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Abstract
Symmetric quantum properties and correlations have been often used earlier to study quantum
phase transitions in many body systems and spin models. However, the use of asymmetric
quantum features, such as steering, have attracted smaller amount of attention in this context, so
far. We study EPR steering and quantum phase transitions in the Ising model in transverse field
and in the anisotropic XY model by using steering robustness and quantum renormalization
group method. The key ingredients of the quantum criticality near the critical points, such as
finite-size scaling behaviour and critical exponents, are investigated in detail with two commonly
used spin models. Our results show that the first derivative of steering robustness between two
blocks diverges near the quantum phase transition points for both models, and exhibits a finite-
size scaling effect. Moreover, we explore in detail the asymmetric character of EPR steering, by
taking into accounts finite-size effects and measurement number, in the reduced block state in the
anisotropic XY model. The results imply that one-way EPR steering does not exist in large
system under the limit  ¥L despite the fact that EPR steering for the reduced block state is
asymmetric.
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1. Introduction

Einstein–Podolsky–Rosen steering refers to an ability that one
observer, by making local measurements, can change in
nonlocal manner (i.e. steer) the quantum state of other
observer in remote location. Although this concept was pro-
posed by Schrödinger as response to EPR paradox nearly a
century ago, there did not exist a rigorous definition until
Wiseman, Jones and Doherty formulized such issue in an
operational way within the quantum information task frame-
work in 2007 [1]. Moreover, they showed that there exists a
rigid hierarchy among different quantum states (i.e. all Bell
nonlocal states are contained in steering states, and all steer-
ing states are contained in entangled states) [1, 2]. Indeed, one
of the most distinguishing features of EPR steering is that it
exhibits an intrinsic asymmetry between the two observers,
Alice and Bob [1–3]. In other words, Alice may steer Bob’

state, but it may be not possible for Bob to steer Alice’s state
for a given entangled state shared by the two observers (i.e.
one-way EPR steering). In the past years, this concept has
attracted flourishing attention in many branches of physics
both for theoretical and experimental aspects [4–24] due to its
potential applications in practical quantum information pro-
cessing, such as entanglement-assisted subchannel dis-
crimination [10], the quantum key distribution [14],
randomness generation [17] and secure teleportation [18].

On the other hand, quantum correlations not only are
fundamental to numerous applications of quantum informa-
tion processing, but also are essential elements of the many-
body physics. For instance, many recent works show that
there exists a close relationship between quantum correlations
and the emergence of the quantum phase transition (QPT) in
many-body systems [25]. Such connections have been studied
from many different perspectives in varying quantum spin
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systems and chains [26–39]. Entanglement and Bell non-
locality, as two typical quantum nonlocalities, have been
employed to characterize the QPT [26–36]. The results indi-
cate that quantum correlations are indeed a useful and non-
trivial tool to characterize the QPT of a quantum system.
However, in most of the previous works, only symmetric
quantum correlations (e.g. entanglement and Bell nonlocality)
have been utilized as an information-theoretic tool to estimate
the critical properties in the spin systems whilst asymmetric
correlations, such as steering, has so far rarely been con-
sidered in this context. This motivates us to use EPR steering
for the studies of quantum criticality in the spin systems and
in particular focus on the following questions. Do there exist
the finite-size scaling effect for EPR steering in the critical
system? And whether we can estimate accurately the critical
exponent of correlation length by investigating quantum
steering? Combing with the quantum renormalization group
(RG) method in the Ising model in the transverse field (ITF)
and the XY model, we present some results for the above
questions in this work. We explore the nonanalytic behaviour
and scaling effect for the EPR steering in detailed manner.
Furthermore, we study the asymmetry properties of EPR
steering between the two observers in the reduced block state
by taking account both the number of measurements and
finite-size effects.

This article is organized as follows. In the section 2, we
give a brief introduction to EPR steering and its measurement.
In sections 3 and 4, we carry rigorous study to understand the
features of the EPR steering and the quantum critical prop-
erties in ITF model and XY one, respectively. In section 5, the
asymmetric character of EPR steering is explored under dif-
ferent measurements and system size L. Finally, section 6
summarizes our main results.

