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Abstract
Using the random matrix theory approach we derive explicit distributions of 
the real and imaginary parts for off-diagonal entries of the Wigner reaction 
matrix K for wave chaotic scattering in systems with and without time-reversal 
invariance, in the presence of an arbitrary uniform absorption. Whereas for 
time-reversal invariant system (β = 1) the scattering channels are assumed to 
be random and orthogonal on average, for broken time-reversal (β = 2) we 
consider the case of nontrivially correlated channel vectors.
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1.  Introduction

The phenomenon of chaotic resonance scattering of quantum waves (or their classical ana-
logues) has attracted considerable theoretical and experimental interest for the last three 
decades, see e.g. articles in [1] and recent reviews [2–5]. The resonances manifest themselves 
via fluctuating structures in scattering observables, and understanding their statistical proper-
ties as completely as possible remains an important task. The main object in such an approach 
is the energy-dependent M × M  random unitary scattering matrix S(λ), S†(λ)S(λ) = 1M 
which relates amplitudes of incoming and outgoing waves at spectral parameter (energy) λ. 
Here the integer M stands for the number of open channels at a given energy λ, the dagger 
denotes the Hermitian conjugation and 1M  is the M × M  identity matrix. Statistics of fluctua-
tions of the scattering observables over an energy interval comparable with a typical separa-
tion between resonances can be most successfully achieved in the framework of the so called 
’Heidelberg approach’ going back to the pioneering work [6], and reviewed from different 
perspectives in [7–9]. In such an approach the resonance part of the S-matrix is expressed via 
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the Cayley transform in terms of the resolvent of a Hamiltonian H representing the closed 
counterpart of the scattering system as

S(λ) =
1M − iK
1M + iK

, with K = W† 1
λ1N − HN

W,� (1)

where W is the N × M  matrix containing the couplings between the channels and the system. 
For λ ∈ R , the unitarity of S(λ) follows from Hermiticity of the Hamiltonian represented in 
the framework of the Heidelberg approach by N × N  self-adjoint matrix HN. The resulting 
M × M  matrix K is known in the literature as the Wigner reaction K-matrix.

To study fluctuations induced by chaotic wave scattering one then follows the paradigm of 
relying upon the well-documented random matrix properties of the underlying Hamiltonian 
operator H describing quantum or wave chaotic behaviour of the closed counterpart of the 
scattering system. Within that approach one proceeds with replacing HN with a random matrix 
taken from one of the classical ensembles: Gaussian unitary ensemble (GUE, β = 2), if one 
is interested in the systems with broken time reversal invariance or Gaussian orthogonal 
ensemble (GOE, β = 1), if such invariance is preserved and no further geometric symmetries 
are present in the system. The columns wa, a = 1, .., M  of the coupling matrix W are usu-
ally considered either as fixed orthogonal vectors [6] (complex for β = 2 or real for β = 1), 
or alternatively as independent Gaussian-distributed random vectors orthogonal on average 
[10]. The results turn out to be completely insensitive to the specific choice (i.e. fixed versus 
random) of the coupling as long as inequality M � N → ∞ holds in the calculation. The 
approach proved to be extremely successful, and quite a few scattering characteristics were 
thoroughly investigated in that framework in the last two decades, either by the variants of the 
supersymmetry method or related random matrix techniques, see e.g. early papers [6, 11, 12] 
as well as more recent results in [13–17]. The results of such calculations are found in gen-
eral to be in good agreement with available experiments in chaotic electromagnetic resona-
tors (‘microwave billiards’), dielectric microcavities and acoustic reverberation cameras ( see 
reviews [2–5]) as well as with numerical simulations of scattering in such paradigmatic model 
as quantum chaotic graphs [18] and their experimental microwave realizations [19–22]. Note 
that the Wigner K-matrix is experimentally measurable in microwave scattering systems, as it 
is directly related to the systems impedance matrix [23–25].

One of serious challenges related to theoretical description of scattering characteris-
tics is however related to the fact that experimentally measured quantities suffer from the 
inevitable energy losses (absorption), e.g. due to damping in resonator walls and other 
imperfections. Such losses violate unitarity of the scattering matrix and are important for 
interpretation of experiments, and considerable efforts were directed towards incorporating 
them into the Heidelberg approach [12]. At the level of the model (1) the losses can be taken 
into account by allowing the spectral parameter λ to have finite imaginary part by replacing 
λ → λ+ iα/N ∈ C with some α > 0. This replacement violates Hermiticity of the Wigner 
matrix K; in particular entries of K become now complex even for β = 1. Note that our choice 
of scaling of the absorption term with N is to ensure access to the most interesting, difficult 
and experimentally relevant regime when absorption term is comparable with the mean sepa-
ration between neighbouring eigenvalues of the wave-chaotic Hamiltonian H, the latter being 
in the chosen normalization of the order N−1 as N → ∞. The statistics of the real and imagi-
nary parts of the diagonal entries Kaa in that regime was subject of considerable theoretical 
work [26–28] and by now well-understood and measured experimentally with good precision 
for β = 1 in microwave cavities [23–25, 29] and graphs [19–22]. Very recently first exper
imental results for β = 2 were reported as well [30].
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The situation with off-diagonal elements Ka�=b is in comparison much worse. At present 
no theoretical results for the associated distributions are available in the literature for the most 
interesting and experimentally relevant case β = 1 apart from the case of zero absorption [15], 
and the mean value and variance for |Kab|2 = (�Ka�=b)

2 + (�Ka�=b)
2 [31]. The main goal of 

the present paper is to fill in this gap partly by presenting the distribution of imaginary �Ka�=b 
and real �Ka�=b parts for the K-matrix entries in the presence of absorption:

Ka,b = Tr

{((
λ+ i

α

N

)
1N − HN

)−1
wb ⊗ wT

a

}
� (2)

for systems with preserved (β = 1) time reversal invariance, assuming the size N → ∞. Our 
method also straightforwardly works for the simpler case of broken time-reversal invariance 
(β = 2) where the full distribution of |Ka�=b|2 has in fact already been derived for the case of 
uncorrelated channels, see equations (11)–(13) in [32]. We start with briefly reconsidering that 
case in our framework, giving an alternative derivation of the result in [32], and showing that 
it is simply related to the joint probability density of �Ka�=b and �Ka�=b. We then provide a 
generalization of that result to the case of correlated channel vectors, see equation (8). Note 
that such choice violates the standard channel ‘orthogonality on average’ assumption, and 
renders the associated ensemble-average S−matrix to be non-diagonal. The non-diagonality 
reflects presence of the so-called ‘direct’ scattering (as opposed to resonance scattering), see 
e.g. [34]. As such situation is rarely discussed in the literature on the ‘Heidelberg model’ (see 
however a recent work [35]) we give a brief account of it in the appendix A, with emphasis 
on the important notion of ‘perfect coupling’ which as we shall see can be achieved by both 
changing strength of the channel couplings and/or increasing correlations between channels.

