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Abstract

Conclusively determining the states of the solar wind will aid in tracing the origins of those states to the Sun, and in
the process help to find the wind’s origin and acceleration mechanism(s). Prior studies have characterized the
various states of the wind, making lists that are only partially based on objective criteria; different approaches
obtain substantially different results. To uncover the unbiased states of the solar wind, we use ‘“k-means
clustering”—an unsupervised machine learning method—including constructed multipoint variables. The method
allows exploration of different descriptive state variables and numbers of fundamental states (clusters). We show
that the clusters reveal structures similar to those found by more ad hoc means, including coronal hole wind,
interplanetary coronal mass ejections, “slow wind” (better: noncoronal hole flow), “pseudostreamers,” and stream
interaction regions, but with differences that should be useful in refining our previous ideas. These results
demonstrate the viability of the approach and warrant further study to understand the origin of remaining
discrepancies. Complexity in k-means characterization of the wind may ultimately point to complexity at the
source; studies closer to the Sun with Parker Solar Probe will help. We confirm the utility of a set of variables that
can serve as a proxy for composition measurements. This proxy permits studies at high time resolution and where
composition is not available. This and our recently developed unsupervised multivariate clustering technique are
expected to be beneficial in the automated identification of structures and events in a variety of studies.

Unified Astronomy Thesaurus concepts: Interplanetary physics (827); Solar wind (1534); Interplanetary turbulence

CrossMark

(830); Interplanetary magnetic fields (824); Solar coronal mass ejections (310)

1. Introduction

The ubiquitous, continuous flow of fully ionized particles
from the Sun—the solar wind—is much more variable than the
Earth’s atmosphere. As with our local atmosphere, we would
like to have clear and useful characterizations of the variability,
things equivalent to “hot, dry, and sunny” versus “cool and
foggy,” versus “category 4 hurricane.” For the solar case, such
characterizations could be useful in determining the origins and
effects of different flows (see, e.g., Zhao et al. 2017, for an
approach starting with solar states). Time series of even a
simple set of, say, speed, density, and magnetic field variables
from the solar wind invite the eye to informally categorize
different “states,” most obviously fast and slow, but with
further examination including various transient events, “sector
boundaries,” and more subtle regions such as shocked plasma
or places where electron flows are anomalous. (A detailed
overview of studies of solar wind states is provided by
Borovsky et al. 2019; below we discuss the most relevant
studies for the current work.)

In a general sense, many of these states are understood:
magnetically open, X-ray-weak areas of the solar corona
(“holes”) are the clear origin of most very fast wind, and slow
wind likely comes from near the edges of such holes and from
the “streamer stalks” so prominent in deep-exposure eclipse
photographs or coronal images from spacecraft. Magnetic
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arcades known as filaments or prominences, depending on
whether they are viewed against the solar surface or off to the
side (on the limb), sometimes give rise to transient coronal
mass ejections (CMEs) that often become interplanetary flux
ropes (a type of interplanetary CME, or ICME) that are
observed in situ by spacecraft. It has proven difficult to
definitively characterize the various types of wind from in situ
measurements, such that various schemes for classification
(e.g., Jian et al. 2006; Zhao et al. 2009; Richardson &
Cane 2010; Xu & Borovsky 2015) can disagree a large fraction
of the time (Neugebauer et al. 2016). There may well be
usefully distinct types of ICMEs or even fast coronal
hole flows.

