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Abstract

In this paper, we present the results of three-dimensional numerical simulation of upward overshooting in turbulent
compressible convection at large relative stability parameter S. Similar to the previous simulations at small S, we
find that the convectively stable zone can be partitioned into three layers: the thermal adjustment layer, the
turbulent dissipation layer, and the thermal dissipation layer. Despite of this similarity, there exist significant
differences in several aspects. First, for small S, the thermal structure is altered considerably near the interface
between the convectively unstable and stable zones. For extremely large S, the thermal structure is only slightly
changed. Second, the overshooting distance decreases at small S, but it can increase when S is large enough. Third,
for small S, the fluid motions tend to be less active when S increases. However, the fluid motions can be more
active when S is large enough. We find that the structure of counter cells has a significant impact on the penetration

depth.

Unified Astronomy Thesaurus concepts: Stellar interiors (1606); Stellar cores (1592); Stellar convective zones
(301); Stellar structures (1631); Hydrodynamical simulations (767)

1. Introduction

Convective core overshooting is an important but unresolved
problem in stellar structure and evolution. The material mixing
induced by core overshooting can significantly affect the life
time of stars at the main-sequence stage. In one-dimensional
stellar evolution models, the extent of overshooting distance is
usually estimated by the Schwarzschild criterion with a free
parameter o, (e.g., Shaviv & Salpeter 1973; Maeder 1975;
Roxburgh 1978), or alternatively modeled by a diffusive
process with a free diffusion coefficient f,, (Freytag et al. 1996;
Herwig et al. 1997). However, empirical results on calibration
of overshooting parameters indicate that neither o, nor fy, is a
constant (Woo & Demarque 2001; Deheuvels et al. 2016;
Claret & Torres 2017, 2018, 2019). The uncertainty of
overshooting parameter values requires further investigations.
From an analytic model, Zahn (1991) predicted that the
overshooting zone includes two layers: a nearly adiabatic
penetrative layer and a thermal adjustment overshooting layer.
Zahn’s theory was confirmed in the two-dimensional (2D)
simulation of penetration below a convection zone (Hurlburt
et al. 1994). They found that the penetration distance decreases
with the relative stability parameter S, with scalings § ~ S~ in
the nearly adiabatic layer and 6 ~ S™Y4 in the thermal
adjustment layer, respectively. However, the scalings have
only been partially confirmed (lack of the nearly adiabatic
penetrative layer) in the three-dimensional (3D) simulations
(Brummell et al. 2002), probably because the filling factor in
3D simulations is much smaller for the penetrative plumes
compared to the 2D simulations. Scalings of § on § were also
examined in other numerical simulations (Singh et al. 1995;
Rogers & Glatzmaier 2005; Pal et al. 2007; Korre et al. 2019),
but all these simulations focused on the penetration below a
convection zone. It has been known that upward overshooting
is significantly different from downward overshooting (Chan
et al. 2010). One of the key questions about the stellar model is

how to define the overshooting boundary (Deng & Xiong
2008). For downward overshooting, the penetration depth is
usually defined at (or close to) the first zero of the kinetic
energy flux in the stable layer (e.g., Hurlburt et al. 1994; Singh
et al. 1995; Brummell et al. 2002). However, the kinetic energy
is not an appropriate indicator for upward overshooting (Chan
et al. 2010). Through material mixing experiments, Chan et al.
(2010) have advised to use zeros of the vertical velocity
correlation (with the vertical velocity at the interface) as
indicators for the extent of overshooting distance. The
experiments also reveal that the small-scale turbulent dissipa-
tive process plays an important role in mixing materials in the
overshooting zone (Chan et al. 2010). A similar small-scale
turbulent dissipative process has been discovered in other
simulations (Arnett et al. 2015; Rogers & McElwaine 2017),
while the explanation of its driving mechanism is different. For
example, Arnett et al. (2015) attributed its driving mechanism
to the shear instability; Rogers & McElwaine (2017) explained
it as a result of an internal gravity wave; and Chan et al. (2010)
favored the explanation of counter cells.

