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Abstract.  We investigate how the statistics of extremes and records is aected 
when taking the moving average over a window of width p  of a sequence of 
independent, identically distributed random variables. An asymptotic analysis 
of the general case, corroborated by exact results for three distributions 
(exponential, uniform, power-law with unit exponent), evidences a very robust 
dichotomy, irrespective of the window width, between superexponential and 
subexponential distributions. For superexponential distributions the statistics 
of records is asymptotically unchanged by taking the moving average, up to 
interesting distribution-dependent corrections to scaling. For subexponential 
distributions the probability of record breaking at late times is increased by a 
universal factor Rp , depending only on the window width.
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1.  Introduction

When monitoring a time series, a feature which immediately attracts the attention of 
the observer is the sequence of record values, viz., the successive largest or smallest 
values in the series [1–3]. The first example which comes to mind are weather records, 
i.e. the extreme occurrences of weather phenomena such as the coldest or hottest days, 
the most rainy or windy days, and so on, for which studies abound (see [4–9] and ref-
erences therein). Other examples of records encountered in diverse complex physical 
systems are reviewed in [10], to which the reader is referred for a comprehensive list of 
references.

The simplest situation to analyse is when the data are samples of a sequence of 
independent, identically distributed (iid) random variables. In such an instance much 
is known on the statistics of records [1–4, 11, 12], whose basics are easy to grasp. 
Consider a sequence of iid continuous random variables X1,X2, . . ., with common dis-
tribution function F (x) = Prob(X < x) and density f(x) = dF (x)/dx. Throughout the 
following we assume that the Xi are positive. A record is said to occur at step n if Xn 
is larger than all previous variables, i.e. if

Xn > Ln−1 = max(X1,X2, . . . ,Xn−1),

where Ln denotes the largest Xi amongst the first n random variables. The probability 
of this event, or probability of record breaking,

Qn = Prob(Xn > Ln−1),

equals

Qn =
1

n
,� (1.1)

as a consequence of the fact that the random variables Xi are exchangeable [2, 3]. The 
number Mn of records up to time n takes the values 1, . . . ,n and can be expressed as 
the sum

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Mn = I1 + I2 + · · ·+ In,� (1.2)
where the indicator variable In is equal to 1 if Xn is a record and to 0 otherwise. Taking 
the average, we have 〈Ii〉 = Qi = 1/i, and so

〈Mn〉 =
n∑

i=1

1

i
= Hn ≈ lnn+ γ,� (1.3)

where Hn is the nth harmonic number and γ = 0.577 215 . . . is Euler’s constant. It is a 
simple matter to show that the indicator variables I1, I2, . . . , In are statistically inde-
pendent [2, 3, 10]. The distribution of Mn ensues from this fact by elementary consid-
erations (see also section 7.4 below). The simple expression (1.1) of the probability of 
record breaking and the full distribution of Mn are universal, in the sense that they do 
not depend on the underlying distribution f(x). From this standpoint the statistics of 
records for iid random variables exhibits a high degree of degeneracy. In contrast, the 
statistics of the extreme value Ln is distribution dependent, as is well-known [13].

In the present work we investigate the statistics of records for sequences made of 
sums of p  successive iid positive random variables, defined as follows. For p   =  2,

Y2 = X1 +X2, Y3 = X2 +X3, . . . , Yn = Xn−1 +Xn, . . . ,� (1.4)
for p   =  3,

Y3 = X1 +X2 +X3, . . . , Yn = Xn−2 +Xn−1 +Xn, . . . ,� (1.5)
or more generally,

Yp = X1 + · · ·+Xp, . . . , Yn = Xn−p+1 + · · ·+Xn, . . .� (1.6)
The first terms of these sequences, which have not been written down explicitly, may 
be omitted in the analysis of records. For instance, in (1.4), Y1 = X1 is always smaller 
than Y2. In (1.5), Y1 = X1 and Y2 = X1 +X2 are always smaller than Y3, and so on.

Up to a normalisation, each of these sequences can be seen as the moving average 
of the sequence of iid variables X1,X2, . . ., defined as the mean of the last p  terms. For 
instance the moving average with p   =  2 is

X1 +X2

2
,

X2 +X3

2
, · · · , Xn−1 +Xn

2
, . . .

Taking the moving average is a well-known method to analyse time series, which is 
equivalent to making a convolution of the signal by a square window, thus smoothing 
the signal. For instance, instead of looking at the daily temperature at a given location, 
one can take the moving average over a period of one week, corresponding to choosing 
p   =  7. The question posed here amounts therefore to knowing how records are aected 
by taking such an average. The normalisation by the factor p  does not aect the out-
come of the subsequent analysis.

Here the focus will be essentially on the particular case p   =  2. Keeping the same 
notations as for the iid case, we shall primarily investigate the probability of record 
breaking,

Qn = Prob(Yn > Ln−1),� (1.7)
where Ln denotes the largest Yi amongst the first n ones,

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Ln = max(Y1,Y2, . . . ,Yn),� (1.8)
and the mean number of records up to n,

〈Mn〉 =
n∑

i=2

Qi,� (1.9)

where records are counted from the first complete sum Y2 onwards. As we shall see, 
these quantities are now sensitive to the choice of the underlying distribution f(x) of 
the parent random variables Xi. On the one hand, this does not come as a surprise since 
the new variables Yi are no longer exchangeable, and the occurrences of records at vari-
ous places are no longer independent. On the other hand, it is yet slightly paradoxical 
that the degeneracy induced by the exchangeability of the iid parent random variables 
Xi is now removed, revealing features of their common distribution, since by taking the 
moving average one could have expected a loss of information instead. We shall also 
study some features of the distribution of Ln.

In a nutshell, the main outcome of this work is as follows. We find that the product 
nQn has only two possible limits for p   =  2, depending on the class of distribution f(x), 
namely

nQn → 1� (1.10)
for superexponential distributions, that is, distributions either having a bounded sup-
port or falling o faster than any exponential, whereas

nQn → 3

2
� (1.11)

for subexponential distributions, whose tails decrease more slowly than any exponen-
tial. The pure exponential distribution belongs to the first class, albeit marginally. 
Figure 1 shows a plot of nQn against n � 4 for all the examples of probability distribu-
tions f(x) considered in the present paper (see table 1). Each dataset is the outcome 
of the numerical generation of 1010 sequences. The vertical arrow underlines that the 
dichotomy between (1.10) and (1.11) becomes more and more visible as n increases. The 
values of Qn for n = 2, 3, 4 are universal, i.e. independent of the underlying distribution 
f(x) (see section 2.6).

For higher values of the window width p , denoting the probability of record break-

ing by Q
( p)
n , (1.10) still holds for superexponential distributions, i.e.

nQ( p)
n → 1,� (1.12)

while, for subexponential distributions, (1.11) becomes

nQ( p)
n → Rp,� (1.13)

where the Rp  are universal rational numbers given by

Rp =
3

2
,
15

8
,
35

16
,
315

128
,
693

256
, . . .� (1.14)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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for p = 2, 3, 4, 5, 6, . . ., and obtained by means of the Sparre Andersen theorem.
The setup of this paper is as follows. Sections 2–6 concern the case p   =  2. In sec-

tion 2 we present the general setting which will be used in all subsequent exact or 
asymptotic developments. The next three sections are devoted to exact analytical solu-
tions of the problem for three distributions: the exponential distribution (section 3), 
the uniform distribution (section 4), and the power-law distribution with index θ = 1 
(section 5). In order to compare the probability of record breaking to its universal value 
Qn  =  1/n in the iid situation (see (1.1)), we set

nQn = 1 + δn.� (1.15)
The exponential distribution appears as a marginal case where (1.10) holds, albeit with 
a logarithmic correction

δn ≈ 1

lnn
.

For the uniform distribution δn falls o as

δn ≈
√

π

8n
,

4 8 12 16 20 24 28 32 36 40
n

1

1.1

1.2

1.3

1.4

1.5
nQ

n

θ=1/2
θ=1
Exponential
Gaussian
Uniform

Figure 1.  Plot of n times the probability of record breaking Qn against n � 4 
for several probability distributions f(x). From top to bottom: power-law 
distributions with tail index θ = 1/2 and θ = 1, exponential, half-Gaussian, and 
uniform distributions (see table 1).

Table 1.  Distribution function F (x), density f(x) and support of the examples of 
probability distributions considered in this work.

Distribution F (x) f(x) Support

Uniform x 1 0  <  x  <  1
Exponential 1− e−x e−x x  >  0
Half-Gaussian erf x 2√

π
e−x2 x  >  0

Power-law (θ > 0) 1− x−θ θ x−1−θ x  >  1

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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whereas (1.11) holds for the power-law distribution with θ = 1. A heuristic asymp-
totic analysis of the general case is then performed in section 6, where the dichotomy 
between (1.10) and (1.11) is explained in simple terms, and an estimate for the rela-
tive correction δn is derived. Higher values of the window width p  are considered in 
section 7 along the same line of thought. The overall picture, including the dichotomy 
between (1.10) and (1.11), remains unchanged. The non-trivial limit 3/2 in (1.11) is 
replaced by the p -dependent but otherwise universal limit Rp  (1.14). Section 8 contains 
a brief discussion of our findings.

Let us finally mention that the statistics of persistent events for the sequence (1.4) 
has been studied in [14–16], for the case where the parent variables Xi have a symmet-
ric distribution f(x).

2. General setting

This section sets the basis of all subsequent exact or asymptotic developments. Hereafter 
and until the end of section 6 we focus our attention on the sequence (1.4) of sums of 
two terms. Higher values of the width p  will be considered in section 7.

2.1. Recursive structure

We start by highlighting the recursive structure of the problem. The first two max-
ima are necessarily L1 = Y1 = X1 and L2 = Y2 = X1 +X2. The next maxima obey the 
recursion

Ln = max(Ln−1,Yn) =

{
Yn if Yn > Ln−1,

Ln−1 if Yn < Ln−1.
� (2.1)

This recursion should be understood as follows. Starting from the couple of random 
variables (Ln−1,Xn−1), one draws the random variable Xn, which is independent of Ln−1 
and Xn−1, and sets Yn = Xn−1 +Xn. This generates the new Ln, or alternatively the 
new couple (Ln,Xn):

(Ln−1,Xn−1)
Xn� (Ln,Xn).

