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Abstract
We compute the instanton partition functions of N = 1 SCFTs in class Sk . We 
obtain this result via orbifolding Dp/D(p-4) brane systems and calculating the 
partition function of the supersymmetric gauge theory on the worldvolume 
of K D(p-4) branes. Starting with D5/D1 setups probing a Z� × Zk orbifold 
singularity we obtain the K instanton partition functions of 6d (1, 0) theories 
on R4 × T2 in the presence of orbifold defects on T2 via computing the 2d 
superconformal index of the worldvolume theory on K D1 branes wrapping 
the T2. We then reduce our results to the 5d and to the 4d instanton partition 
functions. For k  =  1 we check that we reproduce the known elliptic, 
trigonometric and rational Nekrasov partition functions. Finally, we show that 
the instanton partition functions of SU(N) quivers in class Sk  can be obtained 
from the class S  mother theory partition functions with SU(kN) gauge factors 
via imposing the ‘orbifold condition’ aA → aAe2πij/k  with A = ( j − 1)N + A 
and A = 1, . . . , N , j = 1, . . . , k  on the Coulomb moduli and the mass 
parameters.

Keywords: instantons, orbifold, partition function, coulomb, supersymmetry, 
gauge theory
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1.  Introduction

In recent years much progress has been made towards the non-perturbative study of four 
dimensional (4d) gauge theories with extended supersymmetry. A milestone was the work of 
Seiberg and Witten who demonstrated that the instanton series may be effectively summed 
by computing the periods of a holomorphic curve, known as the Seiberg–Witten (SW) curve 
[1, 2]. Nekrasov was able to verify their results from a purely field theoretic perspective and 
derive the instanton partition function by performing the integration over (a suitable regular-
ization) of the instanton moduli space [3, 4].

String or M-theory realisations as well as compactifications of higher dimensional theories 
to 4d have also shed much light on the structure of 4d N = 2 theories. A large class of 4d 
N = 2 theories may be obtained via (twisted) compactifications of the 6d (2, 0) SCFT on 
M4 × C, a 4d compact manifold M4 and a Riemann surface C. The N = 2 theories obtained 
in this way are said to lie in class S  [5, 6]. What is more, many protected quantities, such as 
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partition functions [7] and correlation functions of BPS operators in class S  SCFTs may be 
computed as observables of a 2d theory which lives on C [8, 9]. One manifestation of this 
4d/2d relation is that the partition function on an ellipsoid M4 = S4

ε1,ε2
 is equal to correlators 

in Liouville/Toda CFT [8, 10]. Moreover, the 2d Virasoro/W-algebra conformal blocks are 
mapped to Nekrasov’s instanton partition function. Another manifestation of a 4d/2d relation 
is the partition function on M4 = S3 × S1 (a.k.a. the superconformal index: SCI), which can 
be recast as a correlator of a 2d TQFT living on C [11, 12].

An N = 1 offspring of the class S  construction was recently proposed in [13] and denoted 
as class Sk  and further investigated in [14–20]. See also [21–24]. These are 4d N = 1 theories 
which may be obtained via (twisted) compactification of 6d (1, 0) SCFTs again on C. The 
landscape of 6d (1, 0) theories is far richer, a classification via F-theory has been explored 
[25–28], although, a complete field theoretic understanding is currently lacking. An interest-
ing subset of 6d (1, 0) theories are the T N

k  theories which may be engineered within M-theory 
by considering the low energy theory living on N coincident and parallel M5 branes at the 
tip of a transverse Γ = Ak−1 singularity. The construction may be generalised by choosing 
Γ = ADE  which, upon compactification on C leads to a bigger class of 4d N = 1 theories 
denoted by class SΓ [15].

Because of their orbifold constructions class Sk  theories may provide an ideal starting point 
to begin to look for exact results and 2d/4d relations in 4d N = 1 theories which, so far, have 
been largely unexplored. Often the orbifolded daughter theory possesses many similarities 
with their mother theory [29, 30].

In [13] the 4d SCI was computed and most strikingly it was recast as a correlator of a 2d 
TQFT establishing the first 2d/4d relation for class Sk . Subsequently, in [31, 32], the index 
and its TQFT description was also computed in the presence of half-BPS surface defects. 
Additionally, in [17], SW curves were computed and some of their properties explored. In 
[33], guided by the SW curves, the existence of an AGT-like correspondence for the class Sk , 
denoted AGTk correspondence, was conjectured. Furthermore, the instanton partition function 
ZSk

inst was proposed via the relation of ZSk
inst and WkN  conformal blocks.

In this paper we will compute ZSk
inst and verify the proposal of [33] for a subset of class 

Sk  theories with a Lagrangian description; 4d theories obtained by compactification of T N
k  

when the compactification surface C is either an �-punctured torus C1,� = T2 \ { p1, . . . , p�} 
or an �+ 2-punctured sphere C0,�+2 = CP1 \ { p1, . . . , p�+2}. These theories are conformal 
and have weakly coupled Lagrangian descriptions in terms of toroidal or cylindrical N = 1 
quiver theories.

We engineer the toroidal N = 1 quiver theories of class Sk  in type IIB string theory as 
Z� × Zk orbifolds of D3 branes1. We can study the dynamics of K instantons on the Dp  branes 
via the correspondence between the ADHM construction [36] and D( p − 4) branes within Dp  
branes [37–43]. Instantons of orbifold daughters of N = 4 SYM were intensively studied in 
the early days of AdS/CFT [44–50] and recent computations in theories with eight or more 
supercharges in various dimensions [51–55] have been possible due to significant improve-
ment of the old techniques. For this paper we where especially inspired by [56]. The instanton 
moduli space on D3 branes is isomorphic to the Higgs branch of the theory on D(−1) branes. 
The partition function of the supersymmetric matrix model theory on the worldvolume of 
K D(−1) branes is equal to the K instanton partition function of the corresponding class Sk  
theory.

1 This is a T-dual version of the type IIA Hanany–Witten description [34, 35] used in [13].
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Using T-duality on the setup of D3 branes in the presence of a Z� × Zk orbifold singularity 
we land on D5 branes in the presence of a Z� × Zk orbifold which engineers a 6d (elliptic) 
uplift of the 4d theories we are interested in. The matrix model describing pointlike instantons 
of the 4d theory living on D3 branes is lifted to a 2d gauge theory, the SCI of which computes 
the instanton partition function of the corresponding 6d theory on T2 [56], living on the world-
volume of the D5 branes. The 2d SCI calculation is very well studied [57–62]. Taking the 4d 
limit of the 6d instanton partition function we obtain the instanton partition function of the 4d 
class Sk  theory.

This paper is organised as follows. In section 2, we present the string theory setup on which 
we base our calculations. Experts can skip this section, however we find it crucial for build-
ing up notation and intuition for the rest of the sections. In section 3, we prepare for our main 
calculation by practising with the calculation of the instanton partition function of 4d mass 
deformed N = 4 SYM (a.k.a. N = 2∗) and its 5d and 6d (trigonometric and elliptic) uplifts: 
mass deformed 5d N = 2 MSYM on S1 and 6d (2, 0) theory on T2. This is obtained via the 
computation of the SCI of the (4, 4) 2d gauge theory living on the worldvolume of the K D1 
branes with quiver depicted in figure 4, which we set up using a supercharge that survives the 
orbifold projection that will come next. In section 4, we present the main computation of our 
paper, we perform a Z� × Zk ‘orbifold’ to the SCI of section 3. We extract the instanton parti-
tion function and for k  =  1 successfully check our result against the known instanton partition 
function of N = 2 circular quivers as well as their 5d and 6d uplifts. We conclude in section 5 
with a summary and a discussion of our findings as well as an outlook of future directions. 
Technical details are presented in the appendix to not interrupt the flow of the main text.

2.  String theory description

In this section we present the brane setups which we use to ‘engineer’ Lagrangian theories in 
class Sk . We use this opportunity to establish notation and discuss the bosonic and fermionic 
symmetries of theories in class Sk . We begin with the toroidal N = 1 quiver theories in class 
Sk  which are obtained using type IIB string theory with N D3 branes probing a Z� × Zk orbi-
fold singularity (table 1). They are examples of N = 1 orbifold daughters of N = 4 SYM 
[63, 64] and were extensively studied in the early days of AdS/CFT. After T-duality we land 
on type IIA string theory with N D4 and � NS5 branes in the presence of a Zk orbifold singu-
larity (see table 3), which was used in [13], and naturally produces cylindrical N = 1 quiver 
theories in class Sk . Finally, we obtain a 6d uplift of the cylindrical quivers of class Sk  after 
a further T-duality (see tables 3 and 4) which leads to N D5 branes on a Z� × Zk orbifold 
singularity.

2.1. Type IIB realisation

Consider Type IIB string theory on R4 × R6/Γ with Γ = Z� × Zk  with �, k ∈ Z+. Our goal 
is to engineer the class Sk  theories corresponding to a torus with � minimal punctures within 

Table 1.  The type IIB setup engineering Lagrangian 4d SCFTs in class Sk .

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

N D3 — — — — · · · · · ·
A�−1 · · · · · · × × × ×
Ak−1 · · · · × × · × × ·
K D(−1) · · · · · · · · · ·

T Bourton and E Pomoni﻿J. Phys. A: Math. Theor. 53 (2020) 165401



5

Type IIB string theory. Hence, we add a set of N parallel and coincident D3 branes along 
the R4 as described in table 1. We parametrise the worldvolume of the D3 branes with four 
real coordinates X1, X2, X3, X4, which arrange themselves into the vector representation of 
Spin(4) ∼= SU(2)α × SU(2)α̇. The Cartans JL, JR, of su(2)α, su(2)α̇ are defined such that 
lower α = 1, 2 have JL = + 1

2 ,− 1
2 and α̇ = 1̇, 2̇ have JR = + 1

2 ,− 1
2. The R6 ∼= C3 is parame-

trised by six real coordinates X5, X6, X7, X8, X9, X10 and the isomorphism is made by the 
choice of arrangement into the complex coordinates

Z56 :=
X5 + iX6

√
2

= Φ1|θ=0, Z710 :=
X7 + iX10

√
2

= Φ2|θ=0, Z89 :=
X8 + iX9

√
2

= Φ3|θ=0� (2.1)

and their hermitian conjugates. The orbifold Γ acts on those coordinates (2.1) as

Γ : (Z56, Z710, Z89) �→
(
ωkZ56,ω�Z710,ω−1

� ω−1
k Z89

)
� (2.2)

where ω� := e2πi/�, ωk := e2πi/k . Before the orbifold action, fundamental strings stretch-
ing between D3 branes give rise to the SU(N) N = 4 SYM theory on their worldvolume; 
with R-symmetry Spin(6)R ∼= SU(4)R, the rotation group of the transverse R6 spanned by 
X5, X6, . . . , X10. In N = 1 superspace the theory contains a vector multiplet V  and three 
chiral superfields in the adjoint of the gauge group: 

(
Φ1,Φ2,Φ3

)
T  transforming in the 3 of 

SU(3)R ⊂ SU(4)R. The superpotential is given by

WN=4 =
i
3!
εabctrΦa [Φb,Φc]− i

τYM

8π
trWαWα.� (2.3)

The chiral superfields Φa are identified with transverse coordinates (2.1) hence the action of Γ 
on C3 lies diagonally inside SU(3)R in the form

Mb
a :=



ωk 0 0
0 ω� 0
0 0 ω−1

� ω−1
k




b

a

∈ SU(3)R.� (2.4)

Note that Γ also has an action inside the gauge group, SU(N) [65]. Its action can be conjugated 
to an element h of the maximal torus T(SU(N))  =  U(1)N−1. After scaling N → |Γ|N = �kN 

this action breaks G →
∏�

n=1
∏k

i=1 SU(Nni) specified by a partition of �kN =
∑

n,i Nni into �k 
integers. Note we always take the orbifold indices to be n, m = 1, . . . , � and i, j = 1, . . . , k  and 
we impose orbifold periodicity n ∼ n + �, i ∼ i + k. To obtain the correct SCFT in class Sk ; 
we choose the action of Γ such that Nni  =  N for all n, i. Hence h may be written as

h = diag
(
ω�ωkI, . . . ,ω�ω

k
kI, . . . ,ω�

�ωkI, . . . ,ω�
�ω

k
kI
)

� (2.5)

where I denotes the N × N  identity matrix. Quotienting by Γ imposes the identifications

V ∼ h†Vh, Φa ∼ Ma
bh†Φbh.� (2.6)

After performing these identifications the resulting theory is an N = 1 torodial quiver gauge 
theory with gauge group SU (N) �k and superpotential

WN=1 =
�∑

n=1

k∑
i=1

iΦ1
(n,i)

(
Φ2

(n−1,i)Φ
3
(n,i−1) − Φ2

(n+1,i+1)Φ
3
(n,i+1)

)
− i

τYM,ni

8π
trWα

niWni,α� (2.7)

which now transform as Φ1
(n,i) ∈ (Nni, Nn(i+1)), Φ2

(n,i) ∈ (Nni, N(n+1)i) and 
Φ3

(n,i) ∈ (Nni, N(n−1)(i+1)) under the gauge group 
∏

n,i SU(Nni) = SU (N) �k. We summarise 
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the field content in the quiver diagram of figure 1. The individual couplings for each gauge 
node g2

YM,ni  are given by integration of a non-zero B-field flux over the two-cycles Cni of the 
space obtained by resolving the C3/Γ singularities

∫

Cni

B =
4π2

g2
YM,ni

,
∑

n,i

1
g2

YM,ni
=

1
g2

YM
.� (2.8)

These are precisely the same class of N = 1 SCFTs which we expect to describe, at low ener-
gies, the 4d theory obtained by placing N M5-branes at the tip of an Ak−1 singularity (which 
is the family of the 6d N = (1, 0) T N

k  theories), compactified on T2 with � punctures and 

complex structure τYM = 4πi
g2

YM
+ θ

2π  [13].

