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1.  Introduction

As particle image velocimetry (PIV) data have become widely 
available, the prospect of using these data to estimate force 
has attracted a great deal of research attention, e.g. Noca et al 
(1999), Van Oudheusden et  al (2006), David et  al (2009), 
Mohebbian and Rival (2012) and Limacher et  al (2019b). 
Such estimates could be of great use in applications where 
direct force measurement is difficult due to the intrusiveness 
of available measurement techniques, e.g. force transducers 
or strain gauges, or where it is simply impossible due to the 
kinematic or geometric complexity of the problem.

Methods of force estimation using PIV data can be organ-
ized into two broad categories: momentum methods and 
impulse methods (Rival and van Oudheusden 2017). In both 
methods, PIV data are acquired in a two or three-dimensional 
region surrounding the body of interest. Momentum methods 
require pressure information to be explicitly evaluated, while 
impulse methods require the evaluation of vorticity. As 
pointed out by Rival and van Oudheusden (2017), some of 
the persistent challenges in obtaining reliable force estimates 
include how near-body PIV data are treated, how pressure is 
estimated, effects of temporal and spatial resolutions, etc. In 
the present work, both momentum and impulse methods are 
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compared in their ability to accurately extract force estimates 
from two-dimensional velocity field data, using both numer
ical data and a PIV dataset.

The conservation of momentum for a stationary, non-
deforming control volume (CV) encompassing a stationary 
body leads to the following well-known equation for the fluid 
force:

F = − d
dt

(∫

V
ρudV

)
−

∫

S
ρu(u · n̂)dS −

∫

S
pn̂dS +

∫

S
(τ · n̂)dS,

� (1)
where V  is the fluid volume, S is the outer boundary of V , 
n̂ is the outward-facing normal on S, τ  is the viscous stress 
tensor, F is the instantaneous fluid force acting on the cyl-
inder, u is the velocity, ρ  is the fluid density, and p  is the 
pressure. Details on the implementation of planar momentum 
balance in three-dimensional flows can be found in McClure 
and Yarusevych (2019).

For a two-dimensional stationary body in a stationary, non-
deforming CV,  the impulse formulation (Noca 1997, Kang 
et al 2017) can be expressed as

F = −ρ
d
dt

∫

V
x × ωdV − ρ

∮

S

(
n̂ · u)

(
x × ω

)
dS

+ ρ

∮

S

(
1
2

n̂u2 − (n̂ · u)u
)

dS + µ

∮

S

(
x × ∂ω

∂n
− n̂ × ω

)
dS,

� (2)

where x is the position vector, and ωωω  is the vorticity. In the 
present work, the origin will be taken to lie at the centre of the 
body. The first term on the right-hand side is the rate of change 
of vortical impulse within the domain, and the second term 
is the net flux of impulse out from the domain, jointly repre-
senting the material derivative of impulse in V . The remaining 
two integrals jointly account for the material derivative of 
impulse in the unobserved domain external to V . Hereafter, 
the four integral terms on the right-hand side of equation (2) 
will be referred to as the impulse derivative term (or simply 
the impulse term), the impulse flux term, the velocity term, 
and the viscous term, respectively. Equation (2) is taken from 
equations (3.55) and (3.56) of Noca (1997), but with the vis-
cous term expressed in the more convenient form given by 
Kang et al (2017).

In the present study, discretized versions of the momentum 
and impulse force formulations are applied to two test cases: 
(i) data from a numerical simulation of the flow around a 
two-dimensional circular cylinder (of diameter D) in a steady 
freestream (U∞) at a Reynolds number of 150, and (ii) data 
from a PIV experiment of an accelerating cylinder in quies-
cent fluid at a peak Reynolds number of approximately 5100 
(Limacher et al 2019b). The first test case was considered to 
facilitate a comparative analysis of the sensitivity of the two 
methods to random errors and to spatio-temporal resolutions 
representative of PIV data. These same considerations have 
been studied for the momentum method alone by David et al 
(2009). The key contribution of the present work is the direct 
comparison of momentum- and impulse-based approaches 
on the same datasets. In order to mimic PIV datasets, the 
numerical solution was interpolated onto a square Cartesian 

grid. To analyze random-error sensitivity, synthetically gener-
ated random errors are added to the velocity fields prior to the 
calculation of force. The second test case provides an exper
imental comparison basis using a different flow scenario, 
demonstrating the feasibility of both methods under specific 
conditions. Details on the discretization of equations (1) and 
(2) are given in section  2, while the numerical and exper
imental results are presented in sections 3 and 4, respectively.

2.  Discretization of momentum and impulse 
equations

For the impulse formulation, second-order central difference 
schemes are used for spatial and temporal derivatives. For both 
methods, trapezoidal integration along each segment of the 
contour S is employed, and midpoint integration is employed 
for the area integral. In the impulse method, to avoid over-
estimating the contribution of data points adjacent to the con-
tour S, the contour is defined to lie halfway between the grid 
points used in the area integral. Data points on the contour are 
then linearly interpolated from the adjacent grid points. In the 
momentum formulation, the outer control surface is chosen 
to lie on grid points, and the contribution to the area integral 
by the boundary points is truncated instead. The influence of 
the contour definition on the final solution is expected to be 
minor when spatial discretization is sufficiently fine to resolve 
gradients in the field at the boundary.