Then we concentrate on the β = 1 case, restricting ourselves to treating uncorrelated ran-
dom channels.

2.  Discussion of the main results

2.1.  Systems with broken time-reversal invariance

In this case we assume that the matrix HN is a complex Hermitian GUE matrix distributed 

according to the probabilty density dP(HN) ∝ e−N/2TrHN H†
N dHN , so that the expectations over 

the ensemble are defined by 〈[...]〉GUE(N) :=
∫
[...]dP(HN). Initially we assume for simplicity 

that the components of the channel vectors wa and wb are uncorrelated complex Gaussian 
random variables with mean zero and variance 1/N, and we denote the expectation values with 
respect to the channel vectors by the overbar. Next, we consider the simplest nontrivial case 
of correlated channels characterized by a 2 × 2 covariance matrix. Note that to compute the 
joint probabilty density of real and imaginary parts of Ka,b it is technically more convenient to 
consider its characteristic function, given by the Fourier transform

R(q, q∗) = 〈exp i/2(qK∗
a,b + q∗Ka,b)〉GUE(N)

.� (3)

2.1.1.  Uncorrelated channel vectors wa  and wb .  The complex Gaussian nature of components 
of the channel vectors wa allows one to easily relate the characteristic function (3) to the GUE 
expectation of ratios of characteristic polynomials (for the derivation see section 3.1 below):
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R(q, q∗) =

〈
det

(
(HN − λ1N)

2 + α2

N2 1N

)

det
(
(HN − λ1N)2 + α2+|q/2|2

N2 1N

)
〉

GUE(N)

.� (4)

The expectation values of products of ratios of characteristic polynomials (and their large−N 
asymptotics) are well known, see [33, 36, 37]. Using those results one easily obtains the fol-
lowing expression for R(q, q∗) ≡ R(|q|) in the limit N → ∞ for any value λ of the spectral 
parameter belonging to the bulk of the GUE spectrum:

R(|q|) =
|q/2|4 exp (−2πρ(λ)

√
α2 + |q/2|2)

4α
√

α2 + |q/2|2
� (5)

×

(
exp (2πρ(λ)α)

(
√
α2 + |q/2|2 − α)2

− exp (−2πρ(λ)α)

(
√

α2 + |q/2|2 + α)2

)
, λ ∈ (−2, 2)

where ρ(λ) = 1/(2π)
√

4 − λ2  is the mean density of GUE eigenvalues given by the Wigner 
semicircular law. The numerical verification of (5) for systems with broken time-reversal sym-
metry is provided in figure 1.

Inverting this characteristic function yields the joint probability density function of Ka,b 
and K∗

a,b described in the following:

Proposition 1.  Define the operator D̂x as

D̂x = sinh(x)
(

1 +
d2

dx2

)
− 2 cosh(x)

d
dx

.

Then the joint probability density function of the pair (Kab, K∗
ab), with HN ∈ GUE(N) in the 

limit N → ∞ is given by:

P(Ka,b, K∗
a,b) =

α2

π
lim

x→2πρ(λ)α
D̂x

exp (−
√

x2 + 4α2|Ka,b|2)√
x2 + 4α2|Ka,b|2

.� (6)

In the case α → 0+, which corresponds to vanishing absorption, the joint density 
P(Ka,b, K∗

a,b) acquires a simple form:

P (�Ka,b,�Ka,b) =
ρ(λ)

4
|Ka,b|2 + 4π2ρ2(λ)

(|Ka,b|2 + π2ρ2(λ))5/2

which implies due to the rotational symmetry that the variables u1 = �Ka,b and u2 = �Ka,b 
each are distributed, respectively, as:

P(ui) =
ρ(λ)

2
u2

i + 3π2ρ2(λ)

(u2
i + π2ρ2(λ))2

, i = 1, 2.

Note that the results for arbitrary spectral parameter λ ∈ (−2, 2) could be obtained from those 
for λ = 0 by rescaling α → αη and |q| → |q|η with the ratio η = ρ(λ)/ρ(0). This is a par
ticular manifestation of the well-known spectral universality of random matrix results, the 
property which we will use in the next section to deal with a much more challenging problem 
of scattering systems with preserved time-reversal invariance.
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2.1.2.  Correlated channel vectors wa  and wb .  To consider the simplest nontrivial correlations 
between channel vectors we assume that the entries wa,n (resp. wb,n) with different values of 
n remain independent and identically distributed Gaussian variables, whereas wa,n and wb,n 
with the same value of n are correlated. The correlations can be then described by a non-diag-

onal 2 × 2 Hermitian positive definite covariance matrix C−1 such that w†
awb =

(
C−1

)
ab. We 

remind that such choice violates the standard channel ‘orthogonality on average’ assumption, 
and renders the associated ensemble-average S−matrix to be non-diagonal. We give a brief 
account of consequences of such non-diagonality in the appendix A. The corresponding joint 
probability density P (wa,n, wb,n) has the form

Figure 1.  Characteristic function equation (5) for systems with broken time-reversal 
invariance for α = 1(dots), α = 5(dash), α = 10(line) and λ = 0(top), λ = 1(bottom) 
versus direct numerical simulations (# N  =  100, 50 000 samples, circular markers).

S B Fedeli and Y V Fyodorov﻿J. Phys. A: Math. Theor. 53 (2020) 165701



6

P (wa,n, wb,n) ∝ exp
{
− N

[
wa,n

wb,n

]†

C

[
wa,n

wb,n

]}
.

It is then easy to show that the resulting characteristic function is again expressed as the ratio 
of determinants, similar to the uncorrelated case:

R(q, q∗) =

〈
det

(
(λ1N − HN)

2 + α2

N2 1N

)

Πl=1,2 det
(
(λ1N − HN) +

i
2N (k̃ + (−1)l

√
k̃2 + 4s̃)1N

)
〉

GUE(N)

,

� (7)
where we denoted:

k̃ =
1
2

( C∗
ab

detC
q +

Cab

detC
q∗
)

s̃ = α2 +
α

2

( C∗
ab

detC
q − Cab

detC
q∗
)
+

|q|2

4 detC
.

It is useful to recall that Cab
det C = −

(
C−1

)
ab so reflects the nonvanishing correlations 

between the two channel vectors. Note that we assume the entries of C to be of order unity: 
Ci,j =a,b  =  O(1) as N → ∞. Evaluating then the expectation over the GUE matrices in (7), we 
find in the large-N limit:

R(q, q∗) =
e−

1
2 (ĩkλ)−πρ(λ)(

√
k̃2+4̃s+2α)

8(
√

k̃2 + 4s̃)α

(
(1 − e4παρ(λ))k̃2 − (

√
k̃2 + 4s̃ − 2α)2 + e4παρ(λ)(

√
k̃2 + 4s̃ + 2α)2

)
.

