
Regional-level prediction model with
advection PDE model and fine particulate
matter (PM2.5) concentration data

Yufang Wang

School of Statistics, Tianjin University of Finance and Economics, Tianjin 300222, Peopleʼs Republic of
China

E-mail: wangyufangminshan@163.com

Received 11 June 2019, revised 22 September 2019
Accepted for publication 7 October 2019
Published 3 February 2020

Abstract
Real-time and geo-tagged data on PM2.5 enable researchers to model and predict the trends of air
pollution effectively. On the basis of network and clustering, a specific advection partial
differential equation (PDE) model is proposed to forecast the spatial-temporal dynamics of PM2.5

concentration at large scale of city-cluster. The proposed PDE model incorporates the effects of
advection, local emission and dispersion. The prediction is performed in real-time with varying
model parameters for assessing the current situation. Good simulation results not only
demonstrate the proposed PDE has good prediction ability, but also show that the model can
quantify the advection and local effects for the air pollution of each city-cluster to some extent.
Moreover, the methodology can be extended to other types of air pollution provided that data are
available.

Keywords: air pollution, network and clustering, advection-PDE model, temporal-spatial
prediction, advection effects
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1. Introduction

PM2.5, a kind of atmospheric particulate matter, has a diameter
of less than 2.5 μm and thus has been confirmed to be asso-
ciated with many respiratory diseases and even causes damage
to the nervous system [1]. Accurate assessment of ambient
PM2.5 concentration is essential for environmental and public
health risk analysis, which has aroused unprecedented concern
worldwide. Although many ground-based air monitoring sta-
tions have been established to provide hourly PM2.5 con-
centration data in China, measurements based on points are
non-continuous. Moreover, we require accurate prediction
results to help human and governments make decisions.

Considering the nonlinear characteristics of PM2.5 varia-
tion, high-quality prediction has been a popular problem and
has remained a challenge for scientists and researchers in dif-
ferent fields. Satellite sensing techniques demonstrate advan-
tages of spatially seamless and long-term coverage; thus, they
have been extensively used to predict PM2.5 in recent years [2].

Recently, an ordinary differential equation model has been
proposed to describe the temporal variations of air quality
index in a local province [3]. This model can describe the time
dynamics of air pollution but is only adaptable for a local
spatial position and cannot describe transboundary effects.
Statistical model: Many more history data have been accu-
mulated given the gradually expending air monitoring net-
works. This provides the convenience for applying statistical
model to make predictions. Statistical models often have high
computational efficiency and simple modeling principles, but
they need long history data. Machine learning [1, 4, 5] is a
kind of interdisciplinary integrated learning method involving
statistics, data science, and computing. This kind of method
demonstrates strengths in handling complex nonlinear rela-
tionships between various predictors and the final prediction
results; It is easy to operate and with high accuracy. However,
the disadvantage of this method is also prominent, that is the
main mechanism behind the prediction can not be provided [4].
For instance, the reasons for the predictions’ high accuracy can

Physica Scripta

Phys. Scr. 95 (2020) 035204 (7pp) https://doi.org/10.1088/1402-4896/ab4b82

0031-8949/20/035204+07$33.00 © 2020 IOP Publishing Ltd Printed in the UK1

mailto:wangyufangminshan@163.com
https://doi.org/10.1088/1402-4896/ab4b82
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ab4b82&domain=pdf&date_stamp=2020-02-03
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ab4b82&domain=pdf&date_stamp=2020-02-03


not be effectively explained, which is insufficient to convince a
key decision makers [6]. Chemical transport model (Mathe-
matically, it is depicted by PDE system) mainly predicts from
the view of the formation mechanism of PM2.5. This method
can predict PM2.5 concentrations without historical observa-
tions but requires knowledge of the temporal dynamic pro-
cesses of the emission quantities of various pollutants [7].
Besides, the relative PDE system, for instance of nonlinear
time-dependent reaction-convection-diffusion (transport) sys-
tem, consists numerous partial differential equations (PDEs) by
nonlinear coupling many chemical species, successfully
describing the spatial interactions between individuals of the
system. However, such problems are frequently accompanied
by large-scale, computationally challenging problems [8, 9].

Actually, to overcome large-scale computational com-
plexity and make high-accuracy spatial-temporal prediction
meanwhile, we have attempted to build pollution-transport
network, then cluster cities (through clustering, the spatial
locations can be dimensional reduced into several city-clus-
ters), and finally provide a specific diffusion PDE model to
describe the spatial-temporal dynamics of the single chemical
species, PM2.5 [10]. However, if the goal is to explore the air
pollution transport in a large spatial scale, only the term
‘diffusion’ is insufficient, and the term ‘advection’ must be
incorporated.

