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Abstract
In this paper, we use the modified auxiliary expansion method to seek some new solutions of the
paraxial nonlinear Schrodinger equation. The solutions have a hyperbolic function, trigonometric
function, exponential function, and rational function forms The linear stability analysis of
paraxial NLSE is also presented to study the modulational instability (MI). Two cases when the
instability modulation becomes to occur are investigated. Depending on MI cases, the MI gain
spectrum are also investigated and presented graphically. All solutions are new and verified the
main equation of the paraxial wave equation. Moreover, the constraint conditions for the
existence of soliton solutions are also showed.
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1. Introduction

The dispersal of ultrashort pulses of electromagnetic radiation
into a nonlinear medium is a multidimensional phenomenon.
The interaction between different physical procedures such as
dispersion, material dispersion, diffraction, and nonlinear
response impacts the pulse dynamics. Due to the interaction
of dispersion, diffraction and nonlinearity, a non-dispersive
and non-diffractive wave packet called soliton (light bullet) is
created. Solitons have many applications in optical micro-
scopy, optical information storage, laser-induced particle
acceleration, Bose—Finstein condensation, and high-resolu-
tion signal transmission [1].

The ubiquitous phenomenon that originates from the
interplay of linear dispersion or diffraction and the nonlinear
self-interaction of wave areas is called modulational
instability (MI). This impact was first theoretically recognized
by Benjamin and Feir in 1967 for deep-water waves [2]. MI
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studies are increasingly interested in nonlinear optics, fluid
dynamics, Bose—FEinstein condensate, physics of plasma and
other areas.

Many methods are used to find and analyze solutions of
nonlinear differential equations, such as shooting with
Runga—Kutta fourth-order technique [3-6], finite difference
method [7, 8], homotopy perturbation method [9], Adams—
Bashforth—-Moulton method [10], Adomian decomposition
method [11], trial equation method [12], the modified Dar-
boux transformation technique [13], the Bécklund transfor-
mations method [14], the simple equation method [15], sine-
Gordon expansion method [16], lie symmetries along with
(/) expansion method [17], the the bilinear method
[18, 19], extended trial equation method [20], the extended
sinh-Gordon expansion method [21-23], improved Bernoulli
sub-equation function method [24, 25], the multiplier
approach [26], modified simple equation method [27], exp
(—p(&)) expansion method [28], method of undetermined
coefficients [29], couple of integration schemes [30],
improved tan (?© /,)-expansion method [31], tanh function
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Figure 1. 3D and contour plot of equation (13) when A =3, =1,
w=-l,e=1,k=2,y=1,v=1and y=2.

method [32], the modified tanh-function method [33], Jacobi
elliptic function anzitz method [34], the modified kudryashov
method [35], and inverse mapping method [36]. In [37],
authors extended the variable coefficient Jacobian elliptic
function method to solve nonlinear differential equation. The
balance between different-order nonlinearities and high-order
dispersion/diffraction in parity-time symmetric potentials was
used to construct three-dimensional optical solitons [38]. In
[39, 40], exact vector multipole and vortex solitons of non-
linear Schrodinger equation were also investigated. Moreover,
many powerful methods have been used and also extended to
find new properties of mathematical models symbolizing
serious real world problems [41-49].

In this paper, we use the modified auxiliary expansion
method to seek novel soliton solutions of the paraxial non-
linear Schrodinger equation. The new solutions are presented
in terms of the family solution and expressed in hyperbolic,
trigonometric and exponential functions. Finally, the
instability modulation of the paraxial wave equation is also
presented.

2. General form of methods

Suppose that, we have the following nonlinear partial diff-
erential equation

P(u, Uy, uzux, Uz, utts"') = O (1)

To find the explicit exact solutions of equation (1), we use the
following transformation
M(x, Y, t) = U(E)’ 5:){:7 Vt7 (2)

where v is arbitrary constant and £ is the symbol of the wave
variable. Substituting equation (2) to equation (1), the result is

Figure 2. 3D and contour plot of equation (14) when A = 1, y = 3,
w=—-l,e=1l,k=2,y=1,v=3and v=2.