� (8)
Examples of R(q, q∗) for different levels of absorption are shown in figures 2–4 for a par

ticular choice of the covariance matrix C−1 =

[
2 −i
i 1

]
. Small discrepancies between simula-

tions and the theoretical formula visible in the figures are due to the finite size of the matrices 
used in simulations and can be checked to gradually disappear as the size of the matrices is 
increased. The latter effect is the more pronounced the bigger values of α are considered.

2.2.  Systems with preseved time-reversal invariance

In such a case we assume HN to be the real symmetric GOE matrix distributed with the 
probability density dP(HN) ∝ exp(−N

4 TrH2
N)dHN , whereas the channel vectors wa are 

assumed to be independent for a �= b and their components are chosen to be real i.i.d. 
mean-zero Gaussian random variables of variance Var[waj] = 1/N, j = 1 . . . , N . In what 
follows we denote the corresponding expectations with [...] =

∫ ∫
[...]P(wa)P(wb)dwadwb 

and 〈[...]〉GOE(N) =
∫
[...]P(HN)dHN  respectively. As before, to address the distributions 

of Ka,b = �Ka,b + i�Ka,b we introduce its characteristic function R(k, s), q = k + is as in 
(3). Integrating out the Gaussian-distributed channel vectors one arrives at the following 
representation:

R(k, s) =

〈
det

(
(λ1N − HN)

2 + α2

N2 1N

)

Πl=1,2 det
1/2

(
(λ1N − HN)2 + (−1)li k

N (λ1N − HN) +
ω2

l
N2 1N

)
〉

GOE(N)

,� (9)
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where we denoted ω2
1 = α2 − iαs and ω2

2 = α2 + iαs.
The major difficulties in evaluating such type of GOE averages arise from the presence of 

half-integer powers in the denominator. Using a variant of the supersymmetry approach one 
can derive a finite  −  N representation for the above as an integral over 4 × 4 positive definite 
matrices (see appendix B), but its asymptotic/saddle-point analysis for N � 1 presents a con-
siderable technical challenge, see a detailed discussion in [15]. Note also the lack of rotational 
invariance in the plane of the complex variable q as, in contrast to the GUE case, R(k, s) does 
not depend only on |q| =

√
k2 + s2 . Athough all this prevented us from finding the full joint 

probability density for the pair (Ka,b, K∗
a,b), we succeeded in extracting the (most important) 

special cases:

R(s, 0) = 〈exp (is�Ka,b)〉GOE(N), R(0, k) = 〈exp (ik�Ka,b)〉GOE(N)� (10)

yielding the characteristic function for separately imaginary and real part of Ka,b. Note that 
those quantities can be separately measured. To simplify our calculation we concentrate on the 
spectral centre λ = 0, the general case λ �= 0 recovered by using the spectral universality via 
rescaling with the mean spectral density, exactly like in β = 2 case. Our main result for the 
characteristic functions is given by

Proposition 2.  Consider HN ∈ GOE(N), wc ∼ N (0, 1
N 1N) for c = a, b and define the 

functions

C(q1, q2,α) = q2
2 − 4q3

2 + 4q3
1(4q2 − 1) + 2q1q2(1 − 4q2 + 8q2

2) + q2
1(1 − 8q2 + 44q2

2)� (11)

−4(q1 + q2)
(
−q3

2 + q2
1q2(4q2 − 5) + q1q2

2(4q2 − 5) + q3
1(4q2 − 1)

)
α2 + 16q2

1q2
2(q1 + q2)

2α4

and

D(q1, q2,α) = C(q1, q2,α)− 8(q1 + q2)
2α2 (q1 + q2 − 2q1q2 + 4q1q2(q1 + q2)α

2) .� (12)

Then the characteristic function of the real �  and imaginary � parts of Kab for λ = 0 are 
given in the limit N → ∞ by the following integral representations:

lim
N→∞

〈
eis�Ka,b

〉
GOE(N)

= −
∫

R+

dq1

∫

R+

dq2|q1 − q2|J0

(
sα(q1 − q2)

)

× e−
1
4 (q1+q2)((q1q2)

−1+4α2) D(q1, q2,α) sinh(2α)− 2αC(q1, q2,α) cosh(2α)
512

√
πq3

1q3
2(q1 + q2)5/2α3

� (13)

and

lim
N→∞

〈
eik�Ka,b

〉
GOE(N)

= −
∫

R+

dq1

∫

R+

dq1dq2|q1 − q2|I0

(
k

√
k2

4
+ α2(q1 − q2)

)

× e−
1
4 (q1+q2)((q1q2)

−1+2(k2+2α2)) D(q1, q2,α) sinh(2α)− 2αC(q1, q2,α) cosh(2α)
512

√
πq3

1q3
2(q1 + q2)5/2α3

� (14)

where J0(x) and I0(x) are Bessel function and modified Bessel function, respectively.
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	Note 1.	 The probability density function of the scaled imaginary part u = α−1�Kab can be 
written in a closed form by inverting the associated Fourier transform. Namely, denoting the 
integrand function in equation (13) for s  =  0 as f (q1, q2;α) one gets

P(u) =
∫ 1

0

∫ 1

0
dpdtf

( |u|
(2pt)

(t + 1),
|u|

(2pt)
(1 − t);α

) |u|
p2t2

√
1 − p2

.� (15)

A similar inversion in (14) seems however impractical.
	Note 2.  Introduce the GOE semicircle eigenvalue density ρ(λ) = 1/(2π)

√
4 − λ2  

and the ratio η = ρ(λ)/ρ(0). Then characteristic functions 〈exp (is�Ka,b)〉GOE(N) and 
〈exp (ik�Ka,b)〉GOE(N) for any λ ∈ (−2, 2) in the limit N → ∞ can be obtained from the case 
λ = 0 by rescalings α → ηα, s → ηs and k → ηk. Namely:

lim
N→∞

〈
eis�Ka,b

〉
GOE(N)

(α,λ) = lim
N→∞

〈
eisη�Ka,b

〉
GOE(N)

(ηα, 0)� (16)

and

lim
N→∞

〈
eik�Ka,b

〉
GOE(N)

(α,λ) = lim
N→∞

〈
eikη�Ka,b

〉
GOE(N)

(ηα, 0).� (17)

An analogous result holds for the probability distribution P(·;α,λ) in equation  (15) with 
λ �= 0; now rescaling ũ = η2u, i.e. P(ũ; ε,λ) = P(ũ; ηα, 0). The numerical comparison is 
presented in figures 5 and 6. A justification for the rescaling can been provided based on the 
results in [15], see appendix B.
	Note 3.	 For large values of absorption α � 1 it is natural to expect that the probability den-
sity of �Ka,b should approach the Gaussian shape. This is fully confirmed by figure 7.
	Note 4.  Although we were not able to find the joint probability density for the pair �Ka,b and 
�Ka,b, we can shed some light on cross-correlations between the imaginary and real parts 
by using the results of the paper [31] for the variance of |Kab|2 = (�Ka�=b)

2 + (�Ka�=b)
2. 

