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Abstract

®

CrossMark

We aim to investigate a class of generalized KP and BKP equations for which exist abundant
exact solutions. The resulting two-wave solutions involve particular phase shifts and wave
frequencies generating complexitons. Special reductions of the parameters present concrete
examples of phase shifts and wave frequencies. It is also pointed out that the presented equations
can be transformed into many well-known equations associated with bilinear forms. Moreover, a
class of lump-type solutions is generated through symbolic computations with Maple. Three
illustrative examples are given to show the diversity of exact solutions to the introduced

equations.

Keywords: generalized KP and BKP equations, reduction, complexiton solutions, lump-type

solutions, Hirota’s bilinear form
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1. Introduction

It is of significant importance to investigate exact solutions of
nonlinear evolution equations (NLEEs) in mathematical
physics. Exact solutions might help us to better understand
qualitative features of many phenomena and processes in
various areas of natural science. NLEEs possess diverse
solutions, such as solitary wave solutions, lump and com-
plexiton solutions. Solitary wave solutions called solitons are
analytic solutions exponentially decaying in all directions,
while lump solutions are a kind of rational function solutions
localized in all directions in space. Adding to the diversity of
solitons, complexiton solutions, i.e. solutions involving two
kinds of transcendental functions—exponential functions and
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trigonometric functions, have been presented in references
[1-6].

The Kadomtsev—Petviashvilli (KP) hierarchy contains
many different systems of equations [7, 8]. The basice
equation at the bottom of the KP hierarchy is the KP equation,

which can be written in the bilinear form as
(D — 4D\D5 + 3DHf - f=0, (1.1)

where the Hirota bilinear differential operators [9] are
defined by
D;ilD;lzzf. g= (8):1 — 8xl/)”l(8x2 — 8x2/)n2
X f(xh xz)g()ﬁ/, -x2/)|x1,:)(1,x2/:x2’ (12)

with n; and n, are arbitrary nonnegative integers. In nonlinear
sciences, the KP equation is a completely integrable system
that describes the motion of two-dimensional solitary waves.

© 2020 IOP Publishing Ltd  Printed in the UK
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In addition to the KP hierarchy, there exists B-type
Kadomtsev—Petviashvili (BKP) hierarchy. The BKP hier-
archy, that is KP hierarchy of the B-type, was introduced by
Date, Jimbo, Kashiwara, and Miwa [8]. The first equation of
this hierarchy is expressed in the bilinear form as
[(D3 — DY)D_y + 3DIf - f = 0. (1.3)
Various soliton equations were reproduced as reductions and
generalizations of equations in these hierarchies, such as the
the Hirota—Satsuma shallow water wave equation [9], the
generalized Calogero—Bogoyavlenskii—Schiff equation [10],
and the (3 + 1)-dimensional generalized KP and BKP
equations [11-13]. For these nonlinear equations, many
approaches have been conducted to seek exact solutions,
which contain the Hirota’s bilinear method [9, 14, 15], the
Bicklund transformation method [16, 17], the exp-function
method [18, 19], the auxiliary equation method [20, 21], the
Riemann—Hilbert method [22-25] and the Wronskian tech-
nique [26-30]. Among the existing methods, the multiple
exp-function method [31, 32], as a generalization of Hirota’s
perturbation scheme, provides a direct algebraic approach for
constructing multi-exponential wave solutions to nonlinear
equations. The abundant multiple wave solutions to the
(3 + 1)-dimensional generalized KP and BKP equations have
been presented by Ma and Zhu with the help of Maple [32],
applying the multiple exp-function algorithm.
In this paper, we will consider a class of NLEEs:

Uyxry T X(uxuy)x + Uy + oty + C3Uyy
+ caltyy + csu =0, (1.4)

where  is a non-zero parameter, ¢;, 1 < i < 5, are all arbitrary

real constants and ¢ + ¢ = 0. Under the transformation

u=2an).. (15)
X

a direct computation tells that (1.4) can be expressed as a Hirota

bilinear form

(DD, + \DyD, + c;DyD, + ¢3D;

+ c4D} + esD))f - f = 0. (1.6)

Ifx=3¢c=c4=c5=0,c, =—1and c3 = —3, then (1.4)
can be reduced to the (2 4+ 1)-dimensional BKP equation

1.7

Uy — Upery — 3(Ulty)y + 3ty = 0.

