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Abstract
In this work, the Bogoyavlenskii–Kadomtsev–Petviashvili equation which is used to describe the
wave phenomenon in fluid mechanics is investigated. Based on the bilinear representation,
perturbation method and Taylor expansion approach, we derive various kinds of high-order
solitons including the N-kink soliton, n-order lump-type soliton and mixture solution of kink
soliton and lump-type soliton. First, N-kink soliton solution is obtained by the bilinear
representation and perturbation method. Second, by using the Taylor expansion approach for the
2n-kink soliton solution, n-order lump-type soliton is obtained. Third, by mean of the Taylor
expansion approach for 2n-kink soliton solution in the N-kink soliton solution (1<2n<N), we
construct the mixture solution consisting of (N−2n)-kink soliton and n-order lump-type soliton.
Interestingly, the collision between kink soliton and lump-type soliton can give rise to a high-
order lump-type soliton.

Keywords: Bogoyavlenskii–Kadomtsev–Petviashvili equation, perturbation method, Taylor
expansion approach, soliton

1. Introduction

Soliton solutions play an important role in the research of
nonlinear wave theory, these particular solutions are often
used to help us understand the associated nonlinear localized
excitation phenomenon in nonlinear physics science, such as
solitary waves observed by Russell in water waves, shock
waves in the gas and solids dynamics, Langmuir waves in
plasmas, optical solitary waves in nonlinear optics and so on
[1–4]. Since Korteweg–de Vries (KdV) equation and its
soliton solutions were derived [2], seeking for soliton solu-
tions and exploring their dynamical behavior for nonlinear
wave equations have captured a lot of attention in the field of
nonlinear wave. In the higher-dimensional nonlinear wave
equations, soliton solutions of many equations have been
studied in detail. For instance, (2+1)-dimensional Kadomt-
sev–Petviashvili equation [5], (2+1)-dimensional Sawada–
Kotera equation [6], (3+1)-dimensional potential Yu–Toda–
Sasa–Fukuyama equation [7], (3+1)-dimensional B-type
Kadomtsev–Petviashvili equation [8], (4+1)-dimensional

Fokas equation [9] and so on. So far, a great many effective
methods are used to construct soliton solutions, such as the
inverse scattering transformation method [1], Darboux trans-
formation method [10], long wave limit technique [11], Hir-
ota’s bilinear method [12, 13] and so on. In this work, we will
devote to studying two dimensional Bogoyavlenskii–
Kadomtsev–Petviashvili (BKP) equation

( )+ + + + =u u u u u u u u u12 8 4 , 1.1xxt xxxxy xx xy x xxy xxx y yyy

where u(x, y, t) is an analytic real scalar field and represents
the amplitude of the relevant wave. This equation is an
extension of the Bogoyavlenskii–Schiff equation and KP
equation [14–22], it can be used as a model for evolutionary
shallow water waves [14]. The BKP equation is a member of
the higher dimensional KP hierarchy and has been discussed
in the previous literatures [14–23]. In [15], this equation was
derived by a reduction for the well-known three-dimensional
Kadomtsev–Petviashvili equation [16] which describes the
propagation of nonlinear waves in plasmas, fluid dynamics
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and electrical networks. If we neglect the dispersion effect
term uyyy, then equation (1.1) reduces to the Calogero–
Bogoyavlenskii–Schiff equation [17] which describes the
interaction of a Riemann wave propagating along the y-axis
with a long wave along the x-axis. The Lax pair for the
BKP equation was presented in [18], and the construction
of Wronskian-type solution owes to the work [15]. Period
traveling wave, soliton-like and rational function solutions
were given in [19, 20]. The transformation groups, Kac–
Moody–Virasoro algebras and conservation laws for the
BKP equation have been presented by the generalized sym-
metry method and Ibragimov’s theorem [21]. The authors
have also derived the nonlocal symmetry, non-auto Bäcklund
transformation and consistent Riccati expansion solvable of
BKP equation, and investigated the interaction between kink
wave and lump-type wave in [22]. The bilinear structures and
multiple wave solutions have been deduced by means of the
binary Bell polynomials method [23].

Through the logarithmic transformation [22, 23]

( ) ( )= =u F
F

F
log , 1.2x

x

the BKP equation (1.1) can be converted into the Hirota
bilinear system

where F=F (x, y, t; s) is an unknown function, s is an
auxiliary parameter variable and α is a non-zero constant.
Hence, if F (x, y, t; s) solves the Hirota bilinear system (1.3),
then (1.2) is the solution of the BKP equation (1.1).

Remark. Introducing the auxiliary parameter variable s
equates to adding a spatial variable, then the (2+1)-
dimensional BKP equation (1.1) can be transformed into the
(3+1)-dimensional Hirota bilinear system (1.3) by the
variable transformation (1.2). It is more concise to express
the solution of the BKP equation (1.1) by the solution of the
(3+1)-dimensional Hirota bilinear system. Besides, the higher
dimensional systems have richer dynamical behaviors.