The present work aims to explore the air pollution
transport in a large spatial scale (between city-regions) and
further make prediction. Therefore, we incorporate the
‘advection’ term. Specifically, based on network and clus-
tering for 189 cities of China, we incorporate the advection
term and a local emission (or dispersion) term to build a
specific PDE model for modeling and predicting PM2.5 spa-
tial-temporal dynamics globally at the city-region level.
Moreover, this model can quantify the advection and local
effects for the air pollution of each city-cluster.

Though advection PDE models have been extensively
used to describe air pollution transport in many previous
work, the background of pollution problem always give rise
to large-scale calculations just as the illustration above.
Therefore, it is the first try to combine network, clustering
(through clustering, the spatial locations can be dimensional
reduced into several city-clusters) and then a specific advec-
tion PDE to make temporal-spatial prediction of air pollution
globally at city-region level. For the specific model, large-
scale computation is not needed. Meanwhile, simulation
results demonstrate that the model not only has good pre-
diction ability but also can provides policy insights to some
extent.

2. Model

In this section, we aim to develop a specific PDE model to
describe the temporal-spatial transport of air pollution at the
city-cluster level. We take 189 cities of China for example, as
the data is so.

2.1. Network building and clustering

As we research the regional transport of PM2.5, first we divide
all the 189 cities into different city-clusters; then it is con-
venient to provide a specific PDE to describe the spatial-
temporal transport of PM2.5 between these city-regions. In
reality, it is more meaningful to do research on city-clusters
than single cities, as air pollution is transboundary, clustering
cites provides the standard for defining the scopes and prio-
rities for joint prevention and control of air pollution regions
[11]. The obtained city-clusters can be regard as the basic
regions of joint-control for air pollution [11]. Below we
sketch how to build PM2.5 transport network of 189 cities in
China, then cluster cities, and finally build the connection
with PDE model by projecting these city-clusters into Eucli-
dean Space.

The sketch is that: (1) Network building: We use network
to describe the complex air transport system. That is, regard
each city as a network node. The presence of PM2.5 direc-
tional transport between cities A and B determines whether a
directional weighted edge exists from Node A to Node B in
the network (It is the integrated result based on real obser-
vation data about wind direction, wind speed, and geographic
distance.); thus, a city network with 189 cities is built.
Mathematically, it is described by a weighed adjacency
matrix. (2) Clustering cities: We cluster network on the basis
of higher-order connectivity patterns. Here we choose sub-
graph M8 (M8 reflects the movements of PM2.5 from source to
target) as the basic building block of the network, method of
higher-order spectral clustering [12] is used to obtain 9 city-
clusters. In figure 1, nodes (representing cities) with the same
color are located in the same cluster. More specific process
refers to our previous work [13]. (3) Projecting city-clusters
into Euclidean space: Because wind is the main factor that
influences air transport, and China experiences monsoon
winds, thereby indicating that most wind directions are from
south to north or from north to south. Simply, we project
Clusters 1–9 located from north to south in the map of China
onto the y-axis of the Cartesian coordinates. Thus, each city-
region has its relative spatial location y.

Figure 1. City-clusters obtained by using M8-motif spectral
clustering algorithm [13].

2

Phys. Scr. 95 (2020) 035204 Y Wang



On the basis of all the preparatory work above, a specific
one-dimensional PDE model is provided to describe the
regional transport of air pollution below.

2.2. PDE model building

Let u(y, t) represent the concentration of PM2.5 at location y at
a given time t. The changing rate of u(y, t) mainly depends on
two processes: (i) regional transport due to the wind effect
and it contributes most air pollution as mentioned in [14–16];
(ii) local emission and dispersion. Therefore, the dynamics of
PM2.5 is depicted by equation (1)
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,( ) ( ) describes the regional transport (transbound-
ary pollution) of PM2.5 between different city-clusters;
this term has been used for describing the spatial
movement of chemicals given wind effects [17] and is
called an advection term.
1. g(y) is the mean velocity at location y. In this study,
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6 76 7( ) . This form shows a ten-
dency of wind speed to decrease from north to south.
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,( ) ( ) is valid.