By the typical transformation u = 2(Inf),, this can be written
in Hirota form as (1.3) if we set D, = D;, D, =D_; and
D, = Ds. The class of nonlinear equations defined by (1.4) is
also a general generalization of the following (3 + 1)-dimen-
sional generalized KP and BKP equations [12, 33-37]:

Upxxy T 3(uxuy)x + U + Uy — Uy = 0, (1.3)

Uy — Uyey — 3(Uxlty)y — 30Uy + 3u,, =0, 0 = £1.
(1.9)

The equations (1.8) and (1.9) have been proven to possess
Wronskian and Grammian determinant solutions [12, 37, 38].

More recent studies on exact solutions and integrable properties
of (1.4) may be found in the literature [13, 39, 40].

The framework of this paper is as follows. In section 2,
we will construct one-wave and two-wave solutions to (1.4)
via the multiple exp-function method. Based on two-wave
solutions with particular phase shifts, a kind of complexiton
solutions will be derived. In section 3, we will present three-
wave solutions and discuss their dimensional reductions.
Moreover, it will be pointed out that any equation defined by
(1.4) can be transformed into many well-known equations
associated with bilinear forms, such as the Korteweg—de Vries
(KdV) equation, the (2 + 1)-dimensional KP equation and
the Boussinesq equation. In section 4, we would like to search
for lump-type solutions to the associated bilinear equation,
under the help of Maple. Our conclusion and remarks will be
given at the end of the paper.

2. Complexiton solutions

The multiple exp-function method is well known in the lit-
erature [31, 32]. Let us introduce one-wave solutions to (1.4)

"y 6(a; + are ke’

2.1
x(1 + ge) 2.1

where a;, a, and ¢, are constants and 6; = ki x +
lyy + m;z — wyt. Then, direct symbolic computations with
Maple show

kl3ll + C3k12 + C4112 + C5m12

ay = (a2 — Dk, wi = , (22)
Clkl + ll
and so, the resulting one-wave solutions are given by
—1 kix+Ly+miz—wt
U= 6(02 )k] + 661281](16 ’ (23)

X(l + g e/qx+l,y+m1z7w11)

where a,, €1, ki, [ and m; are arbitrary and w, is defined
by (2.2).

We next consider two-wave solutions of (1.4):
6 0 0 0,+0
u=—(>nf), f=14 ge’ + e2e” + ange e, (2.4)
X

where ¢;, i = 1, 2, are arbitrary and
0; = kix + l,»y + miz —wit, i =1, 2.

Applying the multiple exp-function algorithm by Maple, a
direct computation tells us that

ki3li + C3ki2 + C4li2 + Csmiz

,i=1,2and
ck; + ol

2.5)
b
ap = —,
12
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where
by =3akika(kily + ko) (akika + cakily + cakaly)
— 3cskikalil (ki — ko) (h — 1)
— clikyQlkF 1y + 2k ko ly + kL + k3L)
+ (clea + e hly — kaly)?
— ackiky bl (kf + k3) + 3kiks (17 + 15)
+ kT 4 kS 1)+ eslen(kima — kymy)

+ ey (limy — Lmy) P, (2.6)
and
cio = —3citkika (kily + kol (ctkiky + o2kl + ok ly)
— 3cikikalib (ky + ko) (h + )
— ko RlikF 1, + 2kEkaly + kPl + k5L
+ (el + el — kah)?
— a2k bl (kf + k3) + 3k{ky (IF + 1)
+ kS 4 kP 4 esle(ma — komy)
+ ca(limy — Lmy) 2.
Q.7

It is clear that the phase shift a;, depends on all coeffi-
cients k;, [; and m;, i = 1, 2, of the spatial variables x, y and z,
respectively. This shows that two-wave solutions are deter-
mined for k;, [; and m; being free parameters. In the following,
we would like to give a class of complexiton solutions of
(1.4) by extending the parameters to the complex field.