t '57‘710 X

Figure 3. 3D and contour plot of equation (15) when A = 0,
p=—-1lw=—-l,e=1lL,k=2,y=1,v=1and y=2.

a nonlinear ordinary differential equation as follows

NU,U%L U, U",..)=0. (3)

Now the trial equation of solution for equation (3) is defined
as

U = ao + Y, aik' ™ + 37 hK 10, “)

i=1 i=1

where a; and b;, (1 < i < n) are non-zero constants and ®(§)
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Figure 4. 3D and contour plot of equation (16) when A = 0, u = 4,
w=-l,e=1,k=2,y=1,v=1and y=2.

is the auxiliary ODE given by

() — KO + 1 K®© 4+ ) )
In (K) ’

where p, A are constants and K > 0, K = 1. The auxiliary
ODE has the general solution as follows:

(i) When N —4u >0, then () = logg
(=X — \/mmnh (%M(C + 5))).
(ii) When N —4u <0, then (&) = log,
(=X + =X+ Apcan (L= 4u(C + 5))).
(iii) When X —4p =0, A=0 and p <0, then
F(©) = log (=4 coth (3/=41(C + ©)) ).
(iv) When N —4u=0, A=0 and p >0, then
£(©) = logy (JA cot (33 (C + ©))).
(v) When N —4p>0 and n=0, then
J (&) = logg | +c0sh()\(f+§>\))+sinh(>\(r+§)))'
(vi) When X —43 =0, A=0 and ps=0, then
£(©) = logy (~2EL2),
(vii) When M —4p =0, AX=0 and =0,
then f () = loge (€ + ©).
The paraxial NLSE in Kerr media is given by
iy + %u,, + gum + v |uPu=0, (6)

where u = u(x, y, t) is the complex wave envelope function.
The constants « , § and + are the symbols of the dispersion,
diffraction and Kerr nonlinearity, respectively. In equation (1)
if we get elliptic nonlinear Schrédinger equation and if o

Figure 5. 3D and contour plot of equation (17) when A = 4, pn = 0,
w=-4,€e=02rk=2,y=2v=2and y=2.

08 < 0, equation (1) becomes hyperbolic nonlinear Schrodinger
equation. Now assume the following wave transformations:

ux,y, )=U®e"?, £=x+y—ct,
0 = kx + wy — ut, @)

Inserting equation (7) into equation (6), and separate the result
into the real and imaginary part, we get

—(a+ HU" 4+ (B> + av? + 2w)U — 24U =0 (8)

and
(1 + Bk + cav)U’ = 0. 9)
Now, we know that U’ = 0, therefore
—1 — cav
0= ——- (10)
K

Putting equation (10) into equation (8) to get the closed
solution, we get

(1 — 2ak + cav)U" — k(k + caky — av?

—2w)U — 2ysU3 = 0. 11

Finding the homogeneous principal balance between U’ and
UP, we get n = 1. Putting the value of into equation (4), the

equation (4) can be written as the following

Using equation (12) and its second derivative with
equation (11), we analyze the following cases and solutions:

Case 1. When

an — iMWkE—2w \/2H3 + 36N —4p) — 47w — 2N — 4w
0 2708 — 42— ) ’
VA — 20263 + 36X — 4p) — 47w — 200% — dp)w
b] - > ay = O’
Y OP =4 (s — w)
_ 1 2k 1 (k= 2w)?

c = V(H + Y + Hfzw) and o = i W€ get the

following family solution:
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Figure 6. The MI gain spectra in the normal-GVD regime (o« = —1) for different values mentioned at legends for equation (45).

Family l.When)\z—4u>O,)\¢O,,u¢Oand’y>0,then

ity [ =20 [2k3 + 3ROV — 4p) — 4k — 2N — dp)w
2(7 (¥ — 4% (5 — w)

)\274;L+)\1/)\274utanh(%w/)\274,u<x+y+Eftz/(%+ x4 ! )))

N —4pu K—2w

()\+\/)\24utanh(%w/)\24u(x+y+5tu(%+ oy ))))

N —4pu K= 2w

u(x,y, t)=

13)

which is dark soliton solution of equation (6).
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Figure 7. The MI gain spectra in the anomalous-GVD regime (« = 1) for different values mentioned at legends for equation (45).