In the previous literature [14–23], general high-order
lump-type soliton and higher-order mixture solution consist-
ing of the kink soliton and lump-type soliton for the BKP
equation (1.1) have not been investigated before. Therefore,
our main goal is to construct general higher-order lump-type
soliton and higher-order mixture solution consisting of the
kink soliton and lump-type soliton solutions and to explore
their interesting dynamical behaviors. Section 2 is mainly
divided into three parts: (2.1) N-kink soliton solution is
obtained by the bilinear representation and perturbation
method; (2.2) by using the Taylor expansion approach for the

2n-kink soliton solution, n-order lump-type soliton is
obtained; (2.3) by mean of the Taylor expansion approach for
2n-kink soliton solution in the N-kink soliton solution
(1<2n<N), mixture solution consisting of (N−2n)-kink
soliton and n-order lump-type soliton is derived. We discuss
the properties of interaction between kink soliton and lump-
type soliton. Finally, conclusions are given in section 3.

2. Various kinds of high-order solitons of the BKP
equation

In this section, we mainly consider the kink soliton, lump-
type soliton solutions and their high order cases. The kink
soliton is also known as the front wave [1, 2, 24] and also
investigated as the shock wave [25–27]. This kind of soliton
has been found in a variety of physical systems, such as the
Burgers equation in fluid dynamics [24, 25], sine-Gordon
equation in nonlinear optics [28], modified Kadomtsev–Pet-
viashvili equation in plasma physics and electrodynamics
[29], modified Zakharov–Kuznetsov equation in nonlinear
electrical network [30] and so on. The lump-type soliton is
another kind of rational soliton solution which decays
algebraically to the background wave in space direction
[31–43]. Compared with the kink soliton, they are completely

different, because the kink soliton is exponentially nonlinear
localized wave solution along the propagation direction. The
lump-type soliton can be used to describe the rogue wave in
Bose–Einstein condensate [31], internal rogue wave in den-
sity stratified flows [32], freak wave in the ocean [33], non-
linear localized wave in plasma [34], optical rogue wave
phenomena in nonlinear optic media [35], etc. In these phy-
sical contexts, the lump-type soliton can play a role of ele-
mentary wave excitations. Moreover, the nontrivial internal
interaction between lump-type solitons can be used to
describe a model of a strong wave turbulence [34]. The high-
order soliton can be used to describe the interaction between
solitons and demonstrate the amplitude, velocity and wave
shape relations between solitons before and after interaction.
In general, if the amplitude, velocity and wave shape of
solitons do not change after nonlinear collisions, then this
kind of interaction is called a completely elastic interaction
[29]. However, some interactions can lead to more interesting
physical phenomena. For example, in the interaction process,
several solitons can fuse to one after interaction with each
other, or one soliton fission into several solitons. These two
types of physical phenomena are called soliton fission and
soliton fusion, respectively. These two types of interactions
are also referred to as completely non-elastic interactions [44].
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Therefore, it is a very meaningful research work to investigate
various kinds of solitons and their high order cases.

2.1. High-order kink soliton solutions

This section we will employ the perturbation method [10] to
derive the high-order kink soliton solution of (1.3). For this
purpose, let us expand the function F into the following
power series in ò

( )å=
=

¥

F F , 2.1
n

n
n

0

where F0=1 and ( )( )= =F F x y t s n, , ; 1, 2, 3,n n are
some unknown functions, they will be determined later.
Inserting (2.1) into the Hirota bilinear system (1.3) we obtain
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Suppose the coefficients of each order of the parameter ò to
zero, we get the set of equations
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Solving the equations (2.3) by applying the exponential
function, a class of solution of the Hirota bilinear system (1.3)
can be derived as follows

( ) ( )

( )

å å ås x s s d x

q
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where the parameters ki, li, ci, di satisfy the following con-
ditions

( )

( ) ( )
( ) ( )

( )

a
=

-
=

-

=
- +

+ +
<d  

c
l l k

k
d

k l

k

k k k k k l

k k k k k l
i j N

,
3

3
,

e
det ,

det ,
, 1 , 2.5

i
i i i

i
i

i i

i

i j i j ij

i j i j ij

2 4

2

4 2

2 2 2 2

2 2 2 2
ij

and qk l, ,i i i are some arbitrary constants, ( ) =k ldet , ij

( )< 
k l
k l

i j N1i i

j j
. In the expression (2.4), the per-

turbation parameter ò is merged into the corresponding phase
constant θi, the first summation sign ås=0,1 means the sum-
mation over all possible combinations of σ1=0, 1, σ2=0,
1, L, σN=0, 1, and the third notation å <i j

N denotes the

summation over all possible arrays (i, j) chosen the set {1, 2,
L, N} with the condition i<j. Hence we can derive the N-
kink soliton solution by inserting (2.4) with (2.5) into (1.2).
The determinant ( )k ldet , ij determines the types of interaction
between two kink solitons. If ( ) =k ldet , 0ij , the interaction
between two kink solitons is parallel. Otherwise, if

( ) ¹k ldet , 0ij , the interaction between two kink solitons is
oblique.

