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Nomenclature

u	 Measurement
δu	 Measurement error
σu 	 Measurement uncertainty
u0	 True value
σ	 Standard deviation
tCI	 Coverage factor
ρ 	 Density
ρp	 Projected density
∆�x 	 In-plane displacement
M	 Magnification

ZD	 Distance between dot pattern and density gra-
dient field

K 	 Gladstone–Dale constant
∇	 Gradient
S 	 Source term
∇	 Mapping matrix
L	 Label matrix
∆	 Laplacian operator matrix
Σ 	 Covariance matrix
X0, Y0	 Centroid
E 	 Expectation operator
n	 Refractive index
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Abstract
We present an uncertainty quantification methodology for density estimation from 
background-oriented Schlieren (BOS) measurements, in order to provide local, instantaneous, 
a posteriori uncertainty bounds on each density measurement in the field of view. 
Displacement uncertainty quantification algorithms from cross-correlation-based particle 
image velocimetry are used to estimate the uncertainty in the dot pattern displacements 
obtained from cross-correlation for BOSs and assess their feasibility. In order to propagate 
the displacement uncertainty through the density integration procedure, we also develop 
a novel methodology via the Poisson solver using sparse linear operators. Testing the 
method using synthetic images of a Gaussian density field showed agreement between the 
propagated density uncertainties and the true uncertainty. Subsequently, the methodology is 
experimentally demonstrated for supersonic flow over a wedge, showing that regions with 
sharp changes in density lead to an increase in density uncertainty throughout the field of 
view, even in regions without these sharp changes. The uncertainty propagation is influenced 
by the density integration scheme, and for the Poisson solver the density uncertainty on 
average increases on moving away from the regions where the Dirichlet boundary conditions 
are specified.
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1.  Introduction

Background-oriented Schlieren (BOS) is a flow measure-
ment technique, where the apparent distortion of a dot pattern 
viewed through a medium with refractive index gradients is 
measured using cross-correlation, tracking or optical flow-
based algorithms to estimate the density gradients in the 
medium [1–6] or the surface gradients in a free-surface flow 
[7, 8]. The density gradients can be integrated spatially to 
obtain the density field, generally by solving the Poisson 
equation using different computational procedures [9]. Owing 
to the simple setup and ease of use, BOS has been applied 
widely in laboratory scale as well as in large scale and rugged 
industrial facilities, and is becoming the preferred method of 
density measurement in fluid flows [10–17].

BOS measurements are increasingly used for compu-
tational fluid dynamics (CFD) model validation and design 
[14, 16, 18–20]. However, currently there is no framework for 
quantifying the uncertainties in the density estimation, and to 
inform proper validation of computational models. The BOS 
measurement chain is complex and subject to several sources 
of uncertainties ranging from the dot pattern parameters 
(dot size, dot density), non-uniform illumination, vibrations, 
blurring/out-of-focus effects, non-linearities (higher order 
derivatives) and small-scale fluctuations in the density field, 
uncertainties in measurement of the optical layout, as well as 
the processing and post processing methodologies used to cal-
culate the density from the image displacements. As a result, 
the uncertainty on the final density measurement is a high-
dimensional, coupled, non-linear and non-trivial function of 
several parameters, and can vary widely across the field of 
view and across a time series of measurements. Therefore, a 
comprehensive method for estimating and reporting uncer-
tainties on BOS density measurements is needed. This paper 
aims to develop and test the first uncertainty quantification 
methodology to provide a posteriori, local, instantaneous 
uncertainty bounds for each density measurement in the field 
of view for a BOS experiment.

For a measurement u, the uncertainty σu  is defined as 
the interval around the measurement in which the true value 
u0, and by extension the true error δu0, is believed to exist 
with a predetermined degree of confidence [21]. Following 
ISO-GUM [22], the standard uncertainty is defined as the 
range of measurement values that are one standard devia-
tion σ about the true value, for an arbitrary parent population. 
The expanded uncertainty is defined for an assumed parent 
distribution for the error, and is specified using a confidence 
interval at a defined percentage and a coverage factor tCI. 
This is to indicate that the true value/error lies in an interval 
σu = tCIσ around the measurement for the pre-defined 
percentage of samples drawn from the parent distribution. For 
example, if the errors are drawn from a Gaussian distribution, 
the expanded uncertainty at 68% confidence interval is equal 
to the standard uncertainty (σu = σ), and the expanded uncer-
tainty at 95% confidence interval is equal to approximately 
twice the standard uncertainty (σu = 1.96σ). The standard 
uncertainty is reported throughout this paper.

In the related field of particle image velocimetry (PIV) 
[23–26], there have been widespread efforts in the past decade 
to develop a posteriori uncertainty quantification methodolo-
gies [27, 28], as well as to perform comparative assessment of 
the existing methods [28–30]. As the displacement estimation 
in BOS is similar to PIV, PIV-based displacement uncertainty 
methods can be applicable to BOS measurements.

