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1.  Introduction

In modern industrial plants, soft sensor techniques have been 
widely applied since they are important for online process 
monitoring, the predicting of quality variability, and control 
strategy design [1–10]. On some occasions, soft sensors are 
used as alternatives or backups for hardware sensors, due 
to their good environmental adaptability, low maintenance 
cost, and real-time estimation capabilities. In particular, data-
driven soft sensor models have been extensively developed in 
recent decades since the cost of data collection and storage 
has fallen and the volume of data has grown in modern pro-
cess plants [11–14]. To construct data-driven soft sensors, cer-
tain easily measured process auxiliary variables are used to 

estimate the key variables that are difficult to measure, by con-
structing mathematical predictive models. In recent decades, 
various soft sensor methods have been applied in a number 
of industries. Among them, principal component regression 
(PCR) [15, 16] and partial least squares regression (PLSR) 
[17–19] are the most popular linear modeling methods, while 
support vector machines (SVMs) [20, 21] and artificial neural 
networks (ANNs) [22, 23] are the most commonly used non-
linear types. The recently developed deep learning has also 
been widely used for soft sensor applications [24, 25].

Typically, process data often presents high collinearities 
and strong correlations, because industrial plants are usually 
installed with a number of redundant sensors on site. If they are 
directly used to construct the regression models, it can cause 
algorithm instability, poor robustness, and inaccurate perfor-
mance of the soft sensor models. To handle the correlations 
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of process data, latent variable (LV) models are widely used 
to extract useful low-dimensional features from the original 
high-dimensional variables [26, 27]. In LV models, the input 
and output are linked by their shared latent variables. The LVs 
are a kind of abstraction and generalization of the original 
process variables, which directly affect the performance of the 
subsequent prediction. LV models can greatly reduce model 
complexity and improve the accuracy of soft sensors. Most 
LV models are based on the assumptions that the operation 
state of industrial processes is stable and that the collected 
data are independent and identically distributed (i.i.d.).

As a matter of fact, the static i.i.d. assumption is often not 
met in industrial data. On the contrary, in industrial processes 
there are often highly dynamic characteristics which change 
slowly. The temporal correlations between process data can 
affect the structure of soft sensor models. Naturally, it is nec-
essary to develop LV modeling methods that can deal with 
the dynamic characteristics. Recently, slow feature analysis 
(SFA), an important dynamic LV model proposed by Wiskott 
and Sejnowski [28], has been used to learn about time-related 
features referred to as slow features (SFs) [29–32]. It is neces-
sary that the SFs have minimum temporal variations, which 
means that the change of SFs should vary as slowly as pos-
sible. The invariant attributes of varying signals are very 
useful because most variances in process data, such as dis-
turbances to the environment, derive from inherent ‘common 
causes’ which vary quickly. SFA can extract LVs that are not 
related to each other and with different variation frequencies, 
when the inputs are driven by some inherent auto-correlation 
tendencies. Thus, SFA can be used to learn about dynamic 
data features in order to build a regression model for the pre-
dicting of quality.

In addition to the dynamic characteristic, nonlinear and 
time-varying process problems are also very common in 
actual industrial processes. In nonlinear time-varying pro-
cesses, the process models often change with varying running 
conditions. However, traditional SFA is a linear time-invariant 
model, which is limited in its ability to handle nonlinear and 
time-varying data relationships. To improve the prediction 
performance in nonlinear time-varying processes, local mod-
eling techniques have been developed, such as just-in-time 
learning (JITL) [33–35] and locally weighted learning (LWL) 
[36–38], which ensure that the model can track the most rel-
evant process state by constantly reconstructing local models 
for each query sample in an online manner. In JITL and LWL, 
it is assumed that all the historical data samples are stored 
in the database. Moreover, the predicted local model is built 
online upon querying dynamically. For online prediction, if a 
sample is obtained with its easy-to-measure input part and it 
is necessary to estimate the difficult-to-measure output part, 
this sample is called a query type. A local modeling technique 
can use linear models to approximate the complex nonlinear 
relationships by local linearization. However, traditional local 
modeling approaches are mostly based on static models, which 
do not consider the dynamics of process data. This is mainly 
because a local modeling strategy selects only those samples 
that have the smallest spatial distances from the query sample 

for online local modeling, and this may break the dynamic 
relationships of the data sequence.

