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Abstract

®

CrossMark

It has been shown that the quasinormal modes of perturebated fields can be used to investigate
the validity of strong cosmic censorship (SCC). Relevant issues for Reissner—Nordstrom—de
Sitter (RN-dS) black holes and Born-Infeld—de Sitter black holes have been discussed. In this

paper, we investigate SCC in an asymptotic RN-dS black hole

with logarithmic nonlinear

electromagnetic field perturbed by massless scalar fields. It has been argued that SCC can be
violated in a near-extremal RN-dS black hole. However, we find that the NLED effect can rescue
SCC for a near-extremal logarithmic-de Sitter black hole. Compared with Born-Infeld model, we

find that the NLED effect has similar behavior.
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1. Introduction

The strong cosmic censorship (SCC) was proposed by Penrose to
maintain the predictability of general relativity. As we know, a
spacetime singularity can be formed by the gravitational collapse.
Singularities can be classified as space-like singularities, light-like
singularities and time-like singularities. For a spacetime with a
time-like singularity, general relativity will lose its predictability
because some regions in the space time can be influenced by the
uncertain data on the singularity. To solve this problem, SCC
asserts that, starting with some physically relevant initial data for
Einstein’s equation, the dynamics of physical systems will always
produce globally hyperbolic spacetime [1-3]. In other words, a
black hole formed by gravitational collapse or other physically
acceptable dynamical procedure can only have space-like or
light-like singularities, while time-like singularities are forbidden.
However, some solutions of Einstein’s equation possess time-like
singularity, such as Reissner—Nordstrom black holes and Kerr—
Newman black holes, which have Cauchy horizons. To fit with
SCC, it is required that the perturbation for any fields at the
Cauchy horizon is inextendible when physical initial data is
perturbed. Therefore there is another statement of SCC: generally
speaking, the maximal Cauchy development is inextendible.
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However, the extendibility of the Cauchy horizon has some
subtleties. For this reason, people proposed several formulated
versions of SCC. If the perturbation (about the metric) arising
from smooth initial data is C" nondifferentiable at the Cauchy
horizon, it is called C* formulation of SCC [4, 5]. For example,
the C° formulation demands that the perturbed metric to be
noncontinuous at the Cauchy horizon. It indeed satisfies the
requirement that the maximal Cauchy development is inex-
tendible, yet has been proved to be wrong. There are also lots of
discussions about the C* formulation which corresponds to the
divergence of the curvature. Since the equations of motion are of
the second order, it is reasonable that the curvature is required to
be divergent at the Cauchy horizon. However, the C* formula-
tion is still not appropriate. A macroscopic observer is able to
cross the Cauchy horizon safely without being destroyed by a
divergent curvature, therefore the C? formulation needs to be
strengthened. With weak solutions showing many important
physical applications, it becomes more reasonable to consider
the weak solutions of the equations of motion. This idea leads to
the Christodoulou’s formulation of SCC [6], which will be
adopted in the following discussion.

For simplicity, we put a test particle (field) into the
spacetime without considering the back-reaction. For a linear
massless scalar field, if SCC is implied, the scalar field per-
turbation will not belong to the Sobolev space H.. at the
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Cauchy horizon. Such fields have infinite energy at the
Cauchy horizon. It has been proven that the Christodoulou’s
formulation is appropriate in the case of RN black holes and
Kerr black holes. Generally speaking, when the scalar field
propagates to the Cauchy horizon, it will experience an
power-law decay [7-9], at the same time, there is an expo-
nential blue-shift effect [10—15]. Ultimately, the dominant
blue-shift effect would make the Cauchy horizon become
singular [11, 16], therefore, SCC is respected for RN black
holes and Kerr black holes. The above conclusion is based on
the case that the cosmological constant A equals to 0. If we
consider the spacetime with positive cosmological constant,
situations will become quite different. The decay of the scalar
field will be exponential rather than power-law near the
Cauchy horizon [17-24]. So the validity of SCC depends on
the competition between the exponential decay and blue-shift
effect, which can be characterized by [25-30]

