i t tt

1[ ( )] ( ) equal to to the operator h h-t H t t1( ) ( ) ( ),
thus leading to the Schrödinger-like equation

h h¶ =i t t H t , 5t ( ) ( ) ( ) ( )

which enable us to compute the TD Dyson map from the non-
Hermitian H(t) itself. The equation (5) ensures the similarity

2

Phys. Scr. 95 (2020) 065211 F S Luiz et al



transformation

h h= -h t t H t t2 , 61( ) ( ) ( ) ( ) ( )

and by demanding h(t) to be Hermitian, we derive the pseudo-
Hermiticity relation

r r=H t t t H t , 7( ) ( ) ( ) ( ) ( )†

where the factor 2 is obviously only a scale connecting the
instantaneous eigenvalues of h(t) and H(t). From equations (5)
and (7) we immediately verify the time-independence of the
metric operator, r¶ =t 0t ( ) , despite the time-dependence of
the Dyson map. The relation (7) helps us to define the initial
condition h t0( ) for the exact solution of equation (5), given by

òh h t t= -t t T i d Hexp , 8
t

t

0
0

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

where T denotes the time ordering operator. Except for the
initial condition h ht t,0( ) ( ) is a determinist operator following
from the non-Hermitian H(t). In short, under the constructed
Schrödinger-like equation (5) the TD Dyson equation (1) and
pseudo-Hermiticity relation (2) reduce to their simplified
forms in equations (6) and (7) which ensures the unitarity of
the time evolution governed by H(t) simultaneously with the
observability of such a non-Hermitian Hamiltonian. Finally,
with the unitarity of the time-evolution assuming the form of
equation (3), the matrix elements of the observables in
equation (4) becomes

y y f fá ñ = á ñrt O t t t o t t . 9t( )∣ ( )∣ ˜ ( ) ( )∣ ( )∣ ˜ ( ) ( )( )

In the appendix we present an alternative demonstration,
using only equations (8) and (7), that ρ(t)=ρ(t0), with the
initial value h t0( ) following from the parameters defining
H(t).

2.2. Case ii): Simultaneous TD Dyson map and metric operator

If the Schrödinger-like equation (5) allowed us to bypass the
constraints imposed by the Mostafazadeh’s theorem [12]—in
the sense that we restore the observability of a TD non-Her-
mitian Hamiltonian—by presenting a TD Dyson map asso-
ciated with a time-independent metric operator, we now go
even further presenting an approach that enable us to derive
simultaneous TD Dyson map and metric operator.
By describing the TD non-Hermitian hamiltonian as
H(t)=H0(t)+V(t), the Schrödinger-like equation (5) may
be substituted by

h h¶ = -i t t H t , 10t 0( ) ( ) ( ) ( )

or

h h¶ = -i t t V t , 11t ( ) ( ) ( ) ( )

both relations leading respectively to the hamiltonians

h h= -h t t V t t a, 121( ) ( ) ( ) ( ) ( )

h h= -h t t H t t b, 120
1( ) ( ) ( ) ( ) ( )

the scale factor 2 appearing in equation (6) being now absent.
From equations (12a) and (12b), where the evolution of the
Dyson map is governed by H0(t) or V(t), we obtain the

pseudo-Hermiticity relations for V(t) or H0(t), respectively:

r r=V t t t V t a, 13( ) ( ) ( ) ( ) ( )†

r r=H t t t H t b. 130 0( ) ( ) ( ) ( ) ( )†

Evidently, equations (11) and (13b) do not apply in the rather
usual case where H0(t) is a diagonal Hermitian operator
modelling the system of interest; likewise, equations (10) and
(13a) do not apply in the case where V t( ) is a diagonal
Hermitian operator acting over the system. The exact solution
of equations (10) and (11) are given by

òh h t t=t t T i d H aexp , 14
t

t

0 0
0

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

òh h t t=t t T i d V bexp . 14
t

t

0
0

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

The essential feature of this approach is that the metric,
as well as the Dyson map, is a time-dependent operator, given
by

r r r¶ = -t i t H t H t t ,t 0 0( ) [ ( ) ( ) ( ) ( )]†

or

r r r¶ = -t i t V t V t t ,t ( ) [ ( ) ( ) ( ) ( )]†

when the Dyson map is derived from equation (10) or (11).
We observe that even in Hermitian quantum mechanics

the observability of a time-dependent Hamiltonian is a sen-
sitive problem, the Hamiltonian acting essentially as the
generator of model dynamics. When considering, for exem-
ple, the TD Hermitian = +H t H t V t H t,0 0( ) ( ) ( ) ( ) repre-
senting the system of interest and V(t) an external influence
over it, the energy of the system is given by -U t H t U t0

1( ) ( ) ( ),
the term V(t) contributing to the evolution operator

ò t t=U t T i d Hexp
t

t

0

⎡
⎣⎢

⎤
⎦⎥( ) ( ) (see [18]).