For the momentum formulations, the pressure field is esti-
mated from the discretized velocity field and its derivatives 
by solving the Poisson equation using an Eulerian approach 
(de Kat and van Oudheusden 2012) with boundary condi-
tions and source terms computed from the PIV data (van 
Oudheusden 2013). Since different boundary conditions 
exhibit different sensitivities to experimental error (Pan et al 
2016), two versions will be compared herein: the Neumann 
case, where Neumann boundary conditions are employed 
on all the cylinder and domain boundaries, and the Dirichlet 
case, where Neumann conditions are employed on the cyl-
inder, upstream and downstream boundary conditions, and 
Dirichlet boundary conditions are employed on the top and 
bottom domain boundaries. For the Dirichlet condition, the 
pressure on the boundary is set using an extended form of the 
Bernoulli equation, valid for unsteady, irrotational flow with 
small mean velocity gradients (de Kat and van Oudheusden 
2012). The Laplacian of the pressure field is discretized 
using a five-point second-order central difference scheme, 
which entails the use of ‘ghost grid points’ at the boundaries 
(McClure and Yarusevych 2017a).

As will be demonstrated later, errors in the impulse-based 
force estimates are exacerbated by the presence of vorticity 
on the outer control surface. As a result, two versions of the 
impulse formulation are presented: one with a static CV, and 
one with a dynamic CV wherein the downstream plane loca-
tion, xD, is selected at each instant in time to minimize the 
integral of enstrophy on S. Since equation  (2) is valid only 
for a static CV, the force at each instant for the dynamic CV 
method must be calculated from a series of three data points 
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to permit the approximation of the time derivative of impulse 
by central differencing. For the numerical data, the domain of 
possible downstream plane locations is x∗D = xD/D ∈ [5, 9], 
where D is the cylinder diameter. The downstream extent of 
this domain, though likely inconvenient to resolve in PIV 
investigations, is employed here to demonstrate the possibility 
of error reduction. The control volumes employed for the dif-
ferent methodologies are listed in table 1, expressed in terms 
of the normalized coordinates x*  =  x/D and y *  =  y /D, with 
the origin at the centre of the cylinder. Likewise, the distance 
between grid points of the discrete dataset, h, is normalized 
as h*  =  h/D.

3.  Numerical investigation

3.1.  CFD methodology

A solver from Fluent 15.0 was used to compute the unsteady, 
incompressible flow around a two-dimensional circular cyl-
inder at a Reynolds number of Re = ρU∞D/µ = 150. A 
finite-volume approach was used, employing the SIMPLE 
algorithm (Versteeg and Malalasekera 2007) to solve the con-
tinuity and Navier–Stokes equations. The employed spatial 
discretization schemes are as follows: least-squares cell-based 
for gradient, second-order for pressure, and second-order 
upwind for momentum. Temporal discretization was achieved 
using a second-order implicit transient scheme. A constant 
velocity boundary condition was specified on the upstream 
face, and an outflow boundary condition was specified on the 

downstream plane. The no-slip and impermeable boundaries 
were imposed at the cylinder surface, and the lateral outer 
domain boundaries were specified as impermeable but with 
zero shear.

The grid featured an O-grid block centred on the cylinder 
surrounded by rectangular grid blocks. A sample image of 
the computational domain and grid is shown in figure  1. 
The calculation domain extended 20 diameters upstream, 
30 diameters downstream, and 20 diameters to either side of 
the cylinder. For  −2.5  <  x*  <  12.5 and  −2.5  <  y *  <  2.5, 
the nominal grid spacing is h  =  0.01D. This refinement in 
the wake was necessary to prevent numerical diffusion that 
would artificially decrease the calculated magnitude of the 
vortical impulse. Outside of this region, the grid coarsens 
towards the boundaries, with the cell aspect ratio growing 
to a maximum of 20 at the boundaries. Adjacent to the 
cylinder, the radial spacing of the grid is further refined 
to 0.005D, yielding a maximum value of y+max = 0.322 at 
the cylinder surface. The resulting computational grid 
is over 1.7 million nodes, and a constant time step of  
∆t = 0.005s was used.

The solution was initialized by interpolating a transient 
solution from a coarser grid onto the finer grid described 
above. The coarse grid simulation was run until the formation 
of a stable and symmetric vortex street was observed. After 
interpolation to the finer grid, the simulation was run until the 
mean drag and root-mean-square (RMS) lift coefficients had 
reached an acceptable level of convergence, as demonstrated 
in figure 2 for t∗ = tU∞/D � 0.

Table 1.  Control volume definitions for various methods. The location of the downstream face, x∗D ∈ [5, 9], varies in the dynamic CV 
definition so as to minimize the integral of enstrophy on S. h* is the spatial resolution of the discrete field data (normalized by cylinder 
diameter).

