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Abstract
We present all second order classical integrable systems of the cylindrical 
type in a three dimensional Euclidean space E3 with a nontrivial magnetic 
field. The Hamiltonian and integrals of motion have the form

H =
1
2

(
�p + �A(�x)

)2
+ W(�x),

X1 = ( pA
φ)

2 + sr
1(r,φ, Z) pA

r + sφ1 (r,φ, Z) pA
φ + sZ

1 (r,φ, Z) pA
Z + m1(r,φ, Z),

X2 = ( pA
Z)

2 + sr
2(r,φ, Z) pA

r + sφ2 (r,φ, Z) pA
φ + sZ

2 (r,φ, Z) pA
Z + m2(r,φ, Z).

Infinite families of such systems are found, in general depending on 
arbitrary functions or parameters. This leaves open the possibility of finding 
superintegrable systems among the integrable ones (i.e. systems with 1 or 2 
additional independent integrals).

Keywords: integrability, superintegrability, classical mechanics, magnetic 
field

1.  Introduction

This article is part of a research program the aim of which is to identify, classify and solve 
all superintegrable classical and quantum finite-dimensional Hamiltonian systems. We recall 
that a superintegrable system is one that allows more integrals of motion than degrees of 
freedom. For a review of the topic we refer to [1]. The best known superintegrable systems 
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are given by the Kepler-Coulomb [2–4] and the harmonic oscillator potentials [4–6]. A finite-
dimensional classical Hamiltonian system in a 2n-dimensional phase space is called inte-
grable (or Liouville integrable) if it allows n integrals of motion {X0 = H, X1, . . . , Xn−1} 
(including the Hamiltonian H). These n integrals must be well defined functions on the 
phase space. They must be in involution (Poisson commute pairwise, i.e. {Xi, Xj}P.B. = 0) 
and be functionally independent. The system is superintegrable if there exist further integrals 
{Y1, . . . , Yk}, 1 � k � n − 1, that are also well defined functions on the phase space. The 
entire set {X0 = H, X1, . . . , Xn−1, Y1, . . . , Yk} must be functionally independent and satisfy

{H, Xj}P.B. = 0, {Xi, Xj}P.B. = 0, {H, Ya}P.B. = 0,
i, j = 1, . . . , n − 1, a = 1, . . . , k, 1 � k � n − 1.

� (1)

Notice that {Ya, Xi}P.B. = 0, 1 � i � n − 1, and {Ya, Yb}P.B. = 0 is not required. Moreover, 
the Poisson brackets Zai = {Ya, Xi}P.B. and Zab = {Ya, Yb}P.B. generate a non–Abelian poly-
nomial algebra.

A systematic search for ‘natural’ Hamiltonians of the form

H =
1
2
�p 2 + W(�x)� (2)

that are superintegrable in the n-dimensional Euclidean space En started a long time ago  
[7–10] for n  =  2 and n  =  3. The integrals of motion Xi and Ya were restricted to being second 
order polynomials in the components p i of the momenta. Second order integrals of motion 
were shown to be related to the separation of variables in the Hamilton–Jacobi equation (and 
also the Schrödinger equation). All second order superintegrable systems in E2 and E3 were 
found [7, 10, 11]. Later developments for the Hamiltonian (2) and second order superintegra-
bility include extensions to En for n arbitrary, to general Riemannian, pseudo-Riemannian, 
and complex-Riemannian spaces [12–25].

More general Hamiltonians and their integrability and superintegrability properties are also 
being studied, in particular Hamiltonians with scalar and vector potentials both in E2 [26–34] 
and E3 [35–41].

In this article we focus on the case of a particle moving in an electromagnetic field in 
E3. It is described by a Hamiltonian with a scalar and vector potential, as in [36–40]. As 
opposed to previous articles, here we consider the ‘cylindrical case’ when we have two sec-
ond order integrals of motion of the ‘cylindrical type’. In the absence of the vector potential 
the Hamiltonian would allow the separation of variables in cylindrical coordinates so that the 
potential in (2) would have the form

W(�r) = W1(r) +
1
r2 W2(φ) + W3(Z),� (3)

with the transformations x = r cos(φ), y = r sin(φ) and z  =  Z.

2.  Formulation of the problem

Let us consider a moving particle in an electromagnetic field, in a three-dimensional space. In 
Cartesian coordinates, this simple system is described by the following Hamiltonian:

H =
1
2

(
�p + �A(�x)

)2
+ W(�x)� (4)
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where �p = ( p1, p2, p3) ≡ ( px, py, pz) are the components of linear momentum, and 
�x = (x1, x2, x3) ≡ (x, y, z) are the Cartesian spatial coordinates. The vector potential �A(�x) = (A1 
(�x), A2(�x), A3(�x)) ≡ (Ax(�x), Ay(�x), Az(�x)) and the scalar potential W(�x) depend only on the 
position �x . For practical reasons, the mass and electric charge of the particle have been set to 
1 and  −1, respectively.

The physical quantity related to the vector potential is the magnetic field

�B(�x) = ∇× �A(�x).� (5)

Let us consider integrals of motion which are at most quadratic in the momenta. They are of 
the form [36]:

X =

3∑
j=1

h j(�x) pA
j pA

j +

3∑
j,k,l=1

1
2
|εjkl|n j(�x) pA

k pA
l +

3∑
j=1

s j(�x) pA
j + m(�x)� (6)

where we have defined

pA
j = pj + Aj(�x)� (7)

and h j(�x), n j(�x), s j(�x) ( j = 1, 2, 3) and m(�x) are real valued functions. They must satisfy the 
determining equations provided by the fact that the Poisson bracket of the integral with the 
Hamiltonian must vanish, i.e.

{H, X}P.B. = 0� (8)

using the coefficients in front of each individual combination of powers in momenta. Those 
equations in Cartesian coordinates are listed in previous papers [36–40].

It is possible to express the h j(�x) and n j(�x) functions as polynomials depending on 20 real 
constants αab, which allows us to say that the highest order terms of the integral X are ele-
ments of the universal enveloping algebra of the Euclidean Lie algebra

X =
∑

1�a�b�6

αabYA
a YA

b +
3∑

j=1

s j(�x) pA
j + m(�x)� (9)

where

YA = ( pA
1 , pA

2 , pA
3 , lA1 , lA2 , lA3 ), lAi =

∑
1�j,k�3

εijkxjpA
k .

� (10)

We shall consider two integrals of motion X1 and X2 of the cylindrical type, in the sense 
that they imply separation of variables in cylindrical coordinates in the case of a vanishing 
magnetic field. Their exact form in the adequate system of coordinates will be specified below.

We use the following relations between Cartesian and cylindrical coordinates:

x = r cos(φ), y = r sin(φ), z = Z.� (11)

Given the structure of the canonical 1-form

λ = pxdx + pydy + pzdz = prdr + pφdφ+ pZdZ,� (12)

we obtain the following transformation for the linear momentum:

px = cos(φ) pr −
sin(φ)

r
pφ, py = sin(φ) pr +

cos(φ)

r
pφ, pz = pZ� (13)
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and similarly for the components of the vector potential. On the other hand, the components 
of the magnetic field are the components of the 2-form B = dA,

B = Bx(�x)dy ∧ dz + By(�x)dz ∧ dx + Bz(�x)dx ∧ dy

= Br(r,φ, Z)dφ ∧ dZ + Bφ(r,φ, Z)dZ ∧ dr + BZ(r,φ, Z)dr ∧ dφ.
�

(14)

This leads to the following transformation

Bx(�x) =
cos(φ)

r
Br(r,φ, Z)− sin(φ)Bφ(r,φ, Z),

By(�x) =
sin(φ)

r
Br(r,φ, Z) + cos(φ)Bφ(r,φ, Z),

Bz(�x) =
1
r

BZ(r,φ, Z).

� (15)

We can now rewrite both the Hamiltonian and the general form of an integral of motion in 
cylindrical coordinates.

3.  Hamiltonian and integrals of motion in the cylindrical case

We will first write down the general form of the Hamiltonian and integrals in cylindrical 
coordinates, and then restrict to the case of two integrals of motion which correspond to the 
so-called cylindrical case.

3.1.  Determining equations in cylindrical coordinates

In cylindrical coordinates, the Hamiltonian (4) takes the following form:

H =
1
2


(

pA
r

)2
+

(
pA
φ

)2

r2 +
(

pA
Z

)2


+ W(r,φ, Z),� (16)

where

pA
r = pr + Ar(r,φ, Z), pA

φ = pφ + Aφ(r,φ, Z), pA
Z = pZ + AZ(r,φ, Z).

� (17)
The integral of motion (6) now reads as follows

X = hr (r,φ, Z)
(
pA

r

)2
+ hφ (r,φ, Z)

(
pA
φ

)2
+ hZ (r,φ, Z)

(
pA

Z

)2

+ nr (r,φ, Z) pA
φpA

Z + nφ (r,φ, Z) pA
r pA

Z + nZ (r,φ, Z) pA
φpA

r

+ sr (r,φ, Z) pA
r + sφ (r,φ, Z) pA

φ + sZ (r,φ, Z) pA
Z + m (r,φ, Z) .

� (18)

The functions hr, . . . , nZ  can be obtained from the hj  and nj  via their transformations into 
cylindrical coordinates, and are expressed in terms of the same 20 constants αab.

Computing the Poisson bracket {H,X}P.B. in the cylindrical coordinates we obtain terms 
of order 3, 2, 1 and 0 in the components of �pA. The third order terms provide the following 
determining equations
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∂rhr = 0, ∂φhr = −r2∂rnZ , ∂Zhr = −∂rnφ,

∂rhφ = − 1
r2 ∂φnZ − 2

r3 hr, ∂φhφ = −1
r

nZ , ∂Zhφ = − 1
r2 ∂φnr − 1

r3 nφ,

∂rhZ = −∂Znφ, ∂φhZ = −r2∂Znr, ∂ZhZ = 0,

∂φnφ = −r2(∂ZnZ + ∂rnr).
�

(19)

In the second order terms we use equations (19) and rewrite derivatives of the vector potential 
�A  in terms of the magnetic field �B , to obtain

∂rsr = nφBφ − nZBZ ,

∂φsr = r2(nrBφ − 2hφBZ − ∂rsφ)− nφBr + 2hrBZ ,

∂rsZ = nZBr − ∂Zsr − nrBZ + 2hZBφ − 2hrBφ,

∂φsφ = −nrBr + nZBZ − 1
r

sr,

∂φsZ = r2(2hφBr − nZBφ − ∂Zsφ)− 2hZBr + nφBZ ,

∂ZsZ = nrBr − nφBφ.

� (20)

The first and zeroth order terms imply

∂rm = sZBφ − sφBZ + nφ∂ZW + nZ∂φW + 2hr∂rW,

∂φm = srBZ − sZBr + r2(nr∂ZW + 2hφ∂φW + nZ∂rW),

∂Zm = sφBr − srBφ + 2hZ∂ZW + nr∂φW + nφ∂rW,

� (21)

and

sr∂rW + sφ∂φW + sZ∂ZW = 0,� (22)

respectively.

3.2.  Reduction to the cylindrical case

The integrals of motion corresponding to the cylindrical case, i.e. the case which allows sepa-
ration of variables in cylindrical coordinates for a vanishing magnetic field, read

X1 = ( pA
φ)

2 + sr
1(r,φ, Z) pA

r + sφ1 (r,φ, Z) pA
φ + sZ

1 (r,φ, Z) pA
Z + m1(r,φ, Z),

X2 = ( pA
Z)

2 + sr
2(r,φ, Z) pA

r + sφ2 (r,φ, Z) pA
φ + sZ

2 (r,φ, Z) pA
Z + m2(r,φ, Z).

