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Abstract
Starting from an affinely connected space, we consider a model of gravity 
whose fundamental field is the connection. We build up the action using 
as sole premise the invariance under diffeomorphisms, and study the 
consequences of a cosmological ansatz for the affine connection in the 
torsion-free sector. Although the model is built without requiring a metric, we 
show that the nondegenerated Ricci curvature of the affine connection can be 
interpreted as an emergent metric on the manifold. We show that there exists a 
parametrization in which the (r,ϕ)-restriction of the geodesics coincides with 
that of the Friedman–Robertson–Walker model. Additionally, for connections 
with nondegenerated Ricci we are able to distinguish between space-, time- 
and null-like self-parallel curves, providing a way to differentiate trajectories 
of massive and massless particles.

Keywords: affine connection, affine gravity, self-parallel curves, geodesics, 
cosmological models

(Some figures may appear in colour only in the online journal)

1.  Introduction

General relativity was proposed by Einstein as an attempt to compatibilise the gravitational 
interactions with the postulates of special relativity [1–5]. The ground-breaking idea behind 
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the proposal was the interpretation of the gravitational interaction as the effect of proper-
ties of the spacetime, represented by a nontrivial geometry. The spacetime is modelled by a 
Riemannian manifold, whose geometric properties are determined by the metric tensor, and 
therefore it is the natural field describing the dynamics of the spacetime. The properties of 
the matter distribution are encoded in the energy–momentum tensor. Einstein’s field equa-
tions are the extrema of the Einstein–Hilbert action when varied with respect to the metric.

General relativity has been tested extensively with magnificent agreement with the exper
imental data, as one can appreciate in the excellent review [6]. The most recent triumph of the the-
ory was the direct measurement of gravitational waves by the LIGO-Virgo collaborations [7, 8].

Although general relativity is, by far, the most successful theory of gravitational interac-
tions, there is an increasing interest in alternative models of gravity, particularly driven for the 
lack of a complete framework of quantum gravity [9–15], and the necessity of hypothesising a 
dark sector that accounts for approximately 96% of the energy content of the Universe [16–20].

The existence of these problems is a signal of new physics, and their solutions require either 
including new fields or changing the gravitational theory. The latter suggests that Einstein’s 
theory is an effective theory of gravity and, therefore, one may consider alternative models. 
Among the generalisations one encounters for example: the Einstein–Cartan theory, which 
extends general relativity by allowing a non-symmetric connection, but considers the same 
action [21–24]; models with extra dimensions, firstly proposed by Kaluza and Klein [25, 26]; 
Lovelock models, which are build under the same premises than General Relativity, but in any 
dimension [27]; the metric-affine models, in which the conditions of metricity and vanishing 
torsion are generally dropped [28]; the Lovelock–Cartan model, which are the extension of 
Lovelock models with a non-symmetric connection [29]; and many others.

Inspired by the fact that fundamental interactions (other than gravity) are described by 
gauge theories whose dynamical field is a connection, seems reasonable to search for a model 
of gravity described solely by a connection. The first affine model of gravity was proposed by 
Eddington, who considered an action defined by the square root of the Ricci tensor [30] (See 
also [31]). Moderns attempts to describe gravity as a theory for the affine connection have 
been proposed in [32–40].

Recently, a novel model has been proposed, dubbed polynomial affine gravity, which is 
built out with polynomial terms of the irreducible components of the connection [41–44], 
assuming invariance under the group of diffeomorphims and no explicit use of a metric, i.e. 
even when the spacetime is metric this field plays no role in the mediation of gravitational 
interactions5. The action of polynomial affine gravity has very interesting features: (i) It is 
power-counting renormalisable6; (ii) No other term can be added, i.e. all vacuum solutions of 
general relativity are solution of polynomial affine model of Gravity, and particularly it is not 
possible to add counter-terms; (iii) All the couplings are dimensionless, suggesting that the 
model is a conformal theory at tree level; (iv) The torsion-free sector is a consistent truncation 
compatible with general relativity, i.e. all vacuum solutions of general relativity are solution 
of polynomial affine model of gravity, and particularly it passes the classical test of gravity; 
and (v) The structure of the model yields no three-point graviton vertices, which might allow 
to overcome the no-go theorems found in [45, 46]7.