Namely, in figure 8 we present the quantity

τ(α) =
〈(�Ka,b�Ka,b)

2〉

〈(�Ka,b)
2〉 〈(�Ka,b)

2〉
− 1,

where 〈(�Ka,b) 2〉  and 〈(�Ka,b) 2〉  are calculated in the appendix C. We see that the real and 

imaginary parts are correlated, but gradually decorrelate with increased absorption.

3.  Derivations of the main results

3.1.  Systems with broken time-reversal invariance

Our starting point in this case is to write Ka,b in terms of the eigenvalues λn and associated 
eigenvectors of the matrix HN:

Ka,b =

N∑
n=1

wa,nw∗
n,b

λ− λn + iα/N

S B Fedeli and Y V Fyodorov﻿J. Phys. A: Math. Theor. 53 (2020) 165701
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where wn,a = 〈wa|n〉 , w∗
n,b = 〈n|wb〉 are projection of the channel vectors on the eigenvec-

tors |n〉 , n = 1, . . . , N . Due to Gaussian nature of the channel vectors their projections on any 
system of orthonormal vectors are again Gaussian and independent.

We then aim to compute the following characteristic function

R̃(q, q∗) =
〈
exp i

( N∑
n=1

q∗
wa,nw∗

b,n

λ− λn + iα/N
+ q

w∗
a,nwb,n

λ− λn − iα/N

)〉
GUE(N)

.

Evaluating the standard Gaussian integrals over wa,n and wb,n yields

Figure 2.  Real (dots) and imaginary (line) parts of the characteristic function 
equation (8) for Ka,b in systems with broken time-reversal invariance and absorption 
α = 1 with q ∈ [0, 12] and the special choice of the channel covariance matrix, for 
λ = 0 (top),λ = 1 (bottom). Markers indicate numerical results involving # Samples 
10 000 for the matrix size N  =  100.
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R̃(q, q∗) =

〈
N∏

n=1

(λ− λn)
2 + α2/N2

(λ− λn)2 + α2/N2 + |q|2/N2

〉

GUE(N)

=

〈
det((HN − λ1N)

2 + α2/N21N)

det((HN − λ1N)2 + (|q|2/N + α2/N2)1N)

〉

GUE(N)

:= R̃(|q|).

Figure 3.  Real (dots) and imaginary (line) parts of the characteristic function 
equation (8) for Ka,b in systems with broken time-reversal invariance and absorption 
α = 5 with q ∈ [0, 12] and the special choice of the channel covariance matrix, for 
λ = 0 (top),λ = 1 (bottom). Markers indicate numerical results involving # Samples 
10 000 for the matrix size N  =  100.
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When N → ∞, the above object has been evaluated in [36]. Namely, defining the two-point 
kernel S  via

S(x − y) =

{
eiπ(x−y)

x−y , if �x > 0
e−iπ(x−y)

x−y , if �x < 0

one than has the following representation:

Figure 4.  Real (dots) and imaginary (line) parts of the characteristic function 
equation (8) for Ka,b in systems with broken time-reversal invariance and absorption 
α = 10 with q ∈ [0, 12] and the special choice of the channel covariance matrix, for 
λ = 0 (top),λ = 1 (bottom). Markers indicate numerical results involving # Samples 
10 000 for the matrix size N  =  100.
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R̃(|q|) = ρ2(λ)|q|4

4α
√

α2 + |q|2
det[e−φ(λ)(ξi−ηj)S(ξi − ηj)]i,j=1,2,

with ξ1 = iρ(λ)
√
α2 + |q|2 , ξ2 = −iρ(λ)

√
α2 + |q|2, η1 = iρ(λ)α and η2 = iρ(λ)α. The prob-

ability density function for Kab is then obtained by Fourier-transforming (R(|q|) = R̃(|q/2|)):

P(Ka,b, K∗
a,b) =

∫
e−i(�q(Ka,b+K∗

a,b)/2+�q(Ka,b−K∗
a,b)/2)R(|q|)d�q d�q

(2π)2 .

Changing to polar coordinates, integrating out angular variables, performing obvious manipu-
lations and finally rescaling leads eventually to:

Figure 5.  Characteristic function of �Ka,b as given by (13) versus numerical simulations 
for systems with preserved time-reversal invariance at different level of absorption: 
α = 1(dots), 5(dash), 10(line) (# Samples 80 000, N  =  100, circular markers) for 
λ = 0(a), 1(b).
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P(Ka,b, K∗
a,b) =

α2

π
lim

x→2απρ(λ)

∫ ∞

0
dr

r√
1 + r2

J0(2α|Ka,b|r)

×
(
sinh(x)

(
1 +

d2

dx2

)
− 2 cosh(x)

d
dx

)
exp (−x

√
1 + r2).

Changing y =
√

1 + r2  and using that K1/2(u) =
√

π
2u e−u, where Kν(u) is the Bessel-

Macdonald function of order ν , allows to compute the integral, see [38]:

Figure 6.  Characteristic function for �Ka,b as given by (14) versus numerical 
simulations for systems with preserved time-reversal invariance at different level of 
absorption: α = 1(dots), 5(dash), 10(line) (# Samples 50 000, N  =  300, circular 
markers) for λ = 0(a), 1(b).

S B Fedeli and Y V Fyodorov﻿J. Phys. A: Math. Theor. 53 (2020) 165701



14

∫ +∞

0
dr

J0(2α|Ka,b|r)r√
1 + r2

exp (−x
√

1 + r2) =
e−

√
x2+4α2|Ka,b|2

√
x2 + 4α2|Ka,b|2

.

3.2.  Systems with broken time-reversal invariance and correlated channels

In this section we sketch the derivation in the case of channels correlated as described in the 
section 2.1.2 and characterized via 2 × 2 complex matrix C−1. The characteristic function 
〈exp i

2 (qK∗
ab + qK∗

ab)〉GUE(N) is then given by the ensemble average of

N∏
n=1

N2 detC
π2

∫

C2

( ∏
j=a,b

dwj,ndw∗
j,n

)
exp

{
− N

[
wa,n

wb,n

]†

C

[
wa,n

wb,n

]
+

i
2

(
q

w∗
a,nwb,n

δ∗n
+ q∗ wa,nw∗

b,n

δn

)}

where we introduced the notation δn = λ− λn − iα/N . Performing the Gaussian integrals 
over the channel variables allows to represent the characteristic function as

〈 N∏
n=1

N2 detC
N2C11C22 − (NC12 − i q

2δ∗n
)(NC∗

12 − i q
2δn

)

〉
GUE(N)

which in turn can be equivalently represented as an average of the ratio of determinants over 
the GUE ensemble:

〈 det((λ− iα/N)1N − H) det((λ+ iα/N)1N − H)
∏

j=1,2 det((λ1N − H) + i
2N (k̃ + (−1) j

√
k̃2 + 4s̃)1N)

〉
GUE(N)

where we denoted

Figure 7.  Comparison between the probability density of �Ka,b (equation (15)) for 
large absorption α = 50(dots), 100(line), and the Gaussian distribution N (0, 1/(2α)) 
(circular markers) (λ = 0).
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k̃ =
1
2

( C∗
12

detC
q +

C12

detC
q∗
)

s̃ = α2 +
α

2

( C∗
12

detC
q − C12

detC
q∗
)
+

|q|2

4 detC
.