� (23)
For such integrals with specific values for the h and n coefficients, all of them being either 0 or 
1, it follows that system (19) is satisfied trivially for both X1 and X2. The system (20) applied 
to both integrals gives the following equations:

∂rsr
1 = 0, ∂φsφ1 = − sr

1

r
,

∂φsr
1 = −r2(∂rs

φ
1 + 2BZ), ∂φsZ

1 = r2(−∂Zsφ1 + 2Br),

∂rsZ
1 = −∂Zsr

1, ∂ZsZ
1 = 0,

� (24)
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∂rsr
2 = 0, ∂φsφ2 = − sr

2

r
,

∂φsr
2 = −r2∂rs

φ
2 , ∂φsZ

2 = −r2∂Zsφ2 − 2Br,

∂rsZ
2 = −∂Zsr

2 + 2Bφ, ∂ZsZ
2 = 0.

� (25)

The systems (21) and (22) reduce to

∂rm1 = sZ
1 Bφ − sφ1 BZ ,

∂φm1 = sr
1BZ − sZ

1 Br + 2r2∂φW,

∂Zm1 = sφ1 Br − sr
1Bφ,

� (26)

∂rm2 = sZ
2 Bφ − sφ2 BZ ,

∂φm2 = sr
2BZ − sZ

2 Br,

∂Zm2 = sφ2 Br − sr
2Bφ + 2∂ZW,

� (27)

and

sr
i∂rW + sφi ∂φW + sZ

i ∂ZW = 0 (i = 1, 2),� (28)

respectively.
Let us now consider the Poisson bracket {X1, X2}P.B., which must also vanish for an inte-

grable system. This provides further equations for every order in the momenta. First, for the 
second order, we have

∂φsφ2 = 0, ∂φsr
2 = 0, ∂Zsr

1 = 0, ∂φsZ
2 = ∂Zsφ1 − 2Br.� (29)

From those, we can already conclude, looking again at system (25), that sr
2 = 0. The first order 

terms in the same Poisson bracket {X1, X2}P.B. imply

sZ
2∂Zsr

1 + sφ2 ∂φsr
1 = 0,

−sφ1 (2Br + ∂φsZ
2 ) + sZ

2∂ZsZ
1 − sZ

1∂ZsZ
2

+sφ2 ∂φsZ
1 + sr

1(2Bφ − ∂rsZ
2 ) + 2∂Zm1 = 0,

−sZ
2 (2Br − ∂Zsφ1 ) + sφ2 ∂φsφ1

−sZ
1∂Zsφ2 − sr

1∂rs
φ
2 − 2∂φm2 = 0.

� (30)

From the zeroth order term we obtain

−sr
1∂rm2 + sφ2 ∂φm1 − sφ1 ∂φm2 + sZ

2∂Zm1 − sZ
1∂Zm2

+Br(sφ2 sZ
1 − sφ1 sZ

2 ) + Bφsr
1sZ

2 − BZsr
1sφ2 = 0.

� (31)

4.  Partial solution of determining equations and reduction to functions  
of one variable

The second order terms in momenta from the aforementioned vanishing Poisson brackets, 

i.e. systems (24), (25) and (29), provide a system of equations  for the functions sr,φ,Z
j  and 

the magnetic field Br,φ,Z  which can be easily solved. The solution is expressed in terms of 5 
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functions of one variable each: σ(r), ρ(r), τ(φ), ψ(φ) and µ(Z). We shall call them the auxil-
iary functions:

sr
1 =

d
dφ

ψ(φ), sφ1 = −ψ(φ)

r
− r2µ(Z) + ρ(r), sZ

1 = τ(φ),

sr
2 = 0, sφ2 = µ(Z), sZ

2 = −τ(φ)

r2 + σ(r)
� (32)

Br = − r2

2
d

dZ
µ(Z) +

1
2r2

d
dφ

τ(φ), Bφ =
τ(φ)

r3 +
1
2

d
dr

σ(r),

BZ =
−ψ(φ)

2r2 + rµ(Z)− 1
2

d
dr

ρ(r)− 1
2r2

d2

dφ2 ψ(φ).
� (33)

Equations (32) and (33) are the general solutions of equations (24), (25) and (29). We use them 
to eliminate the functions �s1,�s2 and �B  from the as yet unsolved PDEs (26)–(28) and (30), (31). 
Using (26), (27) and (30) we end up with one equation for each possible first derivative of 
both m1 and m2, one direct condition on µ(Z) and ψ(φ), and two equations which are further 
conditions on m1,Z and m2,φ
(
−r3µ(Z) + rρ(r)− ψ(φ)

) (
ψ′′(φ) + r2ρ′(r)

)
+
(
r3µ(Z) + rρ(r)

)
ψ(φ)

− ψ(φ)2 + r3τ(φ)σ′(r) + 2r6µ(Z)2 − 2r4ρ(r)µ(Z) + 2τ(φ)2 − 2r3m1,r = 0,

ψ′(φ)
(
2r3µ(Z)− r2ρ′(r)− ψ(φ)− ψ′′(φ)

)

+ τ(φ)
(
r4µ′(Z)− τ ′(φ)

)
+ 4r4Wφ − 2r2m1,φ = 0,(

τ ′(φ)− r4µ′(Z)
) (

−r3µ(Z) + rρ(r)− ψ(φ)
)

− ψ′(φ)
(
r3σ′(r) + 2τ(φ)

)
− 2r3m1,Z = 0,

r3µ(Z)ψ′′(φ) + r3σ′(r)
(
r2σ(r)− τ(φ)

)
− 2r6µ(Z)2

+ r5µ(Z)ρ′(r) + r3µ(Z)ψ(φ) + 2r2σ(r)τ(φ)− 2τ(φ)2 − 2r5m2,r = 0,(
r4µ′(Z)− τ ′(φ)

) (
r2σ(r)− τ(φ)

)
− 2r4m2,φ = 0,

− r4µ(Z)µ′(Z) + µ(Z)τ ′(φ) + 4r2WZ − 2r2m2,Z = 0,
µ(Z)ψ′′(φ) = 0,(
−r4µ(Z) + r2ρ(r)− rψ(φ)

)
µ′(Z) + µ(Z)τ ′(φ) + 2m1,Z = 0,

τ ′(φ)
(
r2σ(r)− τ(φ)

)
+ r4τ(φ)µ′(Z) + r3µ(Z)ψ′(φ) + 2r4m2,φ = 0.

� (34)
From (28) and (31) we obtain 3 further equations

(
r2σ(r)− τ(φ)

)
WZ + r2µ(Z)Wφ = 0,(

−r3µ(Z) + rρ(r)− ψ(φ)
)

Wφ + r(ψ′(φ)Wr + τ(φ)WZ) = 0,

2r4 (r3µ(Z)− rρ(r) + ψ(φ)
)

m2,φ + 2r3 (r2σ(r)− τ(φ)
)

m1,Z

+ r3µ(Z)ψ′(φ)ψ′′(φ) + 2r5µ(Z)m1,φ − 2r5τ(φ)m2,Z

+
(
r3 (r2σ(r)− τ(φ)

)
σ′(r)− 2r6µ(Z)2 + r5µ(Z)ρ′(r)

+r3µ(Z)ψ(φ) + 2r2σ(r)τ(φ)− 2τ(φ)2 − 2r5m2,r
)
ψ′(φ)

−
(
r2 (r3µ(Z)− rρ(r) + ψ(φ)

)
σ(r)

+ τ(φ) (rρ(r)− ψ(φ)))
(
r4µ′(Z)− τ ′(φ)

)
= 0.

� (35)

F Fournier et alJ. Phys. A: Math. Theor. 53 (2020) 085203
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Before summing up the results of this section in the form of a reduced system of deter-
mining equations let us analyze the PDEs (34) and (35). First of all, m1,Z and m2,φ appear in 
(34) twice each. Since the two values must coincide we obtain two constraints on the auxil-
iary functions. A further constraint µ(Z)ψ′′(φ) = 0 is explicit in (34). The remaining 6 equa-
tions in (34) are used to express all first order derivatives m1,a, m2,a (a = r,φ, Z) in terms of 
Wφ, WZ and the auxiliary functions. Assuming that the functions m1 and m2 are sufficiently 
smooth we impose the Clairaut compatibility conditions ∂a∂bmi = ∂b∂ami  on their second 
derivatives. This gives us a further set of equations

m1,rφ : ψ′(φ)
(
−3ψ′′(φ) + r3ρ′′(r)− r3µ(Z)− r2ρ′(r) + rρ(r)− 4ψ(φ)

)

+ τ ′
(
φ)(r3σ′(r) + 2τ(φ)

)
− 2r4τ(φ)µ′(Z)− 4r5Wrφ − 8r4Wφ

+ (rρ(r)− ψ(φ))ψ′′′(φ) = 0,

m1,rZ : − r4µ′(Z)ψ′′(φ) + r4ψ′(φ)σ′′(r)− 6τ(φ)ψ′(φ)

+ τ ′(φ)
(
−r2ρ′(r) + 2rρ(r)− 3ψ(φ)

)
= 0,

m1,φZ : τ ′′(φ)
(
r3µ(Z)− rρ(r) + ψ(φ)

)
+ ψ′′(φ)

(
r3σ′(r) + 2τ(φ)

)

+ r5τ(φ)µ′′(Z) + ψ′(φ)
(
r4µ′(Z) + 3τ ′(φ)

)
+ 4r5WφZ = 0,

m2,rφ : − r3µ′(Z) (rσ′(r) + 2σ(r)) + µ(Z)ψ′(φ) = 0,

m2,rZ : rµ′(Z)
(
−2r3µ(Z) + r2ρ′(r) + ψ(φ)

)
− 4r3WrZ + 2µ(Z)τ ′(φ) = 0,

m2,φZ : r2 (τ(φ)− r2σ(r)
)
µ′′(Z) + τ ′′(φ)µ(Z) + 4r2WφZ = 0.

� (36)
Equations (36) can be solved for the second mixed derivatives of the potential Wrφ, WrZ and 
WφZ  in terms of Wφ and the auxiliary functions. The identities for the mixed third order deriva-
tives of W are satisfied identically as a consequence of the compatibility of the second order 
ones.

Finally we substitute the first order derivatives m1,a, m2,a from (34) into (35) and obtain a 
system of linear inhomogeneous algebraic equations for the first order derivatives Wr, Wφ, WZ. 
Implementing the procedure described above we obtain the reduced system of determining 
equations presented in the following section 5.

5.  Reduced determining system

The determining system now reduces to two conditions on the auxiliary functions, three equa-
tions  from (36) that involve mixed second derivatives of W, and a linear algebraic system 
involving all first derivatives of W. We list them all here:

ψ′(φ)
(
r3σ′(r) + 2τ(φ)

)
− τ ′(φ) (rρ(r)− ψ(φ)) = 0,� (37a)

µ(Z)ψ′(φ) + r3σ(r)µ′(Z) = 0,� (37b)

Wrφ = −2
r

Wφ +
1

4r5

(
ψ′(φ)

(
−3φ′′(φ) + r3ρ′′(r)− r3µ(Z)− r2ρ′(r) + rρ(r)− 4ψ(φ)

)

+ τ ′(φ)
(
r3σ′(r) + 2τ(φ)

)
− 2r4τ(φ)µ′(Z)− ψ′′′(φ) (ψ(φ)− rρ(r))

)
,

WφZ = − 1
4r2

(
r2µ′′(Z)

(
τ(φ)− r2σ(r)

)
+ τ ′′(φ)µ(Z)

)
,

WrZ =
1

4r3

(
rµ′(Z)

(
−2r3µ(Z) + r2ρ′(r) + ψ(φ)

)
+ 2µ(Z)τ ′(φ)

)
,

� (38)
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


0 r2µ(Z) r2σ(r)− τ(φ)

ψ′(φ) ρ(r)− r2µ(Z)− ψ(φ)
r τ(φ)

0 4r7µ(Z) −4r5τ(φ)




︸ ︷︷ ︸

·




Wr

Wφ

WZ




︸ ︷︷ ︸
=




0
0

α(r,φ, Z)




︸ ︷︷ ︸
M · ∇W = �α

� (39)
where

α(r,φ, Z) =− ψ′(φ)
((
−r5σ(r) + r3τ(φ)

)
σ′(r)− r5µ(Z)ρ′(r) + 2τ(φ)2

−2r2σ(r)τ(φ) + r3µ(Z)
(
r3µ(Z) + rρ(r)− 2ψ(φ)

))

− τ ′(φ)
(
(−rρ(r) + ψ(φ)) τ(φ)− r2σ(r)

(
r3µ(Z)− rρ(r) + ψ(φ)

))

− r4µ′(Z)τ(φ) (rρ(r)− ψ(φ)) .
� (40)

The rank of the matrix M can be either 3, 2 or 1. We rule out the rank 0 case since it leads to 
vanishing magnetic field, as seen directly from (33).

