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Abstract.  In its original version, the KPZ equation  models the dynamics 
of an interface bordering a stable phase against a metastable one. Over the 
past few years the corresponding two-dimensional field theory has been applied 
to models with dierent physics. Out of a wide choice, the spin–spin time 
correlations for the Heisenberg chain will be discussed at some length, also the 
equilibrium time correlations of the conserved fields for 1D fluids. An interesting 
recent theoretical advance is the construction of the scale-invariant asymptotic 
theory, the so-called KPZ fixed point.
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1.  Introduction

The ground-breaking 1986 contribution of Kardar, Parisi, and Zhang, for short KPZ, 
is entitled ‘Dynamic scaling of growing interfaces’ [1], see also the early reviews [2–4]. 
They study the dynamics of an interface dividing a stable bulk phase from a metastable 
one. As such this could be in any dimension. But much of the excitement over the last 
decade refers to a two-dimensional bulk, hence a one-dimensional interface, see [5] for 
a recent account. Many interesting advances have also been achieved for higher dimen-
sions [6], but to be concise my contribution will be restricted to one dimension. The 
1  +  1 in the title refers to space-time.

Assuming that the bulk dynamics is not constrained by any conservation laws and 
relaxes exponentially fast, KPZ argue the motion of the interface to be governed by the 
stochastic PDE

∂th =
1

2
λ(∂x h)

2 + ν(∂x)
2h+

√
Dξ,� (1)

where h(x, t) denotes the height for the location of the interface relative to a substrate 
space x ∈ R at time t � 0. Possible overhangs are discarded. The nonlinearity arises 
from the asymmetry between the two phases: at the interface a transition from meta-
stable to stable is fast while the reverse process is strongly suppressed. The Laplacian, 
(∂x)

2, models the interfacial tension and the space-time white noise, ξ(x, t), quantifies 
the randomness in transitions from metastable to stable. λ, ν,D are material param
eters, following the original KPZ notation. Later on it will be convenient to choose 

space-time units such that ν = 1
2
, D  =  1. Equation (1) does not satisfy a detailed bal-

ance. In this sense we study a stochastic system belonging to non-equilibrium statistical 
mechanics.

To have a concrete physical picture and a better understanding of the approx
imations underlying (1), it is illuminating to first consider the two-dimensional ferro-
magnetic Ising model with Glauber spin flip dynamics, as one of the most basic model 
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system of statistical mechanics. Its spin configurations are denoted by σ = {σj , j ∈ Z2} 
with σj = ±1. The Ising energy is

H(σ) = −
∑

i,j∈Z2,|i−j|=1

σiσj − h
∑
j∈Z2

σj ,� (2)

where the first sum is over nearest neighbor pairs and the spin coupling is used as the 
energy scale. The flip rate from σj to −σj is given by

cj(σ) =

{
1, if ∆jH(σ) � 0,

e−β∆jH(σ), if ∆jH(σ) > 0,
� (3)

where β = T−1 is the inverse temperature and ∆Hj the energy dierence in a spin 

flip at j, more explicitly ∆Hj(σ) = H(σ(j))−H(σ) where σ(j) equals σ except for σj 
flipped to −σj. The bulk dynamics has no conservation law and, away from criticality, 
relaxes exponentially fast. Under Kawasaki dynamics, which conserves magnetization, 
the interface dynamics to be studied would have very dierent properties [7].

For h  =  0 and T < Tc the Ising model has two stable phases, the  +  and  −  phase. 
We start the dynamics with one half-space in the  +  phase joined to the remaining 
half-space in the  −  phase. Then the interface builds up fluctuations, but stays put 
on average by symmetry. Observed on a coarse scale the interface is governed by (1) 
with nonlinearity dropped, i.e. λ = 0. On this basis the interface is predicted to have 
Gaussian fluctuations with a width increasing as t

1
4. Changing the Glauber dynamics 

to a small h  >  0 makes the  −  phase metastable and the interface acquires a net motion, 
which in approximation gives rise to a nonlinearity as in (1). By power counting, the 
nonlinearity dominates and the interface is now predicted to broaden faster, namely 
as t

1
3. More interestingly, even on large scales the fluctuations turn out to have non-

Gaussian universal statistics.
Two simple transformations suggest a very dierent physical interpretation.

