
© 2020 Institute of Physics and Engineering in Medicine

1.  Introduction

Artificial intelligence (AI) refers to the intelligence achieved by computer systems. Developing and employing 
AI techniques to solve important problems has become a central topic of many disciplines. Within the broad 
scope of AI, machine learning (ML) has been a popular topic for decades because of its capability of solving 
practical problems by learning from data. Over the past few years, deep learning (DL), a subcategory of ML, has 
achieved remarkable performance surpassing traditional ML approaches across a wide spectrum of different 
areas as a consequence of the availability of large-scale datasets, innovative DL technologies, advanced model 
training algorithms, as well as rapidly growing computing powers. In the classical image classification problem, 
a deep neural network (DNN) evaluated on the ImageNet 2012 classification dataset achieved an error rate of 
3.57% (He et al 2016a), even lower than the human classification error rate of 5.1% (Russakovsky et al 2015). 
In the context of the Go game, AlphaGo (DeepMind Technologies Limited, London, UK) armed with DNNs 
successfully defeated the best professional human Go players (Silver et al 2016, 2017). These examples, together 
with many others, have led to the burst of DL research, exerting substantial impacts on our daily life.

Not surprisingly, powerful DL tools have also been introduced to solve problems in medicine. Numerous 
studies have demonstrated the power of DL in a variety of problems ranging from disease diagnosis (Esteva et al 
2017, Rajpurkar et al 2017, Mendelson 2018), where an DL agent achieved a performance comparable or better 
than well trained clinicians, to data mining in health informatics (Ravì et al 2017), where the hidden structures 
in healthcare data were discovered and employed to support decision making. Specific to the medical physics 
community, the research interests on DL have also experienced a rapid and continuous growth in a relatively 
short period of time. To illustrate this fact, we searched papers that have ‘artificial intelligence’ or ‘deep learn-
ing’ in the title or abstract published in two major medical physics journals Physics in Medicine and Biology and 
Medical Physics, as well as in the medical physics category of arXiv.org, the world largest electronic archive of 
preprints in physics and mathematics. Figure 1 presents the result with the vertical axis displayed in a logarithmic 
scale. Apparently, there has been an exponential growth in the number of publications since 2015. This has also 
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Abstract
As one of the most popular approaches in artificial intelligence, deep learning (DL) has attracted a 
lot of attention in the medical physics field over the past few years. The goals of this topical review 
article are twofold. First, we will provide an overview of the method to medical physics researchers 
interested in DL to help them start the endeavor. Second, we will give in-depth discussions on the 
DL technology to make researchers aware of its potential challenges and possible solutions. As such, 
we divide the article into two major parts. The first part introduces general concepts and principles 
of DL and summarizes major research resources, such as computational tools and databases. The 
second part discusses challenges faced by DL, present available methods to mitigate some of these 
challenges, as well as our recommendations.
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matched the overall trend of research interest on DL in medicine, as quantified by the number of publications 
obtained in the PubMed database with the same searching criteria.

Along with the rapid growth of research activities and achievements, it came to the point that we should look 
at the initial but substantial successes gained in a relatively short period of time. As such, multiple review articles 
on DL in healthcare, or specifically in medical physics, have been published (Miotto et al 2017, Thompson et al 
2018b, Sahiner et al 2019). Meanwhile, DL has triggered extensive discussions regarding its role in medical phys-
ics research and clinical practice (Tang et al 2018, Thompson et al 2018a, Xing et al 2018, Sensakovic and Mahesh 
2019).

These publications have successfully served their roles in terms of demonstrating the interests on DL, sum-
marizing achievements and learnt lessons, as well as discussing future directions. However, we think there is also 
a strong need for a review article written from an educational aspect targeting researchers in the medical physics 
community. In particular, it is desirable to introduce to our community technical aspects of DL, available tools 
and resources, fundamental functions of DL from the mathematical perspective, and its capabilities and limita-
tions. Having such a concise and focused review article could help researchers who are interested in DL, but may 
not have been trained in this area, to become familiar with this technology. This will facilitate their research and 
inspire novel research directions and activities. Meanwhile, we have to admit that DL has its own limitations. It 
has not yet been fully understood mathematically at this point why DL is so powerful in some problems. Discuss-
ing potential challenges of DL will help researchers to establish objective interpretations of this technology and to 
generate impactful DL studies in medical physics.

With these goals in mind, we prepared this topical review article. Instead of focusing on summarizing the 
remarkable achievements so far, this article will present a detailed introduction to the DL technology and in-
depth discussions on it. The rest of this article is divided into two main parts. Sections 2–4 belong to the first part, 
which presents the DL technology as well as available research tools and resources. The purpose of this part is to 
give readers a brief, but hopefully comprehensive overview of DL. Since we focus on introducing the DL technol-
ogy to researchers who are not trained in this area, a lot of concepts and terminologies will be provided at a very 
fundamental level. Experts in DL may find these sections basic and may skip them. Due to a limited space, it is not 
possible to cover all topics in a very detailed way. We will include important concepts for one to quickly gather 
necessary information, and provide references for further reading. The second part of this article, sections 5–7, 
provides more in-depth discussions on the fundamentals behind DL. We will introduce mathematical aspects 
of DL and discuss challenges of which we should be aware. We will also present potential solutions to some of 
the challenges, as well as our recommendations. Finally, we will conclude the review article in section 8 with an 
outlook into the near future.

2.  What is artificial intelligence/machine learning/deep learning?

2.1.  AI, machine learning, and deep learning
Artificial intelligence (AI) refers to the intelligence achieved by machines, which is in contrast to the natural 
intelligence of humans. In general, it broadly encompasses the capabilities of any devices or systems to take actions 
for successfully achieving specific goals (Jackson 1985, Nilsson and Nilsson 1998). In this sense, any models, 
algorithms, or computer programs designed by humans to tackle certain tasks requiring human intelligence can 
be generally considered as AI. Hence, the scope of the term AI covers a wide spectrum of problems including, but 
not limited to perception, recognition, analysis, and decision-making using a machine or computer.

Figure 1.  Number of DL-related research articles published in each year. The search for year 2019 only covered the first two months 
and the number was linearly annualized to the full year.
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Machine learning (ML) is a subcategory of methods within the broad scope of AI (figure 2), which specifi-
cally refers to numerical algorithms and models established to analyze data and derive or learn decision-making 
capabilities to achieve certain tasks (Alpaydin 2009). In other words, ML deals with data. Its goal is to conclude 
the hidden pattern embedded in the data under practical constraints, such as data size and quality. The derived 
pattern can then be used to solve the problem of interest. Take the classical problem of image classification as an 
example, an ML method would try to draw a boundary to separate different classes by analyzing the dataset of 
images. For a new image to be classified, it is compared to the learnt boundary to decide the class that it belongs to.

First introduced by Aizenberg et al (2000), Deep learning (DL) is a group of methods within ML (figure 2). 
Therefore, the general goal of DL is aligned with that of ML. What differentiates DL from other ML techniques is 
that DL employs large-scale hierarchical models with multi-layer architectures to automatically generate com-
prehensive representations and to learn complicated inherent patterns of the data (LeCun et al 2015). In contast, 
classical ML methods uses hand-crafted features manually extracted from data as input and relies on relatively 
simple models to represent inherent data patterns. In recent years, DL is becoming increasingly popular in both 
research and applications because of its feasibility granted by advanced numerical algorithms, high computing 
power, and available large-scale datasets, as well as its impressive performance as compared to traditional ML 
methods.

2.2.  Deep neural network
The most commonly employed models in DL are deep neural networks (DNNs), which are essentially a type of 
artificial neural network (ANN) (McCulloch and Pitts 1943) but with a large number of layers. The building 
block of a DNN is a neuron designed in analogy to the neural cell of a human. Each artificial neuron consists of 
four major components: a group of input signals, a linear operation, a non-linear operation, often termed as 
activation function, and its output signal (figure 3(a)). The neuron takes its inputs and first performs a linear 
operation on them. The resulting data are fed into an activation function, commonly a non-linear function, to 
generate the neuron’s output. A typical form of the activation function is rectified linear unit (ReLU) (Nair and 
Hinton 2010) outputting zero if the input value is negative, and the same value as the input otherwise, although 
other function forms are often used. A large number of neurons are connected under a certain structure to form 
a DNN, where the output of a neuron is fed to another neuron as one of the inputs.

Typically, the DNN contains a number of layers (e.g. figure 3(b)). Neurons in one layer receive information 
from the previous layer, and after processing it, pass the result to the next layer. Any layer embedded between 
the input of the DNN and the output is termed as a hidden layer. In mathematical terms, let us denote the input 
data as a vector x = [x1, x2, x3, . . .], the data at the ith hidden layer as hi = [h1

i , h2
i , h3

i , . . .], and the output data as 
y = [y1, y2, y3, . . .]. We further denote operations acting on the input of the ithlayer as fi (·|θi), where θi repre-
sents all relevant parameters defining the operations. Note this operation contains both the linear and non-linear 
part as mentioned previously. With a number of n layers, the basic neural network operations can be written as:

h1 = f0 (x|θ0) ,

hi = fi−1 (hi−1|θi) ,

y = fn (hn|θn) .
� (1)

It is easy to see that this can be written in the form of a composite function:

y = DNN (x|θ) = fn (fn−1 (fn−2 (· · · f1 (f0 (x|θ0) |θ1)) · · · |θn−1) |θn) ,� (2)

Figure 2.  Relationship among artificial intelligence, machine learning, and deep learning.

Phys. Med. Biol. 65 (2020) 05TR01 (29pp)
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where the function DNN (x|θ) is a mapping from the input to the output, and θ represents the set of θi to define 
this DNN mapping. The total number of layers indicates the depth of a DNN, while the number of neurons in a 
layer gives its width.

It is worth mentioning that a DNN does not necessarily organize its neurons in a layered format and more 
complicated architectures may be employed. For example, skip or residual connections can be added to connect 
neurons in non-adjacent layers, as in the popular ResNet (He et al 2016a). Mathematically, a hidden layer calcul
ation with a skip connection between the layers i and j can be written as

hi = fi−1

(
fi−2

(
· · · hj

))
+ hj, for certain i > j.� (3)

Regardless of the exact formulation, the commonality among DL models is that they utilize many consecutive 
layers of calculation. Popular operation types of these layers include, but not limited to full connection (Ivakh-
nenko and Lapa 1965), convolution (Fukushima 1980, LeCun et al 1990, LeCun and Bengio 1995), max-pool-
ing/up-sampling (Scherer et al 2010, Ciresan et al 2011), batch normalization (Ioffe and Szegedy 2015), ReLU 
(Nair and Hinton 2010), sigmoid-shaped functions, the soft-max function (Goodfellow et al 2016) etc. A typical 
scheme of DL is to first apply a linear operation on the previous layer followed by a non-linear operation. It is very 
uncommon to use two linear operations sequentially, since this is equivalent to using a single linear operation. 
In addition, a normalization scheme, including batch (Ioffe and Szegedy 2015), layer (Lei Ba et al 2016), instance 
(Ulyanov et al 2016), or group (Wu and He 2018) normalization, may be applied either directly before or after the 
non-linear operation, which tends to improve the convergence speed during the network training process.

