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Abstract
In this paper, we investigate the topological characteristics of the pattern formation in the cooling
granular gases confined by the elastic wall. The persistent homology andVoronoi’s analysis and its
derivative analyses are applied to accomplish our aim. The growth of the pattern formation can be
identified by the switch between the logarithmic concave and logarithmic convex in the life-span-
distribution obtained using the persistence diagram. Furthermore, three phases are identified by the
zeroth orfirst order Betti number, when a formof thewall is the square. Finally, the characteristics of
the coordination of granular particles condensing around the elastic wall are investigated by the
Voronoi’s analysis, bond-angle analysis, and polyhedral templatematching.We confirm that some
clusters of the granular particles condensing around the elastic spherical-wall certainly attribute to
their crystallization categorized as the typical coordination.

1. Introduction

The accurate classification of the phase ofmatter [1] is significant to characterize the physical property ofmatter
such as solid (crystal structure), liquid, or gases.Meanwhile, such a classification of the phase ofmatter
sometimes involves difficulties as observed in the classification of the phase of glass [2]. For example, we are still
unable to answer to the questionwhether glass corresponds to the liquid, solid or glassy state. The topological
characterization of the phase ofmatter on the basis of locations of atoms or particles has been used in order to
overcome such difficulties involvedwith the specification of the phase ofmatter. For example, the topological
characterization of the crystal has beenwidely used, as represented by theVoronoi’s analysis (VA) using
coordination of atoms [3]. On the other hand, the specification of the coordination of atoms (particles) from
their locations becomes difficult, when thermalfluctuations of atoms (particles) become significant. Therefore,
the specification of the coordination of thermalfluctuating particles involves difficulties evenwith theVA.
Meanwhile, the recent application of the persistent homology (PH) [4] to numerical data (i.e., locations of
atoms) of glass byHiraoka et al [5] succeeded the discrimination of the glassy state from the liquid state, where
the coordination of atoms in glass seems to be random, because thermalfluctuations are significant at glance.
Then, the PH enables us tofind the ordered structure even under themarked thermalfluctuations. The analogy
between glass and granularmatter is sometimes indicated by the fact that sheared granularmedia forms the
disordered glassy state via the jamming transition [6]. In previous studies of the dense granular packing [7], the
characteristics of the force-chain-network was analyzed by the PH,whereas the crystal characteristics of the
densely packed granular particles was investigated by theVA.

As a peculiar characteristics of the dilute granular gases, the cluster formation from the initially
homogeneous cooling state (HCS) [8, 9] has beenwell studied by Brey [10] and his coworkers, whereas the
characteristics of theHCS of the granular gases has been studied in detail by Santos [11], Brilliantov [8] and their
coworkers or Yano [12]. Themode-analysis [8, 10] of the hydrodynamics equation of the granular gases can
demonstrate such an instability of theHCS,which attributes to the pattern formation via aggregations (clusters)
of the granular particles. Of course, the granular gases correspond to the status, inwhich the volume fraction of
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the granular particles is low, adequately, and thermalmotions of granular particles are significant. Actually, the
phase of granularmatter easily changes in accordance with rLrd

2 (ρ: density, L: representative length, rd: diameter
of sphere) and restitution coefficient, as demonstrated by Esipov and Pöschel [13]. The primary aimof our
present study is to answer to the questionwhether the transition from theHCS to the pattern formation of the
granular gases can be demonstrated by the PHorVAor its derivative analyses, namely, bond-angle analysis
(BAA) [14] and polyhedral templatematching (PTM) [15]. Additionally, we investigate the crystal structure of
granular particles, which condensate around thewall, using theVA, BAA and PTM.Here, the topological phase-
transition corresponds to the specific change in topological characteristics, then, wemust remind that the
topological phase never be same as the physical phase (gases, liquid, or solid).

Now,we consider the granular gases confined by the elastic wall, withwhich all the granular particles collide
elastically. The reasonwhywe consider the elastic (heating)wall [16] is to exclude both excessive accumulation
of granular particles around thewall owing to their inelastic collisions with thewall [17] and long range-
correlations among granular particles owing to the use of the periodic boundary, which is unfavorable in the
PHanalysis. The time-evolution of the granular particles with the constant restitution coefficient and smooth
surface is calculated by the event-driven (ED)method [17].

This paper is organized as follows. Firstly, the preliminaries for the Betti number [18], persistence diagram
(PD) [19], or VA, BAA and PTMare demonstrated together with the EDmethod in section 2, briefly. Afterwards,
the changes in the PD andBetti number in accordancewith the time-evolution of the granular particles are
discussed in order to confirmwhether they are able to capture the transition from theHCS to the pattern
formation or not, in section 3.Next, the BAA,VA, and PTMare applied to numerical results of the granular
gases confined by the spherical (SP) boundary in order to confirmwhether the tendency of the pattern formation
of granular gases from theHCS can be identified by the BAA,VA, andPTMor not, in section 4. Additionally, we
investigate which coordination the granular particles, which condensate around the elastic wall densely, are
categorized as. Finally, wemake concluding remarks in section 5.

2. Preliminaries in topological context

Before stating our discussions of numerical results, the following items are demonstrated to help readers’
understanding of themathematical definitions and terminologies used in topological contexts and numerical
simulation.

A. Betti number

B. Persistence diagram (PD)

C. Frompoint could data to PD

D.VA, BAA and PTM

E. EventDriven (ED)method to simulate granular particles

2.1. Betti number
For a non-negative integer p, the p-th Betti number of simplicial complexes (see its definition in appendix A) is
one of classical topological invariants [20]. It is the number assigned to each simplicial complex, which implies
information about its topology. The Betti number implies a ‘persistence’with respect to ‘continuous
deformations’. In other words, the Betti number is invariant under ‘continuous deformations’.We note that the
Betti number does not imply geometric information (volume,metric etc.) of simplicial complexes. Informally
speaking, the p-th Betti number of a simplicial complexX is a number of ‘p-dimensional holes’ ofX.We give the
heuristic explanation of the Betti number usingfigure 1. The simplicial complex infigure 1 consists of ‘7’ vertices
and ‘8’ edges.

A vertex is called as 0-simplex, and an edge is called as 1-simplex from the simplicial point of view. The
simplicial complex infigure 1 has no higher-dimensional simplex such as the face. Now,we compute the 0th
Betti number. 0-dimensional hole stands for the connected component following conventions. In short, the 0th
Betti number counts the number of connected components. Since the simplicial complex in infigure 1 has one
connected component, its 0th Betti number is ‘1’. On the other hand, a 1-dimensional holemeans a circular
hole. The simplicial complex infigure 1 has two circular holes alongwith the hexagon part and the square part.
Hence, the 1st Betti number is ‘2’. These observations can be generalized to the case p�2. For example, we
interpret 2-dimensional hole as a balloon-like hole or 2-sphere-like hole.We introduce the notion of homology
in order to deal with such ‘p-dimensional holes’ in a formal way.
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Betti number on the basis of locations of granular particles is calculated using themonotone PNG format
with theCHomP [21]. Figure 2 shows the zeroth and first order Betti numbers, which are calculated using
monotone PNG.We can readily understand that bothB0 (connection) andB1 (hole) are equal to ‘4’, as shown in
figure 2.

Figure 1.An example of a simplicial complex.

Figure 2. Schematic of calculation ofB0 andB1 in 10×10 pixels withmonotone PNGfile byCHomP [21].
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2.2. Persistence diagram (PD)
For a nonnegative integer p, the p-th Betti number counts ‘p-dimensional holes’ of a simplicial complex, as we
explain in section 2.1. A persistence diagram (PD) is a diagram,which records birth and death of ‘p-dimensional
holes’, i.e. we consider ‘time-evolution’ of a simplicial complex and are interested in the change of its topology.

The time-evolution, formally speaking, corresponds to filtration of a simplicial complex. Afiltration of a
simplicial complexX is given by a sequence ÎXt t{ } of simplicial sub-complexes ÌX Xt parametrized by Î t
such that

• ÌX Xt t0 1
for t0<t1.