In other words, at each time step n, the newly drawn random variable Xn acts as a noise 
on the dynamics of the couple (Ln−1,Xn−1). The value of Ln depends on the branch of 
the recursion, denoted respectively by L (for larger) and S (for smaller):

(L) : Yn > Ln−1 =⇒ Ln = Yn,

(S) : Yn < Ln−1 =⇒ Ln = Ln−1.
� (2.2)

In the first case, Yn is a record since it satisfies

Yn > max(Y1, . . . ,Yn−1).

This event occurs with probability Qn (see (1.7)). Hereafter we make use of the recur-
sion (2.1) to derive the key relations (2.14) and (2.15) for the functions Fn(�, x) intro-
duced in (2.3).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Let us mention that a similar, albeit simpler recursive scheme applies to the theory 
of records for iid random variables.

2.2. Basic quantities

Starting from the joint distribution function of the couple of random variables (Ln,Xn),

Prob(Ln < �,Xn < x),

and taking its derivative with respect to x, yields the quantity

Fn(�, x) = ∂x Prob(Ln < �,Xn < x),

which plays a central role in the present work. It is equivalently defined as

Fn(�, x)dx = Prob(Ln < �, x < Xn < x+ dx).� (2.3)
The underlying distribution f(x) is recovered in the � → ∞ limit:

Fn(∞, x) = f(x).

By dierentiating Fn(�, x) with respect to �, one gets the joint probability density of 
the couple (Ln,Xn):

fn(�, x) = ∂�Fn(�, x), Fn(�, x) =

∫ �

0

d�′ fn(�
′, x).

Conversely, integrating on the second variable restores

Prob(Ln < �,Xn < x) =

∫ x

0

dx′ Fn(�, x
′).

In particular the distribution function of the maximum Ln is obtained when the integral 
runs over its full range (i.e. x = �):

Fn(�) = Prob(Ln < �) =

∫ �

0

dx′ Fn(�, x
′).� (2.4)

Its derivative with respect to � yields the density fLn(�). The determination of the 
mean maximum ensues:

〈Ln〉 =
∫ ∞

0

d�(1−Fn(�)).� (2.5)

Finally, the normalization of the joint density fn(�, x) implies
∫ ∞

0

d�

∫ �

0

dx fn(�, x) =

∫ ∞

0

dx

∫ ∞

x

d� fn(�, x) = 1.� (2.6)

2.3. First values of n

The quantities defined above have explicit expressions for n  =  1 and 2 in full generality.
For n  =  1 we have

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Prob(L1 < �,X1 < x) = Prob(X1 < x) = F (x),

whenever x < �, since L1 = X1. Dierentiating with respect to x gives

F1(�, x) = f(x)� (2.7)
and

F1(�) = F (�).

For n  =  2, knowing that L2 = Y2 = X1 +X2 allows one to compute

Prob(L2 < �,X2 < x) = F (x)F (�− x) +

∫ �

�−x

dx1 f(x1)F (�− x1),

from which F2(�, x) ensues by derivation with respect to x:

F2(�, x) = f(x)F (�− x),� (2.8)
consistently with the definition (with informal notation)

Prob(L2 = X1 +X2 < �,X2 = x) = Prob(X1 < �− x,X2 = x).

Then, taking a derivative with respect to �, we have

f2(�, x) = f(x) f(�− x),

and finally

F2(�) =

∫ �

0

dx f(x)F (�− x).

2.4. Recursion relation for the function Fn(�, x)

The recursion (2.1) implies

Fn(�, x) = f(x)

∫
d�′dx′ fn−1(�

′, x′)Θ(�−max(�′, x′ + x)),� (2.9)

where Θ denotes Heaviside function. The right-hand side of this equation decomposes 
into two contributions, associated to the two branches L and S,

Fn(�, x) = f(x)

∫

DL

d�′dx′ fn−1(�
′, x′) + f(x)

∫

DS

d�′dx′ fn−1(�
′, x′),� (2.10)

where the domains DL and DS, depicted in figure 2, are respectively defined as

DL = {�′ < x+ x′ < �},
DS = {x+ x′ < �′ < �},

hence
∫

DL

d�′dx′ fn−1(�
′, x′) =

∫ �−x

0

dx′
∫ x+x′

x′
d�′ fn−1(�

′, x′),� (2.11)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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∫

DS

d�′dx′ fn−1(�
′, x′) =

∫ �−x

0

dx′
∫ �

x+x′
d�′ fn−1(�

′, x′).� (2.12)

Adding these two contributions yields

Fn(�, x) = f(x)

∫ �−x

0

dx′
∫ �

x′
d�′ fn−1(�

′, x′),

which vanishes whenever its two arguments are equal (n � 2):
Fn(�, �) = 0.� (2.13)

We thus obtain the following recursion relation for the function Fn(�, x):

Fn(�, x) = f(x)

∫ �−x

0

dx′ Fn−1(�, x
′).� (2.14)

This equation and its dierential form

F ′
n(�, x) =

f ′(x)

f(x)
Fn(�, x)− f(x)Fn−1(�, �− x),� (2.15)

obtained by dierentiating (2.14) with respect to x1, are key formulas of this work and 
the starting points of many subsequent developments.

As a consequence of (2.14), we have (n � 2)
Fn(�, 0) = f(0)Fn−1(�).� (2.16)

Finally, dierentiating (2.10) with respect to � yields

fn(�, x) = Lfn−1(�, x) + Sfn−1(�, x),� (2.17)
with the notations

Lfn−1(�, x) = f(x)

∫ �

�−x

d�′ fn−1(�
′, �− x)

= f(x)Fn−1(�, �− x),

� (2.18)

x

− x

x

x = x = − x

DL DS

Figure 2.  The domains DL and DS in the (�′, x′) plane.

1 Throughout the following, accents on functions denote their (partial) derivatives with respect to x.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Sfn−1(�, x) = f(x)

∫ �−x

0

dx′ fn−1(�, x
′),� (2.19)

using (2.11) and (2.12). Alternatively, dierentiating (2.14) with respect to � gives

fn(�, x) = f(x)Fn−1(�, �− x) + f(x)

∫ �−x

0

dx′ fn−1(�, x
′),� (2.20)

which is identical to (2.17).

2.5. Probability of record breaking

The probability of record breaking Qn is the probability that the last variable is larger 
than all previous ones (see (1.7)),

Qn = Prob(Yn > Ln−1).

This probability thus equals the weight of branch L. For, recalling (2.6) and (2.17),

1 =

∫ ∞

0

d�

∫ �

0

dx fn(�, x)

=

∫ ∞

0

d�

∫ �

0

dx (Lfn−1(�, x) + Sfn−1(�, x)) ,

where the two terms corresponding respectively to the weights of the two branches L 
and S are Qn and 1  −  Qn. So the expression of Qn is (n � 2)

Qn =

∫ ∞

0

d�

∫ �

0

dxLfn−1(�, x)

=

∫ ∞

0

d�

∫ �

0

dx f(x)Fn−1(�, �− x)

=

∫ ∞

0

d�

∫ �

0

dx f(�− x)Fn−1(�, x).

� (2.21)

2.6. Universal values of the probability of record breaking

The first few values of Qn are universal, i.e. independent of the underlying distribution 
f(x). For n  =  2,

Q2 = 1,� (2.22)
since Y2 = X1 +X2 is always larger that Y1 = X1. This result can be recovered by 
inserting (2.7) into (2.21). For n  =  3,

Q3 =
1

2
,� (2.23)

since Y3 > Y2 is equivalent to X3 > X1, which holds with probability 1/2. This result 
can be recovered by inserting (2.8) into (2.21). It turns out that for n  =  4, Qn has also 
a universal value,

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Q4 =
3

8
,� (2.24)

irrespective of the distribution f(x). This can be demonstrated by a simple application 
of the Sparre Andersen theorem [17–19]. This theorem states in particular that, for a 
sequence of iid variables Zn with a continuous symmetric distribution, the probability 
that the first n partial sums are all positive,

Pn = Prob(Z1 > 0,Z1 + Z2 > 0, . . . ,Z1 + Z2 + · · ·+ Zn > 0),

is a universal rational number,

Pn =
1

22n

(
2n

n

)
=

(2n)!

(2nn!)2
= 1,

1

2
,
3

8
,

5

16
,

35

128
,

63

256
, . . . ,� (2.25)

for n = 0, 1, 2, 3, 4, 5, . . ., with generating function

P̃ (z) =
∑
n�0

znPn =
1√
1− z

.� (2.26)

In the present case, by definition,

Q4 = Prob(Y4 > Y3,Y4 > Y2)

= Prob(X4 −X2 > 0,X4 −X2 +X3 −X1 > 0)

= Prob(Z1 > 0,Z1 + Z2 > 0),

where the random variables Z1 = X4 −X2 and Z2 = X3 −X1 are iid and have a con-
tinuous symmetric distribution. Therefore the theorem applies and Q4 = P2, which is 
the result announced in (2.24). It would be cumbersome to recover this directly by 
means of (2.21).

The probability of record breaking Qn is no longer universal for n � 5. It is indeed 
clear from figure 1 that already Q5 depends on the underlying distribution f(x).

It results from the foregoing that the first values of the mean number of records 
(see (1.9))

〈M2〉 = 1, 〈M3〉 =
3

2
, 〈M4〉 =

15

8
,

are also universal.
In the forthcoming sections we apply the general formalism presented in this sec-

tion to derive analytical solutions of the dierential recursion (2.15) for the exponential 
distribution (section 3), the uniform distribution (section 4), and the power-law distri-
bution with index θ = 1 (section 5).

3. Exponential distribution

This section presents an exact solution of the problem for the case of exponentially 
distributed random variables Xi, with common density f(x) = e−x and distribution 
function F (x) = 1− e−x (see table 1).

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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3.1. Dierential equations

The exact solutions derived in this section and in the two subsequent ones rely on the 
dierential equation (2.15), which reads, in the present case,

F ′
n(�, x) + Fn(�, x) = −e−xFn−1(�, �− x).� (3.1)

Dierentiating once more yields (n � 3)

F ′′
n (�, x) + F ′

n(�, x) + e−�Fn−2(�, x) = 0.� (3.2)

This is a recursive dierential equation in the variable x, while � plays the role of a 
parameter. Setting x  =  0 in (3.1) gives (n � 3)

Fn(�, 0) + F ′
n(�, 0) = 0,� (3.3)

where the interpretation of the first term is given in (2.16).

