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Abstract

Planets that orbit only one of the stars in stellar binary systems (i.e., circumstellar) are dynamically constrained to a
limited range of orbital parameters, and understanding conditions on their stability is thus of great importance in
exoplanet searches. We perform ∼700 million N-body simulations to identify how stability regions depend on
properties of the binary, as well as the starting planetary inclination and mean longitude relative to the binary orbit.
Moreover, we provide grid interpolation maps and lookup tables for the community to use our results. Through
Monte Carlo methods, we determine that planets with a semimajor axis ap8% of the binary semimajor axis abin
will likely be stable, given the known distribution of binary star parameters. This estimate varies in the Lidov–
Kozai regime or for retrograde orbits to 4% or 10% of abin, respectively. Our method to quickly determine the
circumstellar stability limit is important for interpreting observations of binaries using direct imaging with the
James Webb Space Telescope, photometry with the Transiting Exoplanet Survey Satellite, or even astrometry
with Gaia.

Unified Astronomy Thesaurus concepts: Orbits (1184); Habitable planets (695); Exoplanet dynamics (490);
Exoplanets (498); Binary stars (154)

1. Introduction

Before the discovery and confirmation of the first exoplanet
around a Sunlike star, 51 Peg b (Marcy & Butler 1995; Mayor
& Queloz 1995), many theoretical investigations uncovered
that planetary systems could stably orbit one star in a stellar
binary despite the intense periodic forcing from the stellar
companion (Szebehely 1980; Rabl & Dvorak 1988; Benest
1988a, 1988b, 1993). Around the same time, observers began
using radial velocity techniques to probe for the existence of
substellar companions; one of the first proposed candidates
was γ Cep Ab (Campbell et al. 1988). The host star belonged
to a binary system, γ Cep AB, which has a binary separation
of only about 20 au. Walker et al. (1992) later attributed the
radial velocity signal to stellar rotation due to the limits of
the data, but more observations eventually confirmed the
existence of γ Cep Ab (Hatzes et al. 2003). Before this
confirmation, four exoplanets were discovered (55 Cnc Ab, τ
Boo Ab, υ And Ab, & 16 Cyg Bb) around a host star that is
part of a more widely separated binary (Butler et al. 1997;
Cochran et al. 1997).

The closest Sunlike stars to the solar system, α Cen AB, are
part of a binary architecture similar that of to γ Cep AB, where
numerical studies have explored the extent to which a stable
planetary orbit can persist around each star over a wide range of
initial conditions (Wiegert & Holman 1997; Andrade-Ines &
Michtchenko 2014; Quarles & Lissauer 2016; Quarles et al.
2018a). However, the detection of planets in α Cen AB
remains in dispute. Radial velocity observations of α Cen B
have suggested that an Earth-mass planet orbited the star on a
∼3.2 day orbit (Dumusque et al. 2012), but later studies
revealed that the significance of the radial velocity signal
changed dramatically when different methods were used to
analyze the data (Hatzes 2013; Rajpaul et al. 2016). The
formation of Earth-mass planets around either star in α Cen AB
is also contentious, considering that the known planet

population in binary systems5 consists predominantly of
Jupiter-mass planets, and decades of radial velocity measure-
ments of α Cen AB favor Neptune–Saturn mass planets in the
upper limit (Zhao et al. 2018). Early models of planet formation
in α Cen AB showed that solar system–like formation
conditions (embryos & planetesimals) could produce terrestrial
planets (Quintana et al. 2002; Haghighipour & Raymond 2007).
In contrast, Thébault et al. (2008) and Thébault et al. (2009)
performed simulations of planetesimal growth in the α Cen
system, where they determined that eccentricity pumping from
the binary companion largely prevented growth and subsequent
planet formations processes would be very difficult. Theoretical
models by Zsom et al. (2011) also found that the presence of a
binary companion would lower the total disk mass through
truncation, in addition to the problems of planetesimal growth.
However, it has been suggested that these issues could be
avoided under a range of initial conditions including non-
coplanar disks (Marzari et al. 2009; Xie et al. 2010;
Rafikov 2013; Rafikov & Silsbee 2015). Future observations
with the James Webb Space Telescope (JWST) could help
resolve these disputes with a detection—or at least put stronger
upper limits on the size of any potential worlds orbiting α Cen
A (Beichman et al. 2020).
Ground-based observational studies have indicated that

Sunlike stars are common among binary systems, where nearly
half of Sunlike stars have a binary companion (Raghavan et al.
2010; Moe & Di Stefano 2017). The Kepler Space Telescope
observed 2878 eclipsing binary systems, 1.3% of all targets,
within the prime mission (Kirk et al. 2016), and discovered
about a dozen circumbinary planets. Using the results from
Kepler, Kraus et al. (2016) proposed that the apparent lack of
circumstellar planets discovered with binary separations
similar to γ Cep AB was due to the ruinous effects of the
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binary star on the planet formation process. However, Ngo
et al. (2017) found no evidence that the presence or absence of
stellar companions alters the distribution of planet properties
when including radial velocity systems. Observations from
the redesigned Kepler mission, K2, uncovered at least two
Neptune-sized circumstellar planets, K2-136 (Ciardi et al.
2018) and K2-288 (Feinstein et al. 2019), with projected
binary separations∼40 au. Martin (2017) showed that orbital
precession could be affecting the detectability of circumstellar
planets through transit surveys, and observations of many more
binaries are needed to identify reliable population statistics.
Fortunately, the Transiting Exoplanet Survey Satellite (TESS;
Ricker et al. 2015) is observing large portions of the sky; it is
expected to observe∼500,000 eclipsing binaries (Sullivan
et al. 2015), thereby increasing the prospects of detecting
circumstellar planets in binaries.

Most studies have used the stability limit formulas developed
by Holman & Wiegert (1999) to determine whether a
circumstellar or circumbinary candidate within a binary system
is bone fide and not a false positive. Holman & Wiegert (1999)
note that the formulas have limitations: most notably that
circular, coplanar test particles were used in its development and
the expressions are valid to within 4%–11%. Pilat-Lohinger &
Dvorak (2002) and Pilat-Lohinger et al. (2003) also performed a
study for circumstellar planets using the Fast Lyapunov Indicator
(Froeschlé et al. 1997) and explored a limited range of planets on
inclined orbits. The stability of circumbinary orbits has been
investigated, including the effects of mutual inclination (Doolin
& Blundell 2011) and planet packing (Kratter & Shannon 2014;
Quarles et al. 2018b). Those approaches have even been applied
to the Pluto-Charon system (Kenyon & Bromley 2019a, 2019b),
allowing for better mass estimates of the satellites. New methods
and updated formulas, such as machine learning (Lam &
Kipping 2018) and grid-based interpolation (Quarles et al.
2018b), have substantially reduced the uncertainty in the stability
limit for circumbinary planets. We implement a similar method,
proposed by Quarles et al. (2018b), to update the stability limit
for circumstellar planets.

In this work, we extend the grid-based interpolation method to
massive circumstellar planets, identify changes to the stability
limit relative to the mutual inclination of the planet, and estimate
the probability density function given the known distribution of
binary stars along with a prospective critical semimajor axis ratio
ac/abin. Our numerical setup is described in Section 2, which
includes our definition for stability and starting conditions. In
Section 3, we determine a revised stability limit, considering
circular and eccentric binaries, and accounting for a significant
mutual inclination between the planetary and binary orbital
planes. In addition, we investigate methods to utilize our results
through interpolation maps and lookup tables. Section 4 explores
more stringent conditions on the stability limit, which are due to
the secular forcing of eccentricity from the stellar binary.
Section 5 applies our revised stability limit to binary star
population statistics and a system recently observed by TESS,
LTT 1445ABC. Finally, our results and concluding remarks are
summarized in Section 6.