2.2. Type IIA realisation

Indeed, by performing a T-duality along, say, X7 to the setup of table 1 we may obtain the 
Hanany–Witten description of the above class Sk  theories in Type IIA as described in [13]. 
To perform the T-duality we may partially resolve the C3/Γ singularity. Resolving the A�−1 
singularity gives rise to an ALE space which is equivalent to the λ → ∞ limit of the �-centred 
Taub–Nut space TN� with metric

ds2 = V−1
(

dΘ+ �A · d�x
)2

+ Vd�x2, V =

�∑
n=1

1
|�x −�xn|

+
1
λ2� (2.9)

subject to the condition �∇V = −�∇× �A . The underlying geometry is that of an S1 fibered 
over an R3 base. To perform the T-duality we hence replace C3/Γ by (C× TN�) /Zk where C 
is parametrised by Z56, Z56 and TN� is parametrised by Θ = X7, �x =

(
X8, X9, X10

)
. We may 

then T-dualise along the TN� circle (which is invariant under the Zk action). We hence obtain 
the Hanany–Witten description shown in table 2. Under the T-duality the � centers of TN� 

N11 N21 N31 N41 N51

N12 N22 N32 N42 N52

N13 N23 N33 N43 N53

Figure 1.  The quiver diagram in N = 1 notation with � = 5, k  =  3. Circular nodes 
denote vector multiplets and coloured arrows denote chiral multiplets. Blue lines denote 
Φ1

(n,i), green Φ2
(n,i) and red Φ3

(n,i). The quiver should be periodically identified in both ‘�’  
and ‘k’ directions, with gluing indicated by the black arrowed lines, such that it has the 
topology of a torus.
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become � NS5 branes fixed at positions Θn and �xn in the transverse directions. The angles Θn 
at which the NS5 branes sit along the S1 with radius β7 are related to the gauge couplings at 
the nth node by

4π2

gYM,ni
=

Θn −
∑n−1

a=1 Θa

(1 − k)2πβ7

∫

Ci

B, β7 =
1
λ

� (2.10)

with Cj  the two cycles of the resolution of Ak−1.
We could just as well have instead resolved the Ak−1 singularities and T-dualised along X5 

yielding the brane setup of table 3. Let us conclude this section with a final comment. Naively 
we see that there is a k ↔ � symmetry. However, this is true only at the ‘orbifold point’ for 
both orbifolds or for very special values of k, � and the gauge couplings. The Ak−1 singularity 
has k  −  1 blow up modes, while A�−1 has �− 1. In case we turn them all on to generic points 
the k ↔ � symmetry is lost.

2.3.  A 6d uplift

In this paper our primary interest will be that of the theory living on the D(−1)/D0-branes in 
tables 1–3 . In both cases these are supersymmetric matrix models invariant under at least two 
supercharges. We could choose to work directly with these matrix models, however we find 
it more convenient to work instead with the two dimensional uplift of those matrix models. 
Hence, we instead work with the brane setup of table 4, obtained by performing a further 
T-duality along X6 to table 3. Before performing the T-duality we also assume that X5 may be 
safely decompactified such that it parametrises a space with the topology of R . The T-duality 
may again be performed by replacing A�−1 with TN� , we then T-dualise along the TN� circle, 
landing us on the setup of table 4 . The Spin(6)R R-symmetry group has been broken to a sub-
group U(1)56 × Spin(4)R which acts by rotations along R2 , R4 parametrised by X5, X6 and 
X7, X8, X9, X10 respectively. The Z� orbifold further breaks the Spin(4)R R-symmetry group 
down to a subgroup SU(2)R corresponding to the isometry group of TN�, while, the Zk orbi-
fold breaks the U(1)56 × SU(2)R down to the maximal torus of SU(2)R.

Table 2.  The type IIA setup obtained by a T-duality along X7 to table 1.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

N D4 — — — — · · — · · ·
� NS5 — — — — — — · · · ·
Ak−1 · · · · × × · × × ·
K D0 · · · · · · — · · ·

Table 3.  Alternative type IIA setup obtained by instead a T-duality along X5 to table 1.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

N D4 — — — — — · · · · ·
A�−1 · · · · · · × × × ×
k NS5 — — — — · · — · · —
K D0 · · · · — · · · · ·

T Bourton and E Pomoni﻿J. Phys. A: Math. Theor. 53 (2020) 165401
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It is also useful to understand this IIB setup via uplifting it to M-theory—see table 5. We 
begin with the more familiar k  =  1 case, the 6d (1, 0) T N

�  SCFT associated to N M5 branes 
sitting at the tip of an Z� orbifold singularity of M-theory. Compactifying that on S1

6 gives 5d 
N = 1 circular quivers NN,� with � nodes denoting SU(N) gauge groups2 and � links denot-
ing bifundamental hypermultiplets [14, 73, 74], see figure 3. Further compactification on S1

5 
results in 4d N = 2 Ã�−1 circular quiver theories with SU(N)� gauge group. The Ã�−1 theory 
may also be realised via the well known Class S  construction obtained by compactifying the 
AN−1 (2, 0) theory on the � punctured torus with certain half-BPS Nahm pole boundary condi-
tions specified at the punctures [75–77], see figure 2(a).

When k  >  1 the resulting 6d theory corresponds to T N
�  in the presence of a codimension-

two Gukov–Witten [78, 79] surface operator associated to � copies of the partition

kN = N1 + · · ·+ Nk = N + · · ·+ N� (2.11)

for the factors of SU (kN) �. For � = 1, this is the codimension-two defect of Kanno and 
Tachikawa [66] which may be realised as a Zk orbifold in M-theory, see table 5. Finally, KK 
reducing along the circle on which we performed the final T-duality (from tables 3 to 4) leads 
to the 5d N = 1 circular/necklace quiver gauge theory NkN,� on R4 × S1 in the presence of 
the defect along the circle (see figure 2). Analogously, there is also the Class Sk  construction 
obtained by compactification of the T N

k  on a torus with � punctures with ‘orbifold’ Nahm pole 
boundary conditions specified at each puncture [13, 15, 24].

2.4.  On supersymmetry of the D1/D5 system

Type IIB string theory has 32 supersymmetries parametrised by two 32 component spinors 
εL , εR of positive chirality Γ11εL/R = +εL/R where Γ11 = Γ1 . . .Γ10 and ΓM  are the 32 × 32 

Table 4.  Type IIB setup engineering a 6d uplift of the 4d theories we are interested in.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

N D5 — — — — — — · · · ·
A�−1 · · · · · · × × × ×
Ak−1 · · · · × × · × × ·
K D1 · · · · — — · · · ·

Table 5.  The M-theory uplift of the IIB setup in table 4, ‘engineering’ a 6d uplift of 
the 4d theories we are interested in. For k  =  1 this is the same as (2.2) in [54]. For 
� = 1, this is the codimension-two defect of Kanno and Tachikawa [66].

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

N M5 — — — — — — · · · · ·
A�−1 · · · · · · × × × × ·
Ak−1 · · · · × × · × × · ·
K M2 · · · · — — · · · · —

2 We wish to remind the reader that Fiber-Base duality exchanges N ↔ � and leads to a duality between the 5d 
N = 1 circular quivers NN,� and N�,N  [67–72].
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Gamma matrices. The D5/D1 system preserves 1/4 of the 32 supersymmetries. Between them 
they preserve only those supersymmetries of the form

εL = Γ1Γ2Γ3Γ4Γ5Γ6εR, εL = σΓ5Γ6εR,� (2.12)

with σ = ±1 corresponding to whether we choose to insert D1 or anti-D1 branes. The theory 
living on the (anti-)D1 branes then possesses ( p, q) supersymmetry with p   +  q  =  32/4  =  8. 
By choosing an explicit representation for the Gamma matrices it can be shown that p   =  q  =  4 
and that the preserved supercharges are

Qαa
+ 1

2
, Qαȧ

− , ifσ = +1� (2.13)

Q
α̇ȧ
+ 1

2
, Q

α̇a
− , ifσ = −1� (2.14)

where a, ȧ = 1, 2 are indices of Spin(4) ∼= SU(2)a × SU(2)ȧ and the subscript ± on fermi-
ons denotes the ± 1

2 representation under the U(1)56 which acts as the Lorentz group of the 
D1-brane worldvolume theory.

The SU(2)a × SU(2)ȧ rotates the two planes of the C2 parametrised by Z710, Z89 into one 
another. The Cartans of su(2)a, su(2)ȧ  JR

L , JR
R may be expressed in terms of the generators J710 

and J89 of U(1) rotations in their respective planes as

JR
L =

1
2
(J710 − J89) , JR

R =
1
2
(J710 + J89) ,� (2.15)

which are defined such that lower a = 1, 2 have JR
L = + 1

2 ,− 1
2  and lower ȧ = 1̇, 2̇ have 

JR
R = + 1

2 ,− 1
2 . Hence the Γ action on the supercharges is

Γ :
(

Qαa
+ 1

2
, Qαȧ

− 1
2

)
�→ ω

2JR
L

� ω
J56+JR

L−JR
R

k

(
Qαa

+ 1
2
, Qαȧ

− 1
2

)
,� (2.16)

Γ :
(

Q
α̇ȧ
+ 1

2
, Q

α̇a
− 1

2

)
�→ ω

2JL
R

� ω
J56+JR

L−JR
R

k

(
Q

α̇ȧ
+ 1

2
, Q

α̇a
− 1

2

)
.� (2.17)

Figure 2.  Left: Schematic overview for k  =  1 of two alternate ways to obtain the 4d N = 2 
Ã�−1 circular quivers with SU(N)� gauge group in class S  from compactifications of 6d 
SCFTs. Right: A schematic overview of the k  >  1 generalisations of compactifications 
of 6d SCFTs. The resulting 4d SCFTs are N = 1 Ã�−1 × Ãk−1 torodial quivers in class 
Sk  with gauge group SU(N)�k .
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Hence, the supercharges which survive the orbifold action are Qα1̇
− 1

2
 for σ = +1 or Q

α̇2̇
+ 1

2
 for 

σ = −1. We will use one of them to compute the SCI in the next section.

3.  4d N = 2∗ Instantons from a 2d superconformal index computation

In this section we warm up for our main calculation that we perform in the next section by 
reproducing the well known instanton partition function of N = 2∗ via a 2d superconformal 
index (SCI) calculation. We parameterise our partition function and use a supercharge that 
survives the orbifold projection (2.16) and (2.17) so that we are well prepared for the next 
section.