Displacement uncertainty estimation methods for 2D 
planar PIV can be broadly divided into indirect and direct 
methods. Indirect methods predict the displacement uncer-
tainty by calibrating the variation of uncertainty to various 
image parameters and signal-to-noise ratio metrics, where 
the calibration is obtained using Monte-Carlo simulations 
with synthetic images. Timmins et al proposed the first PIV 
uncertainty quantification method termed ‘uncertainty sur-
face’ (US) [31], where the uncertainty is calibrated based on 
four metrics: particle diameter, seeding density, displacement 
and shear. Charonko and Vlachos [32] proposed the peak-
to-peak ratio (PPR) method, where the uncertainty is cali-
brated against and calculated using the ratio of the primary 
to secondary cross-correlation peak heights. This method was 
later generalized by Xue et al [33] to other correlation plane 
derived metrics such as the peak-to-root-mean-square ratio 
(PRMSR), peak-to-correlation energy (PCE), and cross-corre-
lation. The mutual information (MI)-based uncertainty quanti
fication by Xue et al [34], defined as the effective number of 
correlated particle pairs between two image frames, was also 
used to estimate PIV uncertainty. The performance of all indi-
rect methods relies on the calibration process, which must be 
accurate and reflect all possible experimental scenarios in a 
typical measurement.

On the other hand, direct methods estimate uncertainty 
directly from the properties of the image or correlation plane 
and do not require any calibration. Examples of direct uncer-
tainty estimation methods include the image-matching (IM) 
method proposed by Sciacchitano et al [35], the correlation 
statistics (CS) method proposed by Wieneke [36] and the 
moment of correlation (MC) proposed by Bhattacharya et al 
[37]. Each of the direct methods has a different working prin-
ciple, and in the following, we briefly describe the assump-
tions, working principles and limitations of the direct methods.

IM or particle disparity (PD) proposed by Sciacchitano 
et al [35], estimates the uncertainty in the displacement using a 
statistical analysis of the disparity between the measured posi-
tions of particles or dots in the two frames after a converged 
iterative deformation interrogation procedure [38, 39]. This 
method requires at least six particles to be in the interrogation 
window for statistical calculations but fails at high seeding 
densities due to errors in particle identification. This method 
is also affected by image noise and loss of particles between 
frames, especially due to out-of-plane motion [29]. CS, pro-
posed by Wieneke [36], estimates the uncertainty again using 
the image disparity but at a pixel level. The asymmetry of the 
correlation peak at the end of a converged window deforma-
tion procedure is used as a measure of the correlation error and 
the standard deviation of the error is propagated through the 
subpixel estimator to estimate the displacement uncertainty. 
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As the method relies on statistics of the correlation plane, it 
works better with higher seeding densities and larger interro-
gation windows [29, 36]. MC proposed by Bhattacharya et al 
[37] predicts the uncertainty by estimating the second order 
moment of the cross-correlation plane. The estimation process 
involves the calculation of the generalized cross-correlation 
(GCC) from the inverse Fourier transform of the phase of the 
complex cross-correlation plane [40–42]. The primary peak 
region of the GCC plane represents the probability density 
function (PDF) of all possible displacements for the given 
interrogation window [37]. This PDF is convolved with a 
Gaussian function, corrected for peak broadening by displace-
ment gradients, and normalized by the effective number of 
correlating pixels (calculated using MI [34]) to estimate the 
uncertainty. Similar to CS, this method also works better with 
high seeding densities and large interrogation windows, as 
small interrogation windows can lead to an over-prediction of 
the uncertainty [37].

In two independent comparative assessments of the 
methods, Sciacchitano et  al [29] and Boomsma et  al [30] 
found the direct methods to be more sensitive to variations in 
the random error, though Boomsma et al [30] found the direct 
methods to underpredict the standard uncertainty in some 
cases. Since the indirect methods rely on calibration, only the 
direct methods will be considered in this work.

There have also been efforts to propagate the displacement 
uncertainties in PIV derived quantities. Wilson and Smith [43] 
extended the displacement uncertainties calculated from the 
uncertainty surface method to estimate uncertainties in mean 
and fluctuating velocity statistics. Sciacchitano and Wieneke 
[44] provided a framework for calculation of uncertainties 
for displacement gradient-based quantities such as the vorti-
city, and also identified the importance of spatial correlation 
of the displacement errors. Bhattacharya et al [45] proposed 
a methodology for stereo-PIV uncertainty quantification by 
accounting for the uncertainties introduced in the calibra-
tion and self-calibration process, along with the planar cor-
relation uncertainty for individual camera image correlation. 

Azilji et al [46] proposed a methodology based on a Bayesian 
framework to calculate the uncertainties for PIV-based pres
sure measurement in a 3D flow field, though they calculated 
the displacement uncertainty from the divergence error of the 
velocity field and did not use any of the abovementioned dis-
placement uncertainty quantification methods.

In this paper, we propose and implement the first compre-
hensive framework to model and propagate uncertainties from 
displacement measurements in a BOS experiment onto the 
final density measurement. To do this, we use methodologies 
for PIV uncertainty quantification [29–37] and propagate these 
uncertainties through the BOS measurement chain, including 
the density gradient integration and density reconstruction. 
We test both the PIV displacement uncertainty schemes as 
well as the uncertainty propagation framework with synthetic 
and experimental BOS images.

2.  Methodology

The proposed uncertainty quantification methodology closely 
follows the BOS measurement chain and is illustrated in 
figure 1. First, the raw image pairs and processed displace-
ment fields are used along with PIV-based uncertainty estima-
tion methods to calculate the local, instantaneous uncertainty 
on each displacement vector, as indicated in figure  1(a) 
Following this, the optical system parameters, such as the 
magnification and the distance between the dot pattern and 
the density gradients, are used to estimate the uncertainty in 
the projected density gradient field.