Evaluating the ensemble average in the large  −  N limit (see equation (4.9) in [33]) we then 
arrive at the characteristic function given by:

R(q, q∗) = − (ε1 − µ1)(ε1 − µ2)(ε2 − µ1)(ε2 − µ2)

(ε1 − ε2)(µ1 − µ2)
(Nρ(λ))2 det

[
e−

λ
2ρ(λ)

(ξi−ηj)S(ξi − ηj)
]

i,j=1,2

where we used the notations



εj = λ+
ξj

Nρ(λ)

µj = λ+
ηj

Nρ(λ)

ξj = ρ(λ)
(
(−1) j 1

2�
√

k̃2 + 4s̃ + i
2 (k̃ + (−1) j+1�

√
k̃2 + 4s̃

)

ηj = i(−1) jαρ(λ)

with j = 1, 2. Finally, after simple algebra we arrive at the final result given in equation (8).

3.3.  Derivations for the case of preserved time-reversal invariance

In full analogy with the previous section we consider the characteristic function of Ka,b:

R(q, q∗) = 〈ei/2(q∗Kab+qK∗
ab)〉GOE(N)

with q = k + is ∈ C. The argument in the exponential can be written in the basis of the eigen-
vector of H as:

Figure 8.  Behaviour of τ(α) = 〈(�Ka,b�Ka,b)2〉
〈(�Ka,b)2〉 〈(�Ka,b)2〉

− 1, for λ = 0(line), 1(dots).
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q∗Kab + qK∗
ab =

N∑
n=1

wa,nwb,n

(q∗(λ− λn − iα/N) + q(λ− λn + iα/N)

(λ− λn)2 + α2/N2

)
.

The integration over the real Gaussian variables wa,n, wb,n and simple rearranging leads to 
representation equation (9).

At the next step we set λ = 0 in equation (9) and represent HN as a block matrix:

HN =




H11 H12 hT
1

H12 H22 hT
2

h1 h2 HN−2


 ,� (18)

where HN−2 is the (N − 2)× (N − 2) submatrix obtained by deleteing the first two columns 
and the first two rows of HN, while h1 and h2 are (N − 2) dimensional vectors. The numerator 
in equation (9) for λ = 0 can be then written using the Schur complement formula as

det

(
H2

N +
α2

N2 1N

)
= det

(
H2

N−2 +
α2

N2 1N

)
|∆|2

with:

∆ = det

([
H1,1 − iαN H1,2

H1,2 H2,2 − iαN

]
−

[
hT

1

hT
2

]
1

HN−2 − iαN

[
h1 h2

])
.

The determinants in the denominator of equation (9) can be replaced by Gaussian integrals 

via 
∫
RN dx exp{−xTAx} ∝ 1/

√
detA for �A � 0. As the result, the characteristic function 

for �Kab at λ = 0 can be represented by the following integral:

〈
eis�Kab

〉
GOE(N)

∝

〈∫

R2N
dx1dx2 exp

(
− Tr

{
H2

NQ +
∑
j=1,2

ω2
j

N2 1N

(
xj ⊗ xT

j

)})

� (19)

× det
(

H2
N−2 +

α2

N2 1N

)
|∆|2

〉

GOE(N)

,

where here and afterwards we systematically suppress multiplicative constants and restore 
them only in the end of the calculation. The symmetric N × N  matrix Q = x1 ⊗ xT

1 + x2 ⊗ xT
2  

satisfies Rank(Q) = 2. Therefore its spectrum σ(Q) is given generically by two positive 
eigenvalues {q1 > 0, q2 > 0}, with the rest N  −  2 eigenvalues being identically zero, imply-
ing Q = O diag(q1, q2, 0, . . . , 0)OT  with O ∈ O(N). The integral over variables x1 and x2 has 
a particular invariant form and can be written in terms of a 2 × 2 symmetric matrix

Q̃ =

[
|x1|2 x1 · x2

x1 · x2 |x2|2

]

with σ(Q̃) = σ(Q) \ {0}. Now one can apply the following

Proposition ( See [39]). For real matrices Q of the form 
∑k

j=1 xj ⊗ xT
j , where xj ∈ RN , ∀j the 

following identity holds:
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∫

RkN

k∏
j=1

dxjΘ(σ(Q)) =
π−k(k−1)/4

∏k−1
j=0 Γ(N−j

2 )

∫

Q̃>0
dQ̃(det Q̃)(N−k−1)/2Θ(σ(Q̃)),

� (20)
where the integration in the right-hand side is over the space of the real symmetric positive 
definite matrices of dimension k × k .

In our case k  =  2 and the integral over Q̃ can be rewritten introducing the spectrum q1, q2 
as integration variables. This leads to:

〈
eis�Ka,b

〉
GOE(N)

∝
∫ ∞

0

∫ ∞

0
dq1 dq2(q1q2)

N−3
2 |q1 − q2|Φ(σ(Q̃);α)� (21)

×
∫

O(2)
dµ(O) exp

(
− 1

N2 Tr
[
ω2

1 0
0 ω2

2

]
O
[

q1 0
0 q2

]
OT

)
,

where we denoted

Φ(σ(Q̃),α) = 〈det(H2
N + α2/N2) exp (−TrH2

NQ)〉GOE(N).� (22)

Parametrizing O ∈ O(2) as 
[
cosφ sinφ

− sinφ cosφ

]
 the group integration in equation (21) is equiva-

lent to:
∫ π/2

0
dφ ecos

2 φ(ω2
1 q1+ω2

2 q2)+sin2 φ(ω2
1 q2+ω2

2 q1) =
π

2
e−

α2

N2 (q1+q2)J0

(αS
N2 (q1 − q2)

)
,

� (23)
where J0(x) is the Bessel function of the first kind of order 0.