Based on the result given by (2.4), N-kink soliton solu-
tions can be presented by choosing different values of N. For
example, when N=1, the expression (2.4) becomes

( ) ( )x = + xF 1 e , 2.61 1 1
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Figure 1. The profiles of the kink soliton: (a) the cross-sectional views at y=0 with θ1=0 and k1=1, 2, 3, respectively; (b) the cross-
sectional views at x=0 with k1=1, θ1=0 and l1=0.5, 1, 2, respectively. The parameter value of s is 0.
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Inserting the solution (2.6) with (2.7) into the transformation
(1.2), we get the single kink soliton solution

( ) ( )⎜ ⎟⎛
⎝

⎞
⎠x x= +u k

1

2
1 tanh

1

2
. 2.81 1 1

This solution u(ξ1) is a traveling wave solution in the BKP
equation (1.1). The amplitude function u has the kink shape of
a hyperbolic tangent, see figure 1. Therefore, it is called kink
soliton solution and its kink front is determined by ξ1=0. By
the asymptotic state analysis, it is easy to deduce that the
single kink soliton solution tends to k1 as x  +¥1 , and
approaches to zero as x  -¥1 . Two different asymptotic
states are presented, hence the solution (2.8) is a solitary wave
and its amplitude is ∣ ∣k1 . From (2.7) we can also see that the
kink soliton propagates in the (x, y)-plane with the velocity
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Figure 1 exhibits the sectional diagram of the single kink soliton

along the x-axis and the y-axis at t=0. Since x=u sechx
k

4
2 1

2 1
1
2

,
the steepness of the single kink soliton along the x-axis depends
on the amplitude ∣ ∣k1 . The kink front will become steeper as the
amplitude gets bigger, see figure 1(a). However, when the
amplitude is fixed, the steepness of the kink soliton can be
controlled by the wave number l1. Since x=u sechy

k l

4
2 1

2 1
1 1 ,

when k1l1>0, with the increasing of the parameter ∣ ∣l1 , the
steepness of the kink front will increase, see figure 1(b).

When we take N=2 in the formula (2.4), then we gain
the following function

( ) ( ) ( )x x = + + +x x x d+F , 1 e e 1 e , 2.102 1 2 1 2 1 12

with

( ) ( )
( ) ( )

( )

( )
a

=
- +
+ +

=
-

=
-

=

de
k k k k k l

k k k k k l
c

l l k

k

d
k l

k
i

det ,

det ,
, ,

3

3
, 1, 2,

2.11

i
i i i

i

i
i i

i

1
2

2
2

1 2
2

12
2

1
2

2
2

1 2
2

12
2

2 4

2

4 2

12

where the determinant ( )k ldet , 12 is given by

( ) ( )=k l
k l
k l

det , . 2.1212
1 1

2 2

Inserting the function (2.10) with (2.11) and (2.12) into (1.2),
two-kink soliton solution of equation (1.1) can be presented
as follows

( ) ( ) ( )
( )

( )x x =
+ + +
+ + +

x x d x x d

x x x d

+ +

+
u

k k
,

e 1 e e 1 e

1 e e 1 e
. 2.131 2

1 21 2 12 2 1 12

1 2 1 12

This solution u(ξ1, ξ2) is a kind of interaction solution which
describes the elastic collision between two kink solitons. The
determinant ( )k ldet , 12 determines the type of interaction. If

( ) =k ldet , 012 , the solution (2.13) presents the interaction of
two parallel kink solitons, see figure 2(a). If ( ) ¹k ldet , 012 ,
the solution (2.13) describes the oblique interaction of two
kink solitons, the propagation of the two solitons is crossed,
see figure 2(b). Now we consider the asymptotic property of
the 2-kink soliton solution (2.13) as  ¥t . Let
ξ2−ξ1=τ and c2>c1, then we get that t  ¥ corre-
sponds to  ¥t . Hence we can obtain that when the
distance between two kink solitons increases, two-kink soli-
ton can be expressed as a sum of two noninteracting kink
solitons

( )
( ) ( )
( ) ( )

( )
⎧⎨⎩x x

x d x t
x x d t

+ +  +¥
+ +  -¥

u
u u

u u
,

, ,

, ,
2.141 2

1 12 2

1 2 12

where ( )( )x x= +u k 1 tanh1
1

2 1
1

2 1 and ( ) (x = +u k 12
1

2 2

)xtanh 1

2 2 are two single kink soliton solutions, δ12 is a phase
shift parameter. This result indicates that the interaction
between two kink solitons does not change the dynamic
behaviors of two kink solitons except for a phase shift.
Therefore, two-kink soliton (2.13) demonstrates an elastic
interaction between two kink solitons. Besides, since the
phase shift δ12 is greater than zero, the interaction between
two kink solitons can not form the resonant kink soliton.
Similarly, we can also investigate the dynamical behaviors of
N-kink soliton.