As discussed in the introduction, since the class Sk  gauge theories of interest may be real-
ised within Type II string theory as a theory living on the worldvolume of Dp  branes with 
coordinates X1, . . . , X p+1, one of the most important tools we plan to use in this paper is the 
relationship between the ADHM construction of instantons [36] and D( p − 4) branes [37–41] 
in other words

|K| (A)SD instantons in a Dp-brane ≡ |K| (anti-)D( p-4)-branes.� (3.1)

(Anti-)Self-dual ((A)SD) instantons are solutions to the (A)SD Yang–Mills equa-

tions  F = ± � F . The instanton number K = 1
4π2

∫
M4

trF ∧ F ∈ Z is a topological invari-
ant. For SD instantons F = + � F  K � 0 while for ASD instantons F = − � F  K � 0. Since 
parity maps K → −K  we can choose to focus only on ASD instantons, corresponding to 
σ = signK = −1. The moduli space of ASD instantons for the gauge theory living on the Dp  
branes, MDp

K , is then isomorphic to the Higgs branch of the theory living on the D( p − 4) 
branes

MDp
K

∼= MK D(p−4)
Higgs =

{
X p+2 = X p+3 = · · · = X10 = 0,Vp−3 = 0

}
/U(K)

� (3.2)

where Vp−3 = FF̄ + 1
2 D2 is the scalar potential of the ( p − 3)d next to maximal supersym-

metric gauge theory living on the worldvolume of the D( p − 4) branes. The vanishing of  
F- and D- terms translate into the ADHM constraints [42, 43]. When supersymmetry is pres-
ent the Higgs branch is protected from quantum corrections and the fluctuation determinants 
in the instanton measure cancel. The action of the theory on the D( p − 4) branes is the equiva-
lent to the instanton action, hence the partition function of the theory of K D( p − 4) branes 
is then nothing else but the partition function of K instantons (up to a possible overall factor 
Zextra) for the gauge theory living on the Dp  branes

ZDp
K-inst(a, . . . ) =

∫

MDp
K,r

e−Sinst(a,...,µ)dµ� (3.3)

= TrHDp
K,r
(−1)FeaiJi = ZextraZK D(p−4)

Higgs (a, m, . . . ).� (3.4)

The factor Zextra  is often present due to the fact that the theory on the D( p − 4) branes pro-
vides the UV completion of the ADHM sigma model [51, 80] and therefore it may contain 
extra degrees of freedom which do not appear in the ADHM construction. Those extra degrees 
of freedom generally decouple from the the ADHM degrees of freedom and the partition func-
tion factorises as above. The case that interests us is the case p   =  5, i.e. D5 branes on R4 × T2, 
thus we have to compute the partition function of the 2d gauge theory living on the world 
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volume D1 branes wrapping a T2. This partition function is the 2d superconformal index a.k.a. 
flavoured elliptic genus.

3.1.  D1 worldvolume theory

Before discussing the supersymmetric index we must first discuss the worldvolume theory 
living on the D1 branes in the low energy limit in the presence of the D5s.

3.1.1.  D1-D1.  The theory arising from quantising open strings stretching between K parallel 
and coincident Dp -branes is given by p   +  1 dimensional Yang–Mills theory with 16 super-
charges, for p   =  1 that is the well known N = (8, 8) SYM theory. In terms of multiplets 

under the N = (4, 4) subalgebra given by Q
α̇ȧ
+ , Q

α̇a
−  they form a N = (4, 4) vector multiplet 

V  and hypermultiplet H, which can be thought of as the reduction to 2d of a 4d N = 2 vector 

multiplet and hypermultiplet respectively. V  contains a 2d gauge field A±, four scalars degrees 

of freedom Yaȧ, right moving fermions λ
α̇a
+  and left moving fermions ξ

α̇ȧ
− . H contains scalars 

Xαα̇, right moving fermions ξαȧ
+  and left moving fermions λαa

−
.

3.1.2.  D1-D5.  Open D1-D5 strings preserve N = (4, 4) supersymmetry and gives rise to a 
N = (4, 4) hypermultiplet U in the bifundamental representation of U(K)× SU(N). U con-
tains two complex scalars φα̇ and their conjugates φ†

α̇, and fermions χȧ
+, ψa

− plus their con-
jugates χ†

+ȧ, ψ†
−a . Finally, the field content may be conveniently summarised in the quiver 

diagram of figure 4 . The BPS (ADHM) equations for this system read

φφ− φ̃φ̃+ [X, X] + [X̃, X̃] + ζIK = 0, φφ̃+ [X, X̃] = 0� (3.5)

where, φ := φ1̇, φ̃ := φ
1̇
, X := X11̇ and X̃ = X21̇. We also added an FI-term ζ.

3.2. The 2d index calculation

We now turn to the computation of the supersymmetric index a.k.a flavoured elliptic genus 
partition function for our N = (4, 4) theory. The supersymmetric index can be understood as 
the Witten index of the theory quantised on S1 × R refined by fugacities which keep track of 
further relevant quantum numbers and it is independent of the coupling constants of the the-
ory. Since our theory admits a free field limit, computing the SCI is equivalent to enumerating 
all gauge invariant operators of the theory on R2 [57–62, 81]. For theories with a Lagrangian 
description the index can also be obtained using localisation techniques [82, 83] and explicitly 
performing the path integral of the 2d theory on T2, however for simplicity we will follow the 
former approach.

We also choose to view our N = (4, 4) theory as an N = (0, 2) theory with additional 
flavour symmetry. We choose the N = (0, 2) supercharges to be

Q := Q
2̇1̇
+ , Q̃ := Q

1̇2̇
+ .� (3.6)

2d N = (0, 2) theories have a single right moving U(1)R R-symmetry. The N = (0, 2) IR 
R-symmetry for this model was computed in [84] and it is given by3

3 Our D5/D1 setup is precisely that of [84] with Q+
5 = N , Q−

5 = 0, R− = −2JR and R+ = −2JR
R.
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RIR = −2JR,� (3.7)

under which RIR[Q] = −1 and RIR[Q̃] = +1. We will compute the index which counts 
cohomology classes of Q̃. Since Q̃ and its conjugate4 Q̃† = S̃ commutes with SU(2)α and 
SU(2)a we may include fugacities v and w for their Cartans. Furthermore, they also commute 
with the diagonal subgroup SU(2)D ⊂ SU(2)α̇ × SU(2)ȧ  hence we also include a fugacity z 
for its Cartan JD = JR + JR

R. Recall that5 the Cartans of su(2)α, su(2)α̇, su(2)a and su(2)ȧ 
all commute with the orbifold and the fugacities v, w and z that we introduced here will still 
be meaningful for our calculation in the next section. We also include fugacities xA for the 
Cartans f A of su(N) and y I for the Cartans gI of u(K). The Witten index is then defined as

Z6d,N
K (q, v, w, z, xA) = Tr

[
(−1)FqH−qδv2JL w2JR

L z2JR+2JR
R

N∏
A=1

x fA
A

K∏
I=1

ygI
I

]
� (3.8)

where F = F− + F+ is the fermion number and H−, H+ are the left and right moving 
Hamiltonians, respectively. In Euclidean signature we define 2H± = H ∓ iP and q := e2πiτ 
with τ  the complex structure of the T2 is generated by ω ∼ ω + 1 ∼ ω + τ . Explicitly, we 
will work with the square torus with complex structure τ = iβ6/β5 with β5, β6 the radii of 
the two S1 factors. In radial quantisation the conformal map from the plane to the cylinder is 
Z56 = e2πiω, where ω := σ + it and Lorentz transformations Z56 �→ eiθZ56 are then mapped 
to translations around the S1 factor of the cylinder

(σ, t) �→
(
σ +

θ

2π
, t
)

� (3.9)

generated by P  =  iJ56.
One of the crucial properties of the Witten index (3.8) is that it receives contributions only 

from those states which satisfy

δ =
{

Q̃, S̃
}
= H+ − 1

2
R = 0� (3.10)

where R is the N = (0, 2) R-symmetry, hence, the index is independent of q . Furthermore the 
index (3.8) is also independent of all continuous parameters such as coupling constants and 
Fayet–Iliopoulos parameters [85, 86], hence we can compute the index in the free field limit 
where it reduces to a counting problem.

In the free field limit we have an N = (0, 2) superconformal theory with Vir⊕ sVirNS sym-

metry where Vir  is the standard (N = 0) left-moving Virasoro algebra generated by {Ln, c}, 

sVirNS is the N = 2 super-Virasoro algebra in the NS sector generated by 
{

Ln, G
±
r , Jn, c

}
 

and n, r + 1
2 ∈ Z. Our choice of the Neveu–Schwarz basis over the Ramond basis is purely for 

calculational convenience and the index is independent of this choice up to an overall factor 
[62]. We will require the following brackets of the sVirN=2,NS algebra:

4 We wish to stress that also Q̃† = S̃ is preserved by the orbifold that we will impose in the next section. To see this 
note that S̃  is ‘uncharged’ under the orbifold generators (2.16) and (2.17).
5 The Cartans of su(2)a and su(2)ȧ denoted as JR

L  and JR
R  can be written in terms of the generators J710 and J89 

which are the U(1) rotations in the respective planes (2.15).
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{
G

+
r , G

−
s

}
= Lr+s +

1
2
(r − s)Jr+s +

c
6

(
r2 − 1

4

)
δr+s,0,

[
L0, G

±
r

]
= −rG

±
r ,

[
J0, G

±
r

]
= ±G

±
r .

� (3.11)

In the free field limit, where it is appropriate to refer to the index as the SCI, we identify

H− = L0, H+ = L0, R = J0, Q = G
−
− 1

2
, S = G

+
+ 1

2
, Q̃ = G

+
− 1

2
, S̃ = G

−
+ 1

2
.� (3.12)

Away from the free limit, the theory is not conformal and we have an RG flow from the free 
UV fixed point to an IR fixed point. The R-charge assignments generally change along RG 
flow. Nonetheless, the index is RG invariant and we can evaluate the index at the IR fixed point 
by using the non-anomalous R-symmetry assignment in the IR which, in our case, is (3.7).

At the UV fixed point the shortening condition (3.10) can be written as

δ =
{

G
+
− 1

2
, G

−
+ 1

2

}
= L0 −

1
2

J0 = 0� (3.13)

and the states contributing to the index must have J0 = 2L0  in the UV. The IR R-symmetry 
(3.7) is then taken into account by shifting qL0 → qL0−L0+

1
2 RIR in the index.

3.2.1.  Letter counting.  As stressed earlier the index may be computed in the free field limit. 
This is done by identifying all ‘letters’ with δ = 0. The single letter partition functions for 
the N = (4, 4) multiplets may be easily read off from tables B1–B3 in appendix B. They are 
given by

iV(q, w, z, yI) =

[(
w + w−1

) (
z + qz−1

)
− qz−2 − z2 − 2q

1 − q

]
K∑

I,J=1

yIy−1
J ,� (3.14)

iH(q, v, w, z, yI) =

[
q

1
2
(
v + v−1

) (
z + z−1 − w−1 − w

)
1 − q

]
K∑

I,J=1

yIy−1
J ,� (3.15)

iU(q, w, z, xA, yI) =

[
q

1
2
(
z + z−1 − w−1 − w

)
1 − q

]
K∑

I=1

N∑
A=1

(
yIx−1

A + y−1
I xA

)
.

� (3.16)
The full index is then by enumerating all possible ‘words’ and then projecting onto gauge 
singlets by integrating over the Haar measure [dG] of the G = U(K) gauge group. [dU (K)] 
may be reduced to an integral over the maximal torus T(G) at the cost of introducing the 
Vandermonde determinant ∆(y) =

∏
I �=J (yI − yJ)

∮
[dU (K)] =

1
K!

∮

T(G)

K∏
I=1

dyI

2πi

∏
I �=J

(yI − yJ) .� (3.17)

The contour is taken over |y I|  =  1 . The full index is then given by

Z6d,N
K (q, v, w, z, xA) =

∮
[dU (K)]Z(0)

∏
M=V ,H,U

ZM� (3.18)

where Z(0) is the Casimir contribution which may, apriori, depend on all fugacities. It is given 
by [87–94]
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Z(0) ≡ Z(0)(q, v, w, z) = q
1
2 ECasimir , ECasimir =

Finite
q→1

[∑
M

∂iM
∂ log q

]
� (3.19)

and

ZM ≡ ZM(q, v, w, z, xA, yI) := PE [iM(q, v, w, z, xA, yI)] ,� (3.20)

where PE denotes the Plethystic exponential; defined in (A.1) and iM are the single letter 
partition functions (3.14)–(3.16). Explicitly:

ZV(q, w, z, yI) =

K∏
I,J=1

(
q yI

yJ
; q
)2

θ
(

qz−2 yI
yJ

; q
)

θ
(

wz yI
yJ

; q
)
θ
(

qwz−1 yI
yJ

; q
) ,� (3.21)

ZH(q, v, w, z, yI) =

K∏
I,J=1

θ
(

q
1
2 vw yI

yJ
; q
)
θ
(

q
1
2 v−1w yI

yJ
; q
)

θ
(

q
1
2 vz−1 yI

yJ
; q
)
θ
(

q
1
2 v−1z−1 yI

yJ
; q
) ,� (3.22)

ZU(q, w, z, xA, yI) =

K∏
I=1

N∏
A=1

θ
(

q
1
2 w xA

yI
; q
)
θ
(

q
1
2 w yI

xA
; q
)

θ
(

q
1
2 z−1 xA

yI
; q
)
θ
(

q
1
2 z−1 yI

xA
; q
) ,� (3.23)

where θ(x; q) and (x; q) are the q-theta function and q-Pochammer symbol; defined in (A.3). 
Finally, we conclude that the full index is given by

Z6d,N
K =

(q; q)2K

K!