(i)	�  We define the slopes u(x, t) = ∂xh(x, t). Then

∂tu+ ∂x
(
− λu2 − 1

2
∂xu− ξ

)
= 0,� (4)

	called the stochastic Burgers equation. It is a conservation law with the current being 
the sum of three physically natural terms, a systematic part nonlinear in the field, a 
stabilizing response proportional to the slope, and a noise uncorrelated in space-time.
(ii)	�  The second case employs the Cole–Hopf transformation,

Z(x, t) = eλh(x,t),� (5)

	which ‘linearizes’ the KPZ equation as

∂tZ(x, t) =
1

2
(∂x)

2Z(x, t) + λξ(x, t)Z(x, t).� (6)
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Z(x, t) should be viewed as a random partition function. The Laplacian generates a 
Brownian motion, which we regard as a polymer in the space-time plane. The polymer 
is directed since it cannot bend backwards in time. The directed polymer is subject 
to an uncorrelated space-time random potential. The polymer energy is the sum of 
an elastic energy and a random potential energy. We have thus transformed to an 
equilibrium problem with disorder. Note that h = λ−1 logZ and the height equals the 
random free energy of the directed polymer.

INTERLUDE: Statistical Mechanics has been very successful in developing tools which 
have a much wider applicability than originally anticipated. As to be discussed, the KPZ 
equation is a good example. Because of the occasion, I allow myself to use as an illus-
tration the most fundamental formula in our field, namely the probability distribution

Z−1e−βH ,� (7)
describing the statistical properties of matter in thermal equilibrium. A variant of this 
formula, and its general significance, was discovered by Boltzmann in 1868, two years 
after his Ph.D. [8]. The formula managed to survive the quantum revolution, it reap-
pears in quantum field theory, in the theory of dynamical systems, in pattern recogni-
tion, and many more areas. Admittedly Boltzmann’s papers are not easy to read, even 
when mastering the required German language. Fortunately, in the same year he wrote 
the ten-page article ‘Lösung eines mechanischen Problems’ (Solution of a mechanical 
problem) [9], which I strongly recommend as a primary source. Boltzmann considers a 
point-particle moving in the plane subject to the radial potential V (q) = |q|−2 − |q|−1, 
an integrable dynamics. He then adds an elastically reflecting wall located along a line 
not intersecting the origin and argues that, if the forces are confining, the long-time 
statistics of the particle’s motion is well modelled by the micro-canonical ensemble 
on the surface of constant energy, see [10] for a recent discussion. In the preceding 
lengthy article [8] Boltzmann considers interacting systems with many degrees of free-
dom and argues for the micro-canonical ensemble as the proper description of thermal 
equilibrium.

2. Universality and initial conditions

Let us solve (1) with flat initial conditions, h(x, 0) = 0, and study the height at a 
given point, say the origin, as a function of time, i.e. the random function t �→ h(0, t). 
Anticipating height fluctuations of size t

1
3 we expect a systematic drift plus fluctuations,

h(0, t) � vt+ (Γt)
1
3 ξflat,� (8)

to hold for long times. v is the macroscopic growth velocity. The random amplitude, 
ξflat, has a universal distribution, while the time scale Γ−1 collects model specific proper-
ties. For example for the Ising interface discussed above, the distribution of ξflat should 
not depend on temperature and on additional next nearest neighbor couplings. This 
universal distribution was first obtained by studying the polynuclear growth model 
(PNG) [11] and identified as

https://doi.org/10.1088/1742-5468/ab712a
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ξflat = ξGOE,� (9)
which is the Tracy–Widom distribution of the largest eigenvalue of a N ×N GOE ran-
dom matrix in the limit of large N [12]. In fact the distribution function of ξGOE is most 
easily written in terms of an infinite-dimensional Fredholm determinant [13],

P({ξGOE � s}) = det(1−Ks)L2(R+),� (10)

where Ks is the integral operator with kernel 〈x|K|x′〉 = 1
2
Ai(x+ x′ + s), Ai the stan-

dard Airy function. ( P(A) is our generic notation for ‘probability of the set A’). Later 
on the same distribution was derived for other growth models [14, 15] and eventually 
also confirmed through the famous Sano–Takeuchi experiment [16]. So there is little 
doubt that the asymptotics (8) together with (9) holds in great generality.

