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Abstract
We study both the two-particle and single-particle fringe visibility in the generalized version of
the Nakazato–Pascazio model where two qubits interact with a finite length one-dimensional
array. Both the two-particle and single-particle fringe visibilities are investigated with different
initial states of the particles spin. For different initial states of the particles spin, the two-particle
fringe visibility either decreases or increases over time, and may even decrease first and increase
later. Due to the interaction between the particles and the one-dimensional array, the single-
particle fringe visibility increases over time when the initial state of the two particles spin is
independent. The single-particle fringe visibility is equal to 0 as the two-particle spin is initially
in the completely entangled state or in the singlet state.

Keywords: two-particle fringe visibility, single-particle fringe visibility, Nakazato-Pascazio
generalized model
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1. Introduction

The superposition principle of quantum states is a basic fea-
ture of quantum mechanics. Quantum coherence is originally
derived from the superposition principle of quantum states.
Therefore, quantum coherence is considered to be one of the
most basic properties of quantum mechanics. Quantum
coherence is not only deeply investigated in quantum
mechanics, but also plays an important role in quantum optics
[1, 2] and quantum information [3]. At the same time,
quantum coherence has been widely used in many emerging
fields such as quantum metrology [4–6], quantum thermo-
dynamics [7–13] and quantum biology [14–18]. After
Baumgratz et al quantitatively studied the quantum coherence
from the perspective of resource theory [19], the coherence
theory developed explosively [20–26].

Quantum decoherence and quantum measurement are
closely related. A quantum measurement process consists of a
quantum system and a measuring apparatus. The correlation
between the quantum system and the measuring apparatus is
established by the interaction between the quantum system
and the measuring apparatus. The correlation between the
quantum system and the measuring apparatus open up a new
approach to understand the decoherence. For the sake of
simplicity, Hepp and Coleman further considered the essential
difference between the measuring apparatus and the quantum
system, and proposed a dynamic model of quantum mea-
surement, known as the Coleman–Hepp (CH) model [27].
The CH model is an exactly solvable model. In this model,
the measuring apparatus is often regarded as a macroscopic
object, and the evolution of each microscopic particle con-
stituting the macroscopic object satisfies the Schiödinger
equation. In this way, the quantum measurement process is
actually the dynamic evolution process of the quantum system
interacting with the macroscopic object. In the process of
interaction, the off-diagonal element of the density matrix
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describing the state of the quantum system will disappear with
time. This phenomenon is generally called the decoherence
phenomenon caused by the quantum measurement. Later on,
Nakazat and Pascazio proposed the Nakazato–Pascazio (NP)
model, which is a modified version of the CH model [28, 29].
The model considers the energy exchange between the
quantum system and the measuring apparatus. Both the CH
model and NP model are exactly solvable models of quantum
measurements. These two models not only provide insight
into the physical essence of quantum measurement, but also
better understand the quantum decoherence in the measure-
ment process. In this paper, the fringe visibility is used to
represent the coherence of quantum state. Both the two-
particle and single-particle fringe visibility are investigated in
the generalized version of the NP model where the two qubits
interact with a finite length one-dimensional array. Here, we
choose the different initial state of the particles spin. Under
the different initial state of the particles spin, we studied the
change of both the two-particle and single-particle fringe
visibility with time, respectively.

This paper is organized as follows. In section 2, we
introduce the generalized version of the NP model where the
two particles with spin-1/2 interact with a finite length one-
dimensional array. In section 3, we derive the dynamic
evolution of the total system. In section 4, we study both the
two-particle and single-particle fringe visibility. In section 5,
we make our conclusion.

2. The model

The NP model describes the interaction between an ultra-
relativistic particle and a one-dimensional array of N har-
monic oscillators. The particles interact with the spins of their
local array through a local potential of the spin flip. In this
paper, we consider the interaction between two particles QA

and QB and the same one-dimensional array, which is shown
in figure 1. Each particle Qj ( j=A, B) has a spin t j

z of
magnitude 1/2. The spatial degrees of freedom of the particle
is characterized by the position operators x̂j and the

momentum operator p̂j. Here, the one-dimensional array has a
finite length = -L x xn 1, where x1 and xn represent the
position of the first spin and the final spin of the array,
respectively. The particle interacts with the one-dimensional
array if and only if the spin direction of the particle is up.

