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Abstract

In this paper, we investigate the topological characteristics of the pattern formation in the cooling
granular gases confined by the elastic wall. The persistent homology and Voronoi’s analysis and its
derivative analyses are applied to accomplish our aim. The growth of the pattern formation can be
identified by the switch between the logarithmic concave and logarithmic convex in the life-span-
distribution obtained using the persistence diagram. Furthermore, three phases are identified by the
zeroth or first order Betti number, when a form of the wall is the square. Finally, the characteristics of
the coordination of granular particles condensing around the elastic wall are investigated by the
Voronoi’s analysis, bond-angle analysis, and polyhedral template matching. We confirm that some
clusters of the granular particles condensing around the elastic spherical-wall certainly attribute to
their crystallization categorized as the typical coordination.

1. Introduction

The accurate classification of the phase of matter [1] is significant to characterize the physical property of matter
such as solid (crystal structure), liquid, or gases. Meanwhile, such a classification of the phase of matter
sometimes involves difficulties as observed in the classification of the phase of glass [2]. For example, we are still
unable to answer to the question whether glass corresponds to the liquid, solid or glassy state. The topological
characterization of the phase of matter on the basis of locations of atoms or particles has been used in order to
overcome such difficulties involved with the specification of the phase of matter. For example, the topological
characterization of the crystal has been widely used, as represented by the Voronoi’s analysis (VA) using
coordination of atoms [3]. On the other hand, the specification of the coordination of atoms (particles) from
their locations becomes difficult, when thermal fluctuations of atoms (particles) become significant. Therefore,
the specification of the coordination of thermal fluctuating particles involves difficulties even with the VA.
Meanwhile, the recent application of the persistent homology (PH) [4] to numerical data (i.e., locations of
atoms) of glass by Hiraoka et al [5] succeeded the discrimination of the glassy state from the liquid state, where
the coordination of atoms in glass seems to be random, because thermal fluctuations are significant at glance.
Then, the PH enables us to find the ordered structure even under the marked thermal fluctuations. The analogy
between glass and granular matter is sometimes indicated by the fact that sheared granular media forms the
disordered glassy state via the jamming transition [6]. In previous studies of the dense granular packing [7], the
characteristics of the force-chain-network was analyzed by the PH, whereas the crystal characteristics of the
densely packed granular particles was investigated by the VA.

As a peculiar characteristics of the dilute granular gases, the cluster formation from the initially
homogeneous cooling state (HCS) [8, 9] has been well studied by Brey [10] and his coworkers, whereas the
characteristics of the HCS of the granular gases has been studied in detail by Santos [11], Brilliantov [8] and their
coworkers or Yano [12]. The mode-analysis [8, 10] of the hydrodynamics equation of the granular gases can
demonstrate such an instability of the HCS, which attributes to the pattern formation via aggregations (clusters)
of the granular particles. Of course, the granular gases correspond to the status, in which the volume fraction of
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the granular particles is low, adequately, and thermal motions of granular particles are significant. Actually, the
phase of granular matter easily changes in accordance with pLr? (p: density, L: representative length, r,: diameter
of sphere) and restitution coefficient, as demonstrated by Esipov and Péschel [13]. The primary aim of our
present study is to answer to the question whether the transition from the HCS to the pattern formation of the
granular gases can be demonstrated by the PH or VA or its derivative analyses, namely, bond-angle analysis
(BAA) [14] and polyhedral template matching (PTM) [15]. Additionally, we investigate the crystal structure of
granular particles, which condensate around the wall, using the VA, BAA and PTM. Here, the topological phase-
transition corresponds to the specific change in topological characteristics, then, we must remind that the
topological phase never be same as the physical phase (gases, liquid, or solid).

Now, we consider the granular gases confined by the elastic wall, with which all the granular particles collide
elastically. The reason why we consider the elastic (heating) wall [16] is to exclude both excessive accumulation
of granular particles around the wall owing to their inelastic collisions with the wall [17] and long range-
correlations among granular particles owing to the use of the periodic boundary, which is unfavorable in the
PH analysis. The time-evolution of the granular particles with the constant restitution coefficient and smooth
surface is calculated by the event-driven (ED) method [17].

This paper is organized as follows. Firstly, the preliminaries for the Betti number [18], persistence diagram
(PD) [19], or VA, BAA and PTM are demonstrated together with the ED method in section 2, briefly. Afterwards,
the changes in the PD and Betti number in accordance with the time-evolution of the granular particles are
discussed in order to confirm whether they are able to capture the transition from the HCS to the pattern
formation or not, in section 3. Next, the BAA, VA, and PTM are applied to numerical results of the granular
gases confined by the spherical (SP) boundary in order to confirm whether the tendency of the pattern formation
of granular gases from the HCS can be identified by the BAA, VA, and PTM or not, in section 4. Additionally, we
investigate which coordination the granular particles, which condensate around the elastic wall densely, are
categorized as. Finally, we make concluding remarks in section 5.

2. Preliminaries in topological context

Before stating our discussions of numerical results, the following items are demonstrated to help readers’
understanding of the mathematical definitions and terminologies used in topological contexts and numerical
simulation.

A. Betti number

B. Persistence diagram (PD)

C. From point could data to PD
D.VA,BAA and PTM

E. Event Driven (ED) method to simulate granular particles

2.1.Betti number

For a non-negative integer p, the p-th Betti number of simplicial complexes (see its definition in appendix A) is
one of classical topological invariants [20]. It is the number assigned to each simplicial complex, which implies
information about its topology. The Betti number implies a ‘persistence’ with respect to ‘continuous
deformations’. In other words, the Betti number is invariant under ‘continuous deformations’. We note that the
Betti number does not imply geometric information (volume, metric etc.) of simplicial complexes. Informally
speaking, the p-th Betti number of a simplicial complex X is a number of ‘p-dimensional holes’ of X. We give the
heuristic explanation of the Betti number using figure 1. The simplicial complex in figure 1 consists of ‘7’ vertices
and ‘8’ edges.

Avertex s called as 0-simplex, and an edge is called as 1-simplex from the simplicial point of view. The
simplicial complex in figure 1 has no higher-dimensional simplex such as the face. Now, we compute the Oth
Betti number. 0-dimensional hole stands for the connected component following conventions. In short, the Oth
Betti number counts the number of connected components. Since the simplicial complex in in figure 1 has one
connected component, its Oth Betti number is ‘1°. On the other hand, a 1-dimensional hole means a circular
hole. The simplicial complex in figure 1 has two circular holes along with the hexagon part and the square part.
Hence, the 1st Betti number is 2’. These observations can be generalized to the case p > 2. For example, we
interpret 2-dimensional hole as a balloon-like hole or 2-sphere-like hole. We introduce the notion of homology
in order to deal with such ‘p-dimensional holes’ in a formal way.
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Figure 1. An example of a simplicial complex.

Figure 2. Schematic of calculation of Byand B; in 10 x 10 pixels with monotone PNG file by CHomP [21].

Betti number on the basis of locations of granular particles is calculated using the monotone PNG format
with the CHomP [21]. Figure 2 shows the zeroth and first order Betti numbers, which are calculated using
monotone PNG. We can readily understand that both B, (connection) and B; (hole) are equal to ‘4’, as shown in
figure 2.
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Figure 3. An example of a filtration of a simplicial complex.
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Figure 4. The PD of the filtration in figure 3.