2. EPR steering and its measurement

Consider two remote observers, Alice and Bob, sharing a
bipartite quantum entangled state ρAB. One of them (e.g.
Alice) can choose to perform measurement on her subsystem,
described by operators { }∣Ma x satisfying ∣ M 0a x and

∣å =M Ia a x . Here, x and a denote the measurement setting
and the corresponding outcome, respectively. Then, Bob’s
possible states, which depend on Alice’s measurement x and
the corresponding output a, can be characterized by a col-
lection (or assemblage) of density matrices { }∣sa x a x, as fol-
lows,

( ) ( )∣ ∣s r= ÄTr M I . 1a x A a x AB

Here, it should be mentioned that the collection { }∣sa x a x, must
satisfy two conditions simultaneously: no-signaling require-
ment

( )∣ ∣å ås s= " ¢¢ x x, 2
a

a x
a

a x

and normalization one

( )∣å s = "tr x1 , 3
a

a x

respectively. Now, according the definition of quantum
steering proposed by Wiseman et al (i.e. whether remotely
generating ensembles { }∣sa x a x, could be reproduced by a local
hidden state (LHS) model [1, 2]), we call an assemblage
{ }∣sa x a x, unsteerable if all elements in the collection can be
written in the form

( ∣ ) ( )∣ ås s= "
x

x xD a x a x, 4a x

with condition

( )å s s x= "
x

x x tr 1, 0 . 5

We denote it as { }∣sa x
US

a x, . Otherwise, we call any assemblage
{ }∣sa x a x, that cannot be written in the above expression
steerable, and this kind of assemblage is marked by { }∣sa x

S
a x, .

Here, ξ is a classical local hidden variable, which shows the
correlations between Alice’s and Bob’s measurement results
that can be explained under the frame of classical realism. By
using semi-definite program (SDP) [5–8], one can judge
whether a given assemblage belongs to a steerable or
unsteerable class of assemblages.

Another interesting and important question is how to
quantify EPR steering and recently several scenarios have
been proposed for this purpose. Combining with the SDP and
decomposing an assemblage into two parts (i.e.

( )∣ ∣ ∣s ms m s= + -1a x a x
US

a x
S , " a, x, 0�μ�1), Skrzypczyk

et al proposed a concept called steering weight to quantify the
steerability for a given quantum assemblages [5]. Subse-
quently, they defined steering weight as m= -SW 1 *. Here,
μ* denotes the maximum μ in the decomposition. Along this
line, Chen et al extended this scenario to its temporal ana-
logue, quantum temporal steering [11]. Corresponding to the
robustness of entanglement, Piani et al proposed a new
quantity called steering robustness  from an altering
approach by asking how much mixing must one add to a
given assemblage { }∣sa x a x, in order for it to be explained by
LHS model [10]. Generally, a  -robustness of an assemblage
{ }∣sa x a x, can be defined as [6, 10],

( )

( ∣ )

( )

∣

∣ ∣
∣

∣

∣

∣

å

s

s t
s

s l s

t s l

=

+
+

= "

= "

Î "

s s

l
l

l

l



 

t s t

t

t
a x

D a x a x

min . .

1
,

, ,

, 0 . 6

a x
t

a x a x
a x

a x

a x

, ,

LHS

LHS

a x

Here,  is any subset of assemblages characterized by
positive semi-definite constraints and linear matrix inequal-
ities. The values of  means the minimal ‘noise’ to destroy
the steerability for a given assemblage (or corresponding
quantum state ρ). We can find the value of t;0.27 for the
Bell state, whereas no mixing needs be added (t=0) for the
product state. Here, it should be mentioned that steering
robustness measure  seems to be finer than the steering
weight due to the fact that all pure entangled states are
maximally steerable (i.e. steering weight equal to one) [5], but
it is not maximal for steering robustness. For instance, pure
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state ∣ ∣ ∣c a añ = - ñ + ñ1 00 112 (−1<α<1) has max-
imum steering weight 1 even under the extreme condition
a  0 or ∣ ∣a  1. However, the amount of noise that need to
be added to this pure state to have nonsteerable assemblages
is very small and steering robustness  for this state is very
close to zero under the condition a  0 or ∣ ∣a  1 [13].
Thereby we will take steering robustness  as a measure in
the following study.

