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Abstract
The method for preparation of a two-qubit state on two spins-1/2 that mutually interact through
an auxiliary spin is proposed. The essence of the method is that, initially, the three spins evolve
under the action of an external magnetic field during a predefined period of time. Then, the
auxiliary spin is measured by a monochromatic electromagnetic radiation that allows obtaining a
certain state of the remaining spins. We study the entanglement of this state and obtain the
condition for achieving the maximally entangled state. The implementation of the method on the
physical system of nuclear spins of xenon difluoride is described. As a results, the conditions
which allow preparing the maximally entangled state on this system are obtained.
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1. Introduction

An important problem of quantum information is finding the
methods for preparation of predefined quantum states that in
turn allow to execute certain quantum algorithms. Quantum
algorithms consist of a circuit of unitary operators which
provide the transformation of a quantum register composed of
quantum bits (qubits) [1–3]. These unitary operators are also
called quantum gates. The qubits should be prepared on two-
level quantum systems which are well isolated from their
environment, for providing a high degree of quantum
coherence. The evolution of such systems is controlled by
devices, which provide the unitary transformation. The states
prepared on such systems should be measured with high
fidelity. The systems that satisfy these conditions were sug-
gested in many papers: spins of electrons and nuclei of atoms
[4–27], superconducting circuits [28–31], trapped ions
[32–38] and ultracold atoms [39–45], etc. Also the imple-
mentation of qubits on different physical systems is con-
sidered in reviews [46, 47].

Depending on the type of a physical system there are
different approaches that allow to control their evolution. The
evolution of the electron and nucleus spins of atoms is pro-
vided by the interaction between them, and the interaction
with external magnetic field and electromagnetic pulses. The

technique which allows to drive and measure the state of such
systems is called the spin resonance technique [48, 49]. Using
this technique the authors of paper [50] reported the prep-
aration of a two-qubit entangled state between the electron
and nuclear spins in a molecular single crystal. Entanglement
was measured by using a special entanglement detector
sequence based on a unitary back transformation including
phase rotation. In paper [51], a two-step method for the
preparation of an arbitrary quantum state on the two-spin
system with isotropic Heisenberg interaction was proposed.
This method is based on the interaction between the spins and
the application of an individual magnetic field to them.
However, the experimental technics do not allow to control
individually each spin with help of the magnetic field.
Therefore, a simplified version of this method was considered
on the physical system of an atom having with a nuclear spin
1/2 and one valence electron. Using this method, the condi-
tions for implementation of different quantum gates on the
physical system of ultracold atoms in optical lattice was
obtained in paper [52]. Experimental realization of a long-
distance entangled state between spins in antiferromagnetic
quantum spin chains was described in paper [53]. The authors
experimentally showed that unpaired separated spins entan-
gled through a collection of spin singlets made up of anti-
ferromagnetic spin-1/2 chains. The implementation of
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quantum states on various physical systems was widely stu-
died both theoretically and experimentally [25–27, 54–62].

We propose the method for preparation of a two-qubit
state on basic two spins which mutually interact through the
auxiliary spin (section 2). At the first step, under the action of
the external magnetic field we consider the evolution of three
spins having started from the factorized state. During the
evolution, the system achieves a time-dependent state which
at a predefined moment of time should be measured. We
propose to measure the state of an auxiliary spin by the
monochromatic electromagnetic radiation. This allows to
obtain the predefined state of the basic spins with certain
probability (section 3). Unlike the methods mentioned in
previous papers [50, 51], where the whole system should be
measured, we suggest to measure the auxiliary spin that
allows to prepare the required state of the system. This fact
allows to simplify the measurement process. Unfortunately,
the problem of controlling each spin individually persists.
Also we study the entanglement of the state prepared by our
method and obtain the conditions for achieving the maximally
entangled state (section 4). Finally, we describe the imple-
mentation of the method on the physical system of nuclear
spins of xenon difluoride (section 5). As a result, we calculate
the conditions which allow to prepare the maximally entan-
gled state on this system. Conclusions are presented in
section 6.