Apart from 3D simulations, progress on the 1D theoretical
analysis of the turbulent convection model in the overshooting
region has been made by Zhang & Li (2012). In their analysis,
they partitioned the stable region into three layers: an efficient
turbulent heat transfer layer, a turbulent dissipation layer, and
an inefficient thermal dissipation layer (Zhang & Li 2012). In
a previous paper (Cai 2020), we have performed three-
dimensional simulations on upward overshooting of turbulent
compressible convection at small S. The result has shown
promising agreement with the analysis of Zhang & Li (2012),
when the first and second zero-points are used as indicators for
the measurement of overshooting distances (Chan et al. 2010).
The scalings of overshooting distance on S were also
investigated. Although no obvious uniform scalings were
identified, it has been found that the overshooting distance
tends to decrease with S. In this paper, we extend the work of
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Table 1
Parameters of Numerical Simulations

Case N, x Ny x N, S o Fiot Ra Pr (V")ey Re Pe o1 O

D1 5122 x 301 250 1.0 x 107* 0.00075 1.34 x 10° 1.0 0.065 1818 1818 0.105 0.330
D2 5122 x 301 500 1.0 x 107* 0.00075 1.34 x 10° 1.0 0.063 1758 1758 0.075 0.255
D3 5122 x 301 1000 1.0 x 1074 0.00075 1.34 x 10° 1.0 0.062 1742 1742 0.055 0.205
D4 5122 x 301 2000 1.0 x 107* 0.00075 1.34 x 10° 1.0 0.061 1714 1714 0.050 0.175
D5 5122 x 301 4000 1.0 x 1074 0.00075 1.34 x 10° 1.0 0.061 1717 1717 0.045 0.170
D6 5122 x 301 8000 1.0 x 107* 0.00075 1.34 x 10° 1.0 0.060 1677 1677 0.040 0.175
D7 512% x 301 16000 1.0 x 1074 0.00075 1.34 x 10° 1.0 0.060 1686 1686 0.045 0.200
D8 5122 x 301 100000 1.0 x 107* 0.00075 1.34 x 10° 1.0 0.060 1708 1708 0.060 0.395

Note. N,, N,, and N, are the numbers of grid points in x-, y-, and z-directions, respectively. S is the relative stability parameter. . is the dynamic viscosity. Fi is the
total flux. Ra is the averaged Rayleigh number. Pr is the averaged Prandtl number. (v"). is the averaged rms velocity. Re is the averaged Reynolds number. Pe is the
averaged Péclet number. 6, is the distance measured by the first zero of velocity correlation. 6, is the distance measured by the second zero of velocity correlation. All
the averaged values are taken both temporally and spatially in the convection zone.

Cai (2020), by performing 3D numerical simulations of upward
overshooting at large S.

2. The Model

We perform 3D numerical simulations on turbulent com-
pressible convection of an ideal gas (the ratio of specific heats
~v=5/3) in a Cartesian box with a convectively stable layer
(layer 2) sitting above an unstable layer (layer 1). The initial
distribution of the gas (the temperature 7, the density p, and
the pressure P) is in a piecewise polytropic state (initial
temperature structure is piecewise linear) with m; = 1.4985 in
the layer 1, and m, > 1.5 in the layer 2 (m, is a constant in the
layer 2). We normalize all the physical variables by the
temperature, density, pressure, and the height at the interface
between the layer 1 and layer 2. The gravity g = (m; + 1)7; =
4.997 is set to be a constant throughout the computational
domain, where 7, = —(dT/dz); and i € {1, 2} is the layer
index. Similar to the previous study (Cai 2020), we define
the relative stability parameter S = (my — maq)/(Mag — My),
the Prandtl number Pr(z) = c¢,u/x;, the Rayleigh number
Ra(z) = [1 — (y — Dmil(m; + D)} p?Pr (2)/(yp?), the Rey-
nolds number Re(z) = pv"Li;/u, and the Péclet number
Pe(z) = Re(z)c,pt/Ki, where myq = 1.5 is the polytropic
index of adiabatic polytrope, ¢, = 2.5 is the specific heat
capacity at constant pressure, ~; is the thermal diffusive
coefficient, p is the dynamic viscosity, L, is the height of the
layer 1, and V" is the rms velocity. In the simulations, we
keep the total flux Fo = 1.5x1g/(m + 1) = kog/(my + 1) a
constant throughout the computational domain. Note that the
heat conductivity k; is a piecewise constant function across the
domain. In the initial settings, all the flux is transported by heat
conduction in layer 2, but only two-thirds of the flux is
transported by heat conduction in layer 1. The simulation
parameters are listed in Table 1. The computational domain is
periodic in both horizontal directions, and impenetrable and
stress-free at the top and bottom. The temperature is fixed at the
top, and a constant flux is supplied at the bottom. We solve a
full set of compressible hydrodynamic equations by a semi-
implicit mixed finite-difference spectral method (Cai 2016).
The numerical settings and methods are similar to those used in
Cai (2020). The major difference is that the relative stability
parameters are much larger in this work (S € [1, 7] in Cai
(2020), while S € [250, 100,000] in this paper).