3. EPR steering in ITF model

First, we study EPR steering in the ITF model. The Hamil-
tonian of such model for L qubits can be written as

( ) ( ) ( )ål s s ls= - ++H J J, . 7
i

L

i
z

i
z

i
x

1

J and λ denote the exchange interaction and the transverse
field strength, respectively. This model can be solved exactly
by transforming the spin operators to free fermions in terms of
the Jordan–Wigner transformation [27, 28]. Here, we study
EPR steering and QPT in this model by exploiting the
quantum RG method [29, 31].

RG is a standard mathematical tool that allows systematic
investigation of the changes of a physical system as viewed at
different distance scales. The main objective of the RG
method is to eliminate the effective degrees of freedom of the
system via a recursive procedure until a mathematically
tractable situation is reached. Commonly, the original
Hamiltonian H can be decomposed into two parts by taking
the Kadanoff’s block method (i.e. the block part Hamiltonian
HB and inter-block part Hamiltonian HBB). Then the low-
lying eigenstates (e.g. ground states) of the block Hamiltonian
can be obtained exactly by solving the eigenvalue equation

∣ ∣y yñ = ñH EB . Subsequently, we can construct the basis for
the renormalized space by using the above low-lying eigen-
states. Thereby, an effective Hamiltonian can be achieved by
projecting the full Hamiltonian onto the renormalized space.
Interestingly, we can find that the structure of the effective
Hamiltonian is very similar with the original one.

For the above ITF model, we can decompose the original
Hamiltonian into the block parts HB and the interacting parts
HBB respectively as follows [29, 31],

( )

( ) ( )

å

å

s s ls

s s ls

=- +

=- ++

H J

H J . 8

B

I

L

I
z

I
z

I
x

BB

I

L

I
z

I
z

I
x

2

,1 ,2 ,1

2

,2 1,1 ,2

Here, sa
I j, denote the Pauli operators at site j of the Ith block.

By solving the Schrödinger equation
( )∣ ∣s s ls j j- + ñ = ñJ EI

z
I
z

I
x

,1 ,2 ,1 , we can easily obtain the
two degenerated ground states as follows,

∣ ∣ ∣
∣ ∣ ∣ ( )
j a b

j a b

ñ = ñ + ñ
¢ñ = ñ + ñ

00 11

01 10 . 9
0

0

Here, the coefficients a = +s s 12 , b = +s1 12 and

l l= + +s 12 . By using the projection operator
∣ ∣ ∣ ∣j j= ñ á + ßñ á ¢PI

II II0 0 0 (∣j ñ0 and ∣j¢ ñ0 are the above two
ground states), the relations between the original Hamiltonian
and the renormalized one can be formulated as follows

( ) ( )= +H P H H P . 10B BBeff
0 0

By a straightforward calculation, one can obtain an effective
Hamiltonian of the renormalized chain as follows,

( ) ( )å s s ls= - ¢ + ¢+H J , 11
i

L

i
z

i
z

i
xeff

2

1

which is exactly similar to the original one. Here, the coef-
ficients ¢J and l¢ in the effective Hamiltonian satisfy the
following iterative relationship,

( )
( )

( )l l

l l
l l¢ =

+ +

+ + +
¢ =J J

2 1

1 1
, . 12

2

2 2

2

Above iterative relationship, associated with the quantum
RG process, contains important information, e.g. the fixed
points. By solving the iterative relationship equation l l¢ = 2,
we can easily obtain two stable fixed points (λ=0 and
l = ¥) and one unstable fixed point (λ=1). Roughly
speaking, the phase diagram can be obtained by analyzing
these points due to the facts that stable fixed points corre-
spond to the stable phases and unstable fixed ones locate at
the boundary between different stable phases for a given
model. In the current case, the stable phases are characterized
by two fixed points λ=0 (corresponding to long-ranged
ordered Ising phase) and l = ¥ (corresponding to the
paramagnetic phase), respectively. The critical point (λc=1)
locates at the boundary between the Ising phase λ<λc and
paramagnetic ones λ>λc. In the previous works, some other
quantum correlations have been employed to investigate the
critical behavior in this model, e.g. entanglement [29],
quantum discord, Bell nonlocality, and quantum deficit [31].
It is shown that the first derivative of all these quantum cor-
relations diverge at λc=1, thus can mark the quantum cri-
ticality in this model.