2.2. Persistence diagram (PD)

For a nonnegative integer p, the p-th Betti number counts ‘p-dimensional holes’ of a simplicial complex, as we

explain in section 2.1. A persistence diagram (PD) is a diagram, which records birth and death of ‘p-dimensional

holes’, i.e. we consider ‘time-evolution’ of a simplicial complex and are interested in the change of its topology.
The time-evolution, formally speaking, corresponds to filtration of a simplicial complex. A filtration of a

simplicial complex X is given by a sequence { X, };cr of simplicial sub-complexes X; C X parametrizedby ¢t € R

such that

+ X, C X, forty < 1.

c UsXy = Xand X, = @.

A filtration can be understood as a movie film which records how a simplicial complex grows as time evolves. We
give an example in figure 3; the filtration { X; },cg is an empty complex for sufficiently small ¢, say t = ¢_; ; the
filtration {X; };,cg is constant except for t = to, t1, t,, where it grows up, as shown in figure 3. The p-th PD of a
filtration { X, };cg is induced by the data of when the p-dimensional holes are born and dead as time evolves.
Informally speaking, for a p-dimensional hole & of some X,, we mark a point (by, d),) onxy-plane where b, € R
(dy € R, resp.) is the time when the hole & is born (dead, resp.).

The p-th PD is obtained by plotting such (by,, dj,). The PD is given by multiple set in general since there is a
possibility that some holes have the same birth time and death time. We give an example of the PD in figure 4,
which is obtained from the filtration in figure 3. Note that the point (¢_;, t,) in the PD has multiplicity of 2’.
There is an obvious problem with respect to the definition of such a hole k in the time-evolution. The notion of
persistent homology and some decomposition theorems are necessary to define PDs in a formal way. Their brief
overview is given in appendix C.

2.3. From point cloud data to PD
In this subsection, an overview about how the PD is obtained from point cloud data is given. Since the PD is
obtained from a filtration of a simplicial complex, it suffices to construct a filtration of a simplicial complex
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Figure 5. {5 of nine pojnt cloud (s = 1, 2,..,9), when # = %, (upper-left frame), Z = %, (upper-middle frame)and #Z = #;
(upper-right frame) in Cech filtration. PD obtained by birth-death of holes corresponding to above three frames (lower frame).

starting from point cloud data. In practice, a point cloud data is usually given by a finite set S in a Euclidean space
RN, For a positive number 2, an open covering of Sin RN givenby U5 = {#5(s)} scs is considered.

Here, #4(s) is the -neighborhood of a point s € S with aradius of . There are several ways to constructa
cell complex from the open covering §l, : the Cech complex, the Alpha complex, the Vietoris-Rips complex, etc
[20,22,23].

If we denote one of such complexes by Cy, then, { C4}4- ¢ gives a filtration of a cell complex where we
consider # astime, i.e. Cp, C Cgp for 0 < %, < 2. the PDis obtained from the filtration { C»}-. We note
that the PD is determined by the point cloud data Sin RN,

Figure 5 shows growths of 1[4 of eight point cloud by enlarging %. The upper-left frame of figure 5 shows
the birth of the hole, when # = #,. The upper-middle frame of figure 5 shows births of eight holes, when
R = HR,. The upper-right frame of figure 5 shows deaths of holes, when Z = 5. Consequently, the PD of these
birth-death-sets of holes (%}, %,) are shown in lower-frame of figure 5, in which %, and %, correspond to the
radius of % (i.e., #), which yields the birth and death, respectively. Of course, eight-fold-points are plotted on
(Ry, Rg) = (R, #3) owing to the birth-death of eight holes.

2.4.VA,BAA and PTM
The Voronoi’s analysis (VA), bond-angle-analysis (BAA) and polyhedral template matching (PTM) have been used
to analyze the structure of the crystal on the basis of coordination of atoms. In particular, the analytical tools are
freely provided by the codes of Voro++- [24] and Vorotop [25] in Ovito [26]. Then, we can utilize such analyzers in
order to analyze the crystal structures of granular particles. Of course, the crystal structure usually postulates the
densely packed status of granular particles, where thermal fluctuations of atoms are negligible. We, however, focus
on the crystal characteristics, before and after granular particles are densely condensed around the wall owing to
their markedly low kinetic energy. Here, schematics of the VA, BAA and PTM are demonstrated, briefly.

In order to discuss the VA, BAA and PTM, we start our discussion by mentioning to the Voronoi’s
diagram (VD).

[Eisspacesuchas E C R” (n € N). Let’s think elements g, &,,...8, € E.Here, | J}_, g, == G.

We define the distance between the point P € E and g; as

d(p, g),
Then, the Voronoi’s domain R(G; g,) is defined by:
R(G; g) = {P € Eld(P, g) < d(P, g), j= i}, D
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Figure 6. Schematic of convex hulls of SC, BCC, FCC, HCP and ICO used in PTM [15].

From equation (1), Eis divided into R(G, g;) (i € [1, n]N N). We call these divided structures of E by R(G, g,)
asthe VD.

The VD is described by the Delaunay tetrahedralization in the case of B C R®. The significant problem in
the VA is classifications of the VD using the typical crystal-coordination such as the face-centered-cubic (FCC),
body-centered-cubic (BCC), hexagonal close-packed (HCP), icosahedral (ICO) and hybrid of FCC and HCP
(FCC-HCP). The VA by Voro++ applies Weinberg’s algorithm [27] to find the most appropriate crystal-
coordination among the FCC, BCC, ICO, FCC-HCP and Other from the VD, in which Other indicates the status
of coordination of granular particles, from which any crystal structure is not specified with the FCC, BCC, ICO
and FCC-HCP.

Of course, there are other methods in order to categorize the crystal structure such as the Common
Neighbor Analysis (CNA) [28], PTM [15], BAA [14] other than the VA. The PTM was proposed by Larsen-
Schmidt-Schigtz [15]. In the PTM, the similarity between two diagrams is evaluated by the Root-Mean-Square
Deviation (RMSD), which is defined by [15]

Grusp (v, W) = mln\/ ZIIS[V; — 7] — (Qw; — wIDTI3, 2

where Q is the right handed orthogonal matrix, v = (1/ N)Z?Zl v w=(1/R) Zf—il w; are barycenter of v and
w. sis the optimal scaling of v. The methods of findings of sand Q are proposed by Horn [29] and Theobald [30].
Ris the number of the neighboring atoms, and X = 6 for the simple cubic (SC), 12 for the FCC, 12 for the HCP,
12 for the icosahedral (ICO) and 14 for the BCC are used. The detail of algorithm of the PTM is demonstrated by
Larsen-Schmidt-Schigtz [15]. Finally, we find the smallest RMSD among them which are calculated using the
SC, FCC, HCP, ICO, and BCC. Additionally, Other corresponds to the state that any structure is not identified
even with the SC, FCC, HCP, ICO, and BCC, when the minimum RMSD is larger than its critical value. Actually,
v is the vector which indicates the vertex-set of the convex hull formed by N-neighboring atoms and w is the
vector, which indicates the vertex-set of the convex hull of the reference templates, namely, the SC, FCC, HCP,
ICO, and BCC (see figure 6 for convex-fulls of the SC, BCC, FCC, HCP and ICO). Hence, we can calculate the
distribution of the RMSD (f (¢, Zrmsp)> t € R : time), when we specify the crystal structure of the atoms
using two categories Other and XX (XX := SC, FCC, HCP, ICO and BCC). Finally, we mention to the BAA [14],
briefly. The BAA was proposed by Ackland and Jones [14]. The BAA identifies the crystal structure of atom-i
with the FCC, HCP, ICO, and BCC from angles (6;) between two bonds (r;; and r;), which connect two sets of
two neighboring atoms (i-j and i-k). The neighboring atoms are searched by the mean square distance of six
neighboring atoms around the atom-i. Once the calculation of the angle between two bonds for several sets of
two bonds is finished, functional of x, which are calculated by angles 8;, identifies the crystal structure of atom-i
with the FCC, HCP, ICO, BCC or Other.