3. Results
3.1. Layer Structure in the Convectively Stable Zone

An earlier study on upward overshooting demonstrated that
the first and second zero-points of velocity correlation (with the
velocity at the interface) are good indicators for measuring
overshooting distance (Chan et al. 2010). In the previous
simulations on upward overshooting at small § (Cai 2020),
based on these indicators, we have partitioned the convectively
stable zone into three layers: the thermal adjustment layer
(mixing both entropy and material), the turbulent dissipation
layer (mixing material but not entropy), and the thermal
dissipation layer (mixing neither entropy nor material). This
partition is still valid in our simulations on upward over-
shooting at large S. A comparison of layer structures among
Zahn (1991), Zhang & Li (2012), and Cai (2020) is given in the
Appendix. A detailed discussion on how to define the extent of
overshooting distance is reported in Cai (2020). Figure 1 shows
the snapshots of the contours of the temperature perturbation
and vertical velocity for the case D1. The interface between the
convectively unstable and stable zones (z = 1.0), the first zero
of velocity correlation (z = 1.105), and the second zero of
velocity correlation (z = 1.33) are illustrated by dashed lines.
From the contours, we see that strong and narrow downward
drafts are formed at the top of the convection zone. On the
contrary, the upward drafts are generally weak and broad when
they arrive at the top of the convection zone. Despite the
weakness of the upward drafts, the figure clearly shows that
they can pass through the interface, penetrate into the
convectively stable layer, and turn around after reaching
the first zero-point. The vertical velocity decays rapidly after
the upward draft penetrates into the convective stable zone. The
temperature perturbation, on the other hand, becomes negative
before the upward draft reaches the first zero-point. Unlike
the vertical velocity, the magnitude of the temperature
perturbation in this penetrative layer is comparable to that in
the convectively unstable layer (see Figure 2(a)). Since the
temperature perturbation is anticorrelated with vertical velocity,
the enthalpy flux F, (=pc,v,Ti, where overbar denotes spatial
and temporal averages) is negative in this region (see
Figure 2(c)). To balance the negative transport of F,,
the thermal structure is adjusted accordingly so that the
temperature gradient V exceeds the radiative temperature
gradient V4 (see Figure 3(b)). The upward drafts can hardly
cross the first zero-point. Although the vertical velocity is small
above the first zero-point, the temperature perturbation and the
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Figure 1. Snapshots of the flow structure (vertical cut at x = 3.0) for the case D1. The upper panel shows the contour of the temperature perturbation, and the lower
panel shows the contour of the vertical velocity. The dashed lines indicate the interface between convectively unstable and stable zones (z = 1.0), the first zero of
velocity correlation (z = 1.105), and the second zero of velocity correlation (z = 1.33), respectively. The bright (dark) color denotes positive (negative) values.

horizontal velocity are nonnegligible, at least in the region
below the second zero-point (see Figure 2(a)). The enthalpy
flux is negligible in this region (see Figure 2(c)), but the mixing
is still active by the turbulent dissipation. Above the second
zero-point, the Péclet number Pey, < 1 (see Figure 2(e)),
where Pey, S 1 uses local pressure scale height as the
characteristic length) and the fluid motions are dominated by
thermal diffusion.