• =X Xt t⋃ and = ÆXt t⋂ .

Afiltration can be understood as amovie filmwhich records how a simplicial complex grows as time evolves.We
give an example infigure 3; the filtration ÎXt t{ } is an empty complex for sufficiently small t, say t=t−1 ; the
filtration ÎXt t{ } is constant except for t=t0, t1, t2, where it grows up, as shown infigure 3. The p-th PD of a
filtration ÎXt t{ } is induced by the data of when the p-dimensional holes are born and dead as time evolves.
Informally speaking, for a p-dimensional hole h of someXt, wemark a point b d,h h( ) on xy-planewhere Î bh

( Î dh , resp.) is the timewhen the hole h is born (dead, resp.).
The p-th PD is obtained by plotting such b d,h h( ). The PD is given bymultiple set in general since there is a

possibility that some holes have the same birth time and death time.We give an example of the PD infigure 4,
which is obtained from the filtration infigure 3.Note that the point -t t,1 0( ) in the PDhasmultiplicity of ‘2’.
There is an obvious problemwith respect to the definition of such a hole h in the time-evolution. The notion of
persistent homology and some decomposition theorems are necessary to define PDs in a formal way. Their brief
overview is given in appendix C.

2.3. Frompoint cloud data to PD
In this subsection, an overview about how the PD is obtained frompoint cloud data is given. Since the PD is
obtained from afiltration of a simplicial complex, it suffices to construct afiltration of a simplicial complex

Figure 3.An example of a filtration of a simplicial complex.

Figure 4.The PDof the filtration infigure 3.
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starting frompoint cloud data. In practice, a point cloud data is usually given by afinite set S in a Euclidean space
N . For a positive numberR, an open covering of S in N given by = Îs s SBR R{ ( )}U is considered.

Here, sBR( ) is theR-neighborhood of a point Îs S with a radius ofR. There are several ways to construct a
cell complex from the open covering RU : theČech complex, the Alpha complex, theVietoris-Rips complex, etc
[20, 22, 23].

If we denote one of such complexes by CR, then, >C 0R R{ } gives afiltration of a cell complexwherewe
considerR as time, i.e. ÌC C

0 1R R for < <0 0 1R R . the PD is obtained from the filtration >C 0R R{ } .We note
that the PD is determined by the point cloud data S in N .

Figure 5 shows growths of RU of eight point cloud by enlargingR. The upper-left frame offigure 5 shows
the birth of the hole, when = 1R R . The upper-middle frame offigure 5 shows births of eight holes, when

= 2R R . The upper-right frame offigure 5 shows deaths of holes, when = 3R R . Consequently, the PDof these
birth-death-sets of holes ,b dR R( ) are shown in lower-frame offigure 5, inwhich bR and dR correspond to the
radius ofBR (i.e.,R), which yields the birth and death, respectively. Of course, eight-fold-points are plotted on

=, ,b d 2 3R R R R( ) ( ) owing to the birth-death of eight holes.

2.4. VA, BAA andPTM
TheVoronoi’s analysis (VA), bond-angle-analysis (BAA) andpolyhedral templatematching (PTM)havebeenused
to analyze the structure of the crystal on the basis of coordinationof atoms. In particular, the analytical tools are
freely providedby the codes ofVoro++ [24] andVorotop [25] inOvito [26]. Then,we canutilize such analyzers in
order to analyze the crystal structures of granular particles.Of course, the crystal structure usually postulates the
densely packed status of granular particles, where thermalfluctuations of atoms are negligible.We, however, focus
on the crystal characteristics, before and after granular particles are densely condensed around thewall owing to
theirmarkedly lowkinetic energy.Here, schematics of theVA,BAAandPTMare demonstrated, briefly.

In order to discuss theVA, BAA and PTM,we start our discussion bymentioning to theVoronoi’s
diagram (VD).

 is space such as Í n ( Î n ). Let’s think elements ¼ Î g g g, , n1 2 . Here, = gk
n

k1⋃ ≔ .
We define the distance between the point Î P and gi as

P gd , ,i( )

Then, theVoronoi’s domain  gR ; i( ) is defined by:
Î < ¹ g P P g P gR d d j i; , , , , 1i i j( ) ≔ { ∣ ( ) ( ) } ( )

Figure 5. RU of nine point cloud ( =s 1, 2 ,.., 9), when = 1R R (upper-left frame), = 2R R (upper-middle frame) and = 3R R
(upper-right frame) inČechfiltration. PDobtained by birth-death of holes corresponding to above three frames (lower frame).
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From equation (1),  is divided into  gR , i( ) ( Î Ç i n1,[ ] ).We call these divided structures of  by  gR , i( )
as theVD.

TheVD is described by theDelaunay tetrahedralization in the case of Í 3. The significant problem in
theVA is classifications of theVDusing the typical crystal-coordination such as the face-centered-cubic (FCC),
body-centered-cubic (BCC), hexagonal close-packed (HCP), icosahedral (ICO) and hybrid of FCC andHCP
(FCC-HCP). TheVAbyVoro++ appliesWeinberg’s algorithm [27] tofind themost appropriate crystal-
coordination among the FCC, BCC, ICO, FCC-HCP andOther from theVD, inwhichOther indicates the status
of coordination of granular particles, fromwhich any crystal structure is not specifiedwith the FCC, BCC, ICO
and FCC-HCP.

Of course, there are othermethods in order to categorize the crystal structure such as theCommon
Neighbor Analysis (CNA) [28], PTM [15], BAA [14] other than theVA. The PTMwas proposed by Larsen-
Schmidt-Schiøtz [15]. In the PTM, the similarity between two diagrams is evaluated by the Root-Mean-Square
Deviation (RMSD), which is defined by [15]

å=
À

- - -
=

À

v w v Q ws v w, min
1

, 2
Qs i

i i
T T

RMSD
, 1

2
2ℓ ( ) ∣∣ [ ¯] ( [ ¯ ] ) ∣∣ ( ) 

where Q is the right handed orthogonalmatrix , = À å = À å=
À

=
Àv wv w1 , 1i i i i1 1¯ ( ) ¯ ( ) 

are barycenter of v and
w. s is the optimal scaling of v . Themethods offindings of s and Q are proposed byHorn [29] andTheobald [30].
ℵis the number of the neighboring atoms, and À = 6 for the simple cubic (SC), 12 for the FCC, 12 for theHCP,
12 for the icosahedral (ICO) and 14 for the BCC are used. The detail of algorithmof the PTM is demonstrated by
Larsen-Schmidt-Schiøtz [15]. Finally, wefind the smallest RMSD among themwhich are calculated using the
SC, FCC,HCP, ICO, andBCC. Additionally,Other corresponds to the state that any structure is not identified
evenwith the SC, FCC,HCP, ICO, andBCC,when theminimumRMSD is larger than its critical value. Actually,
v is the vector which indicates the vertex-set of the convex hull formed byN-neighboring atoms and w is the
vector, which indicates the vertex-set of the convex hull of the reference templates, namely, the SC, FCC,HCP,
ICO, andBCC (see figure 6 for convex-fulls of the SC, BCC, FCC,HCP and ICO). Hence, we can calculate the
distribution of the RMSD ( Î +f t t, ,XX RMSDℓ( ) : time), whenwe specify the crystal structure of the atoms
using two categoriesOther andXX (XX≔ SC, FCC,HCP, ICO andBCC). Finally, wemention to the BAA [14],
briefly. The BAAwas proposed byAckland and Jones [14]. The BAA identifies the crystal structure of atom-i
with the FCC,HCP, ICO, andBCC from angles (θjik) between two bonds (rij and rik), which connect two sets of
two neighboring atoms (i-j and i-k). The neighboring atoms are searched by themean square distance of six
neighboring atoms around the atom-i. Once the calculation of the angle between two bonds for several sets of
two bonds isfinished, functional ofχ, which are calculated by angles θjik, identifies the crystal structure of atom-i
with the FCC,HCP, ICO, BCCorOther.