To date, a large number of DNN architectures have been designed for different applications. For example, 
fully connected DNNs are the most general form that plays an important role in numerous studies. Convolu-
tional neural networks (CNNs) employ convolutional operations to effectively extract image features and are 
widely used in image-related projects. Recurrent neural networks (RNNs) have a recurrent mechanism that can 
handle data with a temporal structure. Most of successful applications so far incorporate one, or the combination 
of these DNNs. Major characteristics of these DNNs are summarized in Table 1 and we will discuss them in detail 

in the following subsections.

2.2.1.  Fully connected deep neural network
In principle, a fully connected DNN, in which every pair of neurons are linked using pair-specific connections 
between two adjacent layers, is the most general form of DNNs. Figure 3(b) shows the basic design of a fully 
connected DNN. The number of neurons in the input, output and hidden layers may vary, depending on many 
attributes such as the data format or the intended use of the model.

While the fully connected DNN is a very general network form, it is not used very often in practice by itself. 
For a specific problem of interest, it is of importance to design a special network form, which can be viewed as 
by removing some connections of a fully connected DNN purposely, to make the network easier to train and 
to improve computational performance. The design of the specific network structure can be very creative, and 
often be specifically tailored based on the researcher’s domain knowledge and experience. For instance, various 
CNN (Krizhevsky et al 2012, Cho et al 2014, Simonyan and Zisserman 2014, Ronneberger et al 2015) and RNN 
(Hochreiter and Schmidhuber 1997, Graves et al 2014) architectures are designed specifically for the processing 
of image data and sequential data, respectively.

Figure 3.  (a) Structure of a neuron. Σ indicates a linear operation acting on the input variables, and φ(.) is the nonlinear activation 
function. (b) An example of a fully connected DNN model with a multi-layer structure.

Phys. Med. Biol. 65 (2020) 05TR01 (29pp)
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2.2.2.  Convolutional neural network
Convolutional neural networks (CNNs) proposed by LeCun et al (1989) effectively use convolutional layers for 
image-related tasks. The convolutional computation utilizes a kernel and convolves with the previous layer’s 
image data to produces new images, called feature images, and feeds them to the next layer. Pooling operations, 
such as max-pooling or average-pooling, can be added after convolution to reduce resolution of the feature 
images. This allows for the model to reduce computational cost and to view and analyze the images at multiple 
resolution scales. In addition to these layers, CNNs can still incorporate other operations such as fully connected 
layers, batch/layer/instance/group normalizations, non-linear activations, etc.

Recently, a number of researchers have revealed the tremendous performance of CNNs on image related 
tasks. This is largely ascribed to the capability of analyzing images at different resolution scales that comes with 
convolutional and pooling operations. For instance, a basic structure of a classification CNN inspired by LeNet 
(El-Sawy et al 2016) is shown in figure 4(a). After analyzing the images at different scales through the first few 
convolutional layers, the extracted information is gathered and further processed in the last a few fully con-
nected layers to generate the final output. Several variants of CNN model structures for classification have been 
proposed, such as AlexNet (Krizhevsky et al 2012), VGGNet (Simonyan and Zisserman 2014), and GoogleNet 
(Szegedy et al 2015).

CNNs have also been employed widely for image-to-image translation tasks. Different from those for image 
classification, a CNN in an image translation task outputs an image that has a one-to-one pixel or voxel corre-
spondence with the input. One of the common uses of such CNNs is for image segmentation, where the output is 
the segmented region maps. A popular architecture designed for this task is the U-net (Ronneberger et al 2015), 
and its 3D variant, the V-net (Milletari et al 2016), which for the first time introduced the Dice loss layer widely 
incorporated nowadays. A basic structure of U-net style architecture is depicted in figure 4(b). Because of the 
multiple layers of convolutions and pooling operations to change image resolutions among layers, U-net’s and 
V-net’s architectures allow effective calculation and combination of both local and global features. Many varia-
tions of these two networks have appeared in literature, typically with modifications designed for specific tasks 
of the studies.

2.2.3.  Recurrent neural network
Recurrent neural networks (RNN) are neural networks with a feedback mechanism in the hidden layers, as 
shown in figure 5. Because of the recurrent nature, an RNN can be equivalently viewed as a series of stacked 
networks with identical structures. RNN was designed to effectively learn from sequential data, such as writing, 
speech, time series data, decision pathways, etc. Structure-wise, RNNs can be created using fully connected or 
convolutional style layers, as well as other aforementioned DNN operations. The original RNN structure was 
found to be limited to only short sequences of data mainly due to the so-called unstable gradient issues in 
propagating memory from previous iterations. To mitigate this issue, a long short-term memory (LSTM) model 
(Hochreiter and Schmidhuber 1997) was proposed, which added extra mechanisms for remembering/forgetting 
past information (forget gate), adding new data into the memory (input gate), and calculating desired output 
for that iteration (output gate). With these modifications, LSTM is capable of learning and performing on much 
longer sequences of data, and has largely replaced the basic RNN for most modern tasks. While the LSTM is one 
of the most popular version of RNN, other recurrent networks have been devised as well, including bi-directional 
RNN (Schuster and Paliwal 1997, Mikolov et al 2010, Sak et al 2014, Zaremba et al 2014), gated recurrent unit 
(GRU) (Cho et al 2014), neural turing machines (Graves et al 2014), etc.

2.2.4.  Other network structures
In the modern DL setting, most frameworks utilize the aforementioned fully connected DNNs, CNNs, RNNs, 
or a combination of them to achieve a high performance for a given task. However, there exists less conventional 

Table 1.  Commonly used DNNs.

Networks Characteristics

Fully connected DNN 1. All neurons in one layer are connected with all neurons in the adjacent layer using pair-specific connections

2. There is a large number of trainable network parameters

3. Typically, a large amount of data and computational resources are required to determine parameters

CNN 1. Convolution and pooling operations are involved to connect adjacent layers

2. Typically, there are considerably less trainable network parameters compared to a fully connected DNN

3. Often used to handle image-related tasks

RNN 1. Feedback mechanisms are incorporated in hidden layers to realize a recurrent structure

2. Often used to handle time series data

Phys. Med. Biol. 65 (2020) 05TR01 (29pp)
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network structures, such as deep belief network (DBN) (Lee et al 2009) and deep Boltzmann machine (DBM) 
(Mohamed et al 2009). In the interest of space, we will not present their details and readers can find more from 
relevant references.

2.3.  Training of a machine learning/deep learning model
Using an ML/DL approach to solve a problem requires a training stage to develop the model. Specifically, model 
training refers to the process of determining the model parameters based on observed data (training data). 
Training the ML/DL model is often formulated mathematically as solving an optimization problem, where the 
goal is to find the model parameters that minimize a loss function. For a DNN model, this can be expressed as

θ∗ = min
θ

L(θ) = L (DNN (x|θ)) ,� (4)

where θ∗ is the set of parameters of the trained model. The loss function L (·) is problem specific. Take the image 
classification problem as an example, if we were given a set of images xi and corresponding classification labels 

yi , the loss function can be naturally defined as L (θ) =
∑

i ||yi − DNN (xi|θ)||2. Minimizing this loss function 
explicitly enforces the agreement between the predicted label DNN (xi|θ) and the ground truth label yi  by 
minimizing the difference between them. In practice, the loss functions can be defined creatively in different 
forms, e.g. cross entropy for classification, Dice similarity coefficient for segmentation (Dice 1945), depending 
on specific considerations.

It is important to note that equation (4) is often a non-convex optimization problem. This means that it is dif-
ficult to find the global minimum. This optimization problem is typically solved via a gradient-based algorithm 
that updates the solution θ as

θk+1 = θk − λ∇θL(θ),� (5)

where k is the index of iterations, ∇θL is the gradient term with respect to θ, and λ is called the learning rate. 
For the loss function involving a complex DNN, it is complicated to evaluate the gradient term. Rumelhart et al 
(1986) proposed to use a technique called backpropagation, which effectively employs the chain rule in calculus 

Figure 4.  Basic structure of (a) CNN for classification tasks and (b) a U-net style architecture. Up-sample is an operation to increase 
the dimension of data via a user-defined interpolation method. Flatten indicates the operation to reshape a high-dimensional data 
array into a 1D vector.

Figure 5.  Illustration of the RNN architecture (left). x is the input data, h indicates the RNN, y is the output of RNN, and wr  is the 
recurrent information. This network is equivalent to an unfolded chain-like architecture (right) with each block being a copy of the 
same network. Each block passes information to its successor.

Phys. Med. Biol. 65 (2020) 05TR01 (29pp)
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to compute gradient and update the parameters θ at each layer. Although this technique is very computationally 
efficient, it still does not guarantee a global minimum. To help both the local minimum issue as well as to 
alleviate the problem of potentially a large memory usage, DNNs are often trained using stochastic optimization 
methods, such as stochastic gradient descent (SGD) or adaptive moment estimation (ADAM) (Kingma and Ba 
2014). While these methods differ slightly, such as additional momentum calculations or adaptive learning rates, 
a common scheme is that only a portion of the training data is randomly selected at a given step to update the 
solution. More specifically, the complete training scheme consists of a number of epochs. Before each epoch, the 
training data is shuffled and split into a number of small portions called batches. The training process loops over 
all these batches in each epoch, each time using data from a batch to update the model. A number of training 
epochs are needed to yield convergence or satisfactory results. Note that the data used to update the model in 
different epochs are the same, but the data batches are randomly generated.

Similar to solving other optimization problems, training the DL model involves many user-defined param
eters in the algorithm, called hyper-parameters. Examples include learning rate, number of epochs, batch sizes, 
and dropout rate (Srivastava et al 2014), etc. The values of these hyper-parameters affect the solution and hence 
resulting model performance. One usually repeatedly adjusts these hyper-parameters to achieve a satisfactory 
performance of the trained model.

