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Abstract

Machine learning has become a popular tool to help us make better decisions and predictions, based on
experiences, observations, and analyzing patterns, within a given data set without explicit functions. In this paper,
we describe an application of the supervised machine-learning algorithm to the extinction regression for the second
Gaia data release, based on the combination of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope,
Sloan Extension for Galactic Understanding and Exploration, and the Apache Point Observatory Galactic
Evolution Experiment. The derived extinction in our training sample is consistent with other spectrum-based
estimates, and its standard deviation of the cross-validations is 0.0127 mag. A blind test is carried out using the
RAdial Velocity Experiment catalog, and the standard deviation is 0.0372 mag. Such a precise training sample
enables us to regress the extinction, E(BP–RP), for 133 million stars in the second Gaia data release. Of these, 106
million stars have the uncertainties less than 0.1 mag, which suffer less bias from the external regression. We also
find that there are high deviations between the extinctions from photometry-based methods, and between spectrum-
and photometry-based methods. This implies that the spectrum-based method could bring more signal to a
regressing model than multiband photometry, and a higher signal-to-noise ratio would acquire a more reliable
result.

Unified Astronomy Thesaurus concepts: Interstellar dust extinction (837); Analytical mathematics (38)

Supporting material: machine-readable table

1. Introduction

Machine learning has been a dominant force in todayʼs
world and very widely used across a variety of domains, owing
to its incredibly powerful ability to make predictions or
calculated suggestions for large amounts of data. In the
domains of modern astronomy, high-dimensional data consist-
ing of billions of sources have become available in recent
years, which expand our understanding of the Milky Way to a
new frontier. However, obstacles to such an understanding are
thick layers of dust in major parts of our Galaxy. Thanks to
dedicated large photometric, astrometric, and spectroscopic
surveys, we are now able to map the Milky Way in a much
more accurate fashion.

One of the most ambitious surveys is the European Space
Agency mission Gaia (Gaia Collaboration et al. 2016), which
is performing an all-sky astrometric, photometric, and radial
velocity survey at optical wavelengths. The primary objective
of the Gaia mission is to survey more than one billion stars, in
order to investigate the structure, the origin, and subsequent
evolution of our Galaxy. The recent Gaia Data Release 2 (Gaia
DR2; Gaia Collaboration et al. 2018) covered the first 22
months of observations with G-band photometry for a total of
1.69 billion sources. Of these, 1.38 billion sources also have the
integrated fluxes from the blue and red photometer (BP and
RP) spectrophotometers, which span 3300–6800 Å and
6400–10500 Å, respectively.

These three broad photometric bands have been used to infer
astrophysical parameters for about 108 stars (Andrae et al.
2018). A machine-learning algorithm, random forest (RF), has
been applied to regress stellar effective temperatures (Teff).
Used in addition to the parallaxes, they have estimated the line-
of-sight extinction. The accuracy of the Teff suffers from the

small size of the training sample (Bai et al. 2019a; Pelisoli et al.
2019; Sahlholdt et al. 2019), and would further bias the

extinction estimation.
In order to present unbiased extinction, we require larger

amounts of data with higher accuracy. The availability of
spectrum-based stellar parameters for large numbers is now
possible thanks to the observations of large Galactic spectral
surveys. Large Sky Area Multi-Object Fiber Spectroscopic
Telescope (LAMOST; Luo et al. 2015) data release 5 (DR5)
was available in 2017 December, which includes over 8 million
observations of stars.3 One of the catalogs mounted on the
archive is the A-, F-, G- and K-type stars catalog, in which the
stellar parameters, Teff , log g, and [Fe/H] are determined by the
LAMOST stellar parameter pipeline (Wu et al. 2014). This
archive data after six years of accumulation is a treasure for
various studies, especially for machine learning, since it largely
enriches the diversity of training samples (Bai et al. 2019b).
Diversity of a sample in a parameter space has been proven to
be an influential aspect, and has a strong impact on the overall
performance of machine learning (Wang et al. 2009; Wang &
Yao 2009).
The large amount of such spectroscopic data provides us

with an opportunity to apply machine-learning technology to
regress the line-of-sight extinction effectively. In Section 2, we
present validation samples and a method of the extinction
prediction with the synthetic photometry. The algorithm and
the blind test are also described in the section. We apply the
regressor and present a revised version of the E(BP–RP)
catalog for Gaia DR2 in Section 3. In Section 4, we discuss the
comparisons with the extinction and its coefficients from other
studies.
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2. Methodology