To alleviate these problems, a new locally weighted model 
is proposed in this paper for nonlinear dynamic process mod-
eling. It is based on locally weighted slow feature analysis 
(LWSFA). LWSFA adopts the idea of LWL that mainly relies 
on similarity-based weighting for local modeling. For tra-
ditional LWL, the main intention of the sample weighting 
technique is to handle process nonlinearity, which breaks the 
process data dynamics since only the most relevant samples 
are used for local modeling. To deal with process nonlinearity 
and dynamics simultaneously, two kinds of similarity metrics 
are adopted in LWSFA: static sample similarity and dynamic 
first-order time difference similarity. Correspondingly, two 
different weighting techniques are used to deal with the static 
and dynamic nonlinearities, respectively. First, the traditional 
sample similarity is calculated for each historical sample, 
to deal with the static nonlinear relationship between LVs 
and the original input variables. The first-order time differ-
ence similarity is then used to measure and calculate the 
dynamic slowness relevance, which can preserve the non-
linear dynamic information for modeling. Based on the two 
similarities, each historical sample and its first-order time dif-
ference are assigned a static sample weight and a dynamic 
weight, according to their respective similarities with that of 
the query sample. After that, nonlinear dynamic SFs from 
the original inputs are implemented and obtained by online 
LWSFA. Finally, the extracted SFs are used to build locally 
weighted slow feature regression (LWSFR) for output predic-
tion. In this step, the nonlinear features and the local model 
structure can greatly enhance the nonlinear dynamic adapt-
ability of the proposed LWSFR. The trained local model is 
discarded once the prediction is finished for the current query 
sample. The modeling steps are repeated when the next query 
sample arrives. Therefore, the proposed LWSFA-based local 
modeling framework can not only enhance the nonlinear 
dynamic adaptation, but also maintain the high performance 
of the soft sensor model.

This paper mainly deals with the topic of virtual measure-
ment for industrial processes, which is also known as soft 
sensor and inferential sensor. The main contributions of this 
paper lie in the following aspects. A locally weighted slow 
feature regression (LWSFR) is proposed for the virtual meas-
urement of the difficult-to-measure quality variables in non-
linear dynamic industrial processes. In LWSFR, two kinds of 
weights are designed in order to cope with the nonlinearities 
and dynamics based on SFA. The sample weight is first cal-
culated and used for local linearization for static nonlinearity. 
The temporal weight is then designed to locally linearize the 
dynamic nonlinearity of the process. In this way, the proposed 
LWSFR can handle complex nonlinear dynamic data relation-
ships with a simple adaptive modeling strategy.

The remaining parts of this article are structured as fol-
lows. In section 2, SFA is briefly introduced. Section 3 pro-
vides details of the proposed LWSFA and LWSFR models. 
In section  4, case studies are carried out on an industrial 
hydrocracking process to demonstrate the effectiveness of the 
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proposed method. A summary of the main contributions of 
this paper is given in section 5.

2.  Slow feature analysis (SFA)

The SFA algorithm was first proposed in 2002 and was origi-
nally applied in the computational neuroscience field [28], 
the intention being to assist in the organization of the visual 
system in the human brain. Thereafter, SFA was successfully 
applied in other fields, such as change detection and object 
recognition. SFA is a linear factor model that aims to learn 
invariant features from time signals. Its basic idea is that 
the important features are mostly unchanging in a scene. In 
this section, the basic principle and implementation steps of 
traditional SFA are reviewed. First, the symbols and defini-
tions used in the section are explained. The mathematical for
mulation of SFA is then given in detail.

2.1.  Definition of slowness

Assume that there is a continuous stochastic ergodic signal 
X(t), which can change slowly or quickly. The change is mea-
sured quantitatively as

∆(X(t))∆
〈
Ẋ2(t)

〉
t� (1)

where the notation ∆(•) can be seen as a definition of slow-
ness, and Ẋ2(t) is the square of Ẋ(t), with Ẋ(t) being the 
derivative of X(t). The operator 〈•〉t represents the expectation 
term obtained by time-averaging over ⦁. Usually, the expecta-
tion of X(t) during the time range [t0, t1] can be calculated as

E{X(t)} ≈ 〈X(t)〉t∆
1

t1 − t0

ˆ t1

t0
X(t)dt.� (2)

Ẋ(t) is the first-order derivative of X(t) with respect to time 
as

Ẋ(t) =
dX(t)

dt
.� (3)

In industrial process applications, process data X(t) is dis-
cretely sampled because it is measured with a certain sampling 
interval. Suppose that there is a section  of time series data 
X(t) = {X(1), X(2), · · · , X(T)}, where T is the total number 
of the sampled data series. Hence, the discrete form of the 
expectation by time-averaging in equation (2) is calculated as