∮

T(G)

K∏
I=1

dyI

2πiyI
Z(0)

K∏
I=1

N∏
A=1

θ
(

q
1
2 w xA

yI
; q
)
θ
(

q
1
2 w yI

xA
; q
)

θ
(

q
1
2 z−1 xA

yI
; q
)
θ
(

q
1
2 z−1 yI

xA
; q
)

×
∏
I �=J

θ

(
yI

yJ
; q
) K∏

I,J=1

θ
(

qz−2 yI
yJ

; q
)
θ
(

q
1
2 vw yI

yJ
; q
)
θ
(

q
1
2 v−1w yI

yJ
; q
)

θ
(

wz yI
yJ

; q
)
θ
(

qwz−1 yI
yJ

; q
)
θ
(

q
1
2 vz−1 yI

yJ
; q
)
θ
(

q
1
2 v−1z−1 yI

yJ
; q
)

�

(3.24)

where we used the identity (x; q) = (1 − x) (qx; q). It also useful to assemble the quantity

Z6d,N(q, v, w, z, xA; q6d) :=
∑
K�0

qK
6dZ

6d,N
K (q, v, w, z, xA)� (3.25)

with q6d a formal dimensionless parameter. When considering our 6d theory on R4 × S1
5 × S1

6 
as a 5d theory on R4 × S1

5 dressed by KK modes along S1
6 we may regard q6d as a fugacity for 

the topological U(1) global symmetry associated to the conserved current �5dJ = 1
8π2 trF ∧ F.

3.3. The 6d instanton partition function

The countour integrals (3.24) may be computed via the Jefferey–Kirwan residue prescription 
[82, 83, 95]. Using (A.6), we can perform the residue prescription. The integrand of (3.25) 
has simple poles at

yI = yJ (zw)±1 , yI = yJ

(
z

qw

)±1

,� (3.26)
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yI = yJ

(
vz

q1/2

)±1

, yI = yJ

(
z

vq1/2

)±1

, yI = xA

(
z

q1/2

)±1

.� (3.27)

As explained in [52, 80] only residues arising from the poles (3.27) should be kept. We assume 
that the xA’s are sufficiently generic and furthermore we close the contour such that we collect 
residues coming from poles with the positive sign exponents. The solutions to (3.27) may be 
classified by N-coloured Young’s diagrams �Y = {Y1, . . . , YN} with each diagram YA contain-
ing |YA| boxes such that |�Y| :=

∑
A |YA| = K . Given a Young’s diagram YA a box s is labelled 

by coordinates (l, p) and the corresponding pole is given by

y(s) = xA

(
z

q1/2

)l+p−1

vl−p .� (3.28)

The residue for a fixed coloured Young diagram is then

Z6d,N
�Y

= Z(0)
N∏

A,B=1

∏
s∈YA

θ
(
q−1zw−1EAB; q

)
θ (zwEAB; q)

θ (EAB; q) θ (q−1z2EAB; q)
,� (3.29)

where we defined

EBA :=
xB

xA

(
vz

q1/2

)LA(s) (q1/2v
z

)AB(s)+1

� (3.30)

and where LB(s) and AB(s) denote the distance from the box s to the right end and the bottom 
of the Young diagram YB respectively. Z(0) = q

1
2 ECasimir is the Casimir contribution (3.19). To 

compute it one is forced to specify the q-dependence of the fugacities, we hence define

v := q
β5ε−

2iπ , wq
1
2 := q

β5m
iπ , zq−

1
2 := q

β5ε+
2iπ , xA := q

β5aA
iπ ,� (3.31)

where we used the shorthand notation

ε± := ε1 ± ε2.� (3.32)

Z(0) is then a constant and is given by

Z(0) = q
β2

5 NK

π2

(
ε+

2 −m+ iπ
β5

)
(

ε+
2 +m).� (3.33)

The K instanton partition function (3.24) is then given by summing over all coloured Young 
diagrams �Y . Hence, equation (3.25) finally reads

Z6d,N :=
∑
K�0

qK
6d

∑
�Y

|�Y|=K

Z6d,N
�Y

=
∑
�Y

q|�Y|
6d Z

6d,N
�Y

.
� (3.34)

3.4.  Reduction to 4d and 5d

Reducing the D5/D1 system on S1
6 by taking β6 → 0 results in 5d N = 2 SYM with gauge 

group SU(N) at Chern–Simons level κ = 0. Hence by either taking the 5d limit directly to 
(3.34) or taking the limit directly the contour integral (3.24) we expect to obtain the instanton 
partition function for the 5d theory. Here we take the first approach but we detail the limit of 
the contour integral expression in appendix C.1.
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Recall that q = e2πiτ  and τ = iβ6/β5 therefore this limit corresponds to taking

q → 1.� (3.35)

Further note that, by definition (3.19),

lim
q→1

Z(0) = q
1
2 ECasimir = 1.� (3.36)

Applying (A.9) to (3.34) yields

Z5d,N =
∑
K�0

qK
5d

∑
�Y

|�Y|=K

N∏
A,B=1

∏
s∈YA

sinhβ5
(
EAB + ε+

2 − m
)
sinhβ5

(
EAB + ε+

2 + m
)

sinhβ5 (EAB) sinhβ5 (EAB + ε+)

� (3.37)

=
∑
�Y

q|�Y|
5d Z

5d,N
�Y� (3.38)

where we defined

EBA = aB − aA + ε1LA(s)− ε2 (AB(s) + 1) ,� (3.39)

such that EAB = q
EAB
iπ  and we take q5d = limq→1 q6d . This reproduces the instanton partition 

for the mass deformed 5d N = 2 theory (a.k.a. N = 1∗) on R4 × S1
5 in the Ω-background, 

which was computed via localisation of the path integral of the ADHM quantum mechanics in 
e.g. [51, 52, 96]. Hence we indeed identify

Z5d,N = Z5d,N
inst,N=1∗ .

Armed with the above, the equivalence of Z5d,N  in the 4d limit (β5 → 0) with the instanton 

partition function Z4d,N
inst,N=2∗ for the 4d N = 2∗ theory is essentially trivial to prove. Taking 

the β5 → 0 limit of (3.37) or equivalently evaluating the contour integrals (C.8) we obtain

Z4d,N =
∑
K�0

qK
4d

∑
�Y

|�Y|=K

N∏
A,B=1

∏
s∈YA

(
EAB + ε+

2 − m
) (

EAB + ε+
2 + m

)
EAB (EAB + ε+)� (3.40)

=
∑
�Y

q|�Y|
4d Z

4d,N
�Y

= Z4d,N
inst,N=2∗� (3.41)

we then identify m as the hypermultiplet mass in the Ω-background [97] and set 
q4d = limβ5→0 q5d .

4.  Orbifolding to 4d N = 2/N = 1 circular/toroidal quivers

The main goal of this paper is to compute the 2d index in the presence of the Γ = Z� × Zk  
orbifold before reducing to the zero dimensional matrix model partition function which is 
expected to be equal to the partition function of instantons for the Γ-orbifolded 4d theory.

In principle we could work directly with the 2d orbifolded theory by working out the pro-
jections and writing down the Lagrangian and computing it’s partition function. However we 
prefer instead to work with the SCI interpreted as a counting device to which we implement 
projection onto Γ-invariant states.
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We take the same approach, as one takes when computing, e.g. the supersymmetric Lens 
space L(1, r)× S1 indices [87, 98–101].

4.1.  Orbifolding the supersymmetric index

If we denote some (mother) theory by M we may obtain a new (daughter) theory D = M/Γ by 
quotienting out by an orbifold group Γ which is generically embedded inside both the global 
symmetry group FM and gauge group GM of M. We collectively denote the generators of Γ by 
γ . If M is a supersymmetric theory with a supercharge Q, then it is possible to count cohomol-
ogy classes of Q, i.e. to compute the supersymmetric index of M for the supercharge Q which, 
providing that M admits a suitable free field limit such that standard letter counting techniques 
can be applied, is schematically defined to be

IM(a) = TrHM

[
(−1)Fe−β{Q,Q†}a fM

]
� (4.1)

where f M collectively denotes the subset of linearly independent generators of FM such that 
[Q, fM] = 0 and a their fugacities. If we assume that Γ is abelian and furthermore commutes 
with both Q and its conjugate

[Q, γ] = [Q†, γ] = 0� (4.2)

then the theory D will also generically possesses at least one supersymmetry, namely Q. D 
also has reduced global and gauge symmetry groups FD = CFM (Γ), GD = CGM (Γ) where 
CG(S) denotes the centraliser of S in G which, of course, depends on the choice of embedding 
Γ ↪→ FM × GM. One may then obtain the supersymmetric index of D for the supercharge Q 
by means of projection:

ID(a) =
∑
ρ

TrHρ

[∫
[dΓ]εγ(−1)Fe−β{Q,Q†}a f

]
.� (4.3)

The ‘integral’ over the invariant Haar measure of the group Γ implements the projection onto 
Γ-invariant states. When Γ is discrete and abelian the Haar measure is simply given by sum-
ming over all elements of the group and dividing by the number of elements of the group

∫
[dΓ] =

1
|Γ|

∑
ε∈Γ

.� (4.4)

Since HM is a Hilbert space with grading by global symmetries, it may be decomposed 
HM = ⊕ρHρ  according to the Γ action. To include states which may also be twisted in the 
‘time’ direction we must also sum over different vacuua Hρ. This definition automatically 
receives contributions from both untwisted sectors as well as sectors which may be twisted by 
global or gauge symmetries. Note that in the computation of ID, since GM was gauged, one 
should ‘integrate’ over all independent (up to G/CGM (Γ) gauge transformations) embeddings 
Γ ↪→ GM . Note also that in some cases one may also choose to instead use a weighted sum 
over embeddings, for example discrete theta angles [99]. On the other hand FM is not gauged 
and hence one should fix a particular embedding Γ ↪→ FM  which in turn specifies the global 
symmetry of the daughter theory D.

4.1.1.  A toy example—the orbifold index of a free Fermi multiplet.  Let us proceed with a 
simple toy example. Staying in 2d, since that is the most relevant for us, we let M be the 

theory of a free N = (0, 2) Fermi multiplet ψ− 1
2
,ψ− 1

2
. Both left moving fermions have 
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L0 = J0 = 0 and hence both satisfy the BPS condition δ =
{
Q,Q†} = 0 (3.13) furthermore 

they both have L0 = 1
2. The free Fermi multiplet admits a U(1)f  flavour symmetry generated 

by f  under which ψ− 1
2
, ψ− 1

2
 have charges f = +1,−1. The total global symmetry is then 

FM = U(1)f × Iso(T2)× U(1)R. In particular R2 ⊂ iso(T2) is the algebra of translations 
around the two cycles of the torus, where L0 − L0 generates radial translations and L0 + L0 
generate time translations. U(1)R is the R-symmetry generated by J0 = R under which Q,Q† 
have charges R = −1,+1 as before. Enumerating the letters of table 6 we obtain

IM(a, q) = TrHM

[
(−1)FqL0 a f ] = PE

[
−

q
1
2
(
a + a−1

)
1 − q

]
= θ

(
aq

1
2 ; q

)
.

� (4.5)
We consider the theory obtained by the Zk orbifold D = M/Zk  where Zk has an action inside 
all three factors of FM. To preserve the supercharge Q we require that Zk translation in Iso(T2) 
and rotation by U(1)R acts by equal but opposite amounts. Hence the Zk group elements are 
of the form

e
2πi

k γ ∈ Zk, γ =
f
2
+
(
L0 − L0

)
+

R

2
.� (4.6)

Since the quotient acts in the radial direction only ID is simply obtained by taking the 
Pleythistic exponent of the orbifolded single letter index

i(a, q) =
1
k

∑
ε∈Zk

[
−
(
ε−

1
2 q

1
2 ε

1
2 a + ε−

1
2 q

1
2 ε−

1
2 a−1

)]∑
n�0

ε−nqn
� (4.7)

=
1
k

∑
ε∈Zk

[
−q

1
2 a − q− 1

2 a−1
]∑

ñ�0

qkñ
k−1∑
j=1

ε−jq j + q− 1
2 a−1

� (4.8)

= −aq
1
2 + a−1qk− 1

2

1 − qk
� (4.9)

where we used the basic fact that 
∑

ε∈Zk
ε = 0. The index for the theory D for the supercharge 

Q is then

ID(a, q) = PE [i(a, q)] = PE

[
−aq

1
2 + a−1qk− 1

2

1 − qk

]
= θ

(
aq

1
2 ; qk

)
.� (4.10)

We now move to apply this general discussion to the D1 worldvolume theory.