Methodology CV definition: [x∗min, x∗max, y∗min, y∗max]

Momentum, Dirichlet BC: [−1, 1, −1, 1]
Momentum, Neumann BC: [−1, 1, −1, 1]
Impulse, static CV: [−1, 5, −2.4, 2.4] + 0.5h∗[−1, 1, −1, 1]
Impulse, dynamic CV: [−1, x∗D, −2.4, 2.4] + 0.5h∗[−1, 0, −1, 1]

)b()a(

Figure 1.  Grid used for the simulation: (a) full domain, showing only every second node for clarity; (b) immediate vicinity of the cylinder, 
showing the O-grid and the surrounding rectangular grid blocks (showing only every tenth node).
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The present simulation yielded a mean drag coefficient of 
CD = 1.295, a Strouhal number of St = fD/U∞ = 0.178, and 
an RMS lift coefficient of CL,RMS = 0.303. These results are in 
good agreement with other numerical simulations (Henderson 
1995, Marzouk et  al 2007, Morton and Yarusevych 2010, 
McClure et  al 2015) and experiments (Norberg 2003, 
Wieselberger 1921) of the flow around nominally two-dimen-
sional circular cylinders at a Reynolds number of Re = 150, 
as summarized in table 2. Apart from the present results, all 
values in table 2 are taken directly from table 1 of McClure 
et al (2015), being reproduced here for ease of reference.

3.2.  Synthetic PIV error and parameter space

The numerical solution data were interpolated onto a square 
Cartesian grid of h*  =  h/D  =  0.01 with a dimensionless time 
separation of ∆t∗ = ∆tD/U∞ = 0.075 between consecutive 
fields. Spatial and temporal resolutions were then varied by 
under-sampling the data from the interpolated grid (table 3), 
spanning 0.01  <  h*  <  0.1 in space and 0.075 < ∆t∗ < 0.3 in 
time.

To quantify the sensitivity of the force estimations to 
random measurement errors, synthetic random errors were 
added to the sampled velocity fields representative of those 
typically encountered in PIV experiments. Figure 3(a) shows 
a single instantaneous realization of the generated stream-
wise velocity error for a spatial resolution of h*  =  0.02, and 
figure 3(b) shows the corresponding instantaneous normalized 
vorticity field, ω∗ = ωD/U∞, with the generated errors. The 
standard deviation, (σ) of the error at a given spatial loca-
tion and time is prescribed using the two-parameter model of 
McClure and Yarusevych (2017b), expressed as

σ = Umax

[
σglobal + σflow

|∇∇∇u|
max(|∇∇∇u|)

]
.� (3)

Figure 2.  Instantaneous force coefficients, CD,CFD and CL,CFD, calculated directly from surface stresses on the cylinder (black lines) versus 
dimensionless time, t*: (a) drag coefficient; (b) lift coefficient. The blue lines give the moving averages, CD,CFD and CD,CFD, over one-half 
of a shedding period for the drag, and one full shedding period for the lift. The dashed blue lines are extensions of these moving averages 
within one averaging window from the ends of the signal.

Table 2.  Strouhal number, RMS lift coefficient, and mean drag coefficient for the present simulation, alongside numerical and experimental 
results from the literature. All values apart from the present work have been copied directly from table 1 of McClure et al (2015).

Study Type St CL,RMS CD

Present results Numerical 0.178 0.303 1.30
McClure et al (2015) Numerical 0.185 0.366 1.33
Morton and Yarusevych (2010) Numerical 0.190 ... 1.35
Marzouk et al (2007) Numerical 0.179 0.349 1.31
Norberg (2003) Experimental 0.183 0.356 ...
Henderson (1995) Numerical ... ... 1.36
Wieselberger (1921) Experimental ... ... 1.30

Table 3.  Parameter space of spatial and temporal resolutions 
investigated using the CFD results.

Meas. Sci. Technol. 31 (2020) 054001
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The first term specifies a global source of error, uniform across 
the domain, and the second term lends errors proportional 
to the local magnitude of the velocity gradient tensor. In the 
present work, except where otherwise stated, σglobal = 0.5% 
and σflow = 7.5%. The prescription of a constant σflow, rather 
than the more general relation of McClure and Yarusevych 
(2017b) involving the spatial and temporal resolutions of PIV 
acquisition, is justified if we presume the experimentalist varies 
the laser pulse separation for each case to maintain a constant 
interframe particle displacement in the freestream. The selected 
0.5% error corresponds to a 0.06 px peak detection error when 
the maximum particle displacement is half of a 24 × 24 px 
interrogation window. This places a lower bound on the time 
separations in which the constant free-stream error assumption 
is valid, since the time separation between vector fields cannot 
be less than the pulse separation. Hence, random-error sensi-
tivity of the force estimation methods is only studied for cases 
where ∆t∗/4h∗ > 0.5 (see table 3). To model the spatial cor-
relation of PIV errors due to an interrogation window overlap 
of 75% (Sciacchitano and Wieneke 2016), the uncorrelated 
random error field generated at each instant is convolved with 
a 7 × 7 matrix that results in a positive autocorrelation of the 
errors, decreasing linearly with spatial separation for spatial 
separations less than one interrogation window width.

3.3.  Force estimates from numerical data

Force coefficient estimates with the subscripts mom and imp 
to refer to the momentum and impulse formulations. The 

additional subscripts Neu and Dir  denote the two alterna-
tive boundary conditions used in the momentum method, 
and the additional subscript dyn refers to the variation of the 
impulse method in which the CV is varied in time to minimize 
enstrophy on S. The subscript CFD refers to force coefficients 
obtained directly by integration of the stresses on the cylinder. 
The instantaneous lift and drag are normalized by 1/2ρDU2

∞ 
to yield lift and drag coefficients CL and CD, respectively.