〈X(t)〉t∆
1

t1 − t0

ˆ t1

t0
X(t)dt ≈ 1

T

T∑
t=1

X(t).� (4)

Similarly, the discrete form of the derivation in equation (3) 
can be rewritten as

Ẋ(t) =
dX(t)

dt
≈ X(t)− X(t − 1).� (5)

2.2.  Slow feature analysis (SFA)

Suppose that there is a time series {x(1), x(2), ..., x(t), 
. . .} with each input vector as x(t) = {x1(t), x2(t), 

· · · xm(t)}, where m represents the dimension of the input vari-
ables. A real-valued mapping function g (•) is first used to map 
the m-dimensional input vector to q-dimensional latent vari-
able space, as g(x(t)) = {g1(x(t)), g2(x(t)), · · · , gq(x(t))}. In 
the feature space, the primary LVs (called SFs) are represented 
as the outputs of the given real-valued mapping functions 
sj(t)∆gj(x(t)), (1 � j � q). The purpose of SFA is to make 
SFs change as slowly as possible, which means to make the SFs 
as slow as possible. In other words, it seeks out a combination 
of real-valued functions gj (•) , 1 � j � q in order to minimize

min
gj(·)

∆(sj)∆
〈
ṡ2

j (t)
〉

t� (6)

with the constraints as

〈sj(t)〉t = 0 (zero mean)� (7)

〈
s2

j (t)
〉

t
= 1, (unit variance)� (8)

∀i �= j, 〈si(t)sj(t)〉t = 0, (decorrelation and order) .� (9)

It can be seen that any constant function gj(x(t)) will have 
an optimal solution if the optimization objective in equa-
tion (6) is considered without any constraints. Hence, the role 
of the constraint in equations (7) and (8) is to avoid meaning-
less solutions by scaling SFs to zero mean and unit variance. 
The constraint in equation (9) ensures that the SFs are inde-
pendent of each other and that the SFs are naturally arranged 
in ascending order, according to their slowness. That is to say, 
s1 is the SF with the minimum slowness while sq is the SF with 
the maximum slowness.

To satisfy the constraints of zero mean and unit variance, 
the input data x(t) should be standardized as

xj :=
xj − x̄j

σj
, 1 � j � m� (10)

where xj, x̄j, and σj are the input, the mean, and the standard 
deviation of the j th input variable, respectively. For consis-
tency, x(t) will represent the standardized input data in the 
following context. SFA hypothesizes that each SF is derived 
from a linear mapping g (•) of input data x(t), which is

s(t) = WTx(t)� (11)

where W ∈ Rm×q  is the projection matrix. Thus, the optim
ization objective in equation  (6) and the constraint in equa-
tion (8) can be rewritten as the following forms:

∆(sj) =
〈
ṡ2

j (t)
〉

t
=

〈(
wT

j ẋ(t)
)2
〉

t
= wT

j

〈
ẋ(t)ẋT(t)

〉
twj� (12)

〈
s2

j (t)
〉

t
=

〈(
wT

j x(t)
)2
〉

t
= wT

j

〈
x(t)xT(t)

〉
twj = 1.� (13)

With equations (12) and (13), equation (14) can be obtained 
as

∆(sj)

1
=

〈
ṡ2

j (t)
〉

t¨
s2

j (t)
∂

t

=
wT

j

〈
ẋ(t)ẋT(t)

〉
twj

wT
j 〈x(t)xT(t)〉twj

=
wT

j Awj

wT
j Bwj

� (14)

where A =
〈
ẋ(t)ẋT(t)

〉
t with Aij =

〈
ẋi(t)ẋT

j (t)
〉

t
 and B = 〈x(t)

xT(t)〉t with Bij =
〈
xi(t)xT

j (t)
〉

t
 are the covariance matrices of 
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ẋ(t) andx(t), respectively. As a result, the projection matrix 
W can be optimized by the following generalized eigenvalue 
problem:

AW = BWΩ� (15)

where Ω is a diagonal matrix composed of generalized 
eigenvalues λ1,λ2, ...,λm with λ1 < λ2 < ... < λm, and 
λi, i = 1, ..., m is the generalized eigenvalues of pair (A, B). 
Correspondingly, the optimal values of the objective function 
in equation (6) can be sequentially obtained as

∆(sj) =
〈
ṡ2

j (t)
〉

t
= λj.� (16)

Finally, the SFs of the input data x(t) can be extracted by 
equation (11).