By using the pure two-site block quantum state ∣j ñ0 , the
density matrix of the block state can be written as

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
∣ ∣ ( )r j j

b ab

ab a

= ñá =

0 0
0 0 0 0
0 0 0 0

0 0

. 130 0

2

2

In figure 1(a), we plot the value of  with respect to λ for
different RG steps. Obviously, all curves of steering robust-
ness l~ cross each other around the critical point
(λc=1). In comparison with the other quantum correlations
demonstrated in previous works [29, 31], steering robustness
 also develops asymptotically two fixed values: 
approaches to its maximum asymptotically in the Ising phase
(λ<λc) and reaches to zero in the paramagnetic phases
(λ>λc), respectively. This trend becomes more obvious
with an increasing system size L. Furthermore, the steering
robustness around the critical point λc is discontinued with
respect to λ after enough iteration steps (which represent a
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large enough system size L). As shown in figure 1(a), the
steering robustness  jumps from a maximum (around 0.27)
to 0 with higher iterations.

To further reflect the trend of steering robustness with
increasing system size L (i.e. higher nth RG), we analyze the
behavior of the first derivative of steering robustness ld d
with respect to λ. The results are shown in figure 1(b).
Obviously, ld d diverge around the critical point.
Although there does not exist real divergence for a finite
system size L(i.e. finite nth RG), the tendency of such beha-
vior becomes more obvious with increasing attice size, which
indicates a the finite-size scaling behavior. Along this line, the
detailed numerical results indicate that the position of the
pseudo-critical point λm shifts with increasing system size L
as follows,

∣ ∣ ( )l l- = +k Lln ln const, 14m c 1

as displayed in figure 2(a). Here, the coefficient k1;−0.96.
This property indicates that pseudo-critical point λm would
approach asymptotically to the real critical point λc as the
system size  ¥L (e.g. higher nth RG). Moreover, the
numerical results also indicate that ld d diverges

logarithmically with the increasing size L as,

∣ ( )
l

= +l


k L
d

d
ln const 152m

at the pseudo-critical point λm. Here, coefficient k2;1.00.
Now, we can investigate the finite-size scaling behavior.

By taking into account the distance of the maximum of
ld d from the critical point, we plot the value of

⎜ ⎟⎛
⎝

⎞
⎠∣ ( )

l l
= - l

-  
F L

d

d

d

d
161

m

with respect to ( )l l-nL m
1 for different system size L (RG

iteration rang from the 4rd iteration to the 7th one) in figure 3.
It is clear that all the data collapse onto a single curve
[27, 29]. Then we can get the critical exponent ν=1.

4. EPR steering in XY chain

One-dimensional anisotropic XY spin chain is one of the
fundamental models in the condensed many-body physics, the
Hamiltonian is written as follows,

( ) [( ) ( ) ] ( )åg g s s g s s= + + -+ +H J
J

,
4

1 1 . 17
i

L

x
i

x
i

y
i

y
i1 1

Figure 1. (a) Steering robustness  of the ITF chain with respect to
λ under different nth RG. (b) Evolution of the first derivative of
steering robustness ld d at different RG steps. Hereafter, we set
three types of measurements corresponding to the projections on the
eigenstates of the three Pauli operators X, Y and Z without additional
remark [11].