2.5. Event-Driven method to simulate granular particles
The event-driven (ED) method has been frequently used in order to simulate a large number (N) of granular
particles, whose simulation is difficult using the discrete element method (DEM), when the calculation of the
N (N — 1) /2 paired force-chain is beyond the computational resource. In particular, the ED method is suitable
to simulate the dilute granular gases, in which the effects of deformations of contacting granular particles on the
collective motion of all the granular particles are negligible.

The algorithm of the ED method is so simple. Provided that the k-th collision occursatt = # (t € R), we
search for the occurrence-time of k + 1-th collision, namely, t;, ;, which is calculated by
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Figure 7. The time-evolutions of granular particles inside SQ boundary at N, = 0 (upper-left frame), 0.1M (upper-middle frame),
11.25M (upper-right frame), 12.5M (lower-left frame), 13.75M (lower-middle frame) and 19.9M (lower-right frame), when N = 10*.

teer =t + min(At)) @, j € [1, 2,...,N1),
1% (1 + AL)) — xj (A = 1, + 7,
xi(t + Atij) = x;(t) + Vi(tk)Atij, 3)

where x;(t) € R is the location of the granular particle indexed by iat ¢, v; € R? is the velocity of the i-th
granular particle, r;is the radius of the i-th granular particle.

Provided the boundary (wall) is considered, the occurrence-time of the collision between the granular
particle and wall is calculated in a similar way to equation (3). Afterward, we compare the next collisional time
calculated by two granular particles with that calculated by the granular particle and wall and select smaller ;. 4
asnext collisional time.

Once t; 1 is determined, we revise the locations of all the granular particles using x (1) = x (%) +
v () Aty (Aty == ty1 — ti). Finally, we revise the velocities of colliding granular particles or velocity of the
granular particle colliding with the wall. Provided that the i-th and j-th granular particles collide, the velocities
of colliding granular particles change at t = #;, ; as follows:

1+ €

Vi(ter1) = vi(ty) — (glj : nij)nij)
1+ €

Vi(ter1) = vi(t) + T(gﬁ - mi)ng,

xi(t) — xj(f)

s 4
[lx; () — x; (8ol @

g; = vi(t) — vj(tx), nyj =

where € € [0, 1]is the restitution coefficient, 8; is the relative velocity and n; € 02 is the relative location-unit-
vector.

The calculation of the velocity of the granular particle post-collision with the elastic wall is calculated in a
similar way to equation (4) [17].

3. Persistent homology and their characteristics

In this section, we apply the PH to the cooling process of two dimensional granular gases confined by the elastic
wall. Firstly, we investigate the PH of the granular discs in the case of the square (SQ) boundary. Next, we
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A

i it

Figure 8. The time-evolutions of granular particles inside SQ boundary at N, = 0 (upper-left frame), 2M (upper-right frame), 4M
(lower-left frame) and 7.4M (lower-right frame), when N = 5 x 10%,

investigate the PH in the case of the circular (CI) boundary to consider the effects of form of the elastic wall on
the PH. Finally, we investigate the PH of the granular spheres in the case of the spherical (SP) boundary.

3.1.Results in case of SQ boundary

The restitution coefficient of the granular discs is set as € = 0.85, and the volume fraction of the granular discs is
fixedas ¢ = 7.85 x 102 Thelength of one side of the square box (SQ boundary) is set as L = 300. Three types
of the diameter of granular discs (7,7), namely, r; = 0.15,0.21 and 0.47 are considered. As a result, total number
of granular discs (N) is setas N = 10*in the case of ry = 0.47, N = 5 x 10*inthe caseofd = 0.21and N = 10°
in the case of r; = 0.15 owing to the constant volume fraction (¢ = 7.85 x 10~ ?). The initial velocities of the
granular discs are randomly distributed in the range of 1, € [—1, 1], v, € [—1, 1]and the initial positions of
the granular discs are randomly distributed inside the elastic wall, namely, the range of X € [—0.5L, 0.5L] and
Y € [—0.5L, 0.5L]. The time-evolution of granular discs is calculated using the event-driven (ED) method [17],
because the conventional molecular dynamics requires the vast calculation time, when forces between

N (N — 2) /2 paired granular discs are calculated.

Figures 7-9 show time-evolutions of the granular discs inside the SQ boundaryat N = 10%,5 x 10*and 10°,
respectively. Figure 7 indicates that some clusters are formed in the vicinity of the wall and the cluster with the
maximum size rotates to clockwise direction along the wall. Such a rotation of granular discs along the wall is
similar to the emergence of the ordered collective-motion in biological swarm inside the wall [31]. On the other
hand, the granular particles tend to move away from the wall, when the heating wall with the constant
temperature is used, as reported by Esipovand Poschel [13]. The numerical results obtained using N = 5 x 10*
and 10° do not indicate such a rotation of the cluster with the maximum size, as shown in figures 8 and 9. Indeed,
it is commonly observed in numerical results of N = 10%,5 x 10*and 10’ that the several small-clusters
aggregate toward the larger clusters via their connections during the time-evolution. Of course, the elastic wall is

8
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Figure 9. The time-evolutions of granular particles inside SQ boundary at N, = 0 (upper-left frame), 2.15M (upper-right frame),
3.85M (lower-left frame) and 14.45M (lower-right frame), when N = 10°.

amathematical toy model to avoid the freeze of the calculation via the excessive accumulation of granular discs
with the small kinetic energy in the vicinity of the wall and long range correlation of the granular discs owing to
the use of the periodic boundary condition, which is unfavorable to topological analyses, because the distance
between two granular discs in the PH must be modified by considering the periodicity at the boundary. The
calculations of the PDs are performed using locations of the center of granular discs, namely, (x;, y.)

(i € [1, N]n N)and Z (:radius of neighborhood (cover) #5(s;) of point cloud S (s; := (x;, y;) € S)). Therefore,
we must remind that the connection in d = 0-persistent homology (d: dimension of PH) is not equivalent to the
physical connections due to contacting granular discs. Reminding that the domain, which is occupied by
neighborhood of i-th point-cloud, whose center is set as (x;, y,), is expressed with Z(x;, ), the connection
between Z(x;, y;) and ZBy(x;, yj) isdefined by |x; — x| < 2% (x; == (x;, y)), 2% > d). R isincreased from
zero to 00, continuouslyin Z € Ry. # = %, is called as the birth of the hole, when the hole emerges when

R = Ry, whereas # = AR, is called as the death of the hole, when the hole disappears, when # = Z,. The plot
of (%, A,)is called as the PD, as discussed in section 2.2. Additionally, £ := %; — %), is called as the life-span
of the hole, and defined by:

=Ry — Ry, )

The image of the life-span (£) is shown in the lower-frame of figure 5.