2. Method

We propose the method for preparation of a two-qubit
quantum state on two spins using an auxiliary spin. The
system, which we consider for the implementation of this
method, consists of three spins-1/2: the two spins S1 and S2
as the basic qubits which mutually interact through the central
spin Sc as the auxiliary qubit (figure 1). The interaction
between spins is described by the isotropic Heisenberg
Hamiltonian

= +H JS S S , 1s c 1 2( ) ( )

where J is the coupling constant and Si is the operator which
defines the ith spin.

The method consists of three steps. At the first step, we
prepare the initial state of the system. Then, the interactions
between spins and external magnetic field provide the evol-
ution of the system. Also, the presence of a magnetic field is
required to provide the measure of the auxiliary spin because
it splits the degenerate energy levels of system that allows to
measure them. Finally, at the given moment of time we make
a measurement of the central spin that allows to interrupt the
interaction between basic spins and to maintain their quantum

state. Before considering this method in detail, let us rewrite
Hamiltonian (1) with magnetic field in a more convenient
form that allows us to simplify the future calculations.

Hamiltonian (1) with magnetic field can be represented as
follows
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1 2 is the z component of this operator,
S12=S1+S2 is the operator of sum of the S1 and S2 spins, B
is the value of the magnetic field, γc and γ are the gyro-
magnetic ratios of the auxiliary and basic spins, respectively.
The eigenvalues and eigenstates of Hamiltonian (2) are pre-
sented in appendix A. It is worth noting that the interactions
between spins are isotropic which in turn means that the
Hamiltonian of the system does not depend on the orientation
of an external magnetic field.

So, let us consider the evolution of the spin system
described by Hamiltonian (2) having started from the initial
state y ñ =   ñI∣ ∣ . Here, the first vector defines the state of
the auxiliary spin and the remaining two vectors describe the
states of basic spins. This state can be prepared on experiment
if the spins are placed in a strong magnetic field, such that the
interaction between the field and spins is much higher than
the interaction between spins. Then the initial state   ñ∣ is
the eigenstate of such a system. To simplify the calculations
we decompose the initial state in the basis of the eigenstates
of Hamiltonian (2). Using results from appendix A, we obtain
the following expression
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where a± are dimensionless values which are determined by
expression (A2). The evolution of the system is described by
the Schrödinger equation and can be expressed as the unitary
transformation
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The evolution of the three spins defined by Hamiltonian (1)
having started from state (3) takes the form
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where E( i) are the eigenvalues of the system which corre-
spond to eigenstates y ñi∣ ( ) (see (A1) in appendix A). Using the
explicit form of these eigenvalues and making some simpli-
fications we obtain that the time-dependent state of the system

Figure 1. Model of the system: spins S1 and S2 mutually interact
through the spin Sc with the coupling constant J.
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is defined by the following expression
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where we introduce the notation of the following complex
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respectively.
Finally, at the moment of time tf we measure the auxiliary

spin that allows to obtain a certain state of the remaining
spins. From the analysis of state (6) it follows that if the
auxiliary spin takes the state ñ∣ then the remaining spins are
defined by state  ñ∣ . This state is a factorized state and is of
no interest because it can be prepared in the same way as the
initial state. Otherwise, if the state of the auxiliary spin takes
the form ñ∣ then the state of the basic spins is defined by the
following expression
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where zf∣ ∣ and ff correspond to the moment of time tf. It is
worth noting that the external magnetic field B and effective
magnetic field J/2, which appears due to interaction of basic
spins with the measured auxiliary spin, do not influence state
(7). Also, it is important to note that the local manipulations
with each spins separately allow achieving an arbitrary state
of two qubits [51]. Let us describe the measurement process
in detail.