Figure 2. (a) The distance between the position of pseudo-critical
point λm and the real one λc with respect to different system size L
(nth RG). λm approaches to λc in terms ofl l= + - Lm c

0.96 0.01. (b)
The minimum of the first derivative of steering robustness ld d
with respect to different system size.
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Here, J and γ denote the coupling constant and the anisotropy
parameter, respectively. This model can reduces to the XX one
for γ=0 and the Ising one for γ=1. According the standard
process of RG, the above Hamiltonian can be divided into the
interblock and intrablock as follows [32, 33],

[( ) ( ) ]

( )

å

å

g s s g s s= + + -

=

+ +H
J

H h

4
1 1

. 18

I
BB

I

L

I
x

I
x

I
y

I
y

B

I

L

I
B

3

3, 1, 1 3, 1, 1

3

Here,

[( )( )

( )( )] ( )

g s s s s

g s s s s

= + +

+ - +

h
J

4
1

1 19

I
B

I
x

I
x

I
x

I
x

I
y

I
y

I
y

I
y

1, 2, 2, 3,

1, 2, 2, 3,

is the three-site block Hamiltonian. Similarly, we can also
easily obtain the two degenerated ground states by solving the
Schrödinger equation ∣ ∣f fñ = ñh EI

B as follows,

∣ ( ∣ ∣

∣ ∣ ) ( )

f
g

g

g g

ñ =
+

- +   ñ +   ñ

- +   ñ +   ñ

1

2 1
1 2

1 2 20

0 2

2

2

∣ ( ∣ ∣

∣ ∣ ) ( )

f
g

g

g g

¢ ñ =
+

+   ñ -   ñ

+ +   ñ -   ñ

1

2 1
1 2

1 2 . 21

0 2

2

2

Then, by using the projection operator P0 for the Ith block,

∣ ∣ ∣ ∣ ( )f f= ñ á + ßñ á ¢P . 22I
II II0 0 0

We can obtain the effective Hamiltonian as follows,

[( ) ( ) ] ( )å g s s g s s=
¢

+ ¢ + - ¢+ +H
J

4
1 1 , 23

i

L

x
i

x
i

y
i

y
ieff 1 1

which is also very similar with the original one. Here, the
iterative relationship satisfy

( )
( )g

g
g

g g
g

¢ =
+
+

¢ =
+
+

J J
3 1

2 1
,

3

3 1
. 24

2

2

3

2

Similarly, we can also obtain one stable fixed point (γ=±1)
and one unstable one (γ=0 ) by solving the above iterative
relationship equation. Now, we can investigate EPR steering
for the reduced mixed block state by taking account of the
system size L. Here, we use ∣f ñ0 to construct the density
matrix which is defined by

∣ ∣ ( )r f f= ñá . 25123 0 0

It should be mentioned that the result is the same if we
consider the state ∣f¢ ñ0 . By tracing out one of block spin in the
quantum state ρ123 separately, we can derive the two-block
spin reduced states as follows,

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )r r= =

G G

G G

g

g g

tr

0 0

0 1 4 1 4 0
0 1 4 1 4 0

0 0

, 2613 2 123

1

4
2

4
2

4
2

4
2

2

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
( )r r= =

- G

- G

- G G

- G G

g

g g

tr

0 0

0 1 4 0

0 0

0 0

, 2723 1 123

1

4 4
1

4
1

4

1

4
2

4 2
2

2

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
( )r r= =

- G

G - G

- G

- G G

g

g g

tr

0 0

0 0

0 1 4 0

0 0

2812 3 123

1

4 4
1

4
2 1

4
1

4

4 2
2

2

with G =
g+

2

1 2 . Obviously, the first one is the symmetric

case, in which the steering robustness from block 1 to 3 (i.e.
by measuring block 1) is equal to the case by measuring block
3. However, the second and third ones correspond to asym-
metric case, which means that steering robustness may be
different by measuring the middle block 2 or the corner block
1 (3). Interestingly, we find that the steering robustness for the
reduced mixed block state ρ13=tr2ρ123 remains zero for any
γ, which means that ρ13 is not steerable despite the fact that
there exists some other kinds of quantum correlations for this
symmetry reduced mixed block state (e.g. entanglement [32],
quantum discord, and measurement-induced disturbance
[33]), so we only consider the latter case. Without loss of
generality, we take ρ12 as an example in the following study.