All current schemes for classifying solar wind states
ultimately depend on (1) a predetermined set of categories,
and (2) an often-subjective evaluation of the presence or
absence of those categories based on characteristics such as
flow speed, the presence of smooth magnetic rotations, and the
properties of charge states of particular ions. There are a
number of clear-cut cases, such as the large magnetic field
rotation associated with “magnetic-cloud” ICMEs or the
seemingly unperturbed flow in the middle of a high-speed
stream. Such relatively obvious cases can be the origin of
analytical expressions (e.g., Zhao et al. 2009; Xu &
Borovsky 2015) or can provide training sets for “supervised”
methods (see, in this context, Camporeale et al. 2017) that can
then be used to categorize the rest of the events. These
approaches can be helpful for performing statistical studies, but
the fact that different investigators disagree on events indicates
either that we have not determined a fully convincing method
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of characterization or perhaps that there are no truly reliable
general categories to be found. For a general discussion of the
larger context and use of “machine learning” methods for the
analysis of space physics data, see McGranaghan et al. (2017).

2. Method and Data
2.1. The k-means Algorithm

Much of the previous work in this area has relied on finding
clusters in scatter plots of various variables. This can be done
visually in two dimensions, but this method rapidly fails when
going to higher dimensions. Moreover, when a random set of
states of the wind is viewed in such (low-dimensional) plots, it
never separates out cleanly into different clumps. Even the
“ideal” cases are not completely disentangled. This suggests the
possibility that what is needed is a higher dimensional
approach, such that additional dimensions sort out the
confusion. It turns out that the problem of finding clusters in
high dimensions was largely solved many years ago, and there
are now a number of clustering schemes that use different
criteria for grouping. One of the most intuitive and easy to
calculate is the “k-means” algorithm, developed over 50 years
ago and now implemented in various software packages. (The
term and a standard exposition are given by MacQueen (1967),
but the history goes back earlier®.) In the implementation used
here, the method starts by assuming that there are k clusters,
each centered on a point in an N-dimensional state space. The
centroids are initially chosen randomly, and the distances from
the k centroids to all points are determined. The points closest
to each centroid are then used to calculate new centroids, and
this process is iterated until very little change occurs. The result
is k clumps that are taken to characterize interesting “natural”
states of the system described by the variables. In practice, ten
or so iterations are used to obtain adequate convergence. We
have chosen the k-means method over others as an initial
attempt to do meaningful clustering in a way that is very
efficient, allowing many trials with different variables and
parameters, but that also captures very directly a physicist’s
notion of “natural states.” We have tried some less efficient
variants of the basic procedure, such as “Gaussian mixture
models”’ with essentially similar results.

The k-means procedure is equivalent to minimizing the total
variance of the states from the centroids. Mathematically, given
M states x; in an N-dimensional state space, the “objective
function” to be minimized is

Mk
7= 30wyl — P )

i=1j=1

where p; is the N-vector centroid of the jth cluster, w;; equals
one if point i is a member of cluster j and zero otherwise, and
the norm is taken here to be the standard Euclidean distance in
the N-dimensional state space. Other norms are possible, and in
fact the IDL-provided code for k-means uses the “Manhattan”
norm of the sum of absolute values of component differences
instead of the sum of squares. The alternating steps of the
minimization choose w;; by determining the points nearest to
the current centroids, and then finding a new set of values for i,
by averaging over the new wy; sets. Given IDL’s nonstandard

© See https: //en.wikipedia.org/wiki/k-means_clustering.

7 See https: / /scikit-learn.org /stable /modules /mixture.html#mixture.
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norm and other nonstandard features (e.g., the mean of the
cluster values does not end up being exactly the reported
centroid), we wrote our own version of the algorithm (still in
IDL), exactly implementing the process described above. We
found that some initial conditions selected essentially isolated
points that never acquired many other points, so we rejected
initial centroid positions in which one of the initial clusters had
fewer than ten points. It may be that some of the nearly isolated
points are interesting outliers, but we leave this issue to
future work.