2. Methods

2.1. Defining Stability and the Stability Limit

One of the defining features when expanding from the two-
body (Kepler) problem to the three-body problem (TBP) is the

emergence of chaos (see details in Mudryk & Wu 2006;
Musielak & Quarles 2014), or a sensitivity to initial conditions
where the future state of a system is indeterminate after a
sufficient time. The possible outcomes within the TBP are
broadly defined as stable (i.e., the system is bounded in space
and consists of three bodies for all time) or unstable (i.e., at
least one body is no longer bounded in space or a collision
occurs). Notice that these definitions do not explicitly include
chaos—where bundles of initial conditions can be either stable
or unstable, as well as chaotic. There is a transition between
stable and unstable states that has been identified within
astronomical systems (Lecar et al. 1992; Smith & Szebehely
1993; Goździewski et al. 2001; Pilat-Lohinger & Dvorak 2002;
Cincotta et al. 2003; Cuntz et al. 2007; Eberle et al. 2008;
Quarles et al. 2011; Giuppone et al. 2012; Satyal et al. 2013)
using chaotic indicators similar to the Lyapunov exponent
(Benettin et al. 1980; Gonczi & Froeschle 1981; Froeschlé
et al. 1997; Cincotta & Simó 1999, 2000).
Due to this transition region, we must be more precise about

our definitions for stability and allow for a more probabilistic
consideration. Moreover, we cannot compute the evolution of a
system for all time, and thus we define a given initial condition
as potentially stable if the planet survives for a predefined
timescale (∼105 yr) around its host star. Previous works (David
et al. 2003; Fatuzzo et al. 2006; Quarles & Lissauer 2016) have
shown that most of the initial conditions that will become
unstable over longer timescales exist near mean motion
resonances (MMRs) at the edge of stability; our approach
excludes the resonant region, due to its dependence on the
initial mean longitude of the planet. Unstable initial conditions
are those that do not survive for the required timescale, either
due to a collision of the planet with either of the host stars or
because the distance to the host star exceeds 200 au (i.e., twice
the largest binary semimajor axis considered).
Observations of planets in binaries are usually so limited that

a full initial condition is not available. Rabl & Dvorak (1988)
and Holman & Wiegert (1999) accounted for this by
prescribing their stability criterion in terms of a set of
observables that are the most readily obtained (e.g., binary
mass ratio, binary eccentricity, semimajor axis ratio). The
binary mass ratio μ (=MB/(MA+MB)) and the binary
eccentricity ebin can be deduced from photometric and/or
radial velocity observations. The semimajor axis ratio ap/abin
can be determined if the respective orbital periods are well-
determined; otherwise, projected values are typically used. Due
to the long orbital periods involved and small number of
observations, not many other observables are typically known.
As a result, Holman & Wiegert (1999) assumed that the
orbital planes of the binary and planet are aligned (i.e.,

w w= = = W = = W = i i 0p p pbin bin bin ) and the planetary
orbit is initially circular (i.e., ep=0). Additionally, the
restricted TBP was implemented, where a massless test particle
was used for the planet, as a matter of numerical efficiency.
A combination of parameters (μ, ebin, and ap/abin) are

numerically evolved for eight equally spaced planetary phase
angles, and if all eight of the trials are deemed stable, a critical
semimajor axis ac is determined. Most of our simulations
follow this general approach, except we use an Earth-mass
particle that gravitationally interacts with the binary and
evaluate 91 initial planetary phase angles so that we can
investigate the probabilistic transition region between stable
and unstable orbits. The stability limit ac is defined in our
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analysis as the largest semimajor axis ratio ap/abin, where all
91 initial phase angles (0°�λp�180°) survive up to our
predefined timescale.

2.2. Setup for Numerical Simulations

The numerical simulations in our study use a integration
package that has been modified such that the orbits of planets in
binaries are efficiently evaluated (mercury6; Chambers et al.
2002). This well-established code was developed for planet
formation simulations within α Centauri AB (Quintana et al.
2002), where a hybrid scheme allows for switching between a
symplectic integration method (i.e., Wisdom–Holman splitting
(Wisdom & Holman 1991, 1992)) and an adaptive method
(e.g., Bulirsch–Stoer (Press et al. 1993)). We check a subset of
our runs using a newer N-body code, REBOUND, with the
IAS15 integrator (Rein & Liu 2012; Rein & Spiegel 2015) to
ensure the accuracy of our results.

We set up our simulations starting from a set of unitless
parameters (μ, ebin, and ap/abin), which allows for scalability of
our results to many different dynamical systems. Table 1 gives
the range of these parameters, along with the range of
inclination and mean longitudes for defining an orbit. The
total mass of the binary is equal to one solar mass (MA+
MB=1 Me), and the individual stellar masses are determined
via μ (=MB/(MA+MB)). The initial planetary semimajor axis
ap is 1 au and the initial value of the semimajor axis ratio is
used to determine the appropriate binary semimajor axis
(∼1–100 au). The initial phase of the binary begins at
periastron (λbin=0°), which lies on the positive x-axis
(ωbin=0°) within the orbital plane of the binary. All of our
simulations use the binary orbital plane as a reference
(ibin=Ωbin=0°), where the initial planetary inclination ip is
the relative angle between the planetary and binary orbital
planes. Moreover, these orbital planes begin nodally aligned
(Ωp=Ωbin).

The accuracy of our simulations is controlled by choosing a
time step that is 5% of the planetary orbital period Tp
(∝(1−μ)−1/2). Stability studies of α Cen AB (Wiegert &
Holman 1997; Quarles & Lissauer 2016) have shown that the
region of stability does not change appreciably until ip is greater
than 40°, and the extent of stability increases for retrograde
orbits. There is an intermediate region (40°ip140°) where
the Lidov–Kozai (LK) mechanism (Kozai 1962; Lidov 1962)
drives large eccentricity oscillations that can reduce stability
zones unless the planet and binary are apsidally misaligned by
90° (Giuppone & Correia 2017). We probe a wide range of
planetary inclinations (0°, 30°, 60°, 85°, 95°, 120°, 150°, and
180°) for circular binaries, and then we limit our investigation of

eccentric binaries to four planetary inclinations: 0°, 30°, 45°, and
180°. The mass ratio μ is varied uniformly in steps of 0.01 from
0.01 to 0.99, where we also evaluate the special cases of 0.001
and 0.999. The binary eccentricity ebin is sampled in 0.01 steps
from 0 to 0.8, while the semimajor axis ratio ap/abin ranges from
0.01 to 0.8 in steps of 0.001. While the initial phase of the binary
remains fixed (λbin=0°), the mean longitude of the planet is
varied in 2° steps from 0° to 180°.

2.3. Symmetries in the Parameter Space

The range of parameters that we explore is quite broad—and
necessarily so, in order to provide the most general results. Our
previous study of circumbinary planets (Quarles et al. 2018b)
exploited a symmetry in the initial mean longitude, and allowed
for the computations to be performed efficiently. To evaluate
whether similar symmetries exist, we find the maximum
eccentricity a planet attains when beginning from a circular
orbit. Figure 1 illustrates the maximum eccentricity that a
coplanar planet attains for stable configurations as a function of
the initial semimajor axis ratio ap/abin and mean longitude λp,
where the white regions represent initial conditions that are
unstable on a 500,000 yr timescale. The panels are labeled to
show the mass ratio μ and stability limit ac determined. As the
mass ratio increases (top to bottom), the stability limit ac
decreases and the maximum eccentricity increases by an order
of magnitude. Additionally, the first column shows a symmetry
in the mean longitude that appears more strongly with
increasing μ. The growth of the maximum eccentricity is more
pronounced when the binary eccentricity ebin increases (left to
right). Indeed, these trends are known from secular studies
(Andrade-Ines et al. 2016; Andrade-Ines & Eggl 2017, and
references therein), and further indicates the accuracy of our
numerical simulations. These trends justify our numerical setup
(see Section 2.2) and particular restrictions in mean longitude
when surveying the full parameter space.
Other dynamical effects, such as the Lidov–Kozai (LK)

mechanism (Kozai 1962; Lidov 1962), can arise when
considering inclined orbits and affect how much we can
exploit particular symmetries. In Figure 2, we perform similar
simulations as in Figure 1, but for inclined orbits with a
constant mass ratio (μ=0.1). The planetary inclination ip and
determined stability limit ac are given as tuples in the lower left
of each panel. The difference between a planet inclined by
30° relative to the coplanar case is relatively minor, where
variations occur mainly at large semimajor axis ratio that
depend on the initial mean longitude. When the planetary
inclination is increased to 45°, the stability limit ac decreases
more substantially relative to the coplanar case and the typical
maximum eccentricity is ∼0.5 across most semimajor axis
ratios. Finally, our retrograde (ip=180°) runs demonstrate
a∼25% increase in the stability limit ac relative to the
respective coplanar runs. This is roughly what one would
expect from previous studies of the restricted TBP, where
stable particles fill a larger portion of the Hill radius
(Henon 1970). Overall, Figures 1 and 2 demonstrate that the
range of mean longitude required to determine the stability
limit can be reduced to 0–180° independent of the initial
planetary inclination ip, and it is possible that a separate
condition can be placed on the maximum eccentricity,
where e 0.5max .