5 In general relativity the metric plays a double role: it is the instrument that serves to measure distances, and also 
it is the field that mediates gravity. The idea behind metric-affine models is that those roles are played by different 
fields, but both fields are dynamic. In our construction, we manage to build a model of gravity without the need of 
an instrument that measures distances.
6 We highlight that this is a necessary but not sufficient condition for the model to be renormalisable.
7 Regarding the aforementioned no-go theorem, a similar phenomenon happens in the case of a massive spin-1 field 
coupled to a non-Abelian gauge field. A necessary condition for making the theory consistent with perturbative 
unitarity is the absence of a three-point vetex for the massive field [47].
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There are several conceptual subtleties one has to rethink about when working with an 
affine model. The most recurrent question is: How do we measure distances if the model 
lacks a metric? In this paper we aim to broaden current knowledge on those subtleties. With 
this in mind, in section 2 we briefly review the polynomial affine model of gravity, and re-
formulate the model in terms of geometrical objects with simpler interpretation. In addition, 
we argue that the limit of zero torsion is well defined, i.e. it is a consistent truncation of 
the model, and show that the field equations  on this sector are a known generalisation of 
the Einstein field equations. Then, in section 3 we proceed—by restricting ourselves to the 
torsion-free sector—to find cosmological solutions of the field equations [43], that extend the 
results reported in [44]. In the absence of a metric there is no concept of geodesic, however 
the concept of self-parallel curve is still valid. Assuming that the trajectories of free falling 
test particles are self-parallel curves, we analyse them in section 4 and show that, there exist 
a parametrisation in which the (r,ϕ)-restriction of the equations is nothing but the expected 
from the Friedman–Robertson–Walker model. At this point, the obstruction is that without a 
metric it is not possible to differentiate between trajectories of massive and massless particles. 
In section 5 we show that under certain conditions the Ricci tensor is a well-behaved (emer-
gent) metric8, allowing to define space-like, time-like or light-like vectors, and providing the 
arena for an affine definition of Einstein manifolds. Then, in section 6 we mention how some 
basic cosmological quantities are defined in terms of the parametric functions of the connec-
tion. In section 7 we conclude with a discussion of the results. For the sake of completeness 
we include some appendixes. In appendix A we review the dubbed dimensional analysis that 
allowed us to build the action. In appendix B we show the explicit contribution of each term 
of the action to the field equations.

2. The model of polynomial affine gravity

The polynomial affine gravity is an alternative theory of gravitation, whose sole fundamental 
field is the affine connection, Γ̂. Notice that without the use of a metric, one calculates the cur-
vature and the Ricci tensors, but not the curvature scalar. Therefore, it is not possible to write 
an equivalent action to the Einstein–Hilbert action.

Our goal is to build up the most general action which is invariant under the group of dif-
feomorphims. Firstly, one could try to use the connection as a whole, however this yields no 
interesting models, since the obtained terms are topological invariants9,

S[Γ̂ ] =

∫ (
a1R̂µν

α
βR̂λρ

β
α + a2R̂µν

α
αR̂λρ

β
β

)
dVµνλρ,� (1)

which are the four-dimensional Pontryagin density and the product of (generalised) two-dimen-
sional Pontryagin densities. In the above equation we have introduced the natural volume form, 
defined as the wedge product of the coordinates, i.e. dVαβγδ = J(x) dxα ∧ dxβ ∧ dxγ ∧ dxδ for 
an arbitrary nonvanishing—within a chart—function J(x).

The irreducible components of the connection, used to build the action, are defined as10

8 We prefer to call this metric ‘emergent’, because it is a derived instead of a fundamental geometrical object.
9 All other possible terms are related to these, up to boundary terms.
10 In a model with a metric, the connection can always be decomposed into the Levi-Cività component and the 
distorsion. The upper index of the later can be lowered with the metric, and since the distorsion is a tensor, it 
decomposes according with the Young projection, i.e. it has a completely symmetric and antisymmetric parts plus 
a component with mixed symmetries. A detailed analysis of the irreducible components of the connection in the 
metric case can be found in [48, 49]. The central difference with our approach is that without the use of a metric, 
only the lower indices can be decomposed through Young projection, as shown in equation (2).
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Γ̂µ
λ
ν = Γ̂(µ

λ
ν) + Γ̂[µ

λ
ν]

= Γµ
λ
ν + εµνσκT λ,σκ +A[µδ

λ
ν]

= Γµ
λ
ν + Bµ

λ
ν + δλ[µAν],

�

(2)

where we have first separated the symmetric and antisymmetric part in the lower indices (the 
latter is nothing but the torsion of the connection), in the second line we have renamed the 

symmetric part of the affine connection Γ̂(µ
λ
ν) ≡ Γµ

λ
ν  and provided a reparametrisation of 

the torsion in terms of its trace (Aµ) and a dual of a Curtright-like tensor11, while in the third 
line the B field is just the traceless part of the torsion. All these elements transform as tensors 
under diffeomorphism, except for the symmetric part of the affine connection, Γµ

λ
ν, which 

consequently must be included in the action solely through the covariant derivative12.
In order to build the most general action using the irreducible fields, Γµ

λ
ν, Bµ

λ
ν  and 

Aµ, the strategy to write down the action is to define the most general scalar density, where 
the dynamics is given by the covariant derivative with respect to the symmetric part of the 
connection.