Before presenting our illustrative examples, we sum-
marize our developments: If Mostafazadeh’s theorem [12]
raised the issue of the lack of observability of TD non-Her-
mitian Hamiltonians with TD metric operators, and in [14] it
was demonstrated that this issue does not affect other obser-
vables, in the present work we reestablish the observability of
TD non-Hermitian Hamiltonians for a TD Dyson map. As
follows from equation (4), the observables associated with the
pseudo-Hermitian systems are generally composed of super-
positions of canonically conjugated observables associated
with the Hermitian ones. This poses an additional difficulty to
the pseudo-Hermitian systems since they demand measure-
ments of canonically conjugated variables [19, 20]. Aside
from this additional difficulty, however, we want the obser-
vability of TD non-Hermitian Hamiltonians to be as much a
sensitive problem as it currently is with TD Hermitian one,
but nothing less.
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3. Illustrative examples

3.1. Case i)

In order to illustrate our method for the case i) where the
Dyson map is derived from the whole TD non-Hermitian
Hamiltonian, we start from a Hamiltonian of the form

k= + ¢ =H t H t V t H t H t, , 0, 150 0 0( ) ( ) ( ) [ ( ) ( )] ( )

where H t0 ( ) stands for the usual free Hamiltonian and kV t( )
stands for a non-Hermitian interaction with a real dimen-
sionless strength κ, to be considered as a perturbation para-

meter. By acting de operator ò t ti d Hexp
t

t
0

0
( )( ) on the right

side of the Schrödinger-like equation (5), the TD Dyson map
coming from equations (8) and (15) is thus given by

ò

ò

h h k t t

t t

= -

´ -

t t T i d V

i d H

exp

exp , 16

t

t

t

t

0

0

0

0

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ˜ ( )

( ) ( )

where ò òt t t t= -V t i d H V t i d Hexp exp
t

t

t

t
0 0

0 0
( ) ( )˜ ( ) ( ) ( ) ( ) .

For a TD harmonic oscillator under a TD non-Hermitian
linear amplification, H t( ) is given by

w a b= = +H t t a a V t t a t a, , 170( ) ( ) ( ) ( ) ( ) ( )† †

where we are assuming w a b Î t t t, ,( ) ( ) ( ) . Evidently,
H t( ) is not Hermitian when w Ï t( ) or a b¹t t*( ) ( ), and it
becomes  -symmetric when demanding ω(t) to be an even
function in t or a generic function of it, simultaneously with
demanding α(t), β(t) to be odd functions in t or pure-ima-
ginary generic functions of it.

In order to determine the Dyson map given by
equation (16) we first consider the same ansatz as that in [14]
for h g l= +t t a t aexp ;0 0 0( ) [ ( ) ( ) ]† we then compute the
time-independent complex parameters γ and λ from the
pseudo-Hermiticity relation (7) instead of the similarity
transformation (6), avoiding the need for the perturbation
expansion of the time-ordering operator in the TD Dyson map
h t( ). The relation r r= -H t t H t t0

1
0( ) ( ) ( ) ( )† , coming from

equation (7), thus demands the functions ω(t) and a bt t( ) ( )
to be real and g l k b a w+ = -t t t t t0 0* *( ) ( ) [ ( ) ( )] ( ),
such that g l a+ Î t t t0 0*[ ( ) ( )] ( ) . Without loss of
generality we may assume l g=t t0 0*( ) ( ) such that g =t0( )
k b a w-t t t2*[ ( ) ( )] ( ) and g a Î t t0*( ) ( ) . With the TD
functions delimited in this way and guaranteeing the Hermi-
ticity of h t( ), we then use the similarity transformation (6) to
compute

w= + + +h t t a a u t a u t a f t2 , 18*( ) [ ( ) ( ) ( ) ( )] ( )† †

and t a b= +c c-V t e a t e ai t i t˜ ( ) ( ) ( )( ) ( ) †, with c =t( )
ò w t td

t

t

0
( ) .Evidently, the similarity transformation, and conse-

quently the TD Dyson map, is as important to the problem as the
pseudo-Hermiticity relation, and so the time-independent metric
operator.Considering the perturbation parameter k 1 , we have
also verified in the appendix (up to first order of perturbation to
avoid extending the already lengthy calculations), that

r h h=t t t0 0( ) ( ) ( )† , now without directly using equation (7), but
using instead the restrictions imposed by this equation on the TD
parameters of the Hamiltonian (17). Moreover, we compute the
TD functions w g ka ka= - + cu t t t i t t ei t

0( ) ( )[ ( ) ˜ ( )] ( ) ( )

and w=f t u t t2( ) ∣ ( )∣ ( ), where òa ta t= c tt d e
t

t i

0
˜ ( ) ( ) ( ) and

òb tb t= c t-t d e
t

t i

0

˜ ( ) ( ) ( ) .

Finally, we observe that the scale factor 2 in the
Hamiltonian (18), is directly associated with the energy of the
pumped harmonic oscillator, given by w -t U t a aU t2 1( ) ( ) ( )†

,

with ò t t=U t T i d hexp
t

t

0

⎡
⎣⎢

⎤
⎦⎥( ) ( ) .