2.5. Event-Drivenmethod to simulate granular particles
The event-driven (ED)method has been frequently used in order to simulate a large number (N) of granular
particles, whose simulation is difficult using the discrete elementmethod (DEM), when the calculation of the

-N N 1 2( ) paired force-chain is beyond the computational resource. In particular, the EDmethod is suitable
to simulate the dilute granular gases, inwhich the effects of deformations of contacting granular particles on the
collectivemotion of all the granular particles are negligible.

The algorithmof the EDmethod is so simple. Provided that the k-th collision occurs at t=tk ( Î +tk ), we
search for the occurrence-time of k+1-th collision, namely, tk+1, which is calculated by

Figure 6. Schematic of convex hulls of SC, BCC, FCC,HCP and ICOused in PTM [15].
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where Î x ti
d( ) is the location of the granular particle indexed by i at Î vt , i

d is the velocity of the i-th
granular particle, ri is the radius of the i-th granular particle.

Provided the boundary (wall) is considered, the occurrence-time of the collision between the granular
particle andwall is calculated in a similar way to equation (3). Afterward, we compare the next collisional time
calculated by two granular particles with that calculated by the granular particle andwall and select smaller tk+1

as next collisional time.
Once tk+1 is determined, we revise the locations of all the granular particles using = ++x xt tk k1( ) ( )
Dv t tk k( ) (D -+t t tk k k1≔ ). Finally, we revise the velocities of colliding granular particles or velocity of the

granular particle collidingwith thewall. Provided that the i-th and j-th granular particles collide, the velocities
of colliding granular particles change at t=tk+1 as follows:

= -
+

= +
+

= - =
-

-

+

+





v v g n n
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g v v n
x x

x x

t t

t t

t t
t t
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,

1
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i k j k

i k j k

1

1

( ) ( ) ( · )

( ) ( ) ( · )

( ) ( )
( ) ( )

∣∣ ( ) ( )∣∣
( )

where Î 0, 1[ ] is the restitution coefficient, gij is the relative velocity and Î Wnij
2 is the relative location-unit-

vector.
The calculation of the velocity of the granular particle post-collisionwith the elastic wall is calculated in a

similar way to equation (4) [17].

3. Persistent homology and their characteristics

In this section, we apply the PH to the cooling process of two dimensional granular gases confined by the elastic
wall. Firstly, we investigate the PHof the granular discs in the case of the square (SQ) boundary. Next, we

Figure 7.The time-evolutions of granular particles inside SQboundary atNc=0 (upper-left frame), M0.1 (upper-middle frame),
M11.25 (upper-right frame), 12.5M (lower-left frame), 13.75M (lower-middle frame) and 19.9M (lower-right frame), whenN=104.
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investigate the PH in the case of the circular (CI) boundary to consider the effects of formof the elastic wall on
the PH. Finally, we investigate the PHof the granular spheres in the case of the spherical (SP) boundary.

3.1. Results in case of SQboundary
The restitution coefficient of the granular discs is set as ò=0.85, and the volume fraction of the granular discs is
fixed asf=7.85×10−2. The length of one side of the square box (SQboundary) is set as L=300. Three types
of the diameter of granular discs (rd), namely, rd=0.15, 0.21 and 0.47 are considered. As a result, total number
of granular discs (N) is set asN=104 in the case of rd=0.47,N=5×104 in the case of d=0.21 andN=105

in the case of rd=0.15 owing to the constant volume fraction (f=7.85×10−2). The initial velocities of the
granular discs are randomly distributed in the range of Î - Î -v v1, 1 , 1, 1x y[ ] [ ]and the initial positions of
the granular discs are randomly distributed inside the elastic wall, namely, the range of Î -X L L0.5 , 0.5[ ] and
Î -Y L L0.5 , 0.5[ ]. The time-evolution of granular discs is calculated using the event-driven (ED)method [17],

because the conventionalmolecular dynamics requires the vast calculation time, when forces between
-N N 2 2( ) paired granular discs are calculated.

Figures 7–9 show time-evolutions of the granular discs inside the SQboundary atN=104, 5×104 and 105,
respectively. Figure 7 indicates that some clusters are formed in the vicinity of thewall and the cluster with the
maximum size rotates to clockwise direction along thewall. Such a rotation of granular discs along thewall is
similar to the emergence of the ordered collective-motion in biological swarm inside thewall [31]. On the other
hand, the granular particles tend tomove away from thewall, when the heatingwall with the constant
temperature is used, as reported by Esipov and Pöschel [13]. The numerical results obtained usingN=5×104

and 105 do not indicate such a rotation of the cluster with themaximum size, as shown infigures 8 and 9. Indeed,
it is commonly observed in numerical results ofN=104, 5×104 and 105 that the several small-clusters
aggregate toward the larger clusters via their connections during the time-evolution. Of course, the elastic wall is

Figure 8.The time-evolutions of granular particles inside SQboundary atNc=0 (upper-left frame), 2M (upper-right frame), 4M
(lower-left frame) and 7.4M (lower-right frame), whenN=5×104.
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amathematical toymodel to avoid the freeze of the calculation via the excessive accumulation of granular discs
with the small kinetic energy in the vicinity of thewall and long range correlation of the granular discs owing to
the use of the periodic boundary condition, which is unfavorable to topological analyses, because the distance
between two granular discs in the PHmust bemodified by considering the periodicity at the boundary. The
calculations of the PDs are performed using locations of the center of granular discs, namely, x y,i i( )
( Î Ç i N1,[ ] ) andR (:radius of neighborhood (cover) siBR( ) of point cloud S ( Îs x y S,i i i≔ ( ) )). Therefore,
wemust remind that the connection in d=0-persistent homology (d: dimension of PH) is not equivalent to the
physical connections due to contacting granular discs. Reminding that the domain, which is occupied by
neighborhood of i-th point-cloud, whose center is set as x y,i i( ), is expressedwith x y,i iBR( ), the connection
between x y,i iBR( ) and x y,j jBR( ) is defined by - <x x 2i j R∣ ∣ ( >x x y d, , 2i i i R≔ ( ) ).R is increased from

zero to¥, continuously in Î +R . = bR R is called as the birth of the hole, when the hole emerges when
= bR R , whereas = dR R is called as the death of the hole, when the hole disappears, when = dR R . The plot

of ,b dR R( ) is called as the PD, as discussed in section 2.2. Additionally, -d bR Rℓ ≔ is called as the life-span
of the hole, and defined by:

- , 5d bR Rℓ ≔ ( )

The image of the life-span (ℓ) is shown in the lower-frame offigure 5.
The open source program homcloud [32] is used to calculate the PD in our study. The PD is plotted using not
,b dR R( ) but ,b d

2 2R R( ) owing to the specification of the homcloud. Figure 10 shows PDs (left-half frames) and
birth of holes with maxℓ (maximumvalue ofℓ) via connections of some of siBR( ) ( Îi N1,[ ]) atNc=0, 2.15M,
3.85Mand 11.4M (right-half frames), whenN=105 (Nc: collision number,M:million), respectively. The color
of the contour expresses the number of holes, which has ,b d

2 2R R( ), whereU ,b d
2 2R R( ) is the square domain,

whose center of gravity is ,b d
2 2R R( ) and length of one side of the square is set asD Î + . Readers remind that

Figure 9.The time-evolutions of granular particles inside SQboundary atNc=0 (upper-left frame), 2.15M (upper-right frame),
3.85M (lower-left frame) and 14.45M (lower-right frame), when =N 105.
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the number of holes which yield maxℓ is unity in all the frames infigure 10. Themagnitude of bR obtained using

maxℓ increases in accordance with the increase inNc, as shown in the right-half frame offigure 10, because the
growth of clusters of granular discs tends to enlarge the vacant space. The PDhas the clear structure atNc=0,
whereas such a clear structure in the PDbecomes blurred atNc=14.45M.