If the natural states (clusters) occur in well-separated convex
regions, this method works quickly and well. Possible pitfalls
are finding a local minimum in the space but missing the global
minimum; not correctly characterizing the shapes of the
clusters; and having the “wrong” value of k. Multiple runs
with different ks and initial centroids can help to sort out the
first and third of these problems, and visual examination of 2D
projections of the distribution can give some reassurance about
the second. Here we found that 30 trials were enough to arrive
at a very slowly changing J, and results presented here are
based on this; there is never a complete convergence in
complex data such as these, but we plan to study more carefully
how the results evolve with decreasing J. Changing k values
will be dealt with below. While there are a variety of clustering
techniques (Pedregosa et al. 2011),® k-means is a widely used
technique due to its simplicity and general utility. This
technique is not sensitive to any temporal correlations of
points in the time series data. Note that many of the recent
advances in artificial intelligence, such as convolutional neural
nets, have centered around “supervised” methods that require
large numbers of labeled data sets. Such techniques are clearly
not directly applicable to the solar wind categorization
problem, where the objective is to find the proper “labels”
for the different states of the solar wind. However, a recently
developed unsupervised technique leverages advances in
artificial intelligence and takes into account any underlying
temporal correlations in time series data (Madiraju et al. 2018).
We will explore application of this technique to the solar wind
classification problem in a separate publication.

2.2. Data Set Used

The data examined here are essentially the same as those
used in the study of Neugebauer et al. (2016), namely magnetic
field (from the MAG instrument), plasma parameters (density,
velocity, alpha-to-proton ratio, SWEPAM), and ion composi-
tion (SWICS), all from the Advanced Composition Explorer
(ACE) spacecraft upstream of the Earth at the L1 point. Hourly
binned quantities were determined for each instrument so that
they could be compared directly. The time period analyzed is
2002 November through 2004 May (a total of 20,448 points),
when there was sufficient solar activity to produce many
ICME:s. All quantities, z, were normalized to the range from 0
to 1 by taking z, = (z — min(z))/(max(z) — min(z)). This is
necessary to make density (say) with a range below 20 cm >
contribute as much to distances in the state space as, for
example, the solar wind speeds of 250-1000kms~'. Future
work will examine the effects of weighting the variables
differently using multipliers, but here all weights of the

8 See scikit-learn https://scikit-learn.org /stable/modules /clustering.

html#clustering.
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normalized variables are taken to be equal. In some cases,
explicitly indicated, the log of the variable is used to spread the
distribution of a variable such as density that tends to be
concentrated at small values. Often a normalization of zero
mean and unit standard deviation is used for the variables, but
this was not found to give as clear results in this case, perhaps
due to the highly non-Gaussian distributions of the variables.

2.3. “Nonlocal” Variables

Given the normalized variables, any set or combination of
them can be used to represent the solar wind state. In addition
to a number of direct measurements, we use the time
correlations known as the “cross-helicity”

2(6b - év)

%= @) (o) @

and the “residual energy”

{(v)?) — ((8bY)
7GR + (ov)?) )

where the brackets () represent averages, here taken over three
data points, although the main results are essentially the same
with, e.g., seven-point averages. The 6s indicate that a running
mean has been subtracted out over the averaging interval.
Here, v is the wind velocity and b is the magnetic field in
“Alfvén speed units, ” which allows b and v to be compared
directly:

_ 21.8B/nT
Jn/cm™3

for a magnetic field B and ion density n. These two quantities
have proven quite useful in the study of solar wind turbulence
(e.g., Bavassano et al. 1998; Wicks et al. 2013), and here we
will find that they are useful for categorizing wind states. Note
that this implies that the “state” of the system depends not just
on values of quantities at a given time, but also on the variables
nearby in time (shear, currents, etc.). The cross-helicity is a
measure of how purely the mode of the wind fluctuations is that
of an Alfvén wave (o.= +£1). Such waves strongly tend to
propagate outward from the Sun, and the sign is determined by
the direction of the mean magnetic field. Thus, o, provides an
indication of whether the flow is from the southern or northern
hemisphere of the Sun.

b “)