3.1.1. Solutions of the Schrödinger equation for the pseudo-
Hermitian Hamiltonian. Using the Lewis and Riesenfeld
invariants [21], as done in [18, 22], the basis state solutions of
the Schrödinger equation governed by Hamiltonian h t( ) are
given by the TD displaced number states

f qñ = ñ = ¼Ft e D t m m; 0, 1, 2, , 19m
i tm∣ ( ) [ ( )]∣ ( )( )

where q t( ) follows from the equation q w q= +i t t t2( ) ( ) ( )
u t*( ), whereas the TD Lewis and Riesenfeld phases are given
by

ò t v t t t q tF = - + +t d m f uRe . 20m
t

t

0

( ) { ( ) ( ) [ ( ) ( )]} ( )

It thus follows that f ñ = ñt V t t m,m 0∣ ( ) ( )∣ , with the
evolution operator q c= ¡V t t t D t R t, 0( ) ( ) [ ( )] [ ( )], the
rotation c c= -R t i t a aexp 2[ ( )] [ ( ) ]† , and the overall phase

ò t t t q t¡ = - +t i d f uexp Re
t

t

0
( )( ) { ( ) [ ( ) ( )]} .

Consequently, y h fñ = ñ-t t tm m
1∣ ( ) ( )∣ ( ) and for a generic

superposition f fñ = å ñt c tm m m∣ ( ) ∣ ( ) , the generic solution of
the Schrödinger equation for the pseudo-Hermitian H t( ) is
given by

y h f h fñ = ñ = ñ- -t t t t U t t t, , 211 1
0 0∣ ( ) ( )∣ ( ) ( ) ( )∣ ( ) ( )

with

q c q
=
= ¡ -

U t t V t t V t t

t D t R t D t

, , ,

. 22
0 0 0 0

0
1

( ) ( ) ( )
( ) [ ( )] [ ( )]( [ ( )]) ( )

†

3.1.2. Observables. The observables associated with the
pseudo-Hermitian H(t), given by equation (4), are easily
computed for the quadratures = - - -x a a i1 2 ,ℓ

ℓ ℓ 1[ ( ) ] ( )†

=ℓ 1, 2, leading to the operators

c c
c c

g k a b
g k a b

=
-

+
- + -

- +

X
X

t t
t t

x
x

i
t t t

t i t t

cos sin
sin cos

Im 2

Re 2
23

1

2

1

2

0

0

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )[ ( )] [ ( )]
[ ( )] [ ( )]

[ ( )] [ ˜ ( ) ˜ ( )]
( ) [ ˜ ( ) ˜ ( )]

( )

where the first term on the rhs stands for the unperturbed
diagonal Hamiltonian H t0 ( ) whereas the second term stands for
the perturbation correction. Regarding the Hamiltonian H(t)
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itself, its matrix elements in Fock space states are given by

y y

f f

d d

d

á ñ

= á ñ = á ñ

= + +

+

r

c

+

-
-

 



t H t t

t
h t

t m V t t
h t

V t t n

t n t

n t e

2
,

2
,

1

24

m n t

m n

mn m n

m n
i m n

0 0

, 1

, 1
2

0

*

( )∣ ( )∣ ( )

( )∣ ( ) ∣ ( ) ∣ ( ) ( ) ( )∣

( ( ) ( )

( ) )
( )

( )

†

( )

where w q q= + + + t t n t u t t f t2 Re2( ) ( )[ ∣ ( )∣ ] [ ( ) ( )] ( )
and w q= + t t t u t*( ) ( ) ( ) ( ).

 -symmetry breaking. In spite of the time-dependence of
the Hermitian Hamiltonian (18), we successfully derive an
eigenvalue equation for this operator by defining, as in [22], the
TD operators x= +b t a t*( ) ( ) and x= +b t a t( ) ( )† † , asso-
ciated with the relations z z zñ = ñ ñ =b b t m t b t,m m m∣ ( ) ∣ ( ) ∣ ( )†

z ñ-m tm 1∣ ( ) , and z zñ = + ñ+b t m t1m m 1∣ ( ) ∣ ( )† , where
the wave vector z ñtm∣ ( ) x= - ñD t m*[ ( )]∣ stands for the displaced
Fock states with x w=t u t t( ) ( ) ( ). Now, up to sencond order
of perturbation, in order to allow us to analyze
the  -symmetry breaking, the operators b(t)and b t( )† help
us to rewritte equation (18)—with unchanged u(t) but =f t( )

k a b w-u t t t t2 2[∣ ( )∣ ( ) ( )] ( )—in the form w= -h t t b b2( ) ( ) †

k a b wt t t2 2 ( ) ( ) ( ), thus leading to the TD eigenvalue equation

z zñ = ñh t t t t , 25m m m( )∣ ( ) ( )∣ ( ) ( )

with w k a b w= - t t m t t t2 2m
2( ) ( ) ( ) ( ) ( ). Fromequation (25)

and the similarity transformation h h= -h t t H t t2 1( ) ( ) ( ) ( ) we
obtain (apart from an irrelevant factor 2)

h z h zñ = ñ- -H t t t t t t , 26m m m
1 1( )[ ( )∣ ( ) ] ( )[ ( )∣ ( ) ] ( )

showing—as usual in the case of time-independent non-
Hermitians Hamiltonians and Dyson maps—that the pseudo-
Hermitian H(t) and its Hermitian counterpart, are isospectral
partners. From the eigenvalue equation (26) its is clear that the
 -symmetry breaking occurs if ω(t) and/or α(t)β(t) cease to be
real, resulting in the loss of the Hermiticity of h(t) [3].