3. Measurement of the auxiliary spin

In this section, we describe the measurement process of the
central spin and, as a result, present the physical quantities
which should be measured experimentally to obtain a certain
state of system. Measurement of the state of spin system is
provided by the interaction of it with electromagnetic field
and magnetic field [48, 49]. For this purpose, we consider the
interaction of spin system defined by Hamiltonian (2) with
monochromatic electromagnetic radiation with frequency ω,

wave vector directed along the x axis k=(k, 0, 0) and
polarization vector located in the plane perpendicular to the
direction of propagation of the wave e=(0, ey, ez). We
assume that this interaction occurs after the evolution of the
system at the moment of time tf. The spin system interacts
only with the magnetic component of the field. Therefore, the
Hamiltonian of this interaction has the form

g g
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where p w= B k c V2int
2 ( ) is proportional to the value of

the magnetic component of electromagnetic field, b+ and b
are the creation and annihilation operators of the photon with
frequency ω and wave vector k. Here c is the speed of light in
the vacuum, V is the volume where the electromagnetic field
is located. We assume that the spin system is placed in a
homogeneous field. We consider the interaction of spin sys-
tem (2) with electromagnetic field in the first order of the
perturbation theory, which describes the absorption and
emission of the photons by system. It is easy to see that to
describe these processes for the auxiliary spin it is enough to
calculate the corrections to the eigenstates y ñ2∣ ( ) and y ñ5∣ ( )

(A1). The difference between the energy levels of these states
is determined by the difference between the energy levels of
the auxiliary spin. So, projecting the state of system on these
perturbed states allows to find the probabilities of obtaining a
certain state of the auxiliary spin. It is important to note that
the process of measuring of the central spin is due to an
external magnetic field which removes the degeneration of the
E(2) and E(5) energy levels.

As it is mentioned in the previous section, we are inter-
ested in the case of the ñ∣ state of the auxiliary spin.
Therefore, we calculate the probabilities which correspond to
the absorption and emission of the photons by this spin in the
ñ∣ state. These probabilities allow us to obtain the intensities
that correspond to these events. So, probabilities of the
emission and absorption of photon by the auxiliary spin are
calculated in appendix B and they have the form
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respectively. Here τ is the duration of electromagnetic irra-
diation, N is the number of photons in the environment, and
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are the differences between the corresponding energy levels
of the system in the cases of the emission and absorption of
photon by the auxiliary spin, respectively.

Now we calculate the integral intensity which is defined
by the difference of the emitted and absorbed intensities. This
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intensity has the form
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Here we use the fact that under the integral the following
replacement can be made
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where d w 2ij( ) is the Dirac delta function, and k=ω/c. It is
easy to see from expressions (9) and (11) that the auxiliary
spin is obtained with maximum probability in the state ñ∣
when the frequency of electromagnetic field is equal to
ω=Bγc and the polarization vector is such that =e 1z∣ ∣ .

4. Preparation of the entangled states

Entanglement plays a crucial role in processes related to the
quantum information. For instance, the quantum teleportation
of a qubit state requires preparation of a two-qubit entangled
state as a quantum channel [63, 64]. Also, the efficiency of
quantum algorithms depends on the value of entanglement
which the system of qubits can take during the evolution
[1–3, 65–70]. Therefore it is important to find the conditions
for preparation of the entangled states on the system of basic
spins.