«
5=
K

(1.1)

where ~_ is the surface gravity of Cauchy horizon, and « is
defined as infj, { —Im (wy, )}, where the wy, is the quasinormal
frequencies of the quasinormal modes (QNMs). (We will give
more discussion at section 3.) The criterion is whether 5 > %
or not; if it is true, then Christodoulou’s formulation of SCC
is violated. It has been shown that SCC is respected in a Kerr—
de Sitter (dS) black hole but violated in a near-extremal RN-
dS black hole by a scalar field [30-33]. Violation of SCC in
RN-dS black hole for various other fields, such as charged
scalar field and Dirac field, are also discussed [34-38]. In
[33], the author has shown a violation of SCC when a Kerr—
dS black hole gets perturbed by Dirac fields. Besides, the
validity of SCC is widely discussed in many other modified
theories and black holes, such as Horndeski theory [39], the
Martinez-Troncoso—Zanelli black hole [40] and higher-
dimensional RN-dS black hole [41]. When considering the
coupled linearized electromagnetic and gravitational pertur-
bation, the violation of SCC will be severer in a RN-dS black
hole [42]. What’s more, it has been shown that nonlinear
perturbations are not able to prevent SCC from being violated
[43]. In addition, there is yet another way to save SCC in RN-
dS black hole by the introduction of rough initial data which
is shown in [44].

As we know, the RN metric is a solution of Einstein—
Maxwell gravity, which has the infinite self-energy for
charged point-like particles. Moreover, a point charge can not
only lead to the electromagnetic singularity, but also the
spacetime singularity through the gravitational field
equations. Before renormalization, a classical approach has
been proposed to solve this problem, namely the nonlinear
electrodynamics (NLED). This approach was later general-
ized and applied to many other problems, like the limiting
curvature hypothesis in cosmological theories and the vacuum
polarization effect [45—47]. NLED was first introduced in the
1930s by Born and Infeld (BI). In addition to the above
advantages, their NLED can also serve as a low energy
effective limit of the superstring theory and play roles in the
AdS/CFT correspondence [48]. Various NLED modes have

been proposed and investigated for different purposes, such as
exponential electrodynamics and logarithmic electrodynamics
[49-52]. In this paper, we investigate the logarithmic elec-
trodynamics, which can also remove the infinite self-energy.
Although it does not have a background in superstring theory,
it is still a good toy model to study various interesting sub-
jects. When expanded to the second order of the NLED
parameter, the action of logarithmic electrodynamics is con-
sistent with that of the BI electrodynamics [53].

Two of us have discussed the validity of SCC in a BI-dS
black hole in [54]. In order to explore the similarities and
differences among different NLED effects, we further inves-
tigate SCC in a logarithmic-dS black hole. Our numerical
results show that NLED effect of the BI electrodynamics and
the logarithmic electrodynamics are similar in essential while
differ in minor points. The most important conclusion is that
the NLED effect can restore SCC in the near-extremal regime,
which is violated in the RN-dS black hole.

In section 2, we review the logarithmic black hole
solution. In section 3, we introduce the QNMs method. In
section 4, we present our numerical results and give some
discussions. It is worth mentioning that our analysis is based
on the Christodoulou’s formulation of SCC, and we set
16wG = ¢ = 1 throughout this paper.

2. Logarithmic-dS black hole

In this section, we review the black hole solution with logarith-
mic electromagnetic field. Then we find the parameter regions
which allow three horizons so that the Cauchy horizon exists.

First let us begin with the action with logarithmiac
electromagnetic field

§= [dx=gIR - 24 + L(F)), 2.2)
F
L(F) = —8b? ln(l + W)’ 2.3)

where R is the Ricci scalar, F=F,F*", F,=
9,4, — 0,A, is the electromagnetic field, A, is the corresp-
onding electromagnetic potential, and b is the NLED para-
meter. NLED effect will magnify as the parameter » becomes
small. On the contrary, NLED effect will reduce when the
parameter b increases. The logarithmic electrodynamics
recovers Maxwell electrodynamics in the limit of b — .