The open source program homcloud [32] is used to calculate the PD in our study. The PD is plotted using not
(ZRy, Ry)but (A3, R3) owing to the specification of the homcloud. Figure 10 shows PDs (left-half frames) and
birth of holes with £,,x (maximum value of £) via connections of some of %4(s;) (i € [1, N])at N, = 0,2.15M,
3.85M and 11.4M (right-half frames), when N = 10> (N: collision number, M: million), respectively. The color
of the contour expresses the number of holes, which has (%7, %3), where U (%}, #3) is the square domain,
whose center of gravity is (%3, %#3) and length of one side of the square is setas A € R, . Readers remind that

9
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Figure 10.d = 1-PDs and their schematics of births of holes at £,y in cases of N, = 0 (top-frame), N, = 2.15M (2nd frame from the
top), N, = 8.85M (2nd frame from the bottom), and N, = 14.45M (bottom frame), when N = 10° and SQ boundary. Points, which
yield the maximum life-span, are denoted by arrows in each cases of N...

the number of holes which yield £, is unity in all the frames in figure 10. The magnitude of %, obtained using
“max Increases in accordance with the increase in N, as shown in the right-half frame of figure 10, because the
growth of clusters of granular discs tends to enlarge the vacant space. The PD has the clear structure at N, = 0,
whereas such a clear structure in the PD becomes blurred at N. = 14.45M.

The expeditious method to read the characteristics of the PD is to calculate the life-span-distribution (Isd) by
each time step. Then, we approximate the Isd, namely, f () := (1/N )Zil 6(¢ — £)with
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Figure 11. f (¢) versus £ at N, = 0 (top-left frame), N. = 0.25M (top-right frame), N. = 0.5M (middle-left frame), N, = 1M
(middle-right frame), N, = 12.5M (middle-left frame), and N, = 19.9M (middle-right frame) obtained usingd = 0, when N = 10*
and SQ boundary.

fap(f) = Aexp[-B( — O)"|(DC + &)" (6)

where 2, B,and® C R,, ¢, &, nand m CR.

The reason why we use equation (6) is that it can express the hybrid of the logarithmic convex (log-convex:
for 0 € [0, 1], Ologf (x) + (1 — O)logf () < logf (Ox + (1 — 0)y) (a € Ry andx < y))andlogarithmic
concave (log-concave: for 6 € [0, 1], flogf (x) + (1 — O)logf (y) = logf (Ox + (1 — B)y) (a € R.and
x < y)) using appropriate set of (1, m) in equation (6). Similarly, equation (6) is also able to express completely
concave or convex for all therange of £ (i.e., £ € R.).

Figures 11-16 show f (£) versus £ together with f, » (¢) for d = 0 (connection) and 1 (hole) in cases of
N =10%5 x 10*and 10>, whose 2, B, €, D, ¢, §, nand min equation (6) are defined in table 1.

The authors will consider that one standard for the evaluation of the topological phase-transition of the
granular discs is determined by the switch between the log-convex and log-concave of f (£) (or f,,(£)), as
discussed later. Figure 11 indicates that f (£) (or fap (¢)) follows the log-concave at N. = 0 and 0.25M, whereas
f (@) (or fap (?)) follows the log-convex at 0.5M< N,.. Consequently, we conclude that the topological phase-
transition occurs in the range of 0.25M < N, < 0.5M, whend = 0and N = 10*. Similarly, figure 12 indicates
that f(¢) (or fap (¢)) follows the log-convex at £ < 9 andlog-concaveat 9 < ¢ inthe case of N, = 0, whereas
f (@) (or fap (¢)) follows the log-convex at 0 < . As aresult, the topological phase-transition occurs in the range
of N, € [0, 1M/, whend = 1and N = 10 These topological phase-transitions are obtained at N € [1M,1.5M]
inboth cases of d = 0and 1, when N = 5 x 10% asshown in figures 13 and 14, whereas it is obtained at N. €
[2.15M,3.85M] in both cases of d = 0 and 1, when N = 10°, as shown in figures 15 and 16.
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Figure 13. f (¢) versus £ at N, = 0 (upper-left frame), N, = 1M (upper-right frame), N, = 1.5M (lower-left frame) and N, = 8.85M

Thelsd obtained using d = 1-PD, which follows the log-convex, indicates that the number of holes with the
large diameter #,; and small % (i.e., long life-span) is larger than that obtained using the d = 1-PD, which
follows the log-concave. The holes with the long life-span are generated by the increase of vacant space and
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Figure 14. f (¢) versus £ at N. = 0 (upper-left frame), N. = 1M (upper-right frame), N, = 1.5M (lower-left frame), and N, = 7.4M
(lower-right frame) obtained usingd = 1,when N = 5 x 10>and SQ boundary.

connections of point-clouds by small %, which are caused by the growths of clusters. Consequently, the switch
between the log-concave and log-convex becomes the standard to measure the drastic growth of clusters, by
which the topological characteristics of granular gases changes, markedly.

From above discussions, we confirmed that the topological phase-transition can be judged by the switch of
the life-span-distribution (Isd) (i.e., f (£)) between the log-convex and log-concave. Here, we investigate the
topological phase-transition using the Betti number, By (the zeroth order) and B (the first order). As discussed
in section 2, the Betti number is calculated using the PNG versions of figures 7—9. Therefore, the accuracies of the
calculations of By and B; depend on the number of pixels in PNG versions of figures 7—9. Figure 17 shows By/N
and B;/Nin cases of N = 10* (upper-left frame), 5 x 10* (upper-right frame) and N = 10> (lower-left frame).
By/N=~0.96at N, = 0 obtained using N = 10’ indicates that the numerical error exists owing to the insufficient
number of pixels, whereas By/N = 1at N, = 0 obtained using N = 10*and 5 x 10*indicate that the number
of pixels is adequate to calculate By and B, with the good accuracy.

Firstly, we confirm that there exist typical three phases (i.e., phases-I, Iland III) in cases of N = 5 x 10*and
10°. In the phase-I, B, (B;) decreases (increases), drastically, as shown in N, € [0,0.5M]when N = 5 x 10* and
N.€[0,1M]when N = 10°. In the phase-1I, By (B;) changes, slightly, as shown in N, € [0.5M,1.5M] when
N =5 x 10*and N, € [IM,2M]when N = 10°. Finally, in the phase-III, B, (B;) decreases (increases),
drastically, as shownin N, € [1.5M, co) when N = 5 x 10*and N, € [2M, co) when N = 10°. We are, however,
unable to identify phases-I and II, clearly, when N = 10*, whereas the phase-III is conformed in N, € [0.25M,
00), when N = 10*. The increase and decrease in Byand B, in the phase-III are caused by temporal changes in
form of rotating cluster along the wall obtained using N = 10* so that such changes in phase-III do not attribute
to intrinsic changes in the topological phase, which characterize the pattern formation from the HCS. It is the
significant result that the topological phase-transition from the phase-I to the phase-1I is identified by not the Isd
but By and B;, whereas the phase-transition due to the topological phase-transition from the phase-II to the
phase-IITisidentified by both the Isd and By and B;.

