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Abstract
This study successfully reveals the dark, singular solitons, periodic wave and singular periodic
wave solutions of the (1+1)-dimensional coupled nonlinear Schrödinger equation by using the
extended rational sine-cosine and rational sinh-cosh methods. The modulation instability
analysis of the governing model is presented. By using the suitable values of the parameters
involved, the 2-, 3-dimensional and the contour graphs of some of the reported solutions are
plotted.
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1. Introduction

Various complex nonlinear physical aspects may be represented
in the form of nonlinear partial differential equations (NLPDEs).
Nonlinear Schrödinger type equations (NLSEs) are particular
types of NLPDEs which are complex in nature. These types of
equations can be used to express several nonlinear physical
processes, such as plasma physics, fluid mechanics, photonics,
ocean engineering, electromagnetism and so on [1–5]. The theory
of optical solitons is one of the fascinating topics for the
investigation of soliton propagation through nonlinear optical
fibers. The propagation of ultrashort pulses of electromagnetic
radiation is a multidimensional process in a nonlinear medium.
The communication between different physical aspects, such as
dispersion, material dispersion, diffraction and nonlinear
response, affects the pulse dynamics [6]. Over the years, this field
has captured the assiduity of many scientists. Various approaches
have been utilized in obtaining the solutions of different kinds of
nonlinear evolution equations, such as the modified exp(−Ψ(η))-
expansion function method [7–9], the first integral method
[10, 11], the improved Bernoulli sub-equation function method
[12, 13], the trial solution method [14, 15], the new auxiliary
equation method [16] and several others [17–38].

In the present study, the extended rational sine-cosine
and rational sinh-cosh techniques [39, 40] will be utilized to
construct some optical soliton solutions of the (1+1)-
dimensional coupled NLSE [41]. The modulation instability
analysis of the studied nonlinear model is also going to be
discussed.

The (1+1)-dimensional coupled NLSE is given by
[41]

s a
s a

Q + Q + Q + F Q=
F + F + Q + F F =
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2 2
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where s= -i 1 , and α are non-zero real numbers, and Θ

and Φ are complex functions of x and t that stand for the
amplitudes of circularly-polarized waves in a nonlinear opti-
cal fiber [42]. Equation (1) was developed by Boyd [42], and
it is known to have a great impact on the pulse propagation
through a two-mode optical fiber and the soliton wavelength
division multiplexing.

2. Analysis of the methods

In this section, we give the analysis of the extended rational
sine-cosine and sinh-cosh methods [39].
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Consider the general form of the nonlinear evolution
equation and the wave transformation

Q Q Q Q ¼ =P , , , 0, 2x xx xx
2( ) ( )
z z tQ = Q = -x t x vt, , , 3( ) ( ) ( ) ( )

respectively, where Θ(x, t) is the unknown function of x and t,
v is the speed of the wave and μ is a non-zero real number.

Inserting equation (3) into equation (2) gives the fol-
lowing nonlinear ordinary differential equation:

Q Q¢ Q Q Q¢ ¼ =D , , , , 0, 42( ) ( )

where Θ is the unknown function of ζ, and the superscript
indicates the derivative of the function Θ with respect to ζ.

2.1. Extended rational sine-cosine

In this subsection, the general steps of the extended rational
sine-cosine are given.

Step I: Assume that equation (4) adopts the following
forms of solution:
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Figure 1. The (a) 2D, 3D and (b) contour surfaces of equation (13).

Figure 2. The (a) 2D, 3D and (b) contour surfaces of equation (19).
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where =b j o, , 1, 2j ( ) are unknown parameters and μ is the
wave number.

Step II: The unknown parameters are obtained by
inserting equation (5) or equation (6) into equation (4). This
yields a polynomial in powers of mzcos( ) or mzsin( ). Col-
lecting the coefficients of mzcos( ) or mzsin( ) with the same
power gives a group of algebraic equations after equating
each summation to zero.

Step III: The solutions of equation (2) are secured by
substituting the values of the unknown parameters into
equation (5) or equation (6).

2.2. Extended rational sinh-cosh

In this subsection, the general steps of the extended rational
sinh-cosh are given.

Step I: Assume that equation (4) adopts the following
forms of solution:

z
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mzQ =

+
¹ -

b

b b

b

b

sinh

cosh
, cosh , 70

2 1

2

1
( ) ( )

( )
( ) ( )

or

z
mz
mz

mzQ =
+

¹ -
b

b b

b

b

cosh

sinh
, sinh , 80

2 1

2

1
( ) ( )

( )
( ) ( )

where =b j o, , 1, 2j ( ) are unknown parameters and μ is the
wave number.

Step II: The unknown parameters are obtained by
inserting equation (7) or equation (8) into equation (4). This
yields a polynomial in powers of mzcosh( ) or mzsinh( ).
Collecting the coefficients of mzcosh( ) or mzsinh( ) with the
same power gives a set of algebraic equations after equating
each summation to zero.

Step III: The solutions of equation (2) are secured by
inserting the values of the unknown parameters into
equation (7) or equation (8).

3. Applications

In this section, we present the application of the extended
rational sine-cosine/sinh-cosh method to the (1+1)-
dimensional coupled NLSE.

