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Abstract — Abundant collective motion patterns of animal groups have different kinds of functions
like migration, predator avoidance and foraging. To explore the phase transition mechanism
behind such charming collective behaviors, some self-propelled particle models have been proposed,
most of which however have isotropic inter-particle interactions and hence could not reproduce
sophisticated natural collective patterns. As a remedy, this letter develops an anisotropic self-
propelled particle model. By slightly tweaking the vision range and inter-particle attraction, the
proposed model demonstrate transitions between four distinct collective motion patterns, i.e.,
torus, dumbbell, twist, and worm. To investigate more insightfully into the phase transition
nature, quantitative analysis is carried out, revealing the relationship of visual angle-based inter-
agent interactions and abundant pattern transitions existing in large numbers of natural, social
and artificial grouping behaviors. From the industrial application point of view, the present study
can help adjust the formation of multiple unmanned systems by simply tweaking a couple of
vision-related parameters in their models.

Copyright © EPLA, 2020

Introduction. — A large variety of collective motions

and behaviors in animal groups, such as fish schools [1-4],
bird flocks [5-9], bacterium colonies and cell migra-
tions [10,11] and human crowds [12,13], have been ex-
tensively studied. Recently, the fascinating patterns from
such grouping behaviors have attracted more and more
attention from scientists in biology, physics, system sci-
ence, computer science, artificial intelligence and robotics.
These motional pattern transitions can enable, for exam-
ple, changing the collective motions of multiple unmanned
vehicles, vessels or robots by simply tweaking a few param-
eters in their models [14].

In recent years, some dynamical models have been pro-
posed to explore the inter-particle interactions contribut-
ing to coordinated motions of biological and engineering
groups of dynamical systems. For instance, Olfati-Saber
et al. proposed an inter-agent attraction/repulsion-based

(2) E-mail: zht@mail.hust.edu.cn (corresponding author)

dynamic model, which yields an «-lattice migration pat-
tern with obstacle avoidance. Tanner et al. [15] showed
that multi-agent systems (MASs) achieve velocity syn-
chronization with stabilized patterns as long as the
inter-agent communication graph always keeps jointly
connected. Nagy et al. [16] extracted a hierarchical or-
ganization network behind the flight direction influential
interactions among pigeon flocks. Zhang et al. [17] pro-
posed an attraction-free MAS model, which guarantees
asymptotic velocity synchronization in a bounded or peri-
odically moving space.

Today, more and more efforts are devoted to study-
ing the inter-agent interactive mechanisms leading to
fascinating pattern transitions in both natural and
artificial collective motions. Reynolds [18] introduced
three fundamental rules, namely cohesion, separation,
and alignment, for collective motions. Vicsek et al. [19]
proposed a sensible inter-individual alignment model,
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which reproduces a phase transition from a disordered
state to an ordered state with decreasing external noise
intensity or ascending particle density. Then, by equip-
ping with inter-individual attraction and repulsion into
the 2-dimensional Vicsek model [19], Couzin et al. [20]
established a three-sphere model in a 3-dimensional
space, which reproduces three typical collective motions,
i.e., swarming, flocking and torusing. Thereafter, several
other Vicsek/Couzin-type models were developed to gen-
erate various motional patterns of self-propelled particle
systems [21-24]. Recently, a quantitative assessment
based on Vicsek model and the Toner and Tu theory is
made by Mahault et al. [25], identifying the values of
the associated scaling exponents differ significantly from
those speculated in 1995. A new minimal MAS model
was proposed by Vicsek et al. [26], merely based on
inter-individual distances. In a comprehensive study on
collective motional pattern transitions, Cheng et al. [27]
analyzed phase transitions among four phases, i.e.,
gas, crystal, liquid, and mill-liquid coexisting patterns,
using a minimal model [28]. Furthermore, by varying
the tendency of obstacle avoidance, they detected three
distinct milling sub-phases, i.e., ring, annulus, and disk.
Trabesinger [14] pointed out that the work of Cheng
et al. [27] helps capture various pattern phase transitions
by tweaking the individual vision ranges of the particles
and their tendency to avoid obstacles. More recently,
Delgado et al. [29] revealed the role of within-group het-
erogeneity in the dynamics of animal collective motions.
Singh et al. [30] proposed a boundary-driven dynamical
self-propelled particles model where each one moves
towards the farthest particle from itself. Thereby, an
unusual pattern of assembly along lines is observed.