Figure 2 shows the statistical results of case D1 (S =250 on
the left panel) and case D7 (S = 16000 in the right panel). From
the asymptotic solution of a Reynolds stress model, Zhang &
Li (2012) suggested to use the location of the peak of T,” (the
rms turbulent temperature perturbation) as the boundary of the
penetrative layer (or the thermal adjustment layer in our paper).
In our simulations, the peak of T,” is close to the first zero-
point for the case S = 250 (Figure 2(a)). However, the peak of
T," seems closer to the interface, rather than the first zero-point,
for the case S = 16,000 (Figure 2(b)). Hence, the peak of T}”
might not be the best proxy for identifying the boundary of the
thermal adjustment layer. From Figures 2(a) and 2(b), we find
that the first zero-point is almost located at the inflection point
of T\". Thus we suggest to use the inflection point of 7" as the
indicator for the boundary of the thermal adjustment layer. It
has to be mentioned that the inflection point of T,” works better
at high § cases. Zhang & Li (2012) have made the assumption
that the diffusive term of 7}” is unimportant in the overshooting
zone. It would be more consistent with their assumption if we
choose the inflection point of 7}” as the proxy. Figures 2(c) and
2(d) show the enthalpy flux F,, the diffusive flux F; — Fq
(where F; = —k0T/0z and Egq = —k(0T /0z),4), and the
kinetic fluxes F = 0.5pv, (v} + vzz) for D1 and D7, respec-
tively. As mentioned before, there is a dip of F, in the thermal
adjustment layer. From these two subfigures, we see that the
absolute value of the dip minimum increases with S. Thus, it is
expected that the thermal structure in this layer will deviate

more from the initial static state for the case D7 than DI.
However, compared with D1, Figure 3(b) clearly shows that
D7 deviates less from the static state (see the wiggles above
the interface in Figure 3(b)). The reason for this is that the
thermal diffusivity ko = Foc[S (ag — my) + mag + 11/g is
much larger in case D7. Thus a small adjustment of thermal
structure can lead to significant change in fluxes. Figures 2(e)
and 2(f) plot both Pe and Peyy,. Apparently, the second zero-
point approximately locates at the position of Pey, ~ 1 (the
variation is within a factor of 0.5 ~ 2.0). It is consistent with
the assumption made on the turbulent dissipation layer in the
Reynolds stress model (Zhang & Li 2012). The second zero is
located a little bit away from the location Pey, = 1 (being
above for the low S case and below for the high S case). There
are two possible reasons for this. One is that the characteristic
length scale of Pe should be associated with the length scale of
turbulent motions. It can be different for different cases. The
second reason is that the characteristic velocity of Pe is
evaluated by rms velocity, while the second zero tends to
capture the extreme events.

3.2. The Extent of Overshooting Distance

The last two columns of Table 1 give the overshooting
distances measured by the first (6;) and second (8,) zero-points,
respectively. To better illustrate the result, we plot log(é;) and
log(6,) against log(S) in Figure 3(a). From the figure, we see
that 6; or 6, first decreases, and then increases with S (U-
shape). It is different from our previous simulation result
at small S, where only a decreasing trend was discovered
(Cai 2020). It is counterintuitive that the overshooting distance
can increase with S. Here we discuss possible explanations by
considering first the thermal adjustment layer. In our previous
simulation (Cai 2020), we deduced a relationship between 0;
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, horizontal velocity v;,”, and
F,, the diffusive flux F; — F,q, and the kinetic energy flux F;. The adiabatic flux F,q is

deducted from the diffusive flux. Panels (e) and (f) show the profiles of the Péclet numbers Pe and Peyy,. Instead of L, Peyy, uses the local pressure scale height as the

characteristic length.
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and W, (the exit vertical velocity at the interface):

c
g My — My N 2

ey

where ¢ is the asymmetry coefficient. The exit velocity W, is
calculated as the rms vertical velocity of upward drafts at the
interface. To obtain this relationship, we have made the
assumption that V — V4 is almost a constant in the thermal
adjustment layer. It can be seen from Figure 3(b) that this
assumption is reasonable in our simulations, especially when S
is large. Equation (1) infers that 6; can be affected by the
thermal structure (V — V,4), the asymmetry coefficient (c), and
the exit vertical velocity at the interface (W,). First, we
consider the effect of the thermal structure. From Figure 3(b)
we notice that the absolute value of V — V4 increases with
S. However, Equation (1) implies that &; decreases with
|V — V4|- Thus the increase of §; is not due to the effect of
thermal structure. Second, we consider the effect of the
asymmetry coefficient. According to the definition in Zahn
(1991), the asymmetry coefficient ¢ is related to the triple
moment of the vertical velocity. In our calculation, we find that
¢ varies too much in the overshooting zone. However, the
filling factor is more stable. Thus it is more appropriate to
compare filling factors, instead of asymmetry coefficients
among different cases. Figure 3(c) plots the filling factors at the
interface for different cases. The filling factor first decreases,
and then increases with S. Despite that the filling factor shows a
similar trend with &y, its variation (max/min ~1.1) is too small
to explain the significant change of §; across different cases.
Third, we consider the effect of the exit velocity at the
interface. Although the root mean average velocity (v")., in the
convection zone is almost the same (see Table 1), the exit
vertical velocity at the interface is quite different (Figure 3(d)).
It has a U-shape, and its variation (max/min ~1.7) is
comparable to that of §; (max/min ~ 2.6). Thus we conclude
that the exit vertical velocity is the key factor affecting 8;.