Varying the action (2.2), it is not hard to get the
equations of motion

1 1 (,
Ruv = 580 (R = 28) = —g, L(F) = 2F,0F, "Ly, (24)

9 (J"gLrF™) = 0,

where R, is the Ricci tensor, and Ly =
static spherically symmetric black hole solution, the metric of
the logarithmic-dS black hole was obtained in [55]

(2.5)

L) To demand a

2
ds? = —f(r)de® + a r2(d6? + sin? 0dp?),
S
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A M
=1 :

(2.6)

Q2

After fixing gauge, the logarithmic electromagnetic potential
is

A=A, dr
2 1 1 15 2
23—Q - T 22F1[Z, 5; Z; _bg 4] dr,
A 1_’_37 r

2.7

here ,F is the hypergeometric function, M and Q are the mass
and electric charge of the logarithmic-dS black hole, respec-
tively. In the limit of b — oo, the metric (2.6) and the
electromagnetic potential (2.7) recover the RN-dS black hole
solution as expected.

To investigate SCC, we need to calculate QNMs at the
Cauchy horizon, hence we only focus on the logarithmic-dS
black holes which possess three horizons. It means that we
need to find out the allowed parameter region where f(r) = 0
has three positive solutions, which correspond to the positions
of the Cauchy horizon r_, the event horizon r, and the
cosmological horizon r., respectively. Because of the com-
plexity of f(r), we can only find the allowed region by
numerical method and a bit analysis. First of all, through
numerical simulation, we find that an appropriate f(r) always
has two extreme points 7, and 7,.x, Which does not coincide
with zero points, namely, f(rnin) < 0 and f(rn.) > 0. It is
noteworthy that there are extremal black hole solutions with
r-=ry and f(fyn) = 0, in which situation we denote the
charge of black hole as Q.y. Similarly, there are solutions
with r, = r. and f(ryn.) = 0, known as the Nariai black
holes [56, 57]. These solutions form the bounds of the
allowed region in the parameter space. Note that f(r) — —oo
in the limit » — +o0, therefore, f(r) is supposed to be posi-
tive in the limit » — 0. We expand f(r) near r = 0 as follows

fr)= _ﬂ+%

71

8 PNES
1
_ 400 + ZbQF(_Z) +1{+0m, 238
()

where I is the Gamma function. Hence we get a relation

M 460r°(;) 7
8w 9w

> 0. (2.9)

For simplicity, we take M = 167 from now on without losing
generality. The constraint (2.9) between Q and b becomes

81m
1
()
Based on the above analysis, we plot the allowed region
with three horizons in figure 1. As shown in the figure, the
case A = 0.02 is different from the case A = 0.14. The
parameter space of A = 0.14 has Nariai black holes, while the
parameter space of A = 0.02 does not. Actually, this is not
unique to the logarithmic-dS black holes. RN-dS black holes
also have the similar conclusion. However, we will only be
interested in the region near P, then the difference between
various A is not significant. Near the point P, the allowed
region is bounded by the upper bound (the green dashed line)
and lower bound (the red dashed line).

bQ* >k, k= (2.10)

3. Quasinormal mode

To investigate SCC, we need to take a test field as a probe to
perturb the logarithmic-dS black hole. In this section, let us
consider a scalar field perturbation with mass ¢ and charge q.
The equation of motion of the field is the Klein—Gordon

equation in a curved spacetime
D? — »H)® =0, (3.11)

where D is the covariant derivative D = V — igA. We make
a transformation v = ¢ + r, where r, is the tortoise coordi-

nate defined as
o f dr
* — —_—
fr)

Then we define the Eddington—Finkelstein ingoing coordi-
nates (v, r, 0, ) like in [42], so that we can discuss the
properties of horizons more straightforward. Moreover, the
gauge fixed logarithmic electromagnetic potential is