3.2.Results in case of CI boundary

Now, we investigate the PH in the case of the CI boundary in order to investigate the effects of form of the elastic
wall on the PH. The radius of the granular disc (1) is set as r; = 0.15 and radius of the CI (R) is setas R; = 150.
The set of the restitution coefficient and initial velocities of the granular discs are same as those used in
calculations in the case of the SQ boundary. The total number of the granular discs (N) is setas N = 10°. Asa
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Figure 15. f (£) versus £ at N, = 0 (upper-left frame), N, = 2.15M (upper-right frame), N, = 3.85M (middle-left frame),
N, = 8.85M (middle-right frame), and N, = 14.5M (bottom-left frame) obtained usingd = 0, when N = 10°and SQ boundary.

result, the volume fraction of granular discs (¢) is calculated as ¢ = 0.1, because all the granular discs are
randomly distributed inside the CI boundaryat ¢ = 0.

Figure 18 shows snap-shots of the granular discs confined by the CI boundary at N, = 0 (upper-left frame),
N, = 2.5M (upper-center frame), N, = 5M (upper-right frame), N, = 7.5M (lower-left frame), N, = 15M
(lower-center frame) and N, = 35M (lower-right frame). We can confirm the clear pattern formation at
5M<N.,. In particular, the clusters seem to grow from the wall at N, = 35M.

Figure 19 shows thed = 1-PDsat N. = 0 (top-left frame), N, = 2.5M (top-right frame), N. = 5M (middle-
left frame), N, = 7.5M (middle-right frame), N, = 15M (bottom-left frame) and N, = 35M (bottom-right
frame), when N, = 10° and CI boundary. The tendency of changes in the d = 1-PD during the time-evolution is
similar to that obtained using the SQ boundary in figure 10. Figures 20 and 21 show f (£) versus ¢ together with
fap (Z) (in equation (6)) versus £ when d = 0and d = 1, respectively, where 2, 9B, €, ©, €, §, nandmin
equation (6) are defined in table 2. We can confirm that the topological phase-transition occurs in N. €
[2.5M,5M]in both cases of d = 0 and 1, as shown in figures 20 and 21.

Figure 22 shows By/N, B/Nand (B, + B;)/N. Similarly to B,/N obtained using N = 10> and the SQ
boundary, B,/N ~ 0.96 indicates that the numerical error exists owing to the insufficient number of pixels. We
can readily confirm that phases-II and Il exist in N, € [0,2M] and N, € [2M, o0). Itis not obvious in the present
study whether the lack of the phase-1 in the case of the CI boundary is caused by the different form of boundary
from the SQ boundary or larger volume fraction (¢ = 0.1) in CI boundary than that (¢ = 0.078 5) in the SQ
boundary. The phase-transition due to the topological phase-transition from the phase-II to the phase-IITis
obtained using both the Isd and Betti number in the case of the CI boundary.

14



10P Publishing

J. Phys. Commun. 4(2020) 015023 R Yano and M Kim

0.100
20010
0.001

10-4

Figure 16. f () versus £ at N, = 0 (upper-left frame), N, = 2.15M (upper-right frame), N. = 3.85M (lower-left frame) and
N, = 14.1M (lower-right frame) obtained usingd = 1 when N = 10°.

3.3.Results in case of SP boundary

Next, we investigate the PH in the case of the SP boundary. As discussed in section 2, the 3D physical space
postulates the PH with d = 2, which corresponds to the spherical surface (void). Here, we consider two types of
N.Inonecase, N = 5 x 10* granular spheres with r; = 1.5 are calculated. In the other case, N = 10* granular
spheres with r; = 1.5 are calculated. In both cases, the radius of the SP boundaryis setas R; = 150 and
restitution coefficient is set as 0.85. Consequently, the volume fraction is 5% in the case of N = 5 x 10*and 1%
in the case of N = 10*, because all the granular spheres are randomly (almost homogeneously) distributed inside
the SP boundary. The restitution coefficient of the granular spheres is set as 0.85 and the initial velocities of
granular spheres are randomly selected in the ranges of v, € [—1, 1], v, € [—1, 1]and v, € [—1, 1].

Figure 23 shows the snapshots of the granular spheres confined by the SP boundary, when N = 10* (upper
tworaw)and N = 5 x 10 (lower two raw). The granular spheres cluster in the vicinity of the SP boundary with
the band-like form as N, increases, when N = 10*%,. On the other hand, some band-like distributions of granular
spheres emerge along the SP boundary in accordance with the increase in N.when N = 5 x 10*. The
aggregation of granular spheres in the vicinity of the wall at large N.. is similar to those in 2D cases of the SQ and
CI boundaries.

Figures 24—27 show time-evolutions of d = 1-PDsand d = 2-PDs obtained using N, = 10*and 5 x 10%,
respectively. The tendency of temporal changes in d = 1-PDs is similar to those obtained using the SQ and CI
boundaries. d = 2-PDs obtained using N = 10* indicate that the life-spans of most of granular spheres
approach tozero at N, = 5.5M, when N = 10*, although the life-spans of some of granular spheres are finite, as
observedind = 1-PD at N, = 5.5M in figure 24. Meanwhile, the life-spans of granular spheres observed in
d = 2-PDsare finite at N. = 40M, when N = 5 x 10* asshownin figure 27.

Figures 28-33 show f (£) versus £ together with f, (£) versus £ obtained using N = 10*and 5 x 10* when
d = 0,1and 2, respectively, where A, B, €, ©, €, §, nand min equation (6) are defined in table 3. Figures 28
and 30 indicate that the topological phase-transition occurs in N, € [2M,2.5M] in the case of N = 10*, whereas
allof f (¢) ford = 2 follow log-convex at N, € [0, 00), when N = 10%, as shown in figure 32. Similarly, the
topological phase-transition occurs in N, €[3M,4M],when N = 5 x 10%, as shown in figure 29. The log-
concave of f(£) remains at N, = 45M, whend = landN = 5 X 10* as shown in figure 31. Then, we cannot
determine the topological phase-transition from thelsd ford = 1,when N = 5 x 10* Similarly to f(£)
obtained usingd = 2and N = 10* all of f () follow the log-convexin N; € [0, c0), as shown in figure 33.
Consequently, we conclude that the Isd for d = 2 can not be used as the standard, which determines the
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Figure 17. By and B, versus N, when N = 10* (upper-left frame), 5 x 10* (upper-right frame) and 10° (lower-left frame).

Table1. 2, B, €, ©, ¢, nand minequation (6) and corresponding figure number, whend = 0and 1, N = 10%5 x 10*and 10°, and SQ

boundary are used.