The Hamiltonian of the total system can be expressed as

( )= + +H H H H . 1Q D 1

The free Hamiltonian of two particles can be expressed as

ˆ ˆ ( ) ( )å w t= + + +
=

H v p v p
1

2
1 , 2Q A A B B

j A B
j j

z

,

where the positive constant vj ( j=A, B) is the velocity of the
particle Qj, and p̂j represents the momentum operator of the
particle Qj. The Hamiltonian of the one-dimensional array is

( ) ( )åw s= +
=

H
1

2
1 , 3D

n

N

n
z

1

where sn
z is the Pauli spin operator of the nth spin of the one-

dimensional spin array. When the two particles interact with
the same one-dimensional array, the interaction Hamiltonian
can be expressed as

( ˆ )( ) ( )ˆ ˆå å
t

s s=
+

- +
= =

+ - -w w
H V x x e e

1

2
, 4

j A Bn

N
j
z

j n n
i x

n
i x

1
, 1
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where ( ˆ )-V x xj n characterizes the strength of the interaction
between the particle and each spin of the spin array. xj and xn
represent the position of the jth of the particle and the nth spin
of the one-dimensional array, respectively. s+n and s-

n are the
creation and annihilation operators of the nth spin of the one-
dimensional array.

For the convenience of the latter, the Hamiltonian of the
total system reads

( )= +H H H , 50 1

where H0=HQ+HD.

3. The dynamics of the total system

The initial state of the total system can be expressed as

∣ ( ) ∣ ∣ ∣ ∣ ( )y y y y y yY ñ = ñ Ä ñ Ä ñ = ñ0 , , . 6s D s D

The expansion of ∣yñ in terms of the coordinate eigenstates is

∣ ( )∣ ( )ò òy yñ = ñ
-¥

¥

-¥

¥
dx dx x x x x, , , 7A B AB A B A B

where ∣ ∣ ∣ñ = ñ Ä ñx x x x,A B A B and ˆ ∣ ∣ñ = ñX x x xl l l l . The initial
state of the particles spin can be expressed as

∣ ∣ ∣
∣ ∣ ( )

y ñ =   ñ +   ñ

+   ñ +   ñ
   

   

p p

p p , 8

s A B A B

A B A B

A B A B

A B A B

where ∣ ∣ ∣  ñ =  ñ Ä  ñA B A B , and ∣ (∣ )ñ ñ represents the
spin-up (spin-down). We assume that the initial state of the
one-dimensional array is in the ground state ∣ ñ0 (i.e., all spins

Figure 1. The schematic sketch of the generalized version of the
NP model, where two particles QA and QB interact with the one-
dimensional array. A pulse acts on the spin of the particle.
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down), which is given by

∣ ∣ ∣ ( )y ñ = ñ =  ñ
=

0 . 9D
n

N

n
1

Before the interaction between two particles and the one-
dimensional array, a pulse performs a phase rotation

ˆ ˆ ( )∣ ∣ ∣ ∣= Ä Äf
f f-  ñá -  ñáU e 1 1 , 10i i Q D

A A A B B B

on the spin of the particles. The parameters fA and fB
represent the phase rotation angle of the spin of the particle
QA and QB, respectively. For a given initial state of the total
system ( ) ∣ ( ) ( )∣r = Y ñáY0 0 0 . After the time t, the state of the
total system evolves into

( ) ( ) ( ) ( ) ( )† †r r= f ft U t U U U t0 , 11

where ( ) = - U t e iHt . To exactly solve the current model, the
unitary operator can be expressed as ( ) ( )= - U t e U tiH t

AB
0 by

introducing the interaction picture. The unitary operator UAB(t)
on the right side of the formula satisfies the Schrödinger
equation with the interaction Hamiltonian H1. Since particles
interact with the one-dimensional array only when the spin
direction of the particle is up, the operator UAB(t) can be
decomposed into

( ) ( ) ( )∣ ∣ ∣ ∣

( )∣ ∣ ( )∣ ∣
( )

=   ñá  +   ñá 
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where states ∣  ñj and ∣  ñj are the eigenstates of the operator t j
z.