Using the second parametrisation in equation (2), the most general action is

S =

∫
dVαβγδ

[
B1Rµν

µ
ρBα

ν
βBγ

ρ
δ + B2Rαβ

µ
ρBγ

ν
δBµ

ρ
ν + B3Rµν

µ
αBβ

ν
γAδ

+ B4Rαβ
σ
ρBγ

ρ
δAσ + B5Rαβ

ρ
ρBγ

σ
δAσ + C1Rµα

µ
ν∇βBγ

ν
δ + C2Rαβ

ρ
ρ∇σBγ

σ
δ

+ D1Bν
µ
λBµ

ν
α∇βBγ

λ
δ + D2Bα

µ
βBµ

λ
ν∇λBγ

ν
δ + D3Bα

µ
νBβ

λ
γ∇λBµ

ν
δ

+ D4Bα
λ
βBγ

σ
δ∇λAσ + D5Bα

λ
βAσ∇λBγ

σ
δ + D6Bα

λ
βAγ∇λAδ + D7Bα

λ
βAλ∇γAδ

+ E1∇ρBα
ρ
β∇σBγ

σ
δ + E2∇ρBα

ρ
β∇γAδ + F1Bα

µ
βBγ

σ
δBµ

λ
ρBσ

ρ
λ

+ F2Bα
µ
βBγ

ν
λBδ

λ
ρBµ

ρ
ν + F3Bν

µ
λBµ

ν
αBβ

λ
γAδ + F4Bα

µ
βBγ

ν
δAµAν

]

�

(3)

where the covariant derivation and the curvature are defined with respect to the symmetric 
connection, i.e. ∇ = ∇Γ and R = RΓ. The action is defined up to boundary and topological 
terms. Although the dropped terms are relevant when studying global aspects of the model, 
they do not contribute to the equations of motion. In order to write down the action we used 
a variation of the dimensional analysis method introduced in [42]. Details of the dimensional 
analysis are shown in appendix A.

Interestingly, all of the coupling constant are dimensionless, which from the view point 
of quantum field theory is desirable if one is interested in trying to quantise the model. In 
addition, as shown by the dimensional analysis in [42], there is a finite number of possible 
terms contributing to the action (once those ignored in equation (3) are included), which we 
interpret as a rigidity of the model, given than in the hypothetical scenario of quantisation of 
polynomial affine gravity all the counter-terms should have the form of terms already present 
in the original action.

2.1.  Field equations

In what follows, we will obtain the field equations of the model using the standard variational 
principle. It is well-known that to ensure the well-posedness of the variational problem no 

11 This was the parametrisation of the decomposition utilised in [41–43].
12 Notice that under similar requirements but in odd dimensions, there are Chern–Simons terms, in which the con-
nection enters explicitly in the action. See for example the three-dimensional construction in [41].
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second-class constraints should be present, or higher derivative terms might appear in the field 
equations. In general relativity, one needs to add the Gibbons–Hawking–York term to solve 
this problem. Although the absence of second-class constraints in polynomial affine gravity 
has not been proven yet, the structure of the action in equation (3) suggests that the variational 
problem is well-posed13.

Under the assumption that no Gibbons–Hawking–York term is needed, and since the action 
contains up to first derivatives of the fields, the field equations are obtained through the Euler–
Lagrange equations,

∂µ

(
∂L

∂ (∂µΓν
λ
ρ)

)
− ∂L

∂Γν
λ
ρ
= 0,

∂µ

(
∂L

∂ (∂µBν
λ
ρ)

)
− ∂L

∂Bν
λ
ρ
= 0,

∂µ

(
∂L

∂ (∂µAν)

)
− ∂L

∂Aν
= 0.

�

(4)

A simple way of dealing with the field equations was introduced by Kijowski in [32], and we 
will reviewed in what follows14.

In the following, we present an alternative form of writing the Euler–Lagrange equa-
tions presented above, in a way that the calculations are easier to follow. Nonetheless, the 
explicit calculations are given in appendix B.