However, there still widely exist more sophisticated col-
lective motional patterns that are not so regular like cir-
cles, ellipses and lattices. Such realistic patterns include
“worms”, “twist circles”, “dumbbells” and their vari-
ants [26], which are often encountered in natural grouping
and social gathering activities. To generate such irregular
patterns, we propose an anisotropic minimal model with
the assistance of a fixed distribution model [31]. The pro-
posed model can generate pattern phase transitions among
four interesting collective patterns, i.e., twist, dumbbell,
torus and worm, by slightly varying two interactive pa-
rameters.

Anisotropic minimal model. — Consider a group
of N individuals moving in a 2-dimensional square ¥ =
[0, L)%, L > 0 with periodical boundary conditions [19],
described by

in = 1)0191-,

n; (1)
i ; .
0; = o ;sm)\(aw 0;) + od&,

where z;, 0;
of particle i,

denote the position and moving direction
respectively; Zoj; = Lil—1; od€ is the

lwj—wi]?

Fig. 1: Vision cones of typical carnivorous (cats (a)) and her-
bivorous (horses (c)) animals. Here, anisotropic attraction dis-
tribution with increasing A is also exhibited, with color bar
denoting the attraction strength. Subfigure (b) shows the dis-
tribution on both sides. For conciseness, it suffices to depict
the left sides of the cones. (d) A =0.8; (e) A =1.0; (f) A = 1.3;
and (g) A = 2. Interestingly, it can be observed that the at-
traction peak force appears at 1 = 112.5° (rear), 90.0° (side),
69.2° (front) and 45.0° (front) for subfigures (d), (e), (f) and
(g), respectively. This is consistent with the fact that attrac-
tion peaks at 3.

external Gaussian white noise with amplitude o; param-
eters v, A\, vo and n; are the interaction strength, attrac-
tion tuning parameter, unified particle speed, and number
of neighbors in the vision cone of particle 7, respectively.
Here, \ is a parameter to tune the distribution of the
inter-agent attraction force. The vision cone is defined
by |z; — x| < R and /26, - Lay; > cos8 with R and 3
denoting vision radius and angle range, respectively.

Apparently, the distribution of attraction in model (1)
is not isotropic but follows the sine function. Note that
the focal directions are distinct for different species of an-
imals who have various attentions. As shown in fig. 1,
the pupils of cats are located in front of their faces, which
are often vertical to facilitate their focuses on upper and
lower preys during ambushing. By contrast, large herbi-
vores like horses, zebras and gnus generally live on flat
grasslands. So, their pupils are located on both sides of
their faces so as to focus their attention on herbaceous
foods and neighbors beside.

In order to mimic the anisotropic influence of different
attention patterns, we use a parameter A\ in the present
MAS model (1) to tune the amplitude along different di-
rections. The distribution of the attraction directions in
model (1) along increasing A is shown in fig. 1. Therein,
attraction peaks at J%. Therefore, the influences of the
front neighbors are intensified along increasing A. The
peak appears at ¢ = 112.5° (rear), 90.0° (side) and 64.3°

(front) for subfigures (d), (e) and (f) of fig. 1, respectively.
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However, when \ grows over %, the interactive force ex-
erted by the rear neighbor(s) will switch from attraction
to repulsion.