2.4. Prior ICME Identifications

The validity of the results cannot be determined by simple
means, since we are not assuming any a priori categories. As
guides to significance, we use two sets of ICME identifications
(Jian et al. 2006; Richardson & Cane 2010) and the analytical
formulae of Zhao et al. (2009). The latter workers identify three
states: coronal hole flows (nominally “fast wind”), noncoronal
hole flows (nominally “slow wind”), and transients (ICMEs).
They use the value of the ratio of the number densities of two
charge states of oxygen, O™’ to O"® (“07t06”). Coronal hole
flows have 07to6 < 0.145. The ICMEs have

07to6 > 6.008 exp(—0.00578v,) 5)
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where v, is the wind (proton) speed, and anything else is
noncoronal hole flow. A primary issue addressed by this set of
criteria is that it is not a priori obvious where the boundary is
between “fast” wind and “slow” wind; in fact, at times “slow”
wind has most of the usual characteristics of “fast” wind, so
this division does not seem accurate (see, e.g., Marsch et al.
1981; Roberts et al. 1987). The use of the charge states is based
on the idea that these states tell us what the temperature of the
solar corona was where the ratios of charged states were
formed, in the collisional region close to the Sun, and thus
these states provide a physically motivated choice for wind
types. The ICME identifications come from a careful study of
clear cases based on other criteria (see Zhao et al. 2009).

3. Results
3.1. Clusters Using Charge State Information

We apply the k-means method to the above ACE data set,
initially choosing eight variables based on the relevance of
these variables in previous studies. To capture ICMEs, we
include charge state information. In the first example of the k-
means process shown here, eight variables describe the state
(proton density, n,,; proton speed, V,,; o., o,, 07t06, the average
ionization of iron, the ratio of charged iron to charged oxygen
density (fetoo), and magnetic field strength B). We show k = 8
here because it provides many connections to previously
studied states; there is nothing special about the equality of k
and the number of variables. Higher values of k can divide
clusters and yield, for example, two sets of ICMEs, and lower k
values lump clusters together. In the k-means context, the
choice of variables and number of clusters cannot be
automated, and it is the primary subjective aspect of this
method. However, this subjectivity is quite different from that
involved in the point-by-point determination of wind states.

The results of the present method for the case of eight
variables and eight states are shown in Figures 1 and 2, which
are based on an illustrative subset (2003 May—August) of the
entire time range. The top panel in Figure 1 shows the proton
speed, V,, at the top, normalized x (black) and y (red)
components of the magnetic fields in Geocentric Solar Ecliptic
coordinates at the bottom, and traces in the middle that show
high values for the presence of ICMEs as determined by Jian
et al. (2006) (blue, and lower max) and Richardson & Cane
(2010) (black). (An immediate note is the substantial
differences between the two sets of ICMEs, indicating the
need for a more objective classification of these states; see
Neugebauer et al. 2016.) The colors of the V, trace show states
as identified by k-means clustering. The bottom panel in
Figure 1 is a plot of 07to6 colored by the same states as above.
The analytic classification is shown by a dashed horizontal line
at 07to6 = 0.145, which is the maximum for coronal hole
wind, and by a brown dotted trace that provides the lower limit
for ICME identification. Noncoronal hole wind is between the
dashed and dotted lines. The dotted line is not shown when it
goes below 0.145.

As is standard with clustering methods, the clusters do not
tell us what they are in physical terms. Here we use prior expert
identifications of physical regions to make associations. One
qualitative test of the validity of the results is the ease with
which this can be done. To begin, we immediately see the
recurrence of the 27 day solar rotation in the plot of proton
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Figure 1. A k = 8 set of clusters for four months of 2003 seen as colors superimposed on the plasma speed. Top panel: speed colored by cluster (see Table 1), along
with expertly determined ICMEs as deviations from a constant (Richardson: taller black, Jian: shorter blue), and with B, and B, as black and red traces below to
indicate the magnetic polarity of the solar wind. Lower panel: plot of 07to6 ratio along with a horizontal line showing an empirical upper limit on coronal hole flows
and brown dots from Equation (5) showing a lower limit for ICME identification (Zhao et al. 2009).