2.1.1.  Field equations for the symmetric connection.  The canonically conjugated momenta of 
the connection are defined by

Π µν ρ
Γ λ =

∂L

∂ (∂µΓν
λ
ρ)

≡ ∂L

∂ Γµν
λ
ρ

,� (5)

and since the derivative of the connection appears only in the curvature tensor, it follows that

Π µν ρ
Γ λ =

∂L

∂Rαβ
γ
δ

∂Rαβ
γ
δ

∂Γµν
λ
ρ
≡ z αβ δ

Γ γ

∂Rαβ
γ
δ

∂Γµν
λ
ρ

.� (6)

The last term in equation (6) can be calculated explicitly from the definition of the curvature 
tensor,

∂Rαβ
γ
δ

∂Γµν
λ
ρ
= 4 δγλδ

µ
[αδ

(ν
β]δ

ρ)
δ ,� (7)

from which it follows that

Π µν ρ
Γ λ = 2z [µν] ρ

Γ λ + 2z [µρ] ν
Γ λ .� (8)

The last equation implies that the canonical momenta satisfy the Jacobi–Bianchi identity,

Π
[µν ρ]

Γ λ = 0.� (9)

13 Analysis of affine analogues to the Gibbons–Hawking–York term can be found in [50–55].
14 Our notation is inspired by that of the cited work, but it might differ in both symbols and signs. We advise to be 
careful if you would like to compare the results.
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On the other hand, the second term in the Euler–Lagrange equations for Γ yields

∂L

∂Γν
λ
ρ
=

∂L

∂Rαβ
γ
δ

∂Rαβ
γ
δ

∂Γν
λ
ρ

.� (10)

Once again the last term can be calculated from the definition of curvature

∂Rαβ
γ
δ

∂Γν
λ
ρ

= 4
[
δγλδ

(ν
[αΓβ]

ρ)
δ + δρδ δ

(ν
[βΓα]

γ)
λ

]
,� (11)

and then,

∂L

∂Γν
λ
ρ
= 2

[
z [νβ] δ
Γ λ Γβ

ρ
δ + z [ρβ] δ

Γ λ Γβ
ν
δ

+ z [βν] ρ
Γ γ Γβ

γ
λ + z [βρ] ν

Γ γ Γβ
γ
λ

]

=
1
2
Π νβ δ

Γ λ Γβ
ρ
δ +

1
2
Π ρβ δ

Γ λ Γβ
ν
δ +Π βν ρ

Γ γ Γβ
γ
λ

= −Π µν δ
Γ λ Γµ

ρ
δ −Π µρ δ

Γ λ Γµ
ν
δ +Π µν ρ

Γ γ Γµ
γ
λ.

�

(12)

Therefore, the field equations for the symmetric part of the connection are

∇µΠ
βν ρ

Γ λ =
∂∗L

∂Γν
λ
ρ

.� (13)

In this last equation, we have used the fact that the canonical momenta are densities, thus there 
are two term (which seems to be missing above) that cancel themselves15. The asterisk on the 
right-hand side of equation (13) denotes the partial derivative with respect to the connection 
that is not contained in the curvature tensor.

Notice that there are seven term in which the symmetric part of the connection enters 
through the curvature tensor, while it enters through the covariant derivative of the tensors B 
and A in eleven terms. Noteworthily, there are only two terms in which the symmetric part of 
the connection enters in both ways, these are the terms in the action with coupling constants 
C1 and C2. Furthermore, the terms in the action with couplings C1 and C2 are the only which 
are linear in either B and A fields. Hence, these are the terms which could possibly contribute 
to the field equations in the sector of vanishing torsion, i.e. A → 0 and B → 0.

2.1.2.  Field equations for the B field.  Using the relations

∂∇αBβ
γ
δ

∂(∂µBν
λ
ρ)

= 2δµαδ
γ
λδ

[ν
β δ

ρ]
δ� (14)

and

∂∇αBβ
γ
δ

∂Bν
λ
ρ

= −2Γα
[ν

βδ
ρ]
δ δγλ − 2Γα

[ρ
δδ

ν]
β δγλ + 2Γα

γ
λδ

[ν
β δ

ρ]
δ� (15)

15 The covariant derivative of this tensor density is given by the expression,

∇σΠ
µν ρ

Γ λ = ∂σΠ
µν ρ

Γ λ + Γσ
µ
τΠ

τν ρ
Γ λ + Γσ

ν
τΠ

µτ ρ
Γ λ − Γσ

τ
λΠ

µν ρ
Γ τ + Γσ

ρ
τΠ

µν τ
Γ λ − Γσ

τ
τΠ

µν ρ
Γ λ ,

then, when one contract the σ and µ indices, the second and sixth terms in the right-hand side cancel each other.
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it is straightforward to show that the equations of motion for the B field are

∇µΠ
µν ρ

B λ =
∂L

∂Bν
λ
ρ

.� (16)

2.1.3.  Field equations for the A field.  The field equations for the A field are simpler to calcu-
late, but a rigorous approach as in the previous sections, yields the field equations,

∇µΠ
µν

A =
∂L

∂Aν
.� (17)

2.2. The torsion-less limit

An important result, obtained in [42], is that within the torsion-less sector of the connection, 
the field equations admit all vacuum solutions of Einstein’s gravity, as solutions of the poly-
nomial affine gravity.