A typical setup when constructing a ML/DL model is to use a portion of available data, called training dataset, 
for model training, i.e. to solve the optimization problem in equation (4) and set aside a smaller, hold-out testing 
dataset, to evaluate the model performance, after the training stage is completed. The loss function L (·) used to 
train a ML/DL model can often be viewed as a certain form of error, when evaluating the model performance on 
the datasets. The error evaluated on the testing dataset is typically larger than that on the training set. The differ-
ence between the two is termed as the generalization gap, see figure 6 for a graphical illustration. This gap tends to 
indicate the model’s generalizability. Being able to generalize means that the model trained on the training data-
set performs well on the testing dataset that has not been seen by the training process. Hence, we expect that the 
data will likely perform equally well for future data, when we apply the trained model to solve the problem. In this 
case, the generalization gap is small. On the other hand, a large gap means bad model generalizability. Generally 
speaking, using a model with a high complexity can reduce the training error, as shown in figure 6. However, this 
does not mean the trained model becomes more accurate. After a certain point, the model starts to be capable of 
‘memorizing’ the training data, as characterized by the increasing testing error and generalization gap. Since the 
goal of a ML/DL study is to build a model using training data and to apply it on unseen future data, we would like 
to find the sweet spot where the generalization gap is minimized, so that the trained model has the best generaliz-
ability.

In the regime of DL, studies have observed a quite surprising phenomenon: a very complex DL model with 
an extremely large number of trainable parameters may also generalize well after being trained on a large dataset 
(Neyshabur et al 2018, Novak et al 2018). The exact mathematical reason for this phenomenon is still unclear, 
although there are some hints. Numerous studies have been actively investigating this direction (Belkin et al 
2018). More detailed discussion on this will be given in section 6.2.

2.4.  Feasibility and popularity of deep learning
Since Ivakhnenko and Lapa (1965) established the first effective DNN, DL has been around for more than 50 
years. Yet the lack of large-scale datasets and the limited computing power impeded its applications. These 
obstacles were recently overcome, making DL a feasible solution to many problems. Formulated in a hierarchical 
multi-layer architecture, a DNN consists of a number of hidden layers. The large number of network parameters 
naturally requires the collection of a massive training dataset. Creating such a large-scale dataset was expensive, 
labor intensive, and time consuming until very recently, when fast development in data acquisition/sharing 
techniques and storage capability have been advanced. One of the most impressive examples is the ImageNet 
database (Deng et al 2009, Krizhevsky et al 2012, Russakovsky et al 2015) where more than 14 million fully 
annotated images were collected from the Internet.

Figure 6.  Illustration of training and testing errors as a function of model complexity.

Phys. Med. Biol. 65 (2020) 05TR01 (29pp)
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In addition, training a DNN is usually formulated as solving a large-scale optimization problem, demanding 
a huge computing power. Given the relatively limited computing power in the past decades, it was not practical 
to use DNN. This issue has been eased by the substantial increase in memory and computing power of modern 
computers/workstations. In particular, graphics processing unit (GPU) has been employed in the scientific com-
puting regime (Pratx and Xing 2011, Jia et al 2014a, Despres and Jia 2017). Its remarkable power to parallelize 
computations substantially improves the efficiency of training DL models, making it affordable to use DNN in 
real-world applications.

One of the main reasons making DL popular is its flexibility in handling different problems. One critical step 
for the success of a classical ML model is to extract concise representations of the data, namely feature extraction. 
Due to the relatively limited flexibility of traditional ML models, a concise and complete representation of the 
data is very important to feed the ML model with relevant information for accurate learning. Take a typical image 
classification problem to classify images into cats and dogs as an example. A classical ML approach typically 
requires manually extracting relevant features from input images, e.g. shape, size, color, etc, and feeding them 
into the ML model to predict the output class label. However, this step is very challenging, and often needs prob-
lem-specific and creative thinking. In contrast, DL can be conducted through a purely data-driven end-to-end 
approach. The flexibility of a DNN is large, so that it is capable of establishing a mapping directly from the input 
to the output, bypassing the feature extraction step. For the cat/dog classification problem, a DL model can be 
constructed to learn a mapping directly from the image to the class label using a large amount of labeled training 
data. The researcher does not have to explicitly specify what features the model should look at. After training, the 
feature extraction step is inherently incorporated in the built model.

Additionally, the remarkable performances beyond most of traditional ML methods in a spectrum of prob-
lems also contribute to DL’s popularity. Examples include natural language processing (Mikolov et al 2010, 
Manning et al 2014), face recognition (Schroff et al 2015), image classification (Krizhevsky et al 2012, Russako-
vsky et al 2015), playing board games (Silver et al 2016, 2017), and self-driving (Bojarski et al 2016), to name a few.

3.  Learning strategies of deep learning

Depending on how a ML model is trained, we generally divide the learning strategies into supervised learning, 
unsupervised learning, semi-supervised learning, and reinforcement learning. The same classification can be 
applied to learning strategies of DL, as it is a subcategory of ML. In this section, we will briefly introduce the 
characteristics of each category and present some examples.

3.1.  Supervised learning
Supervised learning (SL) refers to the learning strategy that trains a model by using labeled data with input–output 
correspondence and by explicitly enforcing the compliance of the model to this correspondence. SL is the most 
straightforward and effective learning strategy, since the learning goal is clearly defined by the paired input data 
and output target. With the widely available DL platforms (see details in section 4), it is quite easy to set up a DL 
model as well as to perform training via SL. On the other hand, SL has its limitation of requiring the co-existence 
of input data and corresponding output target. For instance, each training image has to be annotated with an 
explicit class label for the image classification task. Such a strict requirement on dataset diminishes the practical 
value of SL in many contexts, especially for those applications where the targets of data are hard to obtain.

As many medical problems can be formed as mappings from the input to the output side, SL is probably the 
most obvious approach to solve these problems in a DL way. The researchers could be very creative in terms of 
defining the inputs and outputs. Rather than enumerating the large number of successful DL models trained 
with SL, we will briefly show a few representative examples.

Given the success of DL in image-related areas, applications in medical imaging are certainly warranted. For 
instance, remarkable success has been achieved using DL-based methods trained with SL to perform segmenta-
tion (mapping from anatomy image to organ maps) (Ronneberger et al 2015, Roth et al 2015, Cha et al 2016, 
Guo et al 2016, Hu et al 2016, Milletari et al 2016, Hu et al 2017, Ibragimov and Xing 2017, Balagopal et al 2018, 
Ren et al 2018, Saffari et al 2018, Chen et al 2019a, Jung et al 2019a, 2019b), to improve image quality (mapping 
from a low-quality image to the corresponding high-quality image) (Han et al 2016, Chen et al 2017a, Gjesteby 
et al 2017a, 2017b, Kang et al 2017, Kelly et al 2017, Hansen et al 2018, Liang et al 2018, Maier et al 2018a, 2018b, 
Rivenson et al 2018, Schlemper et al 2018, Xie et al 2018, Zhang and Yu 2018a, Zhu et al 2018), to improve image 
resolution (mapping from a low-resolution image to the corresponding high-resolution image) (Oktay et al 
2016, Pham et al 2017, Chen et al 2018, Iqbal et al 2019), to convert images between different modalities (map-
ping from one image modality to another) (Han 2017, Fu et al 2019, Kazemifar et al 2019, Liu et al 2019a, 2019b), 
and to conduct disease diagnosis based on medical images (mapping from an image to a label of diagnosis result) 
(Zhang et al 2014, Hua et al 2015, Kumar et al 2015, Shen et al 2015, Cheng et al 2016, Litjens et al 2016, Sun et al 
2016, Rajpurkar et al 2017, Wang et al 2017, Chen et al 2019b) etc.
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Applications of SL can go beyond image-related problems. Zhen et al developed a DL-based model trained 
with SL to build a mapping from radiation dose distribution to rectum toxicity after radiotherapy (Zhen et al 
2017). Similar strategy has also been applied for distant metastasis prediction after radiotherapy in head and 
neck cancer (Diamant et al 2019). In the radiotherapy treatment planning regime, SL were employed to train DL 
models to establish a relationship between a patient image to the best achievable dose distribution (Nguyen et al 
2019a, 2019b, 2019c). This approach has also been used for treatment plan quality assurance purpose (Tomori 
et al 2018, Nyflot et al 2019).

3.2.  Unsupervised learning
In contrast to SL, unsupervised learning (USL) is a group of methods that purely rely on input data and seek for 
the inherent data patterns without requiring any target information. In this sense, the learning objective is not 
explicitly described and the learning process is fully driven by the data itself. A representative application of USL 
is data clustering, where the data samples need to be grouped into several clusters without any prior knowledge 
regarding group labels of sample, sometimes not even the number of clusters in the dataset.

In DL, one typical example of USL is the training of a deep auto-encoder (Vincent et al 2010, Ngiam et al 
2011). Auto-encoder (AE) refers to the model building two-way mappings between the original data space and 
a latent space, i.e. a vector space of a relatively lower dimension than the original data space while keeping most 
of the data information in the original space. While AE can be achieved using many ML approaches, a deep auto-
encoder (DAE) refers to an AE model constructed using a DNN architecture, as shown in figure 7. The function 
that maps from the original data space to the latent space is called an encoder, whilst a decoder stands for the map-
ping that reconstructs the data from the latent representation. The detailed network structure of a DAE is quite 
flexible. For example, the network can be CNN based, fully connected DNN based, or a mixture of them, depend-
ing on the specific context. Essentially, a DAE simply aims at creating a concise representation of the original data 
on a latent space with most of the information from the original space preserved, such that the data can be exactly 
recovered based on the latent representations. To achieve this goal, training a DAE is performed by simply enforc-
ing the agreement between the original data and the corresponding output from the decoder. No task-specific 
information or target is involved in the training process, as required by the definition of USL. Several variants of 
DAE have been proposed such as sparse autoencoder (Xu et al 2016), denoising autoencoder (Vincent et al 2008) 
and variational autoencoder (Sønderby et al 2016).

DAE has its broad applications in many different areas. Within the scope of medical physics, DAE has been 
successfully applied to seek for a low-dimension representation of patient CT images, such that high-quality 
low-dose CT images can be reconstructed by restricting the solution to the trained DAE-based manifold as prior 
information (Wu et al 2017, Ma et al 2018). It has also been employed to enhance the robustness and quality for 
real-time MRI and CT image reconstruction (Mehta and Majumdar 2017). A DAE-based unsupervised deep 
feature learning algorithm was developed for medical image analysis (Guo et al 2016, Chen et al 2017b). DAE has 
also been utilized for other medical physics related tasks, such as breast density segmentation (Kallenberg et al 
2016), multiple organ detection (Shin et al 2013), and breast cancer nuclei detection (Xu et al 2016).

In addition to DAE, other types of USL have also been employed in medical physics field. For instance, 
deep Boltzmann machine was applied to tackle the problem of heart motion tracking for treatment planning 
(Wu et al 2018).