Table 1
Range of Initial Conditions Used in Our Simulations

Parameter Range Step

μ 0.01–0.99 0.01
ebin 0.00–0.80 0.01
ap/abin 0.010–0.800 0.001
ip 0°–180° 30°
λp 0°–180° 2°

Note. The range of mass ratio μ also includes two additional extreme values:
0.001 and 0.999. The range of planetary inclination ip is restricted to 0°, 30°,
45°, and 180° for our simulations with eccentric binaries.
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3. Revised Stability Limit

To meaningfully revise the previous determination of
stability limit ac for circumstellar planets in binaries (Holman
& Wiegert 1999), we perform a large number of numerical
simulations6 (∼700 million in total) that report the lifetime of a
planet and the maximum eccentricity attained for each set of
initial conditions. We use four input parameters (μ, ebin,
ap/abin, λp) that relate to the most easily obtained observables,
and iterate this process over a range of planetary inclinations
(see Section 2.2) that are representative of the dynamical
interactions affecting the stability limit. In this section, our
analysis is divided into three parts: the case of circular binaries
(ebin=0), a comparison to previous results from Holman &
Wiegert (1999) with elliptical binaries ( e 0.8bin ), and the
interpolation maps across each planetary inclination.

3.1. Circular Binaries

One of the oldest problems studied within orbital dynamics
is the circular restricted three-body problem (CRTBP), where
the two more massive primaries begin on circular orbits and the
third body is not massive enough to substantially alter the orbit

of the primaries; see Musielak & Quarles (2014) for a review.
Due to the restriction on the binary orbit’s eccentricity, an
integral arises that reduces some of the complexity. The
solution to the integral, or Jacobi constant CJ in the CRTBP,
provides a natural means to orient our analysis. The so-called
zero velocity contour (ZVC) for a given mass ratio μ and
semimajor axis ratio ap/abin describes a topological boundary
that limits the trajectory of a planet and can be related to the
Jacobi constant (Eberle et al. 2008).
We use this formalism to explore the changes in the

trajectory for a single initial condition (μ=0.3, ap/abin=
0.369, and λp=180°) with respect to a changing planetary
inclination. Figure 3 shows each trajectory over one orbit of the
binary using inertial or static coordinates (left column) and
rotated coordinates (right column), where the rotation rate is
equal to the binary mean motion. The nominal location of
the N:1 MMRs, in terms of semimajor axis ratio, is

m= -a a N1p bin
2 1 3(( ) ) , which places the initial condition

between the 4:1 and 3:1 MMRs. For the coplanar case in
Figure 3(a), we trace the trajectory of the planet to nearly
complete three orbits within one binary orbit. This results in a
quasi-periodicity for the trajectory in the rotated coordinates
(Figure 3(b)) and is bounded by the ZVC. When the planet is
inclined by 30° in Figure 3(c), it follows a similar trajectory
within a tilted plane and small differences appear due to the

Figure 1. The maximum planetary eccentricity attained (color-coded on a logarithmic scale) for coplanar initial conditions that survive for 5×105 yr of simulation
time over a range of initial semimajor axis ratios ap/abin and mean longitudes λp. Each panel contains a label (μ, ac) indicating the host binary mass ratio and the
critical semimajor axis ratio determined for each binary configuration, respectively. Note the mirror symmetry about λp=180°.

6 The results of our simulations are publicly available at doi:10.5281/zenodo.
3579202 as a series of compressed tar archives.
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projection onto the X–Y plane. The planetary orbit is more eccentric
(not just in appearance due to projection) once the inclination
is increased to 45° in Figure 3(e). A retrograde (ip=180°)
planet executes the most regular trajectory, where almost
five orbits are now completed within a single binary orbit
(Figure 3(g)) and the trajectory is periodic in rotated
coordinates (Figure 3(h)). From these example trajectories,
we expect that the stability results for planetary inclinations up
to 30° to not differ too much from those determine for a
coplanar orbit. The increased eccentricity from the Lidov–
Kozai mechanism will introduce a dependence on the initial
mean longitude, due to apsidal precession, and retrograde orbits
will be stable to significantly larger semimajor axis ratios.

In the CRTBP, some regions of the parameter space are more
chaotic; these appear once the ZVC opens at the Lagrange
point L1, which lies between the stars (Quarles et al. 2011).
Additional chaos can arise when the other collinear Lagrange
points no longer lie within the forbidden region, due to changes
in the mass ratio μ or the semimajor axis ratio ap/abin. The
origin of chaos in the CRTBP lies in the overlap of the N:1
MMRs with the binary, once the planetary eccentricity is
substantially excited by a resonance (Murray & Dermott 1999;
Mardling 2008). We take a wide view of the possible initial
conditions (μ, ap/abin, and λp) to produce probabilistic maps
for a range of planetary inclinations in Figure 4. The
probability for stability is calculated simply as the percentage

of simulations (out of 91 values for λp) that survive for
500,000 yr for a given mass ratio and semimajor axis ratio. As
a result, we identify regions that are stable (black), unstable
(white), and quasi-stable (light or dark gray). The quasi-stable
region is split into two regimes where either 1–18 trials survive
(1%–20%; light gray) or 19–90 trials survive (20%–99%; dark
gray) to delineate between chaotic zones and possible resonant
islands that strongly depend on λp. In Figure 4, each panel also
marks the critical boundaries (red curves) for which the ZVC
opens for a collinear Lagrange point (L1, L2, or L3) as detailed
in Eberle et al. (2008) using the respective Jacobi constant (C1,
C2, or C3).
Eberle et al. (2008) and Quarles et al. (2011) explored the

coplanar case (Figure 4(a)) in detail using the Jacobi constant
and maximum Lyapunov component, respectively, for planets
that orbit the more massive primary (μ�0.5). However,
Figure 4(a) shows that using the Jacobi constant C1 as a
stability criterion agrees well for all μ and only a few stable
(black) regions exist to the right of the solid red curve, C1.
Between the curves for C1 and C3, there are initial conditions
that can be stable depending on the initial mean longitude
due to MMRs (Morais & Giuppone 2012; Morais &
Namouni 2013), as indicated by the quasi-stable (light and
dark gray) region, and Quarles et al. (2011) identified this
regime as chaotic using the maximum Lyapunov exponent. All
of the initial values to the right of C3 (dashed red curve) are

Figure 2. Similar to Figure 1, but the mass ratio is constant (μ=0.1) and the planetary inclination is varied. Each panel contains a label (ip, ac) indicating the
planetary inclination and the critical semimajor axis ratio, respectively. Note the mirror symmetry about λp=180° remains for inclined orbits.
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unstable due to large excitations of the planetary eccentricity by
the perturbing star and the opening of all the collinear Lagrange
points in the ZVC.

After the planet is inclined 30° relative to the binary orbit
(Figure 4(b)), the stable (black) region does not change much.
Panels (c) and (d) of Figure 4 illustrate significant differences
from the coplanar cases due to the LK mechanism, where a
large periodic eccentricity oscillation occurs that erodes much
of the parameter space between the C1 and C3 curves. The
stable regime for Figure 4(d) lies significantly below the C1

curve, demonstrating the effectiveness of the LK mechanism.
Some resonant regions (i.e., N:1 MMRs) can remain stable for
longer periods, but must maintain a special configuration (e.g.,
similar to Pluto’s 3:2 MMR with Neptune).
Panels (e)–(h) of Figure 4 show how the stability regions

vary for retrograde orbits ( =  -i i180p p
retro ), where the stable

retrograde initial conditions (black) in Figure 4(e) represent a
much larger fraction of the parameter space and do not agree
with the Jacobi constant stability criterion from Eberle et al.
(2008). The extent of the quasi-stable regime (light or dark
gray) also increases, but it reaches a limit at the 3:2 MMR with
the binary orbit. Figure 4(f) can be largely constrained with
the Jacobi constant, and appears very similar in extent to
Figure 4(b). Panels (g) and (h) in Figure 4 are similar to their
prograde counterparts (Figure 4(c) and (d)), but the stabilizing
effects from starting in retrograde increase the extent of the
quasi-stable region at high μ and ap/abin.
Another special circumstance can arise when the planet

begins with a significant orbital velocity out of the binary plane
so that the Coriolis force is minimized. In this scenario, the
initial orbital velocity is calculated assuming the lower-mass
star is the host (i.e., high μ), but the high semimajor axis ratio
ap/abin starts the planet within the Hill sphere of the more
massive star. As a result, the planet can be captured into N:1
MMRs by the primary. Although this setup is allowed (i.e., no
physical laws broken), it could be very unlikely to occur within
known pathways for planet formation, but we highlight it for
completeness. Figure 5 illustrates the evolution of a particular
initial condition in rotated coordinates that can lead to this type
of capture, where the planet begins either coplanar (Figure 5(a))
or highly inclined (Figure 5(c)). To confirm a capture into the
3:1 MMR, we plot the evolution of the resonance angle f3:1,
where there are points in the coplanar case (Figure 5(b)) that
are ill-defined (i.e., vertical jumps) and the highly inclined
simulation (Figure 5(d)) shows libration.
Even in the simplified case of the CRTBP, there is not a

simple expression to define the likelihood that a planetary orbit
will be stable. The most straightforward prescription to
estimate stability is N-body simulations on a case-by-case
basis, but this process can be greatly expedited or avoided
using our results. For a nearly coplanar planet within a circular
binary (e.g., transiting an eclipsing binary), the stability limit
can be estimated using the Jacobi constant at the first Lagrange
point C1. We provide an algorithm to determine this curve as
follows:

1. Choose a value of μ from a list.
2. Approximate through a power series or numerically

determine the Lagrange point L1 using a given μ and a
root finding function.