3.2. First values of n

For the first few values of n, we obtain

F1(�, x) = e−x, F2(�, x) = e−x − e−�,

F3(�, x) = e−x − (�− x)e−x−� − e−�.

Inserting these expressions into (2.21), we recover the universal results for Q2, Q3 and 
Q4 derived in section 2.6. Equations (2.13) and (3.3) are complemented by

F1(�, �) = e−�, F1(�, 0) + F ′
1(�, 0) = 0,

F2(�, 0) + F ′
2(�, 0) = −e−�.

� (3.4)

We have also

F1(�) = 1− e−�, F2(�) = 1− (�+ 1)e−�,

F3(�) = 1− e−2� − 2�e−��.

Inserting these expressions into (2.5) yields 〈L1〉 = 1, 〈L2〉 = 2 and 〈L3〉 = 5/2.

3.3. Generating function

In order to solve the recursive dierential equation (3.2) for all values of n, we introduce 
the generating function

F̃ (z, �, x) =
∑
n�1

znFn(�, x),� (3.5)

which satisfies (using (3.2))

F̃ ′′(z, �, x) + F̃ ′(z, �, x) + z2e−�F̃ (z, �, x) = 0,

the solution of which is

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Records for the moving average of a time series

14https://doi.org/10.1088/1742-5468/ab5d08

J. S
tat. M

ech. (2020) 023201

F̃ (z, �, x) = A+e
a+x + A−e

a−x,� (3.6)

with

a± =
1± w

2
, w =

√
1− 4z2e−�.

The amplitudes A± are determined by the boundary conditions (see (3.4))

F̃ (z, �, 0) + F̃ ′(z, �, 0) = −z2e−�, F̃ (z, �, �) = ze−�,

yielding

A± = ±z
a±e

−�/2 + ze±w�/2−�

w cosh
w�

2
− sinh

w�

2

.

3.4. Probability of record breaking

Using (2.21), the generating function of the Qn reads

Q̃(z) =
∑
n�2

znQn = z

∫ ∞

0

d� e−�I(z, �),� (3.7)

with

I(z, �) =

∫ �

0

dx exF̃ (z, �, x)

= A+
e(1−a+)� − 1

1− a+
+ A−

e(1−a−)� − 1

1− a−
=

N(z, �)

D(z, �)
,

� (3.8)

and

N(z, �)=4z(1− z)e−�/2 + (1− w2 − 4z) cosh
w�

2
+ (2(1 + w2)z + 1− w2)

1

w
sinh

w�

2
,

D(z, �)=(w2 − 1)

(
cosh

w�

2
− 1

w
sinh

w�

2

)
.

The integral over � in (3.7) cannot be carried out in closed form. By expanding 
I(z, �) as a power series in z and integrating term by term with respect to �, we obtain 
the values of the probability of record breaking Qn and mean number of records 〈Mn〉 
given in table 2 up to n  =  8.

The asymptotic decay of Qn at large n can be derived as follows. Setting z = e−ε, 
(3.8) becomes

I(z, �) ≈ �− 1

ε+ (�− 1)e−�
,

in the relevant regime where ε and e−� are simultaneously small. Inserting this into 
(3.7), and dealing with n as a continuous variable, we obtain the estimate

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Q̃(z) ≈
∫ ∞

0

dn e−nεQn ≈
∫ ∞

1

d�
(�− 1)e−�

ε+ (�− 1)e−�
.

Performing the inverse Laplace transform yields

Qn ≈
∫ ∞

1

d� (�− 1) exp
(
−�− n(�− 1)e−�

)
.� (3.9)

Setting

λ = lnn� (3.10)
and changing integration variable from � to µ such that (�− 1)e−� = e−µ, we obtain 
formally

nQn ≈
∫ ∞

−∞
dµ exp

(
λ− µ− eλ−µ

)
︸ ︷︷ ︸

(
1 +

1

�(µ)− 2

)
.� (3.11)

The expression underlined by the brace is the normalized Gumbel distribution with 
parameter λ. This distribution is peaked around µ = λ. More precisely, considering the 
following average with respect to this distribution,

∫ ∞

−∞
dµ esµ exp

(
λ− µ− eλ−µ

)
= esλΓ(1− s),

we obtain
∫ ∞

−∞
dµφ(µ) exp

(
λ− µ− eλ−µ

)
= φ(λ) + γφ′(λ) +

(
γ2

2
+

π2

12

)
φ′′(λ) + · · · ,

for any slowly varying function φ(µ), where γ is Euler’s constant. Applying this to the 
function inside the large parentheses in (3.11), we obtain the expansion

nQn = 1 + δn = 1 +
1

λ
− ν − 2

λ2
+

ν2 − 5ν + 5 + π2/6

λ3
+ · · · ,� (3.12)

with the notation (3.10) and

ν = lnλ+ γ = ln lnn+ γ.

Omitting details, let us mention that a similar analysis yields the following expansion 
for the mean number of records up to time n:

Table 2.  Exact values of the probability of record breaking Qn and mean number 
of records 〈Mn〉 up to n  =  8, for an exponential distribution. Expressions to the left 
of the double bar are universal.

n 2 3 4 5 6 7 8

Qn 1 1

2

3

8

7

24
155

648

131

648

14 503

82 944

〈Mn〉 1 3

2

15

8

13

6
1559

648

845

324

8549

3072
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〈Mn〉 = λ+ ν − 1 +
ν − 1

λ
− ν2 − 4ν + 3 + π2/6

2λ2
+ · · ·� (3.13)

Equations (3.12) and (3.13) give the first few terms of asymptotic expansions to all 
orders in 1/λ. The ambiguity in the formal expression (3.11) originating in the pole at 
� = 2, i.e. µ = 1, is indeed exponentially small in λ.

3.5. Mean value of the maximum

Using (2.5), (2.16) and (3.5), we obtain the generating function of the mean value 〈Ln〉 
of the largest variable Yi up to time n,

L(z) =
∑
n�1

zn〈Ln〉 =
∫ ∞

0

d�

(
1

1− z
− 1

z
F̃ (z, �, 0)

)
.

The explicit expression (3.6) of the generating function F̃ (z, �, x) implies

1

1− z
− 1

z
F̃ (z, �, 0) =

z e−�

1− z
(I(z, �) + 1) ,

so that

L(z) =
z + Q̃(z)

1− z
,

and finally

〈Ln〉 = 〈Mn〉+ 1.� (3.14)
This remarkable identity between mean values is a peculiarity of the exponential dis-
tribution. The first few values of 〈Ln〉 can therefore be read from table 2, whereas its 
asymptotic growth can be read from (3.13). Let us notice that a similar identity, i.e. 
〈Ln〉 = 〈Mn〉 = Hn, holds for extremes and records of exponentially distributed iid ran-
dom variables (see [20, 21] for a discussion of related matters).

4. Uniform distribution

The case where the random variables Xi are uniformly distributed on [0, 1], with com-
mon density f(x) = 1 and distribution function F (x) = x for 0  <  x  <  1 (see table 1), 
also lends itself to an exact solution of the problem.

4.1. Sectors

Here, the relevant part of the (�, x) plane is the rectangle defined by 0 < � < 2 and 
0  <  x  <  1. This region splits into four sectors (see figure 3):

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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



(1) : 1 < � < 2, 0 < x < �− 1,

(2) : 1 < � < 2, �− 1 < x < 1,

(3) : 0 < � < 1, 0 < x < �,

(4) : 0 < � < 1, � < x < 1.

The functions Fn(�, x) assume a priori dierent analytical forms in these four sec-
tors. The recursion (2.14) reads

F (1)
n (�, x) =

∫ �−1

0

dx′F
(1)
n−1(�, x

′) +

∫ 1

�−1

dx′F
(2)
n−1(�, x

′),

F (2)
n (�, x) =

∫ �−1

0

dx′F
(1)
n−1(�, x

′) +

∫ �−x

�−1

dx′F
(2)
n−1(�, x

′),

F (3)
n (�, x) =

∫ �−x

0

dx′F
(3)
n−1(�, x

′),

F (4)
n (�, x) = 0.

�

(4.1)

The first function F
(1)
n (�, x) is independent of x, whereas the last one vanishes, so the 

information of interest is contained in sectors (2) and (3).
The probability of record breaking reads

Qn = Q(2)
n +Q(3)

n ,

with

Q(2)
n =

∫ 2

1

d�

∫ 1

�−1

dxF
(2)
n−1(�, x),

Q(3)
n =

∫ 1

0

d�

∫ �

0

dxF
(3)
n−1(�, x).

Similarly, the mean value of the maximum reads

〈Ln〉 = 2− I(2)n − I(3)n ,

x

1

1

2

(1)

(2)

(3)

(4)

x = x = − 1

Figure 3.  Four sectors in the (�, x) plane for the case of a uniform distribution 
f(x).
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with

I(2)n =

∫ 2

1

d� F
(2)
n+1(�, �− 1),

I(3)n =

∫ 1

0

d� F
(3)
n+1(�, 0).

Finally, dierentiating (4.1) with respect to x, we obtain the following dierential 
equations, valid in both sectors (2) and (3):

F ′
n(�, x) = −Fn−1(�, �− x),� (4.2)

F ′′
n (�, x) = −Fn−2(�, x).� (4.3)

These equations, which can alternatively be read o from (2.15), will be instrumental 
hereafter. We thus obtain the following expressions for the first values of n:

F
(1)
1 (�, x) = F

(2)
1 (�, x) = F

(3)
1 (�, x) = 1

for n  =  1,

F
(1)
2 (�, x) = 1,

F
(2)
2 (�, x) = F

(3)
2 (�, x) = �− x

for n  =  2, and

F
(1)
3 (�, x) =

1

2
(−2 + 4�− �2),

F
(2)
3 (�, x) =

1

2
(2�− 1− x2),

F
(3)
3 (�, x) =

1

2
(�2 − x2)

for n  =  3.