To quantitatively analyze the collective motion pat-
terns, we now introduce two indices, i.e., migratory
order V,, and circular motion order V., as V,,(t) =
LISN w(®)] and Vo(t) = £ 5N |r,(t) x ri(t)] with
T’L(t) =2, — T, T = %er\il xz(t)a U’L(t) = Uolei(t)a and
“x” denoting cross product. Clearly, the more direction-
ally synchronized the system is, the larger the value V,,
is, until it reaches the maximum value 1. Analogously,
the more circular the system’s motion is, the larger the
value V. is, until it reaches the maximum value 1, rep-
resenting a standard circular motion. Besides, in or-
der to quantify the collective patterns more precisely, we
propose an average dynamical curvature index 7(t), as

0(t) = % Xy m(t) and n:(t) = Grne—y;, with
6 = oo ) tin
curvature of the arc formed by the three picked consec-
utive snapshots along the moving trajectory of the parti-
cle i. Significantly, 77(¢) quantifies the tendency to change
the group moving directions.

arccos

Numerical simulations and analysis. — Now, we
conduct numerical simulations, where the initial moving
directions of the N particles are randomly picked from
[0,27]. The parameters in model (1) are set to N = 100,
L=49v=1 R=1,v=5,and ¢ = 0, as in [31].
A sufficiently large density p = N/L? is imposed to en-
sure that the particles of the group are all connected.
By slightly tuning the attraction distribution parameter
A and the view angle threshold 3, as shown in fig. 2,
the emergence of four distinct phases are observed, i.e.,
i) Torus: bidirectional milling phase, where half of the
particles rotate anticlockwise while the other half clock-
wise. i) Dumbbell: an “8’-shaped rotating chain with
one intersection at the center moving straightly forward
(as indicated by the arrows). iii) Twist: a rotating chain
with two intersections. iv) Worm: particles creep along
a curved line like a worm [31] (slight noise is induced in
formation). Evidently, torus corresponds to V. ~ 1 and
Vi =~ 0, whereas worm to V,, ~ 0 and V,,, ~ 1. As an inter-
mediate phase, twist shows a medium level of circular mo-
tion around V. = 0.4 without migration motion, V,, = 0.
By contrast, dumbbell with a moving group center and two
rotating circular chains corresponds to V. € (0.61,0.67)
and V,,, € (0.35,0.41). Torus corresponds to a high curva-
ture 77, which grows higher with increasing A\. Dumbbell
has a greater 77 than twist, and 77 of both patterns drops
with increasing A.

To illustrate the influence of the attraction distribution
parameter A\, we fix § = 2.4 and show the occurrence
probability of the four patterns with increasing A\. We ob-
serve torus and worm when A is less than 0.87 or greater
than 1.2, respectively. Meanwhile, the intermediate ro-
tating chains and dumbbell phases and their coexistence

\i;/% y

N ;\\
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(d) worm
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(b) dumbbell

s 7/]“\

(a) torus (c) twist

Fig. 2: Four stable collective motional patterns generated by
the proposed minimal model (1).
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Fig. 3: (a) Phase transition sketch map. (b), (c¢): heat map
of circular motion parameter V. (b) and migration motion
parameter Vi, (c) vs. attraction force parameter A and view
angle 3. Contour lines in (b) determine the boundaries of dif-
ferent phases. The top-right dotted line shows the analytical
boundary between worm phase and rotating chains-worm co-
existing phase according to eq. (2), and the top-left dotted
line exhibits the analytical boundary between torus phase and
rotating chains-torus coexisting phase according to ﬁ’f' = 1.
Parameters: N = 100, L = 4. Each point is an average over
50 independent runs.

emerge for A € [0.87,1.2]. A plausible explanation of the
phase transition is that the polarization effect is intensified
with increasing A, and hence the corresponding phase pat-
tern is elongated from torus to dumbbell/twist, and then
to worm. More precisely, as A\ increases over 0.87, the
centripetal force descends due to the decreased attraction
or increased repulsion, so some torus patterns transform
into twists/dumbbells. As A grows further, all rotating
phases become unstable, an unidirectional rotating arc
is observed as a critical state. Thereafter, when A\ sur-
passes 1.2, the rotational effect disappears, corresponding
to worm. Meanwhile, it is found that cumulative agents
distribute on one side of the dumbbell/twist pattern when
A grows larger. Thus, more attraction is yielded by the
front neighbors, so particles are more likely to move on
one particular track rather than spread over the whole
formation.