3. Use the location of L1 to determine the Jacobi constant C1

using the equation for the zero velocity surface ( =U C2 ;J
see Chap. 3 of Murray & Dermott 1999)

4. Use the value of C1 from (3) and numerically solve
Equation (14) from Eberle et al. (2008) using a root
finding function.

5. Go back to (1), until the end of the list is reached.

Table 2 lists values for the semimajor axis ratio and mass ratio,
where openings of the ZVC occur at L1 or L3 using the above
algorithm, and these values correspond to the red curves (C1 or
C3, respectively) in Figure 4. For a moderately inclined planet
within a binary, similar curves provide a good approximation

Figure 3. The trajectories in the X–Y plane for a three body system (μ=0.3,
ap/abin=0.369, and λp=180°) in inertial (left) and rotated (right)
coordinates for a range of mutual inclinations in degrees (top right). The
initial distance of the planet (blue) to the host star is marked by a red line,
where the binary semimajor axis is indicated by a magenta line. The trajectory
of the planet over one orbit of the more massive primary is given in each
coordinate system, where the planet begins inclined to the X–Y plane as
indicated in the top right corner. Gold points in the right column correspond to
the Lagrange points. Black dashed contours denote the boundaries of zero
velocity in the rotated coordinates and the forbidden region is shaded gray.
Note the difference in scale between the two columns.
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for the stability limit, but a coplanar retrograde orbit can
significantly expand the stability limit as shown by C1

retro.
Finally, we provide Python tools on GitHub to query the data
set represented in Figure 4, and there is a routine that returns
the probability for stability through grid interpolation for a
given combination of μ and ap/abin.

3.2. Eccentric Binaries

Planets orbiting a single star of a circular binary represent
only a subset of all the possibilities—and thus, we extend our

method to investigate binary systems with a significant
eccentricity (ebin�0.8). This extra dimension expands the
volume of our parameter space by almost two orders of
magnitude, and thus we perform our numerical simulations
with computational efficiency in mind. In Section 3.1, we
explore eight different mutual inclinations because the
eccentricity forcing on the planet is mainly due to MMRs.
For eccentric binaries, we limit our investigation to only four
mutual inclinations (ip=30°, 45°, and 180°), as the LK
mechanism greatly reduces the stability limit within the

Figure 4. The stability regions within the CRTBP for a range of initial values in the mass ratio μ and semimajor axis ratio ap/abin, considering a potentially inclined
planet with the respective inclination in the top right corner. Black cells indicate that all 91 trials survive for the entire 500,000 yr of the simulation (i.e., stable), where
the dark or light gray cells mark those when either 20%–99% or 1%–19% of the trials survive, respectively. White cells denote initial conditions, where none of the
trials survive (i.e., unstable). Red curves correspond to openings in the zero velocity curve at each Lagrange point (Eberle et al. 2008).
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40–140° range of inclination (Quarles & Lissauer 2016;
Quarles et al. 2018a).

Our coplanar simulations (ip=0°) use the uniform stepping
described in Section 2.2 to determine the stability boundary ac.
To make the exploration of the inclined cased more efficient,
we use the method of Lam & Kipping (2018), where they
focused on a range in semimajor axis ratio (i.e., window) that
would most likely contain the stability limit. To do this, we use
the results from the coplanar runs to determine an appropriate
trial window for the other inclined cases (ip=30°, 45°, and
180°). We then numerically investigate for longer timescales
(500,000 yr) using semimajor axis ratios within a a0.5 1.5c c

0 0– ,
where ac

0 is the stability limit in the respective prograde,
coplanar simulation. If all the simulations in this range

a a0.5 1.5c c
0 0– are unstable, then we explore a range of smaller

semimajor axis ratios (  a a a0.001 0.5p cbin
0). This proce-

dure was sufficient to cover regions of parameter space that we
expect to either be truncated (e.g., Lidov–Kozai mechanism for
= i 45p ) or expanded (e.g., retrograde orbits for ip=180°).
Following Holman & Wiegert (1999), we take these results

and compare to previous studies (Rabl & Dvorak 1988) that

prescribe a stability limit for equal mass stars (μ=0.5).
Figure 6 illustrates how our results compare for the special case
of equal mass stars with a coplanar planet, the range of stability
for two regimes of μ (red and blue), and the changes to the
median stability limit within each regime for each planetary
inclination. Rabl & Dvorak (1988) performed simulations for
only 300 binary periods and explored up to ebin=0.6. Thus,
we expect for deviations to appear for high binary eccentricities
(0.6�ebin�0.8 where the expression from Rabl & Dvorak
(1988) is extrapolated as seen in Figure 6(a). There is also a
small difference between the curve from Holman & Wiegert
(1999) (black dashed) and our results (solid gray) in the high
binary eccentricity region, as well as in the ebin�0.1 region.
These differences are due to the factor of 10 increase in
sampling that we perform, and amount to slight changes in the
stability limit for a coplanar planet. The shaded regions (red
and blue) in Figure 6(a) demonstrate the extent to which the
stability limit can vary as a function of μ, where μ=0.01
follows the upper red boundary and μ=0.99 is much flatter
along the lower blue boundary. As in the case for the CRTBP,
we can see that the stability limit is not symmetric about the
equal mass case.

Figure 5. The trajectory of a coplanar or highly inclined planet in rotated coordinates over a single orbit of the binary beginning with =a a 0.78p bin , a host binary
with μ=0.95, and an initial mean anomaly MA=33°. Panel (a) differs from panel (c) in the starting planetary inclination (indicated in upper right), which manifests
in a difference in the strength of the Coriolis force. The starting condition lies within the Hill sphere of the more massive star (near origin), and can result in the
possible capture in the 3:1 MMR. Panels (b) and (d) illustrate the evolution of the resonance angle for the 3:1 MMR, f l l v= - -3 2p3:1 bin bin.
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The planetary inclination also plays a role in determining the
stability limit ac, where Figure 6(b) shows these differences
through quadratic fits to the median stability limit for each ebin.
The ip=0° (solid) and ip=30° (dashed) curves are nearly
identical in Figure 6(b), and there is not a strong dependence on
μ when split into the two regimes (red and blue). As a result,
the stability limit for coplanar planets will be similar enough, in
most cases, to be valid up to∼40°, until the Lidov–Kozai
mechanism becomes active. The same will be true for
retrograde planetary inclinations (  <  i140 180p ) relative
the exactly retrograde case (ip=180°). Sufficiently inclined
planets (ip=45°; dashed–dotted in Figure 6(b)) where the
Lidov–Kozai mechanism is active have a lower median
stability limit, due to eccentricity excitation, and it is largely
independent of μ. On the other hand, planets in retrograde
orbits (dotted in Figure 6(b)) have a larger median stability
limit.