Figure 4 plots the results of each of the force estimation 
methods for the finest spatial and temporal resolutions avail-
able, that is, h*  =  0.01 and ∆t∗ = 0.075, without random error 
added to the velocity fields. The impulse method with a static 
CV exhibits periodic errors in both lift and drag relative to the 
CFD results. The occurrences of greatest instantaneous error 
are correlated with vortices crossing the contour S. Using a 
dynamic CV, with a downstream face situated between vor-
tices and advancing with the wake, instantaneous errors are 
greatly reduced. The remaining erroneous spikes in CD,imp,dyn 
and CL,imp,dyn occur when the downstream face (containing 
the lowest enstrophy) reaches the limits of the permissible 
domain and then discontinuously jumps to an upstream spatial 
location. The momentum method exhibits low error in lift and 
drag, with a minor bias error in drag estimates. Given the use 
of a Neumann boundary condition on the downstream wake 
plane, the momentum method is not affected by the presence 
of vorticity on the outer contour.

Root-mean-square (RMS) errors in the drag and lift coef-
ficients, εRMS

D  and εRMS
L , are calculated over two complete 

shedding cycles. Figure  5 shows the RMS errors for each 

Figure 3.  Example of the synthetic random error applied to the sampled cylinder flow velocity data: (a) instantaneous magnitude of the 
streamwise velocity error, (b) instantaneous vorticity field with errors.

Figure 4.  Force coefficients for the finest resolution case h*  =  0.01, ∆t∗ = 0.075: (a) drag coefficients; (b) lift coefficients.

Meas. Sci. Technol. 31 (2020) 054001
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method, identified by the earlier defined subscripts, for the 
combinations of spatial and temporal resolutions studied. The 
momentum method yields lower RMS errors than the impulse 
method for all cases other than for drag at coarse spatial reso-
lutions, i.e. h∗ � 0.05 (figure 5(a). For the impulse method, 
the use of a dynamic CV reduces the RMS errors to levels 
similar to the momentum method, except for the two coarsest 
temporal resolutions where more pronounced deviations are 
observed in the lift data (figure 5(d)).

The impulse method exhibits minima in the RMS error for 
both drag and lift at a spatial resolution of h*  =  0.05 in fig-
ures 5(a) and (b). This minimum can be explained by the inter-
action between the impulse-derivative and impulse-flux terms 
(the first two terms on the right-hand side of equation (2)), the 
sum of which represents the material derivative of impulse 
in V , as presented in figures  6(a) and (b). Small relative 
errors in the impulse-derivative or impulse flux terms lead 
to errors of significant relative magnitude in their sum. With 
increasing h*, calculated vorticity values decrease, reducing 
the value of both of these terms, and thus also the relative error 
in their sum. This reduction can result in a net decrease in 
error for moderate increases in h*, but will eventually yield to 
increasing errors as the calculated vorticity becomes increas-
ingly inaccurate. The drag and lift contributions of the mate-
rial derivative of impulse are compared to the contributions 
from the velocity term and the viscous term in figures  6(c) 
and (d). The out-of-phase behaviour of the impulse material 
derivative and the velocity term is unsurprising, given that the 
velocity term can be equivalently expressed as an area integral 
of the Lamb vector, u × ω (Wu et al 2015). The non-negligible 

contribution of the viscous term to the lift force is due to the 
long moment arm between the origin and the downstream 
plane in the x × ∂ω/∂n term.

Figure 7 presents the calculated lift and drag coeffi-
cients, without random error added to the velocity fields, at 
varied spatial resolution at a constant temporal resolution of 
∆t∗ = 0.075. The errors for the static-CV impulse method 
are of near-zero mean, but are not negligible instantaneously 
(see figures 7(a) and (b)). The use of a dynamic CV signifi-
cantly reduces the instantaneous errors, leaving minor erro-
neous spikes where the CV discontinuously jumps upstream 
(figures 7(c) and (d)). A bias in the drag coefficients for the 
momentum method, which grows as the spatial resolution 
coarsens (figure 7(e)), is found to be the cause of the higher 
RMS errors seen in figure  5(a); however, the lift estimates 
are not affected significantly by increasing h* (figure 7(f)). 
The results using the Dirchlet and Neumann boundary condi-
tions are nearly identical, so the latter has been omitted from 
figure 7 for brevity.

The impulse method is highly sensitive to the coarsening of 
the temporal resolution (figures 5(c) and (d)). As ∆t∗ increases, 
the vortical structures in the wake travel an increasing fraction 
of a cylinder diameter between vector fields, increasing trun-
cation error in the approximated time derivative of impulse. 
Contrary to the fine temporal resolution cases, the dynamic 
CV method fails to bring the errors down to a similar magni-
tude as the momentum method for the greater ∆t∗ cases. In 
contrast, the two momentum method variants both agree with 
the CFD forces very well and exhibit only minor variation for 
the range of temporal resolutions considered here.

Figure 5.  RMS errors for each of the force estimation methods for varied temporal and spatial resolutions. (a) and (b) constant temporal 
resolution ∆t∗ = 0.075, varied spatial resolution; (c) and (d) constant spatial resolution h*  =  0.02, varied temporal resolution. Drag 
coefficients are on the left, lift coefficients are on the right.