The expeditiousmethod to read the characteristics of the PD is to calculate the life-span-distribution (lsd) by
each time step. Then, we approximate the lsd, namely, då -=f N1 i

N
i1ℓ ℓ ℓ( ) ≔ ( ) ( )with

Figure 10. d=1-PDs and their schematics of births of holes at maxℓ in cases ofNc=0 (top-frame),Nc=2.15M (2nd frame from the
top),Nc=8.85M (2nd frame from the bottom), andNc=14.45M (bottom frame), whenN=105 and SQboundary. Points, which
yield themaximum life-span, are denoted by arrows in each cases ofNc.
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- - +f exp 6n m
ap ℓ ℓ ℓ( ) ≔ [ ( ) ]( ) ( )A B C D E

where ,A B, and Í + n, , ,D C E andmÍ.
The reasonwhywe use equation (6) is that it can express the hybrid of the logarithmic convex (log-convex:

for q q q q qÎ + - + -f x f y f x y0, 1 , log 1 log log 1[ ] ( ) ( ) ( ) ( ( ) ) ( Î +a and x<y)) and logarithmic
concave (log-concave: for q q q q qÎ + - + -f x f y f x y0, 1 , log 1 log log 1[ ] ( ) ( ) ( ) ( ( ) ) ( Î +a and
x<y)) using appropriate set of n m,( ) in equation (6). Similarly, equation (6) is also able to express completely
concave or convex for all the range ofℓ (i.e., Î +ℓ ).

Figures 11–16 show f ℓ( ) versusℓ together with fap ℓ( ) for d=0 (connection) and 1 (hole) in cases of
N=104, 5×104 and 105, whose n, , , , , ,A B C D E F andm in equation (6) are defined in table 1.

The authors will consider that one standard for the evaluation of the topological phase-transition of the
granular discs is determined by the switch between the log-convex and log-concave of f ℓ( ) (or fap ℓ( )), as
discussed later. Figure 11 indicates that f ℓ( ) (or fap ℓ( )) follows the log-concave atNc=0 and 0.25M,whereas

f ℓ( ) (or fap ℓ( )) follows the log-convex at 0.5M�Nc. Consequently, we conclude that the topological phase-

transition occurs in the range of 0.25M<Nc< 0.5M,when d=0 andN=104. Similarly, figure 12 indicates
that f ℓ( ) (or fap ℓ( )) follows the log-convex at  9ℓ and log-concave at <9 ℓ in the case ofNc=0, whereas
f ℓ( ) (or fap ℓ( )) follows the log-convex at 0�ℓ. As a result, the topological phase-transition occurs in the range
ofNcä [0, 1M], when d=1 andN=104. These topological phase-transitions are obtained atNcä [1M,1.5M]
in both cases of d=0 and 1, whenN=5×104, as shown infigures 13 and 14, whereas it is obtained atNcä
[2.15M,3.85M] in both cases of d=0 and 1, whenN=105, as shown infigures 15 and 16.

Figure 11. f ℓ( ) versusℓ atNc=0 (top-left frame),Nc=0.25M (top-right frame),Nc=0.5M (middle-left frame),Nc=1M
(middle-right frame),Nc=12.5M (middle-left frame), andNc=19.9M (middle-right frame) obtained using d=0, whenN=104

and SQboundary.
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The lsd obtained using d=1-PD,which follows the log-convex, indicates that the number of holes with the
large diameter dR and small bR (i.e., long life-span) is larger than that obtained using the d=1-PD,which
follows the log-concave. The holes with the long life-span are generated by the increase of vacant space and

Figure 12. f ℓ( ) versusℓ atNc=0 (upper-left frame),Nc=1M (upper-right frame),Nc=10M (lower-left frame) andNc=25M
(lower-right frame) obtained using d=1, whenN=104 and SQboundary.

Figure 13. f ℓ( ) versusℓ atNc=0 (upper-left frame),Nc=1M (upper-right frame),Nc=1.5M (lower-left frame) andNc=8.85M
(lower-right frame) obtained using d=0, whenN=5×104 and SQboundary.
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connections of point-clouds by small bR , which are caused by the growths of clusters. Consequently, the switch
between the log-concave and log-convex becomes the standard tomeasure the drastic growth of clusters, by
which the topological characteristics of granular gases changes,markedly.

From above discussions, we confirmed that the topological phase-transition can be judged by the switch of
the life-span-distribution (lsd) (i.e., f ℓ( )) between the log-convex and log-concave. Here, we investigate the
topological phase-transition using the Betti number,B0 (the zeroth order) andB1 (thefirst order). As discussed
in section 2, the Betti number is calculated using the PNGversions offigures 7–9. Therefore, the accuracies of the
calculations ofB0 andB1 depend on the number of pixels in PNGversions offigures 7–9. Figure 17 showsB0/N
andB1/N in cases ofN=104 (upper-left frame), 5×104 (upper-right frame) andN=105 (lower-left frame).
B0/N; 0.96 atNc=0 obtained usingN=105 indicates that the numerical error exists owing to the insufficient
number of pixels, whereasB0/N=1 atNc=0 obtained usingN=104 and 5×104 indicate that the number
of pixels is adequate to calculateB0 andB1 with the good accuracy.

Firstly, we confirm that there exist typical three phases (i.e., phases-I, II and III) in cases ofN=5×104 and
105. In the phase-I,B0 (B1) decreases (increases), drastically, as shown inNcä [0,0.5M]whenN=5×104, and
Ncä [0,1M]whenN=105. In the phase-II,B0 (B1) changes, slightly, as shown inNcä [0.5M,1.5M]when
N=5×104 andNcä [1M,2M]whenN=105. Finally, in the phase-III,B0 (B1) decreases (increases),
drastically, as shown inNcä [1.5M,¥)whenN=5×104 andNcä [2M,¥)whenN=105.We are, however,
unable to identify phases-I and II, clearly, whenN=104, whereas the phase-III is conformed inNcä [0.25M,
¥), whenN=104. The increase and decrease inB0 andB1 in the phase-III are caused by temporal changes in
formof rotating cluster along thewall obtained usingN=104, so that such changes in phase-III do not attribute
to intrinsic changes in the topological phase, which characterize the pattern formation from theHCS. It is the
significant result that the topological phase-transition from the phase-I to the phase-II is identified by not the lsd
butB0 andB1, whereas the phase-transition due to the topological phase-transition from the phase-II to the
phase-III is identified by both the lsd andB0 andB1.

3.2. Results in case of CI boundary
Now,we investigate the PH in the case of the CI boundary in order to investigate the effects of formof the elastic
wall on the PH. The radius of the granular disc (rd) is set as rd=0.15 and radius of the CI (Rd) is set asRd=150.
The set of the restitution coefficient and initial velocities of the granular discs are same as those used in
calculations in the case of the SQboundary. The total number of the granular discs (N) is set as =N 105. As a

Figure 14. f ℓ( ) versusℓ atNc=0 (upper-left frame),Nc=1M (upper-right frame),Nc=1.5M (lower-left frame), andNc=7.4M
(lower-right frame) obtained using d=1, whenN=5×105 and SQboundary.
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result, the volume fraction of granular discs (f) is calculated asf=0.1, because all the granular discs are
randomly distributed inside theCI boundary at t=0.

Figure 18 shows snap-shots of the granular discs confined by theCI boundary atNc=0 (upper-left frame),
Nc=2.5M (upper-center frame),Nc=5M (upper-right frame),Nc=7.5M (lower-left frame),Nc=15M
(lower-center frame) andNc=35M (lower-right frame).We can confirm the clear pattern formation at
5M�Nc. In particular, the clusters seem to grow from thewall atNc=35M.