2.1. Observational Data

The A-, F-, G- and K-type stars catalog of LAMOST DR5
includes the estimates of the stellar parameters with the
application of a correlation function interpolation (Du et al.
2012) and Université de Lyon spectroscopic analysis software
(Koleva et al. 2009). These two approaches are based on the
distribution and morphology of absorption lines in normalized
stellar spectra, independent from Galactic extinction. The
standard deviations of Teff , log g, and [Fe/H] are∼110 K, 0.19
dex, and 0.11 dex, respectively (Gao et al. 2015). We extract
4,340,931 unique stars in the catalog, and cross-match them to
Gaia DR2 with a radius of 2″, which yields 4,249,013 stars.

We also take advantage of the stellar parameters in the Sloan
Extension for Galactic Understanding and Exploration
(SEGUE; Yanny et al. 2009). The spectra are processed
through the SEGUE Stellar Parameter Pipeline (SSPP; Allende
Prieto et al. 2008; Lee et al. 2008a, 2008b; Smolinski et al.
2011), which uses a number of methods to derive accurate
estimates of stellar parameters, Teff , log g, [Fe/H], [α/Fe], and
[C/Fe]. The typical uncertainties are 130 K, 0.21 dex, and 0.11
dex for Teff , log g, and [Fe/H], respectively (Allende Prieto
et al. 2008). We perform a cross-match with Gaia DR2, and
obtain 1,037,433 stars.

Different from the two surveys above, which are in optical
band, the Apache Point Observatory Galactic Evolution
Experiment (APOGEE), as one of the programs in both
SDSS-III and SDSS-IV, has collected high-resolution
(R∼ 22,500), high signal-to-noise (S/N> 100) near-infrared
(1.51–1.71 μm) spectra of 277,000 stars (data release 14)
across the Milky Way (Majewski et al. 2017). These stars are
dominated by red giants selected from the Two Micron All Sky
Survey (2MASS). Their stellar parameters and chemical
abundances are estimated by the APOGEE Stellar Parameters
and Chemical Abundances Pipeline (Mészáros et al. 2013;
García Pérez et al. 2016). The Teff , log g, and [Fe/H] are
precise to 2%, 0.1 dex, and 0.05 dex, respectively. We cross-
match these stars with Gaia DR2, and obtain 275,019 stars.

We here only adopt data from spectroscopic surveys, since
their stellar parameters are highly reliable (Mathur et al. 2017)
compared to photometric catalogs, e.g., the Kepler Input
Catalog. As a result, there are 5,561,465 Gaia matched stars.
We then use the criteria in Bai et al. (2019a) to select the stars
with good photometry, and there are 3,558,618 stars left in our
training sample.

The stellar parameters distributions are shown in Figure 1.
The training sample is dominated by F, G, and K stars with

solar-like abundance. The stars in APOGEE are mainly giants,
while most of the stars in LAMOST and SSPP belong to the
main sequence. The RAdial Velocity Experiment (RAVE) is
not included in the training sample, and we apply the RAVE
stars to the blind test in Section 2.4.
We check the overlaps between LAMOST, SSPP, and

APOGEE, and present the one-to-one correlations of the stellar
temperatures in Figure 2. There are deviations among three
catalogs, which are mainly due to the difference of the
pipelines (Luo et al. 2015). Such systematic uncertainties are
present in Section 2.4. We here do not select or remove these
overlapping stars or the stars that were observed multiple times.
These stars share equal weight in our regression, and the
deviations among catalogs or among observations are going to
be propagated to the uncertainties of the results.