Meas. Sci. Technol. 31 (2020) 054001
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The level of temporal resolution needed for adequate appli-
cation of the impulse method requires a ∆t  that is at least 
an order of magnitude smaller than the convective time scale 
of the flow of interest, i.e. D/U∞ in the present case. In the 
present results, RMS errors below 0.05 in both lift and drag 
coefficient were achieved using the dynamic-CV method 
only when ∆t∗ was reduced to 0.075, but similarly low errors 
were not achieved for any spatiotemporal resolution using the 
static-CV method, suggesting that greater temporal resolution 
is required to resolve the contributions due to vorticity flux 
across the control surface.

3.4.  Force estimates from numerical data with correlated 
random error added to velocity fields

For the case of h*  =  0.02 and ∆t∗ = 0.075, figure  8 shows 
the estimated forces for the momentum method and the static-
CV impulse method after correlated random error has been 
added to the velocity fields. The instantaneous error for the 
impulse method is consistently an order of magnitude greater 
than the momentum method. The errors are manifested in 
high-frequency content, suggesting that the time derivative in 
the first term of equation (2) has amplified the random error 
due to the presence of a small ∆t∗ in the denominator of the 

central difference derivative approximation. Since these errors 
remain of near-zero mean, it is plausible that they could be 
filtered in cases with sufficient temporal resolution. Filtering, 
smoothing, or replacing the evaluated integral 

∫
V x × ωdV  

with a fitted polynomial prior to time differentiation, as done 
by Lin and Rockwell (1996), would reduce the random error 
in the resulting force estimates. This has not been considered 
here, however, since random error propagation through the 
remaining terms of the impulse equation remains significant, 
as will be discussed in section 3.5.

Figure 9 shows the RMS errors in drag and lift coefficients 
for the momentum and impulse methods after adding random 
error to the velocity fields. In these plots, RMS error is defined 
with respect to the previously obtained force estimates, indi-
cating how error is increased by the presence of random 
velocity error rather than reporting total absolute error relative 
to the CFD results. RMS errors and force coefficients defined 
in this way are denoted by the tilde symbol, e.g. ε̃RMS

D,imp. Both 
variants of the momentum method show minor sensitivity to 
changes in temporal resolution, with only a slight decrease in 
error with increasing ∆t∗. When h* is varied in figures 9(a) 
and (b), the minima at h*  =  0.02 suggest that random error 
propagation through the momentum force formulation 

Figure 6.  (a) and (b): The impulse derivative (blue line) and impulse flux (red line) terms exhibit large instantaneous contributions to drag 
and lift, but they sum to a relatively smaller signal (black line), representing the material derivative of impulse in the domain V . (c) and (d): 
Drag and lift contributions of the impulse material derivative (black line), the velocity term (green line) and the viscous term (magenta line).

Meas. Sci. Technol. 31 (2020) 054001
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becomes more significant as h* decreases. On the other hand, 
truncation error propagation through the force formulation is 
dominant for h∗ � 0.05. The impulse method exhibits a min-
imum in RMS error with respect to both spatial and temporal 
resolutions (figures 9(a)–(d)). As noted in the discussion of 
figure 5, the minima with respect to h* in figures 9(a) and (b) 
can be explained in terms of reduced error in the sum of the 
impulse-derivative and impulse-flux terms. The minima with 
respect to ∆t∗ in figures 9(c) and (d) can be explained by two 
competing factors; the amplification of random error through 
the impulse time derivative decreases as ∆t∗ increases, but the 
presence of erroneous vorticity on the outer contour increas-
ingly exacerbates error in the sum of the impulse-derivative 
and impulse-flux terms as ∆t∗ increases.

A similar random-error sensitivity analysis for the dynamic-
CV impulse method has not been conducted. To provide a 

best-case representation of the random-error sensitivity of the 
dynamic CV method, it is advisable to undertake this analysis 
in conjunction with a more sophisticated method of deform-
able CV definition than that used herein, such as a method 
that identifies material curves. Nonetheless, we may estimate 
the best-case improvement in random-error sensitivity that 
may be achieved by a dynamic-CV approach by considering 
the random error propagation through each of the terms in the 
impulse formulation. This analysis is presented in section 3.5.

3.5.  Extended random error analysis for the static-CV  
impulse method

Random error does not propagate equally through each term 
in the impulse formulation. The RMS error of each term, 
as calculated using the velocity fields with error added, are 

Figure 7.  Effect of spatial resolution on force estimates for the various methods at a fixed temporal resolution of ∆t∗ = 0.075. (a) and (b): 
Impulse method for a static CV; (c) and (d) impulse method for a dynamic CV; (e) and (f) momentum method with Dirchlet BC.
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shown in table  4. These values are calculated relative to 
the same terms evaluated without error, and normalized in 
the same manner as the force coefficients. The errors in the 
n̂u2 and (n̂ · u)u components of the velocity term are anti-
correlated, and their sum exhibits lower RMS error than the 
(n̂ · u)u component alone. Combining the RMS errors of the 
four terms according to εcomb = (1/4

∑4
i=1 ε

2
i )

1/2 (as shown 
in the ‘combined’ row in table 4), it is similar to the RMS 
error in the total force (as shown in the ‘total’ row in table 4), 
indicating near independence of the random error contribu-
tions of the individual terms.