4.2. Analysis of sector (3)

The generating function

F̃ (3)(z, �, x) =
∑
n�1

znF (3)
n (�, x)

satisfies

F̃ ′(3)(z, �, x) = −zF̃ (3)(z, �, �− x),

because of (4.2),

F̃ ′′(3)(z, �, x) = −z2F̃ (3)(z, �, x),

because of (4.3), and

F̃ (3)(z, �, �) = z, F̃ ′(3)(z, �, 0) = −z2,� (4.4)

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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because of (2.13). Hence

F̃ (3)(z, �, x) = A cos zx+ B sin zx,

where the amplitudes A and B, which depend a priori on z and �, are determined by 
the boundary conditions (4.4). We thus obtain

F̃ (3)(z, �, x) = z
cos z(�− x)− sin zx

1− sin z�
.� (4.5)

Hence

Q̃(3)(z) =
∑
n�2

znQ(3)
n = z

∫ 1

0

d�

∫ �

0

dx F̃ (3)(z, �, x)

= −z − ln(1− sin z),
� (4.6)

and

Ĩ(3)(z) =
∑
n�1

znI(3)n = −1 +
1

z

∫ 1

0

d� F̃ (3)(z, �, 0)

= −1− 1

z
ln(1− sin z) =

Q̃(3)(z)

z
.

� (4.7)

Relationship with Euler numbers. Consider n positive numbers x1, . . . , xn such that 
xi + xi+1 � 1 for 1 � i � n− 1. These conditions define a volume Vn for every integer n. 
The generating function of these numbers reads [22]

Ṽ (z) =
∑
n�0

znVn =
1

cos z
+ tan z

= 1 + z +
z2

2
+

z3

3
+

5

24
z4 + · · ·

We have

Vn =
En

n!
,

where En = 1, 1, 1, 2, 5, 16, 61, . . . are the Euler numbers, listed as sequence number 
A000111 in the on-line encyclopedia of integer sequences [23]. The volumes Vn are also 
simply related to the Q(3)(n), as we now show. Let us note (see (4.6)) that

dQ̃(3)(z)

dz
= Ṽ (z)− 1,

hence, for n � 2,

Q(3)
n =

Vn−1

n
=

En−1

n!
.
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The relationship between the two sequences Q
(3)
n  and Vn comes from the fact that

∫ �

0

dx′F
(3)
n−1(�, x

′) = Prob(Ln−1 < �)

= Prob(Y1 < �, . . . ,Yn−1 < �) = Vn−1 �
n−1,

hence, integrating over �,

Q(3)
n =

∫ 1

0

d� Vn−1 �
n−1 =

Vn−1

n
.

Let us remark that

F̃ (3)(z, �, x) = z
(
Ṽ (z�) cos zx− sin zx

)
.

Finally, the generating function Ṽ (z) has a pole at z = π/2, with residue 2, and therefore

Vn ≈ 2

(
2

π

)n+1

, Q(3)
n ≈ 2

n

(
2

π

)n

, I(3)n ≈ 4

πn

(
2

π

)n

.

4.3. Analysis of sector (2)

The generating function

F̃ (2)(z, �, x) =
∑
n�1

znF (2)
n (�, x),

satisfies

F̃ ′(2)(z, �, x) = −zF̃ (2)(z, �, �− x),

because of (4.2),

F̃ ′′(2)(z, �, x) = −z2F̃ (2)(z, �, x),

because of (4.3), and

F̃ (2)(z, �, 1) = z
(
1 + (�− 1)F̃ (2)(z, �, �− 1)

)
,

as a consequence of (4.1), using the fact that F
(1)
n (�, x) is independent of x.

We thus obtain, in analogy with (4.5)

F̃ (2)(z, �, x) = z
cos z(�− x)− sin zx

∆(z, �)
,� (4.8)

with

∆(z, �) = z(�− 1)(sin z(�− 1)− cos z) + cos z(�− 1)− sin z.
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We have therefore

Q̃(2)(z) =
∑
n�2

znQ(2)
n = z

∫ 2

1

d�

∫ 1

�−1

dx F̃ (2)(z, �, x)

= z

∫ 2

1

d�
cos z + sin z − cos z(�− 1)− sin z(�− 1)

∆(z, �)
,

� (4.9)

and

Ĩ(2)(z) =
∑
n�1

znI(2)n = −1 +
1

z

∫ 2

1

d� F̃ (2)(z, �, �− 1)

= −1 +
1

z

∫ 2

1

d�
cos z − sin z(�− 1)

∆(z, �)
.

� (4.10)

At variance with (4.6) and (4.7), the integrals over � in (4.9) and (4.10) cannot be car-
ried out in closed form.

4.4. Results

By expanding the integrands of (4.9) and (4.10) as power series in z, integrating over � 
term by term, and adding up the contributions of (4.6) and (4.7), we obtain exact ratio-
nal expressions for the probability of record breaking Qn, the mean number of records 
〈Mn〉 and the mean value of the maximum 〈Ln〉. These outcomes are given in table 3 
up to n  =  8.

The asymptotic behavior at large n of the various quantities of interest can be 
derived as follows. First of all, the contribution of sector (3) is exponentially small, and 
therefore entirely negligible. Setting again z = e−ε, the integrals entering (4.9) and (4.10) 
are dominated by a range of values of the dierence 2− � that shrinks proportionally 
to 

√
ε as ε → 0. Changing integration variable from � to t such that � = 2− t

√
ε, and 

keeping only terms which are singular in ε, we obtain

Q̃(2)(z) = ln
1

ε

(
1− ε

3
+ · · ·

)
− π

√
ε

2

(
1− 5ε

9
+ · · ·

)
,

Ĩ(2)(z) =
2

3
ln

1

ε

(
1 +

38ε

45
+ · · ·

)
+

π√
2ε

(
1 +

5ε

6
+ · · ·

)
,

Table 3.  Exact values of the probability of record breaking Qn, mean number of 
records 〈Mn〉 and mean maximum 〈Ln〉 up to n  =  8, for a uniform distribution.

n 2 3 4 5 6 7 8

Qn 1 1

2

3

8

17

60

11

48

481

2520

439

2688

〈Mn〉 1 3

2

15

8

259

120

191

180

2599

1008

22 109

8064

〈Ln〉 1 7

6

77

60

49

36

511

360

3691

2520

272 369

181 440
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and so

nQn = 1 + δn

= 1 +
1

3n
+ · · ·+

√
π

8n

(
1 +

5

6n
+ · · ·

)
,

� (4.11)

and

〈Ln〉 = 2

(
1− 1

3n
+ · · ·

)
−

√
π

2n

(
1− 5

12n
+ · · ·

)
.

Finally, omitting details, we obtain a similar asymptotic expansion for the mean num-
ber of records, i.e.

〈Mn〉 = lnn+K +
1

6n
+ · · · −

√
π

2n

(
1 +

1

36n
+ · · ·

)
,

where the finite part reads

K = γ − 1− ln(2(1− sin 1)) + 2

∫ 2

1

d�

(
1

(2− �) cot 2−�
2

− �
− 1

2− �

)

= 1.092 998 . . .

5. Power-law distribution with index θ = 1

The case where the random variables Xi have a power-law distribution with index 
θ = 1, with common density f (x)  =  1/x2 and distribution function F (x) = 1− 1/x for 
x  >  1 (see table 1), is our last example giving rise to an exact solution of the problem, 
although end results are somewhat less explicit than in the two previous cases. The 
distribution under consideration is marginal, in the sense that 〈X〉 is logarithmically 
divergent.

5.1. Dierential equations

In the present case, the key equation (2.15) reads

F ′
n(�, x) = −2

x
Fn(�, x)−

1

x2
Fn−1(�, �− x)

for n � 2, � > 2, and 1 < x < �− 1. Setting

Fn(�, x) =
Hn(�, x)

x2(�− x)
,� (5.1)

the new functions Hn(�, x) obey the dierential equation

x(�− x)H ′
n(�, x) + xHn(�, x) = −Hn−1(�, �− x),� (5.2)
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with boundary condition Hn(�, �− 1) = 0, as well as

x2(�− x)2H ′′
n(�, x) = −Hn−2(�, x).� (5.3)

We thus obtain

H1(�, x) = �− x,

H2(�, x) = �− x− 1,

H3(�, x) =
(�− 1)(�− 1− x)

�
+

�− x

�2
ln

x

(�− 1)(�− x)
.

5.2. Generating function

In order to solve the recursive dierential equations (5.2) and (5.3), we introduce the 
generating function

H̃(z, �, x) =
∑
n�1

znHn(�, x),� (5.4)

which obeys

x(�− x)H̃ ′(�, x) + xH̃(�, x) = −zH̃(�, �− x),� (5.5)

with boundary condition

H̃(�, �− 1) = z,� (5.6)

as well as

x2(�− x)2H̃ ′′(�, x) = −z2H̃(�, x).� (5.7)

The general solution to (5.7) reads

H̃(z, �, x) = A+x
a+(�− x)a− + A−x

a−(�− x)a+ ,

with

a± =
1± w

2
, w =

√
1− 4z2

�2
.

Notice the similarity with (3.6). The amplitudes A± are determined by (5.5) and (5.6), 
yielding

H̃(z, �, x) = z

√
a− xa+(�− x)a− −√

a+ xa−(�− x)a+
√
a− (�− 1)a+ −√

a+ (�− 1)a−
.� (5.8)

This result demonstrates that the functions Hn(�, x) only involve integer powers of ln x 
and ln(�− x), besides rational functions.

5.3. Probability of record breaking

The generating function of the Qn reads
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Q̃(z) =
∑
n�2

znQn = z

∫ ∞

2

d�

∫ �−1

1

dx

x2(�− x)3
H̃(z, �, x),

by virtue of (2.21), (5.1) and (5.4), where H̃(z, �, x) is given by (5.8). The integral over 
x can be carried out in closed form. We thus obtain

Q̃(z) =

∫ ∞

2

d� I(z, �),� (5.9)

with

I(z, �) = z2
√
a− I+(z, �)−

√
a+ I−(z, �)√

a− (�− 1)a+ −√
a+ (�− 1)a−

and

I±(z, �) =

∫ �−1

1

dx
xa±(�− x)a∓

x2(�− x)3

=

∫ �−1

1

dx x−2+a±(�− x)−2−a±

=
1

(1− a±)�3
(
(�− 1)1−a± − (�− 1)−(1−a±)

)

+
1

(1 + a±)�3
(
(�− 1)1+a± − (�− 1)−(1+a±)

)

+
2

a±�3
(
(�− 1)a± − (�− 1)−a±

)
.