The sector of vanishing torsion is equivalent to the limit A → 0 and B → 0. Clearly, such 
limit cannot be taken at the level of the action, but at the equation of motions. In the appendix B,  
the explicit field equations are shown from equations (B.1)–(B.45), and it can be checked that 
the mentioned limit is well-defined. In the torsion-free sector, the only nontrivial field equa-
tions are equations (B.21) and (B.22), i.e.

∇µ

(
Rσα

σ
λ dVµνρα +CRαβ

σ
σδ

µ
λ dVνραβ

)
= 0,� (18)

where C is the ratio of the original parameters of the model, C = C2
C1

. The second term in equa-
tion (18) is proportional to the trace of the curvature two-form, which vanishes in general rela-
tivity. Also, the volume form is not necessarily compatible with the connection. However, if 
one restricts oneself to connections that preserve a volume form, such connections are dubbed 
equiaffine connections [56], the trace of the curvature two-form is ensured and the field equa-
tions simplify further to

∇[µRν]λ = 0,� (19)

which can be written as

∇ρRµν
ρ
λ = 0,� (20)

after using the second Bianchi identity. Equations (19) and (20) are part of a set of well-known 
generalisations of Einstein’s field equations (see for example chapter 16 of [57]).

Particularly, equation  (20) can be obtained as the field equation  for the connection of a 
gravitational Yang–Mills theory,

SSKY =

∫
d4x

√
gRµν

λ
ρRµνρ

λ.� (21)

The above model is known as Stephenson–Kilmister–Yang (or SKY for short) [58–60], but its 
structure requires the inclusion of the metric in order to build the action. Therefore, besides 
equation (20) there is a field equation for the metric, and it spoils desirable features of the 
Stephenson–Kilmister–Yang model [61, 62]16.

16 Notice for example that in terms of the connection, equation (19) is a set of second order differential equations, 
while if we would interprete them as equations for the metric, become a set of third order differential equations.
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The solutions to equation (19) are classified in three categories: (i) Ricci-flat connections, 
Rµν = 0; (ii) connections with parallel Ricci, ∇λRµν = 0; and (iii) connections with harmonic 
curvature, ∇ρRµν

ρ
λ = 0. Interestingly, among the possible solutions of equation (19) one 

encounters the vacuum solutions to the Einstein field equations, dubbed Einstein manifolds. 
A key difference in polynomial affine gravity is that unlike general relativity the cosmological 
constant appears as an integration constant. The same feature occurs in other generalisations 
of general relativity, e.g. unimodular gravity [63].

2.3.  General relativity as a limiting case

The general theory of relativity is a dynamical model of the spacetime, which is assumed to 
be a pseudo-Riemannian (Lorentzian) manifold. A pseudo-Riemannian manifold is an affinely 
connected space, (M,Γ), endowed with a metric structure, i.e. a nondegenerated (invertible), 

symmetric, 
(0

2

)
-tensor g, which is parallel with respect to the affine connection ∇Γg = 0.

Additional restrictions in general relativity are to consider the unique torsion-free connec-
tion compatible with the metric structure, dubbed the Levi-Civita connection, and the volume 
element (dVg) as the unique tensor density such that, for any orthonormal basis { Xi } ∈ TxM, 
dVg(X1, · · · , Xn) = 1.

From the aforementioned considerations it follows that the volume element is the sole con-
stant section on the bundle ΛnT∗M ⊗ oM, where oM is the orientation line bundle.

Notice that the above considerations yield to the field equations  in equation (19), and a 
solution to the parallel Ricci category is given by

Rµν = Λgµν for Λ ∈ R,� (22)

provided by the existence of the metric structure. In section 5, a sort of generalisation of the 
above equation (which defines Einstein manifolds) is obtained when one asks for nondegener-
ated solutions of the parallel Ricci equation.

Equation (22) are the field equations of general relativity in absence of matter, and the 
appearance of these equations from polynomial affine gravity serves to sustain that (vacuum) 
general relativity is a limiting case. The Einstenian limit of polynomial affine gravity was 
first noticed in [42], where in addition it was demonstrated that coupling a (free and massles) 
scalar field with the torsion-less affine model yields to an equivalent set of equations to the 
Einstein–Klein–Gordon system17. In the polynomial affine model of gravity no other source 
for gravity has been considered, but currently we are developing a methodology for dealing 
with the subtleties that appear when trying to couple matter and gravity in this context.