Figure 7.  An example of a deep auto-encoder architecture. The left and right halves of the network are encoder and decoder, 
respectively. The vector in the middle is the representation of the data in the latent space.
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3.3.  Semi-supervised learning
Semi-supervised learning (semi-SL) falls in between SL and USL. It broadly refers to the training strategies 
designed for applications with target information only partially available, which holds true for many real-world 
applications. Hence, semi-SL methods have attracted great research interests. The goal of semi-SL is to fully 
utilize data with/without targets rather than simply treating the problem via SL using only the data with labels, or 
formulating the problem via USL while completely ignoring the available labels.

One of the most widely used semi-SL techniques in the DL area is generative adversarial networks (GAN) 
(Goodfellow et al 2014). A general GAN structure is illustrated in figure 8. A generative network (generator) and 
a discriminative network (discriminator) are trained simultaneously to fight against each other. The goal of a dis-
criminator is to distinguish real and synthetic samples in a way similar to human perception, whilst the generator 
is trained to produce examples that are realistic enough to fool the discriminator. To handle the unlabeled data 
in semi-supervised learning, semi-supervised GAN has been proposed (Springenberg 2015, Odena 2016, Kumar 
et al 2017). For each unlabeled data, instead of specifying which label it should receive, the semi-supervised GAN 
forces it to belong to one of the possible categories with a large probability based on the underlying pattern in 
data as well as the labeled data available in dataset.

Variants of GAN architecture have been incorporated into the medical physics field. A recent study (Liang 
et al 2018) has successfully adopted the CycleGAN (Zhu et al 2017) to generate synthesized CT images from 
CBCT images for adaptive radiation therapy without fully relying on paired CT-CBCT data. Zhang et al pro-
posed a deep adversarial network for biomedical image segmentation by utilizing unannotated images (Zhang 
et al 2017). Nie et al established an attention based approach using a confidence network for adversarial learning 
to tackle the image segmentation problem (Nie et al 2018). Madani et al put forward a semi-supervised GAN 
model to solve domain adaptation problem for chest x-ray classification (Madani et al 2018).

There are also many other types of semi-SL approaches established in DL. In medical physics field, Feng et al 
proposed a progressive semi-SL strategy for MRI segmentation that gradually enlarges the training dataset along 
training steps by including reasonable unlabeled data (Feng et al 2018). Bai et al designed an iterative strategy to 
alternatively train the DNN model and estimate labels of unlabeled data for cardiac MRI segmentation (Bai et al 
2017). A deep multi-planar co-training strategy was developed for multi-organ segmentation (Zhou et al 2018), 
where pseudo-labels were generated for unlabeled data. The scheme was also employed in Sun et al (2017), in 
which a graph based semi-SL method was put forward for breast cancer diagnosis with majority of unlabeled 
data.

3.4.  Reinforcement learning
Reinforcement learning (RL) (Sutton and Barto 2018) is a ML/DL strategy that enables a model, or more frequently 
referred as an agent, to learn by interacting with an environment, an existing system that produces states based 
on the agent’s actions. This is illustrated in figure 9. Essentially, RL tries to train the agent to make decisions 
to maximize a reward based on the interactions between the agent and environment. In deep reinforcement 
learning (DRL) (François-Lavet et al 2018), a deep neural network is incorporated to model the agent. This 
approach incorporates the superior perception ability of DL into the RL framework to improve the decision-
making performance for complex tasks. Different from previously mentioned learning strategies, during the 
process of model training, DRL utilizes a reward function obtained from the environment to improve the model. 
Specifically, it trains DL models in a natural trial-and-error learning strategy similar to that of a human. The deep 
model, namely agent, is constructed to learn decision-making by observing the reaction of the environment, 
i.e. how the environment changes its state in response to the decision. The quality of the decision, good or bad, 
is quantified by the reward function. Through a series of interactions with the environment, the agent can learn 
how to make appropriate decisions based on the observed state to maximize its reward.

Modern applications, such as in (Mnih et al 2013, 2015), often combine DRL with Q-learning (Watkins and 
Dayan 1992). Instead of aiming at maximizing the reward obtained through the next interaction, the goal of 

Figure 8.  Structure of GAN. It consists of a generator and a discriminator. The generator is a network producing synthetic data by 
taking latent vectors as input. The discriminator is another network trained to distinguish real and synthetic data.
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Q-learning is to predict the total reward to be obtained in the sequence of future interactions. Deep Q-learning 
has been successfully applied to achieving many real-world problems, such as playing Atari games (Mnih et al 
2013, 2015) and the game of Go (Silver et al 2016, 2017).

DRL essentially tries to mimic human’s decision-making behaviors, which holds a strong potential for solv-
ing medical physics problems requiring human inputs. It has been successfully applied to automatically adjust 
regularization parameters in iterative CT reconstruction (Shen et al 2018, 2019d). In addition, Shen et al estab-
lished an intelligence virtual treatment planner that is able to automatically operate a treatment planning engine 
to generate clinically acceptable plans in a human-like fashion. This idea has been tested in high-dose-rate 
brachytherapy (Shen et al 2019a), as well as in external beam radiation therapy (Shen et al 2019b, 2019c). DRL 
was also employed to automate the decision process of adaptive radiotherapy for non-small cell lung cancer 
(Tseng et al 2017). A multimodal image registration strategy was also developed based on the deep context rein-
forcement learning (Ma et al 2017).

4.  Available research tools and datasets

4.1.  Deep learning frameworks
Due to the exploding popularity of DL in recent years, a number of computational packages and frameworks 
have been established to simplify development and deployment of DL models, with large levels of support backed 
by companies. All of these packages now handle basic and generic operations encountered in DL to allow for a 
relatively straightforward implementation. For instance, commonly used layers in a DNNs, such as fully connected 
layer, 1D/2D/3D convolution layer, batch normalization, dropout layer, max-pooling layer, etc, are predefined in 
these DL frameworks. They also provide readily usable activation functions including ReLU, sigmoid, soft-max, 
etc. Users can simply call some functions to set up a DNN suitable for their own tasks. These DL frameworks 
have built-in optimization algorithms that can calculate gradient/momentum and perform backpropagation 
operations to train a network. These features allow researchers to begin at a higher level of development, and 
focus more on solving their own problems, rather than spending a lot of efforts on implementing the DL model 
and training it. The following paragraphs will present common DL packages available to researchers. We also 

summarize them in table 2.
Currently having the largest community usage and support, TensorFlow developed by the Google Brain Team 

in 2015 is the most popular DL framework (Abadi et al 2016). TensorFlow was designed with production and 
scalability in mind, making it very popular in the industrial setting where quickly pushing prototypes to deploy-
ment is essential. Moving forward, TensorFlow 2.0 now has Eager Execution enabled by default, which allows for 
faster debugging, immediate run time, dynamic computational graphs, and custom gradients, ultimately leading 
to faster prototyping and development from a research standpoint. TensorFlow 2.0 fully integrates Keras (Chol-
let 2015) as the default mechanism, a high-level application programming interface (API) that wraps around the 
core frameworks like TensorFlow, Microsoft Cognitive Toolkit, and Theano. It contains a simple, easy to utilize 
interface to access the packages’ core operations. The integration of Keras into TensorFlow as the default creates a 
simple and seamless method for model development, training, validation, testing, and deployment.

While TensorFlow gets the award for the largest community and support, PyTorch (Paszke et al 2017) gets 
the award for the fastest growth. Released in 2016, PyTorch is the Python-based version and successor of Torch, 
a popular ML and scientific computing framework written based on Lua and released in 2002. In contrast to 
TensorFlow that started with a scalable and production ready type of framework and added Eager mode at a later 
time point, PyTorch followed a reversed path. They designed the framework to be more ‘Pythonic’ (follows the 
conventions and language use of Python), allowing for dynamic computation graphs from the beginning. These 

Figure 9.  Illustration of the DRL process. An environment indicates an existing system that produces states after interacting with an 
agent. The gain in the interaction is evaluated by a pre-defined reward function. An agent in the form a deep neural network observes 
the state from the environment and determines an action. The overall goal of DRL is to train a deep neural network-based agent to 
maximize the reward automatically by interacting with the environment.
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aspects made PyTorch great for rapid prototyping and gain immense popularity among the academic commu-
nity. More recently, with the release of PyTorch 1.0, there was a much heavier focus on paving the path from 
research to production and scalability.

Even with TensorFlow/Keras and PyTorch taking the top spots in popularity, there are many other frame-
works available for ML/DL tasks. Developed by Berkeley AI Research (BAIR), Caffe (Jia et al 2014b) is the next 
most popular framework. It is written in C++ with a Python interface. An attempt to create its successor, Caffe2, 
was started by Facebook in 2017, but the project development was merged into PyTorch in spring of 2018. The 
next popular ML framework, Theano (Bergstra et al 2010, 2011, Bastien et al 2012) was developed by the Mon-
treal Institute for Learning Algorithms (MILA) at the Université de Montréal. In fall of 2017, with rising popular-
ity of TensorFlow, it was announced that Theano would cease any major development. However, minor updates 
are still added, and some experts today still rely on Theano for ML tasks. The Apache MXNet (Chen et al 2015) 
was developed by the Apache Software Foundation. It is written in multiple languages, including Python, C++, 
MATLAB, R, Julia, JavaScript, Scala, Go, and Perl. While less popular, MXNet is a very high-performance frame-
work, typically training faster with less computational resource demand. Microsoft Cognitive Toolkit, CNTK 
(Seide and Agarwal 2016), is Microsoft Research’s implementation for commercial-level distributed DL, and can 
be added as a library for Python, C#, or C++. Deeplearning for Java, DL4J (Team 2016), is a computing frame-
work written for Java and the Java Virtual Machine (JVM). Chainer (Tokui et al 2015) is a purely Python-based 
framework developed by Preferred Networks, Inc. It is one of the early adopters and popularizers of the ‘define-
by-run’ format of DL, which is now the concept in both PyTorch and Eager Execution in TensorFlow. Last but not 
the least, MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States) also has its own DL package, but 
is usually behind the aforementioned open-source packages. However, MATLAB has recognized this and allows 
developers to import models built in other frameworks such as TensorFlow, Keras, PyTorch, MXNET, Caffe, etc, 
to be used in it.

For most researchers starting DL studies, either TensorFlow or PyTorch is a great framework to begin with, 
as they offer plenty of tools that will satisfy majority of users’ needs. Other less popular frameworks may find 
their utility in special use cases. For example, a developer that needs an application written in Java may choose 
to use DL4J for a more seamless integration of the DL development and deployment in the Java environment, as 
opposed to training the model in Python with Tensorflow, and then porting the trained model over to Java.

Table 2.  Summary of commonly used DL packages.