10,,,

0.5? . i . 5

Figure 2. The clusters from Figure 1 seen in the o.—0, projection of the state
space.

speed, V,, at the top of Figure 1 of particular colors (states),
especially black and red. The sector boundary structure,
determined by whether the magnetic field is coming from the
southern or northern pole of the Sun, is also apparent in, for
example, the alternation of black and red as the spacecraft
crosses the sector boundary as indicated by the flip in sign of
the field in the black and red traces below the main plot in
Figure 1 (top). Note that the red sector has systematically slow
flow speeds, speeds that would often be termed “slow wind,”
but both k-means and the analytic formulae agree (the latter
having values in the lower panel of Figure 1 that are below the
dotted line threshold of 0.145) that these winds are in the same
class as the typical fast winds. Figure 2 shows that the black
and red states differ in the sign of ., meaning that both contain
outward traveling Alfvén waves but in opposite sectors. The
input set of variables included wind speed, but this variable did
not dominate the choice of category. When the average features
of the red and black labeled flows are examined (see Table 1),

they are otherwise found to be very similar. Nearly all the
points identified by the analytic method as coronal hole flow
are either black or red, and almost none of the latter points
appear above the 0.145 line.

ICMEs are found to agree significantly with Jian, Richard-
son, and SWICS lists and criteria, with some interesting
differences. The k-means method does not tell us which states
are ICMEs, but looking at the first two sets of independently
identified ICMEs (nearly all in May) shows that the green state
is the natural choice. The first case shows the green agreeing
best with the narrower Jian identification, but with a green
point slightly later that is still within the Richardson
identification. The Jian portion of the interval clearly meets
the analytic criterion, but the rest of the interval is marginal,
with values nearly equal to the selection criterion. This case is
typical of ICME identifications by the various means used here.
Detailed investigation of many cases will be needed to see
whether k-means can be regarded as more reliable than other
methods, but it does provide a rapid, unbiased view.

Some cases where only one of the two expert sets shows a
“hit” do not show up in the k-means test (see early July, where
the formula marginally predicts an ICME, but k-means does
not). There are some identifications that agree with the formula,
but not with the lists (around July 10 and 15, for example). One
case identifies an ICME in both lists, but in neither k-means nor
the formula (the first of the pair in mid-June; the region looks to
be complex). Consistent with other work in expert identifica-
tion, the “green state” of the solar wind has a large average Fe
charge state as well as a large value of the field magnitude, B,.
The low value of o, is consistent with having typical ICMEs
connected at both ends to the Sun, and thus having waves
propagating in both directions along the field lines.

What appear to be interaction regions between fast and slow
flow (orange) are detected mainly via compression (high
density values); they also have higher relative velocity
fluctuations as seen in Figure 2 (high o,). Of particular interest
is the identification of slow flow regions that are not associated
with changes in the magnetic polarity of the flow. These are
now generally accepted to be “pseudostreamers” that come
from streamer-like flows at the Sun but with bipolar regions
below the open field lines, leading to the unipolar flow. (See
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Table 1
Mean Values (Centroids) of the Eight Quantities Used in the Analysis (Columns) for Each of Eight Types of Wind (Rows)
Color 1A n, o, 07to6 o, fetoo aveqfe by N/N
Red (CH+) 504.1889 4.8210 0.8140 0.1684 —0.2705 0.1576 10.1349 7.5191 0.246
Blue (NCH-) 406.2666 7.5016 —0.4670 0.2762 —0.6343 0.1881 10.0653 6.8543 0.113
Green (ICME) 464.4140 8.2996 0.0950 0.5480 —0.6402 0.2215 11.5302 10.4567 0.095
Purple (NCH+) 394.6382 6.6545 0.5520 0.2840 —0.5866 0.2010 9.9442 6.8353 0.154
Cyan (NCH-) 475.5256 5.4553 —0.6446 0.4547 —0.4425 0.1667 11.9122 6.8356 0.043
Magenta (PS) 477.4309 5.4904 —0.8311 0.1415 —0.2954 0.1507 9.9792 7.1535 0.150
Black (CH—) 682.3386 3.3511 —0.8070 0.0665 —0.2579 0.1052 10.4443 6.9685 0.146
Orange (IR) 451.6607 11.3938 —0.1592 0.2711 0.0484 0.1829 10.3147 9.9361 0.052