3.  Cosmological solutions on the torsion-free sector

In order to solve the equation (19) one proceeds—just as in general relativity—by giving an ansatz 
compatible with the symmetries of the problem. Using the Lie derivative, we have found the most 
general torsion-free connection compatible with the cosmological principle [43]. Since we shall 
restrict ourselves to the torsion-free sector, the nonvanishing coefficients of the connection are

Γt
t
t = f (t), Γi

t
j = g (t) Sij,

Γt
i
j = h (t) δi

j , Γi
j
k = γi

j
k,

� (23)

17 In [64] the authors showed (under certain conditions) the equivalence between purely affine, purely metric and 
metric-affine formulations of gravity, considering matter fields coupled to these formulations of gravity.
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where f , g and h are functions of time, while Sij and γi
j
k are the three-dimensional rank two 

symmetric tensor and connection compatible with isotropy and homogeneity, defined by

Sij =




1
1−κr2 0 0

0 r2 0
0 0 r2 sin2 θ


 ,� (24)

and

γr
r
r =

κr
1 − κr2 , γθ

r
θ = κr3 − r,

γϕ
r
ϕ =

(
κr3 − r

)
sin2 θ, γr

θ
θ =

1
r

,

γϕ
θ
ϕ = − cos θ sin θ, γr

ϕ
ϕ =

1
r

,

γθ
ϕ
ϕ =

cos θ

sin θ
.

�

(25)

With the connection above, one can calculate the curvature,

Rti
t
j = −Rit

t
j = (ġ + ( f − h)g) Sij

Rmt
n

t = −Rtm
n

t = −δn
m

(
ḣ + h2 − fh

)

Rmi
n

j = −Rim
n

j = (gh − κ) δn
mSij,

�

(26)

and the Ricci tensor,

Rtt = −3
(

ḣ + h2 − fh
)

Rij = (ġ + ( f + h)g + 2κ) Sij.
� (27)

The covariant derivative of the Ricci yields

∇tRtt = ∂tRtt − 2Γt
t
tRtt = −3

[
ḧ + 2hḣ − 3f ḣ − ḟ h − 2fh( f − h)

]
,

∇tRij = ∂Rij − 2Γt
k

iRkj =
[
g̈ + ḟ g + ḣg + ( f − h)ġ − 2( f + h)gh − 4κh

]
Sij,

∇iRtj = −Γi
k

tRkj − Γi
t
jRtt =

[
3gḣ − ġh − 4fg + 2gh2 − 2κh

]
Sij.

�

(28)

Finally, the harmonic curvature expression has a single independent component,

∇[tRi] j = ∂tRij − Γt
k

iRkj + Γi
t
jRtt

=
(

g̈ + ḟ g + f ġ − 2gḣ + 2fgh − 4gh2 − 2κh
)

Sij.
� (29)

In the remaining of this section we will solve the equation  (19). Firstly, notice that the 
Levi-Cività connection from Friedman–Robertson–Walker models is obtained from equa-
tion (23) by setting f   =  0, g = aȧ and h = ȧ

a, implying that all (vacuum) cosmological models 
in general relativity are in the space of solutions of polynomial affine gravity. Moreover, it 
was shown in [44], that within this space of solutions, suitable deviations from the vacuum 
Friedman–Robertson–Walker connection mimic the behaviour of matter content, even though 
equation  (19) aim to describe geometric properties of the manifold exclusively. Secondly, 
our classification of solutions—into Ricci-flat, parallel Ricci and harmonic curvature—is 
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hierarchic, in the sense that once a condition is satisfied, the remaining are satisfied as well. 
Therefore, in order to find a proper solution of the parallel Ricci equations, we have to ensure 
that the connection is not Ricci-flat; and in order to find a proper solution of the harmonic 
curvature equations, neither the Ricci-flat or parallel Ricci condition should be satisfied.

3.1.  Cosmological solutions with vanishing Ricci

A first kind of solutions can be found by solving the system of equations determined by van-
ishing Ricci. From equation (27) the differential equations to solve are

ḣ − ( f − h)h = 0,� (30)

ġ + ( f + h)g + 2κ = 0.� (31)

Since f  is not a dynamical function, the system can be solved in terms of f  (see [44]),

h(t) =
exp (F(t))

Ch +
∫

dt exp(F)
,� (32)

g(t) = exp(−Σ(t))
(

Cg − 2κ
(∫

dt exp(Σ(t))
))

,� (33)

where F =
∫

dt f  and Σ(t) =
∫

dt ( f (t) + h(t)) are integrals of the defining functions, while 
Ch and Cg are integration constants.

3.1.1.  Friedman–Robertson–Walker-like models.  In particular, Friedman–Robertson–Walker-
like models are obtained by setting f   =  0, and besides the trivial solution—h = g = κ = 0—, 
yielding a parametric family of nontrivial solutions,

g(t) =
1

t + Ch

(
Cg − κ(t + Ch)

2) , h(t) =
1

t + Ch
.� (34)

Unlike in general relativity—whose sole Ricci-flat cosmological solution is a flat manifold—, 
the above solution is not flat in general, since its curvature tensor has nonvanishing components

Rti
t
j = −Rit

t
j = −2Cgh2Sij,

Rmi
n

j = −Rim
n

j = Cgh2Sijδ
n
m.