Now we discuss the extent of the turbulent dissipation
layer. As shown in Figures 2(e) and 2(f), the boundary of the
turbulent dissipation layer is located at the position of
Peyp ~ 1. From our previous work (Cai 2020), Peyy, is of the
following form:

"
CppVv

_. 2
Foi(my + 1) =

Per =
Let Peyy, ~ 1, the boundary of the turbulent dissipation layer
(or &,) can be inferred from the value of p(z). The above
equation indicates that 6, can be affected by m, and v". In our
simulation, m, varies by two orders of magnitude from 1.875 to
151.5. It is easy to find that 6, decreases with m, from the
above equation. Thus the trend of &, seen in Figure 3(a) cannot
be explained only by m,. Figures 3(e) and (f) plot the averaged
vertical and horizontal velocities in the convectively stable
zone, respectively. We see that both the averaged vertical and

horizontal velocities have U-shapes, similar to the shape of 6,.
Since the horizontal velocity is several times larger than the

Cai

vertical velocity, &, is mainly affected by the horizontal
velocity. It is interesting to note that the fluid motions can be
more active in the stable layer when S is large enough. In the
simulations of downward overshooting (Brummell et al. 2002;
Rogers & Glatzmaier 2005), the case without the stable zone
is assumed to be equivalent to S — oo. For the upward
overshooting, however, they are completely different.

To better understand why the overshooting distance increases
with S when S is large, we consider two possible mechanism: the
shear instability and the counter cell. Figures 4(a) and 4(b) plot
the vertical and horizontal velocities of the cases D4-D8 in the
convectively stable zone. The velocity profiles are quite similar
in the cases D4-D7. However, both the horizontal and vertical
velocities are stronger in the convectively stable zone for case
DS. In stars, it has been proposed that the material mixing could
be induced by the shear instability (Zahn 1992; Maeder 1995).
Linear stability analysis has shown that the shear instability
occurs when the Richardson number Ri is smaller than a critical
value Ri, = 1/4 (Howard 1961; Miles 1961). Here we define
the Richardson number Ri as:

Ri(z) = N2/[(9v,/02)* + (9v,/02)™], 3)

where N = |/g(Mg — V) /H, is the Brunt-Viisilad frequency,
and the overline represents the average value taken both
temporally and horizontally. Figure 4(c) shows Ri for the cases
D4-D8. From the figure, we see that all the Richardson
numbers are above the critical value. The situation does not
change even when the effects of the Péclet number (Zahn 1992;
Maeder 1995) and the horizontal integral scale of turbulence
(Prat & Lignieres 2014) are taken into account. Considering the
effect of thermal dissipation, Zahn (1992) suggested to use
RiPe < 1/4 as the instability criteria. Maeder (1995) improved
the result and suggested to use RiPe/(6 + Pe) < 1/4 as the
instability criteria. In the overshooting zone, the Péclet number
is greater than 1. It can be easily shown that the shear instability
could take place in the overshooting zone if Ri < 7/4.
Figure 4(c) shows that Ri is much larger than this value. Prat
& Lignieres (2014) used a horizontal turbulent length scale
t=2rf * E()k\dk / J; * E()dk to calculate the Péclet
number. Figures 4(e)—(f) present the result on the evaluated
horizontal turbulent length scale. £ is much larger than H),. The
Péclet number would be even higher if / is used as the
characteristic length. As a result, it is unlikely for the shear
instability to take place in the convectively stable zone. Now
we consider the possibility of the counter cell. Figure 4(d)
shows the anisotropic degree (w = vz2 / (vx2 + vy2 + vzz)) in the
convectively stable zone. If the counter cell is important, we
would expect that the local minimum points of w are correlated
to the cell nodes. The cells nodes are the barriers to prevent the
material from mixing. From Figure 4(d), we can infer that there
is one counter cell in the thermal adjustment layer for all the
cases. The case is different above the thermal adjustment layer.
The figure clearly shows that two counter cells (one extends to
the top boundary of the box) exist above this layer in case D4.
The cell node between these two cells is approximately at the
boundary of the turbulent dissipation layer. Similar counter
cells are shown in the cases D5 and D6, but the location of the
cell node is subtle. We expect that these two cells would merge
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Figure 3. (a) Overshooting distances é; and 6, as functions of log(S). (b) The profiles of the super-adiabatic temperature gradient V — V4 for cases D1-D8. (c) The