Growing surfaces can be curved, see figure 1 for droplet growth. In the stochastic 
Ising model, one could choose one quadrant in the metastable and the other three 
quadrants in the stable phase. The corner would then approximately be rounded 
o into a quarter circle with radius growing proportional to t. To model such a 
setup with (1), instead of flat initial conditions, we now choose an initial sharp 
wedge profile as h(x, 0)  =  −(x/a)2, a � 1. Then on average the height function will 
have a linear shift and a local curvature decreasing as 1/t, 〈h(x, t)〉 � vt− (x2/a′t). 
Following the road map (8), the universal object are the height fluctuations. They 
are still of order t

1
3. However, at the time a great surprise [11, 19], the distribu-

tion is now modified and given by ξGUE, the Tracy–Widom GUE distribution, 
see figure 2. For an initially thermally rough interface, i.e. x �→ h(x, 0) two-sided 
Brownian motion with 〈h(x, 0)2〉 = σ2|x|, one finds yet another distribution. In fact 

Figure 1.  Droplet growth in the Takeuchi–Sano turbulent liquid crystal 
experiment. Shown is light transmission intensity for three time instances. Grey 
is the metastable and the dark is the stable phase. R(x, t) is equated with h(0, t) 
from the theory.
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it is a one-parameter family of distributions depending on the roughness σ of the 
initial conditions [20]. There is one special value of σ for which such initial condi-
tions are stationary in time. In this case, as discovered Baik and Rains [21], there 
is an explicit formula for the distribution of the noise amplitude. Thus the emer-
gent picture is richer than anticipated in the early KPZ days. The initial conditions 
themselves are divided into subclasses, which reflect their behavior ‘at infinity’. 
For example, if one would locally modify the flat initial conditions, or merely pick 
subdiusively growing spatial fluctuations, then the asymptotic behavior is still be 
given by (8), (9). In case of a mixed asymptotic behavior, such as h(x, 0) = 0 for 
x � 0 and h(x, 0)  =  −(x/a)2 for x  >  0, the asymptotic fluctuations of h(0, t) are given 
by yet another distribution, see [22] for more details.

On purpose, we have remained somewhat vague for which precise model and on 
which level of rigor an asymptotic limit as (8) has been established. Under the header 
of ‘integrable probability’ many results have become available. For this the interested 
reader is invited to consult the cited surveys and original articles. In some cases the 
scaling limit has been proved directly for the KPZ equation itself [17]. A wide class 
of results is based on replica solutions to the KPZ equation [18]. A further powerful 
approach relies on suitable discretizations of the KPZ equation, some of them being 
mentioned in section 5.

3. Spin correlations for the Heisenberg chain

If the detailed balance is violated, there is no systematic construction of how to obtain 
the stationary states. The one-dimensional KPZ equation is an exception. Indeed its 
stationary measures are of the form

hstat(x) = ρx+ B(x),� (11)

Figure 2.  Single point height statistics in a logarithmic plot. On the left displayed 
is data from the Takeuchi–Sano turbulent liquid crystal experiment with curved 
and flat initial data. On the right is the exact results from the PNG model. 
The right most curve corresponds to Baik–Rains distribution for stationary initial 
conditions.

https://doi.org/10.1088/1742-5468/ab712a
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where B(x) is two-sided standard Brownian motion. The slope ρ is a free parameter. 
Since the dynamics is noisy, the system attempts to locally reach stationary. Thus a 
solution to the KPZ equation will locally look like (11). Of course, the more global 
behavior requires further analysis. In turn, the steady states of the stochastic Burgers 
equation are ustat(x) = ρ+ ξw(x) with ξw(x) normalized white noise in one dimension. 
One of the available exact results for the KPZ equation [23], see also [24, 25], tells us 
that setting ρ = 0, the stationary two-point function of the Burgers equation is given 
by

〈u(x, t)u(0, 0)〉 � (Γt)−
2
3fKPZ

(
(Γt)−

2
3x

)
.� (12)

