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Abstract. Parasite detection is important for the diagnosis of many blood-borne diseases 

including malaria. As part of a program to develop a fast, accurate, and affordable automatic 

device for diagnosing malaria, a critical step is to automatically classify individual red blood 

cells in thin blood smear images. To automatically recognize malaria parasites in an image, this 

paper presents a red blood cell classification study for malaria diagnosis. To diagnose malaria, 

the threshold-based segmentation is implemented using the Otsu's method succeeded by the 

distance transform and statistical classifier. The methods are applied to red blood cell images 

obtained from Kaggle. These experimental results show that the classification recognizes malaria 

parasite with 94.60% accuracy, 96.20% specificity, and 93% sensitivity. 

1.  Introduction 

Red blood cell classification is important for the diagnosis of blood-borne diseases such as malaria. In 

most cases, highly trained individual inspects samples. 

Malaria is an endemic disease and major cause of mortality, especially in tropical regions. Globally, 

3.2 billion people in 97 countries and territories are at risk of being infected with malaria and 1.2 billion 

are at high risk [1].  

Clinically, many diseases generate similar symptoms. Typically, malaria produces flu-like symptoms 

around nine to 14 days after an infective Anopheles mosquito bite; however this can vary with different 

malaria species. If appropriate drugs are unavailable or the parasite has gained resistance to the drugs, 

the infection can progress rapidly and become life threatening. If left untreated, malaria can kill by 

infecting and destroying red blood cells, causing anaemia and by blocking capillaries that carry blood 

to the brain [2].  

Malaria cannot be treated until it is diagnosed and currently, microscopy is the most commonly used 

technique to diagnose malaria. In malaria microscopy, two kinds of Giemsa-stained blood films, thin 

films and thick films, are recommended [3]. A well-prepared thin blood film consists of a single layer 

of red blood cells and leukocytes. In thin blood films, the morphology of red blood cells and parasites 

is fairly easy to see and counting the number of cells in a single field of view is feasible. However, in 

order to distinguish between low parasitaemia and the absence of malaria, a prohibitively large number 

of fields must be examined.  

In general, Giemsa stain enhances differences between key components of infected red blood cells 

[3]. Parasites appear dark red and blue, the vacuole appears clear, the host red blood cells appear light 

red, and the pigment appears golden brown to black. Malaria parasites infect and develop in red blood 
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cells and as a result, the vacuole containing clear fluid lies inside the cytoplasm of the parasites [5]. 

Because the various components stain differently, malaria-infected erythrocyte parasites are 

distinguishable from normal red blood cells. 

Detection of malaria requires trained microscopists. An accurate and efficient diagnosis is possible 

in ideal conditions by well-trained staff as is common in well-funded medical facilities in large Western 

cities where malaria seldom appears. In developing countries, especially in rural areas where malaria is 

most prevalent, the method is often inaccurate and inefficient. Potential weaknesses of the technique 

arise from (a) inaccuracy due to limited training, experience or fatigue resulting from excessive 

workloads, (b) long processing times for inexperienced microscopists who must frequently refer to the 

references, (c) considerable cost of training microscopists [6][7]. Mis-observation due to the lack of 

technique may potentially result in mis-diagnosis or delayed diagnosis possible leading to a more severe 

disease state or death. 

Meanwhile, computational image analysis has the potential to provide fast and consistent estimates 

of parasitaemia. Since red blood cells and parasites are relatively easy to segment automatically in 

images of thin films, and since an automatic system may, in principle, be applied to large numbers of 

fields of view, estimates of depth of infection based on thin film is a reasonable option for computational 

image analysis approaches. 

Several studies have reported on automatic systems for diagnosis of malaria. In an early study of 

automatic malaria diagnosis, morphological approaches were considered for identifying red blood cells 

and malaria parasites [8]. Red blood cells and parasites were detected by granulometric functions based 

on size features and regional maxima based on colour features. Later, Tek and colleagues reviewed work 

on computer-aided systems for estimating malaria parasitaemia based on thin blood film smears [9]. 

Some studies reported by Tek produced useful systems to estimate malaria parasitaemia. However, these 

studies were not compared to parasitaemia estimated by microscopists on thick film. At the same time, 

Tek et al. used probability density to determine stained cells and local area granulometry to estimate cell 

size. A modified K nearest neighbour (KNN) classifier was used to detect malaria-infected red blood 

cells on thin film [10]. However, the parasitaemia level was not presented. 