Assuming

k= Ez =a +ib, [ = iak, I, = —iak,,
my=my =c + id,

i=J-1, a=e, a,bc,d a,a,€R, (28)
and noting expressions (2.4)—(2.7), we have
ap=1,0,=0,=Q + v, 2.9
where ~ denotes the complex conjugate and
Q=ax — aby + cz — pt,
Y =bx + aay + dz — qt, (2.10)

with
p= @ bz)(ilz e [acib(B* — 3a* — 2a%b?)
+ a?cra(a* — 3b* — 2a%b?)
+ acyes(bd? + 2acd — be?) + cies(—ad? + 2bed + ac?)
+ (cic3a + acyesh — alcacab — oPcjcsa)(@® + b2,
. 1
@+ D) (e + a’cd)
+ a2cb(3a* — b* + 24%b?)
+ acyes(ad? — 2bed — ac?) + cies(bd?* + 2acd — bc?)

+ (cic3b — acreza + &icrcsa — oPcieab)(@® + b)),

q [acia(a* — 3b* — 2a%b?)

Substituting (2.9) and (2.10) into (2.4), we can now compute

f=1+2ge%o0st + e (2.11)

Thus, a class of explicit solutions of (1.4) is given as follows:
"y 12(agecosp — beesinyy + acie??)
x (1 + 2gecost) + e7eX?)

. (2.12)

where the real parameters a and b need to satisfy a® + b*
= 0, and the others are suitably chosen. Based on the above
results, we will present an illustrative example.
Example 2.1. Let us set
x=3,ca=c3=c4=0,c0=2,¢c5 = -3,
and then we arrive at a (3 + 1)-dimensional Jimbo-Miwa
type equation
Uprey + 3(ucuy)y + 2uy — 3u,; =0, (2.13)
which has been introduced by Ma [41, 42]. Through the

dependent variable transformation # = 2(In f),, the Hirota
bilinear form of (2.13) is written as

(DD, + 2D,D, — 3D))f - f = 0. (2.14)
The corresponding two-wave solutions to (2.13) read
y— 2lkigie’ + kyere® + app (ki + k2)€1€2€€‘+02], 2.15)
1+ 81691 + 62692 + a12€162691+62
where ¢, and ¢, are arbitrary and
31, — 3m?2
Hi:k,-x—i—liy—l—m,-z— killz%f,i: 1, 2,
s = kikolil (ki — ko) (b — b) + (hmy — Lmy)? 2.16)

kbl + k) (h 4 b) 4 (hmg — Lmy)?

Moreover, we can also obtain a class of complexiton solutions
to (2.13) as follows:

Y 4(age?cos ) — beelsinty + aste?)
1 + 2gecostp + el

, (217

where
Q=ax — aby + ¢z
B ola(a* — 3b* — 2a%b?) — 3a(bd? + 2acd — bcz)t
2a%(a® + b?) ’

P =bx + aay + dz
_ a*b3a* — b* + 2a’h*) — 3a(ad® — 2bcd — acz)t
202(d? + b?)

k)

with a(a? + b?) = 0. Figure 1 shows the propagation of the
complexiton solution by the expression (2.17) with special
parameters in the xz-plane. It is generated by the interaction
between the soliton and the periodic wave.

3. Three-wave solutions and their dimensional
reductions
We now consider three-wave functions:

u=2anp),. 3.1
X
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Figure 1. The complexiton solution (2.17) witha =1, a =2,b =12, ¢c = %, d=4,6=10,y=0and (a) t =0, (b) t = 0.05,

(©)t=0.1.

with f being defined by

F=1+ge’ + e2e% + 56 + gerape?