The viscous term’s RMS error contribution is several times 
greater than its peak drag contribution. If only drag estimates 
were of interest, it might be advisable to neglect the viscous 
term when Reynolds number is of the order 103 or greater, 
reducing error propagation while introducing little systematic 
error. However, as shown in figure  6(d), the instantaneous 
lift contribution of the viscous term is of the same order as 
the lift amplitude, and thus it cannot be neglected unless a 
shift of origin is considered. Moving the origin to lie on the 
downtream plane, which would render the lift contribution 
of the viscous term zero, was done by Noca (1997) to yield 

Figure 8.  Comparison of momentum and impulse based force estimates for h*  =  0.02 and ∆t∗ = 0.075 with correlated random error added 
to the velocity fields: (a) drag coefficients, C̃D,(·); (b) lift coefficients, C̃L,(·).

Figure 9.  RMS errors in drag coefficients (left) and lift coefficients (right) with correlated random error added to the velocity fields: (a) and 
(b) variable h*, constant ∆t∗ = 0.225; (c) and (d) variable ∆t∗, constant h*  =  0.02.

Meas. Sci. Technol. 31 (2020) 054001



E Limacher et al

10

improved lift estimates. The velocity term is responsible for 
an order of magnitude less error propagation than the others. 
The impulse derivative and impulse flux terms are the most 
significant propagators of random error.

In cases where it is possible to identify a deforming con-
trol volume that avoids the wake vortices, as performed for 
the ‘dynamic CV’ cases above, random and systematic errors 
in the impulse method could be reduced. If one can identify 
a control surface on which ω ≈ 0 and ∂ω/∂n ≈ 0, as sug-
gested by Kang et al (2017), then equation (2) reduces to

F = −ρ
d
dt

∫

V
x × ωdV + ρ

∮

S

(
1
2

n̂u2 − (n̂ · u)u
)

dS.� (4)

Note that the velocity term can be replaced by an integral of 
the Lamb vector, u × ω, to recover the formulation presented 
by Kang et al (2017). It remains for future work to determine 
whether such a substitution would have any effect on system-
atic or random errors when using typical experimental data. 
In either case, the simplification brought by a deformable CV 
definition eliminates errors associated with the cancellation 
of impulse and impulse-flux contributions, as discussed pre-
viously, and it eliminates the random error associated with 
the impulse flux and viscous terms, with the former being the 
largest single contributor. This simplification would reduce 
the total RMS error to near that of the impulse term alone. 
However, the drag and lift RMS errors in the impulse deriva-
tive in table  4 (0.357 and 0.692, respectively) are still sig-
nificantly higher than the RMS errors for momentum-based 
methods for any spatial or temporal resolution in figure  9. 
In order to further reduce random error in the impulse-based 
force estimates, additional post-processing of the velocity 
field after the addition of synthetic random error needs to be 
considered.

Two common steps in the post-processing of PIV velocity 
fields are investigated to show their effect on random error 
propagation: (i) outlier detection and removal, and (ii) spatial 
filtering. The universal outlier technique of Westerweel and 
Scarano (2005) is employed; outliers are identified as those 
points whose velocities are not within 2.5 standard devia-
tions of their eight closest neighbours, and are replaced by 
the mean of those same points. The resulting fields are then 
subject to Gaussian filters with window sizes ranging from 
3 × 3 to 25 × 25. The window width, w, and standard devia-
tion of the Gaussian curve, c, are related for all tested filters 
as w  =  4c/h*  +  1. The corresponding range of normalized 
standard deviations is from c/D  =  0.01 to 0.12. Figure 10(a) 
shows a snapshot of the normalized vorticity field with random 
error added at t*  =  0; figure 10(b) shows the vorticity field cal-
culated after outlier removal and replacement and Gaussian 
filtering of the velocity fields, using c/D  =  0.03 (over a 7 × 7 
window). For this analysis, resolutions of h*  =  0.02 and 
∆t∗ = 0.075 are used.

Figure 11 shows mean and RMS errors in estimated drag 
coefficients for a range of synthetic random error levels using 
the static-CV impulse method. As before, errors are calculated 
relative to the force estimates made in the absence of random 

velocity error, not relative to the CFD results. Maximum 
standard deviations of the shear-dependent synthetic error of 
σflow = 0.019, 0.038, and 0.075 were tested, and the corre
sponding standard deviations of the global synthetic error 
were σglobal = 0.0013, 0.0025 and 0.005. Recall that the values 
used in the generation of figures 8 and 9 were σflow = 0.075 
and σglobal = 0.005. In this analysis, the mean drag bias is sub-
tracted prior to calculating RMS error to decouple systematic 
and random errors. This differs from the error results reported 
in the conference paper upon which the present manuscript is 
based (Limacher et al 2019a), which are reproduced in fig-
ures 5 and 9, and in which the calculated RMS errors include 
contributions from bias errors and zero-mean random errors.

All four subplots of figure  11 demonstrate that the out-
lier detection and removal had a negligible effect on both the 
random and mean errors in lift and drag. As the Gaussian filter 
standard deviation is increased from c/D  =  0.03 to 0.07 and 
0.11, the RMS error decreases substantially in both lift and 
drag (figures 11(c) and (d)), but this comes at the cost of an 
increasing bias (underprediction) in the drag coefficient esti-
mate (figure 11(a)). Figure  12 shows the force histories for 
these post-processing variants for the error level σflow = 0.019, 
demonstrating a decrease in random error for both lift and drag 
estimates, and the accompanying drag underprediction. The 
random error propagated to the final force histories appears 
to depend roughly linearly on the uncertainty in the velocity 
fields.