Table 3 provides coefficients and uncertainties for the
quadratic fitting formula ( = + +a a c c e c ec bin 1 2 bin 3 bin

2 ) from
Rabl & Dvorak (1988), Holman & Wiegert (1999), and using
the stability limits determined through our simulations. The
difference between our coplanar results (ip=0°) and the
previous studies is that we break the fitting formula into two
regimes for μ, as motivated by the CRTBP and Figure 6. If we
find the average value for each coefficient (c1−c3), then our
results are consistent with the previous works. Our c1 and c2
coefficients for ip=30° are similar to our coplanar coeffi-
cients. The coefficients for the ip=45° fitting formula
depend more strongly on the binary eccentricity due to the

Lidov–Kozai mechanism. The coefficients for the retrograde
fitting formulas are larger than the coplanar, prograde formulas
by more than 30%. Moreover, each set of coefficients reveal
that the stability limit could be up to two times bigger for
planets that orbit the more massive primary over the less
massive secondary star.
An accurate and reliable fitting formula should include a

dependence on the mass ratio μ, given the asymmetries we
have described in the CRTBP and in Figure 6. Holman &
Wiegert (1999) assumed that the stability limit depends linearly
on μ and quadratically for ebin. We follow the same
prescription and provide updated values for the coefficients

-c c1 6, using our much larger data set in Table 4 along with
the previous values from Holman & Wiegert (1999) for
comparison. Moreover, coefficients are listed for inclined
planets (ip=30°, 45°, and 180°), where we see that the
coefficients for the coplanar and 30° formulas are similar.
When the planet is initially inclined to 45°, the c3−c6 terms
dominate due to the strong dependence on ebin from the Lidov–
Kozai mechanism. The c1, c3, and c5 coefficients for retrograde
are larger than the respective coefficients for ip=0° formula,
which indicates that retrograde stability depends more strongly
on ebin, due to a lower magnitude forcing on the planet from the
stellar companion (Henon 1970).

3.3. Interpolation Maps and Lookup Tables

The fitting formulas in Section 3.2 are dependent on the
quality and breadth of the numerical simulations that underlie
their derivation. They are reliable in characterizing a population
of exoplanets, but they can also be inaccurate when describing
particular systems. For instance, we can compare the case when
ebin=0 in Table 4 to the results in Table 2. The estimate for
the critical semimajor axis ac from Holman & Wiegert (1999)
and our own newly updated estimation is different by more
than 10% for μ<0.05. As a result, we suggest a different
approach using a lookup table or interpolation map that relies
less on statistical averaging, which occurs in deriving a single
fitting formula.
Figure 7shows7 the critical semimajor axis ratio ac/abin

(color-coded) over the full range of mass ratio μ and binary
eccentricity ebin. Table 4 shows only small differences in the
fitting formulas for ip=0° and ip=30°, where this trend is
visually apparent in Figure 7(a) and (b). In addition, panels (a)
and (b) illustrate the asymmetry of the stability limit with
respect to the mass ratio μ, where for μ>0.5 the typical value
is a a 0.2c bin . As a result, we find the volume for a stable
planet for the primary star to host a nearly planar (ip�30°)
planet in a low mass ratio (μ<0.3) binary to be typically two
times larger than for the lower-mass secondary (μ>0.7). The
propensity for stable orbits is substantially reduced for a more
inclined (ip=45°) planet when ebin0.2 and the critical
semimajor axis becomes more symmetric about μ=0.5
(Figure 7(c)). A retrograde planet (Figure 7(d)) can be
stable to much larger semimajor axis ratios and for a
larger fraction of binary parameters (μ and ebin), which has
been shown to some degree in several other investigations
(Henon 1970; Benest 1988b; Wiegert & Holman 1997; Quarles
& Lissauer 2016).

Table 2
Stability Limits in the CRTBP Using the Mass Ratio and Jacobi Constant

Criterion

μ C1 C3 C1
retro

0.001 0.7988 0.9978 0.780
0.01 0.6368 0.9785 0.689
0.05 0.4906 0.9012 0.582
0.10 0.4230 0.8201 0.549
0.15 0.3825 0.7515 0.519
0.20 0.3533 0.6921 0.496
0.25 0.3301 0.6399 0.475
0.30 0.3107 0.5932 0.455
0.35 0.2937 0.5509 0.438
0.40 0.2784 0.5120 0.422
0.45 0.2644 0.4760 0.405
0.50 0.2511 0.4421 0.389
0.55 0.2385 0.4100 0.373
0.60 0.2261 0.3792 0.357
0.65 0.2137 0.3492 0.340
0.70 0.2011 0.3195 0.322
0.75 0.1880 0.2898 0.302
0.80 0.1738 0.2592 0.281
0.85 0.1579 0.2266 0.256
0.90 0.1387 0.1899 0.225
0.95 0.1119 0.1436 0.180
0.99 0.0682 0.0790 0.107
0.999 0.0329 0.0353 0.048

Note. Semimajor axis ratio ap/abin of the stability limit for a given mass ratio
μ, and using the Jacobi constant C1 and C3 as a stability criterion at the
Lagrange points L1 and L3, respectively. Here, C1

retro marks the numerically
determined stability boundary for retrograde orbits (ip=180°), due to a
limitation of the Jacobi constant criterion, where the uncertainties in these
values are 0.001.

7 The data for these maps are available on GitHub, along with an example
Python script that interpolates between grid values.
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4. More Stringent Stability Criteria

It is possible to devise a more stringent stability criterion that
depends on more parameters. Part of the motivation for
Holman & Wiegert (1999) to use the binary mass ratio μ and

eccentricity ebin was that these parameters are relatively easy to
determine through an adequate number of observations through
radial velocity or photometric surveys. However, the Kepler era

Figure 6. Critical semimajor axis ac as a function of the binary eccentricity ebin for a planet orbiting either the more (red) or the less (blue) massive star. Black curves
in panel (a) illustrate the previous results for μ=0.5, where our results are given by the solid gray curve. The inset shows a magnified view for high binary
eccentricity (0.6�ebin�0.8), where the black and gray curves no longer overlap. The median values for ac (color-coded points) are shown in panel (a), where the
color-coded area signifies the full range with respect to each domain. The curves in panel (b) demonstrate the least squares best fit for the median ac as a function of
each planetary inclination.

Table 3
Critical Semimajor Axis as a Function of the Binary Eccentricity ebin

ip c1±σ1 c2±σ2 c3±σ3

m 0.1 0.9† 0° 0.262±0.006 −0.254±0.017 0.060±0.027
m  0.1 0.9 0° 0.274±0.008 −0.338±0.045 0.051±0.055

m 0.01 0.5 0° 0.363±0.001 −0.492±0.006 0.129±0.005
m 0.51 0.99 0° 0.186±0.001 −0.193±0.003 0.001±0.003

m 0.01 0.5 30° 0.346±0.002 −0.464±0.006 0.117±0.005
m 0.51 0.99 30° 0.198±0.001 −0.243±0.002 0.043±0.002

m 0.01 0.5 45° 0.247±0.005 −0.487±0.018 0.268±0.016
m 0.51 0.99 45° 0.213±0.002 −0.441±0.009 0.252±0.008

m 0.01 0.5 180° 0.479±0.002 −0.647±0.008 0.168±0.008
m 0.51 0.99 180° 0.298±0.001 −0.378±0.006 0.072±0.006

Note. The listed coefficients ( -c c1 3 and uncertainties (s s-1 3) from †Rabl & Dvorak (1988) and Holman & Wiegert (1999) use a quadratic fitting function,
= + +a a c c e c ec bin 1 2 bin 3 bin

2 . We use the same function in this work, but we split it between two domains in μ for each planetary inclination ip.

Table 4
Coefficients for the Critical Semimajor Axis

ip sc1 1 sc2 2 sc3 3 sc4 4 sc5 5 sc6 6

Previous Work 0° 0.464±0.006 −0.380±0.010 −0.631±0.034 0.586±0.061 0.650±0.041 −0.198±0.074
This work 0° 0.501±0.002 −0.435±0.003 −0.668±0.009 0.644±0.015 0.152±0.011 −0.196±0.019
This work 30° 0.485±0.002 −0.405±0.003 −0.684±0.009 0.603±0.015 0.190±0.011 −0.182±0.019
This work 45° 0.428±0.002 −0.318±0.003 −1.128±0.011 0.987±0.020 0.839±0.014 −0.825±0.024
This work 180° 0.617±0.001 −0.457±0.002 −0.787±0.008 0.586±0.014 0.163±0.010 −0.128±0.017

Note. The coefficients ( -c c1 6) and uncertainties (s s-1 6) from Holman & Wiegert (1999) are listed using the fitting formula, m= + +a a c cc bin 1 2

m m+ + +c e c e c e c e3 bin 4 bin 5 bin
2

6 bin
2 . We use the same function in this work, but also fit for a range of planetary inclination ip.
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has uncovered thousands of exoplanets (Coughlin et al. 2016)
and eclipsing binary stars (Kirk et al. 2016). As a result, it
becomes reasonable to identify how the stability limit changes
with respect to the planetary eccentricity ep. Statistical studies
of the radial velocity planets before Kepler suggested that the
mean planet eccentricity was approximately 0.3 (Shen &
Turner 2008). Subsequent studies using both the radial velocity
planets and those discovered by the Kepler Space Telescope
showed that this is indeed correct for “single” planetary
systems and that a lower mean eccentricity (á ñ »e 0.05p ) is
appropriate for systems with multiple planets (Xie et al. 2016;
Van Eylen et al. 2019). Moreover, the presence of binary

companions does not affect this estimate (Van Eylen et al.
2019).
In the CRTBP, the maximum planet eccentricity is largely

shaped by either a MMR or the Lidov–Kozai mechanism. Both
of these pathways for eccentricity excitation depend on the
semimajor axis ratio ap/abin and less so on the mass ratio μ.
Figure 8 illustrates the maximum planetary eccentricity emax

attained (color-coded on a logarithmic scale) for the cases
where the planetary stability is achieved for all 91 trials of
mean longitude (i.e., black cells in Figure 4). The gray curves
in Figure 8 mark the limits set by the Jacobi Constants at the
collinear Lagrange points. In Figure 8, panels (a), (b), and (d)

Figure 7. Critical semimajor axis ac (color-coded) as a function of the binary eccentricity ebin and the mass ratio μ. The initial planetary inclination ip is denoted in
each panel in the upper right.