The eigenstates and the solutions of the Schrödinger
equation for h t( ) are connected through the relation
f zñ = ñt t t t,m m0∣ ( ) ( )∣ ( ) with x= - t t V t t D t, ,0 0 *( ) ( ) [ ( )]†

and it is not difficult to find that the eigenstates of h(t) are the
solutions of the Schrödinger equation governed by the
Hamiltonian

= + ¶    t t t h t t t i t t t t, , , ,t0 0 0 0( ) ( ) ( ) ( ) ( ) ( )† † .

3.2. Case (ii)

Start again from Hamiltonian (17), we now consider the
Dyson map (14a), which reduces to

h h= ct t e , 27i t a a
0( ) ( ) ( )( ) †

with òc w t t=t d
t

t

0
( ) ( ) and w Î t( ) . Assuming h =t0( )

g t a aexp 0[ ( ) ]† , we then compute the time-independent com-
plex parameter γ from the pseudo-Hermiticity relation (13a),
leading us with the restriction jβ=−jα and

g c
b
a

= -t t
t

t
Re Im ln0[ ( )] [ ( )] ∣ ( )∣

∣ ( )∣

With the TD functions delimited in this way and guaranteeing
the Hermiticity of h t( ), we assume a real g t0( ) and use the
similarity transformation (6) to compute

k a a= +c g c g- - +h t t e a t e a .
28

i t i t i t i t0 0* * *( ) [ ( ) ( ) ]
( )

[ ( ) ( )] [ ( ) ( )] †

From equation (22) we verify that the evolution operator
for the state vector governed by the Hamiltonian (28), i.e.,
f fñ = ñt U t t t, 0 0∣ ( ) ( )∣ ( ) , is given by

q c q= ¡ -U t t t D t R t D t, , 290 0
1( ) ( ) [ ( )] [ ( )]( [ ( )]) ( )

with q ka= c g+i t t e 2i t i t0* * *( ) ( ) [ ( ) ( )] and ¡ =t( )

ò t a t q t- k c t g- -d eexp Rei

t

t i i t
2 0

0( )[ ( ) ( )][ ( ) ( )] . Finaly, the

observables associated with the pseudo-Hermitian V(t), given
by equation (4), are easily computed for the quadratures xℓ,
leading to the operators

=
-

X
X

C t C t
C t C t

x
x , 301

2

1 2

2 1

1

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( )( ) ( )

( ) ( ) ( )

where

g c g c
g c g c

= +
= -

C t t t i t t
C t t t i t t

cosh cos sinh sin ,
cosh sin sinh cos .

1 0 0

2 0 0

( ) [ ( )] [ ( )] [ ( )] [ ( )]
( ) [ ( )] [ ( )] [ ( )] [ ( )]

We stress that schemes for simultaneous measurement os
canonically conjugate varaibles has been discussed in the
literature [19, 20].

4. On the generality of the Schrödinger-like equation

The Schrödinger-like equation (5) can be taken as a general
procedure for the derivation of Dyson maps, even for time-
independent non-Hermitian Hamiltonians. In fact, for time-
independent H, all the expressions, from equation (1) to (9),
remain valid except that the time ordering operator must
be removed from equation (8), thus leading to h =t( )
h - -t iH t texp0 0( ) [ ( )] and, consequently, to a time-inde-
pendent hermitian h h h h= =- -h t t H t t H t2 20

1
0

1
0( ) ( ) ( ) ( ) ( ).

We simply recover the time-independent scenario for non-
Hermitian quantum mechanics. Even more generally, the
strategy for the derivation of the Dyson map is not limited to
the non-Hermitian quantum mechanics; it can be used when
two Hermitian Hamiltonians are connected through a unitary
transformation (instead of the non-unitary Dyson map) in the
standard form = + ¶h t U t H t U t i U t U tt

˜( ) ˜ ( ) ˜ ( ) ˜ ( ) [ ˜ ( )] ˜ ( )† † . By
defining the Schrödinger-like equation ¶ =i U t U t H tt ˜ ( ) ˜ ( ) ( ),
leading to the solution ò t t= -U t U t T i d Hexp

t

t
0

0

⎡
⎣⎢

⎤
⎦⎥˜ ( ) ˜ ( ) ˜ ( ) ,

the relation between the Hamiltonians reduces to =h t˜( )
U t H t U t2 ˜ ( ) ˜ ( ) ˜ ( )† , thus simplifying the form of h t˜( ) by elim-
inating the need for a (not always easy to derive) Gauss
decomposition for the time derivative of the operator U t˜ ( ).