As was the case for (3.7) and (4.9), the integrals over � in (5.9) cannot be carried 
out analytically in closed form. By expanding the integrand in (5.9) as a power series 
in z and integrating term by term with respect to �, we obtain the following values for 
the probability of record breaking Qn, besides the universal ones derived in section 2.6:

Q5 =
5

8
− π2

30
= 0.296 013 . . . ,

Q6 =
61

144
+

14π2

135
− ζ(3) = 0.245 068 . . . ,

Q7 =
475

252
− 292π2

945
+

8ζ(3)

7
= 0.209 044 . . . ,

and so on. In contrast with the two previous exactly solvable cases (see tables 2 and 
3), here the non-universal Qn are not rational, and they involve the values of Riemann 
zeta function at larger and larger positive integers.

The asymptotic behavior of Qn at large n can be derived from (5.9) by setting again 
z = e−ε, and considering the regime where ε and 1/� are simultaneously small. To lead-
ing order, (5.9) reduces to

Q̃(z) ≈
∫ ∞

2

d�
3

2�(1 + ε�)
,
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i.e. performing the inverse Laplace transform,

Qn ≈
∫ ∞

2

d�
3

2�2
e−n/� ≈ 3

2n
,

up to negligible boundary terms. The above result is an explicit instance where (1.11) 
holds. A full asymptotic expansion of Qn can be derived by keeping track of higher 
orders, yielding

nQn = 1 + δn =
3

2
− 2(lnn+ γ − 3)

n
+ · · ·� (5.10)

Finally, omitting details, we obtain a similar asymptotic expansion for the mean 
number of records, i.e.

〈Mn〉 =
3

2
(lnn+K) +

2(lnn+ γ − 2)

n
+ · · · ,

where the finite part reads

K = γ − ln 2 +

∫ ∞

2

d�

(
2I(1, �)

3
− 1

�

)
= −0.387 293 . . .

5.4. Distribution of the maximum

Here 〈X〉 is divergent, so that it makes no sense to evaluate 〈Ln〉. The full distribution 
of Ln should be considered instead. We have

Fn(�) =

∫ �−1

1

dxFn(�, x) = Fn+1(�, 1) =
Hn+1(�, 1)

�− 1
,

as a consequence of (2.4), (2.14) and (5.1). We thus obtain

F1(�) = 1− 1

�− 1
,

F2(�) = 1− 2

�
− 2

�2
ln(�− 1),

F3(�) = 1− 3(�− 1)

�2
− 1

�2(�− 1)
− 4(�− 1)

�3
ln(�− 1).

The corresponding generating function reads

F̃(z, �) =
∑
n�0

znFn(�) =
H̃(z, �, 1)

z(�− 1)

=

√
a− (�− 1)−a+ −√

a+ (�− 1)−a−

√
a− (�− 1)a+ −√

a+ (�− 1)a−
,

where the last expression is a consequence of (5.8).
The scaling behavior of the distribution of Ln at large n can be derived along the 

lines of the previous section. To leading order, we find the simple result
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Fn(�) ≈ e−n/�.� (5.11)

In particular, the median value L�
n, such that Fn(L

�
n) =

1
2
, reads

L�
n ≈ n

ln 2
.

The full asymptotic expansion of Fn(�) in the regime where n and � are comparable 
reads

Fn(�) = e−n/�
(
1− n

2�2
(4 ln �− 1) + · · ·

)
,� (5.12)

and so

L�
n =

n

ln 2
+ 2 ln

n

ln 2
− 1

2
+ · · ·

6. Asymptotic analysis of the general case

The probability of record breaking Qn exhibits a great variety of asymptotic behav-
iors, depending on the underlying distribution f(x). This is exemplified by the three 
exactly solvable cases studied in sections 3– 5. In terms of the correction δn such that 
nQn = 1 + δn (see (1.15)), we have seen that

δn ≈ 1

lnn
� (6.1)

for the exponential distribution (see (3.12)),

δn ≈
√

π

8n

for the uniform distribution (see (4.11)), and

δn → 1

2
,� (6.2)

which is equivalent to (1.11), for the power-law distribution with θ = 1 (see (5.10)).
This section is devoted to a heuristic but systematic analysis of the dependence of 

the asymptotic behavior of δn on the underlying distribution f(x). It will turn out that 
the exponential distribution, where δn falls o logarithmically (see (6.1)), is a marginal 
case. For superexponential distributions, the analysis of sections 6.3 and 6.4 demon-
strates that δn falls o to zero and yields a general asymptotic formula for δn (see 
(6.10)). For subexponential distributions, it will be shown in section 6.5 that nQn and 
δn go to the universal limits (1.11) and (6.2). This dichotomy will be extended to higher 
values of the window width p  in section 7.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000


Records for the moving average of a time series

27https://doi.org/10.1088/1742-5468/ab5d08

J. S
tat. M

ech. (2020) 023201

6.1. Cyclization of the sequence

The first step of the analysis consists in comparing the problem at hand with a cyclic 
variant of it. For the former, we have

Qn = Prob(Yn > Ln−1),

with

Ln = max(Y2, . . . ,Yn)

(see (1.7) and (1.8)). The cyclic variant of the problem is defined by introducing

Y cyclic
1 = Xn +X1.

The sequence Y cyclic
1 ,Y2, . . . ,Yn thus obtained involves the basic variables X1, . . . ,Xn in 

a cyclically invariant fashion. It has therefore exchangeable entries, and so

Qcyclic
n = Prob

(
Yn > max(Y cyclic

1 ,Y2, . . . ,Yn−1)
)
=

1

n
.

Introducing the events

E = {Yn > Y cyclic
1 } = {Xn−1 > X1},

F = {Yn > Ln−1} = {Ln = Yn},

we have

Prob(E ∩ F ) = Qcyclic
n =

1

n
,

Prob(F ) = Qn =
1 + δn

n
,

and so

∆n = Prob(Ē|F ) = Prob(X1 > Xn−1|Ln = Yn)

=
Qn −Qcyclic

n

Qn

=
δn

1 + δn
.

� (6.3)

This equation gives a description of the dierence Qn −Qcyclic
n  in terms of a conditional 

probability, which will prove useful in the following.

6.2. Decoupled model

We now consider a decoupled variant of the original problem, whose main advantage 
is that the expression (6.3) can be given the explicit form (6.9), which will in turn yield 
the estimate (6.10) for the correction δn in appropriate situations.

The decoupled model is defined as follows. The random variables Yi of the original 
problem are replaced by a sequence of iid random variables

Yi = Xi +X ′
i,� (6.4)

where Xi and X ′
i are two independent replicas of the original random variables Xi with 

common density f(x) and distribution function F (x). The number of variables X is 
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therefore doubled with respect to the original problem. The distribution function F2(y ) 
and the density f 2(y ) of the variables Yi thus read

F2(y) = Prob(Y < y) = Prob(X +X ′ < y) =

∫ y

0

dy′f2(y
′),

f2(y) =

∫ y

0

dx f(x) f(y − x).
� (6.5)

In terms of the Laplace transform

f̂(s) =

∫ ∞

0

dx e−sx f(x),

this reads

f̂2(s) = f̂(s)2.
� (6.6)

The conditional density of X given X +X ′ = y, denoted by f(x|y), is equal to

f(x|y) = f(x) f(y − x)

f2(y)
.� (6.7)

The largest among the first n variables Yi, denoted by

Y∗ = X∗ +X ′∗,

has distribution function

FY∗(y) = Prob(Y∗ < y) = F2(y)
n,

and density

fY∗(y) = nF2(y)
n−1f2(y).� (6.8)

Using (6.7) and (6.8), the density of X* is

fX∗(x) =

∫ ∞

0

dy f(x|y) fY∗(y) = nf(x)

∫ ∞

x

dy f(y − x)F2(y)
n−1.

Within the setting of the decoupled model, the conditional probability ∆n intro-
duced in (6.3) therefore reads

∆n = Prob(X > X∗) =

∫ ∞

0

dx fX∗(x)F̄ (x)

= n

∫ ∞

0

dy F2(y)
n−1

∫ y

0

dx f(x) f(y − x)︸ ︷︷ ︸ F̄ (x),
� (6.9)

with

F̄ (x) = Prob(X > x) = 1− F (x).

When n is large, the factor F2(y)
n−1 in (6.9) selects large values of y , such that F̄2(y) 

scales as 1/n. These are the typical values of Y∗. The product underlined by the brace, 
which already entered (6.5) and (6.7), describes to what extent the distribution of X is 
aected by the conditioning by such a large value y  of the sum Y = X +X ′.
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6.3. The key dichotomy

The dichotomy between the two limits (1.10) and (1.11) is now shown in general albeit 
non-rigorous terms to be dictated by the form of the tail of the underlying parent dis-

tribution f(x) or, equivalently, by the analytic structure of its Laplace transform f̂(s).

	 °	� For superexponential distributions, i.e. distributions f(x) either having a bounded 
support or falling o faster than any exponential, such as e.g. a half-Gaussian 

or any other compressed exponential, f̂(s) is an entire function, i.e. it is analytic 
in the whole complex s-plane. Then, as a general rule, f 2(y ) (see (6.5)) has a 
slower decay than f(x). Furthermore, if the sum Y = X +X ′ is atypically large, 
then both X and X ′ are atypically large as well, with very high probability. 
As a consequence, the conditional probability ∆n, as given by (6.9), falls o to 
zero for large n. Simplifying the latter expression, we thus obtain the following 
asymptotic estimate for δn:

δn ≈ n

∫ ∞

0

dy e−nF̄2(y)

∫ y

0

dx f(x) f(y − x)F̄ (x).� (6.10)

		 We claim that this prediction becomes asymptotically exact for all superexpo-
nential distributions, in the sense that it correctly describes the decay of δn, to 
leading order for large n, in spite of its heuristic derivation using the decoupled 
model. The rationale behind this claim is that the dierence between the original 
and the decoupled models, measured by the relative dierence between Qn and 
Qcyclic

n , is consistently found to decay to zero, proportionally to the estimate (6.10) 
for δn.