For the KPZ equation Γ =
√
2|λ|. But in general it will be some other non-universal 

coecient. The scaling function fKPZ is tabulated [26], fKPZ(x) > 0, fKPZ is even, and 
normalized as 

∫
dxfKPZ(x) = 1. fKPZ looks like a Gaussian but has a somewhat faster 

fall-o in the tails, more precisely fKPZ(x) � exp[−0.295|x|3].
The surprise is that the equilibrium spin-spin time correlation of the spin-1

2
 Heisenberg 

chain is well approximated by fKPZ [27]. Currently this is a numerical observation, but 
let us explain in more detail.

The Hamiltonian of the Heisenberg spin chain is given by

H = −J
∑
j∈Z

σj · σj+1� (13)

Figure 3.  Logarithmic plot of the spin-spin time correlation. On the top displayed 
are numerical data for the isotropic Heisenberg model at infinite temperature, left 
figure continuous time and right figure discrete time, and on the bottom the numerical 
data for the integrable lattice Landau–Lifshitz spin chain at temperature 1.

https://doi.org/10.1088/1742-5468/ab712a
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with σj as the three-vector of Pauli spin matrices at site j . The time-evolved spin is 

σj(t) = e−iHtσje
iHt. Using rotational invariance, the quantity of interest is then

C( j, t) = 〈σz
j (t)σ

z
0(0)〉β� (14)

with 〈·〉β denoting thermal average according to the density matrix Z−1 exp (−βH). Most 
DMRG simulations are at infinite temperature, β = 0. But one expects the asymptotics 
not to depend on β . On the other hand, the cross-over time does so and at low temper
atures it might become impossible to reach the true long time regime. Numerically 
apparently more ecient is to adopt a discrete time dynamics, which means a uni-
tary update of pairs of neighboring spins, evenly blocked alternating with pairs oddly 
blocked. Of course the full SU(3)-invariance and integrability must be preserved [27]. 
In figure 3 top we show numerical results both for continuous and discrete time. In 
the former case the maximal lattice size is N  =  400, time t  =  200, while in the latter 
N  =  7200 and t  =  3600. As confirmed by figure 3 the scaling with t

2
3 holds with high 

precision. While indicative this does not yet confirm KPZ behavior. Up to the precision 
level 10−3 the fit by a Gaussian seems still to be convincing. But increasing the level of 
precision to 10−4 the fit by fKPZ becomes superior. A theoretical analysis is attempted 
in [28, 29] and, with a diering perspective, in [30].

In the semiclassical limit, the vector of Pauli matrices is replaced by a vector Sj of 
unit length |Sj| = 1 and the Hamiltonian dynamics is governed by

d

dt
Sj = Sj ×Bj, Bj = −∇jH,� (15)

known as lattice Landau–Lifshitz spin chain. The interaction is still nearest neighbor 
and isotropic, but has to be chosen such that the dynamics remains integrable. As dis-
covered by Sklyanin [31, 32], see also Faddeev and Takhtajan [33], integrability can be 
achieved by choosing the interaction

h(Sj,Sj+1) = − log(1 + Sj · Sj+1).� (16)
The corresponding equilibrium state is given by

∏
j

(
1 + Sj · Sj+1

)β
.

� (17)

For β < 0 this Boltzmann weight diverges at anti-parallel neighboring spins and can 
no longer be normalized once β � −1. Close to that value, typically the chain will have 
long anti-ferromagnetic domains, which slow down the evolution. A trace of this fea-
ture is still present at β = 0. Even with a huge number of samples the data is still too 
noisy to pin down the tail behavior. More stable numerical data is achieved for β = 1, 
the plots being shown in figure 3 bottom [34]. fKPZ is again confirmed, more or less 
with the same precision as in the quantum Heisenberg model. In the numerical simula-
tion of the quantum chain, the employed DMRG directly evolves the reduced density 
matrix and the plots in figure 3 top are based on averaging over a few hundred runs 
only, which should be compared with 106 samples for the corresponding classical model.