Figure 19 shows the d=1-PDs atNc=0 (top-left frame),Nc=2.5M (top-right frame),Nc=5M (middle-
left frame),Nc=7.5M (middle-right frame),Nc=15M (bottom-left frame) andNc=35M (bottom-right
frame), whenNc=105 andCI boundary. The tendency of changes in the d=1-PDduring the time-evolution is
similar to that obtained using the SQboundary infigure 10. Figures 20 and 21 show f ℓ( ) versusℓ togetherwith
fap ℓ( ) (in equation (6)) versusℓwhen d=0 and d=1, respectively, where n, , , , , ,A B C D E F andm in

equation (6) are defined in table 2.We can confirm that the topological phase-transition occurs inNcä
[2.5M,5M] in both cases of d=0 and 1, as shown infigures 20 and 21.

Figure 22 showsB0/N,B1/N and +B B N0 1( ) . Similarly toB0/N obtained usingN=105 and the SQ
boundary,B0/N; 0.96 indicates that the numerical error exists owing to the insufficient number of pixels.We
can readily confirm that phases-II and III exist inNcä [0,2M] andNcä [2M,¥). It is not obvious in the present
studywhether the lack of the phase-I in the case of the CI boundary is caused by the different formof boundary
from the SQboundary or larger volume fraction (f=0.1) in CI boundary than that (f=0.078 5) in the SQ
boundary. The phase-transition due to the topological phase-transition from the phase-II to the phase-III is
obtained using both the lsd andBetti number in the case of theCI boundary.

Figure 15. f ℓ( ) versusℓ atNc=0 (upper-left frame),Nc=2.15M (upper-right frame),Nc=3.85M (middle-left frame),
Nc=8.85M (middle-right frame), andNc=14.5M (bottom-left frame) obtained using d=0, whenN=105 and SQboundary.
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3.3. Results in case of SP boundary
Next, we investigate the PH in the case of the SP boundary. As discussed in section 2, the 3Dphysical space
postulates the PHwith d=2, which corresponds to the spherical surface (void). Here, we consider two types of
N. In one case,N=5×104 granular spheres with rd=1.5 are calculated. In the other case,N=104 granular
spheres with rd=1.5 are calculated. In both cases, the radius of the SP boundary is set asRd=150 and
restitution coefficient is set as 0.85. Consequently, the volume fraction is 5% in the case ofN=5×104 and 1%
in the case ofN=104, because all the granular spheres are randomly (almost homogeneously) distributed inside
the SP boundary. The restitution coefficient of the granular spheres is set as 0.85 and the initial velocities of
granular spheres are randomly selected in the ranges of Î - Î -v v1, 1 , 1, 1x y[ ] [ ]and Î -v 1, 1z [ ].

Figure 23 shows the snapshots of the granular spheres confined by the SP boundary, whenN=104 (upper
two raw) andN=5×104 (lower two raw). The granular spheres cluster in the vicinity of the SP boundarywith
the band-like form asNc increases, whenN=104,. On the other hand, some band-like distributions of granular
spheres emerge along the SP boundary in accordance with the increase inNcwhenN=5×104. The
aggregation of granular spheres in the vicinity of thewall at largeNc is similar to those in 2D cases of the SQ and
CI boundaries.

Figures 24–27 show time-evolutions of d=1-PDs and d=2-PDs obtained usingNc=104 and 5×104,
respectively. The tendency of temporal changes in d=1-PDs is similar to those obtained using the SQ andCI
boundaries. d=2-PDs obtained usingN=104 indicate that the life-spans ofmost of granular spheres
approach to zero atNc=5.5M,whenN=104, although the life-spans of some of granular spheres arefinite, as
observed in d=1-PD atNc=5.5M infigure 24.Meanwhile, the life-spans of granular spheres observed in
d=2-PDs arefinite atNc=40M,whenN=5×104, as shown infigure 27.

Figures 28–33 show f ℓ( ) versusℓ together with fap ℓ( ) versusℓ obtained usingN=104 and 5×104, when
d=0, 1 and 2, respectively, where n, , , , , ,A B C D E F andm in equation (6) are defined in table 3. Figures 28
and 30 indicate that the topological phase-transition occurs inNcä [2M,2.5M] in the case ofN=104, whereas
all of f ℓ( ) for d=2 follow log-convex atNcä [0,¥), whenN=104, as shown infigure 32. Similarly, the
topological phase-transition occurs inNcä[3M,4M], whenN=5×104, as shown infigure 29. The log-
concave of f (ℓ) remains atNc=45M,when d=1 andN=5×104, as shown infigure 31. Then, we cannot
determine the topological phase-transition from the lsd for d=1, whenN=5×104. Similarly to f (ℓ)
obtained using d=2 andN=104, all of f ℓ( ) follow the log-convex in Î ¥N 0,c [ ), as shown infigure 33.
Consequently, we conclude that the lsd for d=2 can not be used as the standard, which determines the

Figure 16. f (ℓ) versusℓ atNc=0 (upper-left frame),Nc=2.15M (upper-right frame),Nc=3.85M (lower-left frame) and
Nc=14.1M (lower-right frame) obtained using d=1whenN=105.
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Table 1. n, , , , ,A B C D E andm in equation (6) and corresponding figure number, when d=0 and 1,N=104, 5×104 and 105, and SQ
boundary are used.

Form d N Nc A B C D E n m FigureNo.

SQ 0 104 0 0.8 0.29 0 1 1 2 0.2 Figure 11

SQ 0 104 2.5M 1.2 0.29 0 1 1 1.8 0.35 Figure 11

SQ 0 104 5M 2.25 0.15 0 1 1 0.8 −2.5 Figure 11

SQ 0 104 12.5M 0.25 0.05 0 1 0.1 1.26 −1.5 Figure 11

SQ 0 104 19.9M 0.15 0.03 0 1 1 1.26 −1.5 Figure 11

SQ 0 5×104 0 4.5 5.5 0 1 1 2.2 −2 Figure 13

SQ 0 5×104 1M 4.5 5.5 0 1 1 2.2 −2 Figure 13

SQ 0 5×104 1.5M 8 3.25 0 1 1 1 −3 Figure 13

SQ 0 5×104 8.85M 12 3.25 0 1 1 0.25 −3 Figure 13

SQ 0 105 0 10 25 0 1 1 2 −3 Figure 15

SQ 0 105 2.15M 10 15 0 1 1 1.7 −3 Figure 15

SQ 0 105 3.85M 8 4.2 0 1 0.75 0.5 −5 Figure 15

SQ 0 105 8.85M 0.5 0.1 0 1 0.75 1.2 −5 Figure 15

SQ 0 105 14.5M 0.5 0.1 0 1 0.75 1.2 −5 Figure 15

SQ 1 104 0 0.003 2.5×10−5 0 0.067 10−5 4 −1.5 Figure 12

SQ 1 104 1M 0.005 6.1×10−9 0 0.2 10−5 2 −1.5 Figure 12

SQ 1 104 5M 0.005 2.2×10−10 0 0.2 10−5 3.2 −1.75 Figure 12

SQ 1 104 12.5M 0.005 3.57×10−22 0 0.2 10−5 6.2 −1.35 Figure 12

SQ 1 5×104 0 5×10−3 3.14×10−2 0 0.2 10−5 3 −1.5 Figure 14

SQ 1 5×104 1M 5×10−3 1.6×10−2 0 0.2 10−5 3 −1.5 Figure 14

SQ 1 5×104 1.5M 5×10−3 0.136 0 0.2 10−5 1.5 −1.75 Figure 14

SQ 1 5×104 7.4M 1.2×10−3 3.79×10−3 0 0.2 10−5 0.98 −2.4 Figure 14

SQ 1 105 0 5×10−3 0.25 0 0.5 0 3 −1.5 Figure 16

SQ 1 105 2.15M 0.02 1 0 0.4 0 1 −1.5 Figure 16

SQ 1 105 3.85M 0.01 0.71 0 0.4 0 0.5 −2 Figure 16

SQ 1 105 14.5M 0.01 1 0 0.4 0 1.5×10−3 −2.5 Figure 16

Figure 17.B0 andB1 versusNc, when =N 104 (upper-left frame), 5×104 (upper-right frame) and 105 (lower-left frame).
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topological phase-transition in accordancewith the switch of the lsd between the log-concave and log-convex in
both cases ofN=104 and 5×105.