2.2. Synthetic Photometry

In order to derive extinction for the training stars, we use the
BT-Dusty grid (Allard 2009; Allard et al. 2011, 2012)4 of the
PHOENIX photospheric model at the Theoretical Model
Services (TMS)5 to calculate a synthetic color, BP–RP, and
compare it to the color in Gaia DR2. The synthetic color
depends on three stellar parameters, Teff , log g, and [Fe/H],
which is different from the temperature-dependent color used in
Andrae et al. (2018). We adopt the transmission curves of the
Gaia DR2 passbands.6 Different curves would result in
different colors and introduce uncertainties to the results (Maíz
Apellániz & Weiler 2018), but such difference is not obvious,
about some millimagnitude.
We present the one-to-one correlations between the E(BP–

RP) in Gaia DR2 and those derived from the spectrum-based
results in Figure 3. In the upper panel, the outliers remain at E
(BP–RP)∼0 with Gaiaand E(BP–RP) > 1.5 is due to the
outlier filtration (Andrae et al. 2018; Arenou et al. 2018).
Except for these outliers, there are still many stars with the
extinction overestimated by Gaia DR2, which is expected,
since the Teff is underestimated by Gaia (Figure 3 in Bai et al.
2019a). A lower temperature would result in higher extinction
for the same sample.
A novel Bayesian method developed by Pont & Eyer (2004)

and Binney et al. (2014) has been used for stars in the
LAMOST survey (Wang et al. 2016b), which has demonstrated
the ability to obtain accurate distance and extinction. There are
1,062,590 cross-matched stars with valid extinction in their
catalog. The one-to-one correlation is shown in the lower left

Figure 1. Stellar parameter distributions. Upper panels: LAMOST parameters.
Middle panels: SSPP parameters. Lower panels: APOGEE parameters.

Figure 2. One-to-one correlations for the overlapping stars. Left panel: the
correlation between the LAMOST and SSPP Teff in our training sample. Right
panel: the correlation between the LAMOST and APOGEE Teff in our training
sample.

4 https://phoenix.ens-lyon.fr/Grids/BT-Dusty/
5 http://svo2.cab.inta-csic.es/theory/main/
6 https://www.cosmos.esa.int/web/gaia/iow_20180316/
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panel of Figure 3. The best linear fit is
AV=(2.138± 0.001)×E(BP–RP). Wang et al. (2016a)
applied a similar method on APOGEE stars to estimate their
distance and extinction. We cross-match these stars with our
training sample, and there are 65,471 stars left. The best fit is
AKs=(0.2752± 0.0003)×E(BP–RP). These two good linear
relations indicate that our extinction is consistent with other
spectrum-based results.

2.3. Algorithm

The bagged regression tree of the RF algorithm (Brei-
man 2001) is adopted to build the regressor. In brief, the
working theory of the RF is that it builds an ensemble of
unpruned decision trees and merges them together to obtain a
more accurate and stable prediction. One big advantage of RF
is fast learning from a very large number of data. This
algorithm has been widely used for classification, while the RF
regression is not popular. An important example of RF
regression is in Miller et al. (2015), and one of the best
introductions of RF is in Hastie et al. (2009).

We add two additional parameters, temperatures, and their
uncertainties given by Bai et al. (2019a) to the combination of
the input: Teff , ΔTeff , l, b, ϖ, vD , ma, md, BP–G, and G–RP.
Such combinations have the best performance on the Teff
regression, and would be the best way to decouple the
extinction from the temperatures.

Then, we apply the 20 folded cross-validations to test the
performance of the regression. The cross-validation partitions
the sample into 20 randomly chosen folds of roughly equal
size. One fold is used to validate the regression that is trained
using the remaining folds. This process is repeated 20 times
such that each fold is used exactly once for each validation. The
20 folded cross-validation can provide an overall assessment of
the regression.