+ agane’t% 4 ey gaze’

+ aerezanze? %) apy = apagzans, (3.2)
where ¢;, 1 < i < 3, are arbitrary and
0; = kix + lly +miz —wit, 1 <i1<3. (3.3)

We would like to search for three-wave soliton type solutions
with the selection of

3. 2 2 2
Wi:kil,+C3k, + cal; +C5m[’1<l_<3
Clki + Czli

3.4

and

aj=—-21,1<i<j<3,
Cij

(3.5)

where

bij = 3eikiki(kil; + kil (cikik; + cakil; + crkjly)
— 3eskikilili(ki — k) (I — 1)
— ol kikjRkik7 1 + 2k7 kil + kXL + k1)
+ (cfes + cies)(kily — kil)?
— ac[2kik; Lk + k) + 3kFkF (7 + 1)
+ kG A+ kIR + esle(kimy — kymy)

+ e (lim; — Limy)P, (3.6)

and

cj = —3ckiki(kil; + kil (cikik; + cakil; + cok;l;)
— 3cskikilili(ki + k) (i + 1))
— lkikjRkikP 1 + 2k7 kil + KL + K L)
+ (el + G kly — kil)?
— ae[2kikilili (k7 + k) + 3Kk (7 + 1)
+ kT A+ K1+ eslei(kimy — kymy)

+ cz(l,-mj - ljmi)]z. (37)

Due to the class of nonlinear equations defined by (1.4) is
not completely integrable [34], we need to determine condi-
tions to guarantee the existence of the three-wave soliton

solutions.
We begin with the choice

ll = akl, 12 = Oékz, l3 = 7Ozk3, (38)

where « is a constant, which leads to the wave frequencies

ko + sk + ca®k? + csm?
w; = si=1,2,
ak; + crok;
- —kio + cski + cpa’kd + csmi , 3.9)
Clk3 — Czak3
and the phase shifts
iy — —3aki ks (ki — k2)* + cs(kimy — kymy)?
—3akk3 (ki + ka)? + cs(kimy — kam)®”
a3z = 1, ajz = 1. (310)

Therefore we have a class of three-wave soliton solutions
(3.1) associated with (3.9) and (3.10) to (1.4).

Secondly, we would here like to focus on some dimen-
sional reductions of the three-wave solutions.
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Figure 2. The plots of the resonant two-, three- and four-wave solutions (3.24). The involved parameters are, respectively, set as: 3 = 2,
y=-2,z=—-land (@) N=2,e1=6,=1,k=05k=150)N=3,e1=a=e=1 k=1Lk =2,ks=-05;(c) N=4,

61=€2=€3=€4=l,klZ*O.S,kzzl,k3:*1.2,k4=2.

Case 1 The choice
i = aki, mi = Bk;, 1 <i<3, (3.11)

where v and (3 are two constants, presents a class of three-
wave soliton type solutions defined by (3.1) with

2 2
Gi:ki(x+ay+6z— 03+ caa? + csf3 t)

c + o
3
oM << (3.12)
c + o
and
ki — k;)?
V= ( f)z <j<3 (3.13)
(kj + kj)
Let
X =x+ay+ - C3+C4a2+csgzt
c + o ’
P9 (3.14)
c + o

It is direct to see that this kind of three-wave solutions defined
by (3.1) with (3.11)-(3.13) reduces to the one presented for
the KdV equation in previous literature [3, 26]. In fact, the
invertible linear transform (3.14) of x, y, z and ¢ can transform

(1.6) into
(D;', + DyD))f-f=0, (3.15)

which presents the bilinear KdV equation.

Case 2 Let ¢5s = 0. The choice
l; = aky, m; = Bk, 1 <i <3, (3.16)

where o and ( are two real constants, generates a class of
three-wave soliton type solutions defined by (3.1) with
0,‘ = kix + akiy + ﬂkizZ
(63 F )k + (a + PO
a+ o

L1<i<3 (317

and

. (=3a + csB*) (ki — k;)*
T Balk 4 k) + esfEki — k)2

1 <i<j<3. (3.18)
Further taking
2
o= S5 (3.19)
3
then we have
2 2 04
0= k| x + csf3 y— 9¢s + cacs B + Bk
3 9c + 3026562
2
_ ikﬁt, 1 <i<3,
3¢ + cres3?
a;=0, 1 <i<j<3, (3.20)
which gives a kind of resonant solutions to (1.4):
f=1+¢ge’ + ge? + gebs. 321

We also find that the bilinear equation (1.6) reduces to the
following bilinear KP equation:
(D{ + 4DyDy + 3D})f - f= 0, (3.22)

under the invertible linear transform of independent variables

A cs 32 9+ cyc? p*
3 33 + caesf?)
2
V= o1 = s (3.23)