3.  Locally weighted slow feature regression 
(LWSFR)

In this section, the derivation of LWSFA and the calculations 
for two kinds of weights are introduced in detail. Furthermore, 
a summary of the modeling procedures is provided for the 
LWSFR-based prediction framework.

3.1.  Locally weighted slow feature analysis

Although SFA can extract dynamic features from process data 
series, it is limited when modeling for nonlinear time-varying 
processes and may not meet the accuracy requirements. Thus, 
a LWSFA method is proposed in this section that is enlightened 
by the idea of LWL. As mentioned above, the input matrix of 
the time series is X = [x1, x2, ..., xm]

T , X ∈ Rm×n, where m and 
n are the dimensions of variables and the number of samples, 
respectively. For the formulas in SFA, there are two kinds 
of basic terms. One is the sample term s(t) that is related to 
matrix B, which represents the static information. The other is 
the temporal derivative ṡ(t) that is related to matrix A, which 
reflects the dynamics of process data. In order to deal with 
the nonlinear static and dynamic relationships, two weighting 
techniques are designed for local linearization. One is the 
sample weight, which is similar to the traditional weight type 
used in LWL for static nonlinear relationships. The second 
type is the weight for the first-order time difference term that 
is used to describe the nonlinear dynamics.

The first type of sample weight is determined by the spa-
tial similarity of each historical sample to the query sample, 
which is often used to handle nonlinear relationships in 
LWL. Assume µi is the weight for the ith historical sample. 
The weight matrix of the input samples is then denoted as 
µB = diag ([µ1,µ2, · · ·µn]). The illustration and calculation of 
the weight matrix µB will be given in section 3.2. To handle 
the static nonlinear relationship, sample weights are used to 
construct a weighted constraint for LWSFA, which can be 
written as
〈
s2

j

〉
t,µB

=
〈(

wT
j (XµB)

)2
〉

t
= wT

j

〈
XµBµ

T
BXT〉

twj = 1.� (17)

If a sample is assigned with a large weight, which repre-
sents it is more related to the query one, it can occupy more 
importance than the other samples in the constraint of LWSFA.

To locally linearize the dynamic nonlinearities, a weighting 
technique should be adopted to measure the similarity of non-
linear dynamics. Since the data dynamic is represented by the 
first-order time difference of the SFs, the dynamic weighting 
technique is needed to measure the first-order time difference 
terms between the query sample and the historical samples. 
Assume ϕi is the dynamic weight of the first-order time dif-
ference term between the ith historical sample and its pre-
vious sampling data. The dynamic weight matrix can then 
be denoted as ϕA = diag ([ϕ2,ϕ3, ...ϕn]) for the historical 
dataset. The calculation method for dynamic weight will be 
given in detail in section 3.2.

The dynamic weight is then used to construct a new 
weighted objective function in LWSFA. With the dynamic 
weight matrix, the optimization objective in equation  (6) of 
SFA is rewritten for LWSFA as follows:

∆(sj)ϕA
=

〈
ṡ2

j

〉
t,ϕA

=
〈(

wT
j (ẊϕA)

)2
〉

t
= wT

j

〈
ẊϕAϕ

T
AẊT〉

twj.
� (18)

To derive the solutions for the optimization problem with 
the new objective in equation (18) and the new constraint in 
equation (17), the following formula can be obtained as

〈
ṡ2

j

〉
t,ϕA¨

s2
j

∂
t,µB

=
wT

j

〈
ẊϕAϕ

T
AẊT

〉
twj

wT
j 〈XµBµT

BXT〉twj
=

wT
j Aϕwj

wT
j Bµwj

� (19)

where Aϕ =
〈
ẊϕAϕ

T
AẊT

〉
t with Aϕ

ij
=

〈
ẋiϕAϕ

T
AẋT

j

〉
t
 and 

Bµ =
〈
XµBµ

T
BXT

〉
t with Bµ

ij =
〈
xiµBµ

T
BxT

j

〉
t
are the weighted 

covariance matrices of ẋ(t) and x(t), respectively.
To determine the projection matrix W, a generalized eigen-

value problem is constructed:

AϕW = BµWΩ� (20)

where Ω = diag ({λ1,λ2, ...λm}).{λj}is the set of generalized 
eigenvalues, where λ1 is the smallest and λm is the largest. The 
projection matrix W can be obtained because it happens to be 
the matrix consisting of the generalized eigenvectors, and the 
nonlinear SFs of the original data can also be determined by 
equation (20).