The one-to-one correlation of the cross-validations is shown
in the left panel in Figure 4. The Gaussian fit to the total
residuals is shown in the right panel, and the fitted offset (μ)
and the standard deviation (σ) are listed in Table 1.

The important estimates of the regression are shown in
Figure 5. The temperature becomes the most important
parameter, while other parameters have similar importance.

This proves that it is effective to add Teff to the combination of
the input parameters. The importance of the proper motions is
lower than those of the Gaia colors, which are different from
the results of Bai et al. (2019a). This implies that its less
relevant than colors in our extinction regressing process.

2.4. Blind Tests

An independent blind test is an effective use of technology to
avoid systematic flaws, such as poor construction of training/
test splits, inappropriate model complexity, and misleading test
metrics (Bai et al. 2019b; Guyon et al. 2019). It evaluates the
prediction accuracy with data that are not in the training
sample, and provides validation that a regressor is working
sufficiently to output reliable results.
RAVE is designed to provide stellar parameters to comple-

ment missions that focus on obtaining radial velocities to study

Figure 3. One-to-one extinction correlations. Upper panel: the correlation
between the E(BP–RP) in Gaia DR2 and in our training sample. Lower panels:
LAMOST AV (left) and APOGEE AKs (right) estimated by Bayesian methods
vs. the E(BP–RP) in our training sample. The best linear fits are shown as the
blue dashed lines. The color bars are the density of the stars in the logarithmic
scale.

Figure 4. Results of the cross-validations. Left panel: one-to-one correlation of
the cross-validation. The color bar is the density contour in the logarithmic
scale. The Gaussian fit (red) of the total residual (black) is shown in the right
panel.

Table 1
Results of Cross-validations and Blind Tests

μ σ RMSE

Cross-validation −0.3±0.2 12.7±0.2 18
SSPP 21.3±0.4 14.3±0.4 47
APOGEE −1.5±0.3 16.7±0.3 31

RAVE 25.1±0.4 37.2±0.4 58

Note. The unit is 10−3 mag.

Figure 5. Important estimates of the regressor: stellar effective temperature,
parallax and its error, proper motions, Galactic position, and two Gaia colors.
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the motions of stars in the Milky Way’s thin and thick disk and
stellar halo (Steinmetz et al. 2006). Its pipeline processes the
RAVE spectra and derives estimates of Teff , log g, and [Fe/H]
(Kunder et al. 2017). Using these parameters, Binney et al.
(2014) applied a Bayesian method to estimate the interstellar
extinction with uncertainties of ~A 0.1V mag. We cross-match
the catalog with Gaia DR2, which yields 192,483 stars.

We here adopt the extinction coefficient value, 2.394 in
Wang & Chen (2019), to convert RAVE AV to E(BP–RP), and
the one-to-one correlation is shown in Figure 6. The fitted slope
is close to one, 1.044±0.002, and Table 1 lists the parameters
of the Gaussian fit to the total residuals. These imply that our
regressor is reliable, and it can determine E(BP–RP) with fair
accuracy. It should been noted that the extinction conversion in
broadband filters depends not only on the extinction law, but
also on Teff and extinction itself (Girardi et al. 2008). However,
this topic is beyond the main result of this paper, and we just
adopt the latest coefficient value to make a bind test.

Bai et al. (2019a) applied the subregressors to test the
accuracy of the regressor, since all the spectrum-based catalogs
were used for training. The subregressors could also test the
systematic uncertainty among different surveys. We here train
the subregressors with two catalogs and use the third one to test
these subregressors. LAMOST DR5 is always included in the
training set, since it accounts for 93% of the stars in our
training set. We present the results of the tests in Figure 7, and
list the parameters of the Gaussian fit to the total residuals in
Table 1. It shows that the offsets are below 0.022 mag and
standard deviations are less than 0.017 mag, which is consistent
with the results of other spectrum-based methods (Wang et al.
2016a, 2016b).