filling factor at the interface for cases D1-D8. (d) The exit vertical velocity at the interface for cases D1-D8. (e) The averaged rms vertical velocity for cases D1-D8.
(f) The averaged rms horizontal velocity for cases D1-D8. The average is taken in the convectively stable zone for (e) and (f).
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Figure 4. (a) The rms velocity as a function of the depth. (b) The rms horizontal velocity as a function of the depth. (c) The Richardson number as a function of the
depth. (d) The anisotropic degree as a function of the depth. (¢) The horizontal turbulent length scale for case D4. (f) The horizonal turbulent length scale for case D7.
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Figure 5. Velocity field at the vertical cut plane x = 3. Only the convectively stable zone is displayed. (a) Case D4. (b) Case D7.

when S further increases. For cases D7 and D8, the profile of w
decreases all the way to the top boundary. This indicates that
only one counter cell exists and extends all the way to the upper
boundary of the box. Once the materials cross the upper
boundary of the thermal adjustment layer, they can reach much
deeper places through the motion of this large counter cell. The
mixing process will be slowed down when the materials enter
into the thermal dissipation layer. The counter cells are also
confirmed in the profile of velocity field (Figure 5). As a result,
we conclude that the counter cells have a significant impact on
the extent of the turbulent dissipation layer.

The recent work of Korre et al. (2019) performed 3D
simulations on downward overshooting for Boussinesq flow
with the stability parameter in the range of S € [2, 100]. Apart
from the different settings on geometry and background
structure, their work shares some similarities with ours. First,
both works use the correlations of vertical velocities as the
proxy of the penetrative distance. The zeros of the velocity
correlation function tend to pick out the effect of the strongest
plume rather than the average effect. In their work, they have
reported that the depth measured by the first zero-point of the
velocity correlation is close to the depth of thermal mixing. It
agrees well with the result of our simulations. Second, their
estimated overshooting distance follows scaling laws with
8 ~ S when the transition region between the unstable and
stable zone is thin. In our simulations, the estimated scaling is
81 ~ S7%47 if only cases D1-D3 with relatively smaller S are
considered. It is close to their estimations. Third, both the
studies use the Péclet number as the proxy to define the
boundary of the overshooting layer. Despite these similarities,
there are also some differences. For example, in our
simulations the turbulent dissipation layer is much wider than

the thermal adjustment layer, while the opposite result was
reported in their simulations. This is probably because different
velocity and length scales are used in the calculation of the
Péclet number. It is anticipated that this discrepancy would be
diminished if the same scales are used. It seems that the Peclet
number should be quoted using a length scale associated with
turbulent motions. A calibration of parameters on turbulent
Reynolds stress models shows that the vertical turbulent length
scale is about 1.2H,, (the parameter is calibrated by the data of
auto-correlation of vertical velocity in the convection zone; the
detailed calibration method can be found in Cai 2018). The
vertical turbulent length scale is very close to the H,,. Thus it is
reasonable to use H, as characteristic length scale when
evaluating the P’eclet number.