	 °	� For subexponential distributions, i.e. distributions f(x) which fall o smoothly 
enough and less rapidly than any exponential, such as e.g. a power law or a 

stretched exponential, f̂(s) has an isolated branch-point singularity at s  =  0. The 
asymptotic equivalence of the tails,

F̄2(y) ≈ 2F̄ (y) (y � 1),� (6.11)
		  can be derived by an inverse Laplace transform of (6.6), where the contour 

integral is dominated by the singularity of f̂(s) at s  =  0. Equation  (6.11) may 
be used as a mathematically rigorous definition of the class of subexponential 
distributions, following Chistyakov [24]. Its intuitive meaning is the following: if 
the sum Y = X +X ′ is very large, then one of the terms, either X or X ′—hence 
the factor 2—is typical, i.e. distributed according to f(x), while the other one is 
essentially equal to Y. This behavior underlies the phenomenon of condensation 
for subexponential random variables conditioned by an atypical value of their 
sum (see [25] for a recent review and the references therein). As a consequence of 
(6.11), for subexponential distributions f(x), the estimate (6.9) remains of order 
unity for large n. The decoupled model is therefore of little use to understand the 
original one. This situation will be investigated in section 6.5, where nQn and δn 
will be shown to admit the universal limits (1.11) and (6.2).
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For exponential distributions, i.e. distributions f(x) falling o either as a pure exponen-
tial e−βx, with β > 0, or as the product of such an exponential by a more slowly vary-

ing prefactor, such as e.g. a power of x, the leading (i.e. rightmost) singularity of f̂(s) 
is located on the negative real axis at s = −β. For our purpose, these distributions are 
marginal since they can lie on either sides of the dichotomy between (1.10) and (1.11) 
(see section 6.4.2).

6.4. Superexponential and (some) exponential distributions

The prediction (6.10) is now made explicit for a variety of superexponential and expo-
nential distributions f(x).

6.4.1. Pure exponential distribution.  This is the distribution for which an exact solu-
tion has been presented in section 3. We have

f(x) = F̄ (x) = e−x, f2(y) = y e−y, F̄2(y) = (y + 1)e−y.

The estimate (6.10) therefore reads

δn ≈ n

∫ ∞

0

dy exp
(
−y − n(y + 1)e−y

)
.� (6.12)

This integral can be evaluated in analogy with (3.9). Setting λ = lnn (see (3.10)) and 
(y + 1)e−y = e−µ, we obtain

δn ≈
∫ ∞

−∞
dµ exp

(
λ− µ− eλ−µ

) 1

y(µ)
,

hence

δn ≈ 1

λ
− lnλ+ γ

λ2
+ · · ·� (6.13)

A comparison with the exact expansion (3.12) shows that the estimate (6.10) is correct 
to leading order in this marginal case. The dierence between the estimate (6.13) and 
the exact result is indeed subleading, since it scales as 2/λ2.

6.4.2. Exponential distribution modulated by a power law.  We now consider distribu-
tions falling o as an exponential modulated by a power law, i.e.

f(x) ≈ F̄ (x) ≈ Axa−1 e−x (x → ∞),� (6.14)

where a is arbitrary (positive or negative).
Let us consider first the case where a  >  0. We have then

f̂(s) ≈ AΓ(a)

(s+ 1)a
(s → −1)

and

f2(y) ≈ F̄2(y) ≈ B y2a−1 e−y (y → ∞),� (6.15)
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with B = (AΓ(a))2/Γ(2a). Performing the integrals entering (6.10), we obtain

δn ≈ nA3Γ(a)

∫ ∞

0

dy exp
(
−nBy2a−1e−y

)
ya−1e−y.

This integral can be evaluated in analogy with (3.9). Setting λ = ln(nB) and 
y2a−1e−y = e−µ, we obtain formally

δn ≈ A3Γ(a)

B

∫ ∞

−∞
dµ exp

(
λ− µ− eλ−µ

) 1

y(µ)a
.

To leading order, the identification y(µ) ≈ µ ≈ λ yields the estimate

δn ≈ AΓ(2a)

Γ(a)

1

(lnn)a
.� (6.16)

We are thus led to claim that exponential distributions of the form (6.14) with 

a  >  0, and presumably all exponential distributions such that f̂(s) → +∞ as the lead-
ing singularity is approached from the right (s → −β+), belong to the superexponential 
side of the dichotomy, in the sense that (1.10) holds, and that (6.16) correctly predicts 
the decay of the correction δn. The logarithmically slow fall o of the latter expression 
confirms the marginal character of this class of exponential distributions.

On the contrary, if the exponent a entering (6.14) is negative, the above deriva-
tion already breaks down at the level of (6.15). Exponential distributions of the form 

(6.14) with a  <  0, and presumably all exponential distributions such that f̂(s) remains 
bounded as s → −β+, therefore share with subexponential distributions the property 
that the estimate δn does not decay to zero, with the expected consequence that (1.11) 
should hold.

6.4.3. Distributions with bounded support and power-law singularity.  We now consider 
the case where f(x) is supported by the interval [0, 1] and has a power-law singularity 
at its upper edge, i.e.

F̄ (x) ≈ Aεa, f(x) ≈ aAεa−1,

F̄2(y) ≈ Bη2a, f2(y) ≈ 2aBη2a−1,
� (6.17)

with the notations ε = 1− x, η = 2− y. The exponent a  >  0 and the amplitude 
A  >  0 are arbitrary. We have B = a(AΓ(a))2/(2Γ(2a)). Performing the integrals enter-
ing (6.10), we obtain a universal 1/

√
n decay for δn, irrespective of the exponent a, i.e.

δn ≈ K(a)√
n

,� (6.18)

where the amplitude K(a) reads

K(a) =
1

Γ(a)2 Γ(3a)

√
πΓ(2a)5

2a
.� (6.19)

The amplitude K(a) is shown in figure  4. It has a local maximum at 

K(0) = 3
√
π/8 = 0.664 670 . . . and a local minimum at K(1) =

√
π/8 = 0.626 657 . . . 

The latter value agrees with the exact result (4.11) for the uniform distribution. This 
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provides another corroboration of our claim that the estimate (6.10) is correct to lead-
ing order. The exponential growth K(a) ∼ (32/27)a of the amplitude at large a suggests 
that the 1/

√
n decay ceases to hold for distributions with an infinitely large exponent, 

i.e. with an essential singularity at their upper edge.

6.4.4. Distributions with bounded support and exponential singularity.  We now con-
sider the case where f(x) is supported by the interval [0, 1] and has an exponentially 
small singularity at its upper edge, of the form

f(x) ∼ F̄ (x) ∼ e−C/εb ,� (6.20)

with b  >  0. Using the same notations as above, and working within exponential acc
uracy, we have

f2 ∼
∫ η

0

dε e−C(1/εb+1/(η−ε)b),

for small η, where the integral is dominated by a saddle point at ε = η/2, so that

f2 ∼ F̄2 ∼ e−21+bC/ηb .

Similarly, the x-integral entering (6.10) is dominated by a saddle point at ε = τη, with 
τ = 1/(1 + 2−1/(b+1)), and so

δn ∼
∫ ∞

0

dη exp

(
− 2C

τ b+1ηb
− n e−21+bC/ηb

)
.

Using once more the saddle-point method, we obtain a power-law decay of the form

δn ∼ n−ω1(b),

0 0.5 1 1.5 2 2.5 3
a

0.6

0.64

0.68

0.72
K

(a
)

Figure 4.  Amplitude K(a) of the universal 1/
√
n decay (6.18) of the correction 

term δn, against the exponent a.
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where the exponent

ω1(b) =
(1 + 2−1/(b+1))b+1

2b
− 1� (6.21)

decreases monotonically as a function of b, from ω1(0) = 1/2 to ω1(∞) =
√
2− 1.

6.4.5. Compressed exponential distributions.  We now consider the case where f(x) 
has a compressed exponential (or superexponential) tail extending up to infinity, of the 
form

f(x) ∼ F̄ (x) ∼ e−Cxc

,� (6.22)

with c  >  1. The analysis of this case is very similar to the previous one. We have

f2(y) ∼
∫ y

0

dx e−C(xc+(y−x)c)

for large y , where the integral is dominated by a saddle point at x  =  y /2, so that

f2(y) ∼ F̄2(y) ∼ e−21−cCyc .

Similarly, the x-integral entering (6.10) is dominated by a saddle point at x = τy, with 
τ = 1/(1 + 21/(c−1)), and so

δn ∼
∫ ∞

0

dy exp
(
−2Cτ c−1yc − n e−21−cCyc

)
.

We thus obtain a power-law decay of the form

δn ∼ n−ω2(c),

where the exponent

ω2(c) =
2c

(1 + 21/(c−1))c−1
− 1� (6.23)

increases monotonically as a function of c, from ω2(c) ≈ (c− 1) ln 2 as c → 1 to 
ω2(∞) =

√
2− 1. In particular, for the half-Gaussian distribution (c  =  2), we predict 

the decay exponent

ωGaussian = ω2(2) =
1

3
.� (6.24)

As it turns out, the decay exponents ω1(b) (see (6.21)) and ω2(c) (see (6.23)) can be 
unified into a single function

ω(α) = 2(α+1)/(2α)
(
1 + 22α/(1−α)

)(α−1)/(2α) − 1� (6.25)

of a parameter α in the range −1 < α < 1, as shown in figure 5. Distributions with a 
bounded support and an exponential singularity with index b correspond to −1 < α < 0, 
whereas compressed exponential distributions with index c correspond to 0 < α < 1, 
with the identifications
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b = −α + 1

2α
, c =

α + 1

2α
.� (6.26)

The exponent ω(α) is a decreasing function from ω(−1) = ω1(0) = 1/2 to ω(1) = ω2(1) = 0, 
via the common limiting value ω(0) = ω1(∞) = ω2(∞) =

√
2− 1, characteristic of dis-

tributions with a double exponential fall-o, either at the upper edge of a compact 
support or at infinity.

6.5. Subexponential distributions

We now consider subexponential distributions, whose tails decrease more slowly than 
any exponential. Our goal is to show that the correction δn goes to the universal limit 
(6.2), i.e. that Qn falls o as

Qn ≈ 3

2n
� (6.27)

for large n. This result agrees to leading order with the expansion (5.10), ensuing from 
an exact solution for the power-law distribution with θ = 1. It also agrees with the 
exact expression (6.33) of Qn for finite n in the limiting situation of exponentially broad 
distributions.