The operator Uj conform to the Schrödinger equation
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By solving the equation (13), we can obtain
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in the coordinator representation. Here, we assume that the
initial time t0=0 and define the tipping angles of the nth
spin as

( ) ( ) ( )[ ] òa = ¢ + ¢ - t dt V x v t x . 15n
j

t

j j n
0

The exponential of the equation (14) can be disentangled in
the form

( )
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by making use of the SU(2) algebra [30] . After the inter-
action between the particle and the one-dimensional array,

we can obtain the final state of the particles spin
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where ( ) ∣ ( )∣y=P x x x xAB A B AB A B
2 is the probability that two

particles are located at position xA and position xB, respec-
tively. The time-dependent factors
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It can be seen that the one-dimensional array has no effect on
the diagonal elements of the spin-state of the particles, and
the influence of the off-diagonal elements on the spin-state
of the particles is related to the time factor.

For the sake of simplicity, we consider that the interac-
tion local potential as the δ potential satisfying the relation-
ship V(x)=V0Ωδ(x). The tipping angles in equation (15) are
rewritten as

( ) ( ) ( )[ ]a =
W
Q + ¢ -


x t

V

v
x v t x, , 19n

j
j

j
j j n

0

where the Θ(y) is the Heaviside unit step function, i.e.,
Θ(y)=1 for y>0, and Θ(y)=0 for y<0. In equation (19),
we have assumed that the initial positions xA and xB of the two
particles satisfy the relationship xA, xB<x1. Here, we introduce
the parameter

( )=
W


q
V

v
sin , 20j

j

2 0

to represent the ‘spin-flip’ probability. Under the condition of the
weak-coupling macroscopic limit, the ‘spin-flip’ probability can
be expressed as

⎛
⎝⎜

⎞
⎠⎟ ( )»

W


q
V

v
. 21j

j

0
2

In this paper, we assume that two particles propagate at the same
velocity, i.e., = =v v vA B and q=qA=qB. The length of the
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one-dimensional array is

( ) ( )= - = - DL x x N 1 , 22n 1

where N is the number of spins of the one-dimensional array,
and Δ represents the distance between two adjacent spins in the
one-dimensional array. The time-dependent factors of
equation (18) are approximately calculated as
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where =n qN represents the average number of excitation and
is required to be finite.

4. Fringe visibility of the two-particle and single-
particle

To study the coherence of the particles, a pulse that detects
the spin direction of the particles acts on the spin state of the
particles. The joint probabilities of detecting the spin direction
of particles as ( ) ( )   , , ,a b a b , ( ) ( )   , , ,a b a b are

( ) ∣ ˆ ∣
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( ) ∣ ˆ ∣ ( )
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r

r
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where ∣ (∣ ∣ ) ñ =  ñ +  ñ 2k j j and ∣  ñ =k

(∣ ∣ ) ñ -  ñ 2j j , and the subscript k=a (k=b) when
j=A ( j=B). The ( ) P ,a b indicates the probability that both
the particle a and the particle b are detected in the direction of
spin-up. The two-particle fringe visibility, which documents the
coherence of the two-particle, is defined as [31]

( ) ( )
( ) ( )

( )=
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4
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where the marginal probabilities ( )P a and ( )P b are denoted
by
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The fringe visibility Vj of the single-particle can be expressed
as
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. 28j

k k
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4.1. Two particles located initially at different positions

In this section, we assume that the particles a and b are
initially well located around the positions of xA=0 and
xB<0. Two particles located initially at different positions
can be divided into two situations: the distance between two
particles is less than the length of the one-dimensional array
and the distance between two particles is greater than the
length of the one-dimensional array.