If the rank is 3, then the determinant of M

det(M) = 4r9ψ′(φ)µ(Z)σ(r)� (41)

is not zero and it implies a unique solution for each first derivative of W. We will explore this 
case shortly and show that it leads to a contradiction.

If instead the rank is either 2 or 1, then det(M) = 0, and from (41), there are a priori three 
possible cases:

	 (a)	�ψ′(φ) = 0,
	(b)	�ψ′(φ) �= 0 and µ(Z) = 0,
	 (c)	�ψ′(φ) �= 0, µ(Z) �= 0 and σ(r) = 0. However, we observe that this is inconsistent with 

(37b), so we can already rule this case out.

We shall first show that we must have α = 0 in all these cases, allowing us to simplify further 
considerations below.

	(a)	� ψ′(φ) = 0. This is equivalent to ψ(φ) = 0 since the function ψ has to be constant and thus 
it can be absorbed into a redefinition of ρ(r) in equations (32) and (33). The augmented 
matrix of the system of linear equations (39) can be written in its reduced row echelon 
form as




0 r2µ(Z) −τ(φ) α
4r5

0 ρ(r) 0 α
4r5

0 0 σ(r) − α
4r7


 .� (42)

		  From (37a) and (37b) we have

τ ′(φ)ρ(r) = 0, µ′(Z)σ(r) = 0.� (43)

		  Consequently, the expression for α reads

α = r5 (τ ′(φ)σ(r)µ(Z)− µ′(Z)ρ(r)τ(φ)) .� (44)
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		  Equations (43) give rise to four possible solutions

	 •	�τ ′(φ) = 0, µ′(Z) = 0, implying α = 0 directly,
	 •	�ρ(r) = 0, σ(r) = 0, implying α = 0 directly,
	 •	�τ ′(φ) = 0, σ(r) = 0, implying α = −r5µ′(Z)ρ(r)τ(φ),
	 •	�ρ(r) = 0, µ′(Z) = 0, implying α = r5τ ′(φ)σ(r)µ(Z).

		 On the other hand, the solvability condition of the linear system (39), namely that the rank 
of M and of the corresponding augmented matrix coincide, imply that if either ρ(r) = 0 
or σ(r) = 0, the function α must vanish. Thus in the two cases above we find constraints,

	 •	�if ψ′(φ) = τ ′(φ) = σ(r) = 0 we must have

µ′(Z)ρ(r)τ(φ) = 0,� (45)

	 •	�if ψ′(φ) = ρ(r) = µ′(Z) = 0 we must have

τ ′(φ)σ(r)µ(Z) = 0.� (46)

	(b)	�ψ′(φ) �= 0 and µ(Z) = 0. In this case equation (37b) is satisfied trivially. Equation (37a) 
we differentiate with respect to r, arriving at

(
r3σ′(r)

)′
=

τ ′(φ)

ψ′(φ)
(rρ(r))′ ,� (47)

		 leading to three distinct possibilities

	 •	�
(
r3σ′(r)

)′
= (rρ(r))′ = 0, i.e.

σ(r) =
Cσ

r2 + C̃σ , ρ(r) =
Cρ

r
.� (48)

		 Substituting (48) into equation (37a) we find

2 (τ(φ)− Cσ)ψ
′(φ) + (ψ(φ)− Cρ) τ

′(φ) = 0� (49)

		 which directly implies that α defined in (40) vanishes.

	 •	�
(
r3σ′(r)

)′
= τ ′(φ) = 0, i.e.

σ(r) =
Cσ

r2 + C̃σ , τ(φ) = Cτ .� (50)

		 Substituting (50) into equation  (37a) we find Cσ = Cτ  and that together with equa-
tion (50) implies again that we find α = 0 in (40).

	 •	�(
r3σ′(r))

′

(rρ(r))′ = τ ′(φ)
ψ′(φ) = λ �= 0, implying that

ρ(r) =
1
λ

r2σ′(r) +
Cρ

r
, τ(φ) = λψ(φ) + Cτ .� (51)

		 However, substituting (51) into (37a) and differentiating it with respect to φ we arrive at 
λψ′(φ) = 0 which contradicts our assumptions λ �= 0 and ψ′(φ) �= 0.

Thus we see that for all solutions of the determining equations we have α = 0. In most cases 
α = 0 by virtue of (37a) and (37b) alone, in two cases the condition that the augmented matrix 
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of the system (39) and the matrix M have the same rank leads to certain additional constraints, 
see equations (45) and (46).

We are now ready to split the classification problem into three main cases according to the 
rank of the matrix M, which leads to various classes of potentials and magnetic fields.

6.  Solutions of determining equations for Case 1: det(M) �= 0 (rank(M) = 3)

Let us begin with the seemingly most complicated case: the case where the determinant of M 
is not equal to zero, or in other words, the rank of M is 3. We are going to prove that this case 
leads to an inconsistency and has no solutions.

Recalling (41), this requires that ψ′(φ) �= 0,µ(Z) �= 0 and σ(r) �= 0. From (37b) we have 
ψ′′(φ) = 0. We can assume that ψ(φ) = ψ1φ  where the constant ψ1 satisfies ψ1 �= 0, since 
an additive constant would be absorbed into ρ(r) by a simple redefinition. Looking at equa-
tion (37b), it becomes obvious that σ(r) takes the following form

σ(r) =
σ0

r3 , σ0 �= 0.� (52)

Equation (37a) then becomes

ψ1 (−3σ0 + 2rτ(φ))− τ ′(φ)
(
r2ρ(r)− rψ1φ

)
= 0.� (53)

Differentiation with respect to r gives

2ψ1τ(φ)− τ ′(φ)
(
2rρ(r) + r2ρ′(r)− ψ1φ

)
= 0.� (54)

From this point we can separate the variables r and φ if τ ′(φ) �= 0. Notice that this has to be 
true since τ ′(φ) = 0 would imply that either ψ1 or τ(φ) is zero, from the previous equation. 
The latter is not possible in view of (53) since it would imply that σ0 = 0, which contradicts 
our initial hypothesis. This means that we can rewrite (54) as

2rρ(r) + r2ρ′(r) = k = ψ1φ+
2ψ1τ(φ)

τ ′(φ)
,� (55)

where k is a constant. Solving for ρ(r), we have

ρ(r) =
ρ0

r2 +
k
r

.� (56)

Heading back to (37a) using the newly known expression for ρ(r) and separating the various 
powers of r in it, we find that σ0ψ1 = 0, which is a contradiction. This means that the system 
is inconsistent and admits no solutions. The source of this inconsistency is that Wr, Wφ and WZ 
can be determined in a unique manner from the algebraic equation (39). They must however 
also be first derivatives of a smooth function W(r,φ, Z) and hence satisfy the Clairaut theorem 
on mixed derivatives. This contradicts (37a) and (37b).

7.  Solutions of determining equations for case 2: rank(M) = 2

There are two main subcases to consider here: (a) ψ′(φ) = 0, and (b) µ(Z) = 0 while 
ψ′(φ) �= 0, so that we ensure that the determinant (41) vanishes and thus the rank of M is at 
most 2.
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7.1.  Case 2a: ψ′(φ) = 0

It is understood again that ψ(φ) is set to zero. There are several ways for the rank to be equal 
to 2. We recall the reduced row echelon form of the matrix M




0 r2µ(Z) −τ(φ)

0 ρ(r) 0
0 0 σ(r)


 .� (57)

The rank of a matrix is the largest size of its invertible square submatrices. Thus for the rank of 
the matrix (57) to be 2, at least one of the three minors involving the second and third column 
must be non-zero. The possibilities are as follows:

	(1)	�τ(φ)ρ(r) �= 0, and then µ(Z) and σ(r) are arbitrary; 
	(2)	�µ(Z)σ(r) �= 0, and then τ(φ) and ρ(r) are arbitrary; 
	(3)	�ρ(r)σ(r) �= 0, and then µ(Z) and τ(φ) are arbitrary.

Let us consider these cases one by one.

	(1)	�τ(φ)ρ(r) �= 0.

		 From (37a), we have that τ(φ) = τ0 is a non-zero constant. Now recall that ρ(r) �= 0 
implies that Wφ = − 1

4µ
′(Z)τ(φ), then notice that ρ(r)Wφ = 0. So Wφ = 0, and 

µ(Z) = µ0 is a constant. It follows that WZ  =  0. All of (38) is then satisfied trivially. The 
solution for the magnetic field and the potential reads

W = W(r), Br = 0, Bφ =
τ0

r3 +
1
2
σ′(r), BZ = µ0r − 1

2
ρ′(r).� (58)

		 The integrals (23) are determined by

sr
1 = 0, sφ1 = ρ(r)− r2µ0, sZ

1 = τ0,

m1 =
1
2

(
τ0σ(r)− r2µ0ρ(r)−

(τ0

r

)2
)
+

1
4
(
ρ(r)2 + µ2

0r4) ,

sr
2 = 0, sφ2 = µ0, sZ

2 = σ(r)− τ0

r2 ,

m2 =
1
2

(
ρ(r)µ0 − µ2

0r2 − τ0σ(r)
r2

)
+

1
4

(
σ(r)2 +

(τ0

r2

)2
)

.

� (59)

		 Recalling (15), we express the system (58) in Cartesian coordinates

W = W
(√

x2 + y2
)

,

Bx = −y

(
τ0

(x2 + y2)
2 + S

(√
x2 + y2

))
,

By = x

(
τ0

(x2 + y2)
2 + S

(√
x2 + y2

))
,

Bz = µ0 − P
(√

x2 + y2
)

,

� (60)

		 where S(r) = σ′(r)
2r  and P(r) = ρ′(r)

2r .
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	(2)	�µ(Z)σ(r) �= 0.
		 The computation is very similar to the previous subcase. This time from (37b) we see that 

µ′(Z)σ(r) = 0, so µ(Z) = µ0 is a non-zero constant. Now recall that σ(r) �= 0 implies 
that WZ = 1

4r2 τ
′(φ)µ(Z), and notice that σ(r)WZ = 0. So WZ  =  0, and τ(φ) = τ0 is a con-

stant. It follows that Wφ = 0, and we have the same solution for W(r,φ, Z). The magnetic 
field is also the same, except that now ρ(r) is arbitrary and σ(r) is arbitrary and non-zero.

	(3)	�ρ(r)σ(r) �= 0.
		 Recall that this directly implies that µ(Z) = µ0 and τ(φ) = τ0 are constants. Once again 

(38) is the same and the solutions are identical, except that neither ρ(r) nor σ(r) can be 
equal to zero.

Thus the results for the case rankM = 2 and ψ′(φ) = 0 take the form (58) (or, equivalently, 
(60)). We notice that for the system (58) the two quadratic integrals (23) can be reduced to the 
first order integrals

X̃1 = pA
φ +

ρ(r)
2

− µ0r2

2
, X̃2 = pA

Z +
σ(r)

2
− τ0

2r2 .� (61)

Thus the system (60) was already encountered in [36], see equation (76) therein. We notice 
that without any loss of generality we can absorb the constants τ0 and µ0 into a redefinition of 
σ(r) and ρ(r), i.e. set τ0 = µ0 = 0 in (58), (60) and (61).

7.2.  Case 2b: µ(Z ) = 0, ψ′(φ) �= 0

Under these assumptions equations (38) directly imply that the variable Z can be separated 
from the other two variables r and φ in the potential W, i.e.