3¢ + caesBP
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As a special example, the (3 + 1)-dimensional bilinear
equation (2.14) has the following resonant multiple wave
solution:

N
f=143 elkix — By + B’z — 2k;’1),
i=1

(3.24)

where $ and the e;s and k;s are arbitrary constants. The
resonant two-, three- and four-wave solutions (3.24) with
special parameters are plotted in figure 2. In two resonant
cases, the length of resonant soliton will enlarge and this will
develop a triad as displayed in figure 2(a). It is easy to see the
interaction will become even more complicated with the
increase of the number of solitons. Additionally, the invertible
linear transform of x, y, z and ¢

X' =x— 4,y =6zt =21, (3.25)
can transform (2.14) into the bilinear equation (3.22).

Case 3 Let c5(ci + ¢) = 0. We still consider the above
three-wave soliton type solutions defined by (3.1) with (3.17)

and the phase shifts (3.18). Under the selection of

(3.26)

where (3 is suitably chosen, expressions (3.17) and (3.18)
become

o = —csf?,

4. Lump-type solutions

In recent years, it has become an interesting research topic to
investigate lump solutions or lump-type solutions, rationally
localized solutions in almost all directions in space [43-52],
to NLEEs, via the Hirota bilinear formulation. As we know,
positive quadratic functions can generate lump or lump-type
solutions of NLEEs under the dependent variable transfor-
mations u = y(Inf), and u = y(Inf),,, where -y is a constant
and x is one spatial variable. Thus lump solutions or lump-
type solutions are a kind of special nonsingular rational
solutions, which describe diverse nonlinear phenomena in
nature. In this section, we will search for positive quadratic
function solutions to the associated bilinear equation (1.6)
through direct Maple computations.

To search for quadratic function solutions to the (3 + 1)-
dimensional bilinear equation (1.6), we assume

f=g’+g +an, 4.1)
with

g =aix + azy + azz + ast + as,
& = aecx + ary + asz + aot + ao,

234 here a;, 1 < i < 11, are real parameters to be determined.
— 2 €3 + C4Cs ﬂ 2 . w bl XTI X s o)
0; = ki(x — sy — _Cl — o5 32 t) + Okiz 1 <i<3 With the help of Maple symbolic computations, we can obtain
a set of constraining equations for the parameters and the
3.27) . )
coefficients as follows:
{{a a, a a, a as, a ml a a
1= d], d = dp, d3 = d3, d4 = , d5 = ds,
(c1a1 + 2a2)* + (ciae + c2a7)*
W
de = dg, A7 = a7, dg = ag, dg = B 2 ayp = a0,
(aar + c2a2)” + (aas + c2a7)
ay — —3(a1a; + aear)(ai + ad)l(aa + ©2a2)* + (aae + c2a71)’] @2)
A ' '
and with
K2 2k 4 K2 N =al(al + aad)es + Qarasar — aiai + aias)cs
N it 7 s 2 2
= K2t kk + k2 Isi<jss, (3:28) + (a3 + 2azasas — a1ag)cs]
: ik; .
l ! + aa[Qaasa; — arag + afaz)es + (a3 + azai)es
2 2
respectively. Similarly, if we suppose + (223617&8 —|—3a2a3 azjg esl, ,
X =cllafas + ag)es + (agay + 2a1ara7 — a; ag)cy
2 a4 2 2
+ - +2
x'=x—cspy — MI’ t = Bz, (3.29) (06‘182 as a62 aazas)cs] 3 2
a — acsfB + allaga; — ai a7 + 2aazag)cs + (a7 + azag)cy

then the invertible linear transform (3.29) can transform (1.6)
into
(D;‘, - th,)f~f: 0, (3.30)

which yields the bilinear Boussinesq equation.