Regarding the Schrödinger-like equation (10) in the case
when H0 happens to be a time-independent operator, we obtain
the Dyson map h h= -t t iH t texp0 0 0( ) ( ) [ ( )] and the
pseudo-Hermiticity relation h= -h t t iH t t V texp0 0 0 0( ) ( ) [ ( )] ( )

h- - -iH t t texp 0 0
1

0[ ( )] ( ). In the simplified case where
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h = -t iH t texp 0 0( ) [ ( )], the pseudo-Hermiticity relation redu-
ces to a kind of interaction picture in that =h t0( )

- - -iH t t V t iH t texp exp0 0 0 0[ ( )] ( ) [ ( )], thus strengthening
the general chacter of Schrödinger-like equations here intro-
duced. For the Schrödinger-like equation (11) when V happens to
be a time-independent operator, it follows that h =t( )
h -t iV t texp0 0( ) [ ( )] and h= -h t t iV t t H texp0 0 0 0( ) ( ) [ ( )] ( )

h- - -iV t t texp 0
1

0[ ( )] ( ). When we choose the simplified
form h = -t iV t texp 0( ) [ ( )] we then derive what appears to
be an kind of inverted interaction representation, =h t0( )

- - -iV t t H t iV t texp exp0 0 0[ ( )] ( ) [ ( )], in which instead of
filtering the action of the free term H0, we filter the interaction V.

We thus conclude that the Schrödinger-like equation can
indeed be used as a general procedure for the derivation of
TD Dyson maps with associated time-independent or even
TD metric operators—i.e., within and outside Mostafazadeh ́s
premisses in [12]—, thus ensuring simultaneously the uni-
tarity of the time evolution and the observability of a pseudo-
Hermitian Hamiltonian or parts of it.

5. Conclusion

The main concern of the present contribution started with a
theorem by Mostafazadeh [12] demonstrating that a TD
metric operator can not ensure the unitarity of the time-
evolution simultaneously with the observability of the
Hamiltonian. As already stressed above, working in a sce-
nario where TD metric operators are considered, in [14] it has
been demonstrated that the TD Dyson equation and pseudo-
Hermiticity relation can be solved consistently at the cost of
rendering the non-Hermitian Hamiltonian to be a non-
observable quantity in agreement with [12]. Therefore, in
complete analogy to the time-independent scenario, where a
time-independent Dyson map is used, it follows from [14]
that any observable o(t) in the Hermitian system possesses a
counterpart O(t) in the non-Hermitian system, given by
equation (4), even though the Hamiltonian is not an
observable.

Here we have presented two diferent schemes to ensure
simultaneously the unitarity of the time evolution and the
observability of a quasi-Hermitian Hamiltonian or parts of it.

i) Disconnecting the time-dependence of the Dyson map
from that of the metric operator, we first construct a Schrö-
dinger-like equation, governed by the non-Hermitian Hamil-
tonian itself, from which we derive a TD Dyson map which
remarkably leads to a time-independent metric operator.
Whereas the time-independence of the metric operator
ensures the pseudo-Hermiticity relation and then the unitarity
of the time evolution simultaneously with the observability of
a pseudo-Hermitian Hamiltonian, the time-dependence of the
Dyson map is an important demand since for a TD non-
Hermitian Hamiltonian, a time-independent Dyson map is a
rather restrictive choice. If this first scheme is within the

premises of Mostafazadeh ́s theorem, the second another
scheme is outside these premises:

ii) By constructing a Schrödinger-like equation governed
not by the non-Hermitian Hamiltonian itself but by parts of it,
we them assure the time-dependence of both the Dyson map
and the metric operator. In this way we ensure simultaneously
the unitarity of the time evolution and the observability that
remaining part of the non-Hermitian Hamiltonian that was not
chosen for the derivation of the Dyson map.

We have shown that our Schrödinger-like equations
applies for the derivation of a TD Dyson map either from a
TD or a time-independent non-Hermitian Hamiltonian, in the
latter case recovering exactly the standard procedure for time-
independent non-Hermitian quantum mechanics. We have, in
addition, presented illustrative examples starting from a non-
Hermitian Hamiltonian describing a harmonic oscillator with
a TD frequency under a TD linear amplification process. This
Hamiltonian has been solved using the Lewis and Riesenfed
TD invariants, in a similar fashion to what has been done in
[14], but now on a framework where the pseudo-Hermitian
Hamiltonian or pseudo-Hermitian component of the Hamil-
tonian is also an observable quantity. We also succeeded in
achieving a TD eigenvalue equation for our pseudo-Hermitian
Hamiltonian, which has helped us to analyze the  -sym-
metry breaking process.
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Appendix