�
(35)

3.1.2.  Case h  =  f .  In these particular subspace, the solutions to equations (30) and (31) are 
given by

f = Ch h = Ch g = Cg exp(−2Cht)− κ

Ch
.� (36)

3.1.3.  Case h  =  −f .  Equations (30) and (31) are solved by

f = − 1
2t + Ch

h =
1

2t + Ch
g = Cg − 2κt.� (37)

3.1.4.  Case h  =  0 and a given f .  In this case, equation  (30) becomes an identity, and  
equation (31) is solved by

g(t) = exp(−F(t))
(

Cg − 2κ
(∫

dt exp(F(t))
))

.� (38)
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3.1.5.  Case g  =  0 and a given f .  In this case, equation (31) requires κ = 0, and h can still be 
solved for a given function f  as

h(t) =
exp (F(t))

Ch +
∫

dt exp(F)
.� (39)

3.2.  Cosmological solutions with parallel Ricci

In this section we solve the equation (28), under the condition that the Ricci tensor is nonzero, 
i.e. ∇λRµν = 0 but Rµν �= 0. The strategy to solve these equations is to propose an ansatz 
for the Ricci tensor, and solve for f , g and h accordingly. Nonetheless, a broaden ansatz is use-
less, thus we focus in the two simpler cases.

3.2.1.  Parallel time-independent Ricci.  A time-independent Ricci has the form,

Rtt = R1, Rij = R2Sij,� (40)
with constant R1 and R2. For this proposal of the Ricci tensor the equation  (28) yield the 
constraints

∇tRtt = 0 ⇒ f = 0 ∨ R1 = 0,� (41)

∇tRij = 0 ⇒ h = 0 ∨ R2 = 0,� (42)

∇iRtj = 0 ⇒ h = 0 ∨ (g = 0 ∧ κ = 0).� (43)

Notice that h  =  0 implies R1  =  0, and g = 0 ∧ κ = 0 implies R2  =  0. Therefore, there is no 
solution of the equation (28) for a time-independent nondegenerated Ricci.

Given the above conditions, there are solely two solutions with degenerated nonvanishing 
Ricci. Firstly, for vanishing h, one has

h = 0,
f = undetermined function,

g = exp(−F)
(

Cg + (R2 − 2κ)
∫

dt exp(F)
)

.
�

(44)

Similarly, for g = 0 ∧ κ = 0 ∧ f = 0, the solution is given by

h =

√
R1

3
tanh

(√
R1

3
(t − t∗)

)
,

f = 0,
g = 0.

�

(45)

3.2.2.  Parallel Ricci with a ‘scale factor’.  We now consider an ansatz for the Ricci tensor 
with the form of a Friedman–Robertson–Walker metric, given that this has the required  
symmetries, i.e.

Rtt = −R1, Rij = A(t)Sij.� (46)
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With the above ansatz, the parallel Ricci equations require,

∇tRtt = 2fR1 ⇒ f = 0 ∨ R1 = 0,

∇tRij = Sij(Ȧ − 2hA) ⇒ A = CA exp(2H),

∇iRtj = −Sij(hA − R1g) ⇒ g =
hA
R1

; (R1 �=0).

� (47)
Unlike the previous case, equation (47), accept a nondegenerated solution given by

f = 0,

h =

√
R1

3
tanh

(√
R1

3
(t − t∗)

)
,

A = CA cosh
2

(√
R1

3
(t − t∗)

)
,

g =
1√

12R1
sinh

(√
4R1

3
(t − t∗)

)
.

�

(48)

Notice that degenerated solutions, with R1  =  0, require either vanishing CA or a constant A for 
h  =  0, which are part of previously considered cases.

3.3.  Cosmological solutions with harmonic curvature

3.3.1.  Harmonic curvature with time-independent Ricci.  For a time-independent Ricci tensor, 
see equation (40), the harmonic curvature condition, equation (29), becomes

∇[tRi] j = −(gR1 + hR2)Sij,� (49)

i.e. the harmonic curvature requires

g = −R2

R1
h.� (50)

Therefore, the consistency equations for the Ricci are rewritten, after using equation (50), 
as

ḣ + h2 = β1, β1 =
R1

3R2
(3κ− R2),� (51)

f =
β2

h
, β2 =

R1

3R2
(3κ− 2R2).� (52)

Notice that the general solution is parameterised by the function h, and for vanishing β2 the 
function f  is zero, however this solution is degenerated for vanishing κ.