+ (a7ag — ajar + 2arazag)cs],
A3 = eslag(cia; + c2a2) — az(cias + c2a7)f
+ (cfes + cies)(mar — arae)?,
“4.3)

where all involved parameters and coefficients are arbitrary
provided that the expressions make sense. Note that



Phys. Scr. 95 (2020) 035203

L Cheng et al

— =0
—-x=

(b)

Figure 3. The plots of the expression (4.9) with special parameters: z = 0, t = 2. (a) Three-dimensional plot. (b) The y-curves. (c) The

contour plot.

aja; — adrae *= 0 leads to (Clal + Czaz)z —|—(cla6 + c2a7)2¢
0, which guarantees a4 and ag in (4.2) are well defined. Under
the nonzero condition

aja; — azag = 0, “4.4)
the solutions in (4.1) are positive quadratic functions if and
only if the parameter a;; > 0, and so, we require a positivity
condition for a;; as

(@as + aear) _ 0. @.5)
A3

where ); is defined by (4.3). It is easy to see that the
condition ¢s(¢7c4 + cf¢3) > 0 guarantees A3 or — )3 is non-
negative. The resulting quadratic function solutions yield a
class of lump-type solutions to the (3 + 1)-dimensional
nonlinear equations defined by (1.4) through the transforma-
tion (1.5):

u— 12(“181 + 51682)
x(gl + g + an)

(4.6)

where the functions g, g, and a;; are defined by (4.1) and
(4.2). Obviously, the constraints (4.4) and (4.5) guarantee
both analyticity and localization of the solutions in (4.1). If
the sum of squares gl2 + gz2 — 00, then the above solutions
in (4.1) may tend to zero, but cannot uniformly approach zero
in all space directions.

Below we present two application examples in (3 4 1)
dimensions, to shed light on lump-type solutions of (1.4).

2(20x + 16y — 30t — 28)

Example 4.1. We consider the (3 + 1)-dimensional Jimbo—
Miwa type equation (2.13), which has C5(C1264 + 6226'3) = 0.
Based on the presented solutions, we have

{al =a, a = az, az = as,

2 2
_ 3(axas + 2aza7a3 — axayg)

as , ds = ds,
2(a? + a?)
ae = dae, a7 = ag, dg = das,
3(a7a82 + 2arazag — a7a32)
ag = D > > d10 = 410,
2(a; + ay)
(aay + agar)(ai + ad)(ai + af)
aj = , 4.7)

(asa7 — arag)?
which needs to satisfy the condition aza; — a,ag = 0. When
ap; > 0, namely

aja, + aga; > 0,
the corresponding quadratic function f defined by (4.1) is
positive. In turn, through the transformation u = 21n(f),, a

class of lump-type solutions to (2.13) can be expressed as:
4
"y (zangl er 68)) 4.8)
g + & +an

where g;, g, and the involved parameters are defined by (4.1)
and (4.2), respectively. Further taking

aq=1,a,=2,a3=—-3,a5=1,a¢ =3, a; =2,
ag=1, ajop = -5,

then we have the following lump-type solution to (2.13):

u =

(x+2y—3z+%t+1)2+(3x+2y+z—%t—5)2+10.

4.9
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(a)

(b) (c)

Figure 4. The plots of the expression (4.15) with special parameters: y = 0, z = 2. (a) Three-dimensional plot. (b) The contour plot. (c) The

X-curves.

The plots of (4.9) are depicted in figure 3.
Example 4.2. Taking

x=3,a=c=0,c=—-1,¢c3=30,¢c5=—-3,0 = =1,
4.10)

then (1.4) reduces to the (3 + 1)-dimensional BKP
equation (1.9). Under the typical transformation u = 2(In
f)x this equation itself has a Hirota bilinear form

(D,Dy — D}D, — 30D} + 3D))f - f=0, 0 = 1. (4.11)

By the above results in (4.2) and (4.3), a set of constraining
relations for the parameters is

which guarantees that the quadratic function f defined by (4.1)
is positive. For the case of ¢ = 1, we point out that the
parameter a¢ is arbitrary in (4.12), and so the resulting
positive quadratic function solutions above cover the second
quadratic function solutions recently presented in [33].