The expectation over GOE ensemble in equation  (22) can be now evaluated directly 
by employing the block structure presented in equation  (18). Introducing the notations 
M = (HN−2 − iαN )

−1 and M∗ = (HN−2 + iαN )
−1 one finds that Φ can be written in the fol-

lowing form

Φ(q1, q2;α) =
∑
m,n,p

um,n,p(q1, q2,α)
〈(

Tr(M)m(M∗)n
) p〉

GOE(N−2)

for some coefficients um,n,p(q1, q2,α) with 0 � m, n � 2, 0 � p � 4.
To see this we proceed as follows. We notice that Tr

(
H2

N(Q + N
4 1N)

)
 is a quadratic poly-

nomial in the entries of HN :

Tr
(

H2
N(Q +

N
4

1N)

)
= α1H2

11 + α2H2
22 + α12H2

12 + β1|h1|2 + β2|h2|2 +
N
4

Tr
(
H2

N−2

)

with

α1 = q1 + N/4, α2 = q2 + N/4, α12 = α1 + α2, β1 = q1 + N/2, β2 = q2 + N/2.� (24)

Further we have

∆∆∗ = |H11H22 − Z11H22 − H11Z22 + Z11Z22 − H2
12 − Z2

12 + 2H12Z12|2,

where Zij = iα/Nδij + Tr(M(hj ⊗ hT
i )). The Gaussian integrals over H1,1, H1,2, H2,2 can be 

performed using the identity
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∫ +∞

−∞
e−ax2

|cx2 + bx + d|2dx =

√
π

4a5/2 (3|c|
2 + 2a|b|2 + 2a(dc∗ + d∗c) + 4a2|d|2), a > 0, and b, c, d ∈ C.

� (25)
In this way we start with integrating out H11 via
∫

e−α1H2
11 |∆|2dH11 =

√
π

2α3/2
1

(
|H22 − Z22|2 + 2α1| − Z11H22 + Z11Z22 − H2

12 − Z2
12 + 2H12Z12|2

)

and then similarly integrate over H22 and H12. This finally yields

Φ(q1, q2;α) ∝
∫

dh1dh2dHN−2 e−β1|h1|2−β2|h2|2− N
4 TrH2

N−2 det

(
H2

N−2 +
α2

N2 1N−2

)

×
(

a1 + a2|Z11|2 + a3|Z22|2 + a4|Z12|2 + 2a5�(Z11Z22 − Z2
12) + a6|Z11Z22 − Z2

12|2
)

,� (26)

where

a1 =
1

α
1/2
12

+ 3
α1α2

α
5/2
12

, a2 =
2α1

α
1/2
12

, a3 =
2α2

α
1/2
12

a4 =
8α1α2

α
5/2
12

, a5 = −2
α1α2

α
3/2
12

, a6 = 4
α1α2

α
1/2
12

.

Remembering the definition of Zij, the integration in equation (26) over h1 and h2 relies on the 
following identities valid for β1,β2 > 0:

∫

RN−2
(hT

1 Mh1)e−β1h2
1 dh1 =

( π

β1

)(N−2)/2 1
2β1

TrM

and
∫

RN−2
e−β1h2

1
(
hT

1 M1h1
) (

hT
1 M2h1

)
dh1 =

1
4
π(N−2)/2

β
(N−2)/2
1

1
β2

1
(TrM1TrM2 + 2TrM1M2),

as well as
∫

R2(N−2)
e−β1h2

1−β2h2
2
(
hT

1 M1h2
) (

hT
1 M2h2

)
dh1dh2 =

( π2

β1β2

)(N−2)/2 1
4β1β2

TrM1M2,

and
∫

R2(N−2)
e−β1h2

1−β2h2
2
(
hT

1 M1h2
)2 (

hT
1 M2h2

)2
dh1dh2

=
1

16

( π2

β1β2

)(N−2)/2 1
β2

1β
2
2
(TrM2

1TrM2
2 + 4TrM2

1M2
2 + 2Tr2M1M2 + 2Tr(M1M2)

2),

and finally
∫

R2(N−2)
e−β1h2

1−β2h2
2
(
hT

1 Mh2
)2 (

hT
1 M∗h1

)
dh1dh2
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=
1
8

( π2

β1β2

)(N−2)/2 1
β2

1β2
(TrM2TrM∗ + 2Tr(M2M∗))

and
∫

R2(N−2)
e−β1h2

1−β2h2
2
(
hT

1 Mh2
)2 (

hT
1 M∗h1

) (
hT

2 M∗h2
)

dh1dh2

=
1

16

( π2

β1β2

)(N−2)/2 1
β2

1β
2
2
(TrM2Tr2M∗ + 4TrM2M∗TrM∗ + 4Tr(MM∗)2).

Performing in this way integrations over h1 and h2 leads to the following cumbersome 
intermediate expression:

Φ(q1, q2;α) ∝
( π2

β1β2

)(N−2)/2
∫

dHN−2e−
N

4J2 TrH2
N−2 det(H2

N−2 +
α2

N2 1N−2)

×
{

u1 + u2Tr(M − M∗) + u3TrMM∗ + 2u4�(Tr2M − TrM2) + u5TrMTrM∗

+ u6

(
Tr(M − M∗)(TrMTrM∗ + 2TrMM∗)

+ TrM2TrM∗ + 2TrM2M∗ − (TrM∗2TrM + 2TrM∗2M)
)

+ u7

(
(TrMTrM∗ + 2TrMM∗)2 + TrM2TrM∗2 + 6Tr(MM)2

+2(TrMM∗)2 − 2�(TrM2(TrM∗)2 + 4TrM2M∗TrM∗ + 4Tr(MM∗)2)
)}

,

with:

u1 = a1 +
α2

N2 a2 +
α2

N2 a3 − 2
α2

N2 a5 +
α4

N4 a6,

u2 = −i
α

N
a2

2β1
− i

α

N
a3

2β2
+ i

αa5

(2N)

( 1
β1

+
1
β2

)
− i

α3a6

(2N3)

( 1
β1

+
1
β2

)
,

u3 =
a2

2β2
1
+

a3

2β2
2
+

a4

4β1β2
+

a6α
2

2N2

( 1
β2

1
+

1
β2

2

)
,

u4 =
a5

4β1β2
− α2

4N2

a6

β1β2
; u5 =

a2

4β2
1
+

a3

4β2
2
+

α2a6

4N2

( 1
β2

1
+

1
β2

2

)
+

α2

2N2

a6

β1β2
,

u6 =
iα
8N

a6
( 1
β2

1β2
+

1
β1β2

2

)
; u7 =

a6

16β2
1β

2
2

.