3.2.  Weight calculation

In this part, the two weight types should be determined and 
calculated. The first task is to determine the sample weight. 
There are many criteria for sample weight assignment, in 
which the Euclidean distance is one of the most widely used. 
Two steps are carried out to calculate the sample weights. In 
the first step, the Euclidean distance criterion is used to calcu-
late the distance dn between each historical sample xn and the 
query sample xq. A function based on dn is then constructed 
for weight calculation. In the constructed function, a sample 
with a large dn is often given a smaller weight, and vice versa. 
In LWSFA, the Euclidean distance criterion is employed to 
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calculate the weight matrix µB. Therefore, the distance of the 
ith sample is calculated as

dB
i =
»

(xi − xq)
T
(xi − xq), i = 1, 2, ..., n.� (21)

A weight should then be given to each historical sample 
according to the obtained distance. If a historical sample is 
a small distance from the query sample, it means that this 
sample is more related to the query sample and a larger weight 
should be given. Conversely, a historical sample that is a large 
distance from the query sample is considered to be less similar 
to the query sample and will be assigned a smaller weight. 
Thus, the weight can be calculated as

µi = exp

(
−
(
dB

i

)2

δ2
B

)
, i = 1, 2, ..., n� (22)

where δ2
B is an adjustment parameter, which controls the decay 

rate of the weight with regard to dB
i . If δ2

B is large, the weight 
deceases slowly, or rapidly if δ2

B is small. After the sample 
weight is calculated for each historical sample, the weighted 
matrix µB = diag ([µ1,µ2, · · · ,µn]) can be obtained. As can 
be seen, samples that are more related to the query sample will 
be assigned large weights, and will be of greater importance 
within the constraint of LWSFA. With this weighted con-
straint, the static nonlinear relationship can be well handled.

The second type of weight matrix ϕA = diag
([ϕ2,ϕ3, · · · ,ϕn]) is then calculated to deal with the non-
linear dynamic data relationships, and is used to determine 
the importance of the first-order time difference terms for the 
historical sample sequence. To this end, the first-order time 
difference for the historical samples and the query sample are 
calculated as

∆xi = xi − xi−1, i = 2, · · · , n
∆xq = xq − xq−1

� (23)

where the operator ∆ represents the calculation of the first-
order time difference term. The distances of the first-order 
time difference terms for the historical samples are then 
obtained as

dA
i =
»
(∆xi −∆xq)

T
(∆xi −∆xq), i = 2, · · · , n.� (24)

Correspondingly, the weight of the first-order time differ-
ence is calculated based on distance dA

i  as

ϕi = exp

(
−
(
dA

i

)2

δ2
A

)
, i = 2, · · · , n� (25)

where δ2
A is an adjustment parameter that is similar with δ2

B 
but independent from it. With the weight matrices ϕA and 
µB, the nonlinear dynamic features can be extracted progres-
sively. After the extraction of nonlinear dynamic features, a 
local LWSFR soft sensor model will be built for each query 
sample. The details of the LWSFR modeling method will be 
introduced in next part.

3.3.  Locally weighted slow feature regression (LWSFR)

Local modeling technology adopts the idea of local lineariza-
tion which continually rebuilds a simple model to replace a 
complex global nonlinear model, to reduce model complexity. 
LWSFA retains the necessary information of the input data in 
the SF feature space. The adaptive SFs extracted by LWSFA 
algorithm can describe the complex nonlinear dynamic char-
acteristics of industrial processes. According to the basic 
principles of LWSFA, the slowest SF describes the essen-
tial change of process while the fastest SF mainly describes 
changes of noise. Hence, the SFs with small slowness are used 
to build soft sensor models to predict the quality variables. Let 
Xtrain ∈ Rm×n and YT

train ∈ Rn be the standardized input and 
output training data sets, where m and n are the dimensions of 
the input variables and the quantity of training data, respec-
tively. Let the input of the query sample be xq ∈ Rm. They 
can used to obtain the projection matrix W with the described 
LWSFA.