DL packages Language Characteristics

TensorFlow (Abadi et al 2016) Python • Largest community usage and support

• Easy implementation

• Integrated Keras API to simplify implementation

• �Large number of examples, e.g. available at https://github.

com/hwalsuklee/tensorflow-generative-model-collections

PyTorch(Paszke et al 2017) Python • Fastest growing community usage and support

• Easy implementation

• �Large number of examples, e.g. available at https://github.

com/znxlwm/pytorch-generative-model-collections

Caffe (Jia et al 2014b) C++ • �Large community usage and support (less popular than 

TensorFlow or PyTorch)

• Merged with PyTorch

Theano (Bergstra et al 2010, 2011,  

Bastien et al 2012)

Python • Limited community usage and support

• Ceased major development

MXNet (Chen et al 2015) Multi-language • Limited community usage and support

• High efficiency

CNTK (Seide and Agarwal 2016) Multi-language • For commercial-level distributed DL

DL4J (Deeplearning4j 2016) Java • Limited community usage

• Suitable for applications in Java

Chainer (Tokui et al 2015) Python • Limited community usage

• Early adopter of ‘define-by-run’ DL

MATLAB Multi-language • Large community usage and support

• Non-open-source

• Slower update compared to other open-source packages

• Available interface with other packages
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Beyond that, it is largely due to personal preference. Even through TensorFlow and PyTorch began with dif-
ferent philosophies, their latest releases are beginning to converge in terms of their capabilities and available 
tools. Both PyTorch and TensorFlow have fairly large community backings, with many models and codes avail-
able freely online (table 2). In general, a number of popular model implementations can be easily found through 
a quick online search query.

As for coding languages, for scientific research, it is often recommended to use Python in order to have access 
to TensorFlow and PyTorch. Python is the most popular language used by the DL community, and is one of the 
most utilized languages for industry. It is highly recommended to install Python via the Anaconda Distribution, a 
Python and R distribution focused on scientific computing. It simplifies package and environment management, 
and contains most of the core packages needed for scientific computing.

4.2.  Datasets
It is widely recognized that DL models are data hungry, and that, in the medical realm, the dataset size is often 
limited. In the era of big data for ML, enormous efforts have been spent to aggregate medical data and make them 
publicity available. Here we only point out a few representative ones.

The National Cancer Institute (NCI) provides a large resource index for researchers (https://www.cancer.
gov/research/resources), including a large list of over 80 available databases and datasets. The datasets cover 
research areas that include cancer treatment, cancer biology, cancer omics, screening and detection, cancer heath 
disparities, cancer and public health, cancer diagnosis, cancer statistics, cancer prevention, causes of cancer, bio-
informatics, and cancer survivorship. Of these datasets, The Cancer Imaging Archive (TCIA) (Clark et al 2013) 
is a notable database and is constantly growing. Funded by NCI, TCIA consists of mostly DICOM images of CT, 
MRI, and PET, as well as organ structures, radiation therapy plans, and dose data. Another notable archive, The 
Cancer Genome Atlas (TCGA) (Tomczak et al 2015) is a database to catalogue major genomic mutations that 
cause cancer, with the goal to improve diagnostic methods and treatment standards.

Moreover, within the medical physics community, various challenges are hosted every year by different 
organizations, e.g. the grand challenge from American Association of Physicists in Medicine (AAPM) and the 
multimodal Brain Tumor Segmentation (BRATS) challenge from the Medical Image Computing and Computer 
Assisted Intervention Society (MICCAI). Datasets released from these challenges are important resources for 
different problems.

5.  Mathematical aspects of deep neural networks

Previous sections have presented a brief introduction on DL, major techniques and resources. Starting from here, 
we will switch gears to discuss technical aspects of DL to gain some insights about its capability and potential 
challenges.

5.1.  Mathematical interpretations of deep neural networks
From mathematical perspective, a DNN can be viewed as an effective tool that is able to approximate a function 
arbitrarily well under suitable mathematical conditions (Hornik et al 1989, Hornik 1991, Pinkus 1999). Both 
the depth and width of a neural network are among the most important factors that affect its approximation 
power. As we have defined in section 2.2, depth refers to the total number of layers in a DNN and width refers to 
the number of neurons in a layer. Earlier results on the approximation property, i.e. universal approximation, 
suggested that a wide class of functions can indeed be approximated by neural networks with only one hidden 
layer, although the number of neurons may increase exponentially, as we increase the required level of accuracy 
of the approximation (Cybenko 1989, Funahashi 1989, Barron 1993). Later, many studies showed that the depth 
of DNNs helps with the approximation. For example, approximation with DNNs leads to an exponential or 
polynomial reduction in the number of neurons while maintaining the same level of approximation accuracy 
(Cohen et al 2016, Eldan and Shamir 2016, Liang and Srikant 2016, Mhaskar et al 2016). Furthermore, Delalleau 
and Bengio (2011), Telgarsky (2015) and Telgarsky (2016) presented concrete examples that there exist functions 
that can be more efficiently represented with DNNs rather than shallow networks. Recently, Yarotsky (2018) 
analyzed the dependence of optimal approximation rate on the depth for ReLU activated DNNs. When 
approximating a multivariate polynomial, Rolnick and Tegmark (2018) mathematically proved that the total 
number of neurons in DNNs should grow linearly with respect to the number of variables of the polynomial. 
In He et al (2018), the authors investigated the connection between linear finite element functions and ReLU 
activated DNNs. They proposed an efficient ReLU activated DNN structure to represent any linear finite element 
functions and theoretically established that at least two hidden layers are needed in a ReLU activated DNN to 
represent any linear finite element functions. More recently, Shen et al (2019e) provided an intriguing analysis 
on ReLU activated DNNs via a nonlinear approximation with composite dictionaries. They demonstrated the 
advantage of depth over width quantitatively. Other than generic DNNs, theoretical analysis on the popular 
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ResNet (He et al 2016a, 2016b) were also provided (Veit et al 2016, Lin and Jegelka 2018, Ma and Wang 2019). Lu 
et al (2017) investigated the efficiency of the depth of ReLU activated DNNs from a different angle by proving 
that there exist classes of wide neural networks which cannot be realized by any narrow network whose depth 
is no more than a polynomial bound, indicating that network depth is more effective than width. On the other 
hand, Hanin (2019) proved that there is a minimal width of ReLU activated DNNs to guarantee approximation 
of continuous functions. Their results indicated that a good DNN cannot be too narrow either, otherwise we 
cannot approximate continuous functions even with infinite depth.

It is also of note that, in addition to viewing a DNN as an effective function approximation tool, there are also 
other mathematical interpretations of DNNs. For example, because of the recursively composite structure, it is 
natural to view a DNN as a certain dynamic system (Cessac 2010). Specifically, Weinan (2017) made an inspiring 
observation that ResNet can be viewed as the forward Euler scheme solving an ordinary differential equation, 
and linked training of DNNs with the optimal control problems. Similar observations were also made by other 
groups (Chang et al 2017, Li and Shi 2017, Sonoda and Murata 2017, Chang et al 2018) and rigorous justification 
of the link was given (Thorpe and van Gennip 2018, Weinan et al 2019). These interpretations are useful in cer-
tain contexts (Gregor and LeCun 2010). Due to space consideration, we will not go into more details. Interested 
readers can refer to relevant literatures.

5.2.  Fundamental requirements to build a successful deep neural network model
As mentioned in section 2.1, the fundamental problem of ML (including DL) is to decipher the unknown function 
y = f ∗(x), from a set of observed training data Atrain. The unknown f ∗(x) is approximated by a function f (x|θ), 
where θ represents parameters of the function to be determined through a training process. In the context of DL, 
this function takes the form of DNN, as specified in equation (2). After training, performance of the solution 
function y = f (x|θ) is evaluated in a test set of data Atest.

The underlying challenge of ML/DL is that the training is performed by minimizing a certain loss function, 

e.g. L(θ) =
∑

(xi,yi)∈Atrain

yi − f (xi|θ)2, defined on the observed training dataset, while the trained model is evalu-

ated on the testing dataset. Both the training and the testing datasets are finite and may be of a relatively small 
size. These datasets may not completely represent the structure of the unknown function and data distribution. 

In principle, the proper loss function to recover y = f ∗(x) should be L∗(θ) =
∑

(x,y) y − f (x|θ)2. Note the dif-
ference between the actual loss function L(θ) and the desired loss function L∗(θ) in terms of the range of summa-
tion. In other words, it is desired to train the model in the complete dataset covering all the points (x, y). However, 
this is impossible, as otherwise we would already have all the information about the unknown function and there 
would be no need for solving the ML/DL problem.

With these in mind, there are two fundamental requirements for a successful ML/DL process. (1) The train-
ing and testing datasets should be representative of the function y = f ∗(x), so that it is unbiased to use the actual 
loss function L(θ) defined with the training dataset as a proxy of the desired loss function L∗ (θ) and to evalu-
ate the model performance on the testing dataset. (2) For the specific problem of interest, the function f (x|θ) 
used to approximate the unknown function y = f ∗(x) based on data should have sufficient capacity and flex-
ibility. Here capacity measures the scope of mappings that the function f (x|θ) is able to learn by adjusting model 
parameters θ. High flexibility is a consequence of high capacity, as it permits the flexible use of the model f (x|θ) 
to approximate the unknown but potentially very complex mapping y = f ∗(x), such as mapping from an image 
to a class label.

Based on the discussion in section 5.1 looking at DNNs from the function approximation perspective, a DNN 
serves the purpose of providing a class of functions with a large capacity that can be trained to flexibly approximate 
a very complex mapping from the input to the output. It is this fact that contributes to the successful applications 
of DNNs to solve a number of problems. Take a typical problem of classifying a picture into cat or dog group as an 
example, a successful function achieving this goal, i.e. mapping an image into a class label, is likely very complicated 
in its mathematical form. The function has to extract some features from the image, based on which the two targeted 
groups can be discriminated. Although describing these features verbally is relatively easy for a human, describ-
ing them rigorously in a mathematical form is apparently difficult. Nonetheless, after training a DNN with a large 
number of images, it can easily learn the mapping function, although described in a neural network format. In this 
example, the flexibility and capacity attributes of DNN are of central importance.

Nonetheless, the first requirement on data distribution for the success of DL is beyond the reach of DNNs. In 
other words, given a sufficient amount of data, a DNN is capable of extracting complex patterns hidden in the data, 
yielding a successful DL application. Yet a DNN cannot generate additional information not contained in data.
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6.  Challenges for deep learning in general and in medical physics problems

After a brief introduction in the last section about how DNNs can meet in part the requirements of ML, we will 
discuss specific challenges that DL is facing, including both generic challenges as a ML tool and specific ones in 
the medical physics contexts. We would like to emphasize that presenting these challenges does not mean using 
DL to solve medical physics problems is impractical. On the contrary, we hope the presentation could help us 
understanding DL better, yielding impactful studies with scientific and practical values.