In BOS experiments, the projected density gradient field 
is related to the apparent displacement of the dot pattern by 
[2, 3]

∇ρp =

ˆ
∇ρdz =

∆�x
ZDM

n0

K
,� (1)

where ∆�x  is the displacement, M is the magnification of 
the dot pattern, ZD is the distance between the dot pattern 
and the mid-point of the density gradient field, n0 is the 

Figure 1.  Proposed uncertainty quantification methodology for BOS measurements.
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ambient refractive index, K  is the Gladstone–Dale constant 
(=0.225 × 10−3 m3 kg−1 for air) and ρp =

´
ρdz is the pro-

jected density field.
Similarly, the uncertainty in the projected density gradient 

field can be expressed by

σ∇ρp =
σ∆�x

ZDM
n0

K
,� (2)

where σ∆�x  is the displacement uncertainty and σ∇ρp is the 
uncertainty in the projected density gradient field (figure 
1(b)). It should be noted that some of the experimental param
eters occurring in the above equations can also have their own 
uncertainties such as the magnification M and the distance ZD. 
However, herein for simplicity we will assume these as known 
and constant, as our focus is on propagating the displacement-
based uncertainties. Any uncertainties in these quantities can 
be handled in a straightforward manner using the Taylor series 
propagation model [21].

The next step in BOS experiments is to calculate the pro-
jected density field by solving the Poisson equation:

∂2ρp

∂x2 +
∂2ρp

∂y2 = S,� (3)

where the source term S  denotes the Laplacian of the den-
sity field calculated from the projected density gradient field. 
This equation is then discretized into a system of linear equa-
tions using finite difference schemes and solved using appro-
priate boundary conditions (Dirichlet/Neumann) depending 
on prior knowledge about regions of the flow field.

The discretization and solution procedure are as follows. 
The source term S  is calculated as

S = ∇x
∂ρp

∂x
+∇y

∂ρp

∂y
,� (4)

where ∇x,∇y are the discretized gradient operators (matrices 
represented by a double overbar) that depend on the finite dif-

ference scheme, and ∂ρp

∂x , ∂ρp

∂y  are the density gradients (1D 

column vector represented by a single overbar). A second-
order central difference discretization scheme is used for the 
results reported in this paper.

The source term is combined with points on the boundary 
to create an augmented matrix R , given by

R = ∇x
∂ρp

∂x
+∇y

∂ρp

∂y
+

1
h2 Lρp,L,

= S + SL,
�

(5)

where L is a label matrix specifying points on the boundary, 
and h is the grid spacing, and ρp, L is the array of densities 
of the points corresponding to the label matrix (the Dirichlet 
boundary condition).

The projected density is calculated by multiplying the aug-
mented matrix R  with the inverse of the augmented Laplacian 
operator

ρp =

[
∆ 0

0 L
h2

]−1 ñ
S
SL

ô
,� (6)

where ∆ (sometimes also represented by ∇2) is the discretized 
Laplacian operator for the interior points corresponding to 
the finite difference schemes used to calculate the Laplacian 

(∆ = ∇x∇
T

x +∇y∇
T

y ). Thus, equation (6) essentially solves 

the Poisson equation (3) to give the projected density field ρp.
The uncertainty calculations are performed in a manner 

similar to the density integration, by propagating the covari-
ances through the finite difference operators and accounting 
for the boundary conditions used to calculate the corre
sponding density field. The covariance in the augmented 
source term defined in equation (5) is given by

ΣR = ∇xΣ ∂ρp
∂x

∇
T

x +∇yΣ ∂ρp
∂y

∇
T

y +
1
h2 LΣρpL

1
h2 L

T

= ΣS +ΣSL ,
�

(7)

and as shown in figure 1(c), the covariance in the projected 

density (Σρp) is calculated using

Σρp =

[
∆ 0

0 L
h2

]−1 ñ
ΣS

ΣSL

ôÑ[
∆ 0

0 L
h2

]−1
éT

.� (8)

Finally, the uncertainty in the density is calculated from the 
square root of the diagonal terms of the density covariance 
matrix as indicated in figure 1(d) and is expressed as

σρp =
»

diag(Σρp).� (9)

All linear operators in the solution procedure are modeled as 
sparse matrices to increase computational speed.

The next step is to calculate the 2D density field from the 
projected density field, either by depth averaging (dividing the 
projected density field by the thickness of the density gradient 
field) if the extent of the density field is known, or through an 
Abel inversion or filtered back projection (FBP) procedure if 
the flow field is axisymmetric (figure 1(e)) [12]. While each 
reconstruction procedure can create a different amplification 
of the uncertainty, only the depth-averaged reconstruction 
approach will be considered in this paper. For situations that 
involve the use of Abel inversion, the uncertainty can again be 
propagated through a matrix representation of the Abel inver-
sion procedure, because all the Abel inversion schemes can be 
represented by linear operators both for interferometric and 
deflectometric cases [47, 48]. The final result at the end of all 
such reconstruction procedures is an estimate of the instanta-
neous density uncertainty for each grid point.