A.1. Proof that ρðt Þ ¼ η† ðt Þηðt Þ ¼ η† ðt0Þηðt0Þ from the pseudo-
Hermiticity relation H† ðt Þρðt0Þ ¼ ρðt0ÞH ðt Þ,
with ρðt0Þ ¼ η† ðt0Þηðt0Þ

i) We first present a formal proof, starting from the pseudo-
Hermiticity relation r r=H t t t H t0 0( ) ( ) ( ) ( )† which implies
that r r=F iH t t t F iH t0 0[ ( )] ( ) ( ) [ ( )]† † , and consequently:

ò

ò

ò

ò

h h t t r

t t

r t t

t t r

=

´ -

=

´ - =

t t T i d H t T

i d H

t T i d H T

i d H t

exp

exp

exp

exp .

t

t

t

t

t

t

t

t

0

0

0

0

0

0

0

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎡
⎣⎢

⎤
⎦⎥

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭
⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) ( )

( )

( ) ( )

( ) ( )

† †
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ii) Next, for a more explicit proof, we expand the time-
ordering operator to obtain

ò

ò ò

ò

ò ò

å

å

h h

r

= + +

´

´ - + -

´

=

¥

=

¥

-

-

t t i dt H t i

dt dt H t H t t

i dt H t i

dt dt H t H t

1

1

.

t

t

ℓ

ℓ

t

t

t

t

ℓ ℓ

t

t

ℓ

ℓ

t

t

t

t

ℓ ℓ

1 1
2

1 1 0

1 1
2

1 1

ℓ

ℓ

0

0 0

1

0

0 0

1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

† †

† † 

 

Using the pseudo-Hermiticity relation r r=H t t t H t0 0( ) ( ) ( ) ( )† ,
we rewrite the metric operator in the form

ò

ò ò

ò

ò ò

å

å

h h r= +

+

´ -

+ -

=

¥

=

¥

-

-

t t t i dt H t

i dt dt H t H t

i dt H t

i dt dt H t H t

1

1

.

t

t

ℓ

ℓ

t

t

t

t

ℓ ℓ

t

t

ℓ

ℓ

t

t

t

t

ℓ ℓ

0 1 1

2
1 1

1 1

2
1 1

ℓ

ℓ

0

0 0

1

0

0 0

1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

†

 

 

In order to prove that the above metric operator equals r t0( )
(i.e, that the product of the terms in both brackets gives us the
indentity), we must show that, with the exception of zero order
term, all terms associated with all other orders are equal to zero
separately. To this end we start by considering the term asso-
ciated with the generic odd nth-order, given by

ò ò

ò ò

ò

ò ò

ò ò

ò ò

ò ò

ò ò

ò

ò ò

-

+ -

+

´ -

+

´ -

+

´ -

+

-

- -

-
- -

-
- -

-
- -

-

-

-

-

-

-

i dt dt H t H t

i dt H t i dt

dt H t H t

i dt dt H t H t

i dt dt H t H t

i dt dt H t H t

i dt dt H t H t

i dt dt H t H t

i dt H t

i dt dt H t H t .

n

t

t

t

t

n n

t

t
n

t

t

t

t

n n

t

t

t

t

n

t

t

t

t

n n

n

t

t

t

t

n n

t

t

t

t

n

t

t

t

t

n n

t

t

n

t

t

t

t

n n

1 1

1 1
1

1

1 1 1

2
1 2 1 2

2
1 2 2 1

2
1 2 1 2

2
1 2 2 1

1
1 1 1 1

1 1

1 1

n

n

n

n

n

n

0 0

1

0 0

0

2

0 0

1

0 0

3

0 0

3

0 0

1

0 0

2

0

0 0

1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

 

 

 



 

 

 

Now, as our first step, we relabel the mute indices coming
from the terms within the second brackets, to obtain, in

each term of the sum, the time-ordered product
H t H tn1( ) ( ) . We thus end up with

ò ò ò

ò ò ò

ò ò ò

ò ò ò

ò ò ò

ò ò ò

ò ò ò

ò ò ò

ò ò ò

ò ò ò

ò ò ò ò

ò ò

= -

+ -

+ -

+ -

+ -

+ -

´

- -

-

- -

-

- -

- -

- -

-

-

-

-

-

-

- -

-

- -

i dt dt dt

dt dt dt

dt dt dt

dt dt dt

dt dt dt

dt dt dt

dt dt dt

dt dt dt

dt dt dt

dt dt dt

dt dt dt dt

dt dt H t H t

1

1

1

1

1

1

.

n n

t

t

t

t

t

t

t

t

n
t

t

n
t

t

n

n

t

t

t

t

t

t

t

t

n
t

t

n
t

t

n

n

t

t

t

t

t

t

t

t

n
t

t

n
t

t

n

t

t

t

t

t

t

t

t

n
t

t

n
t

t

n

t

t

t

t

t

t

t

t

n
t

t

n
t

t

n

t

t

t

t

t

t

t

t

n

t

t

n
t

t

n n

1 2 3

2 1

1
1 2 3

2 1

2
1 2 3

2 1

2
1 2 3

2 1

1
1 2 3

2 1

0
1 2 3 2

1 1

n n

n n

n n

n n

n n

n

n n

0

2

0

3

0

4

0

1

0 0

0 0

3

0

4

0

1

0 0

0 0

1

0

4

0

1

0 0

0 0

1

0

2

0

3

0 0

0 0

1

0

2

0

3

0

2

0

0 0

1

0

2

0

3

0

2

0

1

⎧⎨⎩

⎫⎬⎭

( ) ( )