Table 6.  Letters of the Fermi multiplet.

Letter L0 L0 J0 f  Index Orb Index

ψ− 1
2

1/2 0 0 +1 q
1
2 a −q1/2a

ψ− 1
2

1/2 0 0 −1 q1/2a−1 −ε−1q1/2a−1

∂− 1 0 0 0 q ε−1q
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4.2.  Computing the orbifolded superconformal index

The orbifold acts on the coordinates X1, . . . , X10 as in (2.2). The orbifold action is also embed-
ded in the SU(�kN) flavour group as in (2.5), where we also scaled N → �kN  with respect to 
the previous section. Furthermore, the orbifold also has an action inside the U(K) gauge group 

of the D1 worldvolume theory breaking U(K) →
∏�

n=1
∏k

i=1 U(Kni), 
∑

n,i Kni = K and U(0) 
is defined to be the trivial group. As in equation (2.5) the action may be conjugated to an ele-
ment of the maximal torus g ∈ T(U(K))

g = diag
(
ω�ωkIK11 , . . . ,ω�ω

k
kIK1k , . . . ,ω�

�ωkIK�1 , . . . ,ω�
�ω

k
kIK�k

)
.� (4.11)

The only difference is that we do not fix Kni but rather ‘integrate’ over all possible Kni satisfy-
ing 

∑
n,i Kni = K which indeed are in one-to-one correspondence with embeddings Γ ↪→ U(K) 

up to gauge transformations. In the language of the discussion in section 4.1 we consider 
GM  =  U(K), FM = SU (�kN)× Iso

(
T2

)
× Spin(4)R and Γ = Z� × Zk . Then CSU(�kN) (Γ)

6 
coincides with SU(N)�k . On the other hand CGM (Γ) =

∏
n,i U(Kni) corresponding to the (unor-

dered) partition K = K11 + · · ·+ K�k but since GM was gauged we sum over all partitions.
For convenience we choose to split the Cartans f A, A = 1, . . . , �kN  of su(�kN) into Cartans 

f ni,A, A = 1, . . . , N  of ⊕nisu(N) we also do the same with the u(K) Cartan generators gI, 
I = 1, . . . , K into Cartans gni,I, I = 1, . . . , Kni of ⊕niu(Kni). Following the above discussion, 
recalling that the supercharge Q̃ (given in (3.6)) and its conjugate S̃  commute with the orbifold 
action, we compute

Z6d,�,k
K (q, v, w, z, xni,A) = Tr


 1
�k

∑
ε�∈Z�
εk∈Zk

εγ�

� εγk
k

∏
n,i

N∏
A=1

(
εn
�ε

i
k

) fni,A
Kni∏
I=1

(
εn
�ε

i
k

)gni,I

× (−1)FqH−v2JL w2JR
L z2JR+2JR

R
∏
n,i

N∏
A=1

x fni,A
ni,A

Kni∏
I=1

ygni,I
ni,I


 ,

� (4.12)
where the first line corresponds to the projection operator 

∫
[dΓ] εγ of (4.3) implementing the 

Douglas–Moore orbifold procedure with:

γ� = J710 − J89 := 2JR
L , γk := J56 − J89 = J56 + JR

L − JR
R .� (4.13)

Recall that in computing the index previously we mapped the plane to the cylinder 
Z56 = e2πi(σ+it) hence, rotations of the plane Z56 �→ eiθZ56 are mapped to translations 
σ �→ σ + θ

2π  (3.9). Hence, quotienting out by rotations on the plane corresponds, after the 
conformal map, to quotienting out translations generated by L0 − L0 on the torus.

We assume that the IR R-symmetry RIR does not change under the orbifold; in which case, 
relegating the explicit derivation to appendix B, we obtain the orbifolded single letter indices 
which are denoted by iΓV , iΓH , iΓU  and are given by equations (B.11)–(B.13) respectively. In 
addition, for a fixed partition {Kni} the Haar measure becomes

∮
[dU(K)] →

�∏
n=1

k∏
i=1

1
Kni!

∮

T[U(Kni)]

Kni∏
I=1

dyni,I

2πiyni,I

∏
I �=J

(
1 − yni,I

yni,J

)
:=

∮ ∏
n,i

[dU(Kni)]� (4.14)

6 Note that here CSU(�kN) (Γ) is equivalent to the Levi subgroup L specified by � copies of (2.11).
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which coincides with the Haar measure for the product group 
∏

n,i U(Kni). The ‘orbifolded’ 
index for a fixed partition {Kni} is then

Z6d,N,�,k
{Kni} (q, v, w, z, xni,A) :=

∮ ∏
n,i

[dU (Kni)]Z(0)
{Kni}(q, . . . )

∏
M=V ,H,U

ZΓM(q, . . . ).

� (4.15)

The Casimir contribution Z(0)
{Kni} is defined in the same way as (3.19). The ‘orbifolded’ single 

letter partition function are defined as in (3.20) and are explicitly given by

ZΓV =
(
qk; qk)2K ∏

n,i

∏
I �=J

θ
(

yni,I
yni,J

; qk
)

(
1 − yni,I

yni,J

) ∏
i�=j

Kni∏
I=1

Knj∏
J=1

θ

(
qLij

yni,I

ynj,J
; qk

)

×
∏
n,i,j

∏Kni
I=1

∏Knj
J=1 θ

(
z−2qLij+1 yni,I

ynj,J
; qk

)

∏Kni
I=1

∏K(n+1) j

J=1 θ
(

wzqLij yni,I
y(n+1) j,J

; qk
)
θ
(

z−1wqLij+1 yni,I
y(n+1) j,J

; qk
) ,

�

(4.16)

ZΓH =
∏
n,i,j

∏Kni
I=1

∏K(n+1) j

J=1 θ
(

wvqLij+
1
2

yni,I
y(n+1) j,J

; qk
)
θ
(

wv−1qLij+
1
2

yni,I
y(n+1) j,J

; qk
)

∏Kni
I=1

∏Knj
J=1 θ

(
vz−1qLij+

1
2

yni,I
ynj,J

; qk
)
θ
(

v−1z−1qLij+
1
2

yni,I
ynj,J

; qk
) ,

�

(4.17)

ZΓU =
∏
n,i,j

N∏
A=1

Kni∏
I=1

θ
(

wqLij+
1
2

yni,I
x(n+1) j,A

; qk
)
θ
(

w−1qk−Lji− 1
2

yni,I
x(n−1) j,A

; qk
)

θ
(

z−1qLij+
1
2

yni,I
xnj,A

; qk
)
θ
(

zqk−Lji− 1
2

yni,I
xnj,A

; qk
) .� (4.18)

Here

Lij := {# ∈ Z |0 � # � k − 1 and # = i − j mod k}� (4.19)

is a unique integer and is equivalent to the Lij = [[i − j]] as defined in [87]. It satisfies the 
important relation

Lij =

{
k − Lji i − j �= 0 mod k
0 i − j = 0 mod k

.� (4.20)

It also satisfies L(i+k) j = Lij = Li( j+k) allowing us to consistently abuse the orbifold condition 
i ∼ i + k within products, etc.

We also consider a rewriting of (4.15) in which many simplifications become manifest. We 
change integration variables and define shifted variables

yni,I → qk−iyn,I , xni,A := qk−ix̃n,A,� (4.21)

we also combined the indices such that A = (i − 1)N + A = 1, . . . , kN and 
I = (i − 1)Kn + I = 1, . . . , Kn where Kn :=

∑k
i=1 Kni.

The shifts may be interpreted in the following way: since the effect of a non-trivial holo-
nomy may always be locally removed by a gauge transformation, the shift of the fugacities x 
can be thought of as a gauge transformation on the D5 theory. On the other hand, the shift of 
the y ’s may always be made by a change of integration variables.
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Those variables allow us to make rewritings of the form

k∏
i,j=1

θ
(
qLij−i+jx; qk) = θ

(
x; qk)k ∏

i>j

θ
(
qLij−i+jx; qk)∏

j>i

θ
(
qLij−i+jx; qk)

� (4.22)

= θ
(
x; qk)k ∏

i>j

θ
(
x; qk)∏

j>i

θ
(
qkx; qk)

� (4.23)

=

k∏
i,j=1

θ
(
x; qk)∏

j>i

(
−1
x

)
� (4.24)

where the second line follows by applying the definition (4.19) and the relation (4.20) while 
the third line is courtesy of the identity θ (qx; q) = −1

x θ (x; q). In terms of those variables we 
have

Z6d,N,�,k
{Kni} (q, v, w, z, xn,iA) =

(
qk; qk)2K

�∏
n=1

(
k∏

i=1

1
Kni!

)
�∏

n=1

∏
j>i

N∏
A=1

(
x̃n+1,jAx̃n−1,jA

x̃2
n,jA

)Kni

×
�∏

n=1

∮ Kn∏
I=1

dyn,I

2πiyn,I
Z(0)

{Kni}

kN∏
A=1

Kn∏
I=1

θ
(

wq
1
2

yn,I
x̃n+1,A

; qk
)
θ
(

w−1q−
1
2

yn,I
x̃n−1,A

; qk
)

θ
(

z−1q
1
2

yn,I
x̃n,A

; qk
)
θ
(

zq−
1
2

yn,I
x̃n,A

; qk
)

×
�∏

n=1

∏
I�=J

θ

(
yn,I

yn,J
; qk

) Kn∏
I,J=1

θ
(

z−2q yn,I
yn,J

; qk
)

θ
(

vz−1q
1
2

yn,I
yn,J

; qk
)
θ
(

v−1z−1q
1
2

yn,I
yn,J

; qk
)

×
Kn∏
I=1

Kn+1∏
J=1

θ
(

wvq
1
2

yn,I
yn+1,J

; qk
)
θ
(

wv−1q
1
2

yn,I
yn+1,J

; qk
)

θ
(

wz yn,I
yn+1,J

; qk
)
θ
(

z−1wq yn,I
yn+1,J

; qk
) .

�

(4.25)

The full ‘orbifolded’ index (4.12) is then given by summing over all partitions {Kni} of K. 
However, in analogy with (3.25) from the 5d point of view we expect to have a U(1)�k topo-
logical symmetry associated to the currents �5dJni =

1
8π2 trFni ∧ Fni for the (n, i)th gauge node 

in the quiver. Since the D-instantons serve as sources for those currents and the associated 
instanton number Kni is related to the partition {Kni} following our discussion in section 4.1 
we may weight each contribution with fugacities q6d,ni for each current and assemble the 
quantity

Z6d,N,�,k(q, v, w, z, xn,A; q6d,ni) =
∑
K�0

∑
{Kni}∑
n,i Kni=K

(∏
n,i

qKni
6d,ni

)
Z6d,�,k

{Kni} (q, v, w, z, xni,A)

� (4.26)
the sum over all possible partitions of K is equivalent to summing over all embeddings 
Γ ↪→ U(K) up to gauge transformation.

4.3. The 6d orbifolded instanton partition function

In this section we check that for k  =  1 our partition function indeed reproduces the known 
result for the partition function for {K1, . . . , K�} D1-branes in the presence of �N  D5 branes 
on A�−1 singularity as computed in [102]. Furthermore we show that the Zk orbifolded index 
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may be obtained from the partition function without orbifold (up to an overall shift in the 
Casimir contribution) with the substitution rule x → x̃ and q → qk. The replacement q → qk 
reminds us of the work of [103, 104].

We must first evaluate the contour integrals (4.15). It bares many resemblances with the 
unorbifolded (� = k = 1) partition function (3.25) discussed in section 3. In particular, the 
poles are now located at

yn+1,I = yn,J (zw) , yn−1,I = yn,J

(
z

qw

)
,� (4.27)

yn,I = yn,J

(
vz

q1/2

)±1

, yn,I = yn,J

(
z

vq1/2

)±1

, yn,I = x̃n,A

(
z

q1/2

)±1

.