It is called the integrated effect of the air-flow due to
the following reasons: for each city-cluster at location y,
(i) all the cities have different wind directions and wind
speeds. Even for the same city, wind varies during the
whole day. Therefore, it is the integrated effect of wind
from different cities over the whole day; (ii) when
- >¶

¶
g y 0u y t

y

,( ) ( ) is valid, we can not identify whether

the high-pollution winds blow in or the low-pollution
winds blow away. However, it is certain that the whole
effects of air-flow lift the pollution concentration of the
city-cluster at location y.

• -r t u y t h y, u y t

K

,( )( ) ( ) ( ) ( ) presents the local pollution

process in a local city-cluster, which includes local
emission (the primary aerosol, such as road dust, vehicle
exhaust, industrial emissions and the secondary aerosol)
and dispersion in a local cluster.
1. The function r(t)>0 denotes the intrinsic growth rate

or dissipate rate of PM2.5 of the cluster at location y
and time t, regulated by meteorological conditions.
PM2.5 may be produced as secondary aerosol due to
the external temperature, pressure, etc; or PM2.5 may

be dissipated, such as rain. Therefore, we denote r(t)
as = + - -r t b e b t b

2 3 4
2( ) ( ) and it may increase or

decrease along with time t. Here, parameters b2, b3, b4
are determined by using real data.

2. The location function h(y) represents the heterogeneity
of PM2.5 due to spatial location. Different city-clusters
represent different regions in China (as in figure 1).
Different levels of economy and population from
various regions lead to essentially distinct PM2.5

emission amounts and dissipate rates. In this study, h
(y) is built through a cubic spline interpolation,
thereby satisfying º = ¼h y h i, 1, 2, ,9,i i( ) where
yi represents the spatial location of city-cluster i. h(x)
is determined by the latest PM2.5 concentration data.

3. The function - u y t

K

,( ) describes that air pollution does
not increase indefinitely over time, and a maximum
carrying capacity K of the environment exists. This part
extensively exists in the logistic model, thus modeling
the population dynamics, where the rate of reproduc-
tion is proportional to existing population and amount
of available resources [18]; this part has also been used
to describe information diffusion in online social
networks, which consist of the maximum possible
density of influenced users at a given distance [19].

• y=u t t1,( ) ( ), t>1 is the boundary condition at
location y=1. ψ(t) can be constructed from the history
data of PM2.5 at location y=1 through cubic spline
interpolation.

• f=u y y, 1( ) ( ) is an initial PM2.5 concentration function,
that can be constructed from the history data of PM2.5

through the cubic spline interpolation.

Standard meteorological models, such as the Unified
Danish Eulerian model [8], describes air pollution by a sys-
tem of PDEs; the temporal dynamic processes of the emission
quantities of various chemical species must validate the
PDEs; such problems may consist of a multiple equations,
thereby leading to large-scale, computationally challenging
problems [9]. Model (1), which we proposed in the present
study, concentrates on globally describing the temporal-spa-
tial characters of specific air pollution for different city-
clusters, thereby only requiring data from specific chemical
species, such as case of PM2.5 in this study.

In addition, advection-diffusion equation is frequently
used to describe air pollution in the atmosphere [20], in which
air pollution can be advected by an underlying bulk flow field
and diffusion occurs without any bulk flow. To explore the air
pollution transport among different city-clusters, we do not
consider the diffusion effects in Model (1) given the large
spatial scale.

3. Data and PDE-based prediction

The basic mathematical properties of PDE Model (1), such as
existence, uniqueness, and positivity of the solution of the
model, can be established from the standard theorems for
parabolic PDEs [21]. Below we use real data to build PDE
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model with time-varying parameters and perform prediction
in real-time.

3.1. Data

In the present study, we explore the temporal-spatial transport
characteristics and further make the temporal-spatial predic-
tion for PM2.5 in China at a large scale of different city-
clusters. Two groups of daily data are needed: one is for the
network building and then clustering cities; the other is for
PDE prediction.

To build network and then obtain the 9 city-clusters
illustrated in section 2, data from 1 January, 2015 to 30 June,
2015 are used in this work (Here we remark it as Data-set 1).
Actually, we can use data in other time period to build net-
work as well, as long as the time interval of Data-set 1 is
earlier than the period we want to make prediction for pol-
lution. For example, if we want to predict the pollution in
February of 2016, we can first build the network based on the
data in January of 2016. Specifically, the following kinds of
data are needed for network building: (i) PM2.5 monthly
average concentration from China National Environmental
Monitoring; (ii) Latitude and longtitude of 189 cities from
Google Earth; (iii) Wind speed and wind direction data is
from the China Meteorological Administration. More specific
data description and preparatory work can refer our previous
work of [13].