( )

( )

( )

( )

( )

( ) ( )

















Our second step is to add the first and the second lines as
well as the (n−1)th and nth one, to obtain

ò ò ò

ò ò ò

ò ò ò

ò ò ò

ò ò ò

ò ò ò

ò ò ò ò

ò ò ò

ò ò ò ò

ò ò ò

ò ò ò ò

ò ò ò

= -

+ -

+ -

+ -

+ -

+ -

´

-

- -

-

- -

-

- -

- -

- -

- -

-

-

-

-

-

- -

-

i dt dt dt

dt dt dt

dt dt dt

dt dt dt

dt dt dt

dt dt dt

dt dt dt dt

dt dt dt

dt dt dt dt

dt dt dt

dt dt dt dt

dt dt dt

H t H t

1

1

1

1

1

1

.

n n

t

t

t

t

t

t

t

t

n
t

t

n
t

t

n

n

t

t

t

t

t

t

t

t

n
t

t

n
t

t

n

n

t

t

t

t

t

t

t

t

n
t

t

n
t

t

n

t

t

t

t

t

t

t

t

t

t
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t

t

n
t

t

n

t

t

t

t

t

t
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t

t

t
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t
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t

t

n
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t
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t

t

t

t
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t

t

n
t

t

n

n
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1 2 3

2 1

2
1 2 3

2 1

3
1 2 3

2 1

3
1 2 3 4

2 1

2
1 2 3 4

2 1

1
1 2 3 4

2 1

1

n n

n n

n n

n n

n n

n n

n

2 0

3

0

4

0

1
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1

0

4

0

1

0 0

0 0

1

0

2

0

1

0 0

0 0

1

0

2

0

3

0

1
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0 0

1

0

2

0

3

0

3
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0

2

0

3

0

3

0

2
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⎧⎨⎩

⎫⎬⎭
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














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Next, as our third step we redefine the region of integration in the
variables t1 and t2 (tn and -tn 1) from the second to the ( -n 2)th
[the first to the (n−3)th] line, using the relations

ò ò ò ò

ò ò

ò ò

=

=

- -

- -
-

dt dt f t t dt dt f t t

dt dt g t t

dt dt g t t

, , ,

,

, .

t

t

t

t

t

t

t

t

t

t
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t

t

n n n

t

t

n
t

t

n n n

1 2 1 2 2 1 1 2

1 1

1 1

n

n

0 0

1

0 2

0 0

0 1

( ) ( )

( )

( )

We are thus able to factorize the integrals in the variables t1 and tn
to obtain the simplified expression
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( )
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
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

 

Now, the second and the third steps must be performed
-n 3 2( ) times, leading to the final expression

ò ò ò

ò ò ò

ò

ò
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´

´ -

+ -

-
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+
+

+
+

+
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i dt dt dt
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1 2
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n
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1 2 2 1

0

0

⎡
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⎤
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( )

( )

( ) ( ) ( )

( )

( )

( )
( )

( )
( )

( )

( )







which clearly equals zero when we factorize the sign
- +1 n 1 2( )( ) .

A.2. Verifying that ρðt Þ ¼ η† ðt Þηðt Þ ¼ η† ðt0Þηðt0Þ for our
illustrative example

Starting with t a b= +c c-V t e a t e ai t i t˜ ( ) ( ) ( )( ) ( ) †, we obtain,
up to first order of perturbation, that

òk t t- k a b- +T i d V eexp 31
t

t
i t a t a

0

⎛
⎝⎜

⎞
⎠⎟˜ ( ) ( )[ ˜ ( ) ˜ ( ) ]†

thus leading to the metric operator

r h h= =

´

c k a b g l

g l k a b c

+ +

+ - + -

t t t e e e

e e e .

32

i t a a i t a t a t a t a

t a t a i t a t a i t a a

0 0

0 0

* * * *( ) ( ) ( )

( )

† ( ) [ ˜ ( ) ˜ ( ) ] ( ) ( )

( ) ( ) ( ˜ ( ) ˜ ( ) ) ( )

† † †

† † †

By inserting the identity operator c c-e ei t a a i t a a( ) ( )† †
after the

second, the third, and the fourth exponentials in equation (32),

and using the relations

=c c c- -e ae e a a, 33i t a a i t a a i t ( )( ) ( ) ( )† †

=c c c-e a e e a b, 33i t a a i t a a i t ( )( ) † ( ) ( ) †† †

we are able to rewrite the metric in the form

r k a b
g l
g l

k a b

= +
´ +
´ +

´ - +

c c

c c

c c

c c

-

-

-

-

t i t e a t e a

t e a t e a

t e a t e a

i t e a t e a

exp

exp

exp

exp . 34

i t i t

i t i t

i t i t

i t i t

0 0

0 0

* *

* *

( ) { [ ˜ ( ) ˜ ( ) ]}
[ ( ) ( ) ]
[ ( ) ( ) ]
{ [ ˜ ( ) ˜ ( ) ]} ( )