Associated with

c=1l,aqy=1,a,=2,a3=1,a5=4, a¢ = 3,
a;=—1,a3=-2,a10=38,

the transformation u = 2In(f), with (4.1) provides a lump-
type solution to the corresponding (3 + 1)-dimensional BKP

2 2 2 2
3o(aja, — aras + 2ajasar) — 3(aray — azag + 2azazag)

{al =a, a = dz, ay = as, a4 =

as = ds, de = de, d7 = 47, Ag = dg,

s

2 2
ay +a7

2 2 2 2
_3o(aga; — ai a7 + 2a1a2a6) — 3(azag — aza; + 2axa3ag)

ag
2 2
a, +aj

(aa> + agar)(ai + ag)(a; + aj)

ajp = apo, i1 =

Note that (a3a; — azag)® — o(@ma; — azag)® = 0 leads to
a? + a? = 0, which guarantees a4 and ao in (4.12) are well
defined. Therefore, when ¢ = —1, the condition for guaran-
teeing lump-type solutions is

(a3a7 — aza3)* + (@a7 — azae)* = 0, ajaz + aga; > 0,
(4.13)

which guarantees that @;; defined in (4.12) is positive. In

addition, when o = 1, the condition is

[(asa7 — azag)* — (a1a; — azae)*(aaz + asay) > 0,
4.14)

(aza7 — arag)?* — o(aa; — arag)?

s

}. 4.12)

equation (1.9):

"y — 2(20x — 2y — 10z + 30t + 56)
(20t z— 120442+ Gx—y— 20+ 9+ 87+
(4.15)

In figure 4, three-dimensional and contour plots of this lump-
type solution with special parameters are made through Maple
plot tools. We can easily observe that the lump-type wave has
a peak and a valley, and is called the bright-dark lump-type
wave [53].
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5. Concluding remarks

To conclude, we discussed a class of generalized KP and
BKP equations (1.4), and computed multiple wave solutions
with generic phase shifts and wave frequencies. The newly
presented generic phase shifts and wave frequencies in this
paper lead to the richness and diversity of exact solutions.
Using the Hirota bilinear technique, some interesting reduc-
tions of three-wave solutions were explored. We showed that
any nonlinear equation defined by (1.4) can be transformed
into the KdV equation (3.15) and its dimensional reductions.
Therefore, under the dimensional reduction, abundant exact
solutions can be worked out to (1.4). We also remark that the
phase shifts (3.28) are the same with the ones in Wazwaz’s
work [6, 54]. By extending the parameters to the complex
field, nonsingular complexiton solutions can be generated
from multiple wave solutions. Moreover, it is worth noting
that there exist resonant phenomena in the presented solitons.
The choices (3.16) and (3.19) imply the corresponding phase
shifts a;; = 0. The phase shifts defined by (3.5) with (3.6) and
(3.7) show some resonant phenomena, and so we can obtain
the resonant multiple wave solutions u of (1.4) associated
with the form f= 1+ 3!, e if taking ¢s = 0. To our
best knowledge, this has not been revealed in previous
studies.

In addition, we presented a class of lump-type solutions
to (1.4) with the help of Maple. The constraints of para-
meters guarantee the analyticity and localization to the
resulting lump-type solutions. Two application examples
were presented in (3 4+ 1) dimensions, to shed light on
lump-type solutions of (1.4). To a certain extent, the results
presented in this letter are generalizations of previous stu-
dies, since many nonlinear equations of mathematical
physics can be used as special cases of (1.4). For example,
the set (4.2) of solutions can also generate a class of lump
solutions of the (2 + 1)-dimensional BKP equation (1.7),
which provides a supplement to existing literatures on
related equations [53, 55, 56].

Generally speaking, Hirota bilinear forms play a key role
in constructing multiple wave and lump-type solutions. To
our knowledge, there are various discussions in terms of the
Hirota bilinear forms to (1.4). For example, we hope to find
positive quadratic function solutions to the following gen-
eralized bilinear equations

(D3 D3y + aD3,D3, + ¢2D3 D3,

+ D, + aD, + esDIf - f=0,
(D3 .Ds,, + ¢1DsDs; + ¢2Ds ,Ds,

+ D, + aDi, + esD)f - f=0,

where D3,X,D3,y,D3,Z,D3J and DS,stS,y’DS,z’DS,t are two kinds
of generalized bilinear derivatives [57, 58]. More research
questions will be studied in our future works.
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