Note. The categories are CH, coronal hole; NCH, noncoronal hole; ICME; PS, pseudostreamer; and IR, interaction region; with + and — indicating the magnetic

sector. Ni/N is the fraction of the number of points in the cluster.

Xu & Borovsky 2015 and references therein.) Here these
regions appear to be the magenta states. They show slow speed
but high cross-helicity. This is consistent with a careful
examination of the results of Ko et al. (2018), where row 3,
column 1 of their Figure 5 has systematically higher green
points (pseudostreamers) than black points (current sheet
crossings).

A summary of the expert identifications of regions by cluster
is given in the first column of Table 1. The values of the
centroids of the clusters shown there are consistent with the
verbal descriptions above, e.g., ICMEs have low cross-helicity,
high mean field (by), and high values of average iron charge
state (aveqfe), as expected. Coronal holes are characterized by
generally higher speeds (v,) and cross-helicity. Pseudo-
streamers are characterized by high cross-helicity but low
speed, and interaction regions have the expected high density
resulting from plasma compression. All these characteristics are
consistent with the discussion above.

3.2. Clusters without Charge State Information

To see whether it is possible to identify the similar sets of
solar wind regions without the use of composition variables, we
use a set of variables developed by Xu & Borovsky (2015) in
their analytic formulation of the state determinations. The use
of Toxp = 1.2 x 10%(V,/235.0)* (the “expected” temperature
for a given speed of wind, V,,) gives one variable as the ratio of
this quantity to the measured proton temperature:
Tratio = Texp/ T,. A second variable is the Alfvén speed
V., = |b| (in “Alfvén speed units” as in Equation (4)). The
third variable is the entropy S = T,/ n?/3 1tis necessary to take
the log of all values, as done by Xu and Borovosky, to spread
out the somewhat clumped distribution of low values of the
quantities. This kind of scaling is common in k-means analysis.
It represents a strength and a weakness of the method in that it
gives great flexibility in the description, but puts an increased
burden on the verification process. In our first use of these
variables, we choose four clusters to see how results compare
to the study of Xu and Borovsky. Figure 3, which is in the same
format as Figure 1, shows that the variable set is a good proxy
(as expected) for the composition-based variable set. The four
colors nicely correspond to the Xu—Borovsky states: purple is
the coronal hole wind, red the current sheet wind, blue the
streamer belt (and related pseudostreamer wind), and green
represents the transients (ICMEs). These identifications are
further confirmed by the values in Table 2, in which, for
example, the ICME row shows low cross-helicity, high iron
charge states, and high mean field (By), and coronal hole flow is

typically fast with low 07to6 and high cross-helicity. There are
some remarkable agreements with the case above. For example,
the first ICME, in May, is split as above, and the possible
ICME in early July is not found here or above. Interestingly,
the weakly identified ICME in mid-August (the first of a
possible pair) is more strongly represented here. The two cases
in July that are not found manually are found both here and
above. The green labeled state has an enhanced average charge
state of iron and 07to6 ratio (as also above), as well as large
magnetic field magnitude. Thus the new set of variables
captures charge state information without the need for a
detailed composition instrument, which is seldom included on
spacecraft. Further evidence of the efficacy of k-means is
shown in Figure 4, which should be compared to Figure 3 of
Xu & Borovsky (2015), which shows a similar structure
although the present case is not based on pre-chosen events.
As an example of the importance of the choice of state
variables, Figure 5 shows what happens if the temperature
variable is omitted from the set of three. In this case, the plot of
Alfvén speed versus entropy gives a full characterization of the
resulting clusters, and all the algorithm can do is make four
more-or-less equal groups. This constitutes a test that the
algorithm is working, but it does not give a useful clustering.