In a more recent study [11], the Otsu method [12] was used to segment red blood cells from 

background. The Otsu method resulted in a binary image in which red blood cells were represented by 

a larger area than in the grayscale image. As a result, adjacent grayscale red blood cells were identified 

as an occluded binary red blood cells. To separate the occluded binary red blood cells, the distance 

transform [13]–[16] followed by the watershed transform [17] were applied. Subsequently, statistical 

features skewness, kurtosis, energy, and standard deviation of saturation histogram value were used as 

input to support vector machine to classify red blood cells as normal or infected. Finally, the percentage 

of parasitaemia based on thin film was reported. At the same time, another study showed that intensity 

histogram values corresponding to the unique colour of malaria parasites is one of the strongest features 

for the identification of parasites [18]. However, in these studies, the combination of features on colour 

and grayscale images was not studied. 

The objective of this study is to extract features on colour and grayscale images for classifying red 

blood cells as healthy or infected.  

2.  Material and Methods 

2.1.  Data 

Red blood cell images were provided by Kaggle hosting a repository of the images from the Malaria 

Screener. Slides of Giemsa-stained thin blood smear were collected from 150 parasitic and 50 healthy 

patients, and scanned at Chittagong Medical College Hospital, Bangladesh, by using a conventional 

light microscope coupled with a standard Android smartphone built-in camera running a mobile 

application developed by the Lister Hill National Center for Biomedical Communications, the National 

Library of Medicine. PNG cell images were captured for each microscopic field of view with a various 

resolution. The images were manually annotated by an expert slide reader at the Mahidol-Oxford 
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Tropical Medicine Research Unit in Bangkok, Thailand. A repository of the segmented parasitic images 

from the Malaria Screener were hosted in Kaggle.com. A total of 2000 cell images with equal instances 

of parasitic and healthy cells were involved for training system. Another dataset, a total of 2000 cell 

images consisting of 1000 parasitic and 1000 healthy cells were included in this study for testing. 

Examples of original color cell images are shown in figure 1. 

 

 

Figure 1. Original cell images. a) a healthy cell, b) an infected cell. 

2.2.  Features for identifying red blood cells as healthy or infected. 

Classifying red blood cells as healthy or infected requires a process for automatically segmenting the 

parasites from background. The red blood cells were segmented by Otsu method [12]. As a preliminary 

step, 2000 of segmented colour red blood cell images were involved to extract a statistical feature, 

skewness. Skewness was a potential feature for classifying red blood cells as infected or healthy cells 

[4]. Of these, 1000 were healthy and 1000 were infected with malaria parasites. The intensity values for 

red blood cell were extracted from the grayscale images by using the footprint as a template. For the 

footprint, the skewness of the distribution of grayscale intensity values were extracted.  

Also, the colour dominant of the colour intensity values (RGB) was also extracted. Visually, an 

infected cell image consists of three colour dominants representing three objects: background, cell, and 

parasites (if present). However, due to imperfect process of image segmentation, a cell body may have 

two different dominant colours: border area and cells. Thus, based on the grayscale values, a K-means 

clustering method [19] was employed to cluster the image pixels into four groups nominally representing 

the parasite, the cell body, border area, and the black (background beyond the cell body) (figure 2). The 

cluster C3 and C0 were suspected as a background and a border line, respectively. Meanwhile, the cluster 

C2 with the second lowest mean value was assumed to be the one corresponding to the parasites as this 

cluster is reliably the darkest within the cell body (C2) if parasites are present. The average of RGB 

values of every pixels in each cluster was calculated. The difference in the average values between the 

cluster 2 and cluster 1 was calculated, equation (1). For ease of exposition, the term “distance colour” 

will be used to refer to the difference. For red blood cells with parasites present, the distance colour is 

expected to be noticeably farther than the distance colour for red blood cells with no parasites. 

Accordingly, the distance colour was used along with the other features to classify red blood cells.  

 

Figure 2. Colour map resulting from colour clustering 

 

  



The 8th Engineering International Conference 2019

Journal of Physics: Conference Series 1444 (2020) 012036

IOP Publishing

doi:10.1088/1742-6596/1444/1/012036

4

distance colour = |mC1 -mC2|       (1) 

 

mC3 = the average of RGB values from the cluster 3 (the highest number) 

mC2 = the number of RGB values from the cluster 2.  