Form d N N, A B ¢ D ¢ n m Figure No.
SQ 0 10* 0 0.8 0.29 0 1 1 2 0.2 Figure 11
SQ 0 10* 2.5M 1.2 0.29 0 1 1 1.8 0.35 Figure 11
SQ 0 10* 5M 2.25 0.15 0 1 1 0.8 —2.5 Figure 11
SQ 0 10* 12.5M 0.25 0.05 0 1 0.1 1.26 1.5 Figure 11
SQ 0 10* 19.9M 0.15 0.03 0 1 1 1.26 -1.5 Figure 11
sQ 0 5x10* 0 4.5 5.5 0 1 1 2.2 -2 Figure 13
SQ 0 5x10* M 4.5 5.5 0 1 1 2.2 -2 Figure 13
SQ 0 5x10* 15M 8 3.5 0 1 1 1 -3 Figure 13
SQ 0 5x10* 8.8M 12 3.25 0 1 1 0.25 -3 Figure 13
SQ 0 10° 0 10 25 0 1 1 2 -3 Figure 15
SQ 0 10° 2.15M 10 15 0 1 1 1.7 -3 Figure 15
SQ 0 10° 3.85M 8 4.2 0 1 0.75 0.5 -5 Figure 15
SQ 0 10° 8.85M 0.5 0.1 0 1 0.75 1.2 -5 Figure 15
SQ 0 10° 14.5M 0.5 0.1 0 1 0.75 1.2 -5 Figure 15
SQ 1 10* 0 0.003 2.5 x 107° 0 0067 107° 4 —-1.5 Figure 12
SQ 1 10* M 0.005 6.1 x 10°° 0 0.2 10°° 2 -1.5 Figure 12
SQ 1 10* 5M 0.005 22 x 107" 0 0.2 107° 3.2 —1.75  Figure 12
SQ 1 10* 12.5M 0.005 357 x 1002 0 0.2 10°° 6.2 —1.35  Figure 12
SQ 1 5x10* 0 5% 1077 3.14 x 1072 0 0.2 107° 3 -15 Figure 14
SQ 1 5x10* M 5% 1077 1.6 x 1072 0 0.2 10°° 3 —-1.5 Figure 14
SQ 1 5x10" 15M 5% 1077 0.136 0 0.2 10°° 1.5 —1.75  Figure 14
SQ 1 5x10* 7.4M 1.2 x 1072 3.79 x 107 0 0.2 107° 0.98 —24 Figure 14
SQ 1 10° 0 5% 1077 0.25 0 0.5 0 3 —1.5 Figure 16
SQ 1 10° 2.15M 0.02 1 0 0.4 0 1 —~1.5 Figure 16
SQ 1 10° 3.85M 0.01 0.71 0 0.4 0 0.5 -2 Figure 16
sQ 1 10° 14.5M 0.01 1 0 0.4 0 15x107° 25 Figure 16
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Figure 18. Snap-shots of granular discs confined by CI boundary at N, = 0 (upper-left frame), N, = 2.5M (upper-center frame),
N, = 5M (upper-right frame), N, = 7.5M (lower-left frame), N, = 15M (lower-center frame) and N, = 35M (lower-right frame).

topological phase-transition in accordance with the switch of the Isd between the log-concave and log-convex in
both cases of N = 10*and 5 x 10°.

The Betti number is not calculated in the case of the SP boundary, because the monotone (0,1) pixels, which
are used in the calculation of By and B, in the SQ and CI boundaries, are unable to consider the depth-direction
in 3D.

4. 3D crystal classification of granular gases by VA BAA and PTM

Based on the numerical results obtained using the SP boundary in section 3, we investigate the 3D crystal
classification of the granular gases confined by the SP boundary using the Voronoi’s analysis (VA), bond-angle
analysis (BAA) and polyhedral template matching (PTM). The numerical schemes of the VA, BAA and PTM
have been already demonstrated in section 2, briefly. As discussed in Introduction, there are two goals in our
study of the granular gases with the VA, BAA and PTM. One is to confirm whether the VA, BAA or PTM are able
to identify the transition of the granular gases from the HCS to the clustering state or not. The other is to
investigate which typical coordination (i.e., FCC, BCC, HCP, ICO etc.,) the crystal structures of the granular
particles, which are condensed around the wall, densely, are categorized using the VA, BAA and PTM. We
proceed our discussions of analytical results in order of the BAA, VA and PTM.

4.1.Results of BAA
Figure 34 shows snapshots of the categorized coordination per a granular particle and its fraction obtained using
the BAA at N, = 0,4M, 5M, 6M, 10M, 20M, 30M, 40M and 47.4M. We can confirm that the spatially random
locations of granular spheres at N, = 0 (¢ = 0) does not obtain any crystal structure. In short, all the
coordination of granular particles is categorized as Other. Meanwhile, the fraction of granular spheres with the
coordination categorized as the HCP, FCC and BCC (coordination) increases, as N, increases. Actually, 20% of
granular spheres are categorized as the structured coordination, namely, FCC, HCP, BCC and ICO at
N, = 47.7M. Of course, most of granular spheres condensate around the wallat N. = 47.7M, so thatsuch a
status is not appropriate to be called as the granular gases.

Figure 35 shows the fractions of the categories of the coordination versus N, obtained using the BAA (Other:
left frame, FCC, HCP, BCC and ICO: right frame). The enlarged figure (log-log plot of the fraction of Other
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Figure 19. PD obtained usingd = 1 at N, = 0 (top-left frame), N, = 2.5M (top-right frame), N, = 5M (middle-left frame),
N, = 7.5M (middle-right frame), N, = 15M (bottom-left frame) and N, = 35M (bottom-right frame), when N, = 10° and CI-

versus N,) is added to the left frame of figure 35 in order to show that the fraction of Other decreases by the
inverse power law function of N. As shown in figure 35, the fraction of the category of the coordination is
invariant during N, < 4M and decreases in accordance with 130/ (N, /M + 4)~%125_ Then, we can discriminate
the topological phase of the granular spheres between N, < 4M (HCS) and 4M<N. (growth of clusters).
Reminding that the Isd for d = 0 changes from the log-concave to the log-convex at SM< N, < 4M, as shown in
figure 29, the BAA also specifies the topological phase-transition of the granular spheres with a similar accuracy
to theIsd obtained usingd = 0-PD.
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Figure 20. f (¢) versus £ at N, = 0 (top-left frame), N, = 2.5M (top-right frame), N, = 5M (middle-left frame), N, = 7.5M
(middle-right frame) and N, = 35M (bottom-left frame) obtained usingd = 0, when N = 10° and CI boundary.

4.2.Results of VA
Figure 36 shows the snapshots of the categorized coordination per a granular sphere and its fraction at N, = 0,
2M 4M, 5M, 6M, 10M, 20M, 30M, 40M and 47.4M obtained using the VA. We can confirm that 3.1% of
randomly located granular spheres at N, = 0 can be categorized as HCP or FCC (coordination). Finally, 32.8%
of granular spheres obtain the crystal structures, namely, FCC, HCP, BCC, FCC-HCP and ICO at N, = 47.7M.
Figure 37 shows the fractions of the categories of the coordination versus N, obtained using the VA (Other:
left frame, FCC, BCC, ICO, FCC-HCP and HCP: right frame). The enlarged figure (log-log plot of the fraction of
Other versus N,) is added to the left frame of figure 34 in order to show that the fraction of Other decreases by the
inverse power law function of N.. As shown in figure 34, the fraction of the category Other is almost invariant
during N, < 4M and decreases in accordance with 145/(N, /M + 4)~%2. Then, the VA-results indicate that the
topological phase-transition of the granular spheres occurs between N. < 4M (HCS) and 4M <N, (growth of
clusters) similarly to the PD and BAA. The growths of the fractions of the FCC-HCP and HCP are markedly
larger than those of the BCC, ICO and FCC. Then, we can conclude that the HCP type coordination is dominant
in both cases of the BAA and VA, when the structured coordination are assigned to granular spheres.