Figure 8. Similar to Figure 4, but the stable points are color-coded (on a logarithmic scale) using the maximum planetary eccentricity attained over all 91 trials of
mean anomaly. Gray curves mark the opening of the zero velocity curve for each of the collinear Lagrange points.
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show that the typical maximum planetary eccentricity is
small (emax  0.1), where Figure 8(c) is large due to the
Lidov–Kozai mechanism. A substantial emax persists when
ip=45° (Figure 8(c)) even for small semimajor axis ratios and
mass ratios. The CRTBP is a special case, and nearly circular
binaries are not likely to represent a large fraction of the
general population of binary stars. Detailed studies from
secular theory (Brouwer & Clemence 1961; Kaula 1962;
Heppenheimer 1978; Murray & Dermott 1999; Andrade-Ines
et al. 2016; Andrade-Ines & Eggl 2017) and N-body
simulations (Quarles et al. 2018a) have illustrated that the
secular forcing from the stellar component induces a forced
component to the planet’s eccentricity that depends on the mass
ratio μ, semimajor axis ratio ap/abin, and the binary eccentricity
ebin. The planetary eccentricity varies about the forced
eccentricity depending on the relative alignment (v v-p bin)
with the binary orbit. Each cell in Figure 7(a) represents a
series of 91 trials with respect to the mean longitude, and the
ac/abin value determined is one where all trial mean longitudes
survive for the full integration for a given ap/abin. We augment
this stability criterion to include another condition that the
maximum planetary eccentricity emax does not exceed 0.3 (i.e.,
the mean planetary eccentricity from observations), and signify
this altered stability criterion as(ac/abin)

†.
The critical semimajor axis does not vary much when

comparing Figure 7(a) to Figure 7(b), and the maximum
planetary eccentricity will follow the same trend. The
maximum planetary eccentricity can be determined analyti-
cally, for nearly circular binaries, when the Lidov–Kozai
mechanism is active (Innanen et al. 1997) for ip=45°. In most
cases, the maximum eccentricity is much larger than 0.3.
Therefore we only consider the coplanar configuration in either
a prograde (ip=0°) or retrograde (ip=180°) direction relative
to the binary orbit in Figure 9. Applying the extra condition on
the planetary eccentricity typically decreases the critical
semimajor axis by∼10% when comparing Figure 7(a) to
Figure 9(a), where the decrease is much more substantial for
the comparison between Figures 7(d) and 9(b). In Figure 9, the
differences between panels (a) and (b) are less dramatic than
those in Figure 7, but planets orbiting within binaries with low
eccentricity still retain their stability advantage because the
forced component of eccentricity is also low.

The inclusion of an additional constraint like maximum
eccentricity on planetary stability in binaries decreases the
critical semimajor axis ratio, where long-period planets would
be most affected. However, observations of small planets have
proved to come in multiples (Fabrycky et al. 2014; Winn &
Fabrycky 2015), which suggests that planet multiplicity is a

better additional constraint on the potential stability of a planet
within a binary (Quarles & Lissauer 2018), as the mean planet
eccentricity of the observed exoplanets is lower (Xie et al.
2016; Van Eylen et al. 2019).

5. Binary Star Populations and TESS

5.1. Population Studies

The results in Figure 7 illustrates the variations of the critical
semimajor axis with respect to the mass ratio μ and eccentricity
ebin, but observations of binary star populations, especially with
Sunlike primaries, are not uniform with respect to these binary
parameters (Raghavan et al. 2010; Moe & Di Stefano 2017).
Therefore, a statistical study is needed to gain further insights
from our results using Monte Carlo approaches. David et al.
(2003) and Fatuzzo et al. (2006) performed a statistical study
with the binary periastron distance as a stability criterion, and
using the contemporary stability formula (Holman & Wiegert
1999) and a survey of binary stars (Duquennoy &Mayor 1991).
We follow their approach, but use our our determination of the
critical semimajor axis and more up-to-date results from binary
star surveys (Raghavan et al. 2010; Moe & Di Stefano 2017).
This is important for observations because, when planets are
discovered orbiting a star with a distant stellar companion, e.g.,
K2-288b (Feinstein et al. 2019), the binary period and
eccentricity are often unknown, but the planetary semimajor
axis and/or the projected binary semimajor axis can be
determined (see Table 5 for a list of known planet hosting
binary stars). Moreover, observations of young binary stars can
reveal the stability limit through dust and gas emission around
either star (e.g., Alves et al. 2019), but this is also a projected
distance.
Our approach is to determine a probability distribution function

(PDF) for the stability of planets in binaries as a function of
the critical semimajor axis ratio ac/abin, where the sum of the
binary masses is equal to a solar mass (i.e., MA+MB=1 Me).
The binary period (and semimajor axis) follows a log-normal
probability distribution ( µ z s- -p eP

P
log

log 22 2( ) ), where ζ=5.03
and σ=2.28 (Raghavan et al. 2010). This probability distribution
in Raghavan et al. (2010) has a broad range (−2�log P�10, in
days), where we limit our analysis to a smaller range in binary
period (4�log P�7) that corresponds to a reasonable range in
binary semimajor axis (10 au�abin�1000 au).
Observers typically use the binary mass quotient q

(=MB/MA, where MB�MA), which algebraically relates to
the dynamical mass ratio μ (= +q q1( )). From the mass
quotient q, the range for μ is limited to 0.5 and our exploration

Figure 9. Similar to Figure 7, but limited to a coplanar planet in (a) prograde or (b) retrograde relative to the binary orbit. The color code represents the critical
semimajor axis a ac bin( ) , where the maximum planetary eccentricity is less than 0.3.
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of planets orbiting the secondary star (μ>0.5) is accom-
plished by subtracting the μ samples from unity (i.e., 1−μ).
We use a probability distribution ( µ gp qq ) for q derived by
Moe & Di Stefano (2017) that is a broken power law, which
has γ1=0.3±0.4 for 0.1�q�0.3 and γ2=−0.5±0.3
for 0.3�q�1. An excess twin fraction Ftwin=0.1±0.3 is
added to the PDF for q�0.95; see Figure 2 of Moe & Di
Stefano (2017). A probability distribution ( µ hp ee bin) for the
binary eccentricity follows a single power law, which has
η=0.4±0.3 (Moe & Di Stefano 2017). We note that the
exponents used in these power laws are dependent on the range
of sampled binary period log P (Moe & Di Stefano 2017) and
adjustments to the exponents are necessary if one expands our
analysis to a broader range in binary period.