� (4.28)
Proceeding in an analogous way to the unorbifolded index we again assume that the x̃’s 

can be made sufficiently generic and that the correct residues to collect are again those coming 
from the poles (4.28). Solutions to (4.28) are then in fact classified by � lots of kN-coloured 
Young’s diagrams which we label by �Yn = {Yn,A} = {Yn,1, . . . , Yn,kN} again with each dia-
gram Yn,A  containing |Yn,A| boxes such that |�Yn| :=

∑
A |Yn,A| = Kn where Kn :=

∑k
i=1 Kni 

as before. Given a Young’s diagram Yn,A  a box s is labelled by coordinates (l, p) and the corre
sponding pole is given by

yn(s) = x̃n,A

(
z

q1/2

)l+p−1

vl−p.� (4.29)

Hence, for a fixed partition {Kni} the residue of (4.15) for a fixed set of kN-tuples �Y1, . . . , �Y� is

Z6d,N,�,k
{Kni},{�Yn}

= Z(0)
{Kni},{�Yn}

�∏
n=1

(
Kn!∏k

j=1 Kni!

)
�∏

n=1

∏
j>i

N∏
A=1

(
x̃n+1,jAx̃n−1,jA

x̃2
n,jA

)Kni

×
�∏

n=1

kN∏
A,B=1

∏
s∈Yn+1,A

θ
(
q−1zw−1E(n+1)n,AB; qk

)∏
s∈Yn,A

θ
(
zwEn(n+1),AB; qk

)
∏

s∈Yn,A
θ (Enn,AB; qk)

∏
s∈Yn,A

θ (q−1z2Enn,AB; qk)

�

(4.30)

where we defined

Enm,AB :=
x̃n,A

x̃m,B

(
vz

q1/2

)Lm,B(s) (q1/2v
z

)(An,A(s)+1)

� (4.31)

where Ln,A(s) and An,A(s) denote the distance from the box s to the right end and the bottom 
of the Young diagram Yn,A  respectively. Furthermore, we also notice the multinomial coef-

ficient Kn!/
∏k

i=1 Kni! =
( ∑

i Kni
Kn1,...,Knk

)
.

We are still yet to describe the Casimir contribution. Again we must specify the q-depend
ence of the fugacities. We write

v := q
β5kε−

2iπ , wq
1
2 := q

β5km
iπ , zq−

1
2 := q

β5kε+
2iπ , x̃n,A := q

β5 k̃an,A
iπ .� (4.32)

The Casimir contribution is explicitly given in equation  (B.14) and after evaluating its 
residue for a fixed kN-tuples {�Yn} is
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Z(0)
{Kni},{�Yn}

=
�∏

n=1

kN∏
A

q
kKnβ

2
5

2π2 [2ã2
n,A−ã2

n−1,A−ã2
n+1,A+2m(ãn+1,A−ãn−1,A)]

× q
−k2KNβ2

5
iπ (

ε+
2 +m)

(
ε+

2 −m+ 1
β5 iπ

) �∏
n=1

kN∏
A,B=1

∏
s∈Yn,B

q
β2

5
2π2 (φn(s)+

ε+
2 )(ãn+1,A+ãn−1,A−2ãn,A),

�

(4.33)

where as before we must use the definitions (4.32). For a box s ∈ Yn,A  the function φn(s) is 
given by

φn(s) = ãn,A + (l − 1)ε1 + ( p − 1)ε2.� (4.34)

Equation (4.25) is then obtained by summing over all �Yn

Z6d,N,�,k
{Kni} (q, v, w, z, xni,A) =

∑
�Y1,...,�Y�
|�Yn|=Kn

Z6d,N,�,k
{Kni},{�Yn}

(q, v, w, z, xni,A).
� (4.35)

4.3.1. The case k  =  1.  We may immediately compare our expression (4.35) for k  =  1 to the 
{K1, . . . , K�} partition function computed in [102] equation (5.5). After taking the appropri-
ate decoupling limit by ‘opening up’ the quiver we find agreement7 up to a choice of overall 
normalisation Z(0).

4.3.2. The case k  >  1.  By inspection we can immediately see, writing in a schematic fashion 
and suppressing the unchanged arguments, that

Z6d,N,�,k
{Kni} (q, x) =

�∏
n=1

(
Kn

Kn1, . . . , Knk

) �∏
n=1

∏
j>i

N∏
A=1

(
x̃n+1,jAx̃n−1,jA

x̃2
n,jA

)Kni

Z6d,kN,�,1
{kKn}

(
qk, x̃

)
.� (4.36)

In words, we claim that the orbifolded (k > 1) index corresponding to the choice or {Kni} 
may be obtained from the unorbifolded (k = 1) index by substituting q → qk, xn,A → x̃n,A 
and multiplying by an overall factor.

4.4. The 5d limit of the orbifolded instanton partition function

We can again take the 5d β6 → 0 (q → 1) limit. For k  =  1 the resulting 5d theories are the 
N = 1 circular quivers denoted by NN,� on R4 × S1

5. For k  >  1 we expect the resulting 5d 
theory is NkN,� with k codimension 1 defects which fill the R4 and are located at points 
Θ = Θj=1,...,k  where Θ ∼ Θ+ 2π is the coordinate of S1

5.
Following the same procedure as before and making the identifications (4.32), we find

Z5d,N,�,k
{Kni} =

∑
�Y1,�Y2,...,�Y�
|�Yn|=Kn

�∏
n=1

(
Kn

Kn1, . . . , Knk

)

×
kN∏

A,B=1

∏
s∈Yn,A

sinhβ5
(
En(n−1),AB + ε+

2 − m
)
sinhβ5

(
E(n−1)n,AB + ε+

2 + m
)

sinhβ5 (Enn,AB) sinhβ5 (Enn,AB + ε+)

�

(4.37)

7 Our parameters are related to those of [102] by tthem = zvq1/2, dthem = zv−1q−1/2, cthem = q1/2w.
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again limq→1 Z(0)
{Kni} = 1 and the function Enm,AB is defined as

Enm,AB := ãn,A − ãm,B + ε1Ln,A(s)− ε2 (An,B(s) + 1) .� (4.38)

As before the instantons partition function of the resulting 5d theory is given by

Z5d,N,�,k =
∑
{Kni}

(∏
n,i

qKni
5d,ni

)
Z5d,N,�,k

{Kni} .� (4.39)

4.5. The 4d limit of the orbifolded instanton partition function

Finally, we take the 4d β5 → 0 limit. We expect that by taking the 4d limit we land on the 4d 
torodial quiver SCFTs in Class Sk . In particular, we want to compare our expression in this 
limit with the expression proposed in [33]. Applying the 4d limit to (4.37) yields:

Z4d,N,�,k
{Kni} =

∑
�Y1,�Y2,...,�Y�
|�Yn|=Kn

�∏
n=1

(
Kn

Kn1, . . . , Knk

)

×
�∏

n=1

kN∏
A,B=1

∏
s∈Yn+1,A

(
E(n+1)n,AB + ε+

2 − m
)∏

s∈Yn,B

(
En(n+1),AB + ε+

2 + m
)

∏
s∈Yn,A

(Enn,AB)
∏

s∈Yn,A
(Enn,AB + ε+)

� (4.40)

and the partition function of instantons reads

Z4d,N,�,k =
∑
{Kni}

(∏
n,i

qKni
4d,ni

)
Z4d,N,�,k

{Kni} = Z4d
inst,Ã�−1×Ãk−1

.� (4.41)

For k  =  1 (4.40) may be compared with the partition function of instantons for the 4d N = 2 
Ã�−1 circular quiver theories.

4.6.  From necklace/toroidal to linear/cylindrical quivers

In this subsection we want to briefly explain, for the sake of the non-expert reader, how we 
can obtain the instanton partition functions for linear N = 2 (generic �, k  =  1) or cylindrical 
N = 1 quivers (generic � and k) from the formulas we have just derived that are for necklace 
N = 2 (generic �, k  =  1) and toroidal N = 1 (generic � and k) quivers respectively. Firstly, 
for the N = 2 theories with generic � and k  =  1, we choose a fugacity q6d,n for one n corre
sponding to one coupling constant of the nth gauge node and send it to zero in equation (4.26). 
This corresponds to ungauging this gauge factor and breaks the necklace at this node. See 
figures 3 and 5. It is useful for notational clarity to ungauge the node with n = �. Then the 
hypermultiplets that couple to this node from the left and from the right become fundamental 
and the Coulomb branch parameters a1 = mL and a� = mR are interpreted as anti-fundamental 
and fundamental masses, respectively. Moving on to the toroidal N = 1 quivers with generic 
� and k, we can obtain cylindrical N = 1 quivers via ungauging all of the k-nodes with n = �, 
setting in (4.26) q6d,�i = 0 for all i = 1, . . . , k . See figures 1 and 6. Finally, let us stress that 
this ungauging procedure can be done for all 6d, 5d and 4d instanton partition functions.
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4.7.  From Class S  to Class Sk  instantons at the orbifold point

In this section we show that we can write our partition function in a similar form as predicted 
in [33]. We set � = 2 for simplicity and take a decoupling limit such that we open up the 
Ã1 × Ãk−1 in the ‘�’-direction such that our Class Sk  theories are given by orbifolds of N = 2 
SCQCD. This limit is obtained by setting, say, q4d,1i = qi  and q4d,2i = 0. The resulting Class 
Sk  theories were denoted as SCQCDk in [33]. If we further go to the ‘orbifold point’ (with 
respect to the Zk orbifold), we set all couplings equal qi := q/k  for all i = 1, . . . , k

ZN
inst,N=1 SCQCDk

(ani,A) =
∑
K�0

qK
∑

K1+···+Kk=K

Z4d,N,2,k
{Ki} = ZkN

inst,N = 2 SCQCD(ãn,A).� (4.42)

N

N

N

N

N

Figure 3.  5d circular (necklace) quiver NN,� for � = 5. Circular nodes denote N = 1 
vector multiplets and solid lines connecting them denote bifundamental N = 1 
hypermultiplets. Circle reduction of NN,� results in 4d N = 2 circular Ã�−1 quiver 
with the same structure.

K

N

Figure 4.  The N = (4, 4) 2d quiver of the gauge theory on K D1-branes in the presence 
of N D5-branes. Using N = (4, 4) notation, solid lines denote hypermultiplets, while 
the circular node denotes the U(K) vector multiplet.

N N N N N N

Figure 5.  The 5d NN,� quiver for � = 5 after taking the decoupling limit obtained by 
sending one of the couplings to zero. Similarly, circle reduction in 4d N = 2 linear 
A�−1 quivers.
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Furthermore, at the orbifold point the instanton partition function for N = 1 SU(N)k SCQCDk 
may be obtained from the orbifold mother N = 2 SCQCD SU(kN) theory by making the 
replacement

aA → ãA = aAe2πij/k, A = jA,� (4.43)

where we have identified ã with the Zk orbifold projection of the vev’s of the SU(kN) vector 
multiplet scalar Φ of the mother theory.

Indeed this is in accordance with the ADHM equations (3.5). We can see that the orbifolding 
act rather simply on all of those fields entering because they all have 2JR

L = J56 + JR
L − JR

R = 0. 
The only non-trivial action is due to the gauge and flavour holonomies. Finally we simply have 
that the orbifolded ADHM equations for the system are

φniφni − φ̃niφ̃ni + [Xni, Xni] + [X̃ni, X̃ni] + ζIKni = 0, φniφ̃ni + [Xni, X̃ni] = 0.
� (4.44)

This is nothing but k uncoupled copies of the usual BPS equations.

N11 N21 N31 N41N51 N51

N12 N22 N32 N42 N52N52

N13 N23 N33 N43 N53N53

Figure 6.  The 4d A�−1 × Ãk−1 cylindrical quiver in N = 1 notation with � = 5, k  =  3 
obtained after taking a decoupling limit of the Ã�−1 × Ãk−1 torodial quiver.

Figure 7.  Left: Ã1 × Ã1 quiver. Middle: The quiver may opened up in the � direction by 
taking the decoupling limit q4d,2i = 0. The resulting theory is SCQCD2. Right: Taking a 
further decoupling limit q4d,n2 = 0 yields N = 1 SQCD with Nf   =  3N theory.
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5.  Conclusions

In this paper we computed the instanton partition function of 4d N = 1 theories in class Sk  
and a 5d and 6d uplift of them, which correspond to 5d N = 1 and 6d (1, 0) theories in the 
presence of a half-BPS defect. We further observed that class Sk  instanton partition functions 
can be obtained from the 4d N = 2 theories in class S  and their 5d and 6d uplifts: the 5d 
N = 1 necklace quiver NN,� and the 6d (1, 0) SCFT T N

�  (without the defect) via imposing the 
‘orbifold condition’ on the Coulomb moduli and mass parameters as

ZSk ,SU(N)
inst (aA) = ZS,SU(kN)

inst (aA) with aA → aAe2πij/k� (5.1)

with A = ( j − 1)N + A being an SU(kN) fundamental index, A = 1, . . . , N  an SU(N) index 
and j = 1, . . . , k  counting the number of the mirror images.