Using the squared concurrence as an entanglement
measure, we study the entanglement of state (7). For a pure
state of a bipartite two-level system it is defined by expression
[71–73]
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where fent, tent corresponds to the maximally entangled state
y ñent∣ and Î n . So, for certain physical system defined by
specific values of J, γc and γ we obtain the relation between
the moment of time tent at which the system achieves the
maximal entangled state and the value of magnetic field B. It
is easy to show that for a high magnetic field »z 1∣ ∣ and the
following ratio + -+ - + -a a a a( ) ( ) takes the value m1,
where upper and lower signs correspond to a positive and
negative values of Bÿ(γc−γ)/J, respectively. Then the

dependence (15) can be represented as follows
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In figure 2, we express this dependence. As we can see, the
minimal value of time is achieved for the absence of a field
and it increases linearly with increasing the value of magnetic
field. It is important to note that the value of time for the zero
magnetic field can be calculated from equation (15) if B=0.
This time is determined by the expression Jtent/ÿ;2.39. The
egenvalues of Hamiltonian (2) become degenerate as follows
E(1)=E(3)=E(6)=E(8)=J/2, E(2)=E(5)=0 and
E(4)=E(7)=−J (see appendix A with B=0). However, in
this case the method cannot be implemented. The degeneracy
of the E(2) and E(5) egenvalues makes it impossible to measure
the central spin. So, in the case of the absence of a magnetic
field the system achieves the entangled state during the
minimal value of time but we cannot measure this state using
the above method. Let us consider our methods for prep-
aration the maximally entangled states on the nuclear spins of
xenon difluoride.

5. Application to the xenon difluoride

We propose to consider our method on nuclear spins of xenon
difluoride. Xenon difluoride is a linear molecule (figure 1)
with a Xe atom which is located between two atoms of F. We
consider the system which consists of 129Xe and 19F isotopes
because each atom of this molecule has the nucleus with spin
1/2. So, we assume that the nuclear spin of xenon atom plays
the role of auxiliary spin and the nuclear spins of fluorine
atoms play the role of basic spins, respectively. The gyro-
magnetic ratios of nuclear spins of these isotopes are equal to
γc=−73.997 rad MHz T−1 for 129Xe and γ=251.662 rad
MHz T−1 for 19F, respectively. The interaction between
nuclear spins is described by isotropic Heisenberg Hamilto-
nian. So, the orientation of molecule with respect to the
magnetic field does not impact the total Hamiltonian of sys-
tem. The interaction between xenon and fluorine nuclear spins
is much stronger than between fluorine nuclear spins.
Therefore, we can neglect the interaction between spins that
belong to the fluorine atoms. Thus, the evolution of system
depends only on the interactions between fluorine and xenon
nuclear spins. The interaction couplings between these spins
in different compounds, solvents and at certain temperatures
were obtained in paper [74]. We use the interaction coupling
between nuclear spins of 129Xe and 19F in xenon difluoride
that is surrounded by BrF5 molecules as a solvent at temp-
erature −40 ◦C. This coupling is equal to J/
(2πÿ)=5583 Hz. Finally, it should be noted that the long
coherence time > 1 s (see, for example [47]) of the nuclear
spins is sufficient for implementation of quantum calculations
on them.
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As an example, let us consider the preparation of maxi-
mally entangled state on the spins of fluorine nuclei. So, for
this purpose the system should be prepared in the initial state
  ñ∣ , where the first ket vector corresponds to the state of
the xenon nuclear spin and the remaining vectors define the
state of the fluorine nuclear spins. Then, we put the system in
the external magnetic field B directed along the z-axis. At the
moment of time tent determined by condition (15) with n=0
we switch on the monochromatic electromagnetic radiation
with frequency ω=Bγc and polarization vector with z-
component which propagates along the x-axis. This field
allows us to measure the state of the system. So, if the integral
intensity of the system is defined by equation (11) with

=e 1z∣ ∣ then the state of xenon spin takes the form ñ∣ and the
fluorine spins with modulo a global phase achieve the
maximally entangled state

y ñ =
+

´ - ñ + + ñ
z

z i z i

1
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Let us assume that the external magnetic field has the value
B=1 T and is directed along the positive direction of the z-
axis. The value of field is sufficiently high to use
equation (16) for calculations and to put »z 1ent∣ ∣ . Then we
obtain tent;0.82 s. Finally, let us calculate the fidelity as a
function of time between states (7) and (17). It takes the
following form
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In figure 3, we express the behavior of this expression. As we
can see, the time which the system spends to achieve the
maximally entangled state is close to the coherence time of

Figure 2. Dependence of the moment of time at which the system achieves the maximal entangled state on the value of magnetic field. The
results are presented in the case of high magnetic field (16).