Clearly, in this context KPZ behavior does not distinguish between classical and 
quantum. But SU(3) invariance and integrability are crucial. Yet preserving integrabil-
ity, SU(3) can be broken by modifying the σz coupling, usually denoted by ∆, ∆ = 1 

https://doi.org/10.1088/1742-5468/ab712a
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being the isotropic case. Then for ∆ < 1 a non-zero Drude weight develops, which 
vanishes for ∆ � 1. The spin correlation C( j, t) spreads diusively with the diverging 
diusion constant as |∆− 1| → 0 [35].

4. Equilibrium time correlations for one-dimensional fluids

When reflecting on potential physical realizations of the stochastic Burgers equation, 
the most obvious example are fluids in one dimension, either classical or quantum, 
where we stick here to the better studied case of classical particles interacting through 
a short-range potential. In the previous section we insisted on integrability. Now we 
are so to speak on the opposite side and assume fully chaotic dynamics, in the sense 
that mass, momentum, and energy are the only locally conserved fields. Obviously the 
Burgers equation has the shortcoming of dealing only with a single conservation law. 
Well, so why not extend Burgers to several components uα(x, t), α = 1, ...,n? Following 
the KPZ road map one then arrives at

∂tuα + ∂x
(
(Au )α + u · (Hαu)− (D∂xu )α + (Bξ )α

)
= 0 ,� (18)

α = 1, ...,n. A,Hα,D,B are u-independent constant n× n matrices. The fields u(x, t) 
are fluctuating. In case of a fluid we have n  =  3 and think of them as small deviations from 
a uniform equilibrium state at fixed thermodynamic parameters, which are suppressed 
in our notation. Then the matrix A is obtained from linearizing the Euler equation. Note 
that, in contrast to a single mode, A cannot be removed by a Galilei transformation. In 
fact, A determines the crucial peak structure. Hα is a symmetric matrix obtained from 
the second-order Taylor expansion. D is a phenomenological diusion matrix satisfy-
ing the constraints coming from time-reversal invariance of the fluid. The noise term 
is Gaussian with mean zero and correlator 〈ξα(x, t)ξα′(x′, t′)〉 = δα,α′δ(x− x′)δ(t− t′), 
added in the spirit of the Landau–Lifshitz fluctuation theory. Hence one imposes the 
fluctuation-dissipation relation DC + CDT = −BBT with C the static susceptibility 
matrix, see [36] for more details. In principle one could retain higher order terms. E.g. 
D itself might depend on the thermodynamic parameters of the fluid and one may want 
to keep also its first-order expansion. By power counting one concludes that the second-
order Euler term is relevant, while all other higher order terms should not contribute 
to the long time behavior.

We now focus on a 1D fluid with the generic Hamiltonian

Hfl =
∑
j

1

2
p2j +

1

2

∑
i �=j

V (qi − qj).� (19)

qj, pj is position and momentum of the j -th particle with unit mass and V  is a short 
range, thermodynamically stable potential, V (x) = V (−x). The thermal states are 
labelled by β , the chemical potential µ, and the mean velocity u. For the background 
fluid, by Galilei invariance, we set u = 0. But the small u behavior will still be needed 
to carry out the second-order expansion from above. The standard definition for the 
microscopic fields reads

https://doi.org/10.1088/1742-5468/ab712a
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n(x) =
∑
j

δ(qj − x), u(x) =
∑
j

δ(qj − x) pj,� (20)

e(x) =
∑
j

δ(qj − x)
1

2
p2j +

1

2

∑
i �=j

δ(qi − x)V (qi − qj).� (21)

To have a more compact notation we set �g = (n, u, e). The comparison with the 3-comp
onent Burgers equation is based on the claim that in approximation

〈gα(x, t)gα′(0, 0)〉cβ,µ � 〈uα(x, t)uα′(0, 0)〉.� (22)
Of course the time-dependent microscopic fields, n(x, t), u(x, t), e(x, t), are obtained by 
evolving q, p according to Newton’s equations of motion. On the left the average is with 
respect to thermal equilibrium at β, u = 0,µ. On the right-hand side u is the solution 
to (18) with random initial conditions corresponding to thermal equilibrium, i.e. u(x, 0) 
is Gaussian, mean zero, and has covariance 〈uα(x, 0)uα′(x′, 0)〉 = Cα,α′δ(x− x′).