 

Figure 3. Grayscale images from Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 4. Parasite footprints of figure 3. White dots indicate the suspected parasites. 

 

In addition to skewness and distance colour, the difference in angle between the highest and the 

lowest value of grayscale images (figure 5) was proposed. For ease of exposition, the term “distance 

angle” will be used to refer to the difference. 

Step for picking parasites up from a cell body, the original colour red blood cell images were 

converted to grayscale images. Otsu method [12] was used to segment the cells from background and 

an operation of inversion was applied to the segmented images. Meanwhile, for obtaining cell mask, the 

grayscale images (grayim) were also segmented by binary threshold (equation 1) [20] for resulting 

binary images (binim) consisting of background and cell mask. For the next stage, the segmented images 

and the cell masks were operated by an operation of bitwise AND for resulting parasite footprints (figure 

4).  

 

𝑏𝑖𝑛𝑖𝑚(𝑥, 𝑦) =  {
0 𝑖𝑓 𝑔𝑟𝑎𝑦𝑖𝑚(𝑥, 𝑦) = 0
1                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(2) 

 

After parasite footprints were obtained, Suzuki’s Contour Tree algorithm [21] was used to detect  

extreme edge between black region and parasite footprints of the binary images. From those algorithm, 

two main regions: black region (i.e., zero regions) and parasite footprints were separated or segmented. 

The centroid of each parasite footprint was determined and the pixels around the parasite were scanned. 

The grayscale value of the centroid and that of the around pixels were recorded as j and k[i], i=0, 1, 2, 

…, n. Then, an angle colour () could be obtained by equation (3).  
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Figure 5. Angle degree. 

 

 

 = arctan (
|𝑗−max (𝑘)|

𝑛
) (3) 

  

n is the number of pixels around the centroid.  
 

The obtained features: skewness, distance colour, and angle colour (figure 6) were processed by the 

support vector machine (SVM) with radial basis function to classify red blood cells as healthy or 

infected.  

 
Figure 6. Feature values of red blood cells. Blue and red dots are representing healthy and infected 

cells, respectively. 
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2.3.  Analysis Methods 

The performance of the method for red blood cell classification was analysed in terms of accuracy, 

sensitivity, and specificity. Accuracy measures the total proportion of correct assignments (equation 4) 

while sensitivity (equation 5) and specificity (equation 6) measure the proportion of actual infected cells 

detected and that of actual healthy cells detected, respectively. These values are expressed in terms of 

true positive detection (TP), false positive detection (FP), true negative detection (TN), and false 

negative detection (FN). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(4) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(5) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(6) 

 

3.  Experimental Results and Discussion 

The results of comparing an expert reader to the outputs of this algorithms are summarized in table 1. 

Of the 2000 red blood cell images, 1892 were correctly classified, providing an accuracy of 94.60%. 

The classification performance of the proposed algorithms outperforms that of Tek’s study [10]. 

 

Table 1. Confusion matrix for classification of red blood cells. The classification accuracy is 94.60%. 

The specificity and sensitivity are 96.20% and 93%. 

 

  Predicted 

  Positive Negative 

A
ct

u
al

 

C
la

ss
 

Positive 930 70 

Negative 38 962 

 

Although many red blood cells were correctly classified, there are some plausible sources of 

inaccuracy that could be addressed in future work. A number of infected red blood cells were detected 

as healthy cells (FN). It is probably caused by schizonts (parasites on early stage) which are similar 

colour to red blood cells (figure 3a). Accordingly, this algorithm is not applicable to detect the red blood 

cells as infected. On the other hand, accumulations of stain on healthy red blood cells due to faults in 

the staining process (figure 3b) resemble parasites in colour. Accordingly, the cells might be detected 

as infected (FP).  
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Figure 7. a is FP, b is FN. 

4.  Conclusion 

The features and algorithm presented in the paper may be used to classify red blood cell, healthy or 

infected. These experimental results show that the accuracy is 94.60%. Despite the fact that plausible 

diagnosis of malaria parasite using these features, a final system based on this algorithm alone may not 

be practical for detecting parasites in schizont stage. Accordingly, a future study is needed to improve 

the quality of segmentation.  
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