Figure 2. The spatial structures of interaction solution between two kink solitons at t=0: (a) parallel kink solitons; (b) crossed kink solitons.
The parameters in the formula (2.13) are (a) (k1, k2, l1, l2, α, θ1, θ2)=(2, 2.002, 1, 1.001, 1, 0, 0) and (b) (k1, k2, l1, l2, α, θ1, θ2)=(−1.5, 1,
1.5, 1.5, 1, 0, 0), respectively. The parameter value of s is 0.
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2.2. High-order lump-type soliton solutions

The section 2.1 derives and investigates the N-kink soliton
solution of equation (1.1). Indeed, based on the N-kink soliton
solution and the Taylor expansion method, we can derive
another kind of higher-order lump-type soliton solution.

First, we derive the single lump-type soliton solution
from the 2-kink soliton solution. Let q q p +p ij j j and
( ) ( )( ) =k l p k l j, , 1, 2j j j j j in the formula (2.10), where p1,
p2 are arbitrary parameters and = -i 12 . Further we consider
the Taylor expansion of the function ( )x xF ,2 1 2 at the point (p1,
p2)=(0, 0), then the polynomial solution of the Hirota
bilinear system (1.3) can be obtained

( ) ( )Q Q = Q Q +F R, , 2.15L1 1 2 1 2 12

with

( )

( )
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q

=- Q = +

+ - + =

R
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, 1, 2, 2.16

i i i

i

i

i

i
i

12
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3

2
3

12
2
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2

2

where k1, k2, l1, l2 are arbitrary non-zero constants and
( ) ¹k ldet , 012 . In general, the function ( )Q QF ,L1 1 2 has zero,

the corresponding solution ( ( ))= Q Qu Fln ,L x1 1 2 is a singular
solution. In order to obtain the nonsingular solution, the
parameters k1, l1, k2, l2 need to meet the following conditions

( )q q= = =l l k k, , , 2.172 1 2 1 2 1* * *

where * represents the complex conjugate. In terms of the
constraint conditions (2.17), substituting the solution (2.15)
into (1.2), we can obtain the nonsingular rational solution

( ) ( )
( )

( )

Q Q =
Q + Q

Q Q -
-

u
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, . 2.18
k k

k l k l

1 1
1 1 1 1

1 1
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3

1 1 1 1
2

*
* *

* *
* *

Figure 3 shows the spatial structure of the nonsingular
rational solution (2.18) at t=0. To understand the spatial
structure more clearly, let us demonstrate their properties
through the mathematical theory and method. This solution
with parameters ( ) ( )q a = + - +k l s i i, , , , 1 , 1 2 , 0, 1, 01 1 1

is expressed as

( )
( )

( )
=

+ -

- - + + - +
u x y t

x y t

x y t x y t
, ,

4 2 13

2
.

2 11

2

2 8
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Obviously, the propagation path of this solution is given by

( )( ( ) ( )) =x t y t t t, ,5

2

3

2
, that is, in the (x,y)-plane, this solution

propagates along the line =y x3

5
, see figure 3(b). By using

the extremum principle, this solution has only two extremum

points ( )t t,5

2 0
2

3

3

2 0 for a fixed time t=t0, where

( )+t t,5

2 0
2

3

3

2 0 is a local maximum point, and ( )-t t,5

2 0
2

3

3

2 0

is a local minimum point. By the asymptotic state analysis,
this solution tend to zero as (∣ ∣ ∣ ∣) ( ) ¥ ¥x y, , for a fixed
time t=t0. Hence, this solution has only one maximum value
and one minimum value. These properties imply that this
solution is localized in all directions in the space. As can be
seen from the figure 3, this solution has two parts. The first
part is the background plane wave u=0. The second part is
the localized lump-type wave which has one upper peak and
one down valley, see figure 3(a). Obviously, the amplitude of
the upward and downward lump-type waves are equal. The
peak and valley are divided by the plane wave u=0. This
solution is called the single lump-type soliton solution
[31–43].

In order to derive the second-order lump-type soliton
solution, let us consider the 4-kink soliton solution with
q q p +p ij j j and ( ) ( )( ) =k l p k l j, , 1, 2, 3, 4j j j j j . From
the Taylor series generated by the function F4(x, y, t; s) at the
point (p1, p2, p3, p4)=(0, 0, 0, 0), then we can derive the

Figure 3. The spatial structures of lump-type soliton solution: (a) 3D profile at t=0; (b) contour plot with = -t 6, 0, 6, respectively. The
parameters are selected with (k l,1 1, q1, ) (a = + i1 , )- + i1 2 , 0, 1 . The parameter value of s is 0.
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following polynomial solution
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where ( )=k l j, 1, 2, 3, 4j j are arbitrary non-zero constants
and ( ) ¹k ldet , 0ij . In the formula (2.19), the summation sign

åi j k l, , ,
4 indicates the summation over all possible arrays (i, j, k,

l) taken from the set {1, 2, 3, 4}, and i, j, k, l are all different.
Generally speaking, the function ( )Q QF , ,L2 1 4 has zero,

the corresponding solution ( ( ))= Q Qu Fln , ,L x1 1 4 is a sin-
gular solution. In order to obtain the nonsingular solution, the
parameters kj, lj ( j=1, 2, 3, 4) need to meet the following
conditions

( )
q q q q= = = = = =k k k k l l l l, , , , , .