In this way evaluating Φ(σ(Q̃),α) is reduced to performing GOE(N − 2) averaging of 
polynomials of traces for M =

(
HN−2 − iαN

)−1 and its complex conjugate. Observing that 
M − M∗ = 2iαN MM∗, each monomial can be rewritten as a combination of derivatives of 
characteristic polynomials, i.e. ∂m

ξ det(HN−2 − (ξ ± iα/N))|ξ=0  for some m  >  0. Exploiting 
this the final integration over HN−2 is performed as follows. First we introduce the correlation 
function of the product of two characteristic polynomials, which in the limit N � 1 takes the 
form, see e.g. [40]:
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〈
det

(
HN−2 − i

α

N
− ξ+

)
det

(
HN−2 + i

α

N
− ξ−

)〉
GOE(N−2)

∝
−f (ξ+ − ξ−) cos

(
f (ξ+ − ξ−)

)
+ sin

(
f (ξ+ − ξ−)

)

f 3(ξ+ − ξ−)
:= CSP(ξ+ − ξ−)

� (27)
with f (ξ) = 2iα+ Nξ . Now by employing the identities

d
dξ

det(HN−2 − (ξ ± iα/N)1N) = −Tr
(

HN−2 − (ξ ± iα/N)1N

)−1
det(HN−2 − (ξ ± iα/N)1N)

and

d
dξ

Tr
(

HN−2 − (ξ ± iα/N)1N

)−k
= kTr

(
HN−2 − (ξ ± iα/N)1N

)−(k+1)

one is able to represent Φ in the following form:

Φ(q1, q2;α) ∝ lim
δ→0

4∑
j=0

bj(q1, q2,α) D̂jCSP(δ)

where the coefficients bj  are given by the following expressions:

b0 =
1

√
α12

+ 3
α1α2

α
5/2
12

+ 2
α2

N2

α1 + α2√
α12

+ 4
α2

N2

α1α2

α
3/2
12

+ 4
α4

N4

α1α2√
α12

,

b1 = − i
√
α12

α

N

(α1

β1
+

α2

β2

)
− i

α

N
α1α2

α
3/2
12

( 1
β1

+
1
β2

)
− i2

α3

N3

α1α2√
α12

( 1
β1

+
1
β2

)

− iN
2α

( 1
√
α12

(α1

β2
1
+

α2

β2
2

)
+ 2

α1α2

α
3/2
12 β1β2

+ 2
α2

N2

α1α2√
α12

( 1
β2

1
+

1
β2

2

))
,

b2 = − α1α2

α
3/2
12 β1β2

− 2
α2

N2

α1α2√
α12β1β2

−
( α1

2
√
α12β2

1
+

α2

2
√
α12β2

2
+

α2

N2

α1α2√
α12

( 1
β2

1
+

1
β2

2
+

2
β1β2

))

and finally

b3 = i
α

2N
α1α2√
α12

( 1
β1β2

2
+

1
β2β2

1

)
and b4 =

α1α2

4
√
α12β2

1β
2
2

,

whereas D̂j  stand for the following differential operators:

D̂0 = 1, D̂1 = −2∂δ , D̂2 = ∂2
δ , D̂3 = −2∂3

δ +
4Ni
α

∂2
δ −

2N2

α2 ∂δ

and

D̂4 = ∂4
δ −

N2

α2

(
2∂2

δ +
iN
α
∂δ −

4Ni
α

∂3
δ

)
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where ∂k
δ := ∂k

∂δk . Now by rescaling q1,2 → N2q1,2 and recalling the definitions (24) we see 
that for N � 1 to the leading order we can replace

(β1β2)
N/2β1β2 ≈ e−1/4(q−1

1 +q−1
2 )(q1q2)

1−N/2,

as well as α1 ≈ N2q1 and α2 ≈ N2q2.
Finally, we can restore the suppressed proportionality constant in equation (19) by notic-

ing that for any N 〈exp (is�Ka,b)〉GOE(N) = 1 for either α = 0 or s  =  0. Note however that in 
the equation (21) the limit α → 0 and the integration over q1,2 do not commute. Therefore the 
constant of proportionality must be a function of α. The only unknown factor comes from 
equation (27). To this end we consider N to be odd for simplicity and further consider the limit 
ξ± → 0 and α → 0. We then have, see [41]:

〈| detHN−2|r−1〉GOE(N−2) = N
(N−2)(r−1)

2 2r−1 Γ(r/2)
Γ(1/2)

(N−3)/2∏
j=1

2r−1 Γ(r + j − 1/2)
Γ( j + 1/2)

� (28)
with r  >  1. This allows to restore the multiplicative constant and obtain the characteristic 
function as in equation (13). Further inverting the Fourier transform we obtain the probability 
density function of �Ka,b. In doing this it is useful to notice that:

F−1
[
J0

(
αs(q1 − q2)

)]
:=

1
2π

∫ +∞

−∞
dse−is�Kab J0

(
αs(q1 − q2)

)

=
1
π

1(Ω)√
α2(q1 − q2)2 −�2Ka,b

,

where 1(Ω) is the indicator function of the set Ω = {(q1, q2) ∈ R2
+|α2(q1 − q2)

2 > �2Ka,b}. 
The form of the set Ω suggests to introduce a new rescaled variable u = α−1�Ka,b to arrive 
to equation (15).

3.4.  Derivation of equation (14)

The derivation of the characteristic function for �Ka,b follows very similar lines and we only 
briefly sketch it here. Assuming λ = 0, it is sufficient to observe that

〈
eik�Ka,b

〉
GOE(N)

=

〈
det

(
H2

N + α2

N2 1N

)

Πl=1,2 det
1/2

(
H2

N + (−1)l i k
N HN + α2

N2 1N

)
〉

GOE(N)

.

� (29)
Noticing that the denominator can be rewritten as:

det(H2
N + ω̃2

1)
−1/2 det(H2

N + ω̃2
2)

−1/2

with ω̃2
1 = (k/2 +

√
α2 + k2/4)2/N2 and ω̃2

1 = (k/2 −
√

α2 + k2/4)2/N2 we conclude that 
the GOE expectation in (29) can be obtained from the corresponding expression equation (19) 
for the characteristic function of �Ka,b by simply replacing ω1,2 in equation  (19) with the 
new values ω̃1,2 as above. The only difference comes from the integration over the orthogonal 
group of 2 × 2 matrices in equation (23) which is replaced with
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I =
π

2
exp

(
− 1

2N2 (k
2 + 2α2)(q1 + q2)

)
J0

(
i

k
N2

√
α2 +

k2

4
(q1 − q2)

)
.

Note that we found challenging to obtain an explicit probability density of �Ka,b by inverting 
the Fourier transform as the integral

1
2π

∫ ∞

−∞
e−ik�Kab exp

(
− (q1 + q2)

2N2 k2
)

I0

( k
N2

√
α2 +

k2

4
(q1 − q2)

)
dk

does not seem to have a simple closed form expression, and can be evaluated only numerically.
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Appendix A.  Mean S−matrix for non-orthogonal channels and the perfect 
coupling

We start with recalling that entries Sab(λ) of the M × M  scattering matrix S in (1) can be 
rewritten equivalently as [6]

Sab(λ) = δab − 2i w∗
a

[
1

λ1N −Heff

]
wb,� (A.1)

with an effective non-Hermitian Hamiltonian

Heff = HN − iΓ, Γ := WW† =

M∑
c=1

wc ⊗ w∗
c � 0� (A.2)

whose N complex eigenvalues λn = En − iΓn provide poles of the scattering matrix in the 
complex energy plane λ, commonly referred to as the resonances. Recall that Γ for M  <  N has 
exactly M positive eigenvalues which we denote γc, c = 1, . . . , M , the rest N  −  M being zero.