In the following sections, the uncertainty quantifica-
tion methodology is tested with synthetic BOS images of a 
Gaussian density field to assess the performance of the var-
ious PIV displacement uncertainty schemes and the propaga-
tion framework. Subsequently, the potential of the method is 
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demonstrated with experimental BOS images for supersonic 
flow over a wedge.

3.  Analysis with synthetic images

The error analysis is performed using synthetic BOS images 
rendered using a ray tracing-based image generation meth-
odology, where light rays emerging from the dot pattern are 
traced through the density gradient field and the optical comp
onents of the experimental setup, up to the camera sensor to 
render the final image. This methodology has been validated 
using analytical solutions for known density field and the ren-
dered images display realistic features of typical BOS exper
imental setups, such as optical aberrations and blurring due to 
non-linearities in the density field [49].

The density field chosen for the error analysis is a Gaussian 
density field, described by equation (10):

ρ (X, Y) = ρ0 +∆ρ0 exp

®
− (X − X0)

2
+ (Y − Y0)

2

2σ2
0

´
,� (10)

where ρ0 is the ambient density, ∆ρ0 is the peak density differ-
ence and σ0 is the standard deviation of the Gaussian field. This 
field was chosen because it contains significant displacement 
gradients to test the displacement uncertainty schemes and the 
density integration procedure. For the simulations reported 
in this paper, ρ0 was set to be 1.225 kg m−3, ∆ρ0 was set to 
be 0.3 kg m−3, and σ0 was set to be 1/4th of the field of view 
(=2.41 mm). The dimensions of the density gradient field were 
10  ×  10  ×  10 mm, and it was located at a distance of 0.25 m 
from the dot pattern. The optical layout used to image the dot 
pattern and the density field consisted of a 105 mm lens at a dis-
tance of 0.5 m from the dot pattern to provide a magnification 
of about 40 µm/pix. A 2D slice of the 3D density field is shown 
in figure 2(a), and the corresponding light ray displacements are 
shown in figure 2(b). A 3D volume was created using the same 
slice stacked along the Z direction (out of plane) to account for 
the depth averaging limitation of BOS experiments.

The images were rendered with a dot size of 3 pix. under 
diffraction limited imaging, with about 20 dots per 32  ×  32 
window. The rendered images were corrupted with noise 

drawn randomly from a zero-mean Gaussian distribution 
with a standard deviation of 5% of the peak image intensity. 
A thousand image pairs were rendered in total to create suf-
ficient statistics for the analysis.

The images were processed using a standard cross-cor-
relation procedure for two passes in an iterative window 
deformation framework [38, 39] with continuous window 
offset [50–52]. The window resolution was 32  ×  32 pix for 
both passes, which corresponds to a 64  ×  64 pix window 
size and apodized using a 50% Gaussian window, to mini-
mize edge discontinuities, spectral leakage and wraparound 
aliasing [53]. The window overlap was set to 0% (grid reso-
lution  =  32  ×  32 pix.) for the analysis to avoid introducing 
covariance on adjacent displacement vectors from the cross-
correlation process, as accounting for this covariance in an 
automatic calibration-free manner is still a subject of ongoing 
research [44]. The results of the first pass were validated 
using the universal outlier detection (UOD) method [54] and 
smoothed, while the results of the second pass were not valid
ated. The displacement uncertainties were calculated using 
the IM, CS and MC methods. For the IM and MC methods, 
the processing and uncertainty calculation was performed 
using an open source code, PRANA.3 For CS, the processing 
and uncertainty calculation was performed with DaVis 10.0.5 
by LaVision. A sample instantaneous displacement field along 
with the corresponding uncertainty field is shown in figure 3. 
Sample instantaneous magnitudes of the displacement and 
uncertainty fields for (a) Prana, IM, MC and (b) DaVis, CS.(a) 
for results from PRANA processing and uncertainties from 
IM and MC, and in figure  3. Sample instantaneous magni-
tudes of the displacement and uncertainty fields for (a) Prana, 
IM, MC and (b) DaVis, CS, for results from DaVis processing 
and uncertainties from CS.

For the error analysis, the displacements obtained from the 
cross-correlation analysis were compared with the light ray 
displacements from the ray tracing-based image generation 
procedure to calculate an error for each vector. The final loca-
tions of the light rays will be randomly scattered on the image 
sensor because the dots from which the light rays originate are 

Figure 2.  (a) 2D slice of the density field used to render the synthetic BOS images, and (b) the corresponding displacement field.

3 https://github.com/aether-lab/prana/.
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distributed randomly on the pattern, and the direction of the 
rays is also varied randomly within the viewing angle of the 
camera lens. Since the displacements obtained from the cross-
correlation analysis is arranged on a regular grid, the true 
displacements due to the light ray deflections have to be inter-
polated onto the measurement grid. To achieve this, an inter-
polation procedure was performed using a natural neighbor 
interpolation based on Voronoi tessellations [55] to calculate 
the corresponding true displacement for each vector. Finally, 
the errors corresponding to all vectors from all image pairs 
were combined to build a probability density function (PDF) 
for the error distribution and the corresponding error statistics 
such as the bias error, the random error and the total error 
were calculated. As each image pair yielded 256 vectors with 
the above processing procedure, with a total of 1000 images, 

we have 256 000 vectors to calculate the statistics. The error 
statistics were split into three main components, the bias/sys-
tematic error, the random error, and the total error, defined as

δbias = E (u − utrue) ,

δrandom =
√

E
Ä
(u − umean)

2
ä

,

δtotal =
√

E
Ä
(u − utrue)

2
ä
=
»

δ2
bias + δ2

random,

� (11)

where δ represents the error statistic, u is the measure-
ment, utrue is the ground truth, and umean is the average of the 
measurements.