To improve the performance of the model, the first M 
columns of mapping matrix W are used to map the input 
data, so that the feature space contains only the required 
SFs. The extracted SFs for the training data and the query 
data are

Strain = WT
1:MXtrain� (26)

sq = WT
1:Mxq.� (27)

The quality variable of the query sample can then be pre-
dicted as

ŷq =
M∑

j=1

θT
j sq,j =

M∑
j=1

θT
j wT

j xq = θTWT
1:M xq = θTsq� (28)

where ŷq is the predicted output of the query data. θ ∈ RMis the 
coefficient vector of the regression model, which is computed 

by the least squares method as θ =
(
ST

trainStrain
)−1ST

trainYtrain.
The regression model is then given up and a new LWSFR 

is built when the next query data arrives. Figure 1 shows a 
flowchart of the LWSFR modeling framework. The detailed 
steps in building a LWSFR model are summarized as follows.
Step 1: Collect the historical training input and output data 

from the industrial process.
Step 2: Whenever a query sample arrives, calculate the dis-

tances between each historical training sample and 
the query sample in the original space and in the 
first-order time difference space. Based on the calcu-
lated distance, assign a static weight to each training 
sample and a dynamic weight to each first-order time 
difference term.

Step                    3: Construct the weighted matrixes B and A of the 
LWSFA algorithm, using the weighted training sam-
ples and the weighted differential training samples, 
respectively. A generalized eigenvalue problem is 
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established with weighted matrixes B and A. The pro-
jection directions of the SF space are then obtained by 
solving this generalized eigenvalue problem.

Step 4: Extract the first M SFs of the training samples and the 
query sample by mapping them to weighted SF space. 
A least squares regression model is then used to pre-
dict the quality output of the query sample between 
the extracted nonlinear SFs and the quality variable.

Step 5: Discard the built model after finishing the prediction 
of the query sample. Repeat step 2 to step 4 to build 
a new LWSFR model when the next query sample 
arrives.

4.  Case studies

In this section,  an industrial hydrocracking process is used 
to demonstrate the validity of the LWSFR model. First, a 
brief description is given of the hydrocracking process. The 
LWSFR model is then built to predict its product quality. To 
illustrate the effectiveness of LWSFR, another two SFR-based 
soft sensor models are established for the purposes of per-
formance comparison: a global SFR and a local linear SFR 
(LSFR).

There are three indexes used to evaluate the performance 
of the proposed model, which are the root mean square error 
(RMSE), the coefficient of determination (R2), and tracking 
precision (TP). The three indicators are defined as follows:





RMSE =

 
1

Ntest

Ntest∑
i=1

(ŷi − yi)
2

R2 = 1 −
∑Ntest

i=1
(ŷi−yi)

2∑Ntest
i=1

(yi−ȳ)2

TP = 1 − σ2
error

σ2
property

� (29)

where Ntest is the number of testing samples; ŷi is the pre-
dicted output value of the ith sample; yi is the labeled output 
value of the ith sample; ȳ is the mean value of the labeled 
output over the testing samples; σ2

error is the variance of the 
deviation between the prediction and the label value; and 
σ2

property is the variance of the labeled value. The RMSE index 
reveals the degree of deviation between the predicted and the 
labeled value. R2 shows how much of the output variance can 
be interpreted by the model. TP reflects the tracking effect of 
the model predictions on the real outputs.

4.1. The hydrocracking process

Hydrocracking is an important part of a petroleum refining 
plant. It has a wide range of applications in the petrochemical 
industry, since it transforms heavy residues and heavy oils 
into light oils in an efficient and environmentally friendly way. 
In the hydrocracking process, there are two major reactions 
with hydrogenation and cracking. The basic flowchart of the 
hydrocracking process is exhibited in figure 2. There are four 
principal parts in the process, which are the material feeding 
part, reaction part, high and low pressure separation part, and 
fractionation part. First, various feedstock oils are blended 
into the feed part. The recycled and make-up hydrogen are 
mixed and heated in the heating furnace. The mixed oil mat
erials and the heated hydrogen are then fed into the reaction 
part for hydrogenation and cracking. Eventually, the mixture 
products from the reaction part are separated into a variety 
of desired petrochemical products through the high and low 
pressure separation part and fractionation part.

There are a variety of such products in the hydrocracking 
process, including diesel, aviation kerosene, light naphtha and 
heavy naphtha, each of which has many quality properties. 
Many of them must be controlled and optimized in real time. 
Moreover, they should be monitored to provide real-time 
adjustment information for process optimization. However, it 
is difficult to measure the quality attributes of the products by 
online analyzers. Instead, they are often analyzed by carrying 
out off-line laboratory tests. This often results in time delays 
and low sampling frequency, which makes it difficult to imple-
ment online adjustment and optimization schemes. Therefore, 
it is desirable to develop soft sensors to predict those difficult-
to-measure variables via these easily measured variables. In 
this study, the 10% recovery temperature of the diesel and the 
final boiling point of the aviation kerosene are chosen as the 
quality variables for soft sensor modeling.