2.21
1 3 2 4 1 3 2 4 1 3 2 4* * * * * *

In terms of the constraint conditions (2.21), substituting the
solution (2.19) with (2.20) into (1.2), we can obtain the sec-
ond-order nonsingular rational solution. Similar to the math-
ematical analysis method of first-order lump-type soliton, the
solution given by (2.19) is localized in all directions in the
space and has two single lump-type soliton solutions. Hence
this solution is called the second-order lump-type soliton
solution. Figure 4(a) shows the spatial structure of second-
order lump-type soliton solution which has two single lump-
type soliton solutions. Now we investigate the asymptotic
form of the second-order lump-type soliton solution as
 ¥t . At first, we consider ∣ ∣Q =2

2 constant, then
when  ¥t , we can obtain ∣ ∣Q  ¥1

2 . Hence,

( )Q Q Q QF , , ,L2 1 2 3 4 has the asymptotic properties

( ) ∣ ∣ (∣ ∣ )Q Q Q Q Q Q +  ¥F R t, , , , .L2 1 2 3 4 1
2

2
2

24

From the transformation (1.2) we know that the solution
given by ∣ ∣ (∣ ∣ )Q Q + R1

2
2

2
24 is equal to the lump-type solution

given by ∣ ∣Q + R2
2

24 in the limit of  ¥t . Thus, the
second-order lump-type soliton solution asymptotically
reduces to the form of a single lump-type soliton solution

( (∣ ∣ )) ∣ ∣ Q +  ¥ Q =u R tln , , constant.x2
2

24 2
2

Similarly, we can also derive that another asymptotic state of
the second-order lump-type soliton solution is still the form of
a single lump-type soliton solution

( (∣ ∣ )) ∣ ∣ Q +  ¥ Q =u R tln , , constant.x1
2

13 1
2

The above asymptotic analysis suggests that there is no phase
shift when two lump-type solitons interact with each other.
Thus, this second-order lump-type soliton solution describes a
completely elastic interaction between two lump-type
solitons.

In order to derive the n-order lump-type wave solution,
we consider the 2n-kink soliton solution with q q p +p ij j j

and ( ) ( )( ) =k l p k l j n, , 1, 2, ,2j j j j j . From the Taylor
series generated by the function ( )F x y t s, , ;n2 at the point
( ) ( ) =p p p, , , 0, 0, ,0n1 2 2 , the higher order polynomial
solution can be obtained

( )

!
( )

 


  


 

 å 

å 

Q Q = Q + Q +

+ Q +

= ¹

¹

F R

S
R R R

, ,
1

2

1

2
, 2.22

nL n
i

n

i
i j

n

ij
l i j

n

l

S
i j r s

n

ij kl rs

S

p i j r s

n

p

1 2
1

2

,

2

,

2

, , , ,

2

, , , ,

2

with

( )
( )

a
qQ = + + - +

=-  

k x l y
l

k
t

l

k
s R

k k

k l
i j n

,

4

det ,
, 1 , 2 , 2.23

i i i
i

i

i

i
i ij

i j

ij

3

2

2

3 3

2

Figure 4. The spatial structures of lump-type soliton solution: (a) second-order lump-type soliton; (b) third-order lump-type soliton,
respectively. The parameters are selected with: (a) ( )q q ak l k l t, , , , , , ,1 1 2 2 1 2 = ( + - +i i i3 , 0.5 2 , 2 0.1 , + - +i i1 , 20 25 ,

)+ i10 40 , 1, 0 ; (b) (k l k l k, , , ,1 1 2 2 5, q ql , ,5 1 2, ) (q a = +t i, , 35 , - + + +i i i i0.5 2 , 2 0.1 , 1 , 1.5 0.1 , + +i i0.5 1.5 , 75 12 , - - i3 57 ,
)- i71 61 , 1, 0 , respectively. The parameter value of s is 0.

6

Phys. Scr. 95 (2020) 035205 C Wang and H Fang



where ( )k l n, 1, 2, ,2i i are arbitrary non-zero constants and
( ) ¹k ldet , 0ij , the summation sign åi j r s

n
, , , ,

2 denotes the
summation over all possible arrays ( )i j r s, , , , chosen from
the set {1, 2,L, 2n}, and i, j,L, r, s are completely different.
Since the function ( )Q QF , ,nL n1 2 has zero, the solution

( ( ))= Q Qu Fln , ,L n x1 1 2 has singularity. In order to derive
the nonsingular solution, we have to add the constraint
conditions

( )q q= = = =+ + +k k l l i n, , , 1, 2, , . 2.24n i i n i i n i i* * *

In terms of the constraint conditions (2.24), substituting the
solution (2.22) with (2.23) into (1.2), we can obtain the n-
order lump-type soliton solution. By using the above
asymptotic analysis method, we can obtain that the n-order

lump-type soliton solution describes the multiple elastic
interaction of n lump-type solitons. Figure 4(b) shows the
spatial structure of 3-order lump-type soliton solution which
has three single lump-type soliton solutions. The third-order
lump-type soliton solution is localized in all directions in the
space.