The matrix A has the three eigenvalues (−c, 0, c) with c the isentropic speed of sound. 
Solving (18) with the said random initial conditions and only keeping the A-term leads 
to the three peak structure, a−δ(x+ ct) + a0δ(t) + a+δ(x− ct), where the a-coecients 
depend on the particular correlation considered. Noise and diusion broaden the peaks 
to a Gaussian shape with width increasing as 

√
t. As for KPZ, this is not what is 

observed numerically. Firstly the peaks broaden superdiusively and, unexpectedly, 
the two sound peaks and the central heat peak broaden with distinct exponents and 
scaling functions. In approximation the sound peak follows the Burgers equation, i.e. 

scaling as (Γt)−
2
3fKPZ

(
(Γt)−

2
3x

)
, while the central peak is given by the symmetric 53 Levy 

distribution∫

R
dk exp

[
− (Γt)|k|

5
3 + ikx

]
.� (23)

As stated, this suggests that all fluids would fall into a single universality class. But we 
merely explained the generic behavior. Actually, the universality classes are determined 
by the eigenvalues of Hα as discussed in more detail in [37, 38].

Numerically, by a Monte Carlo algorithm one samples the thermal initial condition 
and then evolves according to Newton’s equation of motion. Typically sizes are a few 
thousand particles and times up to t  =  4000 with density and temperature of order 
1. The average is over 107 initial conditions. A much studied model is the FPU chain 
[39]. But solving dierential equations  is time-consuming and an alternative choice 
would be a piecewise constant potential [40]. Then the collision time vanishes and in 
between two collisions the trajectories are straight lines. In figures 4 and 5 we show 

the results from the simulation of the hard shoulder potential, given by Vhs(x) = ∞ for 

0 � |x| � 1
2
, Vhs(x) = 1 for 1

2
� |x| � 1, and Vhs(x) = 0 for 1 � |x|. The shape functions 

of heat and sound peak agree surprisingly well with the predictions from nonlinear 

fluctuating hydrodynamics. Particularly pronounced are the slow tails of the heat peak, 

which originate from the cusp in |k| 53. This tail is actually cut-o when it reaches the 

sound peak. Beyond the sound peak the correlations are exponentially small. In figure 5 
we display the total current correlation function for momentum and energy. The cross 

https://doi.org/10.1088/1742-5468/ab712a


The 1  +  1 dimensional Kardar–Parisi–Zhang equation: more surprises

11https://doi.org/10.1088/1742-5468/ab712a

J. S
tat. M

ech. (2020) 044001

correlations vanish because of distinct symmetry under time-reversal. The prediction 
is t−

2
3 for both correlations, but apparently the momentum current correlation has the 

more rapid convergence.
In essence, the multi-component KPZ equation relies on conservation laws. In par

ticular, it can be used also for stochastic lattice gases [41, 42]. An interesting case are 
non-integrable classical spin chains [43]. On the surface there are only two conserved 
fields, namely energy and the z-component of the spin. The corresponding currents 
vanish in thermal equilibrium, suggesting diusive spreading, which is a well confirmed 
in molecular dynamics simulations [43]. But for easy plane at low temperatures phase 
slips are very much suppressed and the field of phase dierences becomes essentially 
conserved. Now the respective Hα-matrices no longer vanish, sound waves persist, and 
their shape function is reasonably well approximated by fKPZ.

From this and more simulations there is a lesson to be learned, which is equally 
important for the one-component KPZ equation. There are considerable crossover time 
scales that blur the expected asymptotic behavior. For example the sound peak should 
be fKPZ which is a symmetric function. Sound peaks from the simulation have the 
expected scaling behavior, but one observes a substantial asymmetric distortion which 
disappears only slowly. Nonlinear fluctuating hydrodynamics also makes a prediction 
for the non-universal coecient Γ. But the Γ observed in figure 4 is time-dependent 