6.1.  Data size
Data size is the fundamental challenge for all ML/DL approaches. Numerous studies have demonstrated the 
success of DL in problems with sufficient data. However, applying DL to problems with small-size datasets is 
dangerous.

This data size issue is typically discussed in combination with the dimensionality of the problem of inter-
est. Let us denote the number of data samples with n and the dimensionality with p. The severity of this data 
size problem indeed depends on both quantities. The fundamental cause of this problem is that each observed 
data sample only carries information locally valid at the sample location, or at most in a region surrounding the 
sample’s location, if we assume smoothness of information with respect to the data sample location. Unfortu-
nately, for a fixed number of n samples, as the dimension p increases, these samples become sparser and sparser 
in the space. Specifically, suppose we place n samples in a unit cube of dimension p. Each data point only carries 
information in a small region around it, e.g. a small ball of a radius of ε. The total volume of all the ε-balls around 
the data points is nVp ( ε) = n ε pVp(1), where Vp(1) is the volume of a p -dimensional unit sphere. Given the 
volume of the unit cube 1 p = 1, the ratio of the volume that we have measured information to the entire volume 
is nε pVp(1). For a fixed n, this ratio quickly approaching zero. This implies that for a fixed n, as the problem 
dimension p increases, there are more and more gap spaces between samples, in which there is no information 
measured. Hence it becomes increasingly difficult to draw conclusions about the global data structure of the 
unknown function to be reconstructed from the observed samples. This is often called the curse of dimensionality, 
indicating that the number of needed samples grows rapidly with dimensionality.

While the comprehensiveness of the training data is critically important to DL methods, and ML methods 
in general, a proper metric to evaluate data comprehensiveness is still missing. It is hard to quantify how well 
the inherent pattern of one specific type of data is represented by the training data. Moreover, instead of the 
original data space, the inherent pattern is often embedded in a task-related low-dimensional latent subspace. 
Unfortunately, such a latent space is generally unknown and it is a particularly challenging task to estimate its 
dimensionality. Although it is not exact, the dimensionality of the original data space p is often considered as an 
alternative measure to represent the complexity of data. For general ML purposes, it usually requires number of 
training samples n to be much larger than p to ensure comprehensiveness of training data. A problem with small 
n and large p is usually challenge to solve.

It is worth mentioning that the data size n refers to the number of independent samples, rather than the 
number of features measured per sample. There is a clear cut between the notion of big data and big-size data. Big 
data refers to the situation with a large number of independent samples. A dataset containing only a few samples 
but numerous measurements per sample is only big in its size, but may not be considered as big data. Meanwhile, 
independence of data samples is problem specific. In many image processing contexts, images can be broken into 
patches which can be considered as a large number of independent samples. It is necessary to justify independ
ence based on problems of interest.

Coming to medical physics problems, data size is a particular concern for several reasons. Data collection 
for most of the medical problems is often time-consuming, labor-intensive, and expensive. The creation of a 
useful training dataset usually requires notable domain knowledge from clinicians. Moreover, data pre-pro-
cessing, which may also require substantial efforts, is commonly needed for medical data, given the sometimes-
poor standardization, distinct clinical protocols, and inevitable human errors in data collection. Furthermore, 
although a relatively large pool of historical data might be available at some large medical institutions, the amount 
of data available for each specific task is likely still limited. On top of all these issues, legal and privacy concerns 
are additional factors that prevent assembling large-scale medical datasets and sharing them among institutions. 
As a consequence, medical datasets are often in the regime of small n. On the other hand, many medical tasks 
are actually large p problems due to the involvement of high-dimensional data such as multi-modality medical 
images and other patient medical records. It is also often easier to measure a lot of information per patient than to 
have a large number of patients. Combining these facts, the small n large p nature of many problems indeed poses 
a significant challenge for ML/DL in medical applications.
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6.2.  Overfitting
Overfitting refers to the situation where a ML/DL model is trained to closely or even exactly fit a particular set of 
training data, but fail to learn the general underlying data pattern to maintain generality. This typically happens 
when the number of parameters in an ML/DL model is too large to be justified by the available training data.

6.2.1.  Overfitting in deep learning
To date, almost all the successful DL applications were achieved on large-scale datasets. In these examples, 
although the number of network parameters is larger than the number of training data, it has been empirically 
and surprisingly observed that the developed DNN models still generalized well. The mathematical reasons 
behind this phenomenon is yet unknown. A recent study (Belkin et al 2018) has shed some lights to bridge the 
classical ML and the DL regimes. They provided several examples to show that over-parametrization, i.e. using 
a large model with more parameters than data, helps to improve the performance of DL models. However, we 
would like to emphasize that these conclusions were drawn based on the assumption that the amount of training 
data is sufficient to well approximate the complete data distribution. Generality of the conclusions to different 
problems and the theory behind remain to be further explored.

On the other hand, in the cases with a relatively small-size dataset, the concern of overfitting should be always 
kept in mind. This is particularly true because of the large capability of DNN to fit data, which in fact is one of its 
virtues and at the same time one of its drawbacks. One interesting study was reported by Zhang et al (2016), which 
received the best paper award of 2017 International Conference on Learning Representations (ICLR). One of the 
key results is depicted in figure 10, where large scale DL models were trained to fit different datasets synthesized 
based on CIFAR10 dataset (Krizhevsky and Hinton 2009), a widely used public image dataset in the computer 
science community. More specifically, the authors generated multiple synthetic datasets by randomly assigning 
fake image labels, shuffling image pixels, adding random noise to image pixels, and replacing the images by ran-
dom Gaussian noise etc. As such, the generated training data set lost ‘correct’ information and hence the models 
built on it did not have meanings. However, as shown in figure 10(a), the DL model was still able to perfectly fit 
the original CIFAR10 dataset as well as all the synthesized with 0% training loss, although it took more training 
steps to achieve so (figure 10(b)). Note that there were no true data patterns to learn in the synthetized datasets, 
since either image labels or image data were corrupted and hence the trained model did not generalize anymore 
in these cases (figure 10(c)). These results clearly demonstrated the fact that large-scale DL models are powerful 
enough to memorize the whole training dataset.

6.2.2.  Potential approaches to prevent overfitting
Multiple strategies have been designed to address the overfitting problem. One trivial way is to reduce the 
number of network parameters. However, the network capacity would be reduced as well, which may deteriorate 
the model performance. Hence, it requires insights about the problem of interest and the knowledge about the 
strengths and weaknesses of different network structures to design an effective network model.

Another effective and commonly employed approach is data augmentation, i.e. to expand a dataset by syn-
thesizing additional realistic samples from available samples. The way of augmentation varies depending on 
the context. For instance, one common augmentation technique used in image analysis related tasks is to apply 
random translations, rotations, deformations, and adding low-level random noise to training images to create 
new training samples. A more advanced augmentation strategy is to perform interpolation based on the distri-
bution of existing training data (Chawla et al 2002). More recently, the generative adversarial networks (GANs), 

Figure 10.  Figure 1 from Zhang et al (2016). Fitting random labels and random pixels on CIFAR10. (a) Shows the training loss of 
various experiment settings decaying with the training steps. (b) Shows the relative convergence time with different label corruption 
ratio. (c) Shows the test error (also the generalization error since training error is 0) under different label corruptions.
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(Goodfellow et al 2014) have demonstrated its power to synthesize realistic training samples (see section 3.3). 
However, empirical evidence recently showed that GANs learn distributions defined on a fairly small region of 
the input data domain. Hence, the capability of GAN may be also limited in terms of generating truly independ-
ent data (Arora and Zhang 2017).

Synthesizing new data based on physics principles is also a potential approach to increase data size. For 
instance, in the problem of x-ray scatter estimation in cone beam CT (Maier et al 2018a, Nomura et al 2019), 
Monte Carlo simulation can be employed to generate realistic scatter signals based on patient anatomy and x-ray 
illumination setup (Jia et al 2012). Nonetheless, performance of models trained by these data critically depends 
on the realism of data synthesis. If there is a systematic bias of the synthesized data from real data, e.g. due to inac-
curate modeling of the physics process, the trained models would give incorrect outputs, when being applied to 
real situations.

Incorporating regularizations to model parameters can also help preventing overfitting (Moody 1992). Clas-
sical regularizers including weight decay and sparsity have shown to be effective in many studies (Boureau and 
Cun 2008, Glorot et al 2011a, Krizhevsky et al 2012, Venkatesh et al 2017). Along the same line, more sophisticated 
approaches, such as group sparsity (Scardapane et al 2017) and structured sparsity (Wen et al 2016), were intro-
duced. Moreover, layers and architecture specifically designed for DNN have also been put forward (Glorot et al 
2011a, Wan et al 2013, Srivastava et al 2014). One of the most successful regularization techniques in DNN model 
is adding dropout layers (Srivastava et al 2014). It randomly turns off some neurons with a certain probability at 
each iteration of the training phase, so that the number of activated network parameters is reduced. Despite the 
remarkable success achieved by these methods, the study Zhang et al (2016) revealed that overfitting may still 
remain for large-scale DNNs, even when various regularizations are applied. Further efforts in developing more 
effective regularization techniques are definitely needed.

6.2.3.  Monitoring overfitting with validation
Preventing DL models from overfitting is still an ongoing research direction, since no existing solution can 
achieve satisfactory performance in a general situation. Therefore, monitoring overfitting along the training 
process becomes essential.

One effective way is to have a stand-alone validation dataset and monitor the model performance on it along 
the training process, rather than to pursue the lowest training loss evaluated on the training dataset. Hyper-
parameters, such as number of layers, size of each layer, learning rate, etc, can be tuned in order to reduce the 
validation loss in a trial-and-error fashion. Moreover, through monitoring the validation loss along the training 
process, it is also possible to select the model at the epoch when the smallest validation loss is obtained.

A more comprehensive way is to perform k-fold cross validation (Kohavi 1995). We illustrate the idea of 
k-fold cross validation in figure 11 using a simple three-fold case as an example. The dataset is first split randomly 
into training data and testing data. The testing data are saved for model evaluation after model development, 
while the training data are randomly split evenly into three folds. Multiple trials of training can be performed to 
develop multiple models. In each trial, one fold of data is left out as validation data, such that the performance of 
the model trained on data in other folds can be validated along the training steps. Similar to single-fold valida-
tion, one can adjust hyper-parameters according to the validation performance averaged over the k-fold cross 
validation process. With finely tuned hyper-parameters, the model achieving the best performance on training 
and validation data, or an integrated model generated via certain fusion techniques (Ngiam et al 2011) can be 
selected as the final model. Up to this point, the model should have only seen the training and validation datasets. 
Its performance will be finally evaluated on the reserved testing data.