The Betti number is not calculated in the case of the SP boundary, because themonotone (0,1) pixels, which
are used in the calculation ofB0 andB1 in the SQ andCI boundaries, are unable to consider the depth-direction
in 3D.

4. 3D crystal classification of granular gases byVABAAandPTM

Based on the numerical results obtained using the SP boundary in section 3, we investigate the 3D crystal
classification of the granular gases confined by the SP boundary using theVoronoi’s analysis (VA), bond-angle
analysis (BAA) and polyhedral templatematching (PTM). The numerical schemes of theVA, BAA and PTM
have been already demonstrated in section 2, briefly. As discussed in Introduction, there are two goals in our
study of the granular gases with theVA, BAA and PTM.One is to confirmwhether theVA, BAAor PTMare able
to identify the transition of the granular gases from theHCS to the clustering state or not. The other is to
investigate which typical coordination (i.e., FCC, BCC,HCP, ICO etc.,) the crystal structures of the granular
particles, which are condensed around thewall, densely, are categorized using theVA, BAA and PTM.We
proceed our discussions of analytical results in order of the BAA,VA and PTM.

4.1. Results of BAA
Figure 34 shows snapshots of the categorized coordination per a granular particle and its fraction obtained using
the BAA atNc=0, 4M, 5M, 6M, 10M, 20M, 30M, 40M and 47.4M.We can confirm that the spatially random
locations of granular spheres atNc=0 (t=0) does not obtain any crystal structure. In short, all the
coordination of granular particles is categorized asOther.Meanwhile, the fraction of granular spheres with the
coordination categorized as theHCP, FCC andBCC (coordination) increases, asNc increases. Actually, 20%of
granular spheres are categorized as the structured coordination, namely, FCC,HCP, BCC and ICO at
Nc=47.7M.Of course,most of granular spheres condensate around thewall atNc=47.7M, so that such a
status is not appropriate to be called as the granular gases.

Figure 35 shows the fractions of the categories of the coordination versusNc obtained using the BAA (Other:
left frame, FCC,HCP, BCC and ICO: right frame). The enlarged figure (log-log plot of the fraction ofOther

Figure 18. Snap-shots of granular discs confined byCI boundary atNc=0 (upper-left frame), =N M2.5c (upper-center frame),
Nc=5M (upper-right frame),Nc=7.5M (lower-left frame),Nc=15M (lower-center frame) andNc=35M (lower-right frame).
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versusNc) is added to the left frame offigure 35 in order to show that the fraction ofOther decreases by the
inverse power law function ofNc. As shown infigure 35, the fraction of the category of the coordination is
invariant duringNc< 4Mand decreases in accordance with + -N M130 4c

0.125( ) . Then, we can discriminate
the topological phase of the granular spheres betweenNc<4M (HCS) and 4M�Nc (growth of clusters).
Reminding that the lsd for d=0 changes from the log-concave to the log-convex at 3M<Nc<4M, as shown in
figure 29, the BAA also specifies the topological phase-transition of the granular spheres with a similar accuracy
to the lsd obtained using d=0-PD.

Figure 19.PDobtained using d=1 atNc=0 (top-left frame),Nc=2.5M (top-right frame),Nc=5M (middle-left frame),
Nc=7.5M (middle-right frame),Nc=15M (bottom-left frame) andNc=35M (bottom-right frame), whenNc=105 andCI-
boundary.
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4.2. Results ofVA
Figure 36 shows the snapshots of the categorized coordination per a granular sphere and its fraction atNc=0,
2M4M, 5M, 6M, 10M, 20M, 30M, 40Mand 47.4Mobtained using theVA.We can confirm that 3.1%of
randomly located granular spheres atNc=0 can be categorized asHCPor FCC (coordination). Finally, 32.8%
of granular spheres obtain the crystal structures, namely, FCC,HCP, BCC, FCC-HCP and ICO atNc=47.7M.

Figure 37 shows the fractions of the categories of the coordination versusNc obtained using theVA (Other:
left frame, FCC, BCC, ICO, FCC-HCP andHCP: right frame). The enlarged figure (log-log plot of the fraction of
Other versusNc) is added to the left frame offigure 34 in order to show that the fraction ofOther decreases by the
inverse power law function ofNc. As shown infigure 34, the fraction of the categoryOther is almost invariant
duringNc< 4Mand decreases in accordance with + -N M145 4c

0.2( ) . Then, theVA-results indicate that the
topological phase-transition of the granular spheres occurs betweenNc<4M (HCS) and 4M�Nc (growth of
clusters) similarly to the PD andBAA. The growths of the fractions of the FCC-HCP andHCP aremarkedly
larger than those of the BCC, ICO and FCC. Then, we can conclude that theHCP type coordination is dominant
in both cases of the BAA andVA, when the structured coordination are assigned to granular spheres.

4.3. Results of PTM
Weconsider the categorization of the coordination obtained using the PTM. Figures 38–46 show granular
particles inside the SP boundary, which are colored in accordancewith the assigned category of the coordination
(i.e., All≔Other, FCC,HCP, BCC, ICO and SC), atNc=0, 4M, 5M, 6M, 10M, 20M, 30M, 40M, and 47.7M
togetherwith å fXX XX RMSDℓ( ) versusℓRMSD (XX≔FCC,HCP, BCC, ICO and SC) in their top-left frames.

Figure 20. f ℓ( ) versusℓ atNc=0 (top-left frame), =N M2.5c (top-right frame),Nc=5M (middle-left frame),Nc=7.5M
(middle-right frame) andNc=35M (bottom-left frame) obtained using d=0, whenN=105 andCI boundary.

19

J. Phys. Commun. 4 (2020) 015023 RYano andMKim



Additionally, other remained frames except for top-left frame infigures 38–46 show the granular particles inside
the SP boundary, which are colored by only two categoriesOther andXX (XX≔FCC,HCP, BCC, ICO and SC)
togetherwith the distribution of the RMSD, namely, fXX RMSDℓ( ) versus RMSDℓ , when all the granular particles
are categorized byOther andXX (i.e., FCC,HCP, BCC, ICO and SC). Figure 38 shows that 48.7%ofN is
categorized asOther, whereas 45.3%ofN is categorized as the SC and 4.9%ofN is categorized as theHCP, at
Nc=0. Then, 50.2%ofN is categorized as the structured coordination atNc=0, evenwhen the BAA andVA
categorizemost ofN asOther. fAll RMSDℓ( ) and fSC RMSDℓ( ) seem to followGaussian distributions atNc=0,
respectively. The deviations of fAll RMSDℓ( ) from theGaussian becomemarked, asNc increases. For example,
fAll RMSDℓ( ) has fat tailed distribution atNc=10Mandhasmarkedly asymmetric form,when 30M�Nc. In
particular, the fat tailed regime of fAll RMSDℓ( ) at  0.3RMSDℓ is caused by the plateau distribution of fFCC RMSDℓ( )
at  0.3RMSDℓ and bimodal distribution of fBCC RMSDℓ( ) at  0.3RMSDℓ , as shown infigures 44, 45 and 46.
Similarly, asymmetry of fSC RMSDℓ( ) becomesmarked, when 10M�Nc. Other significant result obtained using
the PTM is time-evolutions of fHCP RMSDℓ( ). fHCP RMSDℓ( ) approaches - -aexp 0.27RMSDℓ( ∣ ∣) ( Î +a ), asNc

increases. Therefore,most of granular particles, which are categorized as theHCP, deviates from theHCP
template with the constant distance 0.27 and such fHCP RMSDℓ( ) decreases exponentially, as RMSDℓ deviates
from0.27.

Figure 21. f ℓ( ) versusℓ atNc=0 (upper-left frame),Nc=2.5M (upper-right frame),Nc=5M (lower-left frame), andNc=35M
(lower-right frame) obtained using d=1, whenN=105 andCI boundary.

Table 2. n, , , , ,A B C D E andm in equation (6) and corresponding figure number, when d=0 and 1,N=105 andCI
boundary are used.