W(r,φ, Z) = W12(r,φ) + W3(Z).� (62)

The reduced row echelon form of M becomes



rψ′(φ) rρ(r)− ψ(φ) 0
0 0 σ(r)
0 0 τ(φ)


 .� (63)

Our assumption ψ′(φ) �= 0 implies that rρ(r)− ψ(φ) �= 0. Thus to have rank M = 2 we have 
two possibilities, namely σ(r) �= 0 or τ(φ) �= 0. Either of them implies

WZ = 0.� (64)

Since the separation of the potential (62) is defined up to an additive constant, we can set 
W3(Z)  =  0, i.e. we have W(r,φ, Z) = W12(r,φ) ≡ W(r,φ).

	(1)	� σ(r) �= 0.
		  We first rewrite (37a) in the following way:

r3σ′(r) + 2τ(φ)− τ ′(φ)

ψ′(φ)
(rρ(r)− ψ(φ)) = 0.� (65)

		  Differentiation with respect to φ leads to the equation:

3τ ′(φ) + ψ(φ)
τ ′′(φ)ψ′(φ)− τ ′(φ)ψ′′(φ)

ψ′(φ)2 = rρ(r)
τ ′′(φ)ψ′(φ)− τ ′(φ)ψ′′(φ)

ψ′(φ)2 .

� (66)
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If τ ′′(φ)ψ′(φ)− τ ′(φ)ψ′′(φ) �= 0 we can separate the variables r and φ. If instead this 
expression vanishes, we directly conclude from (66) that τ ′(φ) = 0, thus τ(φ) = τ0 is a 
constant. We study both situations separately.

	(1.1) � τ ′′(φ)ψ′(φ)− τ ′(φ)ψ′′(φ) = 0, i.e. τ(φ) = τ0.
Equation (37a) now reads r3σ′(r) = −2τ0; thus, we have σ(r) = τ0

r2 + σ0. This reduces 
the system (37a)–(39) to the following two equations

rψ′(φ)Wr + (rρ(r)− ψ(φ))Wφ = 0,� (67)

ψ′(φ)
(
−3ψ′′(φ) + r3ρ′′(r)− r2ρ′(r) + rρ(r)− 4ψ(φ)

)

+ ψ′′′(φ) (rρ(r)− ψ(φ))− 4r5Wrφ − 8r4Wφ = 0.
� (68)

The magnetic field takes the form

Bφ = 0, Br = 0, BZ = −ρ′(r)− ψ′′(φ) + ψ(φ)

2r2 .� (69)

Thus the motion of the system splits into a motion in the xy-plane under the influence of 
the potential W(r,φ) and the perpendicular magnetic field BZ(r,φ) (a problem discussed 
by McSween and Winternitz in polar coordinates in [27]) plus a free motion in the 
z-direction. The integral X2 reduces to a first order one

X̃2 = pA
Z +

σ0

2� (70)

and in a suitably chosen gauge becomes simply p Z.

	(1.2) � τ ′′(φ)ψ′(φ)− τ ′(φ)ψ′′(φ) �= 0.
In this case we can separate the variables r and φ in (66), arriving at the equations

3τ ′(φ)ψ′(φ)2

τ ′′(φ)ψ′(φ)− τ ′(φ)ψ′′(φ)
+ ψ(φ) = ρ0 = rρ(r),� (71)

where ρ0 is the separation constant. Solving them we find

ρ(r) =
ρ0

r
, τ(φ) = τ0 +

τ1

(ψ(φ)− ρ0)2 .� (72)

From equation (37a) we find σ(r) = τ0
r2 + σ0.

Next, we insert these results into the remaining equations (38)–(39) and find two equa-
tions which read

rψ′(φ)Wr + (ρ0 − ψ(φ))Wφ = 0,
− 3ψ′(φ)ψ′′(φ)− 4ψ′(φ) (ψ(φ)− ρ0)− ψ′′′(φ)(ψ(φ)− ρ0)

− 4τ 2
1

(ψ(φ)− ρ0)
5 ψ

′(φ)− 4r5Wrφ − 8r4Wφ = 0.
� (73)

We can rewrite β(φ) = ψ(φ)− ρ0 and integrate the second equation once with respect 
to φ, arriving at the system
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rβ′(φ)Wr − β(φ)Wφ = 0� (74a)

− β(φ)β′′(φ)− β′(φ)2 − 2β(φ)2 +
τ 2

1

β(φ)4

− 4r5Wr − 8r4W(r,φ)− f (r) = 0.
�

(74b)

Substituting for Wr from (74a) into (74b) we find expressions for both Wr and Wφ. 
Substituting them into (73) we find that

f (r) =
f1
4
+ f2r4� (75)

in (74b), where f 1, f 2 are integration constants. Next, we find solving (74a) the explicit 
form of the potential in terms of the yet unknown function β(φ)

W = − f2
8
+

W̃(φ)

r2 +
β(φ)β′′(φ) + β′(φ)2 + f1

4 − τ 2
1

β(φ)4 + 2β(φ)2

8r4 .� (76)

The function W̃(φ) is determined by (74b) and up to a constant shift of the potential 
reads

W̃(φ) =
W0

β(φ)2 +
f2
8

,� (77)

where W0 is an arbitrary constant. The potential thus becomes fully determined,

W =
W0

r2β(φ)2 +
β(φ)β′′(φ) + β′(φ)2 + f1

4 − τ 2
1

β(φ)4 + 2β(φ)2

8r4 .� (78)

The sole remaining equation (74b) becomes an equation for the uknown function β(φ) 
only, namely

β′(φ)
(
7β(φ)β′′(φ) + 4β′(φ)2 + 12β(φ)2 + f1

)
+ β(φ)2β′′′(φ) = 0.� (79)

This equation can be integrated twice, i.e. reduced to a first order ODE. In order to do 
this we must multiply by β(φ) and integrate, then multiply by β′(φ)β(φ) and integrate 
again. The result is

4β(φ)4β′(φ)2 + 4β(φ)6 − 4β1β(φ)
2 + f1β(φ)4 = β2� (80)

where β1,β2 are the constants of integration. Substituting γ(φ) = β(φ)2 we can re-
express it as

γ(φ)γ′(φ)2 + 4γ(φ)3 − 4β1γ(φ) + f1γ(φ)2 = β2.� (81)

In the special case where β2 = 0, it is possible to solve this equation and the solution is

γ(φ) =

√
64β1 + f 2

1 sin (2(φ− φ0))− f1

8
.� (82)
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Under the assumption that f 1  <  0, f1
8 < β1 < 0 the function β(φ) is well defined, 

bounded and positive,

β(φ) =

√√√√
√

64β1 + f 2
1 sin (2(φ− φ0))− f1

8
.� (83)

To our knowledge for β2 �= 0 the solution of (81) cannot be expressed in terms of known 
analytic functions.

The magnetic field is also expressed in terms of the function β(φ) and reads

Br = −τ1

√
4β1β(φ)2 + β2 − 4β(φ)6 − f1β(φ)4

2r2β(φ)5 ,

Bφ =
τ1

r3β(φ)2 , BZ =
2β1β(φ)

2 + β2

4r2β(φ)5 .
�

(84)

(The sign of the square root depends on the choice of the branch of the square root of 
β′(φ) in (80).)

For example, for the solution (82) we find the following structure of the magnetic field

Br = −
8τ1

√
f 2
1 + 64β1 cos (2(φ− φ0))

r2

(√
f 2
1 + 64β1 sin (2(φ− φ0))− f1

)2 ,

Bφ =
8τ1

r3
√

64β1 + f 2
1 sin (2(φ− φ0))− f1

,

BZ =
β1

2r2



√

64β1 + f 2
1 sin (2(φ− φ0))− f1

8




− 3
2

.

� (85)

Using (80) the potential (78) simplifies to an explicit function of β(φ),

W =
W0

r2β(φ)2 − 4τ 2
1 + β2

32β(φ)4r4 .� (86)

In particular, for the solution (82) we find

W =
8W0

r2

(√
f 2
1 + 64β1 sin (2(φ− φ0))− f1

)

− 8τ 2
1

r4

(√
f 2
1 + 64β1 sin (2(φ− φ0))− f1

)2 .
�

(87)
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The integrals (23) are determined by

sr
1 =

√
4β1β(φ)2 + β2 − 4β(φ)6 − β(φ)4f1

2β(φ)2 ,

sφ1 = −β(φ)

r
, sZ

1 =
β(φ)2τ0 + τ1

β(φ)2 ,

m1 =
2W0

(β(φ))
2 − 4β(φ)2τ0τ1 + 2β1β(φ)

2 + 4τ 2
1 + β2

8β(φ)4r2 ,

sr
2 = 0, sφ2 = 0, sZ

2 = σ0 −
τ1

r2β(φ)2 ,

m2 =
τ1

β(φ)2r2

(
τ1

4β(φ)2r2 − σ0

2

)
.

� (88)

From the presence of the parameters τ0 and σ0  in the integrals on which the magnetic 
field and the potential do not depend we deduce that the integral X2 of the system 
(84)–(86) actually can be reduced to a first order one, namely

X̃2 = pA
Z − τ1

2β(φ)2r2 .� (89)

(2) τ(φ) �= 0. 
In this case it is now understood that there is no constraint on σ(r) yet. But in the previous 
case we never actually considered a case where τ(φ) would vanish, and there was no 
division by σ(r), so we can follow the same splitting as well as some of the same results. 
So the first subcase is once again the polar case treated in [27] but with τ(φ) �= 0, and 
the second subcase is again the same as in (84) and (86) while taking (74a)–(74b) into 
account.

8.  Solutions of determining equations for case 3: rank(M) = 1

Once again there are only two consistent ways for the determinant of M to vanish, i.e. ψ′(φ) = 0 
which without loss of generality becomes ψ(φ) = 0, and µ(Z) = 0 while ψ′(φ) �= 0.

8.1.  Case 3a: ψ′(φ) = 0

We have the same reduced row echelon form (57) for M. This time around we ask the rank to 
be 1, so every minor of size 2 has to vanish, but there has to remain at least one non-zero entry. 
There are four possibilities, one for each function to individually be non-zero,

	(1)	�µ(Z) �= 0, this implies that σ(r) = 0 and ρ(r)τ(φ) = 0,
	(2)	�µ(Z) = 0, τ(φ) �= 0, this implies that ρ(r) = 0,
	(3)	�µ(Z) = 0, τ(φ) = 0 and ρ(r) �= 0, this implies that σ(r) = 0,
	(4)	�µ(Z) = 0, τ(φ) = 0 and ρ(r) = 0, this implies that σ(r) �= 0.

Let us now consider these cases separately

	(1)	� µ(Z) �= 0, σ(r) = 0, ρ(r)τ(φ) = 0.

		  We use the fact that ρ(r)Wφ = 0, which further splits the problem into two subcases.
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	(a)	� Let us first consider what happens when ρ(r) = 0. Plugging everything we know into 
(37a), (37b), (38) and (39), we have the remaining four equations:

Wrφ = −2
r

Wφ +
1

2r5 τ
′(φ)τ(φ)− 1

2r
τ(φ)µ′(Z),� (90a)

WφZ = −1
4
µ′′(Z)τ(φ)− 1

4r2 τ
′′(φ)µ(Z),� (90b)

WrZ = − r
2
µ′(Z)µ(Z) +

1
2r3 µ(Z)τ

′(φ),� (90c)

r2µ(Z)Wφ − τ(φ)WZ = 0.� (90d)

		  We introduce M′(Z) = µ(Z) and T ′(φ) = τ(φ). Integrating (90b) with respect to Z 
and φ we find an expression for the potential in terms of two functions of two variables 
each:

W(r,φ, Z) = − 1
4r2 τ

′(φ)M(Z)− 1
4

T(φ)µ′(Z) + F1(r,φ) + F2(r, Z).� (91)

		  This expression for W we substitute into (90c), finding F2(r,Z). Inserting it into (90a) 
we find F1(r,φ). Thus we arrive at the explicit form of the potential

W(r,φ, Z) = − 1
4r2 T ′′(φ)M(Z)− 1

4
T(φ)M′′(Z)− r2

8
M′(Z)2

− 1
8r4 T ′(φ)2 + W1(r) +

1
r2 W2(φ) + W3(Z).