To show the pattern phase transition more vividly,
we exhibit the entire §-A phase diagram in fig. 3(a) for
the self-propelled particles described by model (1). Tt
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current head
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head at following instant
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Fig. 4: Geometrical explanation of polarized patterns. Here, (3,
d, d', ¢ are the view angle, distance between the current head
and tail, distance between the next head and tail, and initial
angle of the tail relative to the head, respectively. Angle «,
between the next heading of the leader and a vector pointing
from the leader to the tail at the next time, represents the
angle required to detect the group tail.

can be observed that the torus, torus/twist/dumbbell,
worm/twist/dumbbell, and worm phases appear in the
top-left, middle top-left, middle bottom-right and top-
right blocks of the -\ space in fig. 3(a), respectively.
The phase map shows that the tendency of the polarized
motion is intensified with increasing A\. Meanwhile, the
centripetal force increases with ascending view angle 3
in low A scenario. Once A increases beyond a threshold
(Ae = 1.13), the increase of § will lead to a polarized pat-
tern like a worm (the top-right block of the 8-\ space in
fig. 3(a)). To quantify the phase transition, we present
a heat map in the V. (respectively, V,,,) space in fig. 3(b)
(respectively, fig. 3(c)), which exhibits the tendency of cir-
cular (respectively, polarized) motion with 8 and . The
contours depicted in the V. heat map suggest that large
(6 > 2.5) or small (8 < 2.1) view angles have little influ-
ence on the phase transition due to the fringe effect. The
descending tendency of V. shown in fig. 3(b) corresponds
to the ascending trend of V,, in fig. 3(c), as a consequence
of the extreme opposite motion patterns exhibited by torus
(Vin =0, Ve >~ 1) and worm (V,,, >~ 1, V. ~ 0). Distinc-
tively, the boundaries of the four phases surface can be
used to predict the phases.

To investigate the phase transition mechanism more
carefully, we conduct a qualitative analysis. Indeed, a
rotational pattern emerges when the group head turns
sufficiently sharply to meet its tail [32]. To reveal the
forming criterion for the rotational patterns, i.e., torus,
dumbbell and twist, we quantitatively find the critical
state, where the transition occurs as shown in fig. 4. As
can be seen, when the tail of a group enters the vision
cone of its head, the head will begin to deflect around
due to the centripetal attraction by the group tail. The
angle of this deflection, «a, determines whether the group
will transform into rotating patterns or remain a worm.
More precisely, given a fixed velocity vg, initial angle
¢ and head-to-tail distance d, the parameter « shrinks
with increasing the defection angle |f|dt. When a de-
scends to be less than the view angle (3, implying that
the head still captures its tail, the transition changes from
worm to torus. Otherwise, the group tail will be lost to

\
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Fig. 5: Evolution of angle required to detect group tail a (a)
and the proportion of rear attraction to front attraction 2;‘

(b) with increasing attraction tuning parameter \ for different
view angle (3.

its head, therefore such transition will not happen. To
give a geometrical explanation, we assume that the cur-
vature of the pattern depicted in fig. 4 is constant, and
hence it can be regarded as an arc. Thereby, one has
sin(¢ + a + |0|dt — B)vodt = sin(a+ ||dt — £)d — sin avodt
and ¢ = m — (3, which immediately leads to

sin(28 — a — ysin(A\G)dt)vedt =

sin(a + v sin(AB)dt — £)d — sin awgdt, (2)

with the turning rate |0 = vsin(A\3) as shown in fig. 4.

Recall that o < [ ensures the group head to turn a
sufficiently large angle to capture its tail. Hence, as can
be seen, with the same ||, the index a descends as the
head-tail distance d increases. Thus, d = R determines
the lower bound of . In such a situation, only worm is
formed when « > 3, otherwise rotating patterns appear.
Thus, it has been verified that a larger « indicates an
enhanced tendency of transition from a rotating pattern
to a polarized one like the worm.