The systematic biases introduced by the Gaussian filter can 
be seen more clearly by considering velocity fields without 
random error added. Figure  13(a) and (b) show the calcu-
lated drag and lift coefficients using the static-CV impulse 
method (with h*  =  0.02 and ∆t∗ = 0.075) after application 
of Gaussian filters with a range of c/D. The increasing filter 
standard deviation blunts the lift peaks slightly, and yields a 
significant and increasing underprediction of drag. Figure 14 
plots the calculated mean error in the drag estimates over the 
same range of c/D. Even modest filtering introduces a notice-
able drag bias. The lowest two values of c/D in figure  14 

Table 4.  Normalized RMS error contributions from each term in 
equation (2), calculated relative to their values in the absence of 
random velocity error. Resolutions were h*  =  0.02 and ∆t∗ = 0.075 
for this analysis. The ‘combined’ row shows the RMS of the four 
contributions above it. The ‘total’ row represents the RMS error of 
the total force, as previously shown in figure 9. The similarity of 
the ‘combined’ and ‘total’ values indicates that the random errors in 
each term are nearly independent of one another.

Term / RMS error RMS error

Drag Lift

Impulse derivative 0.357 0.692
Impulse flux 0.411 1.165
Velocity term 0.019 0.020
Viscous term 0.200 0.366
Combined 0.580 1.404
Total 0.588 1.457
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correspond to the smallest possible filter windows of 3 × 3 
and 5 × 5, but even these yield bias errors of about 3% and 
11%, respectively, relative to the mean drag coefficient of 1.30 
from the unaltered CFD results.

Other types of spatial filters have not been considered here, 
although the ‘denoising filter’ available in LaVision’s DaVis 
software is briefly discussed in section  4.1. Since common 
filters are based on the limited subset of data in the neigh-
bourhood of a given location, they are prone to attenuating 
local gradients, and thus the use of global data conditioning 
methods, such as proper orthogonal decomposition (POD) 
based filters (Raiola et al 2015), is of interest and should be 
explored in future studies.

4.  Experimental investigation

4.1.  Experimental methodology

The PIV dataset used in the present investigation is taken from 
the work of Limacher et  al (2019b). A brief description of 
their methodology now follows, but the reader should refer to 
the original work for further details. The cylinder was towed 
through quiescent water with a triangular acceleration profile, 
with a peak dimensionless acceleration of a∗

p = apD/U2
max = 1, 

where ap  is the peak instantaneous acceleration. One trial from 
the highest acceleration case (a∗

p = 1.00) of the original 
work is considered. The acceleration phase is complete at a 

)b()a(

Figure 10.  Snapshot of the normalized vorticity field at t*  =  0 calculated from velocity fields with a spatial resolution of h*  =  0.02 and 
with correlated random error added: (a) no post-processing; (b) after outlier removal and replacement and a Gaussian filter of standard 
deviation c/D  =  0.03 applied over a 7 × 7 vector window.

Figure 11.  Mean (bias) error (a,b) and RMS errors after bias removal (c, d) in drag (a, c) and lift (b, d) coefficient for three levels of 
random error, represented by σflow, at various stages of post-processing: without post-processing (red X markers); after outlier detection and 
removal (squares); and after outlier detection/removal plus spatial Gaussian filters of varying standard deviation, c/D (circles, downward-
pointing triangles, upward-pointing triangles).
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dimensionless time of t∗ = tUmax/D = 2.0, where Umax  is the 
maximum velocity attained, corresponding to a peak Reynolds 
number of approximately Re = UmaxD/ν = 5100. The forces 
calculated using the two methods are compared to the direct 
measurements obtained using a six-axis force transducer (ATI 
Mini40) mounted above the waterline. Based on a static cali-
bration, the uncertainty of the associated force measurements 
were estimated to be within 2% for the conditions investigated 
here. A dynamic calibration was also undertaken to remove 
the inertial bias experienced due to the acceleration of the 
device, as described at length in Limacher et al (2019b).

4.2.  Experimental results

Both force estimation methods utilize a control volume that is 
fixed relative to the cylinder. During the time interval inves-
tigated, no vorticity crosses the domain boundaries, allowing 
all of the contour integrals in the impulse formulation to be 

Figure 13.  Calculated (a) drag coefficients and (b) lift coefficients using the static-CV impulse method on velocity fields without added 
random error, and with no filtering applied (red line) and after applying Gaussian filters of increasing normalized standard deviation, c/D 
(gray lines of increasing darkness).
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Figure 14.  Mean bias (underprediction) in drag coefficient, 
calculated using the static-CV impulse method, versus normalized 
standard deviation (c/D) of the Gaussian filter applied to the 
velocity fields prior to force calculation. Each data point represents 
a two-vector increase in filter width from the data point to its left, 
giving window sizes of 3 × 3, 5 × 5, 7 × 7, etc.