A=A,dv
115 @
— 5| =, = 2 ———| |
2‘[4 24 b2r4]

(3.13)

(3.12)

_o v
2
a1+ 2

Since we demand the logarithmic-dS black hole solution to be
static and spherically symmetric, we can separate the field
solution as the standard ansatz

d = eiivalm(ev ¢)¢w1(7)» (314)

where Y},,,(8, ¢) is the spherical harmonic function, and v, (r)
is the radial function. Plugging the ansatz (3.14) into the
equation of motion (3.11), we get the radial equation

0=[r¥0? + (r’f + 21f — 2igA r? — 2iwr?)d,
— 2iwr — 2igrA, — igr*9,A,
— 1A+ 1) = @2r]da(),

where f’ denotes df(r)/dr. For the convenience of
numerical calculation, we define a new coordinate

(3.15)
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Figure 1. Parameter space for logarithmic-ds black holes with M = 167. (a) A = 0.02. (b) A = 0.14. The pink region allows for black holes
with three horizons. The dashed green lines represent the extremal black holes with r_ = r, ; the dashed black line represents the Nariai black
hole with r, = r.; and the dashed red lines represent the constraint 5Q> = k. We can see the dashed red line and the dashed green line
intersect at the point P (b, Omax)- Here, bpin ~ 0.206 008 and Qy,.x ~ 1.213 543 are calculated by numerical method which does not

depend on A (an analytic expression will be given in the section 4). The blue line represent near-extremal black holes with charge
0 = 0.9Q.x, Where Q. is the charge of a extremal black hole with the same b.

Table 1. The lowest-lying QNMs w/k_ of different angular numbers [ for various values of A, b, Q/Q.x and g for massless scalar
perturbation. In the large b limit (b = 10 000), the numerical results go back to that of the RN-dS black holes [30, 34].

A

b 0/0 ¢ 1=0 I=1 1=10
002 05 0991 0 0 —0.472 594i +14.968 405 — 0.467 179
0.1 0.059183 + 0.003005i  0.033367 — 0.471978i  15.286 357 — 0.467 124i
0996 0 0 4+3.605333 — 0.789 770i  +£25.275 405 — 0.770 342i
0.1 0.099702 + 0.005331i  4.165818 — 0.7797591  25.818 396 — 0.769 624i
10000 0991 0 0 —0.475 688i +14.365 381 — 0.491 756i
0.1 0.057773 + 0.002229  0.032203 — 0.475 118  —14.080 016 — 0.491 441i
0996 0 0 —0.789 379i 4+23.969 407 — 0.808 962i
0.1 0.096356 + 0.003870i  0.053 708 — 0.788423i  —23.488 922 — 0.808 825i
006 05 0991 0 0 4+2.021 008 — 0.458 730i  +14.396 115 — 0.441 376i
0.1 0.128077 + 0.0039691  2.384318 — 0.452275i  14.744 827 — 0.441 085i
0996 0 0 1+3.431 580 — 0.759 4891  +24.467 637 — 0.730 447i
0.1 0216661 + 0.007511i  4.054003 — 0.743932i  25.066 143 — 0.729 315i
10000 0991 0 0 +1.930 716 — 0.481 3451  +13.798 347 — 0.462 716i
0.1 0.127461 + 0.001 8951  2.265562 — 0.474 7261  14.119 498 — 0.462 581i
0996 0 0 1+3.242 616 — 0.795 8331  +23.189 760 — 0.764 924i
0.1 0213619 + 0.003591i  3.808 829 — 0.781 460i

23.733 891 — 0.764 259i

x=(r —r)/( — ry), such that the event horizon and
cosmological horizon are located at x = 0, 1, respectively.
Through the Frobenius method, we can impose the boundary
solutions near the event horizon and the cosmological hor-
izon. Near the event horizon, the ingoing and outgoing
boundary solutions are