Form d N Nc A B C D E n m figureNo.

CI 0 105 0 1 34.8 0 1 3.15 1.74 2 Figure 20

CI 0 105 2.5M 900 18 0 1 −10−4 0.8 1 Figure 20

CI 0 105 5M 100 9.5 0 1 −10−4 0.48 0.35 Figure 20

CI 0 105 7.5M 50 8 0 1 −10−4 0.4 0.2 Figure 20

CI 0 105 35M 50 8 0 1 −10−4 0.3 0.15 Figure 20

CI 1 105 0 0.05 0.75 0 1 10−7 3 −1.4 Figure 21

CI 1 105 2.5M 0.05 0.75 0 1 10−7 2 −1.4 Figure 21

CI 1 105 5M 0.02 0.15 0 1 10−7 1.2 −1.75 Figure 21

CI 1 105 35M 0.02 0.15 0 1 10−7 1.2 −1.75 Figure 21
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Finally, the left-top frame offigure 47 shows time-evolution of the fraction of categoriesXX (≔Other, FCC,
HCP, BCC, ICO and SC). The fraction of theHCP increases and becomes comparable with that of the SC, asNc

increases. The temporal change in the fraction ofOther is notmarked in comparison of that obtained using the
BAA andVA. The bottom-left and bottom-right frames show good fits of fractions of categoriesOther and SC

Figure 22.B0/N,B1/N and +B B N0 1( ) versusNc obtained usingCI boundary.

Figure 23. Snapshots of granular spheres confined by SP boundary at eachNcwhenN=104 (upper two raw) and 5×104 (lower two
raw).
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Figure 24.PDobtained using d=1 atNc=0 (top-left frame),Nc=2M (top-right frame),Nc=2.5M (middle-left frame),Nc=3M
(middle-right frame),Nc=4M (bottom-left frame) andNc=5.5M (bottom-right frame), whenNc=104 and SP-boundary.
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Figure 25.PDobtained using d=1 atNc=0 (top-left frame), =N M1.5c (top-right frame),Nc=2M (second top-left frame),
Nc=3M (second-right frame),Nc=4M (second bottom-left frame),Nc=5M (second bottom-right frame),Nc=10M (bottom-
left frame),Nc=40M (bottom-right frame), whenNc=5×104 and SP-boundary.
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Figure 26.PDobtained using d=2 atNc=0 (upper-left frame), =N M2c (upper-right frame),Nc=3M (lower-left frame), and
Nc=4M (lower-right frame), whenNc=104 and SP-boundary.
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Figure 27.PDobtained using d=2 atNc=0 (top-left frame),Nc=2M (top-right frame),Nc=3M (middle-left frame),Nc=4M
(middle-right frame),Nc=10M (bottom-left frame),Nc=40M (bottom-right frame), whenNc=5×104 and SP-boundary.
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Figure 28. f ℓ( ) versusℓ atNc=0 (top-left frame), =N M2c (top-right frame),Nc=2.5M (middle-left frame),Nc=3M (middle-
right frame) andNc=5.5M (bottom-left frame) obtained using d=0, whenN=104 and SP boundary.
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Figure 29. f ℓ( ) versusℓ atNc=0 (top-left frame),Nc=2M (top-right frame),Nc=3M (middle-left frame),Nc=4M (middle-
right frame),Nc=5M (bottom-left frame) andNc=45M obtained using d=0, whenN=5×104 and SP boundary.
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Figure 30. f ℓ( ) versusℓ atNc=0 (top-left frame),Nc=2M (top-right frame),Nc=2.5M (middle-left frame),Nc=3M (middle-
right frame),Nc=3.5M (bottom-left frame) andNc=5.5M obtained using d=1, whenN=104 and SP boundary.
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Figure 31. f ℓ( ) versusℓ atNc=0 (top-left frame),Nc=2M (top-right frame),Nc=3M (middle-left frame),Nc=4M (middle-
right frame),Nc=5M (bottom-left frame) andNc=45M obtained using d=1, whenN=5×104 and SP boundary.
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Figure 32. f ℓ( ) versusℓ atNc=0 (top-left frame),Nc=2M (top-right frame),Nc=2.5M (middle-left frame),Nc=3M (middle-
right frame) andNc=5.5M (bottom-left frame) obtained using d=2, whenN=104 and SP boundary.

Figure 33. f ℓ( ) versusℓ atNc=0 (upper-left frame),Nc=4M (upper-right frame),Nc=10M (lower-left frame) andNc=45M
(lower-right frame) obtained using d=2, whenN=5×104 and SP boundary.
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Table 3. n, , , , ,A B C D E andm in equation (6) and corresponding number of thefigure, when d=0, 1 and 2,N=104 and 5×104 and
SP boundary are used.

Form d N Nc A B C D E n m figureNo.

SP 0 104 0 0.012 0.003 1 0.8 1 2 0.75 Figure 28

SP 0 104 2M 0.012 0.003 1 0.8 1 2 0.75 Figure 28

SP 0 104 2.5M 0.02 0.003 1 0.8 1 0.95 1 Figure 28

SP 0 104 3M 5×107 18 −1 1 0 2 0.15 Figure 28

SP 0 104 5.5M 1 0 0 1 −614 1 0.77 Figure 28

SP 1 104 0 1 2.25×10−4 0 3.6 1.83 2 −1.15 Figure 30

SP 1 104 2M 1 ´ -2.25 10 4 0 3.6 1.83 2 −1.15 Figure 30

SP 1 104 2.5M 1 0.015 0 2.46 1.98 1 −1.32 Figure 30

SP 1 104 3M 1 0.012 0 2.33 2.26 1 −1.45 Figure 30

SP 1 104 3.5M 1 0.1 0 2.13 2.75 1 −1.77 Figure 30

SP 1 104 5.5M 1 0 0 107 7.88 1 −1.08 Figure 30

SP 2 104 0 1 0 0 1.16 2.9 1 −1.95 Figure 32

SP 2 104 2M 1 0 0 1.16 2.9 1 −1.95 Figure 32

SP 2 104 2.5M 1 0 0 1.16 2.9 1 −2 Figure 32

SP 2 104 3M 1 0 0 1.16 2.9 1 −2.2 Figure 32

SP 2 104 5.5M 1 0 0 9.33 4.64 1 −1.1 Figure 32

SP 0 5×104 0 1 1.62×10−9 −48 1 0 5.5 2 Figure 29

SP 0 5×104 2M 1 2.1×10−8 −42.3 1 0 5 2 Figure 29

SP 0 5×104 3M 1 1.66×10−2 −12.3 1 0 2 2 Figure 29

SP 0 5×104 4M 1 8.8×10−3 -6,15 1 0 2 0.6 Figure 29

SP 0 5×104 5M 1 4.2×10−3 −0.144 1 0 2.5 −1.8 Figure 29

SP 0 5×104 45M 1 2.44×10−2 −2.13 1 0 1 −1.5 Figure 29

SP 1 5×104 0 0.25 10−7 −3 1 0 5 −1.5 Figure 31

SP 1 5×104 2M 0.25 10−7 −3 1 0 5 −1.5 Figure 31

SP 1 5×104 3M 0.25 1.6×10−6 −3 1 0 4 −1.5 Figure 31

SP 1 5×104 4M 0.25 2.5×10−6 −3 1 0 3.75 −1.5 Figure 31

SP 1 5×104 5M 0.25 2.5×10−6 −1 1 0 3.5 −1.75 Figure 31

SP 1 5×104 45M 0.25 5×10−6 −1 1 0 2.75 −1.5 Figure 31

SP 2 5×104 0 0.25 10−5 −3 1 0 3 −2 Figure 33

SP 2 5×104 4M 0.25 10−5 −3 1 0 3 −2 Figure 33

SP 2 5×104 10M 0.1 10−5 −3 1 0 3 −2 Figure 33

SP 2 5×104 45M 0.1 10−5 −3 1 0 3 −2 Figure 33
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Figure 34. Snapshots of categorized coordination per a granular particle and its fraction obtained using BAA atNc=0, 4M, 5M, 6M,
10M, 20M, 30M, 40M and 47.4M, whenN=5×104.