The displacement uncertainty estimates from the three 
direct schemes were compared to the random error from the 
analysis to assess the performance of these PIV-based schemes 

Figure 3.  Sample instantaneous magnitudes of the displacement and uncertainty fields for (a) Prana, IM, MC and (b) DaVis, CS.

Figure 4.  Spatial variation of the magnitudes of the displacement error statistics and ensemble averaged uncertainty fields for (a) PRANA, 
IM and MC, and (b) DaVis and CS methods.

Meas. Sci. Technol. 31 (2020) 054002
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for synthetic BOS images. The spatial distribution of the error 
statistics as well as the displacement uncertainties are shown 
in figure 4(a) for PRANA-IM-MC processing and figure 4(b) 
for DaVis-CS processing. It can be seen that the error statistics 
are fairly uniform throughout the field of view, with negligible 
bias error from both processing software programs, and that 
DaVis results in a slightly higher error near the center of the 
FOV. For the spatial variation of the displacement uncertainty, 
all three uncertainty schemes result in nearly uniform uncer-
tainty estimates throughout the field of view, and on the same 
order of their respective random errors. It is important to note 
that the MC uncertainties reported in this paper are without 
the bias term in contrast to the original formulation proposed 
by Bhattacharya et al [37]. This is because the bias term in 
the method is based on an estimate of the local displacement 
at the end of a converged deformation process, and since the 
displacement estimation is itself random, the bias estimation 
itself becomes a random process.

The PDFs of the errors and uncertainties from both soft-
ware programs are shown in figure 5, along with dashed lines 
indicating the RMS values of the random error and the RMS 
values of the corresponding uncertainty schemes. The PDFs 
were calculated by combining the x and y  components of the 
displacements into a single array. A 0.1 pixel threshold was 
used to threshold the errors, to reduce the effect of outliers 
on the reported statistics. This can be confirmed from the 
error/uncertainty PDF in figure 5, as the PDF has plateaued to 
nearly zero around 0.05 pix. Therefore, any errors on the order 
of 0.1 pixels are likely outliers, and can be ignored as it is not 
meaningful to report uncertainties on invalid measurements.

The results for PRANA-IM-MC are shown in figure 5(a), 
and the results for DaVis-CS are shown in figure 5(b). It is 
expected that for a correct uncertainty prediction, the RMS of 
the random error should coincide with the RMS of the uncer-
tainty distribution [29]. From the figures, it can be first seen 
that all three displacement uncertainty schemes overpredict 
the corresponding random error, but the RMS of the uncer-
tainty from CS is closest to the RMS of the random error in 

figure 5(b), followed by IM and then MC. Further, CS has a 
very narrow distribution of the uncertainties compared to IM 
and MC. The error and uncertainty statistics are summarized 
in table 1.

The displacement fields were also used to calculate the 
projected density gradient fields using equation (1), and spa-
tially integrated using the Poisson solver to obtain the pro-
jected density field. The thickness of the density gradients 
from the simulation was then used to calculate the depth 
averaged density field. Dirichlet boundary conditions were 
imposed for the density integration procedure, and the den-
sity at all four boundaries was set to be values from the true 
density field used to render the images. Sample results of the 
depth-averaged density gradient and density fields are shown 
in figure 6(a).

In addition, the displacement uncertainties from the cross-
correlation analysis from each scheme were propagated 
through the Poisson solver to calculate the density uncer-
tainties. Dirichlet boundary conditions were also used for 
the uncertainty propagation procedure, with the boundary 
uncertainties on the four sides set to be 0. In general, the 
uncertainty in the boundary conditions will have a strong 
effect on the uncertainty of the resulting field, especially for 
the Poisson integration method. As the density uncertainty 

Figure 5.  Probability density functions (PDF) of the displacement error and uncertainty distributions along with the corresponding RMS 
values. (a) PRANA, IM and MC, (b) DaVis, CS.

Table 1.  Displacement error and uncertainty statistics from the two 
software programs and three uncertainty schemes for the Gaussian 
density field. All values in units of pix.

PRANA DaVis

Bias error 4.45  ×  10−3 Bias error 1.45  ×  10−2

Random 
error

1.58   ×   10−2 Random error 1.31   ×   10−2

Total error 1.64  ×  10−2 Total error 1.95  ×  10−2

Image 
matching

2.56  ×  10−2 Correlation statistics 1.70  ×  10−2

Moment of 
correlation

2.77  ×  10−2

Meas. Sci. Technol. 31 (2020) 054002
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at a point near the boundary is a weighted average of the 
boundary uncertainty and the gradient uncertainty of the sur-
rounding points, it is expected that if the density uncertainty 
at the boundary is less than about one order of magnitude 

(1  ×  10−4 kg m−3) of that in the interior, then its effect 
should be negligible. Sample instantaneous uncertainties in 
the depth-averaged density gradient and density fields are 
shown in figure 6(b).