Using these probability distributions, we employ Monte
Carlo integration to determine the fraction of observed binaries
with a critical semimajor axis larger than a given ac/abin using
the data in panels (a), (c), and (d) of Figure 7. We do not use
Figure 7(b) because of its strong similarity to Figure 7(a).
Figure 7(a) illustrates that all binaries within the domain will

have a critical semimajor axis larger than 0.001 and very few
binaries will have a ac/abin>0.5 where this is independent of
the weighting given by the probability distributions we choose.
As a result, we integrate ac/abin=0.001–0.01 using 0.001
sized bins, and ac/abin=0.01–1.0 using 0.01 sized bins.
Figure 10 shows the PDF (Figure 10(a)–(c)) and cumulative
distribution function (CDF; Figure 10(d)–(f)) resulting from the
Monte Carlo integration considering planetary inclinations of
0°, 45°, and 180°. For planets orbiting either the primary (star
A; black) or the secondary (star B; gray) star, there are many
binaries with ac/abin>0.05, and hence both curves in
Figure 10(a)–(c) have the highest probability within this range.
Planets that orbit the secondary constitute a larger fraction of
binaries with a small critical semimajor axis, and thus
the probability is slightly larger. This trend reverses for
ac/abin0.12, as the stability limit for the primary extends to
larger distances compared to the secondary. Sufficiently
inclined planets (e.g., ip=45°) have their stability limits
truncated due to the large growth of eccentricity from the
Lidov–Kozai mechanism, and stable orbits are possible for

Table 5
Mass Ratio, Semimajor Axis, and Stability Limits for Known Planet-hosting Binaries with < a5 500 aubin

System MA MB μ abin ac
A,a ac

A,b ac
B,a ac

B,b

(M) (M) (au) (abin) (abin) (abin) (abin)

HD 109749 1.100 0.780 0.415 490 0.046 0.299 0.040 0.235
HD 133131 0.950 0.930 0.495 360 0.043 0.267 0.042 0.263
HD 106515 0.910 0.880 0.492 345 0.043 0.267 0.042 0.261
Kepler-108 1.300 0.960 0.425 327 0.045 0.295 0.040 0.238
WASP-77 1.002 0.710 0.415 306 0.046 0.299 0.040 0.235
KELT-2 1.317 0.780 0.372 295 0.047 0.321 0.037 0.222
HD 114729 0.930 0.253 0.214 282 0.053 0.379 0.031 0.169
Kepler-14 1.510 1.390 0.479 280 0.043 0.272 0.042 0.257
HD 27442 1.200 0.750 0.385 240 0.047 0.314 0.038 0.227
TrES-2 0.980 0.509 0.342 232 0.048 0.338 0.037 0.213
HD 212301 1.270 0.350 0.216 230 0.053 0.380 0.032 0.170
HD 16141 1.010 0.286 0.221 220 0.052 0.380 0.032 0.171
HD 189733 0.800 0.200 0.200 216 0.054 0.377 0.031 0.164
HD 217786 1.020 0.160 0.136 155 0.057 0.435 0.027 0.141
HD 142 1.200 0.590 0.330 138 0.048 0.346 0.036 0.209
HD 114762 0.840 0.138 0.141 132 0.057 0.432 0.028 0.143
HD 195019 1.060 0.700 0.398 131 0.046 0.307 0.040 0.230
WASP-2 0.890 0.480 0.350 106 0.047 0.334 0.037 0.215
HD 19994 1.340 0.350 0.207 100 0.054 0.378 0.031 0.167
HD 177830 1.450 0.230 0.137 97 0.057 0.434 0.027 0.142
Gliese 15 0.380 0.150 0.283 93 0.051 0.378 0.035 0.194
Kepler-296 0.500 0.330 0.398 80 0.046 0.307 0.040 0.230
GJ 3021 0.900 0.130 0.126 68 0.057 0.440 0.026 0.137
K2-288 0.520 0.330 0.388 54.8 0.047 0.312 0.038 0.227
HD 120136 1.400 0.400 0.222 45 0.052 0.380 0.032 0.172
WASP-11 0.820 0.340 0.293 42 0.050 0.369 0.035 0.197
K2-136 0.740 0.100 0.119 40 0.057 0.442 0.026 0.135
HD 164509 1.130 0.420 0.271 37 0.051 0.383 0.034 0.190
HD 41004 0.700 0.400 0.363 23 0.048 0.326 0.037 0.219
HD 196885 1.330 0.550 0.293 23 0.050 0.369 0.035 0.197
HD 4113 0.990 0.550 0.357 23 0.048 0.330 0.037 0.217
GJ 86 0.800 0.490 0.380 21 0.047 0.317 0.038 0.225
γ Cep 1.180 0.320 0.213 20 0.053 0.379 0.031 0.169
HD 8673 1.400 0.400 0.222 10 0.052 0.380 0.032 0.172
Kepler-420 0.990 0.700 0.414 5.3 0.046 0.300 0.039 0.235

Notes. Critical semimajor axis ac calculated using interpolation of Figure 7(a), where planets orbit star A for μ and star B for m-1 . The stellar parameters are from an
online catalog of planets in binaries maintained by Richard Schwarz (https://www.univie.ac.at/adg/schwarz/multiple.html).
a =e 0.8.bin
b =e 0.0.bin
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predominantly low critical semimajor axis ratios. Retrograde
orbits extend to larger critical semimajor axis ratios (Henon
1970; Quarles & Lissauer 2016), and the PDF is flatter.

The uncertainty in the binary semimajor axis abin from
observations can be quite large, where discoveries from direct
imaging may only have an estimate for the projected semimajor
axis. From such situations, a CDF is more useful, where the
probability can be calculated from a difference of values on the
CDF and a single value describes the fraction of binaries with
a stability limit less than a given ac/abin. For example,
Figure 10(d) shows that half of all binaries within our domain
will have a critical semimajor axis for coplanar planets that is
less than 0.06 (star B) or 0.078 (star A). The slope in the CDF
for the Lidov–Kozai regime (Figure 10(e)) is steeper, which
shifts the median to smaller ac/abin. Moreover, the slope is
nearly identical between whichever star the planet is orbiting
(star A or B). The shallower slope for retrograde planets
(Figure 10(f)) has a median critical semimajor axis closer to 0.1
and extends to larger values of ac/abin.

The black and gray curves in Figure 10(d)–(f) are fit well by
a modified exponential distribution:

x = - x x- -F e1 , 1c c1
2

2( ) ( )

where ξ=ac/abin. The red curves in Figure 10(d)–(f) mark
sample curves within the 1σ of the best-fit values for F(ξ),
where the largest differences occur in the top quintile as
marked by the respective inset panels. David et al. (2003) used
a similar function, except their formulation depends on the
binary periastron distance. Table 6 provides values for the
coefficients (c1 and c2), along with their uncertainties using

the Levenberg–Marquardt algorithm in the curve fit function
within the scipy module. In addition to the coefficients, we
provide the the critical semimajor axis values at 50% and
99.7% quantiles.

5.2. Circumstellar Planets Observed with TESS

NASA’s TESS will observe nearly 85% of the sky over the
course of its primary two-year mission. The spacecraft has four
cameras that provide a  ´ 24 96 field of view, and a
photometric precision between ∼100 ppm for apparent
magnitude ~I 4C , and ~10 ppm5 for ~I 18C (Ricker et al.
2015). It is expected that TESS will discover thousands of
transiting exoplanets around bright, nearby stars (Sullivan et al.
2015; Bouma et al. 2017; Barclay et al. 2018), including
hundreds of planets smaller than Å2R . A significant number of

Figure 10. PDF for the critical semimajor axis ratio ac/abin of a planet orbiting either star A (black) or star B (gray). Top panels show the PDF relative to whether the
planet orbit is (a) prograde (ip=0°), (b) undergoing Lidov–Kozai cycles (ip=45°), or is (c) retrograde (ip=180°) with respect to the binary. Panels (d)–(f) show the
cumulative distribution function (CDF) for panels (a)–(c), respectively, and the zoomed insets show the top quintile of the CDF. Samples from a numerical fit of the
CDF using a modified exponential distribution (see main text) are marked in red, where the coefficients for the fit are given in Table 6.

Table 6
Cumulative Distribution Function Coefficients for the Critical Semimajor Axis

ip sc1 1 sc2 2 50% 99.7%

Star A 0° 28.96±0.75 6.65±0.09 0.078 0.348
Star B 0° 54.50±1.62 8.31±0.14 0.060 0.259

Star A 45° 15.11±2.30 13.28±0.23 0.049 0.321
Star B 45° 20.69±3.28 13.82±0.30 0.047 0.292

Star A 180° 15.41±0.37 4.82±0.06 0.107 0.477
Star B 180° 22.97±0.62 5.88±0.08 0.088 0.391

Note. The coefficients (c1 and c2) and uncertainties (s1 and s2) using a fitting

formula for the CDF, x = - x x- -F e1 c c1
2

2( ) where x = a ac bin.
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stars (some of which will have transiting planets) observed by
TESS will be in multiple systems, i.e.,from~ <M20% for prim

M0.1  to~ >M M75% for 1.4prim , and spanning semimajor
axes from a few to hundreds of au (Sullivan et al. 2015). In
combination with data from Gaia, by virtue of being bright
targets (and thus favorable to follow-up observations) those of
the multiple star systems hosting S-type planet candidates will
be amenable to measurements of the mass ratio. The results we
present here will be directly applicable to the stability of these
systems.