4. Summary

We have performed three-dimensional simulations on the
upward overshooting of turbulent compressible convection
at large S. Using the zero-points of velocity correlation as
indicators, we partition the above convectively stable zone into
three layers: the thermal adjustment layer, the turbulent
dissipation layer, and the thermal dissipation layer. The layer
structure is similar to what we have obtained in the previous
simulations on upward overshooting at small S (Cai 2020).
Despite of this similarity, there are differences in several
aspects. First, the change of thermal structure is different. At
small S, the thermal structure is altered considerably in the
thermal adjustment layer. At extremely large S, however, the
thermal structure is only slightly changed. Second, the extent of
the overshooting distance obeys different laws on S. At small S,
the extent of overshooting distance decreases with S. For the
large S, on the other hand, it first decreases, and then increases
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with S. The overshooting distance highly depends on the
exit vertical velocity at the interface. Although the averaged
velocity in the convection zone is almost the same, the exit
vertical velocity can be largely different. Third, the averaged
velocity in the convectively stable zone shows different
patterns. At small S, the magnitude of velocity decreases with
S. For the large S, on the contrary, the magnitude of velocity
can even increase when § is large enough. We have considered
two possible arguments for why the penetration depth can
increase with S: the shear instability and the counter cells. The
Richardson number in the convectively stable zone is larger
than the typical critical value. Thus it is unlikely for the shear
instability to drive the turbulent mixing in the overshooting
zone. On the other hand, the argument of counter cells seems to
be able to explain this phenomenon. The upward drafts tend to
disperse horizontally before reaching the interface. Higher S
will lead to higher horizontal velocity of the upward drafts. As
they penetrate into the stable zone, they contain more energy on
driving counter cells (Chan et al. 2010). These counter cells, in
turn, will have feedback on the velocities. One important
consequence is that the number of counter cells formed in the
convectively stable zone can be changed. As the cell nodes
form the barrier of material mixing, the structure of the counter
cells has a significant impact on the penetration depth. A
similar driving mechanism called “differential heating” has
been discussed in Andrassy & Spruit (2015). When radiative
diffusion transports a temperature fluctuation into the convec-
tively stable zone, the resulting perturbation can trigger a weak
flow with several layers of overturning cells. It has to be
mentioned that our model adopts a piecewise polytropic
thermal structure with rapid transition of sub- and super-
temperature gradient at the interface. In the real stars, the
transition is more smooth. Direct application of the current
result might be questionable. It would be worthwhile to check
its validity by using smoothly varying thermal structure profiles
instead of step functions. We plan to investigate these effects in
the future. In addition, the flux is much smaller in real stars. We
would expect more counter cells in the convectively stable zone
since the penetrative velocity is smaller. Thus the cell structures
in the cases with S > 4000 may differ significantly from those
in real stars.
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Appendix

Figures 6(a)—(c) show the layer structures depicted by Zahn
(1991), Zhang & Li (2012), and (Cai 2020), respectively. Zahn
(1991) have used the terminology ‘“penetration” to denote
the regime where the thermal mixing is strong enough to bring
the layer close to adiabaticity; and “overshooting” to denote the
regime where the motions are able to mix chemicals but not
strong enough to alter the thermal structure to an adiabatic
state. The upper boundary of the overshooting layer is defined
at the location Pe = 1, above which the thermal dissipation
dominates. The penetrative layer is also called the “nearly
adiabatic layer”; and the overshooting layer is also called the
“thermal adjustment layer.” Based on the asymptotic analysis
of a Reynolds stress model, Zhang & Li (2012) have found that
an additional turbulent dissipation layer should be included in
the overshooting regime. In such case, the overshooting regime
contains two parts: one part that the thermal structure is
gradually changed from adiabatic state to radiative state; and
another part that the thermal structure is close to radiative state
while the Péclet number is still greater than 1. In this paper, we
use the term “thermal adjustment layer” to denote the first part,
and the term “turbulent dissipation layer” to denote the second
part. It should be noted that the meaning of the “thermal
adjustment layer” is a little bit different between Zahn’s (1991)
and our work. Zahn (1991) defines the “thermal adjustment
layer” as the full overshooting regime, while we define it as a
part of the overshooting regime. Apart from this difference,
they share the similarity that the thermal structure is gradually
adjusted from adiabatic state to radiative state within this layer.
The layer structure obtained in our 3D simulations is almost
identical to the one depicted by Zhang & Li (2012). The major
difference is that the nearly adiabatic layer is missing in the 3D
simulation. Zhang & Li (2012) have shown that this layer is
very thin in stars. As 3D simulation only explores a small
regime in the parameter space, we cannot exclude the
possibility of the existence of the nearly adiabatic layer.
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Figure 6. (a) The layer structure of Zahn (1991). (b) The layer structure of Zhang & Li (2012). (c) The layer structure of 3D simulation (Cai 2020). The region within
the dashed line is missing in the 3D simulation. w is the anisotropy of the turbulent flow, and wy is an equilibrium state of w.
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