� (92)

		  We are left with a single equation (90d) to solve, which simplifies to

T(φ)T ′(φ)M′′′(Z)− M(Z)M′(Z)T ′′′(φ) = 4 (T ′(φ)W ′
3(Z)− M′(Z)W ′

2(φ)) .
� (93)

		  If we assume that τ(φ) �= 0, it is possible to separate the variables φ and Z by dividing 
the above expression by M′(Z)T ′(φ) and then differentiating with respect to φ and Z. 
This leads to the following condition:

T ′′′′(φ)T ′(φ)− T ′′′(φ)T ′′(φ)

T ′(φ)3 = −3C =
M′′′′(Z)M′(Z)− M′′′(Z)M′′(Z)

M′(Z)3 ,

� (94)
		  for some separation constant C. Reducing the order of the separated equations, we find 

that

M′(Z)2 = CM(Z)3 + C1M(Z)2 + C2M(Z) + C3,

T ′(φ)2 = CT(φ)3 + C̃1T(φ)2 + C̃2T(φ) + C̃3
� (95)

		  where C1, C2, C3, C̃1, C̃2, C̃3 are constants of integration. For C �= 0 the right hand side 
of (95) can be rewritten in terms of the roots of third order polynomials, e.g.

M′(Z)2 = C(M − M1)(M − M2)(M − M3),� (96a)

T ′(φ)2 = C(T − T1)(T − T2)(T − T3).� (96b)
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		  We are interested in real solutions. If the constants in (95) are real then Mi are either 
also real or one of them is real and the other two complex and mutually complex 
conjugate, and similarly for Mi, e.g.

M1 ∈ R, M2 = p + iq, M3 = p − iq, p, q ∈ R, q > 0.� (97)

		  Let us focus on (96a). If the three roots are all different and real then the solution 
of (96a) is best expressed in terms of sn2 (u, k) where sn (u, k) is the Jacobi elliptic 
sine function. The argument u is proportional to Z in (96a), the modulus k determines 
the real and imaginary periods of the Jacobi elliptic function. The values of k can be 
restricted to 0  <  k  <  1. The solutions of (96a) will be real in regions where the rhs is 
nonnegative. If two of the roots Mi are complex the solutions M(Z) are best expressed 
in terms of the elliptic cosine function cn (u, k). In the case of double roots the elliptic 
functions reduce to elementary ones and the module k takes one of the limiting values 
k  =  0 or k  =  1.

		  We shall not go into further details here and simply refer to the book [42] for a compre-
hensive and detailed review. Here we limit ourselves to several examples.

Example 1.  M1 > M2 > M(Z) > M3, C  >  0.
We put

M(Z) = (M2 − M3)sn2(u, k) + M3, k2 =
M2 − M3

M1 − M3
, u =

√
C(M1 − M3)

2
Z.

� (98)

Equation (96a) for M(Z) then reduces to the first order ODE defining the Jacobi sine function,
(

d sn (u, k)
d u

)2

=
(
1 − sn2 (u, k)

) (
1 − k2sn2 (u, k)

)
.� (99)

Notice that we have 0  <  k2  <  1 and the solution is real and finite, satisfying M3 � M(Z) � M2 
(since we have 0 � sn2 (u, k) � 1).

Example 2.  M(Z) > M1 > M2 > M3, C  >  0.
We put

M(Z) =
M1 − M2 sn2(u, k)

1 − sn2(u, k)
, k2 =

M2 − M3

M1 − M3
, u =

√
C(M2 − M3)

2
Z,� (100)

and this reduces (96a)–(99). We again have 0  <  k2  <  1. The solution (100) is real, periodic 
and singular with simple poles given by sn2(u, k) = 1.

The real period of all Jacobi functions depends on a number K(k). In particular we have

sn (u, k) = sn (u + 4K, k), K =
π

2
F
(

1
2

,
1
2

, 1; k2
)

� (101)

where F (a, b, c; z) is the Gauss hypergeometric function.
The next two examples are elementary solutions, i.e. cases when two roots of the polyno-

mial in (96a) coincide. They can either be obtained by direct integration of (96a) or as special 
limiting cases of solutions (98) and (100).
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Example 3.  M1 = M2 > M(Z) > M3, C  >  0
Putting M1 = M2 in (96a) and using sn (u, 1) = tanh u we obtain

M(Z) = (M1 − M3) tanh
2(u) + M3, u =

√
C(M1 − M3)Z

2
.� (102)

The solution (102) is real, has no singularities on the real axis and satisfies M(0)  =  M3, 
limu→±∞ M(u) = M1.

Example 4.  M(Z) > M1 > M2 = M3, C  >  0
For M2 = M3 we have k2  =  0 in (100) and use sn (u, 0) = sin u. The solution (100) reduces 

to

M(Z) =
M1 − M2 sin

2 u
1 − sin2 u

, u =

√
C(M1 − M2)

2
Z.� (103)

The solution (103) is real, periodic and has simple poles at sin2 u = 1, i.e. u =
(

j + 1
2

)
π, 

j ∈ Z.

Alternatively, we can transform equation  (95) for C �= 0 into the Weierstrass form by 
putting

M(Z) =
4
C

S(Z)− 2C̃1

3C
, S(Z) = ℘ (2Z, g2, g3)� (104)

where ℘ (2Z, g2, g3) is the Weierstrass elliptic function and g2, g3 are expressed in terms of 
the arbitrary constants C̃1, C̃2, C̃3 and C. Similar transformations can be performed for the 
function T(φ) to solve the equation (95) for T(φ) in terms of Jacobi or Weierstrass elliptic 
functions or their degenerate cases.

The functions W2(φ), W3(Z) are determined by equation  (93) which using (95) can be 
rewritten in a separated form

W ′
2(φ)

T ′(φ)
+

C1

4
T(φ) =

W ′
3(Z)

M′(Z)
+

C̃1

4
M(Z) = w0.� (105)

Thus the potential (92) is determined by solutions of (105),

W2(φ) = −C1

8
(T(φ))2

+ w0T(φ),

W3(Z) = − C̃1

8
(M(Z))2

+ w0M(Z),
� (106)

where the integration constants were without loss of generality absorbed into the function 
W1(r).

The magnetic field and the functions determining the integrals are expressed in terms of 
solutions M(Z), T(φ), W2(φ), W3(Z) of equation (93) as follows
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Br =
T ′′(φ)

2r2 − r2M′′(Z)
2

, Bφ =
T ′(φ)

r3 , BZ = rM′(Z),

sr
1 = 0, sφ1 = −r2M′(Z), sZ

1 = T ′(φ),

sr
2 = 0, sφ2 = M′(Z), sZ

2 = −T ′(φ)

r2 ,

m1 =
r4

4
(M′(Z))2 − (T ′(φ))

2

2r2 − M(Z)T ′′(φ)

2
+ 2W2(φ),

m2 = − r2 (M′(Z))2

2
+

(T ′(φ))
2

4r4 − M′′(Z)T(φ)
2

+ 2W3(Z).

� (107)

If C  =  0, we find solutions of (95) expressed in terms of exponentials and trigonometric 
functions. Choosing e.g.4 the periodic solution for τ  and unbounded solution for µ

µ(Z) = k1ek0Z + k2e−k0Z , τ(φ) = k̃1 cos(k̃0φ) + k̃2 sin(k̃0φ),� (108)

the corresponding functions T(φ) and M(Z) read

M(Z) =
k1ek0Z − k2e−k0Z + k3

k0
, C1 = k2

0,

T(φ) =
k̃1 sin(k̃0φ)− k̃2 cos(k̃0φ) + k̃3

k̃0
, C̃1 = −k̃2

0

�
(109)

where k0, k1, k2, k3, ̃k0, ̃k1, ̃k2 and ̃k3 are arbitrary parameters (replacing the arbitrary integration 
constants Cj, C̃j of (95)). The magnetic field and the potential take the form

Br = k̃0
k̃2 cos(k̃0φ)− k̃1 sin(k̃0φ)

2r2 + k0

(
k2e−k0Z − k1ek0Z

)
r2

2
,

Bφ =
k̃1 cos(k̃0φ) + k̃2 sin(k̃0φ)

r3 , BZ =
(
k1ek0Z + k2e−k0Z) r,

W = W1(r)−
r2(M′(Z))2

8
+

1
8

k̃2
0M(Z)2 + w0M(Z)+

+
8w0T(φ)− k2

0T(φ)2 − 2M(Z)T ′′(φ)

8r2 − (T ′(φ))2

8r4 − M′′(Z)T(φ)
4

� (110)

where substitution (109) is assumed. The integrals of motion are determined by the functions 
(107), as above.

In the case τ(φ) = 0 the solution is much more straightforward and we immediately arrive 
at the potential and the magnetic field

W = W1(r)−
r2

8
µ(Z)2 + W3(Z),

Br = − r2

2
µ′(Z), Bφ = 0, BZ = rµ(Z),

� (111)

4 By a different choice of the integration constants we can write µ periodic in Z, i.e. linear combination of sine and 
cosine. The choice of trigonometric versus exponential functions is governed by the sign of the constants C1 and C̃1.
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		 where µ(Z) �= 0 is an arbitrary nonvanishing function. The integrals are given by

sr
1 = 0, sφ1 = −r2µ(z), sZ

1 = 0, m1 =
r4

4
(µ(z))2 ,

sr
2 = 0, sφ2 = µ(z), sZ

2 = 0, m2 = − r2

2
(µ(z))2

+ 2W3(Z).
� (112)

		 Transforming the system into Cartesian coordinates, we find

W = W1

(√
x2 + y2

)
− x2 + y2

8
µ(z)2 + W3(z),

�B =
(
− x

2
µ′(z),− y

2
µ′(z),µ(z)

)
.

� (113)
		 Obviously, for this system the integral X1 reduces to a first order one

X̃1 = pA
φ − r2

2
µ(z)

� (114)
		 since the magnetic field and the potential are invariant with respect to rotations around 

z-axis.

	(b)	�On the other hand if we have ρ(r) �= 0, thus Wφ = 0, τ(φ) = 0 and there is only one 
remaining equation to be solved, namely

WrZ = − r
2
µ′(Z)µ(Z) +

1
4
µ′(Z)ρ′(r).� (115)

		 Solving for the potential, we conclude that both µ(Z) and ρ(r) remain arbitrary nonvan-
ishing functions, and the potential and magnetic field read

W = W1(r)−
r2

8
µ(Z)2 +

1
4
ρ(r)µ(Z) + W3(Z),

Br = − r2

2
µ′(Z), Bφ = 0, BZ = rµ(Z)− 1

2
ρ′(r).

�

(116)

		 In Cartesian coordinates they become

W = W1

(√
x2 + y2

)
− x2 + y2

8
µ(z)2 +

1
4
ρ
(√

x2 + y2
)
µ(z) + W3(z),

�B =
(
− x

2
µ′(z),− y

2
µ′(z),µ(z)− P

(√
x2 + y2

))
,

�
(117)

		 where P(r) = ρ′(r)
2r .

		 The integrals are determined by

sr
1 = 0, sφ1 = ρ(r)− r2µ(Z), sZ

1 = 0,

m1 =
r4

4
µ(Z)2 − r2

2
µ(Z)ρ(r) +

ρ(r)2

4
,

sr
2 = 0, sφ2 = µ(Z), sZ

2 = 0, m2 = − r2

2
µ(Z)2 +

µ(Z)ρ(r)
2

+ 2W3(Z).

� (118)

		 Also for this system the integral X1 reduces to a first order one

X̃1 = pA
φ +

ρ(r)− r2µ(Z)
2

� (119)
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		 since the magnetic field and the potential are invariant with respect to rotations around z-
axis. We notice that the system (111) together with its integrals is actually a limit of (116) 
as ρ(r) → 0, i.e. as an integrable system (111) does not need to be considered separately.