Although these validation strategies have been shown to be very useful to identify overfitting, they do not 
guarantee a generalizable model, especially when the data size problem discussed in section 6.1 occurs. The rea-
son is that, when the data are too sparse, the data space not observed in training and validation datasets allows 
a large freedom to manipulate the model without affecting training and validation performance. Meanwhile, 
when the validation dataset is not comprehensive enough to represent the complete data distribution, validity of 
using validation loss to prevent overfitting degenerates, as the model would be tuned to favor the validation data, 
but not the testing data.

We also emphasize that the testing data should not be involved in the training process in any form, before the 
final model is constructed and ready for model evaluation. A high model performance evaluated on the testing 
dataset likely indicates a successful model development. On the other hand, if the model performance is tested to 
be low, the model development is likely failed. Further tuning the model to improve performance on the testing 
data risks information leakage from the testing dataset to the training process and bias the model development. 
In this case, evaluating model performance on testing dataset is not a true test anymore but rather becomes vali-
dation.
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6.3.  Interpretation
Interpretability of a model refers to the level of transparency in knowledge and information that the ML/DL 
model extracts from input data. Interpretability helps to understand and validate the correctness of the 
established model, and hence it is crucial to many real-world applications. For instance, let us assume a model 
has been developed to identify babies in images. An interpretable model provides information that it extracts for 
such decision making, e.g. a baby’s face in the image. Based on this fact, one can judge if the model is trained to 
identify the true information, or it mistakenly incorporates other incorrect information in the images to make 
the decision, such as by identifying a milk bottle. Interpretability probably requires more attentions in medical 
applications than in other applications, given the fact that resulting DL models may potentially influence the 
clinical decision-making process, and thereby the patient care quality, safety, and outcome.

Given the complicated multi-layer structures and numerous numerical operations performed by each layer, 
interpreting DL models is often challenging by itself. A DL model is sometimes referred as a ‘black box’, since 
users have little knowledge about what is inside the highly nonlinear model. This has become one of the main 
obstacles that prevent further applications of DL models in many real-world tasks.

To date, extensive studies have been performed to investigate and enhance interpretability of DL models. A 
recent survey in (Zhang and Zhu 2018b) gave a comprehensive review about the current status. Major efforts 
have been devoted to two aspects, i.e. enhancing interpretability of DL models and developing interpretable 
models. To interpret existing DL models, t-SNE embedding was proposed to map DNN representations onto a 
low-dimensional space to visualize the relationship among data (Maaten and Hinton 2008). A number of other 
methods have also been developed to visualize regions in input data that DL models consider to be important 
(Simonyan et al 2013, Springenberg et al 2014, Zeiler and Fergus 2014, Mahendran and Vedaldi 2015, Dosovit-
skiy and Brox 2016, Nguyen et al 2017, Samek et al 2017). Meanwhile, interpretable DNN architectures have 
been put forward (Che et al 2016, Chen et al 2016, Sturm et al 2016, Zhang et al 2018). Among them, Zhang et al 
(2018) proposed a typical interpretable structure by facilitating disentangle representation, while Sabour et al 
(2017) designed the capsule network to extract the rationale of detection qualitatively. Several pioneer studies 
have been conducted to design interpretable architectures for medical related applications (Che et al 2016, Sturm 
et al 2016).

6.4.  Model uncertainty and robustness
The constructed DL model itself has uncertainty for three reasons. First, there are typically more network 
parameters than training data, which makes the optimization problem essentially underdetermined. The 
resulting model after the training stage depends on many factors, such as initial solution, hyper-parameters, etc. 
Second, due to the highly nonconvex form of the loss function, the training of a DL model ends up with one of the 
local minima. Conducting training multiple times does not necessarily produce the same model or models with 
the same performance. Third, the training algorithms are often of a stochastic nature. For instance, the data are 
split randomly into batches at each epoch. This fact introduces discrepancy among models even trained with the 
identical network structure using the same dataset.

Figure 11.  Illustration of three-fold cross validation.
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Robustness is another important aspect to consider, when evaluating the performance of a trained DL model, 
particularly in the medical context. It refers to the sensitivity of the model output with respect to perturbations 
to the input variables. A high sensitivity means poor robustness. As perturbations always exist in the real world, 
a DL model with poor robustness can lead to unstable performance, and thereby deteriorate its practical value. 
Unfortunately, it has been recognized lately that DL models are not quite robust. Multiple recent studies have 
shown empirical results, demonstrating that output of DL models may be sensitive to small changes on input 
data (Kurakin et al 2016, Papernot et al 2016, Akhtar and Mian 2018, Yuan et al 2019).

Specific to the healthcare context, since the established DL model has the potential to affect clinical decision 
making, robustness of DL models strongly correlates with the patient safety and healthcare quality. Yet a recent 
article in Science discussed deep vulnerability of DL models in healthcare (Finlayson et al 2019). Figure 12(a) is 
one example, showing the output of an DL model predicting skin cancer is altered by adding a small-scale noise 
to the input image. The same behavior has also been observed in other DL models for image-based diagnosis of 
pneumothorax from chest x-ray, diabetic retinopathy from retinal fundoscopy (Finlayson et al 2019), and the 
classification of lung nodules based on CT images (Tsai et al 2019) (figure 12(b)).

Although theoretical guidelines about this robustness issue are few and far between, we can still summarize 
some practical insights on how to improve model robustness. One effective way is to enhance diversity of the 
training dataset. More specifically, if the model is found to be not robust, we may include those vulnerable sam-
ples into the training dataset and further refine the DL models, such that the models observe those samples and 
learn the proper way to defend against the perturbations (Yuan et al 2019). This process can be repeatedly per-
formed, until the robustness level is satisfactory.

6.5.  Correlation, causality, and incomplete information
A DNN can be very powerful to decipher the correlation between input and output variables, even a very complex 
one that is difficult to capture by other traditional ML methods. Yet it faces the same two challenges as other ML 
methods. First, it is hard to answer the question whether the discovered correlation is real or not. While one can be 
very creative in terms of using a DNN to establish a relationship between two variables, it may be dangerous to do 
so, if it is hard to justify that there is indeed a relationship between them. There are many examples on the Internet 
showing spurious correlations between different quantities around us. This problem is further compounded 
by the large flexibility and capacity of a DNN. The DNN can easily generate a mapping between the input and 
output variables with a high level of accuracy, and hence one may tend to believe the observed relationship is real. 
The second challenge is that the observed correlation does not necessarily mean causality, i.e. one is the cause of 
the other. While correlation is often acceptable to support decision making in medicine, it is highly desirable to 
derive causality, which would help us apply the DL model in the correct context.

In many situations, the input variables only contain partial information to determine the output variables 
due to incomplete measurements. For instance, encouraging results have been achieved in medical image recon-
struction using only a limited amount of measurements by mapping from a low-quality reconstructed image to 
a high-quality one with a DNN. In this case, it is important to think where the additional information is from. 
In the image reconstruction example, it is likely that the training process learns inherent prior knowledge about 
images, e.g. its appearance, shape, size, etc. The prior knowledge is appended to the input low-quality image to 
derive the output. Understanding the sources of the information provided by the network is valuable for not only 
gaining insights about the technologies itself, for further improving the methods, but also for a safe and confident 
deployment of the developed techniques in routine applications.

Figure 12.  (a) Examples from Finlayson et al (2019), used with permission. Model prediction and confidence level are shown. (b) 
An example showing prediction results a CT-based lung nodule classification network is changed by adding a noise to input CT 
images. Predicted labels from the DL model are given below images.
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6.6.  Effective and efficient learning
On the technical side, one has to admit that current DL technologies are still at their infancy. It typically requires a 
large amount of data to train the model and the training process usually converges slowly. This is in stark contrast 
with human intelligence that can easily and quickly understand situations and problems based on only a few 
observations. Hence, it is a central topic overcoming the data-hunger nature in medical regime and making the 
learning more efficient.

Transfer learning (Pan et al 2010) is one of the effective approaches to reduce the requirement on data size. 
As its name suggested, transfer learning refers to a method where a model developed for one task is reused as the 
starting point for another model on a second, but related task. After a DNN model is trained for the first task, it 
is believed that the model already gains certain knowledge about the problem of interest. Hence, the network 
parameters can be reused as the initial solutions, when training the same network on the second related task 
using limited training data. Optionally, at the retraining stage, the first DNN model can be adapted or adjusted 
to better suit the second problem. Take an image classification problem in a medical context as an example, the 
publicly available DNNs such as VGG model may be reused, since the model has been successfully developed to 
recognize key features in an image, such as edges. Although the initial DNN model are trained using image data 
probably unrelated to the second problem, the capability of recognizing edges and other features from the pre-
training stage is expected to be critical for the second problem, and hence should be preserved.

Network structure is very important for each specific task, as a predefined network with a specific structure 
can reduce the number of network links and hence unknown parameters as compared to using a fully connected 
network, making the training more effective. Therefore, before starting a DL study, it is worthwhile to carefully 
design the network structure based on the targeted problem. Meanwhile, it is equally important to avoid using 
an inappropriate network structure. Additionally, the emerging research of neural architecture search (Elsken 
et al 2018), a subfield of automated ML, shows potential in searching for effective DNN architectures for different 
datasets and tasks.

One important reason why a human is able to quickly learn from a small-size dataset is the capability of rea-
soning. However, this is quite difficult for a network. Current DL approaches mainly rely on data. It is expected 
that, if we could incorporate rule-based reasoning capability in a DL model, the training process could be more 
effective.

Because of the importance of improving learning effectiveness, not only in medical area, there have been a 
vast number of approaches developed over the years to address this issue, such as few-shot learning (Fink 2005, Li 
et al 2006), imitation learning (Ho and Ermon 2016, Duan et al 2017), meta learning (Santoro et al 2016), domain 
adaptation (Glorot et al 2011b), etc. As it is impossible to enumerate all of them, interested readers could refer to 
relevant publications.

On the computation side, using GPU programming has become the standard practice to achieve a high com-
putational efficiency. Many modern GPUs and GPU workstations are designed specifically for DL purposes. For 
instance, some modern GPUs supports the use of the half precision (16-bit) floating point format, because lower 
precision calculations seem to be not critical for DL (Micikevicius et al 2017). This reduces the computational 
load and memory requirement compared to the conventional 32-bit floating point format for single precision 
operations.

7.  Recommendations

Before concluding this review article, we will present some recommendations regarding practices on DL 
research. These recommendations are derived based on the extensive discussions about the insights of DNNs, 
their challenges, and potential solutions. We first summarize commonly encountered challenges as well as the 

corresponding recommendations in table 3, and then provide more discussions below.