It is important to stress that our result for the class Sk  instanton partition functions match 
with the prediction of [33] coming from a calculation of a completely different type. In [33] 
based on the anticipation of an AGT type correspondence for theories in class Sk , and the com-
parison of the spectral curves of theories in class Sk  with 2d CFT blocks, the 2d CFT symme-
try algebra and its representations that should underlie AGTk were identified. These conformal 
blocks led to a prediction for the instanton partition functions of the 4d N = 1 SCFTs of class 
Sk  which we precisely reproduce here. Further work in this direction is definitely worthwhile.

N = 1 SQCD with Nf   =  3N can be obtained from class Sk , from the Z2 × Z2 theory 
depicted in figure 7 in the limit where three of the coupling constants go to zero as shown 
in the figure. It would be very interesting to learn how to isolate the instantons of the N = 1 
SQCD with Nf   =  3N. This is one of the most important long term goals of this endeavour. 
Naively going away from the orbifold point can be obtained by allowing the q ‘instanton 
fugacities’ in front of the K D1 brane partition functions to differ. However, it is not any more 
clear what the precise physical interpretation of the a parameters is. We are currently tying to 
understand this point [105], by backing up, deriving and studying the SW curves away from 
the orbifold point, following the work of [106].

What is more, we would like to bring to the attention of the reader the fact that the N = 1 
instanton partition function we derived is a product of an orbifolded vector and a bifundamen-
tal hyper multiplet contributions

Zinst =
∏

quiver

zorb
vec zorb

bif� (5.2)

directly arising from their N = 2 mother theory construction. An important question is if the 
instanton partition function may be further reorganised, for the Sk  theory, as

Zinst
?
=

∏
quiver

zN=1
vector zN=1

chiral .� (5.3)

At this stage it is unclear to us if this is even possible, however we believe that carefully study-
ing the SW curves away from the orbifold point [105] will be illuminating.

A comment concerning our strategy is in order. For the computation of the instanton parti-
tion function we have decided, instead of computing the matrix model path integral of the 
0d theory that lives on the D(−1) branes, to compute the 2d SCI of the gauge theory which 
lives on the K D1 branes for the following reasons. First of all, the SCI computation is very 
well studied/understood and is rather more tractable than directly localising the matrix model. 
Secondly, along the way to the instanton partition function of the 4d theories of interest we 
also computed the partition function of self-dual strings of a certain set of 6d (1, 0) theories in 
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the presence of half-BPS surface operators, which is a very interesting result in its own right. 
It would be very interesting to attempt localisation and compute the 2d partition function that 
we have computed, in analogy with the localisation computation of the Lens space index [87, 
100]. Alternatively, it would be interesting (as well as a very good check of our approach) to 
explicitly write down and study the the 0d ADHM quiver matrix model and attempt locali-
sation there. Another very interesting alternative to our strategy is the Origami approach of 
Nekrasov [107]. Finally, it would be worth to further study the 2d index for k � 1 from the 
point of view of representation theory alone and understand the supersymmetry symmetry 
enhancement for k  =  1 as in [108]. Would representation theory alone together with some 
minimal impute from string theory be enough to construct instanton partition functions? 

Our strategy may be applied to several other interesting cases such as computing partition 
functions of (1, 0) theories in the presence of a surface operator lying along C ⊂ C2

ε1ε2
. Some 

results along these lines already exist in the literature [56, 66, 109–111]. The partition function 
of the (1, 0) theory on T2 in the presence of certain half-BPS surface operator should be related 
to a certian orbifold of the M-string ellipic genus [54, 55], this is currently being explored in 
[112]. Finally, one could also try to compute partition functions in class Sk  in the presence of 
defects via combining the two orbifold constructions.

In an orthogonal direction, and in connection with [33], it would be instructive to try to 
repeat the method of [113], who, starting from the (2, 0) theory in 6d, were able to obtain a 
direct derivation of the AGT correspondence, for the N = 1 theories of class Sk .

Finally, using our results and taking the large N limit, one could learn about the gravity dual 
of N = 1 theories in class Sk  following the work of [44, 45].
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Appendix A.  Definitions, identities and special functions

The Plethystic exponential is given by

PE [i(·)] := exp

[ ∞∑
n=1

1
n

i(·n)

]
.� (A.1)

The q-theta function and q-Pochhammer symbol are given by

θ (x; q) := (x; q)
(
qx−1; q

)
, (x; q) :=

∞∏
n=0

(1 − xqn) = PE
[

x
1 − q

]
.� (A.2)

They are related to the Jacobi theta function

θ1(x; q) := iq
1
12 η(q)(x−

1
2 − x

1
2 )

∞∏
n=1

(1 − xqn)(1 − x−1qn) = iq
1
12 η(q)x−

1
2 θ(x; q),

� (A.3)
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where η(q) := q
1

24
∏∞

n=1(1 − qn) = q
1
24 (q; q) is the Dedekind eta function.

An obvious but important identity that we often use is

θ (qx; q) =
−1
x
θ (x; q) .� (A.4)

The function θ (y; q) has simple zeros for y = qa+b/τ for a, b ∈ Z and no poles. Furthermore, 
to compute residues note that

∂

∂y
θ (y; q) |y=1 = − (q; q)2 .� (A.5)

Using the identity θ (qx; q) = −1
x θ (x; q) the residue is given by

∮

y=qa+b/τ

dy
2πiy

1
θ (y; q)

= (−1)a+1 (q; q)−2 q
a
2 (a−1).� (A.6)

We are often interested in the q → 1 limit of the above q-series. To take the limit, first note 
that the ratio of q-theta function may be rewritten as

θ (qa; q)
θ (qb; q)

=
[a]q
[b]q

∞∏
n=1

[n + a]q [n − a]q
[n + b]q [n − b]q

� (A.7)

where [n]q := (1 − qn)/(1 − q) is the q-number. The q-number has the property that

lim
q→1

[n]q = n� (A.8)

and therefore, for q-independent a, b, we have

lim
q→1

θ (qa; q)
θ (qb; q)

=
sinh iπa
sinh iπb

.� (A.9)

It may be shown [114–116] that the vector multiplet contribution is given by

zvec(a, �Y) =
N∏

A,B=1

∏
s∈YA

1
EAB (EAB + ε+)

� (A.10)

and the contribution from the adjoint hypermultiplet is

zadj(a, m, �Y) =
N∏

A,B=1

∏
s∈YA

(
EAB +

ε+
2

− m
)(

EAB +
ε+
2

+ m
)

� (A.11)

also note that

zadj

(
a,

ε+
2

, �Y
)
=

1

zvec(a, �Y)
.� (A.12)

Appendix B. The supersymmetric index computation

B.1.  Single letter indices

As the Witten index is independent of coupling constants we may compute the index in the 
free field g → 0 limit. To compute the index we list the gauge covariant field content with 
δ = L0 − 1

2 J0 = 0 in the UV. Only the ‘letters’ with δ = 0 contribute to the index and their 
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quantum numbers are listed in tables B1–B3. We denote also the decomposition of N = (4, 4) 
multiplets into N = (0, 2) multiplets. Since the N = (0, 2) field strength multiplet is not 
conformal extra care must be taken to take the free field limit. In two dimensions the field 
strength multiplet Υ is nothing but a Fermi multiplet with auxillary D − iF+− . The R-charge 

Table B1.  Gauge covariant field content contributing to the index of the N = (4, 4) 
vector multiplet V .

N = (0, 2) Letter L0 L0 J0 2JL 2JR 2JR
L 2JR

R Index

Y , Y† Y22̇ 0 0 0 0 0 +1 +1 wz

Y11̇ 0 0 0 0 0 −1 −1 w−1z−1

λ
1̇1
+

0 1
2

+1 0 −1 −1 0 −w−1z−1

Ỹ†, Ỹ Y12̇ 0 0 0 0 0 −1 +1 w−1z

Y21̇ 0 0 0 0 0 +1 −1 wz−1

λ
1̇2
+

0 1
2

+1 0 −1 +1 0 −wz−1

ξ, ξ
†

ξ
1̇1̇
−

1
2

0 0 0 −1 0 −1 −qz−2

ξ
2̇2̇
−

1
2

0 0 0 +1 0 +1 −z2

Υ,Υ†
ξ

2̇1̇
−

1
2

0 +1 0 −1 0 −1 −q

ξ
1̇2̇
−

1
2

0 −1 0 +1 0 +1 −q

∂−λ
1̇1
+

1 1
2

+1 0 −1 −1 0 qw−1z−1

∂−λ
1̇2
+

1 1
2

+1 0 −1 +1 0 qwz−1

∂− 1 0 0 0 0 0 0 q

Table B2.  Gauge covariant field content with δ = 0 of the N = (4, 4) hypermultiplet 
H.

N = (0, 2) Letter L0 L0 J0 2JL 2JR 2JR
L 2JR

R Index

X, X† X11̇ 0 0 0 −1 −1 0 0 q
1
2 v−1z−1

X22̇ 0 0 0 +1 +1 0 0 q− 1
2 vz

ξ22̇
+

0 1
2

+1 +1 0 0 +1 −q−
1
2 vz

X̃†, X̃ X21̇ 0 0 0 +1 −1 0 0 q
1
2 vz−1

X12̇ 0 0 0 −1 +1 0 0 q− 1
2 v−1z

ξ12̇
+

0 1
2

+1 −1 0 0 +1 −q−
1
2 v−1z

λ,λ† λ11
−

1
2

0 0 −1 0 −1 0 −q
1
2 v−1w−1

λ22
− 1

2

1
2

0 0 +1 0 +1 0 −q
1
2 vw

λ̃†, λ̃ λ12
−

1
2

0 0 −1 0 +1 0 −q
1
2 v−1w

λ21
−

1
2

0 0 +1 0 −1 0 −q
1
2 vw−1

∂−ξ
22̇
+

1 1
2

+1 +1 0 0 +1 q
1
2 vz

∂−ξ
12̇
+

1 1
2

+1 −1 0 0 +1 q
1
2 v−1z

∂− 1 0 0 0 0 0 0 q
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of Υ is fixed to unity everywhere along the flow, i.e. R [Υ] = J0 [Υ] = 1 . Therefore the index 
of the off-diagonal vector multiplet should be equal to that of a off-diagonal Fermi multiplet 
of R-charge RIR = RUV = 1:

Zvec(yI �= yJ , q) = ∆(y)−1ZFermi(yI �= yJ , q) = PE


− 2q

1 − q

∑
I �=J

yI

yJ


� (B.1)

where ∆(y) is the Vandermonde determinant accounting for the Cartan zero modes.
The single letter indices we given in (3.14), (3.15) and (3.14). We again list them here

iV(q, w, z, yI) =

[(
w + w−1

) (
z + qz−1

)
− qz−2 − z2 − 2q

1 − q

]
K∑

I,J=1

yIy−1
J ,� (B.2)

iH(q, v, w, z, yI) =

[
q

1
2
(
v + v−1

) (
z + z−1 − w−1 − w

)
1 − q

]
K∑

I,J=1

yIy−1
J ,� (B.3)

iU(q, w, z, xA, yI) =

[
q

1
2
(
z + z−1 − w−1 − w

)
1 − q

]
K∑

I=1

N∑
A=1

(
yIx−1

A + y−1
I xA

)
.

� (B.4)
Finally, we also list the Casimir energy:

ECasimir =
Finite
q→1

[∑
M

∂iM
∂ log q

]
=

β2
5

iπ
2NK

(ε+
2

+ m
)(

iπ
β5

+
ε+
2

− m
)

.� (B.5)

Table B3.  Gauge covariant field content with δ = 0 of the N = (4, 4) hypermultiplet 
U.