FamjlyZ.When)\z—4/L<0,)\¢O,u¢0and7<0,then

el =) Ji 20263 + 3R — 4p) — dkPw — 2N — dp)w
27 (¥ — 4’ (5 — w)

u(x,y, t)=

A — ap , (14)

2K
A— =X +4u tan[%\/—/\2 + 4u(x +y+e— n/(% +5n nlzw))]

which is singular solution of equation (6).
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Figure 8. The MI gain spectra in the normal-GVD regime (o« = —1) for different values mentioned at legends for equation (46).
Family 3.When A = 0, y < 0 and y > 0, then
( N feitn =) = i — 2w \2K% — 1260 — 4K%w + Spw
ulx,y, t) =
Ay (k= w)
1 K 1
tanh| /—plx+y+e—tv]— — — + ———11|| (15)
K 24 K —2w
which is dark soliton solution of equation (6).
Family 4. When A = 0, ¢ > 0 and v < 0, then
( ) jeltr=mwyw) ok — 2w \/2/@'3 — 12kp — 4Kk%w + Spw
ulx,y, t)=
A (k= w)
1 K 1
tan| fu|lx+y+e—-tv|— — — +———|]| (16)
K 24 Kk —2w

which is singular solution of equation (6).
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Figure 9. The MI gain spectra in the anomalous-GVD regime (o = 1) for different values mentioned at legends for equation (46).

Family 5. When \> — 44 > 0, 1 = 0 and y > 0, then

jelton =) \ ik — 2w +2K3 + 35X — 4k2w — 2Xw coth (%/\(x +y+e— tu(% + ZA—'; szw)))

(x,y, )= ,
ey 2N (K — w)

which is singular solution of equation (6).
Case 2. When ay = iAW — 20263 + 36 (2 — 4p1) — 4r%w — 208 — 4p)w , a4 = ik — 20263 + 3k (R — 4p1) — 4rPw — 208 — dp)w b =0,
27 (R — 4p)* (5 — w) YO = 4p)(k — w)

c= 1/(1 + 2 ! (=207 e get the following family solution:

Tt T N—Zw) and @ = 25070
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Family 1. When A — 4p >0, A = 0, p = 0 and v > 0, then
ity [N — 4k = 20263 + 36N — 4p) — 4r2w — 2(X — dp)w
270 — 4 (5 — w)

tanh[%/)@ - 4u[x +y+e— w(l + 21 + ! ))] (18)
K

ux,y, t) =—

X -4y k- 2w

Family 2. When \* — 4 < 0, A = 0, = 0 and 7y > 0, then

el =) [T 720 263 4+ 3 (N — 4p) — 4rPw — 2(N — 4p)w
27 (R — 4p (s — w)

u(x,y, t)=

A — ALl . (19)

A— =N +4pu tan(%w/—/\2 + 4 (x +y+e— tu(% + /\22:{4# + )))

K— 2w

Family 3. When A = 0, 1 < 0 and «y > 0, then

feiti =) = i — 2w \2K% — 1260 — 4K%w + Spw

(x, y, 1) =
I 4k — w)
tanh(,/—u(x—ky—&—f—tu(l—zi—i— 12 ))] (20)
K L Kk —2w

Family 4. When A = 0 and p > 0, then

felr=wHy) [k — 2w \/2/13 — 1254 — 4K%w + Suw

4 *(k — w)

tan[ﬂ[x +y+e— ty(i _ 5 1 )]] 21
K 2u Kk —2w

Family 5. \> — 4; > 0 and p = 0. then

ulx,y, t) =

jeltn =) \fie — 2w+2K3 + 35X — 4K2w — 2Xw coth (%)\(x +y+e— tl/( + ZA—'; + ! )))