	(2)	�µ(Z) = 0, τ(φ) �= 0, ρ(r) = 0
		 In this case we have σ(r)WZ = 0, so a priori there are two possible subcases. However, 

σ(r) = 0 implies equations of the form (90a)–(90d) but with µ(Z) = 0. Equation (90d) 
together with our assumptions imposes WZ  =  0. Thus we must have WZ  =  0 and the only 
remaining equation reads

r3τ ′(φ)σ′(r) + 2τ ′(φ)τ(φ)− 4r5Wrφ − 8r4Wφ = 0,� (120)

		 which is easily integrated. We find

W = W1(r)−
1

8r4 τ(φ)
2 +

1
4r2 τ(φ)σ(r) +

1
r2 W2(φ),

Br =
1

2r2 τ
′(φ), Bφ =

1
r3 τ(φ) +

1
2
σ′(r), BZ = 0,

� (121)

		 where τ(φ) and σ(r) are arbitrary functions, τ(φ) not vanishing identically. The integrals 
(23) are defined by

sr
1 = 0, sφ1 = 0, sZ

1 = τ(φ), m1 =
τ(φ)

2

(
σ(r)− τ(φ)

r2

)
+ 2W2(φ),

sr
2 = 0, sφ2 = 0, sZ

2 = σ(r)− τ(φ)

r2 , m2 =
1
4

(
σ(r)− τ(φ)

r2

)2

.
� (122)

		 The integral X2 can be reduced to a first order one,

X̃2 = pA
Z +

1
2

(
σ(r)− τ(φ)

r2

)
.� (123)

		 In Cartesian coordinates we have

W = W1

(√
x2 + y2

)
− τ(φ)2

8 (x2 + y2)
2 +

τ(φ)σ
(√

x2 + y2
)

4(x2 + y2)
+

W2(φ)

x2 + y2 ,

Bx =
xτ ′(φ)

2 (x2 + y2)
2 − y

(
τ(φ)

(x2 + y2)
2 + S

(√
x2 + y2

))
,

By =
yτ ′(φ)

2 (x2 + y2)
2 + x

(
τ(φ)

(x2 + y2)
2 + S

(√
x2 + y2

))
,

Bz = 0,
�

(124)

		 where S(r) = σ′(r)
2r , and φ = arcsin

(
y√

x2+y2

)
.

	(3)	�µ(Z) = 0, τ(φ) = 0, σ(r) = 0 and ρ(r) �= 0
		 We have ρ(r)Wφ = 0, which implies that Wφ = 0. Again there is only one equation left 

to solve

WrZ = 0,� (125)
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		 i.e. we have

W = W1(r) + W3(Z), Br = 0, Bφ = 0, BZ = −1
2
ρ′(r).� (126)

		 Thus this class of systems is equivalent to the polar case in two dimensions, which 
was explored in [27], complemented by one-dimensional independent motion in the 
z-direction, governed by the potential W3(z). The integral X2 becomes the component of 
the Hamiltonian governing the dynamics in the z–direction, the integral X1 is the ‘polar’ 
integral in the xy–plane.

	(4)	�µ(Z) = 0, τ(φ) = 0, ρ(r) = 0, σ(r) �= 0.
		 We see that σ(r)WZ = 0 thus WZ  =  0. There is one 	 remaining equation

4r5Wrφ − 8r4Wφ = 0� (127)

		 which is identical to (120) with τ(φ) = 0. Thus the solution is

W = W1(r) +
1
r2 W2(φ), Br = 0, Bφ =

1
2
σ′(r), BZ = 0� (128)

		 and the integrals are obtained by setting τ(φ) = 0 in (122).

8.2.  Case 3b: µ(Z ) = 0, ψ′(φ) �= 0

Let us recall the reduced row echelon form of M for this case reads (63). For its rank to be 1, 
the only possibility is that both σ(r) and τ(φ) vanish. Equations (38) imply that the potential 
separates as

W(r,φ, Z) = W12(r,φ) + W3(Z).� (129)

Equations (37a)–(39) reduce to the two following equations which are identical to the ones 
considered in (67):

rψ′(φ)Wr + (rρ(r)− ψ(φ))Wφ = 0,

ψ′(φ)
(
−3ψ′′(φ) + r3ρ′′(r)− r2ρ′(r) + rρ(r)− 4ψ(φ)

)

+ ψ′′′(φ) (rρ(r)− ψ(φ))− 4r5Wrφ − 8r4Wφ = 0.

� (130)

The magnetic field reads

Br = 0, Bφ = 0, BZ = − 1
2r2

(
ρ′(r)r2 + ψ′′(φ) + ψ(φ)

)
.� (131)

Thus this class of systems is equivalent to the polar case in two dimensions, which was 
explored in previous work [27], complemented by one-dimensional independent motion in 
the z-direction, governed by the potential W3(z). As above, the integral X2 becomes the comp
onent of the Hamiltonian governing the dynamics in the z–direction, the integral X1 is the 
‘polar’ integral in the xy–plane.

9.  Conclusions

Let us first of all sum up the results of this study. The problem stated in the title and Introduction 
was formulated mathematically in section 3 and lead to the determining equations (24)–(31) 
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for the scalar potential W, the magnetic field �B  and the coefficients �s1, �s2, m1 and m2 of two 
second order integrals of motion X1 and X2 (18). All of the above functions are assumed to 
be smooth functions of 3 variables, the cylindrical coordinates r,φ, Z  in E3, with 0 � r < ∞, 
0 � φ < 2π , −∞ < Z < ∞. In section 4 we partially solve this overdetermined system of 28 
PDEs for 12 functions. We express the vector functions �B , �s1, �s2 in terms of 5 scalar auxiliary 
functions of one variable ρ(r), σ(r), τ(φ), ψ(φ) and µ(Z), see (32)–(33). We also derive a 
system of 12 equations (34)–(35) for the remaining scalar functions m1, m2 and W and the 
auxiliary functions. Some compatibility equations are presented in (36).

The reduced system of the determining equations is presented in section 5. It consists of 3 
PDEs for the scalar potential W(r,φ, Z) (38), 2 ODEs (37a) and (37b) for the auxiliary func-
tions and 3 algebraic equations (39) for the first derivatives Wr, Wφ and Wz. Equation (39) 
involves a matrix M depending only on the auxiliary functions. The rank of M satisfies 
0 � rank(M) � 3. The case rank(M) = 0 can be discarded since it implies that the magnetic 
field is absent, �B = 0. In section 6 we show that the reduced determining system has no solu-
tions for rank(M) = 3, i.e. the system is inconsistent.

The main results of this paper are obtained for rank(M) = 2 and rank(M) = 1, presented 
in sections 7 and 8. The obtained integrable magnetic fields �B(r,φ, Z) and W(r,φ, Z) are as 
follows:

	 (i)	�rank(M) = 2
		 The matrix M depends on all 5 auxiliary functions. The rank condition r(M) = 2 forces 

at least one of them to vanish. Three subcases can occur and in all of them the scalar 
potential splits into two parts as in (62).

	 (a)	�ψ(φ) = 0
The magnetic field and the potential read

Br = 0, Bφ =
τ0

r3 +
1
2
σ′(r), BZ = µ0r − 1

2
ρ′(r), W = W(r),

see equation  (58). The second order integrals X1 and X2 are actually squares of first 
order ones given in (61). They were already found and analysed in an earlier article [36].

	(b)	�ψ′(φ) �= 0, µ(Z) = 0, ( τ
′(φ)

ψ′(φ) )
′ = 0

		 We again find WZ  =  0, the magnetic field reads

Bφ = 0, Br = 0, BZ = −ρ′(r)− ψ′′(φ) + ψ(φ)

2r2 ,

		 the potential W(r,φ) depends only on a single function rψ(φ)−
∫

rρ(r)d r of the 
original variables r and φ and has to satisfy (68), i.e.

ψ′(φ)
(
−3ψ′′(φ) + r3ρ′′(r)− r2ρ′(r) + rρ(r)− 4ψ(φ)

)

+ ψ′′′(φ) (rρ(r)− ψ(φ))− 4r5Wrφ − 8r4Wφ = 0.

		 One of the integrals of motion can be reduced to X2 = pZ  and we obtain a two–dimen-
sional case in E2, analyzed in detail earlier in [27] and [28], where we refer the reader 
for a further discussion. In the perpendicular direction Z we have free motion.

	(c)	�ψ′(φ) �= 0, µ(Z) = 0, ( τ
′(φ)

ψ′(φ) )
′ �= 0
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		 The magnetic field and the potential read

Br = −τ1

√
4β1β(φ)2 + β2 − 4β(φ)6 − f1β(φ)4

2r2β(φ)5 ,

Bφ =
τ1

r3β(φ)2 , BZ =
2β1β(φ)

2 + β2

4r2β(φ)5 ,

W =
W0

r2β(φ)2 − 4τ 2
1 + β2

32β(φ)4r4 ,

		 see (84) and (86), β1 and β2 are arbitrary constants. Both the magnetic field and the 
potential are expressed in terms of one function β(φ) =

√
γ(φ) where γ(φ) satisfies 

the following nonlinear ODE

γ(φ)γ′(φ)2 + 4γ(φ)3 − 4β1γ(φ) + f1γ(φ)2 = β2

		 see (81). The integrals X1 and X2 are determined by equation (88).

	(ii)	�rank(M) = 1
		 All 5 auxiliary functions are a priori present in M but the rank condition forces at least 2 

of them to vanish. Again we obtain several cases:

	 (a)	�ψ(φ) = σ(r) = ρ(r) = 0, µ(Z) �= 0
		 The magnetic field

Br =
T ′′(φ)

2r2 − r2M′′(Z)
2

, Bφ =
T ′(φ)

r3 , BZ = rM′(Z)

		 and the potential

W(r,φ, Z) = − 1
4r2 T ′′(φ)M(Z)− 1

4
T(φ)M′′(Z)− r2

8
M′(Z)2 − 1

8r4 T ′(φ)2

+
w0

r2 T(φ) + w0M(Z)− C1

8r2 (T(φ))2 − C̃1

8
(M(Z))2

+ W1(r),

		 depend on arbitrary constants w0, C1, C̃1, arbitrary function W1(r) and two functions 
M(Z) and T(φ) which must satisfy

M′(Z)2 = C(M − M1)(M − M2)(M − M3),

T ′(φ)2 = C(T − T1)(T − T2)(T − T3)

		 see equations (96a) and (96b). Thus M(Z) and T(φ) can be expressed in terms of Jacobi 
or Weierstrass elliptic functions. In special cases this simplifies to elementary functions 
as in (102), (103), (110) and (111). The integrals are determined by equation (107).

	(b)	�ψ(φ) = σ(r) = τ(φ) = 0, µ(Z) �= 0, ρ(r) �= 0
		 The magnetic field and the potential read

Br = − r2

2
µ′(Z), Bφ = 0, BZ = rµ(Z)− 1

2
ρ′(r),

W = W1(r)−
r2

8
µ(Z)2 +

1
4
ρ(r)µ(Z) + W3(Z),
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		 see equation (116). The integrals are determined by (118), the integral X1 reduces to a 

first order one, X̃1 = pA
φ + ρ(r)−r2µ(Z)

2 .
	 (c)	�ψ(φ) = µ(Z) = ρ(r) = 0, τ(φ) �= 0
		 The magnetic field and the potential read

Br =
1

2r2 τ
′(φ), Bφ =

1
r3 τ(φ) +

1
2
σ′(r), BZ = 0,

W = W1(r)−
1

8r4 τ(φ)
2 +

1
4r2 τ(φ)σ(r) +

1
r2 W2(φ),

		 see equation (121). The integrals are defined by equation (122), the integral X2 reduces 

to a first order one X̃2 = pA
Z + 1

2

(
σ(r)− τ(φ)

r2

)
.

	(d)	�ψ(φ) = µ(Z) = σ(r) = τ(φ) = 0, ρ(r) �= 0
		 The magnetic field and the potential read

Br = 0, Bφ = 0, BZ = −1
2
ρ′(r), W = W1(r) + W3(Z),

		 see equation (126). This system is equivalent to the polar case in two dimensions, which 
was explored in [27], complemented by one–dimensional independent motion in the 
z-direction, governed by an arbitrary potential W3(z). The integral X2 is proportional 
to the component of the Hamiltonian governing the dynamics in the z–direction, 
X2 = p2

Z + 2W3(Z), the integral X1 can be reduced to the first order ‘polar’ integral in 

the xy–plane, X̃1 = pA
φ + ρ(r)

2 .
	 (e)	�ψ(φ) = τ(φ) = µ(Z) = ρ(r) = 0, σ(r) �= 0
		 The magnetic field and the potential read

Br = 0, Bφ =
1
2
σ′(r), BZ = 0, W = W1(r) +

1
r2 W2(φ),

		 see equation (128). The integrals are obtained by setting τ(φ) = 0 in (122).
	 (f)	�ψ(φ) �= 0, τ(φ) = µ(Z) = σ(r) = 0
		 The magnetic field reads

Br = 0, Bφ = 0, BZ = − 1
2r2

(
ρ′(r)r2 + ψ′′(φ) + ψ(φ)

)
.