Figure 6.  Sample instantaneous depth-averaged (a) density gradients and density fields and (b) associated uncertainties obtained from the 
Poisson solver for PRANA processing.

Figure 7.  Spatial variation of density error and uncertainty statistics from (a) PRANA, IM and MC, and (b) DaVis and CS.
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The calculated density field was then compared with the 
original density field used to render the synthetic images and 
the density error was calculated. The resulting density errors 
from all 1000 images were used to calculate error statistics. 
The density error statistics and the corresponding ensemble-
averaged density uncertainties are shown for results from 
Prana-IM-MC in figure 7(a), and for results from DaVis-CS 
in figure 7(b).

From the figures, it can be seen that unlike the displace-
ment error statistics, the density error statistics show a higher 
bias error component (~2  ×  10−3 kg m−3) as compared to the 
random error. The skew in the spatial distribution of the bias 
error in figure 7(b) could be because of a combination of the 
processing method from the Davis software and the density 
integration procedure, and given that the small value of the 
error (0.3% of the density), makes the explanation difficult. 
It is possibly because the linear system of equations is solved 
in an iterative procedure beginning at the top right corner and 
ending with the point on the bottom left corner. Therefore, the 
bias error in the displacement also propagates from this point 
to the rest of the field, and this effect is more pronounced in 
figure  7(b), as the displacement errors are higher for Davis 
processing.

However, since the uncertainty estimated using the pro-
posed methodology is the random uncertainty, the com-
parison will be performed between the random error and 
the uncertainty prediction. The density uncertainty predic-
tions, however, are spatially uniform for all three methods, 
similar to the displacement uncertainty results shown 
in figure  4, and on the same order as the random error 
(~5  ×  10−4 kg m−3). But overall, the density uncertain-
ties are seen to be very small, likely due to the smoothing 
nature of the Poisson solver and the uncertainty being zero 
at the boundaries.

The PDFs of the density error and uncertainty distributions 
are shown in figure 8(a) for PRANA-IM-MC and in figure 8(b) 

for DaVis-CS, along with the corresponding RMS values. Due 
to the strong bias error in the density results, the RMS of the 
random error will be compared to the RMS of the density 
uncertainty distributions, and a closer match signifies a better 
performance. As in the displacement uncertainty results, it is 
again seen that CS gives the best match between the RMS of 
the random error and the uncertainty, followed by IM and MC. 
It is also interesting to note that unlike the displacement error 
PDFs, the density error PDFs are non-Gaussian, and skewed 
towards the negative values, signifying that the density error 
is primarily due to under-prediction. The skewness of the error 
distribution is also consistent with the strong bias error seen 
in the spatial error maps in figure 7. The density errors and 
uncertainties are summarized in table 2.

Further, the effect of density uncertainty at the boundaries 
was investigated by repeating the density integration proce-
dure with a range of density noise levels on the boundaries 
as a fraction of the peak density offset, and the resulting error 
and uncertainty statistics are shown in figure 9. It can be seen 
that as the density noise level increases, all the displacement 
uncertainty schemes result in a nearly identical density uncer-
tainty, because the noise from the boundaries dominates the 

Figure 8.  PDFs of the density error and uncertainty distributions for (a) PRANA error, IM, and MC uncertainty, and (b) DaVis error and 
CS uncertainty.

Table 2.  Density error and uncertainty statistics from the two 
software programs and three uncertainty schemes for the Gaussian 
density field. All values in units of kg/m3.

PRANA DaVis

Bias error 8.65  ×  10−4 Bias error 9.83  ×  10−4

Random 
error

3.41   ×   10−4 Random error 3.06   ×   10−4

Total error 9.12  ×  10−4 Total error 1.02  ×  10−3

Image 
matching

5.34  ×  10−4 Correlation statistics 3.25  ×  10−4

Moment of 
correlation

5.79  ×  10−4
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density uncertainty. This implies that the performance of the 
uncertainty quantification methodology is consistent with 
expectations.

Overall, it is seen from the analysis that (1) PIV-based 
direct displacement uncertainty schemes are also applicable 
for BOS images, and (2) CS performs the best in both the 
displacement and density uncertainty prediction, though the 
density results showed a strong anisotropic bias error. The 
sources of uncertainty considered in the synthetic image 
analysis are due to random positions of the dots, the cross-
correlation operator, image noise and density uncertainty at 
the boundaries.

4.  Demonstration with experimental images

The feasibility of the proposed uncertainty quantification 
methodology is demonstrated with experimental BOS images 
taken in a supersonic wind tunnel for Mach 2.5 flow over 
a 11.5◦ wedge with a base of 1 cm and a height of 2.5 cm. 
The dot pattern consisted of 0.15 mm diameter dots (corre
sponding to an image diameter of about 4 pix.) randomly 
distributed on a transparency with about 25 dots per 32  ×  32 
pix. window, and was back-illuminated using an LED with a 
diffuser plate to obtain uniform illumination. The dot pattern 
was imaged through the flow with a Photron SAZ camera and 
a Nikon 105 mm lens at a magnification of 50 µm/pix. and an 
f-number of 32. A total of 5000 images were acquired at 3 kHz 
for a total/stagnation pressure of 70 psia, corresponding to a 
free-stream density of 0.49 kg m−3. The free-stream density is 
calculated based on isentropic flow theory using the stagna-
tion density and the free-stream Mach number. The stagnation 
density is calculated using the stagnation pressure in the reser-
voir assuming an adiabatic compression of air from the atmos
phere into the reservoir. A layout of the experimental setup is 
shown in figure 10(a), and the wedge geometry is shown in 
figure 10(b).