Now, we solve eq. (2) with parametersy =5,d = R =1,
v =1 and dt = 0.1, so as to quantify the correlation be-
tween o and \. For A € [0.5,1.3], the numerical solution
is exhibited in fig. 5. Minimal value appears at %, where
attraction peaks at the edge of the vision cone. Then, the
index a monotonously increases with increasing A. Once
A grows over a threshold (e.g., A = 1.13 for 8 = 2.6, as de-
picted in fig. 5(a)), where the required detection angle « is
equivalent to the view angle 3, all rotating patterns cannot
be maintained because the deflection is not large enough.

Next, we increase [ to be in the range of [2,2.6]. To-
gether with o < [, the result predicts the boundary of
rotating patterns as well as worm coexisting phase and
the worm phase, as the dotted lines shown in the top-
right part of fig. 3(b). This quantitatively verifies that the
boundary in fig. 3(b) matches the observation of the phase
transition in fig. 3(a) quite well. In addition, close to the
boundary where o ~ (3, the head-tail distance of the worm
in fig. 4 is stationary, which well explains the emergence
of the rotating arcs.

Now, we illustrate the polarized pattern of the critical
state shown in fig. 4, with sufficient attraction yielded by
front neighbors. Once such a critical state is formed, bidi-
rectional milling torus can no longer emerge, because the
group leader will only detect its tail from one side. So, for
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the emergence of torus phase, more attraction from the
rear is required for the particle with symmetrical vision to
turn around from either side.

Next, we calculate the proportion of rear attraction to

fg sin(Mges)d0e s

12 sin(Aaes)d0e s
Ayf denote the attractions from front and rear, respec-
tively, and 04.f is the deflection angle from the moving
direction. The angle of A, is defined as f4cy € [, 3] and
Af as 405 € [0, T

The numerical solutions with different  are exhibited
in fig. 5(b). The boundary between torus and other ro-
tating patterns can be calculated, assuming 1’3—; = 1. The

front attraction, as 1‘2—; , where A, and

corresponding results are shown as dotted lines in the top-
left part of fig. 3(b). We differentiate torus phases from
rotating chains by V. =~ 0.94 in the heat map as shown
by fig. 3(b) with solid lines, as few rotating chains appear
for V. > 0.94. Significantly, the boundary identified by
V. =~ 0.94 nicely fits the value of ﬁ; = (.88, as shown
in fig. 5(b) and fig. 3(b). Furthermore, more elongated
group patterns, such as twist and dumbbell, emerge from
the increasing tendency of the polar motion caused by in-
creasing A or reducing (. Specifically, dumbbell is formed
when the transformation state in fig. 4 is lengthened be-
yond the detection zone of the group head, hence the head
captures the middle part of the group instead of the tail.
The analytical result is thus verified.

Conclusions. — In this letter, we have proposed a min-
imal attraction model with adjustable vision distribution
to mimic the distinct focusing motional directions of dif-
ferent animals in nature. Four distinguishing dynamical
patterns, i.e., torus, dumbbell, twist and worm, are ob-
served by tweaking two parameters: attraction parameter
A and view angle 8. Quantitative analysis is presented
to explain the phase transition mechanism, which can be
used to predict the final patterns. Our results shed some
lights onto the mechanism of multiple flocking formation
observed in nature, such as rotational patterns in fish
schools [33] and the transition from file formation to encir-
cling motion found in sheep herds and ant colonies [33,34].

Our study is expected to provide a new perspective
for better understanding the emergence of various self-
organized biological and social collective motions arising
from inter-particle interactions. The phase transition trig-
gered by tuning a couple of system parameters may have
potential applications in formation control and coordina-
tion of industrial and engineering multi-agent systems, like
unmanned vehicle systems, unmanned water surface ves-
sels, and sensor networks.
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