Figure 12.  Calculated force coefficients versus t* using the static-CV impulse method on velocity fields with no error added (thick black 
lines), and with error (σflow = 0.019, σglobal = 0.0013) and subsequent post-processing, including outlier detection/removal (OR) and 
the application of a Gaussian spatial filter with normalized standard deviations of c/D  =  0.03 (blue lines), c/D  =  0.07 (red lines), and 
c/D  =  0.11 (green lines).
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omitted. The acceleration of the cylinder requires the addition 
of another term:

F = −ρ
d
dt

∫

V
x × ωdV + ρVb

duc

dt
,� (5)

where duc/dt is the cylinder acceleration, defined here to be 
positive, and Vb is the body volume (Limacher et al 2019b). 
This term is distinct from the classical added-mass force, 
since it lends a force in the same direction as the acceleration, 
not in opposition to it. Figure 15(a) shows an instantaneous 
vorticity field derived from the PIV measurements at t*  =  3.5 
(during the constant-velocity translation phase), with the 
black dashed line denoting the boundary of the control volume 
used to compute impulse (−1  <  x*  <  2, −1  <  y *  <  1), while 
figure 15(b) shows an instantaneous pressure field computed 
from the Poisson equation with all Neumann boundary con-
ditions, with the black dashed line denoting the boundary of 
the control volume used to compute the momentum balance 
(−1  <  x*  <  1, −1  <  y *  <  1). The Poisson equation is solved 
on a domain of  −2  <  x*  <  2, −2  <  y *  <  2, and the Neumann 
boundary condition near the cylinder surface is applied on a 
larger circle of radius r/D  =  0.55, in order to avoid boundary 
condition errors associated with computing temporal deriva-
tives near the moving cylinder surface. Since the contribution 
of pressure to the momentum balance is only through integra-
tion along the outer contour of the CV (equation (1)), the force 
estimate is insensitive to position of the inner Poisson equa-
tion boundary condition.

The force estimations from the impulse and momentum for-
mulations are compared to experimental force-balance data in 
figure 16. The compared data are low-pass filtered to remove 
frequencies associated with resonance vibrations of the model, 
which contaminate the transient measurements. The results 
of all methods produce signals that, once filtered, have high 
correspondence to the reference force balance measurements. 
The force estimates resolve the large initial peak in the force 
history during the cylinder’s acceleration phase. Both meth-
odologies underpredict the drag force slightly, but their fluctu-
ations exhibit high temporal correlation. This underprediction 
is more pronounced for the momentum formulation at t∗ � 2. 
This is attributed to the effect of finite spatial resolution on 
the Poisson pressure solution, resulting in an underprediction 
of pressure extremes in the stagnation region and low pres-
sure wake vortices (de Kat and van Oudheusden 2012). For 
the impulse formulation, it was previously speculated that the 
finite resolution of the PIV data may lead to an underpredic-
tion of the viscous drag component associated with computing 
the vorticity near the cylinder surface (Limacher et al 2019b). 
However, it now seems plausible that the 5 × 5 ‘denoising 
filter’ applied to the PIV velocity fields in the DaVis software 
is responsible for the bias error in the impulse-based drag esti-
mate, given that a 5 × 5 Gaussian filter applied to the numer-
ical data gave a drag underprediction of similar magnitude 
(see figure  14). Within the specified window, the denoising 
filter removes high-frequency noise by replacing velocity data 
with values interpolated on a second-order polynomial surface 
fitted through the original data (LaVision GmbH 2016).

5.  Conclusions

A comparative analysis of momentum and impulse-based 
methods of force estimation using two-dimensional velocity 
data has been carried out. The comparison considered the 
effects of spatial resolution, temporal resolution and random 
velocity error. The methods were applied to two datasets: a 
numerical dataset of the flow around a stationary circular cyl-
inder at Re = 150, and a PIV dataset of the flow around a 
cylinder accelerating from rest in a quiescent fluid. Almost 
universally, the impulse method was shown to exhibit greater 
errors when applied to the flow over a stationary model. 

Figure 15.  (a) Vorticity field with impulse formulation CV indicated with a black dashed line at t*  =  3.5 and (b) pressure field with 
momentum formulation CV indicated with a black dashed line at t*  =  3.5.

Figure 16.  Comparison of filtered force estimates for the 
accelerating cylinder experiment with filtered force balance data 
(CD,meas).
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The key exception is when using coarse spatial resolutions, 
for which an underestimation of drag is obtained using the 
momentum method. Addressing this shortcoming remains an 
important avenue for future work.

The impulse method also exhibits greater random-error 
sensitivity than the momentum method, which was estab-
lished by artificially adding spatially correlated random error 
to the velocity fields. Caution is advised when using spatial 
filtering of the velocity fields to attenuate random errors, as 
even the use of relatively narrow-window Gaussian filters was 
shown to cause a notable understimation in the drag estimates 
using the impulse method. The investigation of other types 
of spatial filters, or other methods of random error mitiga-
tion, such as truncation of a proper orthogonal decomposition 
(POD) series, are suggested for future work.

If one is interested mainly in accurate force estimates, and 
interest in a specific mode of physical interpretation is sec-
ondary, then the presented momentum method is a more robust 
choice than the impulse method, at least when vorticity is 
expected to cross the domain boundaries. A key motivation for 
the continued study of impulse methods is the appealing pos-
sibility of attributing force components to the evolution of spe-
cific vortical structures. Fortunately, the present work suggests 
that efforts to identify CVs that enclose such structures are also 
likely to reduce error by avoiding vorticity on the bounding 
control surface. Particularly suitable problems for the impulse 
method include starting flows, such as the surging cylinder 
case considered herein using PIV data, or cyclic movements in 
an otherwise quiescent fluid. The momentum method, on the 
other hand, can be applied with greater confidence to problems 
with a non-zero freestream flow and an established wake, pro-
vided sufficient spatial resolution is obtained.
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