		 The potential separates as

W(r,φ, Z) = W12

(
rψ(φ)−

∫
rρ(r)d r

)
+ W3(Z),

		 and its component W12 must satisfy

ψ′(φ)
(
−3ψ′′(φ) + r3ρ′′(r)− r2ρ′(r) + rρ(r)− 4ψ(φ)

)

+ ψ′′′(φ) (rρ(r)− ψ(φ))− 4r5Wrφ − 8r4Wφ = 0.

		 see equations (131), (129) and (130). Similarly as in the case (i.b) above, this system 
is equivalent to the polar case in E2, which was explored in previous work [27], com-
plemented by one-dimensional independent motion in the Z-direction, governed by the 
potential W3(Z). The integral X2 becomes the component of the Hamiltonian governing 
the dynamics in the z–direction, the integral X1 is the ‘polar’ integral in the xy–plane.
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This sums up the results on integrable systems of the considered type. Some of the poten-
tials and magnetic fields depend on arbitrary functions as well as constants. This leaves us 
with the freedom to impose further restrictions, in particular to request that the system be 
superintegrable, i.e. for 1 or 2 more integrals to exist.

Let us review the differences and similarities between the cases with and without magnetic 
fields:

	 (i)	�In both cases the leading part of the integral of motion lies in the enveloping algebra of 
the Euclidean Lie algebra e3.

	(ii)	�For �B = 0 a second order integral contains no first order terms. For �B �= 0 first order 
terms can be present.

	(iii)	�Second order integrability in En implies separation of variables in the Hamiton–Jacobi 
and Schrödinger equations for �B = 0, but not for �B �= 0.

	(iv)	�For �B = 0 second order integrable and superintegrable systems are the same in quantum 
and classical mechanics. For �B �= 0 this is not necessarily true.

	(v)	�For �B �= �0 ‘exotic potentials’ (expressed in terms of functions satisfying nonlinear ODEs) 
appear for second order integrability. For �B = �0 they only appear for higher order inte-
grability and superintegrability (N � 3). These exotic potentials are typically expressed 
in terms of elliptic functions, Painlevé transcendents or, in the classical case, solutions of 
algebraic equations.

Thus second order integrable and superintegrable systems in magnetic fields are similar to 
systems without magnetic fields but with integrals of order N, N � 3 [43–51].

Our future plans include the following. To find all superintegrable systems among the 
integrable ones in this article. To solve the classical equations of motion and verify that in 
maximally superintegrable systems all bounded trajectories are closed [52–54]. To determine 
the cylindrical type quantum integrable and superintegrable systems in a magnetic field. We 
expect the quantum maximally superintegrable systems to be exactly solvable [55–59].

Acknowledgments

FF acknowledges a fellowship from the FESP, Université de Montréal and financial support 
from the Czech Technical University in Prague during a research visit there. The research 
of LŠ was supported by the Czech Science Foundation (GAČR) project 17-11805S. That of 
PW was partially supported by a Discovery Grant from NSERC of Canada. The research was 
largely performed during mutual visits of the members of the author team and we thank each 
other’s institutions for their hospitality.

The authors thank Sébastien Bertrand and Antonella Marchesiello for discussions on the 
subject of this paper, and the anonymous reviewers for careful reading of our original manu-
script and pinpointing several misleading typos and notational ambiguities.

ORCID iDs

Libor Šnobl  https://orcid.org/0000-0002-7270-6251
P Winternitz  https://orcid.org/0000-0003-1671-1213

F Fournier et alJ. Phys. A: Math. Theor. 53 (2020) 085203

https://orcid.org/0000-0002-7270-6251
https://orcid.org/0000-0002-7270-6251
https://orcid.org/0000-0003-1671-1213
https://orcid.org/0000-0003-1671-1213


29

References

	 [1]	 Miller W, Post S and Winternitz P 2013 Classical and quantum superintegrability with applications 
J. Phys. A: Math. Theor. 46 423001

	 [2]	 Fock V 1935 Zur theorie des Wasserstoffatoms Z. Phys. 98 145–54
	 [3]	 Bargmann V 1936 Zur theorie des Wasserstoffatoms Z. Phys. 99 576–82
	 [4]	 Goldstein H, Poole C and Safko J 2002 Classical Mechanics (Reading, MA: Addison Wesley)
	 [5]	 Fradkin  D  M 1965 Three-dimensional isotropic harmonic oscillator and SU(3) Am. J. Phys. 

33 207–11
	 [6]	 Jauch J M and Hill E L 1940 On the problem of degeneracy in quantum mechanics Phys. Rev. 

57 641–5
	 [7]	 Friš J, Mandrosov V, Smorodinsky Y A, Uhlíř M and Winternitz P 1965 On higher symmetries in 

quantum mechanics Phys. Lett. 16 354–6
	 [8]	 Winternitz  P, Smorodinsky  Y  A, Uhlíř  M and Friš  I 1967 Symmetry groups in classical and 

quantum mechanics Sov. J. Nucl. Phys. 4 444–50
	 [9]	 Winternitz P and Friš J 1965 Invariant expansions of relativistic amplitudes and the subgroups of 

the proper Lorentz group Sov. J. Nucl. Phys. 1 636–43
	[10]	 Makarov  A  A, Smorodinsky  J  A, Valiev  K and Winternitz  P 1967 A systematic search for 

nonrelativistic systems with dynamical symmetries Il Nuovo Cimento A 52 1061–84
	[11]	 Evans N W 1990 Superintegrability in classical mechanics Phys. Rev. A 41 5666–76
	[12]	 Miller W Jr 1977 Symmetry and Separation of Variables (Reading, MA: Addison Wesley)
	[13]	 Kalnins E G 1986 Separation of Variables for Riemannian Spaces of Constant Curvature (Pitman 

Monographs and Surveys in Pure and Applied Mathematics) (Harlow: Longman Scientific 
Technical)

	[14]	 Escobar-Ruiz M A, Kalnins E G and Miller W 2017 Separation equations for 2D superintegrable 
systems on constant curvature spaces J. Phys. A: Math. Theor. 50 385202

	[15]	 Kalnins E G, Kress  J M and Miller W 2012 Superintegrability in a non-conformally-flat space  
J. Phys. A: Math. Theor. 46 022002

	[16]	 Kalnins E G, Kress J M and Miller W 2007 Fine structure for 3D second order superintegrable 
systems: 3-parameter potentials J. Phys. A: Math. Theor. 40 5875

	[17]	 Kalnins  E  G, Miller  W and Pogosyan  G  S 2007 Exact and quasiexact solvability of second 
order superintegrable quantum systems. II. Relation to separation of variables J. Math. Phys. 
48 023503

	[18]	 Kalnins E G, Kress J M, Miller W and Winternitz P 2003 Superintegrable systems in Darboux 
spaces J. Math. Phys. 44 5811–48

	[19]	 Rañada M F 2017 Quasi-bi-Hamiltonian structures, complex functions and superintegrability: the 
Tremblay–Turbiner–Winternitz (TTW) and the Post–Winternitz (PW) systems J. Phys. A: Math. 
Theor. 50 315206

	[20]	 Cariñena J F, Herranz F J and Rañada M F 2017 Superintegrable systems on 3-dimensional curved 
spaces: Eisenhart formalism and separability J. Math. Phys. 58 022701

	[21]	 Ballesteros  A, Enciso  A, Herranz  F  J, Ragnisco  O and Riglioni  D 2011 Quantum mechanics 
on spaces of nonconstant curvature: the oscillator problem and superintegrability Ann. Phys. 
326 2053–73

	[22]	 Rodriguez  M  A and Winternitz  P 2002 Quantum superintegrability and exact solvability in n 
dimensions J. Math. Phys. 43 1309–22

	[23]	 Rodríguez M A, Tempesta P and Winternitz P 2008 Reduction of superintegrable systems: the 
anisotropic harmonic oscillator Phys. Rev. E 78 046608

	[24]	 Yehia H M 1992 Generalized natural mechanical systems of two degrees of freedom with quadratic 
integrals J. Phys. A: Math. Gen. 25 197–221

	[25]	 Ivanov E, Nersessian A and Shmavonyan H 2019 CPN-Rosochatius system, superintegrability, and 
supersymmetry Phys. Rev. D 99 085007

	[26]	 Dorizzi B, Grammaticos B, Ramani A and Winternitz P 1985 Integrable Hamiltonian systems with 
velocity-dependent potentials J. Math. Phys. 26 3070–79

	[27]	 McSween E and Winternitz P 2000 Integrable and superintegrable Hamiltonian systems in magnetic 
fields J. Math. Phys. 41 2957–67

F Fournier et alJ. Phys. A: Math. Theor. 53 (2020) 085203

https://doi.org/10.1088/1751-8113/46/42/423001
https://doi.org/10.1088/1751-8113/46/42/423001
https://doi.org/10.1007/BF01336904
https://doi.org/10.1007/BF01336904
https://doi.org/10.1007/BF01336904
https://doi.org/10.1007/BF01338811
https://doi.org/10.1007/BF01338811
https://doi.org/10.1007/BF01338811
https://doi.org/10.1119/1.1971373
https://doi.org/10.1119/1.1971373
https://doi.org/10.1119/1.1971373
https://doi.org/10.1103/PhysRev.57.641
https://doi.org/10.1103/PhysRev.57.641
https://doi.org/10.1103/PhysRev.57.641
https://doi.org/10.1016/0031-9163(65)90885-1
https://doi.org/10.1016/0031-9163(65)90885-1
https://doi.org/10.1016/0031-9163(65)90885-1
https://doi.org/10.1007/BF02755212
https://doi.org/10.1007/BF02755212
https://doi.org/10.1007/BF02755212
https://doi.org/10.1103/PhysRevA.41.5666
https://doi.org/10.1103/PhysRevA.41.5666
https://doi.org/10.1103/PhysRevA.41.5666
https://doi.org/10.1088/1751-8121/aa8489
https://doi.org/10.1088/1751-8121/aa8489
https://doi.org/10.1088/1751-8113/46/2/022002
https://doi.org/10.1088/1751-8113/46/2/022002
https://doi.org/10.1088/1751-8113/40/22/008
https://doi.org/10.1088/1751-8113/40/22/008
https://doi.org/10.1063/1.2436733
https://doi.org/10.1063/1.2436733
https://doi.org/10.1063/1.1619580
https://doi.org/10.1063/1.1619580
https://doi.org/10.1063/1.1619580
https://doi.org/10.1088/1751-8121/aa7951
https://doi.org/10.1088/1751-8121/aa7951
https://doi.org/10.1063/1.4975339
https://doi.org/10.1063/1.4975339
https://doi.org/10.1016/j.aop.2011.03.002
https://doi.org/10.1016/j.aop.2011.03.002
https://doi.org/10.1016/j.aop.2011.03.002
https://doi.org/10.1063/1.1435077
https://doi.org/10.1063/1.1435077
https://doi.org/10.1063/1.1435077
https://doi.org/10.1103/PhysRevE.78.046608
https://doi.org/10.1103/PhysRevE.78.046608
https://doi.org/10.1088/0305-4470/25/1/024
https://doi.org/10.1088/0305-4470/25/1/024
https://doi.org/10.1088/0305-4470/25/1/024
https://doi.org/10.1103/PhysRevD.99.085007
https://doi.org/10.1103/PhysRevD.99.085007
https://doi.org/10.1063/1.526685
https://doi.org/10.1063/1.526685
https://doi.org/10.1063/1.526685
https://doi.org/10.1063/1.533283
https://doi.org/10.1063/1.533283
https://doi.org/10.1063/1.533283