3. Result

We now use the criteria in Bai et al. (2019a) to select
qualified stars in Gaia DR2, and there are 132,739,322 stars
left. The feature space constructed with 10 input parameters is
applied to regress their E(BP–RP), and the result is listed in
Table 2.

Bai et al. (2019a) suggested that external interpolation could
regress results with large deviation. We plot two Gaia colors as
functions of the temperature in Figure 8. We use the outmost
contour (log density= 1) to separate 133 million stars into two
classes, the stars located outside the contour and inside the
contour. The stars located outside the contour are externally
regressed in these color–temperature spaces.

We then present the distribution of the extinction uncertain-
ties in Figure 9, which shows that the stars located outside the

contour tend to have higher deviation, larger than 0.1 mag. This
indicates that we could use the uncertainty of the extinction to
discriminate the result from the potential external regression.
There are 106,042,018 stars with uncertainties less than
0.1 mag.
The Hertzsprung–Russell (HR)-like diagrams are presented

in Figure 10. Since the training sample is dominated by the A,
F, G, and K stars (Bai et al. 2019a), there are no stars blues than
( – ) =BP RP 00 or redder than 1.9. We could not find obvious
horizontal concentrated lines in the diagram, which is different
from the result of Andrae et al. (2018). The concentrated lines
are probably due to the failure of temperature–extinction
decoupling and the invalidation of the extinction. On the other

Figure 6. Blind test results. One-to-one correlation between the RAVE
extinction and the regressed extinction is shown in the left panel. The
coefficient of 2.394 (Wang & Chen 2019) is adopted to convert AV to E(BP–
RP). The best linear fit is shown as a blue dashed line. The Gaussian fit (red) of
the total residual (black) is shown in the right panel.

Figure 7. Density contours of one-to-one correlations (left column) and
Gaussian fits of the total residual (right column). Two catalogs are used for
training and the third one for a blind test. The test catalogs are (a) SSPP and (b)
APOGEE.

Table 2
Results of Our Regression for Gaia DR2

Source ID Regressed E(BP–RP)

2448780173659609728 2.05±0.28
2448781208748235648 0.034±0.014
2448689605685695488 0.015±0.019
2448689777484387072 0.490±0.118
2448783991887042176 0.095±0.037
2448690258520723712 0.029±0.020
2448690327240200576 0.017±0.018
2448689811844125184 0.529±0.118
2448784953959717376 0.0454±0.0126
2448783991887042048 1.25±0.14

(This table is available in its entirety in machine-readable form.)

Figure 8. Gaia colors vs. Teff . The contours are the densities of the stars in our
training sample. The numbers are the densities in the logarithmic scale.
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hand, our results are tested within the parameter space covered
by the spectroscopic surveys, and externally regressing them to
M or B stars would suffer deviated estimates.

4. Discussion

In this work, we have attempted to regress E(BP–RP) for
132,739,322 stars in Gaia DR2 using a machine-learning
algorithm. The regressor is trained with over 3 million stars in
the LAMOST, SSPP, and APOGEE catalogs. We adopt the
stellar temperature, the parameters of the Galactic position, and
two colors to build the regressor. The performance of the
regression is examined with cross-validations and a blind test
of stars in the RAVE survey, which indicate that our regressor
could predict the stellar extinction with fair accuracy. In this
section we would like to discuss comparisons with results in
other studies.

4.1. Photometry-based Method

Anders et al. (2019) derived the extinction for 265 million
stars using the code StarHorse, based on the combination of
Gaia DR2 and the photometric catalogs of the first part of the
Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS1), 2MASS, and the extension the Wide-field
Infrared Survey Explorer mission (AllWISE). We cross-match
this catalog with our result and the RAVE catalog, and present
the one-to-one correlations in the upper panels of Figure 11.
The AV50 stands for the flag-cleaned 50th percentile of the line-
of-sight extinction. Here we adopt the coefficient of Wang &