Now, we can obtain the relationship between  and γ in
the reduced block state r12. The renormalization of γ defines
the evolution of the steering robustness with the increasing
size of the system. To clarify the discussion of with respect
to γ, we take the common approach by setting as a function
of g in terms of ( ) ( )g g= + -g 1 1 [32, 33]. Figure 4(a)
shows a plot of  with respect to g under different RG
iterations. Obviously, steering robustness  also develops
two fixed values in different regions. At the critical point

Figure 3. The evaluated ( )∣= -
l l l

-  F L 1 d
d

d
d m with respect to

( )l l-L m for different RG steps n=4, 5, 6 and 7, all the data for
different RG steps almost collapse on a single curve.
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(gc=1), steering robustness  approaches to its maximum
for all nth RG. In the other two regions 0�g<1 and g>1,
 approaches to zero asymptotically. Ma et al have shown
that the system is in ferromagnetic order phase for g>1 and
0<g<1, whilst the ground state of the system is char-
acterized by a gapless excitation at the point gc=1
(γ=0) [32].

To further reflect the trend of steering robustness with
increasing system size L (i.e. higher nth RG), we also analyze
the behavior of the first derivative of steering robustness
 gd d as a function of g. The results are shown in
figure 4(b). Obviously,  gd d exhibits a sharp peak around
both sides of the critical point gc. In this work, we analyze the
behavior of  gd d around the right side of the critical point
gc. The results are qualitatively similar by considering the
behavior of  gd d around the left side of critical point.
Obviously, ld d diverge around the critical point.
Although there does not exist real divergence for a finite
system size L(i.e. finite nth RG), the tendency of such a
behavior become more obvious with increasing the lattice
size, which indicates a the finite-size scaling behavior. Along
this line, we can analyze the scaling behavior of ∣ gd d gm

with respect to the size of system L. Here, gm denotes the
position of the minimum of  gd d . In the figure 5(a), we plot

∣ ∣-g gln m c versus ( )Lln , which exhibits obviously a linear
behavior ∣ ∣- ~ -g g Lln lnm c . In other words, the position of

pseudo-critical point gm gradually tends to the real critical
point =g 1c as increasing system size L. Furthermore, the
numerical calculation also indicates that  gd d diverges
logarithmically with the increasing size L as,

∣ ( )
l

= +l


k L
d

d
ln const 292m

at the pseudo-critical point gm (seeing figure 5(b)). Here,
coefficient k2;0.99±0.003. All these features state that
steering robustness can also truly characterize the criticality of
the XY model by the RG calculation.

We can also extract the critical exponent by investigating
the finite-size scaling behavior. By taking into account the
distance of the maximum of  gd d from the critical point,
we plot the value of

⎛
⎝⎜

⎞
⎠⎟∣ ( )= --  

F L
g g

d

d

d

d
30g

1
m

as a function of ( )-nL g gm
1 for different system size L (i.e.

nth RG) in figure 6. Here, the RG ranges from the 3rd
iteration to the 6th one. Obviously, all these data almost
collapse onto a single curve, which indeed indicates that the
critical phenomena are scale invariant. The critical exponent
ν=1 is obtained.

Figure 4. (a) Steering robustness of the XY chain with respect to g
under different RG steps. (b) Evolution of the first derivative of
steering robustness  gd d under different RG steps.

Figure 5. (a) The distance between the position of pseudo-critical
point gm and the real one gc with respect to different system size L.
gm approaches to gc in terms of = + -g g Lm c

1.00. (b)The minimum
of the first derivative of steering robustness  gd d with respect to
system size L. The minimum diverges as ∣ ∣ ∣ ~  g Ld d g

0.99 0.003
m

.
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5. Asymmetry of EPR steering

An interesting and inherent property of EPR steering, dis-
tinguishing it from both entanglement and Bell nonlocality, is
its asymmetry between the two observers Alice and Bob [1].
This asymmetry feature contains two meanings. The first one
is that the value of steerability may be different by measuring
Alice’s subsystem or Bob’s ones. The second one is that
steering may occur from Alice to Bob but not from Bob to
Alice, or vice versa, for a given entangled state. Some pre-
vious works have paid extensive attention to this issue
experimentally and theoretically [3, 9, 15, 16]. Here, it should
be pointed out that such a phenomenon cannot occur for pure
entangled states, which can always be brought to a symmetric
form by changing the local basis. Hence, asymmetric quant-
um steering always requires mixed entangled states and the
two observer’s status should not be identical. Thereby this
phenomenon will not emerge for the pure block state ∣j ñ0 in
the ITF model, and we will only investigate such property for
the reduced mixed block state in the anisotropic XY model.