First, we consider that the initial state of the two particles
spin is completely entangled
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At this point, equation (17) can be written as
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Via equation (24), the joint probabilities read
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The marginal probabilities are obtained as
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One can easily obtain the two-particle fringe visibility
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by adjusting the fj of equation (32). In figure 2, we plot the
two-particle fringe visibility VAB1

as a function of time. VAB
a

1

and VAB
b

1
represent the two-particle fringe visibility when the

distance between two particles is less than the length of the
one-dimensional array and when the distance between two
particles is greater than the length of the one-dimensional
array, respectively. It can be observed that the two-particle
fringe visibility VAB

a
1
remains the initial value before the two

particles interact with the one-dimensional array. Since the
particles exchange energy with the one-dimensional array,
the two-particle fringe visibility VAB

a
1
begins to decrease when

the particle A enters the one-dimensional array. After the
particle B enters the one-dimensional array, both the two
particles interact with the one-dimensional array. We find that
the two-particle fringe visibility VAB

a
1
decreases faster than

before and decay to zero asymptotically. From figure 2, we
can obtain that the two-particle fringe visibility VAB

b
1
remains

the initial value when particle A does not enter the one-
dimensional array. When the particle A propagates in the one-
dimensional array, the two-particle fringe visibility VAB

b
1
starts

to decrease. Then, particle A leaves the one-dimensional
array, and particle B does not enter the one-dimensional array.
At this point, the value of the VAB

b
1
does not change with time

because the two particles do not interact with the one-
dimensional array. The two-particle fringe visibility VAB

b
1
will

decrease faster than before and decay to zero asymptotically
after particle B enters the one-dimensional array.

Then the fringe visibility of the single-particle is calcu-
lated as

( )= =V V 0. 36A B1 1

Equation (36) shows that when the initial state of the two
particles spin is completely entangled, the coherent term of
the final state of the single-particle spin is 0.

Next, we consider that the two-particle spin is initially in
the singlet state

∣ ∣ ∣ ( )y ñ =
  ñ -   ñ

2
. 37s

A B A B

The final state of the particle spin reads

ˆ ∣ ∣ ∣ ∣

∣ ∣ ( ) ( )

( ( ) )

r =   ñá  +   ñá 

-

´   ñá  -

f f w w- - - -

-

e

e e h c

1

2

1

2
1

2
. . . 38

s
out

A B A B A B A B

i t

A B A B
f f

A B A B

n
A

n
B2 2

The joint probabilities

( ) ( ) [ ( )]

( ) ( ) [ ( )] ( )

g f f

g f f

  =   = - -

  =   = + -

P P

P P

, ,
1

4
1 ,

, ,
1

4
1 , 39

a b a b A B

a b a b A B

are derived from equation (24), where

( ) ( ( ) ) ( )g f f f f w w- = - - - -t e ecos . 40A B A B A B
f fn
A

n
B2 2

Using equation (27), we can obtain the marginal probabilities

( ) ( ) ( ) ( ) ( ) =  =  =  =P P P P
1

2
. 41a a b b

The two-particle fringe visibility is calculated to be

( )¢ = -V e e . 42AB
f fn
A

n
B

1
2 2

The two-particle fringe visibility ¢VAB1
as a function of time is

shown in figure 3. ¢VAB
a

1
and ¢VAB

b
1
represent the two-particle

fringe visibility when the distance between two particles is less
than the length of the one-dimensional array and when the
distance between two particles is greater than the length of the
one-dimensional array, respectively. The change of the two-
particle fringe visibility ¢VAB

a
1
and ¢VAB

b
1
may be divided into five

periods. The interaction between the particle A and the 1st spin

Figure 2. The two-particle fringe visibility as a function of T for a
given xB=0 (solid line), xB=−1200 (dash line), xB=−200
(dotted line). Moreover, we have set q=0.005, =x 1001 , = 1,
L=1000, v=1.