1
K K — 2w

ux,y, t) = (22)
27X (K — w)
Case 3. When ay = ——aventvo2ew =, Awjentvodew 40— (0 and o = A274“+72”’(”72w) , we get the
«/257)\2 — 8cyp — 4ykr «/257)\2 — 8cyp — 4yky (ck = v)(c(N = 4p) — 2kv)
following family solutions:
Family 1. When A2 — 4p > 0, A = 0 and p = 0, then
el =) N — 4y Jv + c¢(k — 2w) tanh (%(fct +x+y+eYyN — 4,u)
ulx,y, t) = . (23)
VZ (¥ — 4p) — 2k0)
Family 2. When A — 4p < 0, X = 0 and p = 0, then
s Al(Xxk— v+ yw X 1 2
ielr—tty )./77 +2uv+ c(k — 2w) tan(z(fct Fx+y+e)-XN+ 4u)
ulx,y, t) = — . (24)

VY (R = 4p) — 2k)
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Family 3. When A = 0 and ¢ < 0, then

WGy ) = ieltn =) Ty + c(k — 2w) coth((—ct +x + y + 6)4/—,[1)' (25
= Cer + )

Family 4. When A = 0 and p > 0, then

fal(xk—tr+yw) \/—7 _
ue,y, 1) = — ie W) [iuv + e(k — 2w) cot[(—ct + x +y + 6)\/ﬁ]. 26)
J Qe+ ww)

Family 5. When \* — 44 > 0 and p = 0, then

1 —
ux, y. 1) = — iIAJek + v — 2cw . 7
J2ey X — dykv

Family 6. When \* — 4y = 0, A = 0 and y = 0, then

jeltwr =) [, 4 c(k — 2w) (28)
(I—ct+x+y+e)J—yry

ux,y, t) = —

Family 7. When \* — 4 =0, A = 0 and p = 0,
ulx,y, t) =0. (29)

iAok Fv— 2cw 2ier + v —2cw N =4+ 26k — 2w
Case 4. When ay = —M,al =0, b = VT2 and o = - P ol = 2)
J2cY N — 8cyp — dyky \2ev N — 8eyp — dyky (ck — v)(c(N —4p) — 2K1)

we get the

following family solution:

Family 1. When A\* — 4y > 0, A = 0 and p = 0, then

ielCr—wty) i, 4 c(k — 2w) ()\2 — 4p + Ay X — 4p tanh (%(—ct +x+y+ ey — 4,u))

u(x,y, 1) = — (30
1
\/E\/'y(c()\z — 4p) — 2KV) ()\ + X — 4p tanh (E(—ct x4+ y+ oy — 4,u))
Family 2. When A — 4p < 0, A = 0 and p = 0, then
: i(xﬂftVerw)\/_’_—_z - 4p
1 v C(I‘i W)( A= =N +4u tan[%(fcr+x+y+f) /7)\2+4u:|
u(x,y, t) = — (31)

V2 (R — 4p) — 250)

Family 3. When A = 0 and p < 0O, then

Wy £) = — ielCr—mtyw) T Ju + c(k — 2w) tanh((—ct +x + y + €) /f,u). (32)
= Cen + )

Family 4. When A = 0 and p > 0, then

Wy 1) = — feltr=mtw) fp Ju + c(k — 2w) tan((—ct + x + y + 6)\/ﬁ). (33)
V=7Qcp + kv)

Family 5. When \* — 44 > 0 and p = 0, then

ielwr—wHyw) )\ fu 4+ c(k — 2w) coth (%(—ct +x+y+ 6))\)
u(x, Y, t) = - :
V27 (X = 2kv)

(34)
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Family 6. When A — 4p =0, = 0 and p = 0, then or
sal(xk—tr+yw) ) 2 2 2. _ 2
ux, y, 1) = — vtels - 20 (35) 2N {W2aBA(Wia — 2a%y) <0,
(—ct+x+y+ e)J—KV 8 B2
when 3 = 0.
Family 7. When \*> — 4, = 0, A = 0 and ; = 0, then Case 2. If
iei(xh:fn/+yw) v+ C(Ii _ zw) 2 2 2. _ 2
ux,y, 1) = — (36) M=F _N + \/W af” (W’ — 2a%) (44)
(—ct+x+y+ ¢e)/—kV 3 32 >