WHGAy =y

ingoin outgoin, i -
PYoEOE ~ const, M ~ xRS

(3.16)

Similarly, near the cosmological horizon, the ingoing and
outgoing boundary solutions are

wingoing ~

wl

where kj, =

. LW
const, YNEMME ~ (1 — x)7

+4Ay lr=r
K¢

b}

3.17)

|f/(r)| /2 denotes the surface gravity at each

horizon with h € {+,—,c}. We impose the ingoing boundary
solution of (3.16) at the event horizon and the outgoing
boundary solution of (3.17) at cosmological horizon. These
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Figure 2. The lowest-lying QNMs —Im(w) /k_ of three families for a neutral massless scalar field. The vertical solid lines indicate that the
parameters reach the lower bound of allowed region, where the logarithmic-dS black hole does not have three horizons. SCC is violated only
when the dominant modes of three families are all above the red dashed line. And the thick black dashed lines indicate the key points

where § = —Im(w) /k_ = % (a) The lowest-lying QNMs —Im(w) /k_ of three families with varying Q/ Q. for various values of b and A.

The vertical thin dashed lines indicate that the NE modes become dominant. On the right side of the thick dashed lines, we can see that SCC
is violated. (b) The lowest-lying QNMs —Im(w) /x_ of three families with varying b for various values of Q/Q., and A. Near the vertical

solid thin lines, we can see that SCC is always respected for a small enough value of b.

It is noteworthy that there is a zero mode when / = 0, which
should be ignored [30]. In fact, there are a variety of methods to
compute the QNMs. Our numerical results in section 4 are based

conditions select a discrete set of frequencies wy,, namely the
quasinormal frequencies, where [ is the angular number, and » is
the mode number. The corresponding modes are called QNMs.
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Figure 3. 3 for a neutral massless scalar field with M = 167, and

A = 0.06. The green dashed line and the red dashed line correspond
to the extremal black hole (Q = Q.x,) and lower bound (bQ® = k) of
the allowed region, respectively. The solid thick black line represents
6= %, which divides the parameter space into two parts, where SCC

is violated above the black line while respected under it.

on the Chebyshev collocation scheme, and obtained mostly by
the Mathematica package provided in [S8—60]. In order to fit the
numerical scheme, we redefine the field ¢, as

WAy =

1
Yo = ;(1 — X)) R Qs (3.18)

so that the redefined field ¢, become regular at both the event
horizon and the cosmological horizon.

To see the criterion 8 > %, we should get the boundary
solutions of the equation of motion (3.15) at the Cauchy
horizon. As shown in [32], scalar field perturbation will
diverge as v — —oo, if we use ingoing coordinates. There-
fore, we work out the two independent boundary solutions in
the outgoing coordinates (u, r, 0, ©)

P~ (r—r)
Similar to analysis in [32], the square integrability of 0,1,
gives us the criterion 5 > %

1/)1 ~ w+q1‘}u|r:r,
Wl ™~ const, RS .

4. Numerical results

In this section, we present our numerical results. In the first
subsection, we discuss the validity of SCC with massless
neutral scalar perturbations; in the second subsection, we
discuss the validity of SCC with massless charged scalar
perturbations. Since the NLED effect is strong when b is
relatively small, SCC is most likely to be violated in near-
extremal black holes. We are hence more interested in the
black holes which are near the point P in the parameter space.

To verify the reliability of the program, we calculated a
series of lowest-lying QNMs in table 1. Comparing our

results with that of RN-dS black holes [30, 34], we find that
they are consistent for large b (b = 10 000).

4.1. Neutral scalar field

Since it is impossible to calculate wy, for all / and n, a clever
method was proposed to seek out the lowest-lying QNMs for
RN-dS black holes [30]. The authors found three different
families that can classify the QNMs: the photon sphere (PS)
modes, with dominant mode at large !/ (/ = 10 is good
enough); the dS modes, with dominant mode at / = 1; and the
near-extremal (NE) modes, with dominant mode at / = 0. The
PS among them also has been discussed in [61]. In the pro-
cess of numerical calculation, we also find these three distinct
families of modes for a neutral massless scalar field in the
logarithmic-dS black hole, therefore, we are going to discuss
the neutral case by these three families in this subsection.