Figure 3. The two-particle fringe visibility as a function of T for a
given xB=−1200 (dash line), xB=−200 (dotted line). The other
parameters are the same as those in figure 2.
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of the one-dimensional array indicates the end of the first period.
In this period, neither ¢VAB

a
1
nor ¢VAB

b
1
has changed because the

particles do not interact with the one-dimensional array. When
particle A enters the one-dimensional array, the second period
begins. At this point, both ¢VAB

a
1
and ¢VAB

b
1
begin to decrease. In

the third period: (1) the two-particle fringe visibility ¢VAB
a

1
is a

constant. At this point, both particle A and particle B interact
with the one-dimensional array. (2) The two-particle fringe
visibility ¢VAB

b
2
remains unchanged. At this point, particle A

leaves the one-dimensional array, and particle B does not enter
the one-dimensional array. When the one-dimensional array
only interacts with the particle B, the fourth period begins. In the
process, both ¢VAB

a
1
and ¢VAB

b
1
increases as T increases. In the fifth

period, particle B leaves the one-dimensional array. Both ¢VAB
a

1

and ¢VAB
b

1
reach their initial value. Such a process can be regarded

as particle A encoding the which-path information in the one-
dimensional array and particle B erasing the which-path infor-
mation encoded in the one-dimensional array. From figure 3, we
also find that the change of ¢VAB

b
1
is larger than ¢VAB

a
1
.

The fringe visibility of the single-particle given by
equation (28) becomes

( )¢ = ¢ =V V 0. 43A B1 1

Equation (43) indicates that when the two particles spin are
initially in the singlet state, the coherent term of the final state
of the single-particle spin is 0.

Finally, we consider that the initial state of the two-par-
ticle spin is independent

∣ ∣ ∣ ∣ ∣ ( )y ñ =
 ñ +  ñ

Ä
 ñ +  ñ

2 2
. 44s

A A B B

The final state of the particles spin can be written as
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The joint probabilities become

( ) [ ( ) ( ) ( )]

( ) [ ( ) ( ) ( )]

( ) [ ( ) ( ) ( )]

( ) [ ( ) ( ) ( )] ( )

f f f f

f f f f
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4
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4
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4
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a b A B A B

a b A B A B

a b A B A B

a b A B A B

with

( ) ( )
( ) ( )

( ) ( ( ) )

( ( ) )
( )

f f w

f f w

f f f f w w

f f w w

¡ = -

¡ = -
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-
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-

t e

t e
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t e e
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A B A B
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n
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2

2
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The marginal probabilities can be obtained

( ) [ ( )] ( ) [ ( )]

( ) [ ( )] ( ) [ ( )] ( )

f f

f f

 = + ¡  = - ¡

 = + ¡  = - ¡

P P

P P

1

2
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1

2
1 ,

1

2
1 ,

1

2
1 . 48

A A A A

B B B B

The two-particle fringe visibility is given by

( ) = - + +- -
- - -

V e e
e e e e

2 2
. 49AB

f f
f f f f

n
A

n
B

n
A

n
B

n
A

n
B

1
2 2

2
3
2 2 2

In figure 4, we plot the two-particle fringe visibility VAB1
as a

function of time. VAB
a

1
and VAB

b
1
represent the two-particle

fringe visibility when the distance between two particles is
less than the length of the one-dimensional array and when
the distance between two particles is greater than the length of
the one-dimensional array, respectively. From figure 4, we
find that the values of the VAB

a
1
and VAB

b
1
increases when the

Figure 4. The two-particle fringe visibility as a function of T for a
given =x 0B (solid line), xB=−1200 (dash line), xB=−200
(dotted line). The other parameters are the same as those in figure 2.
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particle B interact with the one-dimensional array. One also
finds that the two-particle fringe visibility VAB

a
1
increases

faster when the one-dimensional array interacts only with
particle B. Finally, both the VAB

a
1
and VAB

b
1
will increase to 0.5

asymptotically as T increases. The asymptotic value of 0.5 is
determined by the coefficient 1 2 of the singlet state
(∣ ∣ )  ñ -   ñ 2A B A B .

The fringe visibility of the single-particle via the
equation (28) reads

( ) =  =- -V e V e, . 50A
f

B
fn

A
n

B
1

2
1

2

In figure 5, we plot the single-particle fringe visibility as a
function of time. The fringe visibility of particle A is denoted
by VA

a
1
. VB

a
1

and VB
b

1
represent the fringe visibility of the

particle B of the distance between two particles is less than
the length of the one-dimensional array and the distance
between two particles is greater than the length of the one-
dimensional array, respectively. It is shown that the single-
particle fringe visibility decreases when the particle interacts
with the one-dimensional array in figure 5.