Recently, Winters et al. (2019) uncovered a transiting planet
in a triple star system, LTT 1445ABC, where star A
(MA=0.257 M) orbits a nearly equal-mass stellar binary
(MB=0.215 M and MC=0.161 M) and the separation
from star A to the BC barycenter is∼34 au. The nearly Earth-
sized exoplanet LTT 1445Ab ( » ÅR R1.38p ) orbits very
quickly (5.358 days, or ap=0.038 au) around LTT 1445A,
which is well within the stability limit, assuming that the orbit
of LTT 1445A is nearly circular around the barycenter of LTT
1445BC. However, the A–BC orbit is likely eccentric,
considering observations over the last few decades that indicate
significant astrometric variation (Mason et al. 2001; Dieterich
et al. 2012; Winters et al. 2019, and references therein), and a
noncircular orbit may affect the stability of the observed
exoplanet. Using the combined mass for LTT 1445BC
(MBC=0.376 Me), the dynamical mass ratio of the A–BC
pair is μ=0.594, given that the planet is orbiting the less
massive component of the pair. The semimajor axis ap is quite
small (0.038 au), where the planetary orbital stability may be
compromised for a large eccentricity ebin of the A–BC orbit.

If we consider planets within the A–BC plane, then the
stability limit varies between 1.38 and 8.15 au depending on
the value of ebin, the eccentricity of star A around the BC
barycenter. Even for a high value for ebin, the stability limit is
still ∼36 times farther from the host star than the observed
planetary semimajor axis. Therefore, we are confident that LTT
1445Ab is on a stable orbit, as the planet is very far from the
stability limit under reasonably extreme assumptions on the
shape of the LTT 1445 A–BC stellar orbit. If TESS observes
the system during the extended mission and detects potential
transits of additional planets on longer orbits, reducing the BC
binary to its barycenter may need to be revised and the
eccentricity of star A around the BC barycenter properly
evaluated. We do not investigate nonplanar conditions
(ip=45°) where the stability limit can be further reduced,
because the astrometric measurements show that the LTT
1445ABC system is nearly planar and the planet is transiting—
which implies that the planetary orbit is likely nearly aligned
with the LTT 1445ABC orbital plane.

6. Summary and Discussion

The orbital stability of circumstellar planets within stellar
binaries depends on many factors, where we focus on the
binary mass ratio μ, eccentricity ebin, semimajor axis ratio
a ap bin, and the mutual inclination of the planet ip. Holman &
Wiegert (1999) developed a fitting formula that incorporates
the first three of these parameters and has a limited accuracy
(up to 11%). We update the coefficients of the fitting formula
using a larger array of N-body integrations (∼700 million
simulations), where the larger data set substantially narrows the
uncertainties and calculates fitting coefficients that account for
the planetary inclination ip. We provide additional formulations

for stability: (1) using the Jacobi constant when ebin is small or
(2) a constraint on the maximum planetary eccentricity. Using
the known population of Sunlike stellar binaries, we find that
the stability limit is typically less than8% of the binary
semimajor axis abin, where this fraction can be substantially
reduced for an inclined planet that is undergoing Lidov–Kozai
cycles, or expanded if the planet orbits in retrograde.
Eberle et al. (2008) developed a stability criterion based

upon the value of the Jacobi constant at the collinear Lagrange
points within the CRTBP. We extend this criterion to include
orbits around the less massive secondary star, with a
significantly inclined planetary orbit. However, this stability
criterion has some limitations, where an asymmetry in the
Coriolis acceleration (Innanen 1980; Hamilton & Burns 1991;
Grishin et al. 2017) and a reduction in the duration of action
(Henon 1970) can promote greater stability. The integration of
the Jacobi integral (typically by quadrature) introduces a
squared velocity term that is invariant for the direction of the
smaller body’s motion (i.e., planet) and forms a symmetry with
respect to the planetary inclination. Table 2 provides the critical
semimajor axis ratios using the binary mass ratio and Jacobi
constants (C1 and C3) for prograde orbits and a fit to the
stability boundary from our numerical simulations (Figure 4)
for coplanar retrograde orbits (Cretro

1 ). We note that, for a
special case in our results (μ=0.999), the ratio of the
retrograde critical semimajor axis ratio to the respective
prograde ratio agrees well with the analytical expectation
(i.e., »C C 31

retro
1

1 3) derived for hierarchical three-body
systems (Hamilton & Burns 1991; Grishin et al. 2017).
Although highly inclined orbits experience a greater eccen-
tricity excitation, they also feel a smaller contribution from the
Coriolis force—and can therefore achieve capture into MMRs
with the binary (Morais & Giuppone 2012; Morais &
Namouni 2013).
We provide updated coefficients ( -c c1 6) to the stability

formulas by Holman & Wiegert (1999), where the uncertainties
of these coefficients are typically reduced by a factor of three.
Moreover, we calculate coefficients using numerical simula-
tions for a range of planetary inclination (ip=0°, 30°, 45°, and
180°). For nearly coplanar planets in prograde, the coefficients
have similar mean values. The coefficients for prograde planets
undergoing Lidov–Kozai oscillations (ip=45°) are more
strongly dependent on the binary eccentricity. The coefficients
fitting our numerical results for coplanar, retrograde planets
depend linearly on the binary eccentricity, in contrast to the
prograde results. Our coefficients are more accurate—but,
similar to those of Holman & Wiegert (1999), they suffer from
errors due to averaging. Therefore, we provide interpolation
maps, where the data behind these maps are available to the
community through GitHub and Zenodo, which are similar to
our previous repositories (Quarles et al. 2018b). In the GitHub
repository, there is an example script in Python that
demonstrates how to use the interpolation schemes in scipy
to estimate the stability limit between grid values. Using our
interpolation scheme, the stability limit for a prograde, coplanar
planet orbiting α Cen A or α Cen B is 2.78 au or 2.60 au,
respectively, and consistent with a previous detailed billion
year study of the system (Quarles et al. 2018a). However a
retrograde, coplanar planet orbiting α Cen A or α Cen B has a
larger stability limit of 3.84 au or 3.61 au, respectively, and can
be extended farther when the eccentricity vectors of the
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planetary and binary orbits begin in a relative alignment that
minimizes the free eccentricity (Quarles et al. 2018a).

Population studies of Sunlike binary stars show that the mass
quotient q, binary eccentricity ebin, and binary period Pbin can be
statistically fit using either power laws or a log normal
distribution (Raghavan et al. 2010; Moe & Di Stefano 2017).
We use these statistical fits to estimate the probability of a planet
(via a PDF or CDF) orbiting star A rather than star B, given the
critical semimajor axis ratio ac/abin. The PDF (or CDF) is
modified depending on the assumed mutual inclination of the
planet: a coplanar prograde planet has the most probability when
ac/abin0.08, an inclined (ip=45°) prograde planet’s high-
probability regime decreases by half (ac/abin0.04), and a
coplanar retrograde planet has a broader high-probability region
extending to ac/abin  0.10. Table 6 provides coefficients fitted
to each CDF using a modified exponential distribution. Using
ac/abin is important for future studies because direct imaging
observations often rely on projected distances, and new disk
observations of young binary systems can match this ratio to the
disk truncation distance (e.g., Alves et al. 2019).

Observations are ongoing to find and characterize circum-
stellar planets in binary star systems, where the TESS mission
as well as Gaia (Gaia Collaboration et al. 2018) will be
instrumental for future discoveries. In particular, Winters et al.
(2019) identified a planet within a hierarchical triple star
system, LTT 1445ABC, using data from TESS. Due to the long
orbital binary orbital periods necessary for stability, Gaia will
uncover the multiplicity of stellar systems (e.g., Evans 2018),
while TESS may identify whether any planets are transiting at
the present epoch. Additional efforts will soon be underway
using the James Webb Space Telescope (JWST), where direct
imaging help identify the extent of the protoplanetary disks
within young stellar binaries or whole systems of planets in
older systems. Beichman et al. (2020) outlined particular
considerations needed to use JWST for this purpose in
observing α Cen A, and some a priori knowledge for the
stability of planets is beneficial for such observations.

Some of the computing for this project was performed at
the OU Supercomputing Center for Education & Research
(OSCER) at the University of Oklahoma (OU). This research
was supported in part through research cyberinfrastructure
resources and services provided by the Partnership for an
Advanced Computing Environment (PACE) at the Georgia
Institute of Technology. N.H. acknowledges support from
NASA XRP program through grant 80NSSC18K0519.

Software: scipy (Virtanen et al. 2019); mercury6 (Chambers
et al. 2002); REBOUND (Rein & Liu 2012; Rein &
Spiegel 2015).
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