2.3. High-order mixture solution of the kink soliton and lump-
type soliton

In the sections 2.1 and 2.2, we derive the high-order kink
soliton and lump-type soliton solutions, respectively. Now we
investigate the mixture solution consisting of the kink soliton
and lump-type soliton. Base on the solution FN(x, y, t; s)
given by (2.4), and taking q q p +p ij j j and ( ) k l,j j

( )( )=p k l j n, 1, 2, ,2j j j in FN(x, y, t; s), where 1<2n<N.
Further, from the Taylor series generated by ( )F x y t s, , ;N at
the point ( ) ( ) =p p p, , , 0, 0, ,0n1 2 2 we can derive the
high-order mixture solution consisting of (N−2n)-kink
soliton and n-order lump-type soliton. For example, in order
to deduce the mixture solution consisting of a single kink
soliton and a first-order lump-type soliton, we consider the
3-kink soliton solution. If we take N=3 in the formula (2.4),
then we gain the following function

( ) ( ) ( )
( )

x x x x x x d x d= + + +xF F F, , , e , ,

2.25
3 1 2 3 2 1 2 2 1 13 2 233

where ξ3, δ13, δ23 are given by (2.4) and (2.5), and the
function F2(ξ1, ξ2) is defined by (2.10). This solution
describes the interaction of three kink soliton solutions on
the (x,y)-plane as the development of time t. However, if we
take q q p +p ij j j and ( ) ( )( ) =k l p k l j, , 1, 2j j j j j in the
expression (2.25), and consider further the Taylor expansion
of the function F3(ξ1, ξ2, ξ3) at the point (p1, p2)=(0, 0), then

we can obtain the following mixture solution

( ) ( )
( ) ( )
x

q q

Q Q = Q Q

+ Q - Q -x

F F

e F

, , ,

, , 2.26

L

L

11 1 2 3 1 1 2

1 1 13 2 233

where ( )Q QF ,L1 1 2 is given by (2.15) and

( ) ( )
( )

q q=
+

=
+

k k

k k k l

k k

k k k l

4

det ,
,

4

det ,
,

2.27

13
1
3

3
3

1
2

3
4

13
2 23

2
3

3
3

2
2

3
4

23
2

kj, lj ( j=1, 2, 3) are arbitrary non-zero constants. When
the parameters k1, l1, k2, l2 satisfy the conditions

q q= = =k k l l, ,2 1 2 1 2 1* * *, and inserting the solution (2.26)
into (2.2), we can obtain the nonsingular mixture solution

This solution is made up of two polynomial functions
and an exponential function, it describes the interaction
between a single kink soliton and a first-order lump-type
soliton on the (x, y)-plane as the development of time t. By the
asymptotic state analysis, away from the interaction region,
we can obtain the asymptotic behaviors with c3>0 as fol-
lows

( )
( ) ( )
( ) ( )

⎧⎨⎩
+  -¥
+  +¥

-

+u x y t
u x y t u x y t t

u x y t u x y t t
, ,

, , , , , ,

, , , , , ,
s

s

where

( ) ( ( )) ( )
( ( ))q q

= Q Q
= Q - Q -

- +u x y t F u x y t
F

, , ln , , , ,
ln , ,

L x

L x

1 1 2

1 1 13 2 23

are two single lump-type solitons and ( ) =u x y t, ,s

( )+ x
1 tanhk

2 2
3 3 is a kink soliton. Indeed, ul(x, y, t) and ur(x, y,
t) are the same lump-type soliton except for a phase shift. This
implies that the interaction between a lump-type soliton and a
kink soliton is a completely elastic interaction. In order to
illustrate more clearly the interaction process of kink soliton
and first-order lump-type soliton, here we display the figure of
the potential function U=ux, see figure 5. From figure 5 we
can see that when the lump-type soliton gets close to the line
soliton, the lump-type soliton exchanges the energy with the
line soliton. Some energy of lump-type soliton is absorbed by
the line soliton, which triggers a new lump-type soliton from
the line soliton. The amplitude of the original lump-type
soliton becomes small. Hence, in the region of interaction,
two lump-type soliton are presented, see figure 5(b). How-
ever, as time goes on, the amplitude of new lump-type soliton
becomes bigger and separated completely from the line soli-
ton, the original lump-type soliton is completely absorbed by
the line soliton finally. We call this phenomenon an emit-
absorb interaction. Throughout the process, we find that the
interaction between a lump-type soliton and a line soliton
is completely elastic, i.e. before and after collisions, the