30

	[28]	 Bérubé  J and Winternitz P 2004 Integrable and superintegrable quantum systems in a magnetic 
field J. Math. Phys. 45 1959–73

	[29]	 Charest  F, Hudon  C and Winternitz  P 2007 Quasiseparation of variables in the Schrödinger 
equation with a magnetic field J. Math. Phys. 48 012105

	[30]	 Pucacco G and Rosquist K 2005 Integrable Hamiltonian systems with vector potentials J. Math. 
Phys. 46 012701

	[31]	 Marikhin V G 2019 Quasi-Stäckel Hamiltonians and electron dynamics in an external field in the 
two-dimensional case Teoret. Mat. Fiz. 199 210–7

	[32]	 Marikhin  V  G and Sokolov  V  V 2010 Transformation of a pair of commuting Hamiltonians 
quadratic in momenta to canonical form and real partial separation of variables for the Clebsch 
top Regul. Chaotic Dyn. 15 652–8

	[33]	 Ferapontov E V and Fordy A P 1997 Non-homogeneous systems of hydrodynamic type, related to 
quadratic Hamiltonians with electromagnetic term Phys. D 108 350–64

	[34]	 Ferapontov E V and Fordy A P 1999 Commuting quadratic Hamiltonians with velocity dependent 
potentials Proc. XXX Symp. on Mathematical Physics (Toruń, 1998) Rep. Math. Phys. 44 71–80

	[35]	 Zhalij A 2015 Quantum integrable systems in three-dimensional magnetic fields: the Cartesian 
case J. Phys.: Conf. Ser. 621 012019

	[36]	 Marchesiello A, Šnobl L and Winternitz P 2015 Three-dimensional superintegrable systems in a 
static electromagnetic field J. Phys. A: Math. Theor. 48 395206

	[37]	 Marchesiello A and Šnobl L 2017 Superintegrable 3d systems in a magnetic field corresponding to 
Cartesian separation of variables J. Phys. A: Math. Theor. 50 245202

	[38]	 Marchesiello A and Šnobl L 2018 An infinite family of maximally superintegrable systems in a 
magnetic field with higher order integrals SIGMA 14 092

	[39]	 Marchesiello A, Šnobl L and Winternitz P 2018 Spherical type integrable classical systems in a 
magnetic field J. Phys. A: Math. Theor. 51 135205

	[40]	 Bertrand S and Šnobl L 2019 On rotationally invariant integrable and superintegrable classical 
systems in magnetic fields with non-subgroup type integrals J. Phys. A: Math. Theor. 52 195201

	[41]	 Shmavonyan H 2019 CN -Smorodinsky–Winternitz system in a constant magnetic field Phys. Lett. 
A 383 1223–8

	[42]	 Byrd P F and Friedman M D 1971 Handbook of Elliptic Integrals for Engineers and Scientists 2nd 
edn (revised) (Berlin: Springer Verlag)

	[43]	 Gravel  S and Winternitz  P 2002 Superintegrability with third-order integrals in quantum and 
classical mechanics J. Math. Phys. 43 5902–12

	[44]	 Gravel S 2004 Hamiltonians separable in Cartesian coordinates and third-order integrals of motion 
J. Math. Phys. 45 1003–19

	[45]	 Tremblay  F and Winternitz  P 2010 Third-order superintegrable systems separating in polar 
coordinates J. Phys. A: Math. Theor. 43 175206

	[46]	 Post S and Winternitz P 2015 General Nth order integrals of motion in the Euclidean plane J. Phys. 
A: Math. Theor. 48 405201

	[47]	 Marquette I, Sajedi M and Winternitz P 2017 Fourth order superintegrable systems separating in 
Cartesian coordinates I. Exotic quantum potentials J. Phys. A: Math. Theor. 50 315201

	[48]	 Marquette  I, Sajedi  M and Winternitz  P 2019 Two-dimensional superintegrable systems from 
operator algebras in one dimension J. Phys. A: Math. Theor. 52 115202

	[49]	 Escobar-Ruiz A M, López Vieyra J C and Winternitz P 2017 Fourth order superintegrable systems 
separating in polar coordinates. I. Exotic potentials J. Phys. A: Math. Theor. 50 495206

	[50]	 Escobar-Ruiz A M, Winternitz P and Yurduşen I 2018 General Nth-order superintegrable systems 
separating in polar coordinates J. Phys. A: Math. Theor. 51 40LT01

	[51]	 Escobar-Ruiz  A  M, López Vieyra  J  C, Winternitz  P and Yurduşen  I 2018 Fourth-order 
superintegrable systems separating in polar coordinates. II. Standard potentials J. Phys. A: Math. 
Theor. 51 455202

	[52]	 Nehorošev N N 1972 Action-angle variables, and their generalizations Trudy Moskov. Mat. Obšč. 
26 181–98 (MR 0365629) (https://mathscinet.ams.org/mathscinet-getitem?mr=0365629)

		  Nehorošev N N 1974 Trans. Moscow Math. Soc. 26 181–98 (English transl)
	[53]	 Tremblay F, Turbiner A V and Winternitz P 2009 An infinite family of solvable and integrable 

quantum systems on a plane J. Phys. A: Math. Theor. 42 242001
	[54]	 Tremblay F, Turbiner A V and Winternitz P 2010 Periodic orbits for an infinite family of classical 

superintegrable systems J. Phys. A: Math. Theor. 43 015202

F Fournier et alJ. Phys. A: Math. Theor. 53 (2020) 085203

https://doi.org/10.1063/1.1695447
https://doi.org/10.1063/1.1695447
https://doi.org/10.1063/1.1695447
https://doi.org/10.1063/1.2399087
https://doi.org/10.1063/1.2399087
https://doi.org/10.1063/1.1818721
https://doi.org/10.1063/1.1818721
https://doi.org/10.4213/tmf9619
https://doi.org/10.4213/tmf9619
https://doi.org/10.4213/tmf9619
https://doi.org/10.1134/S1560354710510167
https://doi.org/10.1134/S1560354710510167
https://doi.org/10.1134/S1560354710510167
https://doi.org/10.1016/S0167-2789(97)00040-7
https://doi.org/10.1016/S0167-2789(97)00040-7
https://doi.org/10.1016/S0167-2789(97)00040-7
https://doi.org/10.1016/S0034-4877(99)80146-3
https://doi.org/10.1016/S0034-4877(99)80146-3
https://doi.org/10.1016/S0034-4877(99)80146-3
https://doi.org/10.1088/1742-6596/621/1/012019
https://doi.org/10.1088/1742-6596/621/1/012019
https://doi.org/10.1088/1751-8113/48/39/395206
https://doi.org/10.1088/1751-8113/48/39/395206
https://doi.org/10.1088/1751-8121/aa6f68
https://doi.org/10.1088/1751-8121/aa6f68
https://doi.org/10.3842/SIGMA.2018.092
https://doi.org/10.3842/SIGMA.2018.092
https://doi.org/10.1088/1751-8121/aaae9b
https://doi.org/10.1088/1751-8121/aaae9b
https://doi.org/10.1088/1751-8121/ab14c2
https://doi.org/10.1088/1751-8121/ab14c2
https://doi.org/10.1016/j.physleta.2019.01.049
https://doi.org/10.1016/j.physleta.2019.01.049
https://doi.org/10.1016/j.physleta.2019.01.049
https://doi.org/10.1063/1.1514385
https://doi.org/10.1063/1.1514385
https://doi.org/10.1063/1.1514385
https://doi.org/10.1063/1.1633352
https://doi.org/10.1063/1.1633352
https://doi.org/10.1063/1.1633352
https://doi.org/10.1088/1751-8113/43/17/175206
https://doi.org/10.1088/1751-8113/43/17/175206
https://doi.org/10.1088/1751-8113/48/40/405201
https://doi.org/10.1088/1751-8113/48/40/405201
https://doi.org/10.1088/1751-8121/aa7a67
https://doi.org/10.1088/1751-8121/aa7a67
https://doi.org/10.1088/1751-8121/ab01a2
https://doi.org/10.1088/1751-8121/ab01a2
https://doi.org/10.1088/1751-8121/aa9203
https://doi.org/10.1088/1751-8121/aa9203
https://doi.org/10.1088/1751-8121/aadc23
https://doi.org/10.1088/1751-8121/aadc23
https://doi.org/10.1088/1751-8121/aae291
https://doi.org/10.1088/1751-8121/aae291
https://mathscinet.ams.org/mathscinet-getitem?mr=0365629
https://doi.org/10.1088/1751-8113/42/24/242001
https://doi.org/10.1088/1751-8113/42/24/242001
https://doi.org/10.1088/1751-8113/43/1/015202
https://doi.org/10.1088/1751-8113/43/1/015202


31

	[55]	 Tempesta  P, Turbiner  A  V and Winternitz  P 2001 Exact solvability of superintegrable systems  
 J. Math. Phys. 42 4248–57

	[56]	 Rühl W and Turbiner A 1995 Exact solvability of the Calogero and Sutherland models Mod. Phys. 
Lett. A 10 2213–21

	[57]	 Patera J and Winternitz P 1973 A new basis for the representations of the rotation group. Lamé and 
Heun polynomials J. Math. Phys. 14 1130–9

	[58]	 Turbiner A V 1989 Lamé equation, sl(2) algebra and isospectral deformations J. Phys. A: Math. 
Gen. 22 L1–3

	[59]	 Turbiner  A  V 1988 Quasi-exactly-solvable problems and sl(2) algebra Commun. Math. Phys. 
118 467–74

F Fournier et alJ. Phys. A: Math. Theor. 53 (2020) 085203

https://doi.org/10.1063/1.1386927
https://doi.org/10.1063/1.1386927
https://doi.org/10.1063/1.1386927
https://doi.org/10.1142/S0217732395002374
https://doi.org/10.1142/S0217732395002374
https://doi.org/10.1142/S0217732395002374
https://doi.org/10.1063/1.1666449
https://doi.org/10.1063/1.1666449
https://doi.org/10.1063/1.1666449
https://doi.org/10.1088/0305-4470/22/1/001
https://doi.org/10.1088/0305-4470/22/1/001
https://doi.org/10.1088/0305-4470/22/1/001
https://doi.org/10.1007/BF01466727
https://doi.org/10.1007/BF01466727
https://doi.org/10.1007/BF01466727

	﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿﻿Cylindrical type integrable classical systems in a magnetic field﻿﻿﻿﻿
	﻿﻿Abstract
	﻿﻿﻿1. ﻿﻿﻿Introduction
	﻿﻿2. ﻿﻿﻿Formulation of the problem
	﻿﻿3. ﻿﻿﻿Hamiltonian and integrals of motion in the cylindrical case
	﻿﻿3.1. ﻿﻿﻿Determining equations in cylindrical coordinates
	﻿﻿3.2. ﻿﻿﻿Reduction to the cylindrical case

	﻿﻿4. ﻿﻿﻿Partial solution of determining equations and reduction to functions 
of one variable
	﻿﻿5. ﻿﻿﻿Reduced determining system
	﻿﻿6. ﻿﻿﻿Solutions of determining equations for Case 1: ﻿﻿ (﻿￼﻿)
	﻿﻿7. ﻿﻿﻿Solutions of determining equations for case 2: ﻿﻿
	﻿﻿7.1. ﻿﻿﻿Case 2a: ﻿﻿
	﻿﻿7.2. ﻿﻿﻿Case 2b: ﻿﻿, ﻿￼﻿

	﻿﻿8. ﻿﻿﻿Solutions of determining equations for case 3: ﻿﻿
	﻿﻿8.1. ﻿﻿﻿Case 3a: ﻿﻿
	﻿﻿8.2. ﻿﻿﻿Case 3b: ﻿﻿, ﻿￼﻿

	﻿﻿9. ﻿﻿﻿Conclusions
	﻿﻿﻿Acknowledgments
	﻿﻿﻿﻿﻿﻿ORCID iDs
	﻿﻿﻿References﻿﻿﻿﻿