Figure 4.  Equilibrium time correlations of a fluid with hard shoulder potential at 
density 0.8 and temperature 0.5. System size is N  =  4096 and the maximal time 
t  =  1024. The bottom part shows the standing heat peak and the linearly in time 
propagating sound peaks. The sound speed is c  =  2.18. The comparison with the 
predictions from nonlinear fluctuating hydrodynamics are displayed on the top, 
left panel being the sound peak and right panel the heat peak.
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and for the latest time still o by 30%. This could also be caused by the employed one-
loop computation. One might think that such behavior has its origin in the determin-
istic time evolution. But the same observations have been reported for one-component 
fully stochastic systems [44]. In the exactly solvable cases, as PNG, single-step, and 
TASEP, numerically the asymptotic scaling sets in quickly. But if the growth dynam-
ics is modified in a natural way, as for example the deposition rate depending on the 
nearby height profile, then again there is a long time transient regime.

5. The KPZ fixed point

So far we considered one-point distributions, i.e. the distribution of h(x, t) at a given 
space-time point. More generally one might inquire about the scaling behavior of the 
joint distribution of the height at several points. One example of interest would be the 
two-time joint probability P({h(0, t1) � s1,h(0, t2) � s2}), see [45, 46].

Before proceeding, it might be helpful to recall the well-studied example of the 2D 
ferromagnetic Ising model at the critical point. The most basic object is the two-point 
correlator 〈σ0σj〉 and its scaling behavior. Next one studies the fully truncated four-
point function 〈σ0σj1σj2σj3〉

c, and higher cumulants. Their scaling behavior can be 

obtained from a conformal field theory with central charge c = 1
2
, which in our present 

context would be called the (full) Ising fixed point. The advantage is obvious. Universal 
objects can be computed directly from the fixed point theory without taking recourse 
to a particular lattice approximation.

We return to KPZ growth and momentarily flat initial conditions h(x, 0) = 0. As 
a first step we consider equal time but many spatial points, h(x1, t), ...,h(xm, t) with 
x1 < x2 < ... < xm. If the distance xj+1 − xj is very small, then the two heights fluctuate 
together. On the other side if it is too large, the heights fluctuate independently. 
Nontrivial correlations appear on the scale t

2
3, compare with (12). In studying the full 

space-time dependence it will be convenient to introduce the dimensionless scale param
eter ε, ε � 1, which is chosen such that the spatial points scale as {ε−1xj, j = 1, ...,m} 

Figure 5.  Total current-current correlations of a fluid with hard shoulder potential 
at the same parameters as in figure 4. The momentum current correlation is shown 
on the left and the energy current correlation on the right, the fit curve being t−

2
3 

in both cases.
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with xj  fixed and of order 1. Then time should be scaled as ε−
3
2 t with t fixed and of order 

1. At such a long time h(ε−1x, ε−
3
2 t) looks locally like Brownian motion in x, hence is 

of size ε−
1
2. Thus the universal fixed point should be obtained from the limit ε → 0 of

ε
1
2

(
h(ε−1x, ε−

3
2 t)− ε−

3
2vt

)
,� (24)

which in the probabilistic literature is called the 1 : 2 : 3 scaling, referring to height : 
space : time. The subtraction corresponds to a frame co-moving with velocity v.

As known for some time [47, 48], the joint distribution of m heights at equal time 
has a non-degenerate limit,

lim
ε→0

P
(
{ε

1
2 (h(ε−1xj, ε

− 3
2 t)− ε−

3
2vt) � sj, j = 1, ...,m}

)
= P

(
{A1(xj) � sj, j = 1, ...,m}

)
.� (25)

On the right-hand side appearing are the finite-dimensional distributions of the so-
called Airy-1 process. As a stochastic process A1(x) is almost surely continuous in x, 
stationary, has ξGOE as one-point distribution, looks locally like a Brownian motion, 
and has super-exponentially decaying correlations [49]. The right-hand side of expres-
sion (25) can be written in terms of a Fredholm determinant, similarly to (10). But such 
details can be found in the literature [47]. A similar formula holds for droplet growth 

[50, 51]. Now the additional term −1
2
x2/t must be added on the right-hand side of (25) 

to account for the curvature. As limit one finds the so-called Airy-2 process, which has 
similar properties as Airy-1, but the power law decay 〈A2(x)A2(0)〉 − 〈A2(0)〉2 � 1/|x|2 
for large |x|. As before the finite dimensional distributions can be written in terms of a 
Fredholm determinant.