( ) ( ( )( ) ( ) ( ))

(( )( ) )
( )

( )
( )

( )
( )

x
q q q q

q q
Q Q =

Q - Q - + Q - + Q - + Q + Q

Q Q - + Q - Q - -

x

x
- -

u
k k k e k k

e
, , . 2.28

k k

k l k l

k k

k l k l

1 1 3
3 1 13 1 13 1 1 13 1 1 13 1 1 1 1

1 1
4

1 13 1 13
4

3

1 1
3

1 1 1 1
2

3
1 1

3

1 1 1 1
2

*
* * * * * * *

* * **
* *

*
* *
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dynamical properties of lump-type soliton and line soliton do
not change. In addition, we also observe an interesting
phenomenon that the collision between a kink soliton and a
first-order lump-type soliton can create a second-order lump-
type soliton at the moment of collision, they do not produce
the superposition of amplitudes, see figure 5(b).

Further, if we take q q p +p ij j j and ( ) k l,j j

( )( )=p k l j, 1, 2j j j for the 4-kink soliton solution, and consider
the Taylor series generated by the function ( )F x y t s, , ;4 at the
point (p1, p2)=(0, 0), we can obtain the following mixture
solution

( ) ( )
( )
( )

( )
( )

x x

q q
q q

q q q q

Q Q = Q Q

+ Q - Q -
+ Q - Q -

+ Q - - Q - -

x

x

x x d+ +

F F

F

F

F

, , , ,

e ,

e ,

e , ,

2.29

L

L

L

L

12 1 2 3 4 1 1 2

1 1 13 2 23

1 1 14 2 24

1 1 13 14 2 23 24

3

4

3 4 34

where ξ3, ξ4 and de 34 are given by (2.4) and (2.5), ( )Q QF ,L1 1 2 is
defined by (2.15), and

( )
( )q =

+
= =

k k

k k k l
i j

4

det ,
, 1, 2, 3, 4, 2.30ij

i j

i j ij

3 3

2 4 2

kj, lj ( j=1, 2, 3, 4) are arbitrary non-zero constants. When
the parameters k1, l1, k2, l2 meet the conditions =k2

q q= =k l l, ,1 2 1 2 1* * *, and inserting the solution (2.29) into
(2.2), we can obtain the nonsingular mixture solution consisting
of two kink soliton and one lump-type soliton. This solution
describes the interaction between two kink solitons and first-

order lump-type soliton, see figure 6. As can be seen from
figure 6, two different types of interactions are contained in the
process of interaction. One is the interaction of two line solitons;
the other is the interaction between lump-type soliton and line
soliton. In the process of interaction, the lump-type soliton
exchanges the energy with two line soliton. In the region of
interaction, the structure with four peaks are presented, see
figure 6(b). Indeed, the collision between two kink solitons and a
first-order lump-type soliton creates three lump-type solitons at
the moment of collision. Besides, in the region of interaction, the
collision between two kink solitons leads to a superposition of
amplitudes. Therefore, we can observe the structure with four
peaks in figure 6(b). Throughout the process, we find that the
interaction between a lump-type soliton and two line soliton is
completely elastic.

Similarly, if we take q q p +p ij j j and ( ) (k l p k, ,j j j j

)( )=l j 1, 2, 3, 4j for the 5-kink soliton solution, and con-
sider the Taylor series generated by the function F5(x, y, t; s)
at the point (p1, p2, p3, p4)=(0, 0, 0, 0), we can derive the
following mixture solution

( ) ( )

( )
( )

x

q q q q

Q Q Q Q = Q Q Q Q

+ Q - Q - Q - Q -x

F F

e F

, , , , , , ,

, , ,

2.31

L

L

21 1 2 3 4 5 2 1 2 3 4

2 1 15 2 25 3 35 4 455

where x5 is determined by (2.4) and (2.5), ( )Q QF , ,L2 1 4 is
defined by (2.19), and

( )
( )q =

+
=

k k

k k k l
i

4

det ,
, 1, 2, 3, 4, 2.32i

i

i i
5

3
5
3

2
5
4

5
2

Figure 6. Interaction between a lump-type soliton and two line soliton. The parameters are selected with (k l k l k l, , , , ,1 1 3 3 4 4, q q q, ,1 3 4,
) (a = + i3 , - i0.5 2 , )-1.2, 1.1, 1.2, 1.1, 0, 0, 0, 1 . (a) t=−60; (b) t=0; (c) t=60. The parameter value of s is 0.