( ) † ( )

( ) † ( )

( ) ( ) †

( ) ( ) †

Next, we insert the identity operators

g l
g l

+
´ - -

c c

c c

-

-

t a e t ae

t a e t ae

exp

exp , 35

i t i t

i t i t

0 0

0 0

* *

* *

[ ( ) ( ) ]
[ ( ) ( ) ] ( )

† ( ) ( )

† ( ) ( )

g l
g l

- -
´ +

c c

c c

-

-

t e a t e a

t e a t e a

exp

exp 36

i t i t

i t i t

0 0

0 0

[ ( ) ( ) ]
[ ( ) ( ) ] ( )

( ) ( ) †

( ) ( ) †

before the first and after the last exponentials, respectively,
and use the relations

= -+ - -e ae a y a, 37xa ya xa ya ( )† †

= ++ - -e a e a x b, 37xa ya xa ya ( )† †† †

with x and y being c-numbers, to obtain

r g l

k a b
k a b

g l
k a l a l

b g b g

= +

´ +

´ - +
´ +
´ -

+ -

c c

c c

c c

c c

-

-

-

-

t t e a t e a

i t e a t e a

i t e a t e a

t e a t e a

i t t t t

t t t t

exp

exp

exp

exp

exp

. 38

i t i t

i t i t

i t i t

i t i t

0 0

0 0

0 0

0 0

* *

* *

* *

* *

( ) [ ( ) ( ) ]
{ [ ˜ ( ) ˜ ( ) ]}
{ [ ˜ ( ) ˜ ( ) ]}
[ ( ) ( ) ]
{ [ ˜ ( ) ( ) ˜ ( ) ( )

˜ ( ) ( ) ˜ ( ) ( )]} ( )

( ) † ( )

( ) † ( )

( ) ( ) †

( ) ( ) †

We then apply the special case of the Baker-Hausdorff the-
orem

= +e e e e , 39X Y X Y X Y,1
2 ( )[ ]

with X and Y being operators, to merge together the second
and third exponentials in equation (38), leading us with the
expression

r k a b

b a

k a l

a l b g b g

= -

´ + -

´

- + -

g l

c c

g l

+

-

+

c c

c c

-

-

t e i t t

e a t t e a

e i t t

t t t t t t

exp

exp

. 40

t e a t e a

i t i t

t e a t e a
0

0 0 0

i t i t

i t i t

0 0

0 0

*

*

* * * *

* *( ) { [( ˜ ( ) ˜ ( ))
( ˜ ( ) ˜ ( )) ]}

{ [ ˜ ( ) ( )
˜ ( ) ( ) ˜ ( ) ( ) ˜ ( ) ( )]} ( )

( ) ( )

( ) † ( )

( ) ( )

( ) † ( )

( ) ( ) †

Remembering the relation k b a w- =t t t*[ ( ) ( )] ( )
g l+t t0 0*( ) ( ), we may use the result

òk b a k
b t a t

w t
w t t

g l

- =
-

= + -

c t

c

-

-

t t e d

i t t e 1

41

t

t
i

i t
0 0

0

*
*

*

⎛
⎝⎜

⎞
⎠⎟[ ˜ ( ) ˜ ( )] ( ) ( )

( )
( )

[ ( ) ( )]( )
( )

( )

( )

to further rewrite the metric in the form
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r g l
g l

k a l

a l b g b g

= +
´ - + + -

´

- + -

g l

c c

g l

+

-

+

c c

c c

-

-

t e t t

e a t t e a

e i t t

t t t t t t

exp

1 1

exp

.

42

t e a t e a

i t i t

t e a t e a

0 0

0 0

0

0 0 0

i t i t

i t i t

0 0

0 0

*

*

* * * *

* *( ) {[ ( ) ( )]
( ) [ ( ) ( )]( ) }

{ [ ˜ ( ) ( )

˜ ( ) ( ) ˜ ( ) ( ) ˜ ( ) ( )]}
( )

( ) ( )

( ) † ( )

( ) ( )

( ) † ( )

( ) ( ) †

Using again equations (39) and (41), the former to merge
together the first two exponentials in equation (42), we obtain
after some algebra

r g l g l

l g

= + + +

´ -

t t t a t t a

t t

exp

exp
1

2
43

0 0 0 0

0
2

0
2

* *

{ }
( ) {[ ( ) ( )] [ ( ) ( )] }

[∣ ( )∣ ∣ ( )∣ ]
( )

†

Using equation (39), now to break the exponential up
into two parts, it follows that

r r= =g l l g+ +t e e t .t a t a t a t a
00 0 0 0* *( ) ( )( ) ( ) ( ) ( )† †
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