Chen (2019) to convert E(BP–RP) to AV. The consistencies are
not good between the StarHorseresult and those from the
spectrum-based methods. The standard deviation is 0.23 mag
for panel (a) and 0.44 mag for panel (b), about 10 times higher
than our results of the cross-validation and the blind tests.
We present the comparison between our results and the

extinction in Gaia DR2 in panel (c) of Figure 11. The standard
deviation is about 0.20 mag. There are many stars with
extinctions overestimated by Gaia DR2, which is similar to the
distribution of the training sample. There are also some stars
located at lower right area, which are not shown in Figure 2.
These stars are probably potential samples with the external
regression, which could not be removed by the color–
temperature criteria.
Another popular extinction estimate is a 3D dust map. Green

et al. (2019) have presented a 3D map of dust reddening, based
on Gaia parallaxes and stellar photometry from Pan-STARRS1
and 2MASS. We retrieve the extinction of Gaia stars with their
code dustmaps,7 and match the result to the StarHorseca-
talog. The one-to-one correlation is presented in panel (d) of
Figure 11, which shows a large bias with the standard deviation
of 0.40 mag.
As discussed in Bai et al. (2019b), it is not an effective way

to describe the stellar physical environment only based on
stellar photometry, since the observation conditions and the
deviation estimations of different surveys are not consistent.
These differences could produce additional noise, and further
propagate to the results. These differences also exist in the
spectrum-based surveys, but a spectrum has about a thousand
data points, and it could bring much more information than
multiband photometry. These differences would become
marginal, if we select spectra with high quality and similar
resolution. When the signal-to-noise ratio of the input data goes
up, the uncertainty goes down and a more reliable result could
be acquired.
Moreover, the performance of the results is algorithm

independent. The Bayesian method has been applied in the
RAVE catalog, in Wang et al. (2016a, 2016b), Anders et al.
(2019) and Green et al. (2019). The spectrum-based results
share good consistency, while photometry-based results have a
large deviation. The volume and accuracy of the input

Figure 9. Distribution of the extinction uncertainties. The blue histogram is the
stars located inside the outmost contour in Figure 8, and the red histogram is
the stars located outside the contour.

Figure 10. HR-like diagrams for the stars with extinction uncertainties less
than 0.1 mag. MG0 vs. Teff is in the left panel and MG0 vs. (BP–RP)0 is in the
right panel.

Figure 11. One-to-one correlations. (a) AV50 vs. RAVE AV, (b) AV50 vs. our
result, (c) Gaia extinction vs. our result, and (d) AV50 vs. the 3D extinction in
Green et al. (2019).

7 https://dustmaps.readthedocs.io/en/latest/
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information have a decisive influence on the overall perfor-
mance of the result.

4.2. Extinction Coefficient

Wang & Chen (2019) have presented precise multiband
coefficients for a group of 61,111 red clump stars in the
APOGEE survey. Their coefficient ratio of AKs/AV=0.078 is
lower than the result in our training sample of

( )
( )

-
-

E

E

0.2752 BP RP

2.138 BP RP
=0.129 (Figure 3). Dutra et al. (2002) have

built K-band extinction maps in the area of two candidate low-
extinction windows in the inner Bulge, and the ratio is 0.118.

It has long been debated whether the infrared extinction law
is universal (Wang et al. 2013; Wang & Jiang 2014). The dust
may be larger in denser regions of the Galaxy, which would
lead to a smaller power-law index (Li et al. 2015). The
APOGEE survey is in the near-infrared band that could observe
the stars located in regions denser than the LAMOST survey,
which is in the optical wavelength. These different ratios may
imply that the red clump stars of Wang & Chen (2019) and the
APOGEE stars in our training sample are located at a different
regions of the Galaxy. Such a difference would slightly
differentiate the coefficient in the near-infrared. We check the
regions covered by LAMOST, SSPP, and APOGEE for the
stars in our training sample, and find that most of them are
located in similar regions. Therefore, this difference is not
obvious for the three surveys of our training sample.
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