To make prediction using the provided PDE model,
parameters involving in the PDE should first be determined.
Therefore, sectional data of different days regarding PM2.5

concentrations must be obtained. Here, we only require the
data of PM2.5 concentration during the latest several days to
build the specific models (it refers to determine the parameters
in the PDE) and predict the concentration on the following
day. We focus on the research period from 1 January, 2016, to
5 July, 2016 to valid our PDE model in the perspective of
prediction (Here we remark it as Data-set 2). This data set
covers heavily polluted winter and ordinary days. A total of
189 priority pollution-monitoring cities in Mainland China,
covering all 34 provincial-level regions of China, are all
included. The most polluted cities and the cities of interest,
such as Beijing and Shanghai, are involved.

We handle Data-set 2 through the following steps. First
we compute the average PM2.5 daily concentration of each
cluster every day by averaging the daily PM2.5 concentration
of all the cities included in this cluster. Thus, we obtain the
daily average PM2.5 concentration of each cluster. Second, the
PM2.5 concentrations of each city-cluster are normalized to a
discrete level value of 1, 2,K, or 6, in accordance with the
‘Ambient Air Quality Standards’ (GB3095-1996) of China,
where PM2.5 concentrations are divided into 0–35, 36–75,
76–115, 116–150, 151–250, and �250 μg. The different
concentration ranges use Levels 1–6, which correspond to
excellent, good, lightly polluted, moderately polluted, heavily
polluted, and severely polluted air quality. Linear scaling
makes a concentration value to a specific range, which
ensures that large value input attributes do not overwhelm
small value inputs, thereby helping decrease prediction errors.

3.2. PDE-based prediction

The PM2.5 concentration of every city-cluster is influenced by
environmental policies, economics, population movement,
and weather variations. Thus, the parameter values of the
model must vary with time but with the same underlying
structure model (1). In this study, the parameters in the PDE
model are real-time, as determined using real PM2.5 con-
centration data.

The whole prediction procedure is as follows. To predict
the concentration of Day 4, we use the training data set of
Days 1, 2, and 3. First, we interpolate the discrete data of Day
1 for constructing the initial function f(x) and interpolate the
discrete data of Cluster 1 at Days 1, 2, and 3 for constructing
the boundary function ψ(x). Second, we use the data of Days
2 and 3 to train the parameters of the PDE model. Finally, we
solve this PDE model with initial function f(x) and boundary
function ψ(x) to predict the PM2.5 concentration of Day 4. By
applying the same procedure, we use the training data of
continuous 3 d to predict the PM2.5 concentration for the
following day. For instance, we use Days 1–3, 2–4, and 3–5
as training data to obtain the model parameters, then predict
Days 4–6, correspondingly.

In performing prediction, the parameters must be esti-
mated. Essentially, these parameters comprise a list of THE
multi-parameter inverse problem of a parabolic equation.
Hybrid methods combine the advantages of local and global
methods: global optimization is first used to explore the
parameter space to locate the starting points for further local
optimization [22]. In the present study, we combine a tensor
train global optimization approach [23] and Nelder–Mead
simplex local optimization method [24] to train the PDE
parameters, where the Nelder–Mead simplex method corre-
sponds to the fminsearch function in MATLAB.

After each determining the model parameters, we com-
bine the characteristic method and fourth-order Runge–Kutta
algorithm to compute the PDE for one-step forward predic-
tion numerically.

4. Modeling results

4.1. Model prediction accuracy

In this study, we apply relative accuracy (RA) - -
1

u u

u
real predict

real

∣ ∣

and absolute increment accuracy (AIA) - -
1

u u

5
real predict∣ ∣

to
measure the prediction accuracy. In these domains, ureal repre-
sents the actual PM2.5 concentration at each spatial location of
every data collection time point, and upredict is the predicted
PM2.5 concentration based on Model (1). The accuracy defini-
tion of RA is a rule that measures the accuracy of PM2.5 con-
centration value, whereas AIA is a rule that measures the
prediction accuracy in the view of the PM2.5 concentration level.
Typically, we disregard the specific concentration of PM2.5, such
as 30 or 33. We care more about that whether PM2.5 is good,
slightly polluted, medium polluted, or heavily polluted. There-
fore, we also apply AIA to measure the prediction accuracy,
which has been used in our previous work [10].
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Figure 2 illustrates the prediction results in Regions 1–9
every day from 5 January, 2016, to 5 July, 2016. Evidently, a
consistent trend can be observed between the predicted data
of Model (1) (represented by red lines) and real observations
(represented by black lines). Figure 3 demonstrates the pre-
diction accuracy in each city-cluster from 5 January, 2016, to
7 July, 2016. Clearly, the RA and the AIA of approximately
all the regions during the prediction period nearly exceed 0.8
and 0.9, respectively. Table 1 summarizes the average relative
accuracies and average AIA of each city-cluster forecasted
based on Model (1). In table 1, our proposed PDE-based
prediction model exhibits a strong prediction ability with
average prediction accuracy exceeding 0.8 and 0.9 in accor-
dance with our accuracy measures.