7.1.  Graphics processing unit
As mentioned previously, training of a DNN usually requires extensive computations due to a large model size 
and the amount of data. It is beneficial to use GPU programing to overcome this challenge. While there are a few 
high-end GPU workstations from different vendors built specifically for DL purposes, almost all modern GPU 
cards can be used in a standard computer workstation or cluster to enhance computational efficiency. On the 
software side, most of the DL computational frameworks, such as TensorFlow and PyTorch, have supports of 
GPU-based computation, which allow users to employ GPUs without the need of in-depth knowledge in GPU 
programming.

7.2.  Data and model construction
As data is the basis of DL, before performing a new study, the data should be carefully inspected to avoid issues 
such as errors, outliers, bias, and confounding factors, etc. Note that in many medical physics applications, it 
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is challenging to get the real ground truth. For example, contours in image segmentation and labels in disease 
diagnosis are mostly given by clinicians. The data generation process is usually subjective and human error or 
uncertainty is almost unavoidable. Hence, having multiple clinicians to label the same dataset and properly 
integrating the labels are helpful to ensure validity of developed model.

Based on the specific task of interest, one should carefully select or design a DNN with an appropriate net-
work structure. At this stage, it is important to keep the balance between model complexity and capacity. On 
one hand, a sufficiently complex DNN should be employed to allow accurately modeling the underlying com-
plex data pattern. On the other hand, the model should be kept as simple as possible to reduce the number of 
unknown parameters and therefore the required amount of data. In the circumstance with a limited data size, 
designing suitable data augmentation strategies based on the specific context is encouraged and often helpful. Yet 
data augmentation strategies should be justified and examined to avoid potential bias.

Given the extraordinary capability of a DNN, the risk of overfitting is often high and one should be always 
alerted about this fact. Cross validation as presented in section 6.2.3 is an effective approach during the model 
training stage, when data size is limited. However, we need to keep in mind that it does not eliminate the risk of 
overfitting. In the case with an intermediate to large-size dataset, splitting the data into training, validation and 
test is recommended. Appropriate strategies to avoid overfitting, such as dropout, regularizations etc, could be 
employed during the training process. While repeated tuning hyper-parameters during the training step is una-
voidable to achieve the best performance, it is very important to do so by observing model performance on the 
validation dataset only, but not the testing dataset.

7.3.  Model evaluation
At the model evaluation stage, the model should be evaluated in a testing dataset that is completely blind to 
the training process to avoid information leakage from the testing dataset to the training stage, which may bias 
the constructed model to favor the testing dataset. Ideally, the testing dataset should be independent from the 
training dataset, e.g. from a different data source.

It is equally important to use proper evaluation metrics for the specific problem or context to objectively 
assess model performance. First, the evaluation metric has to be scientifically sound. For instance, for a model 
predicting a very rare disease, simply reporting model accuracy tested on a population dataset is likely not suf-
ficient. A trivial model simply predicting no disease in all cases would give a very high accuracy level, but is practi-
cally useless due to poor sensitivity. More comprehensive evaluation metrics such as sensitivity, specificity, area 
under the curve, and many others should be employed for an objective evaluation from different perspectives. 
Second, evaluation metrics and passing criteria are problem specific. For many imaging related tasks, DL algo-
rithms are very capable of generating visually very appealing images. However, the images have to be assessed 
in an appropriate context to evaluate if they meet requirements of the clinical task. For image-based diagnosis 
purpose, using metrics regarding low-contrast object detection is much more important than just presenting 
visually appealing images. The CT image intensity accuracy is critical for radiotherapy dose calculation, whereas 
geometry accuracy should be the main focus for cone beam CT in the context of image-guided radiotherapy.

Table 3.  Commonly encountered challenges in DL and recommendations.

Challenges Recommendations

Model training Training efficiency • Employ high-end GPUs and well-established compu-

tational packages

Data quality • Understand and improve data quality

Data quantity • Increase data size

• Use data augmentation and synthesize data

Overfitting • Start with a small-scale model

• Use validation strategies to monitor overfitting

• Use regularization strategies

Model evaluation Model evaluation • Test the model in testing dataset blind to training stage

• Use appropriate and comprehensive metrics

Interpretability • Interpret models

• Use interpretable models

Robustness and uncertainty • Be aware of robustness and uncertainty

• �Discuss model robustness and uncertainty,  

and evaluate if possible

Other Reproducibility • Use public datasets, if possible

• Share data and model

• Present research in detail
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7.4.  Model interpretation
Correctly interpreting the resulting model is at the core of DL. Care should be given to properly and objectively 
make conclusions and statements. For instance, a DL model can discover correlations, but it would be typically 
challenging to establish causality. While correlation is acceptable in medicine, the fact that the constructed model 
reports correlation should be clearly stated to avoid misleading readers. With this in mind, human interpretation 
and judgement is of importance to avoid spurious results. One example is that the shoe sizes and student’s 
intelligence quotient scores would be found correlated by a ML method, but neither of them is the cause of the 
other. The impact of confounding factor in this case, age, may not be identified by DL and it has to rely on the 
researcher to figure this out. Another situation is that the input data contain both the independent variables and 
other variables correlated to them, whereas the output only depends on the independent variables. A trained DL 
model may build a relationship not only between the output and the independent variables, but also incorrectly 
between the output and other correlated variables. Again, carefully examining and testing the developed DL 
model is critical to make sure the model is constructed properly.

It would be valuable in a study to use model interpretation techniques to understand the exact information 
that DNN extracts from the training data. This would help us to gain confidence and insights about the study and 
avoid over or incorrect interpretations. Meanwhile, we agree that it is not always possible to decipher reasons in 
the constructed DNN due to technical challenges. In this case, certain discussions and justifications regarding the 
end-to-end rationale learnt by a DNN model is important and encouraged. The discovered correlation should 
have a certain reasonable explanation to support it.

7.5.  Model uncertainty and robustness
Every study has uncertainty, to a large or small extent. The uncertainty of the trained DL model may be caused by 
numerous factors including, but not limited to inherent noise in the data, limited data size, imperfectly selected 
model, training residual error, non-local minima of the training process, to name a few. The model robustness 
seems to be an issue caused by the DNN. Therefore, commenting on the model uncertainty and robustness is also 
an important aspect, so that readers can bear this in mind for effective use of the trained model.

The researchers are encouraged to perform comprehensive investigation and estimation about the magni-
tude and cause of uncertainty and robustness. For instance, the model may be trained multiple times to study 
the uncertainty due to the stochastic nature of the training process. Input data may be deliberately perturbed to 
investigate robustness of the trained DL model with respect to noise in the input data. We agree that such a com-
prehensive evaluation may be a tedious process and may be beyond the scope of some initial studies proposing 
a DL model. However, certain types of estimation are desired, so that the readers can assess the DL model from a 
more objective angle. For example, for a DL model claiming a better performance than a classical ML model but 
with the uncertainty of a similar size to, or even larger than the performance margin, it is probably inappropriate 
to claim the definitive advantage of the DL model.

7.6.  Study reproducibility
Study reproducibility is an important feature of science (Open Science Collaboration 2015). In the DL field, there 
has been an increasing need to enhance research reproducibility. Doing so will not only be critical for the deep 
understanding of published techniques, it would also be vital for the community to continuously advance by 
building success on top of existing successes.

Data is the cornerstone of DL. Different from other fields where large-scale standard datasets are frequently 
available, e.g. the CIFAR-10 and CIFAR-100 datasets for image classification tasks, medical physics field has rela-
tively less publicly available datasets. Section 4 has listed a few. When performing new studies, we recommend 
to consider using public datasets as the first priority. This would put studies from multiple groups on the same 
ground, facilitating cross comparisons. In addition, the sizes of public datasets are often larger than those of 
private datasets, which is a feature favored by DL research. Quality of these datasets is expected to be carefully 
inspected before being opened to public, releasing the users from tedious tasks of data cleaning.

Along the same vein, data sharing is another route to overcome the data-hunger nature of DL. Nonetheless, 
data sharing in medicine is challenging due to not only technical, but also practical and legal concerns. Standard 
solution for large-scale as-needed data sharing is yet unclear. Efforts from the community are encouraged to pro-
mote data sharing and to develop novel techniques to achieve this goal under practical constraints.

Another key factor to enhance reproducibility is to provide sufficient details in publications. This includes 
not only the typically presented information such as network structure, training data, algorithms, etc, but also a 
comprehensive list of hyper-parameter values, training strategies etc. It is also noted that it is probably imprac-
tical to list all the details in a paper. For instance, some hyper-parameters are dynamically adjusted during the 
training process. Hence, it is suggested to clearly specify those key parameters and details that may significantly 
contribute to the results.
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Meanwhile, we point out that training a DL model has inherent randomness. Examples include the com-
monly used stochastic gradient descent algorithm (Bottou 2010) and the dropout strategy (Srivastava et al 2014). 
The randomness in the training process, together with the highly non-convex landscape of the loss function, 
poses a barrier to exactly reproduce a reported training process, as each time running the training process would 
land at a certain local minimum following a random trajectory. On the other hand, it is more important for oth-
ers to reproduce the claimed performance in a study, as opposed to the exact training process.

7.7.  Do not forget classical machine learning models
As the last note, while we are continuously impressed by DL and are devoted to study DL, it is not a bad idea to 
keep eyes open about classical ML models for two reasons. First, when both classical and DL models can achieve 
the same, or similar performance, classical models may be preferred because of less computational demand, low 
requirement on data size, transparent model meanings, robustness etc. Second, even though DL model attain a 
better performance, classical models may still offer some insights about the problem and data, which are valuable 
for further improving the DL models.

8.  Concluding remarks

In this review article, we did not review extensively the rapid advancements of DL in medical physics area over the 
past several years, as existing review articles have conducted excellent jobs for this purpose. Instead, we focused 
our presentations on introducing DL technologies and discussing challenges faced by DL. This choice was made 
to provide medical physics researchers interested in DL an objective overview about the method and to help 
them start the endeavor. Because of limited space and efforts, our presentations cannot be complete. We hope the 
presentation can serve as an initial point for researchers to explore more in depth.

DL is a very capable and potentially very impactful tool to advance medical physics in near future. As is true 
for any other powerful tools, DL is not perfect and faces its own challenges. The exact mathematical theory 
behind DL is still lacking. The applications of DL in certain medical physics problems require careful and insight-
ful thinking. Attention should be payed, when using DL technologies to solve problems in clinical practice.

Over a very short period, DL has achieved tremendous success in a spectrum of problems in medical phys-
ics. The way forward is bright and challenging. While there are still low-hanging fruits in certain areas, there is 
still a long way to develop accurate, robust, and clinically impactful DL tools to ultimately bring the potential of 
DL from bench to the bed side and to eventually benefit patient care. Achieving this goal would require a close 
collaboration among physicists, mathematicians, computer scientists, data scientists, and clinicians. We hope 
that researchers will continuously perform novel and impactful studies towards realizing this goal and improve 
healthcare with this amazing technology.
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