3.1. Mathematical analysis of the governing model

Consider the following complex wave transformation:

z z
z t j k f

Q =Q F = F
= - = - + +

j jx t x t
x ct x t q

, e , , e ,
, . 9

i i( ) ( ) ( ) ( )
( ) ( )

Inserting equation (9) into equation (1) gives the following
system of nonlinear ordinary differential equation:

t s saf f
t s sa f
Q + Q + Q - + Q=
F + F + Q F - + F =

k

k
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0 10

2 3 2 2

2 3 2 2
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( ) ( )

from the real part of the transformation, and the relation;
c=−2κ from the imaginary part.

Assume that equation (10) possesses the solutions of the
form
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Putting equation (11) into equation (10) yields a polynomial
in trigonometric functions. Collecting the coefficients of the
trigonometric functions of the same power of mzcos( ) yields a
system of algebraic equations. Solving the system of algebraic
equations gives the following set of values to the unknown
parameters:
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Figure 3. The gain spectrum of modulation instability for three
different values of K0, α and σ.
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we get the singular periodic wave solution
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Assume that equation (10) possesses the solution of the form
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Putting equation (14) into equation (10) yields a polynomial
in trigonometric functions. Collecting the coefficients of the
trigonometric functions of the same power of mzsin( ) yields a
system of algebraic equations. Solving the system of algebraic
equations gives the following set of values to the unknown
parameters:
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we get the singular periodic wave solution
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Assume that equation (10) possesses the solution of the form
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Putting equation (17) into equation (10) yields a polynomial
in trigonometric functions. Collecting the coefficients of the
trigonometric functions of the same power of mzcosh( ) yields

a system of algebraic equations. Solving the system of alge-
braic equations gives the following set of values to the
unknown parameters:
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we get the periodic wave solution
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Assume that equation (10) possesses the solution of the form
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Putting equation (20) into equation (10), yields a polynomial
in trigonometric functions. Collecting the coefficients of the
trigonometric functions of the same power of mzsinh( ) gives a
system of algebraic equations. Solving the system of algebraic
equations gives the following set of values to the unknown
parameters:
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Remark 1. Solutions in set-1 to -4 are valid for k f+  02 ,
and solutions in set-5 to -8 are valid for k f+  02 .

4. Modulation instability analysis

Several nonlinear phenomena display an instability that
results in modulation of the steady state as a result of a
coaction between the nonlinear and dispersive effects [43]. In
this section, we derive the modulation instability of the
(1+1)-dimensional coupled NLSE by employing the stan-
dard linear stability analysis [43, 20, 44].

Assume the steady-state solutions of the (1+1)-
dimensional coupled NLSE to be of the form

Q = +

F = +

x t K U x t

x t K V x t

, , e ,

, , e , 23

K x

K x

0
i

0
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0

0

( ) ( ( )
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where K0 is the normalized optical power.
Inserting equation (23) into equation (1) and linearizing

yields

a s
a s

a s
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Remark 1. The modulation instability analysis of the
parturition V(x, t) is similar to U(x, t). In this case, we only
examine the evolution of the perturbation of U(x, t). Figure 1
depicts the physical features of the singular periodic wave
solution, figure 2 depicts the physical features of the dark
optical soliton, and figure 3 depicts the physical features of
the gain spectrum.

Assume the solution of the first equation in equation (24)
to be of the form

d d= +k f k f- - -U x t, e e , 25x t x t
1

i
2

i( ) ( )( ) ( )

where κ and f are the normalized wave number and fre-
quency of perturbation, respectively.

Substituting equation (25) into the first equation in
equation (24), splitting the coefficients of k f-e x ti( ) and

k f- -e x ti( ), and solving the determinant of the coefficient
matrix, we get the following dispersion relation:

d a s

d k a s f

+ +

+ - + + + - =

K K

K K

1 1

1 0. 26

1 0 0

2
2

0 0

( ) ( )
( ( )( ) ) ( )

Solving the dispersion relation (26) for f yields

f k k a s= - + +K K2 1 1 . 272 2
0 0( ( ) ( ) ( )

In a situation whereby k k a s- + + K K2 1 1 02 2
0 0( ( ) ( )

ork a s+ + K K2 1 12
0 0( ) ( ), the wave number f is real

for all κ and the steady state is stable against small perturbations.
Moreover, contrary to the above statement, the steady-state
solution turns out to be unstable in the situation whereby k <2

a s+ +K K2 1 10 0( ) ( ), the wave number f becomes
imaginary and the perturbation grows exponentially. Under this
condition, the growth rate of modulation stability gain spectrum
G(κ) may be given as

k f

k k a s

=

= - + +

G

K K

2 Im

2 Im 2 1 1 .

28

2 2
0 0

( ) ( )

( ( ( ) ( ) )
( )

5. Conclusions

In this study, the (1+1)-dimensional coupled NLSE is inves-
tigated by using the extended rational sine-cosine and rational
sinh-cosh approaches. Dark singular solitons, periodic wave and
singular periodic wave solutions are successfully revealed. The
modulation instability analysis of the studied model is analyzed.
It can be seen that the steady state of the studied model is
unstable when k a s< + +K K2 1 12

0 0( ) ( ). The exten-
ded rational sine-cosine and rational sinh-cosh approaches are
simple and efficient mathematical tools for investigating several
complex nonlinear models in the fields of nonlinear sciences.
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