4.2. Model description ability

In section 2, the changing rate of PM2.5 concentration
(marked by u(y, t)) mainly depends on local pollution rate

(marked by -r t u y t h y, u y t

K

,( )( ) ( ) ( ) ( ) , which is positive) and
regional transport rate (transboundary pollution)through
advection (marked by- ¶

¶
g y u y t

y

,( ) ( ) , which may be positive or

negative). During our research period of 182 d from 5 Jan-
uary, 2016, to 7 July, 2016, we accumulate all the local
emission effects of each city-cluster by accumulating the

values of -r t u y t h y, u y t

K

,( )( ) ( ) ( ) ( ) in each region. Mean-

while, we accumulate all the advection positive (negative)

effects and the relative number of days of each city-cluster.
The statistical results are listed in table 2. For instance of
35.31(89), it denotes 89 d out of 182 d, in which advection
has increased local PM2.5 concentrations, and the total effect

Figure 2. Daily PM2.5 concentration level from 5 January, 2016, to 6 July, 2016. The black lines represent the real data and red lines
represent prediction results based on Model (1).

Figure 3. The prediction accuracy in each city-cluster from 5 January,
2016, to 7 July, 2016. Here relative accuracy is the conventional
definition as -

-
1

u u

u

real predict

real

∣ ∣
and absolute increment accuracy is

defined as -
-

1 ;
u u

5
real predict∣ ∣

ureal is the actual PM2.5 concentration at

each spatial location of every data collection time point; upredict is the
predicted PM2.5 concentration based on Model (1).
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index is 35.31. −27.9(93) indicates 93 days out of 182 d, in
which advection decreases the local PM2.5 concentrations,
and the total negative effects index is 27.9. In table 2, regional
transport through advection contributes most of the air pol-
lution in each city-region. In [15], the air quality of Shanghai
is largely influenced by the air masses from the north, east,
and west, thus accounting for 44.8%, 30.4%, and 24.8% of all
the air masses, respectively. In [16], the contribution of the
regional transport to PM2.5 is estimated in Lingcheng on the
North China Plain; in addition, the PM2.5 concentration from
the regional transport contributes 31.6% of the PM2.5 con-
centrations, with only 15.4% from the local emissions.

5. Discussion and conclusion

In the context of air pollution, many models have been used
to study the prediction problem. In this study, on the basis of
network and clustering, a specific advection PDE model is
proposed to characterize and predict the daily PM2.5 con-
centration at city-region level. The integration of network,
clustering, and advection PDE model to regionally explore air
pollution is the first attempt. This attempt avoid the large-
scale computation problem of the traditional PDE system.
From the numerical simulations, combining PDE models with
real data can provide substantial information on the PM2.5

spatial-temporal dynamics. Our study is PM2.5-specific, as the
data is so. Nevertheless, the methodology can be extended to
other types of air pollution provided that data are available.

Given that regional transport brings most of the air pollution
for a city-cluster as mentioned in [14–16], we incorporate
advection to describe the effects of air-flow in our mechanistic
PDE model. Although advection term has been extensively used
in a system of PDEs to describe the dynamic processes of

multiple chemical species, we aim to globally describe the
temporal-spatial characteristics of specific air pollution. Through
advection, the air pollution from advection effects is tractable.
Our simulation results demonstrate that regional transport
through advection contributes most of air pollution in each city-
region. This finding is consistent with the research from the
atmosphere field [15, 16]. In addition, based on our scaling data
in section 3.1, we obtain the quantifiable advection and local
effects for each city-cluster. We can compare the relative values
of both effects to measure them from the regional transport and
local emission or dissipation perspective. However, these values,
as well as whether these values describe the real phenomenon,
require assistance and must be further confirmed by meteorol-
ogists. Moreover, we aim to explore the air pollution transport
between different city-clusters and ignore the diffusion effects in
Model (1) given the large spatial scale.
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