4.3.Results of PTM

We consider the categorization of the coordination obtained using the PTM. Figures 38—46 show granular
particles inside the SP boundary, which are colored in accordance with the assigned category of the coordination
(i.e., All:=Other, FCC, HCP, BCC, ICO and SC), at N, = 0,4M, 5M, 6M, 10M, 20M, 30M, 40M, and 47.7M
together with >y fi\ (Zrmsp) versus £rmsp (XX:=FCC, HCP, BCC, ICO and SC) in their top-left frames.
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(lower-right frame) obtained usingd = 1, when N = 10> and CI boundary.

Table2. 2, B, €, ©, ¢, nand minequation (6) and corresponding figure number, whend = 0and 1, N = 10° and CI

boundary are used.

Form d N N, A B ¢ D ¢ n m figure No.
Cl 0 10° 0 1 34.8 0 1 3.15 1.74 2 Figure 20
Cl 0 10° 2.5M 900 18 0 1 —107* 0.8 1 Figure 20
Cl 0 10° 5M 100 9.5 0 1 —107* 0.48 0.35 Figure 20
Cl 0 10° 7.5M 50 8 0 1 —107* 0.4 0.2 Figure 20
Cl 0 10° 35M 50 8 0 1 —107* 0.3 0.15 Figure 20
CI 1 10° 0 0.05 0.75 0 1 1077 3 —1.4 Figure 21
Cl 1 10° 2.5M 0.05 0.75 0 1 1077 2 —1.4 Figure 21
CI 1 10° 5M 0.02 0.15 0 1 1077 1.2 —~1.75 Figure 21
CI 1 10° 35M 0.02 0.15 0 1 1077 1.2 —-1.75 Figure 21

Additionally, other remained frames except for top-left frame in figures 38—46 show the granular particles inside
the SP boundary, which are colored by only two categories Other and XX (XX:=FCC, HCP, BCC, ICO and SC)
together with the distribution of the RMSD, namely, f (Zrmsp) versus Zpmsp, when all the granular particles
are categorized by Other and XX (i.e., FCC, HCP, BCC, ICO and SC). Figure 38 shows that 48.7% of Nis
categorized as Other, whereas 45.3% of N is categorized as the SC and 4.9% of N is categorized as the HCP, at

N, = 0. Then, 50.2% of N is categorized as the structured coordination at N, = 0, even when the BAA and VA
categorize most of N'as Other. f,; (famsp) and fi (Zrusp) seem to follow Gaussian distributions at N, = 0,
respectively. The deviations of f, (frmsp) from the Gaussian become marked, as N, increases. For example,

fan (Grusp) has fat tailed distribution at N. = 10M and has markedly asymmetric form, when 30M<N.. In
particular, the fat tailed regime of f,; (avsp) at Zrusp < 0.3 is caused by the plateau distribution of fi.- (Zrmsp)
at fpmsp < 0.3 and bimodal distribution of f;; - (Zrmsp) at Zrvsp < 0.3, as shown in figures 44, 45 and 46.
Similarly, asymmetry of fy (xmsp) becomes marked, when 10M<N.. Other significant result obtained using
the PTM is time-evolutions of fi;p (rmsp)- fiycp (Grmsp) approaches exp (—a|fmsp — 0.27]) (@ € R,),as N,
increases. Therefore, most of granular particles, which are categorized as the HCP, deviates from the HCP
template with the constant distance 0.27 and such f; -, (Zramsp) decreases exponentially, as Zpvsp deviates

from0.27.
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Figure 22. By/N, B;/Nand (By + B;)/N versus N, obtained using CI boundary.
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Figure 23. Snapshots of granular spheres confined by SP boundary at each N,when N = 10* (upper two raw)and 5 x 10* (lower two
raw).

Finally, the left-top frame of figure 47 shows time-evolution of the fraction of categories XX (:=Other, FCC,
HCP, BCC, ICO and SC). The fraction of the HCP increases and becomes comparable with that of the SC, as N,
increases. The temporal change in the fraction of Other is not marked in comparison of that obtained using the
BAA and VA. The bottom-left and bottom-right frames show good fits of fractions of categories Other and SC
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right frame), N, = 5M (bottom-left frame) and N, = 45M obtained usingd = 1,whenN = 5 x 10*and SP boundary.

29



10P Publishing

J. Phys. Commun. 4(2020) 015023

R Yano and M Kim

0.100

0.010

A

0.001

10-*

10-3

0.100

0.01
o 0.010
= 0.001

10-*

g 010

Eq. (6)

N&=3M

[ce] o co00

Figure 32. f (¢) versus £ at N, = 0 (top-left frame), N, = 2M (top-right frame), N, = 2.5M (middle-left frame), N, = 3M (middle-
right frame) and N, = 5.5M (bottom-left frame) obtained usingd = 2, when N = 10* and SP boundary.

20 20

SP
N=5x10%, d=2

0.100

IN=4M

020 30

N=45M

1020 30 . 40

{

Figure 33. f (¢) versus £ at N, = 0 (upper-left frame), N. = 4M (upper-right frame), N, = 10M (lower-left frame) and N, = 45M
(lower-right frame) obtained usingd = 2, when N = 5 x 10*and SP boundary.

060 0




10P Publishing

J. Phys. Commun. 4(2020) 015023

R Yano and M Kim

Table 3. 2, B, ¢, ©, ¢, nand minequation (6) and corresponding number of the figure, whend = 0,1and 2, N = 10*and5 x 10%and

SP boundary are used.