Figure 5. Interaction between a lump-type soliton and a line soliton. The parameters are selected with (k l k l, , ,1 1 3 3, ) (q q a = + i, , 1 1.21 3 ,
- i1.5 , )1.8, 2, 0, 0, 1 . (a) t=−10; (b) t=2.5; (c) t=15. The parameter value of s is 0.
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kj, lj ( j=1, 2, 3, 4, 5) are arbitrary non-zero constants. When
the parameters kj, lj ( j=1, 2, 3, 4) meet the conditions =k2

q q q q= = = = =k l l k k l l, , , , ,1 2 1 3 4 3 4 2 1 3 4* * * * * *, and insert-
ing the solution (2.31) into (2.2), we can derive the non-
singular mixture solution consisting of a kink soliton and two
lump-type solitons. This solution describes the interaction
between a kink solitons and two lump-type soliton solutions,
see figure 7. As can be seen from figure 7, two different types
of interactions are contained in the process of interaction. One
is the interaction of two lump-type solitons; the other is the
interaction between lump-type soliton and line soliton. In
the process of interaction, the lump-type soliton exchanges
the energy with line soliton. In the region of interaction, four
lump-type solitons are presented, see figure 7(b). Throughout
the process, we find that the interaction between two lump-
type soliton and one line soliton is completely elastic. Simi-
larly, we can also investigate the interaction between high-
order lump-type soliton and high-order line soliton.

In order to derive the higher-order mixture solution con-
sisting of (N−2n)-kink soliton and n-order lump-type soliton,
we consider the N-kink soliton solution with q q p +p ij j j

and ( ) ( )( ) =k l p k l j n, , 1, 2, ,2j j j j j , where 1<2n<N.
From the Taylor series generated by the function FN(x, y, t; s) at
the point (p1, p2, L, p2n)=(0, 0, L,0), the higher order
mixture solution can be obtained

( )

(

) ( )

( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

 

å å

å å å

x x

s q

s q s x s s d

Q Q

= Q - Q

- +

s

- +

= = +

= + = + <

F

F

, , , , ,

, ,

exp , 2.33

n N n n n N

nL
j n

N

j j n

j n

N

j nj
j n

N

j j
j l

N

j l jl

2 1 2 2 1

0,1
1

2 1
1 2

2 1
2

2 1

where x x+ , ,n N2 1 are determined by (2.4) and (2.5),
( )Q QF , ,nL n1 2 is defined by (2.22), and

( )
( )

 q =
+

= = +
k k

k k k l
i n j n N

4

det ,
, 1, 2, ,2 , 2 1, , ,

2.34

ij
i j

i j ij

3 3

2 4 2

kj, lj ( j=1, 2, L, N) are arbitrary non-zero constants. The
summation notations in (2.33) are similar to those in (2.4), they

have the same meaning. When the parameters kj, lj ( j=1,
2,L, 2n)meet the conditions q q= = =+ + +k k l l, , ,n i i n i i n i i* * *

=i n1, 2, , , and inserting the solution (2.33) into (2.2), we can
derive the nonsingular higher-order mixture solution consisting of
(N−2n)-kink soliton and n-order lump-type soliton. This solu-
tion describes the interaction between (N−2n)-kink soliton and
n-order lump-type soliton.

3. Conclusion

In this work, we have derived and investigated various kinds
of high-order solitons of the BKP equation by employing the
bilinear representation, perturbation method and Taylor
expansion approach, including the N-kink soliton, n-order
lump-type soliton and mixture solution consisting of kink
soliton and lump-type soliton. The dynamical behaviors of
these high-order soliton solutions are investigated and dis-
played analytically and graphically, see figures 1–7. Interac-
tion phenomenon of various kinds of high-order solitons are
shown graphically in figures 2–7. Collisions between two
kink solitons can be divided into two classes by the deter-
minant ( )k ldet , ij: if ( ) =k ldet , 0ij , the interaction between
two kink solitons is parallel; if ( ) ¹k ldet , 0ij , the interaction
between two kink solitons is oblique, see figure 2. Collisions
between kink soliton and lump-type soliton are shown in
figures 5–7. From figures 2–7, we can observe that these
interactions are elastic. Furthermore, we find that the collision
between kink soliton and lump-type soliton can give rise to a
high-order lump-type soliton. In the previous literature
[37–43], the researchers investigate also the collision between
kink soliton and lump-type soliton. The obtained results show
that when kink soliton and lump-type soliton collide, lump-
type soliton is completely absorbed by kink soliton, the
interaction between them can not excite a lump-type soliton.
Compared with our results, three kinds of high-order solitons
are derived, some novel characteristic of interaction between
kink soliton and lump-type soliton are presented. In part-
icular, when kink soliton and lump-type soliton collide, two
soliton do not produce the superposition of amplitudes. At the
moment of collision, we can observe a higher-order lump-

Figure 7. Interaction between two lump-type soliton and one line soliton. The parameters are selected with (k l k l k l, , , , ,1 1 3 3 5 5, q q q, ,1 3 5,
) (a = + i3 , - i0.5 2 , + +i i2 0.1 , 1 , )-0.8, 0.8, 0, 0, 0, 1 . (a) t=−30; (b) t=0; (c) t=30. The parameter value of s is 0.
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type soliton, see figure 5(b). It is hoped that these results
derived in this work will provide some valuable information
for understanding the dynamic behaviors of nonlinear waves.
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