The gist of the derivation of (6.27) consists of looking for a solution to the integral 
recursion (2.14) in an approximately factorized form, i.e.

Fn(�, x) ≈ Kn f(x) (1− εn(�, x)).� (6.28)

-1 -0.5 0 0.5 1α
0

0.1

0.2

0.3

0.4

0.5
ω

(α
)

Figure 5.  Exponent ω(α) (see (6.25)) unifying the decay exponents ω1(b) (see (6.21)) 
and ω2(c) (see (6.23)) characteristic of distributions with exponential singularities. 
Green circular symbol: limiting value ω(0) =

√
2− 1 characteristic of distributions 

with a double exponential fall-o. Blue square symbol: decay exponent (6.24) of 
the half-Gaussian distribution (c  =  2, i.e. α = 1/3).
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The condition (2.13) yields

εn(�, �) = 1,� (6.29)
whereas εn(�, x) is assumed to be small in the regime of interest where n and � are 
simultaneously large, with x being kept finite. We set

εn(�, 0) = 0,� (6.30)
fixing thus the prefactor Kn unambiguously. To leading order, the dierential equa-
tion (2.15) yields

Knε
′
n(�, x) ≈ Kn−1f(�− x).� (6.31)

Equation (6.31), with boundary conditions (6.29) and (6.30), admits a similarity solu-
tion where ε(�, x) and the ratio q = Kn/Kn−1 are independent of n, namely

ε(�, x) =
F (�)− F (�− x)

F (�)
, q = F (�).

Whenever n and � are simultaneously large, (6.28) simplifies to

Fn(�, x) ≈ e−nF̄ (�)f(x)F (�− x),

so that (2.21) yields the estimate

Qn ≈
∫ ∞

0

d� e−nF̄ (�)

∫ �

0

dx f(x) f(�− x)F (�− x).� (6.32)

The analysis of this expression for large n is somewhat similar to that of (6.9), per-
formed in section 6.4. The exponential factor selects large values of �, such that F̄ (�) 
scales as 1/n. These are the typical values of Ln. The subexponentiality of f(x), in the 
intuitive sense explained below (6.11), suggests that the integral over the variable x in 
(6.32) is dominated by the vicinity of its endpoints, i.e. of the regimes where either x or 
the dierence �− x is kept finite. Adding these two contributions yields

∫ �

0

dx f(x) f(�− x)F (�− x) ≈ 3

2
f(�),

for � large. Inserting this estimate into (6.32) leads to the announced result (6.27).
The statistics of the number of records Mn for subexponential underlying distribu-

tions f(x) will be investigated at the end of section 7.4.

6.6. Exponentially broad distributions

We now consider the limiting class of exponentially broad distributions, defined by 
setting

X = eΛT ,

where Λ is parametrically large, whereas T has a fixed given distribution g(t). 
Exponentially broad distributions play a part in the study of strongly disordered sys-
tems (see [26, 27] and the references therein). An explicit example is provided by the 
power-law distribution (see table 1) in the limit where the index θ goes to zero, with 
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the identification Λ = 1/θ and g(t) = e−t. The overwhelming simplification brought by 
exponentially broad distributions in the Λ → ∞ limit is that X1 < X2 is equivalent to 
X1 � X2. In other words, the distribution is so broad that, if two independent variables 
X1 and X2 are drawn from the latter, one is negligible with respect to the other with 
very high probability.

Considering exponentially broad distributions in the Λ → ∞ limit is useful for our 
purpose in several regards. First, the exact probability of record breaking Qn can be 
derived in this limit, even for finite n. Second, as we shall see, the derivation gives an 
insight on the clustering of records underlying the non-trivial limit (1.11). Third, this 
approach will be readily extended to higher values of the window width p  in section 7, 
where other techniques are not available any more.

Within this setting, it is easy to derive the probability of record breaking Qn. We 
recall that Qn is the probability of having Yn > max(Y2, . . . ,Yn−1), with

Yn = Xn−1 +Xn, Yn−1 = Xn−2 +Xn−1,

and so on. If the variables X are drawn from an exponentially broad distribution, only 
two events contribute to Qn:

	 °	� The largest of the first n X-variables is Xn. This occurs with probability 1/n. 
In the Λ → ∞ limit, the variable Yn is also larger than all previous ones with 
certainty. Hence the contribution 1/n to Qn.

	 °	� The largest of the first n X-variables is Xn−1. This again occurs with probability 
1/n. The condition Yn > max(Y2, . . . ,Yn−1) reduces to Xn > Xn−2, so that the 
relative probability of that event is 1/2. Hence the contribution 1/(2n) to Qn.

As a consequence, the probability of record breaking is exactly given by

Qn =
3

2n
,� (6.33)

for all n � 3 and all exponentially broad distributions in the Λ → ∞ limit.
The formula (6.33) gives both the exact value of Qn for exponentially broad distri-

butions and its asymptotic decay law (see (1.11) and (6.27)) for all distributions with 
a subexponential tail. The above derivation also demonstrates that the excess in the 
probability of record breaking (6.33) with respect to the iid situation is due to a cluster-
ing of records. The second event of the above list indeed yields two consecutive records. 
Finally, the data shown in figure  1 suggest that (6.33) provides an absolute upper 
bound for Qn. It is indeed quite plausible that the quantity nQn plotted in figure 1 conv
erges to the constant 3/2 from below in the θ → 0 limit, uniformly in n.

7. Extension to higher values of p 

In this last section we consider sequences (1.6) obtained by taking the moving average 
of a sequence of iid variables Xi over an arbitrary finite window width p � 2. We shall 
mainly focus on the behavior of the probability of record breaking, that we now denote 
by
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Q(p)
n = Prob(Yn > Ln−1).

The recursive structure of the problem described in section 2 still holds true, however 
it becomes somewhat inecient, as the number of variables is higher. The recursion 
equation generalizing (2.14) indeed involves a multiple integral over p   −  1 variables. In 
particular, no exact solution is available any more. In spite of this, we shall be able to 
extend to higher values of p  most results of interest derived so far for p   =  2.

7.1. Universal values of the probability of record breaking

The first few values of Q
(p)
n  are universal, i.e. independent of the underlying distribution 

f(x). Their values can be derived along the lines of reasoning of section 2.6, using again 
the Sparre Andersen theorem. The first case of interest is n  =  p , where

Q(p)
p = 1.� (7.1)

There is indeed always a record at n  =  p , as Yp  is the first complete sum of p  terms. 
For n  =  p   +  1, we have

Q
(p)
p+1 = Prob(Xp+1 > X1) =

1

2
.� (7.2)

For n  =  p   +  2, we have

Q
(p)
p+2 = Prob(Xp+2 > X2,Xp+1 +Xp+2 > X1 +X2)

= Prob(Xp+2 −X2 > 0,Xp+2 −X2 +Xp+1 −X1 > 0)

= P2 =
3

8
,

�

(7.3)

using the same argument as in section 2.6 for the derivation of Q4 = P2 for p   =  2. More 
generally, for n  =  p   +  k, with 1 � k � p, we have

Q
(p)
p+k = Pk,� (7.4)

where the expression of Pk is given in (2.25).
The above formula generalizes the results of section 2.6 to an arbitrary window 

width p � 2. It exhausts the list of all universal values of the probability of record 

breaking. In other words, Q
(p)
2p+1 is the first non-universal one, just as Q5 for p   =  2.

7.2. Superexponential and (some) exponential distributions

The explanation given in section 6.3 of the key dichotomy between (1.10) and (1.11), 
based on the analytic structure of the Laplace transform f̂(s), is not limited to p   =  2. 
Its consequences are therefore expected to hold irrespective of the window width p .

For superexponential distributions, as well as for some exponentially decaying dis-
tributions, we are therefore again led to compare the original problem to its cyclic vari-
ant and to introduce a decoupled model, where the random variables Yi of the original 
problem are now replaced by a sequence of iid random variables
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Yi =Xi +X ′
i +X ′′

i + · · ·︸ ︷︷ ︸
p replicas

,

generalizing (6.4). If the sum Y is atypically large, then all its terms are atypically large 
as well, with very high probability. We therefore predict a behavior of type (1.10), i.e.

nQ(p)
n = 1 + δ(p)n ,

with the following estimate for the small relative correction δ
(p)
n :

δ(p)n ≈ n

∫ ∞

0

dy e−nF̄p(y)

∫ y

0

dx f(x) fp−1(y − x)F̄ (x),� (7.5)

which is a direct generalization of (6.10). We again claim that this prediction is asymp-
totically correct, to leading order for large n, whenever it decays to zero, i.e. essentially 
for all superexponential distributions.

The estimate (7.5) is now made explicit for a variety of distributions f(x).

7.2.1. Pure exponential distribution.  For an exponential distribution with density 
f(x) = e−x and distribution function F (x) = 1− e−x, we have

fp(y) =
y p−1

( p− 1)!
e−y

as well as F̄p(y) ≈ fp(y), to leading order for y � 1, and so (7.5) reads

δ(p)n ≈ n

∫ ∞

0

dy
y p−2

( p− 2)!
exp

(
−y − n

y p−1

( p− 1)!
e−y

)
.

This integral can be evaluated along the lines of (3.9) and (6.12). Omitting details, we 
obtain to leading order

δ(p)n ≈ p− 1

lnn
.

This estimate vanishes identically for p   =  1 and coincides with (6.13) for p   =  2. It dem-
onstrates that the marginal character of the exponential distribution, with its logarith-
mic correction term, persists to all higher values of p .

7.2.2. Exponential distribution modulated by a power law.  We now consider distribu-
tions falling o as an exponential modulated by a power law, i.e.

f(x) ≈ F̄ (x) ≈ Axa−1 e−x (x → ∞).� (7.6)

Along the lines of section 6.4.2, let us consider first the case where a  >  0. We have

fp(y) ≈ F̄p(y) ≈ Bp y
pa−1 e−y (y → ∞),

with Bp = (AΓ(a)) p/Γ( pa). Performing the integrals entering (7.5), we are left with the 
estimate

δn ≈ AΓ( pa)

Γ(( p− 1)a)

1

(lnn)a
.� (7.7)
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This formula is a direct generalization of (6.16). We thus conclude that exponential 
distributions of the form (7.6) with a  >  0 belong to the superexponential side of the 
dichotomy, in the sense that (1.12) holds, with a correction falling o as (7.7). On the 
other hand, along the lines of section 6.4.2, we are led to claim that exponential distri-
butions with a  <  0 lead to (1.13), just as subexponential distributions.