Such results are based on lattice discretizations of the KPZ equation, the most stud-
ied one being the single-step model, equivalently TASEP. Now the substrate space is 
the one-dimensional lattice Z and the height function h( j, t) is integer-valued, j ∈ Z, 
t ∈ R+. The single step refers to the constraint h( j + 1, t)− h( j, t) = ±1. Visually it 
helps to use an interpolating broken line with slope ±1. Then flat initial conditions 
are represented by a zig-zag line, 0 at even and 1 at odd sites. The sharp wedge would 
be h( j, 0) = |j|. The growth dynamics has maximal simplicity: the only allowed trans
itions are from  to  and they occur independently with rate 1. More pictorially 
one considers a large collection of squares of side-length 

√
2 and rotated by π/4. One 

by one squares are randomly deposited at local minima of the current height profile. 
For the single-step model the limit (25) is a proved theorem, but only for flat and 
sharp wedge initial conditions. For the sharp wedge one exploits a hidden fermionic 
(=determinantal) structure. The flat case turned out to be unaccessible for years until 
Sasamoto [14] discovered again a determinantal scheme, but on an enlarged space of 
height functions and giving up positivity of the underlying measure.

The structure of the KPZ fixed point was very recently established by Matetski, 
Quastel, and Remenik under the 1 : 2 : 3 scaling (24) using the single-step model [52–
55]. The height evolves according to a Markov process. Thus one hopes that also the 
limit ε → 0 remains Markov. Then fixed point means to find out the limiting Markov 
transition probability on the space of height functions. The Airy process (25) is so to 
speak one family of matrix elements of the transition probability. The initial height is 
prescribed (either flat or sharp wedge), but the height at rescaled time t has a full prob-
ability distribution, which is characterized by the right-hand side of (25) for arbitrary 
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m and spatial points xj , j = 1, ...,m. Missing has been the extension of such a result to 
‘arbitrary’ initial height profiles. For this one assumes that at time t  =  0 given are a 
sequence of initial height profiles, hε(x, 0), such that their limit under diusive scaling 
holds,

lim
ε→0

ε
1
2hε(ε

−1x, 0) = h(x, 0).� (26)

Somewhat symbolically the convergence of the transition probabilities means that

lim
ε→0

P
(
{ε

1
2 (h(ε−1x, ε−

3
2 t)− ε−

3
2vt), x ∈ R}

∣∣{ε 1
2hε(ε

−1x, 0), x ∈ R}
)

= P
(
{h(x, t), x ∈ R}

∣∣{h(x, 0), x ∈ R}
)
.

� (27)

While the limit on the right-hand side of (27) is still a continuous time Markov process, 
its formal generator is not such a helpful object. Instead, a complete listing of the trans
ition probabilities is provided.

Universal properties of growth processes can be obtained by working directly with 
the fixed point transition probability. But this is not a simple task at all. The known 
cases, as convergence to the Airy processes, can be reproduced, but along very dierent 
routes than in the microscopic approach. Novel cases are still being explored. Just to 
see, what is involved let us return to the two-time correlation with flat initial condi-
tions, but now evaluated at the fixed point

P({h(0, t1) � s1, h(0, t2) � s1}).� (28)
Just like for a Markov chain with a finite state space, starting from the flat initial 
condition one has to evolve up to time t1, multiply with the characteristic function 
of {h(0, t1) � s1}, then evolve to time t2 multiply with the characteristic function of 
{h(0, t2) � s2}, and finally average.

The KPZ fixed point structure has little in common with RG as used in critical 
phenomena of equilibrium statistical mechanics. Rather one fully exploits an initially 
hidden integrable structure of the single-step stochastic dynamics.

6. Even more surprises

There are further instances in which the KPZ equation turns out to be central. Merely 
few cases are listed and presumably there are more.

	–�  Conductance fluctuations in the 2D Anderson model in the localization regime  
[56, 57],

–	�  Growth of entanglement entropy for the random unitary model [58],

–	�  KPZ scaling for the Kuramoto–Sivashinsky equation [59].
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