Figure 35. Fractions of categories of coordination versusNc obtained using BAA (Other: left frame, FCC,HCP, BCC and ICO: right
frame).
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Figure 36. Snapshots of classification of granular gases obtained usingVA analysis at =N M M M M M M M0, 2 , 4 , 5 , 6 , 10 , 20 , 30 ,c

M40 and 47.4M, whenN=5×104.

Figure 37. Fractions of categories versusNc obtained usingVA (Other: left frame, FCC,HCP, ICO, FCC-HCP and SC: right frame).
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Figure 38. Snapshots of fractions of all categories,Other+HCC,Other+HCP,Other+BCC,Other+ICO, andOther+SC and their
Root-Mean-Square-Deviation (RMSD) distributions atNc=0 obtained using PTM.

Figure 39. Snapshots of fractions of all categories,Other+HCC,Other+HCP,Other+BCC,Other+ICO, andOther+SC and their
Root-Mean-Square-Deviation (RMSD) distributions atNc=4M obtained using PTM.
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Figure 40. Snapshots of fractions of all categories,Other+HCC,Other+HCP,Other+BCC,Other+ICO, andOther+SC and their
Root-Mean-Square-Deviation (RMSD) distributions at =N M5c obtained using PTM.

Figure 41. Snapshots of fractions of all categories,Other+HCC,Other+HCP,Other+BCC,Other+ICO, andOther+SC and their
Root-Mean-Square-Deviation (RMSD) distributions atNc=6M obtained using PTM.
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Figure 42. Snapshots of fractions of all categories,Other+HCC,Other+HCP,Other+BCC,Other+ICO, andOther+SC and their
Root-Mean-Square-Deviation (RMSD) distributions at =N M10c obtained using PTM.

Figure 43. Snapshots of fractions of all categories,Other+HCC,Other+HCP,Other+BCC,Other+ICO, andOther+SC and their
Root-Mean-Square-Deviation (RMSD) distributions atNc=20M obtained using PTM.
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Figure 44. Snapshots of fractions of all categories,Other+HCC,Other+HCP,Other+BCC,Other+ICO, andOther+SC and their
Root-Mean-Square-Deviation (RMSD) distributions atNc=30M obtained using PTM.

Figure 45. Snapshots of fractions of all categories,Other+HCC,Other+HCP,Other+BCC,Other+ICO, andOther+SC and their
Root-Mean-Square-Deviation distributions (RMSD) atNc=40M obtained using PTM.
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Figure 46. Snapshots of fractions of all categories,Other+HCC,Other+HCP,Other+BCC,Other+ICO, andOther+SC and their
Root-Mean-Square-Deviation (RMSD) distributions atNc=47.7M obtained using PTM.

Figure 47. Fractions of categories versusNc obtained using PTManalysis (top-left frame frame). Log-Log plot of fraction of category
Other versusNc together with its fitting function (line) in bottom-left frame and Log-Log plot of fraction of category SC versusNc

together with its fitting function (line) in bottom-right frame.
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with the inverse-power-law functions, namely, + -N M56 4c
0.06( ) and + -N M120 4c

0.5( ) , respectively. The
deviations from the inverse-power-law functions becomemarked atNc�30M in the case of the SC.

5. Concluding remarks

We investigated the transition from the homogeneous cooling state (HCS) to the pattern formation of the
granular gases confined by the elastic wall using the topological analyses, namely, PH, BAA,VA and PTM.The
topological phase-transition is successfully identified by the switch of the life-span-distribution (lsd) between
the log-concave and log-convex, when the dimension of homology is zero and unity in the cases of the SQ andCI
boundaries or zero in the case of the SP boundary. The zeroth andfirst order Betti numbers obtained using the
SQboundary indicate that three topological phases exist, whereas the zeroth and first order Betti numbers
obtained using theCI boundary indicate that only two topological phases exist. The analyses of coordination of
granular spheres on the basis of the BAA,VA and PTM indicate that the time-evolution of fractions of categories
also become standard to judge the topological phase-transition aswell as the switch of the lsd between the log-
concave and log-convex. TheHCP coordination is dominant, when the condensed granular spheres around the
wall are categorized as the structured coordination after the adequate time passes by. Finally, we confirmed that
these topological analyses, which have been applied to crystal or glass, are also useful for the consideration of the
phase-transition of the granular gases.
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AppendixA. Simplicial complex

The notion of simplicial complex [33] is a generalization of both of polygons and polyhedrons with triangle faces.
It is combinatorially constructed by gluing some basic geometric objects called simplices. For a non-negative
integer p, the p-simplex is formally given by a subspace of +p 1 formed by (t0 , t1 ,L , tp ) such that
+ + =t t t 1p0 1  . In the literature, a subspace of a Euclidean spacewhich is linearly isomorphic to the above p-

simplex is also called a p-simplex. For example, the notions of 0-simplices, 1-simplices, 2-simplices and
3-simplices coincidewith those of points, line segments, triangles and tetrahedrons respectively.We note that
polygons are constructed by gluing some line segments along their boundaries in a properway. Likewise,
polyhedronswith triangle faces are constructed by gluing some triangles along their boundaries in a proper way.
Then the notion of simplicial complex is defined by a geometric object which is combinatorially constructed by
gluing some simplices.

Appendix B.Homology

The p-th Betti number is defined via the p-th homology theory. The p-th homology theory is, roughly speaking,
the vector space formally generated by p-dimensional holes.We refer the readers toHatcher’s book [20] for
exact definitions. The p-th homology theory of a simplicial complexX is usually denoted by H X ;p ( ) orHp (X).
For example, if wewrite byX the simplicial complex infigure 3, then the p-th homology theoryHp (X ) is
calculated to be a 1-dimensional vector space for p=0 and 2-dimensional vector space for p=1 aswe give a
heuristic discussion in the previous subsection.Moreover, the p-th homology theoryHp (X) is a 0-dimensional
vector space for p�2.

The p-th Betti number is defined by the dimension of the vector spaceHp (X). Since the homology theory is
based on vector spaces not on numbers as the Betti number, it becomes possible to deal with linear
homomorphisms between them. Itmakes us to obtainmore rich information about given simplicial complexes
than the Betti number does.
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AppendixC. Persistent homology

The p-th persistent homology is, formally speaking, the persistencemodule induced by afiltration of a simplicial
complex. For the convenience of the readers, we unpack the definition as follows. The p-th persistent homology
of afiltrationXt of a simplicial complexX is given by the following data,

• A sequence of vector spaces =M H Xt p t( )whereHp denotes the p-th homology theory. See section B.

• A family of linear homomorphisms, f M M:t t t t,0 1 0 1
for t0<t1 such that =f f ft t t t t t, , ,1 2 0 1 0 2

◦ for < <t t t0 1 2. It
is induced by the inclusionmaps X Xt t0 1

.

Note that we deal withfinite simplicial complexes so that each vector spaceMt isfinite-dimensional. A
persistencemodulewith finite-dimensional components is called to be pointwise finite-dimensional. By
Crawley-Boevey [34], any pointwise finite-dimensional persistencemodule is a direct sumof intervalmodules.
An intervalmodule is a persistencemodule L g;t t t,0 1

{ } such that for some interval I in the real line,

=
Î
Î


L

t I
t I0 ,t

⎧⎨⎩
( )
( )

and

=
Îg

id t t I,

0 otherwise .t t,
0 1

0 1

⎧⎨⎩
( )
( )

For the p-th persistent homology M f;t t t,0 1
{ }of afiltration, we can take a decomposition of intervalmodules by

Crawley-Boevey. Let L g;t t t,0 1
{ }be an intervalmodule component on an interval I as above. If <a b are

endpoints of the interval I, thenwe say that the p-th dimensional hole is born at t=a and dead at t=b. By using
an intervalmodule decomposition, we obtain the PD.
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