Before talking about SCC for near-extremal black hole,
we first investigate the behavior near the lower bound given
by constraint ((2.10) i.e. the red dashed line in figure 1). We
find that the radius r_ goes to zero in the limit of bQ3 — k, so
we can expand the surface gravity of Cauchy horizon around
r_ = 0 as follows

_ ‘ 1 d@f )
2r dr
Therefore as long as 1 — 40b = 0, x_ will go to infinity at

the lower bound. Indeed, the condition 1 — 4Qb = 0 and the
condition bQ3 = k intersect at the point P (bmin, Omax)> Where

+o0(). (4.19)

|r:r,

1 —40b
2

M

()
16ﬁr(})2 '

oM s Qmax =

bmin =

We find « are finite at the lower bound, hence 3 = 0 < % It
means that SCC is always respected for the black holes whose
parameters are close enough to the lower bound (this con-
clusion is also reflected in figure 2 as explained below).

We plot the lowest-lying QNMs —Im(w)/k_ of three
families in figure 2, where the blue line represents the
dominant mode of NE family (/ = 0), the orange line repre-
sent the dominant mode of dS family (I = 1), the green line
represents the dominant mod of PS family (I = 10). In
figure 2(a), we plot —Im(w) /~_ against O/ Qe and find that
the lowest-lying QNMs of PS and dS families go to infinite
while the modes of NE family go to 1. This behavior not only
indicates that the NE modes become dominant for a suffi-
ciently near-extremal black hole, but also implies that SCC
can always be violated for a sufficiently near-extremal black
hole. Moreover, we find that the critical Q/Q.y of 5 = %
increase as b decrease, which means that SCC is more diffi-
cult to be violated as b decreases. In figure 2(b), we plot
—Im(w)/k_ against b for some fixed Q/ Q.. First of all, the
most noticeable feature is that the lowest-lying QNMs of the
three families approach 0 at b = by, , Which is consistent
with the analysis in the last paragraph. Here, by, is the
minimal b for a fixed charge ratio Q/Q.y, namely the inter-
section of the line of fixed Q/Q., and the lower bound as
show in figure 1. In the case of A = 0.14, O = 0.991Q.y;, the
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Figure 4. The lowest-lying QNMs —Im(w) /x_ of various values of [ with varying g for A = 0.14 and Q = 0.996Q.y. (a) b = 1.

(b) b = 0.4, where the small figure zooms in the superradiance.
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Figure 5. The lowest-lying QNMs —Im(w) /k_ of [ = 0 with varying g for A = 0.14 and various values of b. (a) Q = 0.9999Q...

(b) O = 0.999 9990t

lowest-lying PS mode is lower than the red dashed line for
any b, therefore SCC is always respected. Similarly, in the
case of A = 0.02, Q = 0.991Q.,, although the lowest-lying
PS mode fluctuates around (§ = %, the dominant dS mode
save the validity of SCC. In summary, b and Q/Q.x both
have important effects on the validity of SCC. Specifically,
SCC is more likely to be violated when Q/Qey goes to 1, and
more likely to be respected when b goes to by, -

At the end of this subsection, in order to understand the
behavior of § more intuitively, we roughly draw a density
plot of 3 near the point P by WKB method in figure 3. In this
figure, we use the PS modes to approximate (3 of nonextremal
black holes, where dS modes are similar to PS modes and NE
modes are not dominant. The solid black line, the red dashed
line and the green dashed line represent 3 = %, 0, and 1,
respectively. Note that, SCC is violated between the green

line and the black line (0 < pf< %), while respected between
the red line and the black line (% <8< 1).