To account for the startup transients in the tunnel, the 
images are only recorded during the steady state operation 
of the tunnel. Further, to avoid masking-based errors from 
affecting the analysis, only a small portion from the flow 
beneath the wedge is considered in this analysis, and a sample 
image of the dot pattern with the region of interest (ROI) is 
shown in figure 10(c).

The images were processed using the multi-pass window 
deformation approach described in the previous section  for 
three passes with identical window sizes and overlap percent
ages (32  ×  32 pix window size and 0% window overlap), with 
the intermediate pass results smoothed, but without any out-
lier detection. This was done to preserve the sharp change in 
displacement in the shock regions, and to prevent them from 
being identified as be an outlier. The images were processed 
using PRANA with displacement uncertainty calculation from 
IM and MC, and using DaVis with displacement uncertainty 
calculation from CS.

To reduce the effect of tunnel/camera/dot-pattern vibrations 
on subsequent calculations, the displacements in the FOV were 
subtracted by the average displacements measured in the free-
stream region. This was done because the free-stream region 
ahead of the shock does not contain any density gradients and 
hence any displacements in this region would be a result of 
vibrations. While the boundary layer on the wind tunnel wall 
can affect the measured displacement, this is expected to be 
negligible with respect to the other flow features of interest, 
such as the shock and the expansion fan for the present optical 
layout. This is because the angular displacement of the light 
ray due to the boundary layer on the tunnel wall will only 
be a function of the streamwise (∂/∂x) and spanwise (∂/∂y) 
gradients of density because the wall-normal gradients (∂/∂z) 
coincides with the viewing directions and therefore will not 
contribute to any angular deflection. Since the streamwise/
spanwise density gradients in the boundary layer are much 
lower than the gradients in the shock/expansion fan, and the 

Figure 9.  The effect of density uncertainty on the boundary on the RMS errors and uncertainties. The violin plots show the error and 
uncertainty distribution obtained using kernel density estimation, and the solid lines denote the RMS error. The errors/uncertainties on the Y 
axis are expressed as a fraction of the boundary uncertainty, and the boundary uncertainty is expressed as a percentage of the peak density 
offset.
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Figure 10.  (a) Experimental layout, side view, (b) schematic of the wedge, front view, (c) sample image with region of interest (flow is 
from right to left).

Figure 11.  (a) Sample density gradient and density fields from PRANA processing and (b) associated uncertainty fields from IM.
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displacements in the shock regions are measured to be less 
than a pixel, the displacements due to the boundary layer is 
expected to be much lower and hence negligible, especially in 
comparison with the vibrations, which were measured to be 
on the order of a pixel.

The displacements were then used to calculate the den-
sity gradients and density fields using the Poisson solver 
previously described. For the density integration, Dirichlet 
boundary conditions were used on the right boundary, where 
the density was set to be its free-stream value of 0.49 kg m−3 
and Neumann boundary conditions were imposed on the 
other three boundaries. Sample images of the path averaged 
density gradients and density fields are shown in figure 11(a) 
for PRANA processing, and it can be seen the gradients are 
highest in the regions corresponding to the shock and expan-
sion fan. The density is seen to increase across the shock fol-
lowed by a decrease across the expansion fan.

A similar approach was also followed for the uncertainty 
propagation, where a Dirichlet boundary condition was used 
on the right boundary with an uncertainty of 0.0 kg m−3 as 
any fluctuations in the free-stream were much lower than the 
uncertainties measured from BOS, and Neumann boundary 
conditions were imposed on the other three sides with the 
measured density gradients. Sample instantaneous uncertain-
ties in the density gradient and density fields are shown in 
figure 11(b) where it seen that the region aft (to the left) of 
the shock has a higher density uncertainty than the region 
before (to the right of) the shock, even though these points had 
similar density gradient uncertainties. This exemplifies the 
uncertainty propagation characteristics of the Poisson solver 
used for density integration. As the boundary conditions are 
only specified on the right boundary, the number of points 
that affect the density estimation at a given point increases as 
one moves to the left, and hence the density uncertainty at the 
given point is also a combination of the uncertainties from an 
increasing number of points. Since the density gradient uncer-
tainty is always positive, the result is that the density uncer-
tainty field increases, and in general, the density uncertainty 
for a BOS experiment will increase as one moves away from 
the Dirichlet boundaries. This is an artifact of the density inte-
gration procedure using the Poisson equation, and represents 
one of the method’s limitations.

The uncertainty fields across five thousand images were 
averaged to calculate the statistics, and the ensemble averaged 
field is shown in figure 12 for all three uncertainty schemes. 
Qualitatively, it is seen that the ensemble-averaged uncer-
tainty distributions are very similar to the instantaneous fields 

shown in figure 11(b), with an increase of uncertainty from 
right to left. It is also seen that while IM predicts the highest 
density uncertainty followed by CS and MC.