3.3. Further Comparison of the Two Cases Above

To make a more direct comparison with the first case above,
the variable o, not in the Xu-Borovsky list, but also
independent of composition, is added to the list to keep track
of magnetic sectors. For what is shown here, k is taken to be 8
for agreement with the first case above. In Figures 6 and 7,
orange and blue represent the coronal hole wind in the two
sectors, black shows ICMEs, red captures pseudostreamers,
and green and cyan the noncoronal hole wind. Although
density was not included, interaction regions appear as magenta
and purple (depending on sector), but they are not well
distinguished from other noncoronal hole wind. The split of the
ICME in May, the nonoccurrence of an ICME in early July, the
possible new ICMEs in July, and other features are common to
this case and the first. There are details that differ (e.g., still a
stronger first member of the possible pair of ICMEs in mid-
August); these cases will guide future work.

There are various statistical methods used to determine how
“good” the clustering is, as well as to attempt to determine the
“best” value of k. The “elbow” method finds J for k from 1 to
past the point where little change occurs, and typically uses the
k value where the decrease in J becomes less dramatic as the
best value. (The value of J goes to zero as k — N.) This is a
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Figure 3. A k = 4 set of clusters for four months of 2003 using the variables defined by Xu and Borovsky. The panels are as in Figure 1.

Table 2
Means of Eight Properties (Columns) of Four Types of Wind (Rows) found with the Three Variables of Xu & Borovsky (2015)
Color V, n, A 07to6 o, fetoo aveqfe by N/N
Red (SR) 378.4190 9.6784 0.5074 0.3325 —0.5070 0.2001 10.2638 6.4704 0.215
Blue (PS/SB) 475.9861 5.6409 0.6919 0.1659 —0.3734 0.1532 10.1628 7.4252 0.449
Green (ICME) 458.9792 6.6945 0.4618 0.6466 —0.4685 0.2550 11.4062 9.1196 0.083.
Purple (CH) 622.5383 3.2403 0.7157 0.1304 —0.2853 0.1333 10.3572 8.2802 0.253

Note. The categories identified are SR, sector reversal; PS/SB, pseudostreamer/streamer-belt; ICME; and CH, coronal hole. Note that the absolute value of the cross-
helicity is used, since the two sectors cannot be distinguished by the three variables used here.

highly subjective criterion, and, at least in the case here, it adds
little to the discussion. Figure 8 shows the plot of J versus k
corresponding to the set of eight variables above. A case could
be made for a “best” k of 3 or 4, whereas it is clear from the
above discussion that meaningful distinctions are apparent up
to at least k = 8. Even the k = 10 case introduces a clearly
identifiable new category of very fast ICMEs (not shown in the
figures above). Whether or not this is a distinct category in
terms of its origin at the Sun is not clear, but the method does
suggest a possibly important distinction. Deeper insight will
require detailed examination of each case using other solar
imaging and in situ data.

The “silhouette” method measures the compactness of each
cluster compared to the distance to the next closest cluster. For
k-means, the clusters are, by definition, distinct and non-
overlapping, so all this test shows is how compact the clusters

are. From the o0, plots and other pairs we find that the
clusters do not present themselves as being highly compact.
This implies that the edges of the distributions are somewhat
fuzzy, perhaps due to the evolution of the plasma from the Sun.
We can hope that measurements from Parker Solar Probe
(PSP) nearer the Sun will yield more compact clusters and thus
clearer states, but the physics-based criteria used here imply
that the clusters found are meaningful.