4.2. Charged scalar field

Now we investigate the validity of SCC for a massless charged
scalar field. Unlike the neutral case, we do not use the three
families to classify the QNMs. Since the violation of SCC is
more likely to occur in a near-extremal black hole, we only
consider some near-extremal black holes in the following. In

figure 4, we plot the lowest-lying QNMs —Im(w) /~_ of various
angular number / in near-extremal logarithmic-dS black holes. It
is easy to find that the lowest-lying QNMs of [ = 0 (red line)
dominate 3 for the charged scalar field in near-extremal black
holes. In the case of b = 0.4, it is noteworthy that the lowest-
lying QNMs can be negative when scalar charge ¢ is small.
Actually, this abnormality has been found in RN-dS black holes,
and was regarded as superradiant instability [62, 63]. It is
improper to infer anything about SCC when superradiance
occurs, since the perturbations will be severely unstable even in
the exterior of the black hole in this case. Note that, the / = 0
zero mode is trivial and should be ignored in the limit of ¢ — 0,
so the subdominant mode of / = 0 should be considered like in
[34]. For a nonzero g, we can confirm that SCC is respected, due
to the nontrivial lowest-lying of / = 0.

Since the lowest-lying QNMs of / = 0 dominate (3 for the
charged scalar field in a near-extremal black hole, we now
focus on the / = 0 mode for black holes further near the
extremality. In figure 5, we plot the lowest-lying QNMs of
[ = 0 with varying g for A = 0.14. The (a) panel of figure 5
shows the case of O = 0.9999Q.,,. The blue line represents
the black hole of » = 10, which is almost identical to the case
of RN-dS black hole. For b = 10, 0.22 and 0.215, we can find
a narrow scalar charge window, where SCC is violated.
Interestingly, as b decreases, the violation regime decreases,
and for b = 0.21, the violation regime totally disappears.
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What’s more, in the (b) panel of figure 5, with
0 = 0.999 9990, we can find wiggles near § = % in the
cases of b =10, 1, 0.4 and 0.25, while in the case of
b = 0.23 the wiggle disappears. The presence of the wiggles
has been discussed in detail in the RN-dS black holes in [35].
We also find that the wiggle shifts towards the direction of ¢
increasing as b decreases.

5. Conclusion

In this paper, we investigate the validity of SCC for a
massless scalar field in a logarithmic-dS black hole. We first
make a brief discussion on the logarithmic-dS black holes and
give the allowed region in which the Cauchy horizon exists in
the section 2. After that we make some preparations for the
calculation of QNMs in section 3. Finally, we present the
numerical results of neutral scalar fields and charged scalar
fields in section 4.

It is noteworthy that when b goes to infinity, the loga-
rithmic-dS black hole will go back to the RN-dS black hole as
expected. Therefore the behavior of SCC in a logarithmic-dS
black hole is similar to that of a RN-dS black hole when b is
big enough. When the NLED effect increases, however, we
find some interesting behaviors of SCC which are different
from RN-dS black hole. Through the analysis of the numer-
ical results, we found that the NLED effect can to some extent
rescue SCC for a near-extremal logarithmic-dS black hole.
The specific impact of NLED effect on SCC is as follows.

For a massless neutral scalar field: firstly, as NLED effect
increases, the minimal Q/Q.y, for which the violation of SCC
emerges goes to 1; secondly, given a fixed Q/Qcy., the NLED
effect can always rescue SCC as long as the parameter b goes

to bQ/Qexl'
For a massless charged scalar field: firstly, the NLED

effect can lead to the appearance of superradiance; secondly,
the NLED effect can eliminate the narrow scalar charge
window where SCC is violated; thirdly, the NLED effect can
eliminate the wiggles near § = %

In general, no matter for the massless neutral scalar field
or the massless charged scalar field, the NLED effect is able
to rescue SCC. We find that the NLED effect of logarithmic-
dS black holes can lead to the shifting of the wiggles which is
not obsevered in the Born-Infeld case. Since the two NLED
effects show great difference only when b tends to 0, it is
reasonable that the two effects are similar with b > b,
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