Form d N N, A B ¢ D ¢ n m figure No.
Sp 0 10* 0 0.012 0.003 1 0.8 1 2 0.75 Figure 28
Sp 0 10* 2M 0.012 0.003 1 0.8 1 2 0.75 Figure 28
Sp 0 10* 2.5M 0.02 0.003 1 0.8 1 0.95 1 Figure 28
Sp 0 10* 3M 5 x 107 18 —1 1 0 2 0.15 Figure 28
Sp 0 10* 5.5M 1 0 0 1 —614 1 0.77 Figure 28
Sp 1 10* 0 1 225 x 1074 0 3.6 1.83 2 -1.15 Figure 30
Sp 1 10* M 1 2.25 x 1074 0 3.6 1.83 2 —1.15 Figure 30
Sp 1 10* 2.5M 1 0.015 0 2.46 1.98 1 —1.32 Figure 30
Sp 1 10* 3M 1 0.012 0 2.33 2.26 1 —1.45 Figure 30
Sp 1 10* 3.5M 1 0.1 0 2.13 2.75 1 -1.77 Figure 30
Sp 1 10* 5.5M 1 0 0 107 7.88 1 ~1.08 Figure 30
Sp 2 10* 0 1 0 0 1.16 2.9 1 —1.95 Figure 32
Sp 2 10* 2M 1 0 0 1.16 2.9 1 -1.95 Figure 32
Sp 2 10* 2.5M 1 0 0 1.16 2.9 1 -2 Figure 32
Sp 2 10* 3M 1 0 0 1.16 2.9 1 —2.2 Figure 32
Sp 2 10* 5.5M 1 0 0 9.33 4.64 1 -1.1 Figure 32
Sp 0 5x10* 0 1 1.62 x 10°° —48 1 0 5.5 2 Figure 29
Sp 0 5x10* 2M 1 2.1 x 107° —423 1 0 5 2 Figure 29
Sp 0 5x10* 3M 1 1.66 x 1072 —12.3 1 0 2 2 Figure 29
Sp 0 5x10* 4M 1 8.8 x 1077 -6,15 1 0 2 0.6 Figure 29
Sp 0 5x10* 5M 1 42 x 1077 —0.144 1 0 2.5 -1.8 Figure 29
Sp 0 5x10* 45M 1 2.44 x 1072 -2.13 1 0 1 -15 Figure 29
Sp 1 5x10* 0 0.25 1077 -3 1 0 5 1.5 Figure 31
Sp 1 5 x 10* 2M 0.25 1077 -3 1 0 5 1.5 Figure 31
Sp 1 5 x 10* 3M 0.25 1.6 x 10°° -3 1 0 4 —-1.5 Figure 31
Sp 1 5 x 10* 4M 0.25 2.5 x 107° -3 1 0 3.75 —-1.5 Figure 31
Sp 1 5 x 10* 5M 0.25 2.5 x 10°° -1 1 0 35 —~1.75 Figure 31
Sp 1 5 x 10* 45M 0.25 5x10°° -1 1 0 2.75 —-1.5 Figure 31
Sp 2 5x10* 0 0.25 10°° -3 1 0 3 -2 Figure 33
Sp 2 5x10* 4M 0.25 10°° -3 1 0 3 -2 Figure 33
Sp 2 5x10* 10M 0.1 10°° -3 1 0 3 -2 Figure 33
Sp 2 5x10* 45M 0.1 10°° -3 1 0 3 -2 Figure 33
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Figure 34. Snapshots of categorized coordination per a granular particle and its fraction obtained using BAA at N, = 0,4M, 5M, 6M,
10M, 20M, 30M, 40M and 47.4M, when N = 5 x 10*.
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Figure 38. Snapshots of fractions of all categories, Other+HCC, Other+HCP, Other+BCC, Other+1CO, and Other+SC and their
Root-Mean-Square-Deviation (RMSD) distributions at N, = 0 obtained using PTM.
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Root-Mean-Square-Deviation (RMSD) distributions at N. = 5M obtained using PTM.
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Root-Mean-Square-Deviation (RMSD) distributions at N, = 6M obtained using PTM.
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Figure 42. Snapshots of fractions of all categories, Other+HCC, Other+HCP, Other+BCC, Other+1CO, and Other+SC and their
Root-Mean-Square-Deviation (RMSD) distributions at N. = 10M obtained using PTM.
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Figure 43. Snapshots of fractions of all categories, Other+HCC, Other+HCP, Other+BCC, Other+1CO, and Other+SC and their
Root-Mean-Square-Deviation (RMSD) distributions at N, = 20M obtained using PTM.
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with the inverse-power-law functions, namely, 56(N, /M + 4) %% and 120(N, /M + 4)~%5, respectively. The
deviations from the inverse-power-law functions become marked at N, > 30M in the case of the SC.

5. Concluding remarks

We investigated the transition from the homogeneous cooling state (HCS) to the pattern formation of the
granular gases confined by the elastic wall using the topological analyses, namely, PH, BAA, VA and PTM. The
topological phase-transition is successfully identified by the switch of the life-span-distribution (Isd) between
thelog-concave and log-convex, when the dimension of homology is zero and unity in the cases of the SQ and CI
boundaries or zero in the case of the SP boundary. The zeroth and first order Betti numbers obtained using the
SQ boundary indicate that three topological phases exist, whereas the zeroth and first order Betti numbers
obtained using the CI boundary indicate that only two topological phases exist. The analyses of coordination of
granular spheres on the basis of the BAA, VA and PTM indicate that the time-evolution of fractions of categories
also become standard to judge the topological phase-transition as well as the switch of the Isd between the log-
concave and log-convex. The HCP coordination is dominant, when the condensed granular spheres around the
wall are categorized as the structured coordination after the adequate time passes by. Finally, we confirmed that
these topological analyses, which have been applied to crystal or glass, are also useful for the consideration of the
phase-transition of the granular gases.

Acknowledgments

The authors acknowledge the professor Takahito Kashiwabara (Graduate school of Mathematical Science,
University of Tokyo, Japan) for his helpful comments on the specific of homcloud and professor Andrés Santos
(Departamento de Fsica, Universidad de Extremadura, Spain) for his helpful comments on the rotation of
cluster of granular particles along the wall.

Appendix A. Simplicial complex

The notion of simplicial complex [33] is a generalization of both of polygons and polyhedrons with triangle faces.
It is combinatorially constructed by gluing some basic geometric objects called simplices. For a non-negative
integer p, the p-simplex is formally given by a subspace of RP! formed by (fy, #1, -+ » #, ) such that

to + t + ---t, = L. Intheliterature, a subspace of a Euclidean space which is linearly isomorphic to the above p-
simplex is also called a p-simplex. For example, the notions of 0-simplices, 1-simplices, 2-simplices and
3-simplices coincide with those of points, line segments, triangles and tetrahedrons respectively. We note that
polygons are constructed by gluing some line segments along their boundaries in a proper way. Likewise,
polyhedrons with triangle faces are constructed by gluing some triangles along their boundaries in a proper way.
Then the notion of simplicial complex is defined by a geometric object which is combinatorially constructed by
gluing some simplices.

Appendix B. Homology

The p-th Betti number is defined via the p-th homology theory. The p-th homology theory is, roughly speaking,
the vector space formally generated by p-dimensional holes. We refer the readers to Hatcher’s book [20] for
exact definitions. The p-th homology theory of a simplicial complex X is usually denoted by H, (X; R) or H,, (X).
For example, if we write by X the simplicial complex in figure 3, then the p-th homology theory H, (X) is
calculated to be a 1-dimensional vector space for p = 0 and 2-dimensional vector space for p = 1 aswe givea
heuristic discussion in the previous subsection. Moreover, the p-th homology theory H,, (X) is a 0-dimensional
vector space forp > 2.

The p-th Betti number is defined by the dimension of the vector space H,, (X). Since the homology theory is
based on vector spaces not on numbers as the Betti number, it becomes possible to deal with linear
homomorphisms between them. It makes us to obtain more rich information about given simplicial complexes
than the Betti number does.
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Appendix C. Persistent homology

The p-th persistent homology is, formally speaking, the persistence module induced by a filtration of a simplicial
complex. For the convenience of the readers, we unpack the definition as follows. The p-th persistent homology
of afiltration X; of a simplicial complex X is given by the following data,

+ Asequence of vector spaces M; = H, (X;) where H,, denotes the p-th homology theory. See section B.

+ A family of linear homomorphisms, fto’ ot M, — M, for ty < t; such that ft], h ofto) 8= fto) h fortg < i < t. It
is induced by the inclusion maps X;, — X,.

Note that we deal with finite simplicial complexes so that each vector space M, is finite-dimensional. A
persistence module with finite-dimensional components is called to be pointwise finite-dimensional. By
Crawley-Boevey [34], any pointwise finite-dimensional persistence module is a direct sum of interval modules.
Aninterval module is a persistence module {L;; ot } such that for some interval I in the real line,

_JR (teD
"Tlo gD,

and

idg (to, § € I)
to,fy =

0  (otherwise).

For the p-th persistent homology {M;; f, .} ofafiltration, we can take a decomposition of interval modules by
Crawley-Boevey. Let {L; g, , } bean interval module componentonaninterval Iasabove.If a < bare
endpoints of the interval I, then we say that the p-th dimensional hole isbornatt = aand dead att = b. By using
an interval module decomposition, we obtain the PD.
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