4. Conclusions

The above results illustrate the likely utility of unsupervised
machine learning techniques in general, and the k-means
method in particular, for identification of distinct states of the
solar wind. The method is computationally fast and only
involves subjective decisions in the choice of state variables,
not in any subsequent decisions on how to categorize wind
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Figure 4. Clusters in the previous figure, plotted in the V,—S,, space; see Figure 3 of Xu & Borovsky (2015).
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Figure 5. Clusters for two variables, S, and V4, and k = 4. Note that all the algorithm can do in this case is make four similar partitions in the 2D space, unlike the
divisions in the previous figure where a third variable allows more physically significant distinctions.

states. The ability to vary the number of clusters provides a way
of systematically looking for substructures. The natural next
steps are to decipher the meaning of the various complex wind
regions and the cases of discrepancies that remain between
various methods. More quantitative tests will be useful to see
the degree to which, for example, different sets of variables
identify the same states.

There are possible complications that none of the current
solar wind classification methods address. For example, it may
be that the solar wind consists of distinct as well as mixed/
hybrid states. This possibility should be considered and can be

exposed to some extent using the clustering techniques. There
are already suggestions of this in the solar wind. For example,
ICMEs found here are often mixed with other states in time, but
there may be deeper meanings to this.

The standard clustering methods such as k-means are based
on the underlying assumption that each point can be treated
independently and is not causally connected with its neighbor-
ing points. To partially account for this, we explicitly
introduced temporal correlations through the use of cross-
helicity and residual energy as variables. (Surprisingly, an
interesting set of correlations arises in the “o.—o, space.”)
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Figure 7. A k = 8 set of clusters for the same case as in the previous figure.

Ideally, the unsupervised method should find such temporal
relationships on its own. A recently developed unsupervised
technique addresses this shortcoming by taking into account
any underlying temporal correlations in time series data
(Madiraju et al. 2018). Whether this technique will yield better
solutions to the categorization of the solar wind remains to be

seen. As a prelude to such a study, it would be interesting to
examine the average lifetime of the different states derived
from clustering.

Another deficiency of the standard clustering techniques is
that they do not include learning of the feature space; the state
variables must be specified by the user. The proper choice of
feature space can have a dramatic impact on the clustering
results, as illustrated by Figure 5. We are currently working on
the development of a deep learning-based clustering technique
that includes learning representations, and we will explore its
application to the solar wind.

One significant outcome of this study was the further
establishment of a set of variables that can serve as a proxy for
composition measurements, namely the set for Figures 3 and 4.
This was known to some degree before, but the comparisons
here confirmed the efficacy of these variables as proxies for
composition measurement. The non-composition proxy not
only opens up times and regions where composition data are
not available, but also provides a straightforward means of
performing classifications at higher time resolution. The ease
and speed of the k-means method is also conducive to the
studies with higher time resolution.

These techniques used here may be helpful in determining
the origin of solar wind parcels, and may also be applicable to
many other space plasmas. The methods may provide an
automated “scientist in the loop” for determining when to
download burst mode data from spacecraft. There are a wide
range of other possible directions to extend this work, including
using other clustering schemes, seeing what different sets of
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Figure 8. The value of J from Equation (1) as a function of k for the set of variables used in Figure 1.

variables reveal, and using these unsupervised learning states to
provide labeled states to train supervised methods, such as
neural networks.

Our most immediate next step will be to examine higher
resolution data to determine whether the current clusters
become more complex or just add more points to each cluster
region. If the latter is true, then we can have increasing
confidence in the identifications of wind state made by k-means
methods. If the picture becomes increasingly complex at higher
resolution, or even just in light of existing discrepancies
between the cases shown above, we will need to examine the
details of these cases both in situ and in correlation with studies
of projections back to the Sun. It will also be revealing to see
whether the state identification becomes clearer closer to the
Sun in PSP data, which should help to sort out complexities at
the source from those due to propagation.
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