Finally, the uncertainties from all vectors in the time series 
are combined to calculate the PDFs for the uncertainty dis-
tributions. The resulting PDFs are shown in figure 13 along 
with the RMS values, which are 1.51  ×  10−2 kg m−3 for IM, 
4.45  ×  10−3 kg m−3 for MC and 8.73  ×  10−3 kg m−3 for CS. 
It is seen that MC results in the lowest uncertainty and IM 
results in the highest uncertainty with CS predicting a value 
slightly lower than IM. Further, all PDFs show a bimodal 
behavior where each peak corresponds approximately to the 
density uncertainty ahead of and behind the shock. This is par
ticularly evident for CS having the largest separation between 
the peaks, and MC with the lowest peak separation. The 
sources of uncertainty considered in experimental analysis are 
image noise, the cross-correlation operator and unsteadiness 
in the flow field. Density noise at the boundaries has not been 
considered.

5.  Conclusion

We have implemented and presented the first comprehensive 
uncertainty quantification framework for density estimation 
from BOS measurements and tested the method with synthetic 
and experimental BOS images. The methodology builds upon 
recent progress in a posteriori uncertainty quantification in 
PIV, and direct displacement uncertainty methods are used to 
also estimate the displacement uncertainty from BOS images. 
These displacement uncertainties are then propagated to the 
density gradients using the optical layout and then through the 
Poisson solver typically used for density integration in BOS to 

Figure 12.  Spatial variation of ensemble-averaged density uncertainty predictions from IM, MC and CS schemes.

Figure 13.  PDFs of the density uncertainty distributions for IM, 
MC, and CS.
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calculate density uncertainties, accounting for the covariances 
introduced due to the finite differences involved in the calcul
ation of the Laplacian. This method yields instantaneous, local 
uncertainty bounds for each density measurement throughout 
the field of view.

The methodology was tested with synthetic BOS images 
rendered with a Gaussian density field using a ray tracing-
based image generation methodology. The images were pro-
cessed using correlation algorithms with multi-pass window 
deformation, and the errors were calculated by comparing the 
measured displacements to the light ray displacements, which 
are considered to be the ground truth. Processing was done 
using two different software programs, PRANA and DaVis, 
and three displacement uncertainty estimation schemes–IM, 
MC and CS. Results show that for the displacements, all 
methods overpredict the true random error, with CS closest to 
the random error, followed by IM and MC.

When propagated through the Poisson solver for density 
integration, results from both processing software programs 
resulted in a stronger bias error in the density field, likely due 
to truncation errors from the finite differences used in the den-
sity integration process. On comparing the random errors with 
the predicted density uncertainties, CS predicted a density 
uncertainty closest to the corresponding random error. IM and 
MC both overpredicted their respective random errors, but IM 
was closer to the true random error compared to MC.

The method was also demonstrated on experimental BOS 
images of supersonic flow over a wedge and the processed dis-
placements and the density fields show the presence of a shock 
wave and expansion fan in the region of interest corresponding 
to the wedge tip and wedge shoulder respectively. The density 
gradient uncertainties were highest in close proximity to the 
shocks and expansion fans, and were sensitive to the boundary 
condition and the integration procedure. In general, the density 
uncertainty increased monotonically on moving away from the 
Dirichlet boundary, with the result that a point downstream of 
the shock had a higher density uncertainty as compared to a 
point upstream of the shock, even though they had nearly iden-
tical density gradient uncertainties. PDFs of the uncertainty 
fields from five thousand vector fields showed that IM and CS 
resulted in very similar uncertainties, and MC underpredicted 
the uncertainty as compared to the two methods.

A limitation of the proposed methodology is that bias uncer-
tainties are not estimated, and as seen from the analysis with 
the synthetic images, there is a strong bias error in the density 
estimation. This is in addition to the bias uncertainties that 
also exist in the cross-correlation processing, which are due to 
peak-locking and other processing-based errors. Developing a 
similar formulation for the estimation and propagation of the 
bias uncertainties is still required. Another limitation is that 
the methodology does not account for covariances introduced 
between adjacent vectors due to the cross-correlation procedure. 
This is especially important in situations where window overlap 
is used in the processing, and is another avenue for future work 
on this topic. Finally, further work is required to compare these 
density uncertainty predictions to the measurement error for 
benchmark BOS experiments, especially for stronger density 

gradients that can lead to larger image distortions and a corre
sponding increase in the measurement error and uncertainty.

For complex flows where depth-averaging is not suitable, 
a volumetric measurement is required to estimate the 3D den-
sity field [56–58], and in such a measurement the volumetric 
reconstruction will also have an effect on the uncertainty. 
First, calibration-induced errors can introduce uncertainties in 
the reconstruction as shown by Bhattacharya et al for stereo-
PIV measurements [45], and further, the existing uncertainties 
may be amplified by propagation through the chosen recon-
struction algorithms. Therefore, the proposed methodology 
needs to be extended to account for these effects in volumetric 
measurements.

Overall, displacement uncertainty methods typically used 
for PIV experiments are also applicable to BOS data, and the 
displacement uncertainties can be propagated through the 
Poisson solver using a sparse linear operator to obtain the 
density uncertainties. Thus, the method proposed in this man-
uscript allows for instantaneous spatially resolved uncertainty 
quantification in density estimates from BOS measurements, 
and for use in CFD model validation and engineering design. 
A set of Python codes implementing the proposed method-
ology is made available as open-source software online.4
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