Using standard methods, one can perform averaging over H ∈ GUE (or GOE) for any 
given set of channel vectors wc, c = 1, . . . , M  and get in the limit N → ∞:

lim
N→∞

[
1

(λ+ i0)1N −Heff

]

GUE(N)

=
g0(λ)

1N + ig0(λ)Γ
,� (A.3)

where for |λ| < 2 we introduced g0(λ) =
λ−i

√
4−λ2

2 . The mean S  −  matrix then is immedi-

ately given by the following expression as N → ∞:

S(λ) = 1M − 2ig0(λ)W† 1
1N + ig0(λ)Γ

W ≡ 1M − ig0(λ)W†W
1M + ig0(λ)W†W

.� (A.4)

To see the influence of channel non-orthogonality let us consider the simplest exam-
ple of a two-channel system characterized by two equivalent channels with the equal 
norms w∗

1 w1 = w∗
2 w2 =: γ and non-vanishing scalar product w∗

1 w2 = c, with |c| < γ 
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giving W∗W =

[
γ c
c∗ γ

]
. Note that such matrix has two positive eigenvalues γ1 = γ + |c| and 

γ2 = γ − |c|, with γ1 > γ2. Note that this case of fixed channels should be identified with the 
random Gaussian correlated channels considered in the section 2.1.2 for the particular choice 
of the correlation matrix C−1 = W†W.

Choosing for simplicity also λ = 0 gives ig0  =  1 hence after a simple calculation we get 
the mean S-matrix in the form:

S (λ = 0) =
1

(1 + γ)2 − |c|2

[
1 − γ2 + |c|2 −2c

−2c∗ 1 − γ2 + |c|2

]

whose eigenvalues are given by

s1 =
1 − (γ + |c|)
1 + (γ + |c|)

≡ 1 − γ1

1 + γ1
, s2 =

1 − (γ − |c|)
1 + (γ − |c|)

≡ 1 − γ2

1 + γ2
.

We conclude that by fixing some 1/2 < γ < 1 and increasing correlation parameter |c| one can 
force the eigenvalue s1 of the mean S-matrix vanish at |c| = 1 − γ. This is a general phenom
enon related to the so-called ‘perfect coupling’ situation, and we consider it next in generality.

In the general case, note that (A.4) implies, in particular, for the determinant of the mean 
S−matrix the expression

det
(

S(λ)
)
=

det
(
1M − ig0(λ)W†W

)
det (1M + ig0(λ)W†W)

.� (A.5)

Remembering that the matrices W†W and Γ for M  <  N share M nonvanishing eigenvalues 
γc, c = 1, . . . , M , one can easily check that the modulus of the determinant can be written in 
terms of those eigenvalues as

∣∣∣det
(

S(λ)
)∣∣∣ =

M∏
c=1

√
gc − 1
gc + 1

, gc =
1

2πρ(λ)

(
γc +

1
γc

)
.� (A.6)

We see that by starting with small channel vector norms w∗
c wc and allowing them to increase 

gradually, as well as introducing nonzero off-diagonal channel correlations, the eigenvalues γc 
will be increase, and causing the combinations gc first to reach unity at the spectral parameter 
λ = 0 and γc = 1. For such a choice one of the eigenvalues of the mean scattering matrix will 
vanish leading to zero determinant. This special regime is precisely one called in the literature 
the ‘perfect coupling’ case, and has many interesting features. In particular, it corresponds to 
the formation of widely distributed chaotic resonances described by the characteristic power-
law tail in the probability density of the resonance widths, see [42] and [11].

Appendix B

In this appendix we quote an explicit integral representation from [15]:
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〈
eis�Ka,b

〉
GOE(N)

∝
∫

Q�0
dQ(detQ)(N−5)/2 exp

(
− N

4
Tr(QL)2 + i

N
2

Tr(QLM)
)

×
∫

R
dr1

∫

R
dr2 exp

(
− N

2
(r2

1 + r2
2 − i2λ(r1 + r2))

) (r1r2)
N−4

(2iα)3

×
4∏

j=1

(r1 + λj)(r2 + λj) exp

(
N(λ2 − α2/N2)

)

×

(
2iα

N(r1 − r2)
cos

(2iα(r1 − r2)

2J2

)
− 2

N
sin

(2iα(r1 − r2)

2

))
.

� (B.1)
In the above Q is 4 × 4 positive definite real symmetric matrix, L = diag(+1,+1,−1,−1) 
and M = diag(λ+ i

N

√
α2 + iαs,λ+ i

N

√
α2 − iαs,λ− i

N

√
α2 + iαs,λ− i

N

√
α2 − iαs). A 

naive saddle point approximation leads to r1,2 = 1/2(iλ± 2πρ) but substituting it back to 
equation  (B.1) shows that the integrand vanishes at the saddle-point value. Finding a way 
to fully control the higher order expansion around the saddle point and extract all relevant 
contributions remains a challenge. It is easy to see however that the result of the expansion 
will satisfy the rescaling property (16).

Appendix C

Our goal is to give a brief derivation of the explicit expressions for 〈(�Ka,b)2〉GOE(N) and 
〈(�Ka,b)2〉GOE(N).

We start by rewriting Kab in the basis of the eigenvectors of HN, namely:

Kab =

N∑
n=1

∑N
i,j=1 wa,i(O)in(O)njwb,j

(λ− λn)2 + α2/N2 .

It is easy to see that, after performing the averaging over the Gaussian channel vectors, we 
can write

lim
N→∞

〈(�Ka,b)2〉GOE(N) = − lim
N→∞

α

2N
d

dα

( 1
α
�
〈

Tr
{ 1
(λ− iα/N)1N − HN

}〉
GOE(N)

)
� (C.1)

and:

lim
N→∞

〈(�Ka,b)2〉GOE(N) = lim
N→∞

1
2Nα

d
dα

(
α�

〈
Tr
{ 1
(λ− iα/N)1N − HN

}〉
GOE(N)

)
.� (C.2)

Where we assumed valid the interchange of the limit with the derivative. The traces above, 
in the limit of N → ∞, can be written in terms of the Stieltjes transform of the semicircle 
density:

lim
N→∞

〈 1
N

Tr
1

HN − z

〉
GOE(N)

=
1

2π

∫ 2

−2

√
4 − x2

x − z
dx

=
λ− iα/N

2

(
− 1 +

√
1 +

4
(α/N + iλ)2

)
.
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The imaginary part can be extracted by observing that 
√

a + ib = x + iy where 
x = 1/

√
2
√√

a2 + b2 + a and y = sign(b)/
√

2
√√

a2 + b2 − a. Performing the derivatives 
in α leads to:

〈(�Ka,b)2〉GOE(N) =

√
4 − λ2

4α
,

and the same result holds for 〈(�Ka,b)2〉GOE(N).
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