From the above section, we know that the reduced block
state ρ12 (or ρ23) in the block state ρ123 is asymmetric.
Thereby it is both necessary and interesting to check the
behavior of 1 2 (denoting the steering robustness from
block 1 to 2) and 2 1 (denoting the steering robustness
from block 2 to 1) with respect to g under different nth RG. In
figure 7, the behavior of 1 2 and 2 1 are plotted for a
tridirectional measurement. Obviously, quantum steerability
from block spin 2 to 1 ( 2 1) is more robust than the
steerability from block spin 1 to 2 ( 1 2) in the reduced
block state ρ12 for a given parameter g. This behavior indi-
cates that quantum steering is asymmetric in such a quantum
state, which is different from entanglement and Bell non-
locality. As a comparison, we also calculate steering robust-
ness  for the quantum state ρ12 by considering a
bidirectional measurement. The results show that the quantum
steering only occurs in the case of 2 1 for all g and nth RG,
which means that quantum steering is one-way under
such case.

From figure 7, we know that 1 2 and 2 1 are not
only different in their values for a fixed g, but also the points
(noted by g*)—where the steering emerges —are also dif-
ferent for a given nth RG. To further understand the proper-
ties of asymmetry of the EPR steering, we study the system
size scaling behavior. In table 1, the positions of threshold
values g1 2

* ( )g2 1
* and the gap D = - g g g2 1 1 2* * * are dis-

played for different nth RG. It is obvious that the gap Δg*

approaches zero with an increasing system size L (higher RG
steps). In figure 8, the logarithm of the gapΔg*, ( )Dgln * with
respect to the logarithm of the system size ( )Lln ranging from
the 4th RG to the 10th RG are presented, which shows a
linear behavior between ( )Dgln * and ( )Lln as follows,

( ) ( ) ( )D = +g k Lln ln const. 313*

with k3;0.99±0.005, which means that D g 0* as
 ¥L . In other words, there does not exist one-way EPR

steering for a tridirectional measurement under the limits
 ¥L despite the fact that EPR steering is asymmetric in

the reduced block state ρ12 .

6. Summary

We have investigated the EPR steering for pure block state
(two-site block in the ITF model) and reduced mixed block
state (three-site block in the XY model) by employing the
quantum renormalization-group method. The results indicate
that the first derivative of steering robustness show a diver-
gent behavior, and obey finite-size scaling effect. Thus we can
extract the critical exponent by calculation of steering
robustness. All these features state that EPR steering can be as
good as other quantum correlations (e.g. entanglement and
Bell nonlocality) to detect the QPT in the two typical models.

Furthermore, the asymmetric feature of EPR steering,
distinguishing it from both entanglement and Bell non-
locality, is also studied carefully for the reduced mixed block
state ρ12 in the anisotropic XY model by both taking into
account of measurement number and finite-size effect. For a
bidirectional measurement, EPR steering can only exist by
measuring the middle-block ( 2 1). For a tridirectional
measurement, quantum steerability from middle-block to
edge-block ( 2 1) is more robust than the steerability from
edge-block to the middle-block ( 1 2) in the reduced block
state ρ12 for a given parameter g, which means that the
quantum steering is asymmetric in such quantum state. To
gain further insight, we also calculate the threshold values

( ) ( )g1 2 2 1
* and the gap Δg* for different nth RG. The results

state that the gap Δg* approaches zero with increasing system
size L. Moreover, the results also show that the logarithm of
the gap ( )Dgln * , versus the logarithm of chain size ( )Lln ,
exhibits a linear behavior and thus shows a finite-size scaling
effect. This behavior implies that one-way EPR steering does
not exist in the reduced mixed block state ρ12 under the limits
 ¥L even if EPR steering is asymmetric for tridirectional

measurement.

Figure 6. The evaluated ( ∣ )= --  F L
g g g

1 d
d

d
d m

with respect to

( )-L g gm for different RG steps n=3, 4, 5 and 6. All the data
almost collapse on a single curve.
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