There are a large number of easy-to-measure process varia-
bles in the hydrocracking process. Among them, 148 variables 

Figure 1.  Flow chart of LWSFR modeling procedure.
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related to the quality of products are preliminarily selected 
by prior knowledge. Due to the page limit, the 148 variables 
are not listed here. The data were collected from a real indus-
trial hydrocracking process at a refinery enterprise in China. 
In total there are 324 samples, taken from April 11, 2017 to 
February 28, 2018. The sampling frequency of the quality 
variables is one sample per day. The hydrocracking process is 
characterized by continuous and uninterrupted production. It 
often takes a long time—several hours—from the feeding of 
raw materials to the obtaining of the product. Moreover, the 
dynamic adjustment and control are frequently implemented 

step by step in this process. Hence, there are highly dynamic 
relationships between the sampled data. Also, there are some 
problems that necessitate the dynamic modeling, such as fluc-
tuations in raw materials. Although the sampling frequency 
is one sample per day, there is still a dynamic relationship 
in these data samples. To verify this, four input variables 
are taken to carry out, for example, the auto-correlation and 
cross-correlation tests. The results are shown in figure  3. 
As can be seen, there are strong auto-correlations for each 
of the four input variables. Moreover, many of the absolute 
values of the cross-correlation coefficients are larger than 0.5 

Figure 2.  Flow chart of the hydrocracking process.

Figure 3.  The auto- and cross-correlation analysis for four input variables.

Meas. Sci. Technol. 31 (2020) 055101



X Yuan et al

8

for different pairs of input variables. Hence, it is necessary 
to build dynamic models for soft sensor application in this 
hydrocracking process.

4.2. The 10% recovery temperature of diesel

Diesel is one of the main products of the hydrocracking 
process. The 10% recovery temperature, one of the quality 
indicators for diesel, reflects the light diesel fraction, which 
has a significant effect on the starting performance of diesel 
engines. In order to monitor this index in real time, it is essen-
tial to establish a soft sensor model for this quality variable.

To build the SFR, LSFR and LWSFR soft sensor models, 
the first 216 samples from April 11, 2017 to November 12, 
2017, are used as training data. The rest of the samples are 
used to test the model performance. SFR trains the model in 
the offline phase and implements the prediction in the online 
phase. LSFR and LWSFR are methods for online modeling 
and prediction. When a query sample appears, the LSFR and 
LWSFR models are built immediately for quality prediction 
and are discarded after obtaining the predicted output for the 
query sample. Furthermore, the training dataset is updated fre-
quently when new data samples are available. There are sev-
eral parameters that must be set properly for the soft sensor 

models. These parameters are determined by the trial and error 
technique [39–41]. For example, the number of SFs in the 
three models is set at 15. The weight adjustment parameters 
δ2

A and δ2
B of the LWSFR are determined to be 210 and 134, 

Figure 4.  Sensibility analysis of the number of retained SFs, δ2
B, and δ2

A in LWSFR model for the 10% recovery temperature of diesel.

Table 1.  Performance comparison for the 10% recovery 
temperature of diesel with the three methods on the testing dataset.

Method SFR LSFR LWSFR

RMSE 0.1615 0.0832 0.0660

R2 −1.1909 0.4185 0.6339

TP −0.6901 0.4244 0.6352

Figure 5.  Prediction results of the SFR, LSFR, and LWSFR for the 
10% recovery temperature of diesel.

Table 2.  RMSE, R2, and TP performance for the final boiling point 
of aviation kerosene with the three methods on the testing dataset.

Method SFR LSFR LWSFR

RMSE 0.2497 0.1137 0.1009

R2 −1.6238 0.4555 0.5714

TP −1.3826 0.4695 0.5795
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respectively. The influence of these parameters on the RMSE 
accuracy is shown in figure 4 for LWSFR. As can be seen from 
figure 4, the number of retained SFs and δ2

B have more impact 
on the accuracy of the LWSFR than the other parameter, since 
the RMSE will change greatly with the number of retained 
SFs and δ2

B. It can be seen that δ2
A has the least influence on the 

prediction performance, since the fluctuation of the RMSE of 
the LWSFR model is still small when the change of δ2

B is large. 
Therefore, the number of retained SFs and δ2

B should be paid 
more attention when tuning the parameters.