3. Instability modulation

In this section, we analyze the modulation instability (MI) of
the stationary solutions of equation (6) by utilizing the virtue
of linear stability analysis [50-52]. The MI may consist of the
exponential growth of small disturbances in the amplitude or
optical wave phase. It is essential to observe the MI in the
nonlinear physics of the wave. Assume that equation (6) have
the following stationary solutions [53, 54]:

ulx, y, 1) = ae'’, 37)

where a is arbitrary real constants. Inserting equation (37) into

equation (6), we get ¢ = ,IZ“TZW. Suppose that the perturbed
stationary solution is given by:

ulx,y, t) =(a+ cU(x,y, t))ei@’, (38)

here U (x, y, t) is a complex function. Using equations (38)
and (6), the outcomes satisfy the following linear equations

ayU+ U+ a U, +2iU,+ B Uy =0. (39)
Where U™ is the conjugate function. therefore, equation (39)
can be defined as

i(Mx+Ny—Wr) + uzefi(MerNnyt) (40)

where W denotes the complex frequency, M, N are real dis-
turbance wave-numbers, and u,, u, are the coefficients of the
linear combination. Using equation (40) and putting into
equation (39), we get the following homogeneous equations

(@*>y — 2N — W?a — M?B)U; + va*U, = 0,
va*U; + (—=W3a + M?B3 + a*>y + 2N)U, = 0.

U, y, t) = ue

(41)
Evaluating the determinant, we get the following relationship:
—4N? 4+ W42 — 4MPNB — M*B3% — 2a*W?ay = 0. (42)

Due to equation (42), we can discuss the following cases of
the MI [53, 54] for equation (6) as follows:

Case 1. If
M= ¥\/_27N _ szaﬁz(v;za — 2a%y)

we observe that the MI of the equation (6) occur if satisfy the
following inequalities

; (43)

W2aB?(W?a — 2a*y) < 0
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the MI of the equation (6) occur if satisfy the following
inequalities

W22 (W2 — 2a*y) < 0

or

2N N \/Wzaﬂz(Wza — 2a%y) _
g 3

when 3 = 0. Now we investigate MI gain spectrum as

0,

2N

g

W2 Zw2 722
g(W)ZZIm(M)zz\/ _ JWap (ﬁza a*y) ,

45)

\/Wzaﬁz(Wza — 2a*y)
+ ﬁz

s

g(W) = 2Im(M) = 2\/—%\/

(46)

which can be observe that gain the MI gain is significantly
affected by and that represents dispersion, diffraction of
equation (6).

4. Conclusion

In this paper, we used the modified auxiliary expansion method
to construct some novel soliton solutions of the (2+1)-dimension
paraxial nonlinear Schrodinger equation. We presented a new
solution in terms of hyperbolic, trigonometric and exponential
functions. The instability modulation of the paraxial wave
equation is also presented and analyzed in two cases. According
to MI, the MI gain spectrum in the normal-GVD and anomalous-
GVD for both cases are studied and illustrated graphically. The
affection of all parameters are also illustrated. All our solutions
are new, satisfy main paraxial wave equation and might be useful
and applicable in the optical fiber industry. Figure 1 and figure 3
represent the dark solution, figure 2 and figure 4 are dark-singular
solutionand figure 5 is a singular solution of equation (6). After
considering simulations, figure 1 and figure 3 represent the dark
solution, figure 2 and figure (4) are dark-singular solution and
figure 5 is a singular solution of equation (6).

From figure 6, we conclude that the MI gain spectrum in
the normal-GVD regime is increasing via increasing the
values of Kerr nonlinearity (v), real amplitude (a) and real
disturbance wave-number (N) while we observe contrary
affection of diffraction values 3. Also from figure 7, the MI
gain spectrum in the anomalous-GVD is decreased by
increasing the values of diffraction, real amplitude, and real
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disturbance wave-number while we see opposite direction of
affection for values of real disturbance wave-number.

From figure 8, the MI gain spectrum in the normal-GVD
is decreased by increasing the values of diffraction, real
amplitude, and real disturbance wave-number while we see
opposite direction of affection for values of real disturbance
wave-number, which is the same effect in the anomals-GVD
at equation (45). In another figure, we observe from figure 9
the same affection in the normal-GVD in equation (45). So,
from these, we conclude that the normal-GVD obtained from
equation (45) have the same characteristics of anomalous-
GVD obtained from equation (46), Also anomalous-GVD
obtained from equation (45) is the same as normal-GVD
obtained from equation (46).
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