4.2. Two particles located initially at the same position

For the sake of simplicity, we assume that the two particles are
initially located at the origin, i.e., xA=xB=0, this moment

( ) ( )= = Q - Q - +-f f x vt vt xA B
vt x

L N 1
1 ( )Q -vt xN .

(1) For the completely entangled state (∣ ∣ )  ñ +   ñ 2A B A B ,
the two-particle fringe visibility of equation (35) becomes

( )= -V e , 51AB
nf2 A

2

when the two particles are initially located in the same position.
We plot the two-particle fringe visibility VAB2

as a function of
time in figure 2. The two-particle fringe visibility VAB2

changes
only when the particles interact with the one-dimensional array.

After the particles enter the one-dimensional array, two-particle
fringe visibilityVAB2

decreases monotonically as T increases and
decays to zero asymptotically. Form figure 2, we also found that
when the two particles interact with the one-dimensional array
at the same time, the decay of the two-particle fringe visibility is
accelerated. In this case, the fringe visibility of the single-par-
ticle is also equal to 0.

(2) Now, we consider that the particles are initially in the
singlet state (∣ ∣ )  ñ -   ñ 2A B A B . At this time, the final state
of the particle spin is only related to the time-dependent factors
f1(t), and satisfies ∣ ( )∣ =f t 11 . Since there is no energy exchange
between the one-dimensional array and the particles, the
coherence of the two-particle does not change. In this case, the
two-particle fringe visibility is equal to its initial value of 1.
Here, the single-particle fringe visibility is equal to 0.

(3) When the particles are initially in the state
∣ ∣ ∣ ∣Ä ñ+  ñ  ñ+  ñ

2 2
A A B B . The two-particle fringe visibility can be

expressed as

( ) = - + +-
-

V e
e

2

1

2
. 52AB

nf
nf2

A
A

2

We plot the two-particle fringe visibility VAB2
as a function of

time in figure 4. It can be observed in figure 4 that when the
particles interact with the one-dimensional array, the two-
particle fringe visibility VAB2

increases monotonically as T
increases and increases to 0.5 asymptotically. We also cal-
culate the single-particle fringe visibility

( ) =  =  = -V V V e . 53A B
fn
A

2 2
2

We find that the single-particle fringe visibility V satisfies the
relationship  = V VA1

.

5. Conclusion

We have investigated both the two-particle and single-particle
fringe visibility of different initial states of the particle spin. It
is found that different initial state of the particle spin can lead
to the difference of both the two-particle and single-particle
fringe visibility with time. (1) For the completely entangled
state (∣ ∣ )  ñ +   ñ 2A B A B , the two-particle fringe visibility
decreases as time increases and decays to zero asymptotically.
The fringe visibility of the single-particle is equal to 0.
(2) If the particles spin are initially in the singlet state
(∣ ∣ )  ñ -   ñ 2A B A B . The inter-distance of the two particles
is absent or does not result in different two-particle fringe
visibility. When the internal distance of the two particles
disappears, the value of the two-particle fringe visibility is 1.
For a nonzero internal distance, the two-particle fringe visi-
bility not only undergoes a constant process, but also
experiences first decrease and then increase during the time
evolution. Here, the fringe visibility of the single-particle is
also equal to 0. (3) When the particles are initially in the state
∣ ∣ ∣ ∣Ä ñ+  ñ  ñ+  ñ

2 2
A A B B , the two-particle fringe visibility increa-

ses as time increases and increases to 0.5 asymptotically. In
this case, the single-particle fringe visibility decreases, due to

Figure 5. The fringe visibility of particle A as a function of T (dash
line). The fringe visibility of particle B as a function of T for a given
xB=−1200 (solid line), xB=0 (dash line), xB=−200 (dotted
line). The other parameters are the same as those in figure 2.
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the interaction between the particle and the one-dimensional
array.
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