Figure 3. Fidelity as a function of time (18) between states (7) and
(17) with =z 1ent∣ ∣ . The results are obtained for nuclear spins of
xenon difluoride placed in the magnetic field B=1 T.
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this system. This fact provides implementation of quantum
calculations on such a system with high fidelity.

6. Conclusions

We proposed the method for preparation of a two-qubit state
on two basic spins-1/2 which mutually interact through an
auxiliary spin. We assumed that interaction between spins is
described by the isotropic Heisenberg Hamiltonian and the
basic spins are different from the auxiliary spin by the
gyromagnetic ratios. The essence of the method is that,
initially, the three spins having started from the factorized
state evolve under the action of the external magnetic field
during the predefined period of time. Then, using the mono-
chromatic electromagnetic radiation the auxiliary spin is
measured. Depending on the result of measurement of pre-
defined state (7) of the remaining spins, defined by the period
of evolution and value of the magnetic field, is obtained with
certain probability. Using this probability the integral inten-
sity was calculated (11). This intensity allows to determine
experimentally the state of the system. Also, using the
squared concurrence as a measure of entanglement, condition
(15) for achieving the maximally entangled state was
obtained. Finally, we described the process of the imple-
mentation of our method on the physical system of nuclear
spins of xenon difluoride. As an example, the conditions for
preparing the maximally entangled state on this system were
obtained. It is important to note that the time which the sys-
tem spends to achieve the required state is close to the
coherence time of this system. This fact allows to use the
nuclear spins of xenon difluoride for implementation of
quantum calculations with high fidelity.
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Appendix A. Eigenvalues and eigenstates of spin
system

In this appendix, we present the eigenvalues and eigenstates
of the three-spin system described by Hamiltonian (2). So,
using the properties of the total spin-squared operator S2 and
the S12

2 operator we obtain the following eigenvalues and

eigenstates of this system
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are some dimensionless values.

Appendix B. Derivation of the probabilities of
obtaining the auxiliary spin in state ∣↑〉

During the process of measurement of the auxiliary spin, it
can emit and absorb a photon. Therefore, two probabilities
which correspond to these events should be calculated. For
this purpose, we use the time-dependent perturbation theory
in the case of Hint (8) perturbation. At the moment of time tf
we calculate in the first-order the corrections to the state
y ñ ñN5∣ ∣( ) , where ñN∣ is the eigenstate of photon subsystem.
We calculate the corrections to this state because they define
the auxiliary spin in the state ñ∣ . So, in the first order of
perturbation theory we obtain two states which correspond to
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the facts that the photons are emitted and absorbed by the
auxiliary spin. These states have the following form

y y
w t
w

y

y y
w t
w

y

ñ = ñ ñ

+ ñ + ñ
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+ ñ - ñ
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
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2

5 5
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2
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f
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∣ ∣ ∣
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∣ ∣ ∣
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where

y y
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y y
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e e 1 ,

1
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e e .
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kx

25
2

int
5

int
i

25
2

int
5

int
i

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

( ) ( )

( ) ( )

Finally, using the measurement postulate for state (6) the
probabilities, which correspond to the case that during the
period of interaction of the system with electromagnetic field
the auxiliary spin takes the state ñ∣ , are calculated as follows

y y
y y

= á + á ñ

= á - á ñ

+ +

- -

W N t

W N t

1 ,

1 . B2

5 2

5 2

∣ ∣ ( )∣ ∣
∣ ∣ ( )∣ ∣ ( )

( )

( )

Calculating the corresponding scalar products and making
some simplifications, we obtain expressions (9).
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