7.2.3. Distributions with bounded support and power-law singularity.  In the case where 
f(x) is supported by the interval [0, 1] and has a power-law singularity of the form 
(6.17) at its upper edge, we have

F̄p(y) ≈ Bpη
pa, fp(y) ≈ paBpη

pa−1,

with η = p− y and Bp = a p−1(AΓ(a)) p/( pΓ( pa)). Performing the integrals entering 

(7.5), we obtain a power-law decay for δ
(p)
n , i.e.

δ(p)n ≈ K( p, a)

n1/p
,� (7.8)

where the exponent only depends on the width p , whereas the amplitude K( p, a) reads

K( p, a) =
Γ(1/p) Γ(2a) Γ( pa)1+1/p

( pa)1−1/p Γ(a)2 Γ(( p+ 1)a)
.

This result extends (6.19) to higher values of p . The amplitude K( p, a) has a local 
maximum for a  =  0, a local minimum for a  =  1, and grows exponentially fast at large 
a. All these features hold irrespective of p , and survive in the formal p → ∞ limit, i.e.

K(∞, a) =
e−a Γ(2a)

aΓ(a)2
.

7.2.4. Distributions with exponential singularities.  To close, we consider distributions 
with a bounded support and an exponentially small singularity at their upper edge, 
of the form (6.20), as well as compressed distributions with a superexponential tail 
extending up to infinity, of the form (6.22).

We again obtain a power-law decay for the correction δ
(p)
n , with continuously vary-

ing decay exponents ω1( p, b) and ω2( p, c), which can be unified into a single monotoni-
cally decreasing function

ω( p,α) = 2

(
1 + ( p− 1)22α/(1−α)

p

)(α−1)/(2α)

− 1

of the parameter α in the range −1 < α < 1, with the identifications (6.26). 
We have in particular ω( p,−1) = 1/p, ensuring a smooth crossover with (7.8), 
ω( p, 0) = ω1( p,∞) = ω2( p,∞) = 21/p − 1 for the limiting situation of distributions 
with a double exponential fall-o, and ω( p, 1/3) = 1/(2p− 1), corresponding e.g. to the 
half-Gaussian distribution.
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7.3. Exponentially broad distributions

For exponentially broad distributions in the Λ → ∞ limit, the expression of Q
(p)
n  can be 

derived along the lines of section 6.6. We recall that Q
(p)
n  is the probability of having 

Yn > max(Yp, . . . ,Yn−1), with

Yn = Xn−p+1 + · · ·+Xn, Yn−1 = Xn−p + · · ·+Xn−1,

and so on. If the X-variables are drawn from an exponentially broad distribution, only 

the following events contribute to Q
(p)
n :

	 °	� The largest of the first n X-variables is Xn. This occurs with probability 1/n. 
In the Λ → ∞ limit, the variable Yn is also larger than all previous ones with 

certainty. Hence the contribution 1/n to Q
(p)
n .

	 °	� The largest of the first n X-variables is Xn−1. This again occurs with probability 
1/n. The condition Yn > max(Y2, . . . ,Yn) reduces to Xn > Xn−2, so that the rela-
tive probability of that event is 1/2. Hence the contribution 1/(2n) to Q

(p)
n .

	 °	� The largest of the first n X-variables is Xn−2. This again occurs with probability 
1/n. The condition Yn > max(Y2, . . . ,Yn) reduces to

Xn −Xn−3 > 0,

Xn −Xn−3 +Xn−1 −Xn−4 > 0.

		  so that the relative probability of that event is P2  =  3/8, again by virtue of the 

Sparre Andersen theorem. Hence the contribution P2/n to Q
(p)
n , and so on.

Summing up the probabilities of the events listed above, we predict that the probabil-
ity of record breaking is exactly given by

Q(p)
n =

Rp

n
,� (7.9)

for all p � 2 and n � 2p− 1 and all exponentially broad distributions in the Λ → ∞ 
limit. The numerator of the above formula reads

Rp =

p−1∑
k=0

Pk,

where the integer k numbers the items of the above list and where the expression of Pk 
is given in (2.25). Equation (2.26) yields

R̃(z) =
∑
p�1

z pRp =
z

1− z
P̃ (z) =

z

(1− z)3/2
.

The Rp  are therefore universal rational numbers given by
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Rp =
(2p− 1)!

22p−2( p− 1)!2
= 2pPp = (2p− 1)Pp−1

= 1,
3

2
,
15

8
,
35

16
,
315

128
,
693

256
, . . . ,

�

(7.10)

for p = 1, 2, 3, 4, 5, 6, . . ., and growing as

Rp ≈ 2

√
p

π

at large p .
The formulas (7.4) and (7.9) overlap for two values of n, namely 2p   −  1 and 2p , for 

which they consistently predict

Q
(p)
2p−1 = Pp−1 =

Rp

2p− 1
, Q

(p)
2p = Pp =

Rp

2p
.

7.4. Subexponential distributions

Following the line of thought sketched in the very beginning of section 7.2, we are led 
to extend the dichotomy between (1.10) and (1.11) to higher values of p , and to predict 
the following asymptotic decay of the probability of record breaking at large n:

Q(p)
n ≈ Rp

n
,� (7.11)

for all p � 2 and all subexponential distributions f(x), where the amplitude Rp  is pre-
dicted by the exact analysis of the limiting case of exponentially broad distributions 
(see section 7.3). The latter amplitude, given by (7.10), is therefore universal, in the 
sense that it only depends on the window width p .

The formula (7.9) therefore has the same status as (6.33). It gives the exact value 

of Q
(p)
n  for exponentially broad distributions in the Λ → ∞ limit for all n � 2p− 1. It 

is also expected to describe the asymptotic decay law of Q
(p)
n  for all subexponential dis-

tributions, and furthermore to provide an absolute upper bound for Q
(p)
n  for all n � p.

8. Discussion

This paper was devoted to the statistics of records for the moving average of a sequence 
of iid variables. Most results concern the case where the window width is p   =  2. The 
main emphasis has been put on the probability of record breaking Qn at time n, and 
on the distribution of the number of records Mn up to time n. In sections 3–5 we have 
given full analytical solutions of the problem for three particular parent distributions: 
exponential, uniform and power-law with θ = 1. The exact results obtained there pro-
vide useful checks of the heuristic approach used in the asymptotic analysis of the gen-
eral situation (section 6) and in its extension to higher values of p  (section 7).
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Quite serendipitously, the three distributions which have lent themselves to an 
exact analytical treatment are prototypical in several regards. First, each of them is 
a representative of one of the three universality classes of extreme value statistics: 
Weibull, Gumbel and Fréchet. Second, they are also representatives of the dichotomy, 
as regards the properties of records for the moving average, between superexponential 
distributions, where the product nQn tends to unity and the distribution of the number 
of records is asymptotically Poissonian, and subexponential distributions, where nQn 
admits the non-trivial universal limit 3/2, or more generally Rp , and the distribution 
of the number of records exhibits novel universal clustering features. The uniform and 
power-law distributions are respectively typical of the superexponential and subexpo-
nential classes, whereas the exponential distribution is a representative of the expo-
nential class, which is marginal and split on both sides of the dichotomy, as seen in 
section 6.4.2.

Our main results can be summarized in the sketchy representation of the realm of 
parent probability distributions shown in figure 6. The tail of the distribution is more 
and more heavy, i.e. the density f(x) falls o more and more slowly, as one progresses 
from left to right. The red line in figure 6 represents the boundary of the dichotomy, 
with superexponential distributions to its left and subexponential distributions to its 
right, with the marginal class of exponential distributions sitting on the line itself. 
To the left of the red line, the product nQn tends to unity, just as for records of iid 
variables. Superexponential distributions can be classified according to the exponent ω 
describing the power-law decay δn ∼ n−ω of the correction such that nQn = 1 + δn. For 
distributions in the Weibull class, i.e. with a bounded support and a power-law singu-
larity at its upper end, ω is constant and equal to 1/2, and more generally 1/p . For 
superexponential distributions in the Gumbel class, whose support is either bounded 
(Region I) or unbounded (Region II), the exponent ω(b) or ω(c) decreases from 1/2 to 0, 
and more generally ω( p, b) or ω( p, c) decreases from 1/p  to 0. To the right of the red 
line, the product nQn admits the non-trivial universal limit 3/2, and more generally Rp . 
This limit holds both for subexponential distributions falling o faster than any power 
of x (Region III of the Gumbel class) and for those exhibiting a power-law tail (Fréchet 
class).

The key dichotomy highlighted in the present work for the properties of records 
of the moving average, between (1.10) and (1.11) (or more generally between (1.12) 

I II III

superexponential subexponential

Weibull Gumbel Fréchet

nQn → 1 nQn → 3
2

bounded
support

bounded
support

compressed
exponential

stretched
exponential

power law

Figure 6.  Sketchy representation of the realm of parent probability distributions 
(see text for details). The last line summarizes the results for the case p   =  2.
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and (1.13)), i.e. essentially between the subexponential and superexponential classes 
of distributions, appears as very robust. It is therefore expected to have far-reaching 
consequences on other quantities, besides the probability of record breaking Qn and the 
number of records Mn. Consider the example of the distribution of the maximum Ln of 
the first n daughter Y-variables. The heuristic approach put forward in section 6 sug-
gests that the distribution of Ln is close to that of the maximum of n iid X-variables for 
subexponential distributions, to the right of the red line, whereas it is close to that of 
the maximum of n iid variables of the form Y = X +X ′ for superexponential distribu-
tions, to the left of the red line. This claim is corroborated by the exact or asymptotic 
expressions for the mean or median values of Ln derived in sections 3– 5.

Let us close with a word on more general linear filters of the form

Yn =
∑
k�0

KkXn−k,

used e.g. in digital signal processing, transforming a sequence of iid random variables 
Xn to a filtered sequence Yn, whose entries are clearly not iid any more. Many open 
questions of interest related to extremes and records in such filtered sequences could 
be addressed. It can be anticipated that the occurrences of records will exhibit some 
clustering, especially if the distribution f(x) of the parent variables is broad enough, 
even though a clear-cut universal dichotomy is not to be expected in general.
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