Table 1 displays the predicted results on the testing dataset 
for the three models, after the parameters were determined. In 
the second column in table 1, the R2 index can be given nega-
tive values. This can be seen from its definition as shown in 
equation (29). As can be seen, it is possible to obtain a nega-
tive R2 value since the numerator of 

∑Ntest
i=1 (ŷi − yi)

2can be 
much larger than the denominator of 

∑Ntest
i=1 (yi − ȳ)2. If the 

prediction accuracy of one model is very poor. Then, the pre-
dicted error is very large at most samples and thus the value of 
R2 can be negative. It is similar for the TP index.

Table 1 clearly shows that SFR has the worst predictive 
performance, with the largest RMSE but the lowest R2 and 
TP. SFR is a fixed global modeling approach. The latest pro-
cess state cannot be tracked. On the other hand, SFR extracts 
only linear features so it cannot adapt well to this complex 
nonlinear process. By introducing a local modeling tech-
nique, LSFR offers a significant improvement over the per-
formance of the SFR. With a newly rebuilt model for each 
testing sample, LSFR can track the latest state of the process 
in real-time. Furthermore, LWSFR has achieved the best pre-
diction accuracy by adopting the locally weighted trick. Thus, 
the nonlinear features of the process are properly extracted 

and the updating capability is also preserved. Therefore, 
LWSFR is more effective than SFR and LSFR. In particular, 
the scatter plots are revealed in figure 5 for the predicted and 
labeled values of the testing samples. If the data points are 
more concentrated along the diagonal line in the scatter plot, it 
indicates that the prediction is more accurate for this model. It 
can be clearly seen that LWSFR tracks the label data the best, 
because the data points are more compactly distributed along 
the diagonal line than for the other two methods.

4.3. The final boiling point of aviation kerosene

Another important product in the hydrocracking process is 
aviation kerosene. The final boiling point, one of its quality 
indicators, reflects the heavy kerosene fraction, which affects 
both the combustion of aviation kerosene and engine wear. 
Therefore, soft sensor models are also built to monitor the 
final boiling point of aviation kerosene in the hydrocracking 
process.

There are again 324 data samples in total. The method of 
dividing the training and testing samples is consistent with the 
previous case. Similarly, the model parameters are decided by 
the trial and error technique. For the three models, the number 
of SFs is set at 13. The parameters δ2

A and δ2
B of LWSFR are 

determined as 346 and 235, respectively. Figure 6 shows the 
influence of the three parameters on the prediction RMSE 
accuracy of the model. It illustrates that the model accuracy is 
more sensitive to the number of retained SFs and δ2

B.
Table 2 describes the prediction RMSE, R2, and TP of the 

three models on the testing dataset. From table  2, LWSFR 
shows the highest accuracy of the three methods. For global 
linear SFR, once the process state has changed, the accuracy 

Figure 6.  Sensibility analysis of the number of retained SFs, δ2
B, and δ2

A for LWSFR model of the final boiling point of aviation kerosene.
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is rapidly reduced. Thereby, the SFR model has the lowest 
prediction performance. By incorporating the idea of local 
modeling, LSFR realizes an online update for each testing 
query sample. Therefore, the accuracy of LSFR is better than 
that of SFR. Considering the weighted technique for non-
linear dynamic feature learning, LWSFR can further improve 
the accuracy. The prediction results in table 2 show that both 
LSFR and LWSFR exhibit a significant improvement in per-
formance over SFR. It is insufficient for a local modeling 
technique when the nonlinear problem is complicated. Hence, 
LWSFR can be better applied in time-varying nonlinear indus-
trial processes. Figure 7 provides the prediction results of the 
three models on the testing set in the form of scatter plots. 
The results demonstrate the flexibility and effectiveness of the 
proposed LWSFR method.

5.  Concluding remarks

In this paper, a soft sensor is developed for dynamic nonlinear 
processes from the perspective of latent variable modeling, 
which is based on LWSFR. The proposed method has several 
merits, as follows. First, SFs contain the temporal information 
of the data, which can deal with dynamic process characteris-
tics. Second, LWL is used to weight the training samples and 
their first-order time differences, in order to handle the nonlin-
earity dynamics. Third, the form of local modeling ensures that 
the model can keep track of the latest process state, for adaptive 
modeling. Two cases have been implemented on an industrial 
hydrocracking process to test the performance of the proposed 
method. The comparative results of SFR, LSFR, and LWSFR 
show that LWSFR achieves the highest prediction accuracy.
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