N = (0, 2) Letter L0 L0 J0 2JL 2JR 2JR
L 2JR

R Index

φ,φ†
φ1̇ 0 0 0 0 −1 0 0 q

1
2 z−1

φ†
1̇

0 0 0 0 +1 0 0 q− 1
2 z

χ†
+1̇

0 1
2

+1 0 0 0 +1 −q−
1
2 z

φ̃†, φ̃ φ†
2̇

0 0 0 0 −1 0 0 q
1
2 z−1

φ2̇ 0 0 0 0 +1 0 0 q− 1
2 z

χ2̇
+

0 1
2

+1 0 0 0 +1 −q−
1
2 z

ψ,ψ† ψ1
−

1
2

0 0 0 0 −1 0 −q
1
2 w−1

ψ†
−1

1
2

0 0 0 0 1 0 −q
1
2 w

ψ̃†, ψ̃ −ψ†
−2

1
2

0 0 0 0 −1 0 −q
1
2 w−1

ψ2
−

1
2

0 0 0 0 1 0 −q
1
2 w

∂−χ
†
+1̇

1 1
2

+1 0 0 0 +1 q
1
2 z

∂−χ
2̇
+

1 1
2

+1 0 0 0 +1 q
1
2 z

∂− 1 0 0 0 0 0 0 q
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B.2.  Orbifolded single letter indices

The single letters for the Γ projected multiplets is given by enumerating all letters in tables B1–
B3 while also inserting fugacities for the Γ action embedded in the global and gauge sym-
metries. Recall that

γ� := 2JR
L = J710 − J89, γk := J56 + JR

L − JR
R = J56 − J89.� (B.6)

The projected single letters are thus given by

iΓV(q, w, z, yni,I) =
1
�k

∑
ε∈Z�
εk∈Zk

[(
ε�w + ε−1

� ε−1
k w−1) (z + qz−1)− qz−2 − ε−1

k z2 − (ε−1
k + 1)q

]

×
∑
r�0

qrε−r
k

�∑
n,i

k∑
m,j

Kni∑
I=1

Kmj∑
I=1

εn−m
� εi−j

k yni,Iy−1
mj,J ,

�

(B.7)

iΓH(q, v, w, z, yni,I) =
1
�k

∑
ε∈Z�
εk∈Zk

[
q

1
2
(
v + v−1) (z−1 + ε−1

k z − ε−1
� ε−1

k w−1 − ε�w
)]

×
∑
r�0

qrε−r
k

�∑
n,m

k∑
i,i

Kni∑
I=1

Kmj∑
I=1

εn−m
� εi−j

k yni,Iy−1
jm,J ,

�

(B.8)

iΓU(q, w, z, xni,A, yni,I) =
1
�k

∑
ε∈Z�
εk∈Zk

[
q

1
2
(
ε−1

k z + z−1 − ε−1
� ε−1

k w−1 − ε�w
)]∑

n�0

qnε−n
k

×
�∑

n,m

k∑
i,j

N∑
A=1

εn−m
� εi−j

k




Kni∑
I=1

yni,I t−1
ni x−1

mj,A +

Kmj∑
I=1

y−1
mj,I tnixni,A


 .

� (B.9)

We now detail how to evaluate the sums over conformal descendants and over the 
orbifold group. Note that here we rescaled xmj,A (which are fugacities associated 
with S

[
U(N)k�

]
 and satisfy 

∏k
i=1

∏�
n=1

∏N
A=1 xni,A = 1) to tnixni,A which now sat-

isfy satisfying 
∏N

A=1 xni,A =
∏�

n=1
∏k

i=1 xni,A =
∏�

n=1
∏k

i=1 tni = 1 corresponding to 

S
[
U(N)k�

] ∼= U(1)�k

U(1) ⊗ SU(N)�k Firstly, to evaluate the sums over conformal descendants we 

write to r := Lij + r̃k � 0  with Lij defined in (4.19). This enables one to rewrite, for any fixed 
value 1 � j � k, to split the sum

∑
r�0

qrε−r
k =

k∑
i=1

qLijε
−Lij
k

∑
r̃�0

qr̃k =

k∑
i=1

qLijε
−Lij
k

1 − qk ,� (B.10)

recall that εk
k = 1. After this rewriting the sums over both Z�,Zk may be simply carried out and 

is essentially equivalent to demanding that the exponents of ε�, εk vanish modulo �, k in each 
term. Hence we have after, rearranging and applying the identity (4.20),
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iΓV (q, w, z, yni,I)

=

�∑
n=1

k∑
i,j=1

1
1 − qk


−

Kni∑
I=1

Knj∑
J=1

(
z−2qLij+1yni,Iy−1

nj,J + z2qk−Lij−1y−1
ni,Iynj,J

)

+

Kni∑
I=1

K(n+1) j∑
J=1

(
wqLij yni,Iy−1

(n+1) j,J + w−1qk−Lij−1y−1
ni,Iy(n+1) j,J

) (
z + qz−1)

−
Kni∑
I=1

Knj∑
J=1

(
qLij yni,Iy−1

nj,J +
(
qk−Lij − (1 − qk)δLni,0

)
y−1

ni,Iynj,J

)
 ,

� (B.11)

iΓH (q, v, w, z, yni,I)

=

�∑
n=1

k∑
i,j=1

q
1
2
(
v + v−1

)
1 − qk




Kni∑
I=1

Knj∑
J=1

(
z−1qLij yni,Iy−1

nj,J + zqk−Lij−1y−1
ni,Iynj,J

)

−
Kni∑
I=1

K(n+1) j∑
J=1

(
wqLij yni,Iy−1

(n+1) j,J + w−1qk−Lij−1y−1
ni,Iy(n+1) j,J

)

 ,

� (B.12)

iΓU (q, w, z, xni,A, yni,I) =
�∑

n=1

k∑
i,j=1

N∑
A=1

q
1
2

1 − qk


z−1qLij




Kni∑
I=1

yni,Ix−1
nj,A +

Knj∑
I=1

y−1
nj,Ixni,A


+ zqk−Lij−1




Kni∑
I=1

y−1
ni,Ixnj,A +

Knj∑
I=1

ynj,Ix−1
ni,A




− wqLij




Kni∑
I=1

yni,Ix−1
(n+1) j,A +

K(n+1) j∑
I=1

y−1
(n+1) j,Ixni,A




−w−1qk−Lij−1




Kni∑
I=1

y−1
ni,Ix(n+1) j,A +

K(n+1) j∑
I=1

y(n+1) j,Ix
−1
ni,A




 .

�

(B.13)

In this form the plethystics may be easily performed. For the sake of completeness we also list 
the contribution from the Casimir energy (3.19)

ECasimir =
kβ2

5

iπ

(
2NkK

(ε+
2

+ m
)(

iπ
β5

+
ε+
2

− m
))

+
kβ2

5

π2

�∑
n=1

kN∑
A=1

Kn∑
I=1

un,I (ãn+1,A + ãn−1,A − 2ãn,A)

+
kβ2

5

π2

�∑
n=1

kN∑
A=1

Kn
(
2ã2

n,A − ã2
n−1,A − ã2

n+1,A + 2mãn+1,A − 2mãn−1,A
)

� (B.14)
where we also made the gauge transformation and redefinition (4.21) and used the definitions 
(4.32).
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Appendix C.  4d & 5d contour integral representations

In this appendix we present the contour integral representations for the partition functions for 
the 5d and 4d theories both in the precense of the orbifold and without. These may be obtained 
by applying the limit directly to the respective 6d contour integral expression. We follow 
mostly the prescription presented in [117]. We will firstly take the 5d β6 → 0 (q → 1) limit.

C.1.  5d limit of the unorbifolded contour integral

Using the identifications (3.31) and setting yI = q
β5uI

iπ  we have that

lim
q→1

∏
I �=J

(
1 − yI

yJ

)
ZV =

∏
I �=J

sinhβ5 (uIJ)
K∏

I,J=1

sinhβ5 (uIJ − ε+)

sinhβ5
(
uIJ − ε+

2 − m
)
sinhβ5

(
uIJ +

ε+
2 − m

) ,

� (C.1)

lim
q→1

ZH =

K∏
I,J=1

sinhβ5
(
uIJ +

ε−
2 + m

)
sinhβ5

(
uIJ − ε−

2 + m
)

sinhβ5 (uIJ + ε1) sinhβ5 (uIJ + ε2)
,� (C.2)

lim
q→1

ZU =

K∏
I=1

N∏
A=1

sinhβ5 (uI − aA − m) sinhβ5 (uI − aA + m)

sinhβ5
(
uI − aA − ε+

2

)
sinhβ5

(
uI − aA + ε+

2

) ,� (C.3)

where uIJ := uI − uJ . By definition

lim
q→1

Z(0)(q, v, w, z, xA, yI) = 1.� (C.4)

Hence, all that remains is to perform the limit on the integration over the maximal torus of 
U(K):

lim
q→1

∮

T[U(K)]

K∏
I=1

dyI

2πiyI
= lim

β6→0
(2τ)K

∫ iπ
2τ

− iπ
2τ

K∏
I=1

duI

2πiβ5
=

∫ +∞

−∞

K∏
I=1

duI

2πiβ5
.

� (C.5)
Putting all of the above ingredients together we write

Z5d,N
K := lim

q→1
Z6d,N

K� (C.6)

=
∑
K�0

1
K!

∫ K∏
I=1

duI

2πiβ5

K∏
I=1

N∏
A=1

sinhβ5 (uI − aA − m) sinhβ5 (uI − aA + m)

sinhβ5
(
uI − aA − ε+

2

)
sinhβ5

(
uI − aA + ε+

2

) ∏
I �=J

sinhβ5 (uIJ)

×
K∏

I,J=1

sinhβ5 (uIJ − ε+) sinhβ5
(
uIJ +

ε−
2 + m

)
sinhβ5

(
uIJ − ε−

2 + m
)

sinhβ5
(
uIJ − ε+

2 − m
)
sinhβ5

(
uIJ +

ε+
2 − m

)
sinhβ5 (uIJ + ε1) sinhβ5 (uIJ + ε2)

.

� (C.7)

C.2.  4d limit of the unorbifolded contour integral

It is then a straightforward exercise to take the 4d limit β5 → 0. We have

Z4d,N
K := lim

β5→0
Z5d,N

K� (C.8)
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=
∑
K�0

1
K!

∫ K∏
I=1

duI

2πi

K∏
I=1

N∏
A=1

(uI − aA − m) (uI − aA + m)(
uI − aA − ε+

2

) (
uI − aA + ε+

2

)

×
∏
I �=J

uIJ

K∏
I,J=1

(uIJ − ε+)
(
uIJ − ε−

2 − m
) (

uIJ +
ε−
2 − m

)
(
uIJ − m − ε+

2

) (
uIJ + m − ε+

2

)
(uIJ − ε1) (uIJ − ε2)

.

�

(C.9)

C.3.  5d limit of the orbifolded contour integral

Taking this limit is largely the same procedure as for the � = k = 1 case however we instead 
use the slightly different set of variables (4.32). We are again interested in the q → 1 limit of 

the partition function (4.25). Setting yi,I = q
kuiI

iπ  we have

lim
q→1

Z6d,N,�,k
{Kij} := Z5d,N,�,k

{Kij}� (C.10)

=
�∏

i=1

[
1∏k

j=1 Kij!

∫ Ki∏
I=1

dui,I

2πiβ5

∏
I�=J

sinhβ5 (ui,I − ui,J )

×
Ki∏

I,J=1

sinhβ5 (ui,I − ui,J − ε+)

sinhβ5 (ui,I − ui,J + ε2) sinhβ5 (ui,I − ui,J + ε1)

×
Ki∏

I=1

Ki+1∏
J=1

sinhβ5
(
ui,I − ui+1,J + m + ε−

2

)
sinhβ5

(
ui,I − ui+1,J + m − ε−

2

)

sinhβ5
(
ui,I − ui+1,J + ε+

2 + m
)
sinhβ5

(
ui,I − ui+1,J − ε+

2 + m
)

×
kN∏

A=1

Ki∏
I=1

sinhβ5 (ui,I − ãi+1,A + m) sinhβ5 (ui,I − ãi−1,A − m)

sinhβ5
(
ui,I − ãi,A − ε+

2

)
sinhβ5

(
ui,I − ãi,A + ε+

2

)
]

.

� (C.11)

C.4.  4d limit of the orbifolded contour integral

As before it is straightforward to take the 4d limit β5 → 0.

Z4d,N,�,k
{Kij} := lim

β5→0
Z5d,N,�,k

{Kij}� (C.12)

=
�∏

i=1

[
1∏k

j=1 Kij!

∫ Ki∏
I=1

dui,I

2πi

∏
I�=J

(ui,I − ui,J )

Ki∏
I,J=1

(ui,I − ui,J − ε+)

(ui,I − ui,J + ε2) (ui,I − ui,J + ε1)

×
Ki∏

I=1

Ki+1∏
J=1

(
ui,I − ui+1,J + m + ε−

2

) (
ui,I − ui+1,J + m − ε−

2

)
(
ui,I − ui+1,J + ε+

2 + m
) (

ui,I − ui+1,J − ε+
2 + m

)

×
kN∏

A=1

Ki∏
I=1

(ui,I − ãi+1,A + m) (ui,I − ãi−1,A − m)(
ui,I − ãi,A − ε+

2

) (
ui,I − ãi,A + ε+

2

)
]

.

�

(C.13)
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