We assume that the product of the constants R1 and R2 is positive, i.e. R1R2 > 0. Then, the 
solution is
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h =





ω tanh (ω(t − t∗)) ω2 = β1 > 0,
−ω tan (ω(t − t∗)) −ω2 = β1 < 0,

1
t−Ch

β1 = 0,

g = −R2

R1
h,

f =
β2

h
.

�

(53)

3.3.2.  Harmonic curvature from Ricci with a ‘scale factor’.  Finally, the harmonic curvature 
condition for a Ricci with a scale factor, obtained from (47), is

∇[tRi] j = (Ȧ − gR1 − hA)Sij,� (54)

whose solution for g is

g =
Ȧ − hA

R1
.� (55)

Substituting equation (55) into the consistency equations for the Ricci, we obtain

ḣ + h2 − fh =
R1

3
,� (56)

Ä + f Ȧ −
(

2fh +
4R1

3

)
A = −2κR1.� (57)

Equation (56) can be solved for a constant function f   =  Cf , therefore, we shall restrict our-
selves to that case. In this particular case, equation (56) can be rewritten as

ḣ +

(
h −

Cf

2

)2

= β3 β3 =
1

12
(3C2

f + 4R1),� (58)

and its solutions are

h =




ω tanh(ω(t − t∗)) +
Cf

2 ; ω2 = β3 > 0,
−ω tan(ω(t − t∗)) +

Cf

2 ;−ω2 = β3 < 0,
1

t−t∗
+

Cf

2 ; β3 = 0,

±ω +
Cf

2 ; ω2 = β3 > 0.

� (59)

Worth to highlight, the last case is a constant solution for h.
For the simplest solutions of h—a constant function—the second consistency condition, 

equation (57), can be integrated. Define the constant

α = 2Cf Ch +
4R1

3
,

where h = Ch = ±ω + Cf /2 is the constant determined from equation (59) above. Therefore, 
the exact solutions for the scale factor is

A = A1 exp
(
(2Ch − Cf )t

)
+ A2 exp

(
− 2Cht

)
+

2κR1

α
.� (60)
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Additionally, second simplest solution to the equation (57) is obtained for β3 = 0, in whose 

case the R1 constant is determined by the value of Cf , and the function h = 1
t +

Cf

2 . The solu-
tion for A is

A = t(Cf t + 2)
[
A1 + A2CfΓ(0, Cf t)

]
− A2e−Cf t(Cf t + 1) +

3
4
κC2

f t2,� (61)

with Γ(0, Cf t) an incomplete gamma function defined by the expression

Γ(0, Cf t) =
∫ ∞

1
dx

e−xCf t

x
.

The scale factor can be obtained for the other choices of h when one sets the Cf   =  0. In 
those cases, the solutions to equation (57) is

A = A1 exp

(√
4R1

3
t

)
+ A2 exp

(
−
√

4R1

3
t

)
+

3κ
2

,� (62)

where the behaviour of the exponential functions is managed by the sign of the constant R1.

4. The affine self-parallel curves

In general relativity, given that the gravitational connection is the one of Levi-Cività, the 
concepts of geodesic and self-parallel curve are equivalent, however, for generic connections 
these concepts differ. Geodesics play an important role in general relativity, since they repre-
sent the trajectories followed by free falling particles.

Although it is not possible to define geodesics in (purely) affine models of gravity, we shall 
postulate that trajectories of free falling particles are described by self-parallel curves

ẍµ + Γν
µ
λẋν ẋλ = 0,� (63)

where now Γ is a generic connection, and the dot represents—unlike in the previous sec-
tions—derivation with respect to the affine parameter of the curve, τ .

With the coefficients of the cosmological affine connection, equation (23), the self-parallel 
curves are given by

ẗ + f ṫ2 + gSijẋiẋ j = 0,

ẍi + 2hṫẋi + γj
i
kẋ jẋk = 0.

The term that mixes the time with the spacial coordinates can be eliminated by a redefinition 
of the affine parameter as

d
dl

= CTe2H d
dτ

= CTe2
∫

dt h d
dτ

,

with CT an arbitrary constant. In terms of the new parameter (were now the dot derivative is 
with respect to the parameter l) the self-parallel equations become

ẗ + ( f − 2h)ṫ2 + gSijẋiẋ j = 0,

ẍi + γj
i
kẋ jẋk = 0.

� (64)

The three-dimensional restriction of equation  (64) are the same as the spacial geodesic 
equations for a Friedman–Robertson–Walker model in General Relativity [65].

O Castillo-Felisola et alClass. Quantum Grav. 37 (2020) 075013



15

The above shows that there exists a parametrisation of the self-parallel curves from poly-
nomial affine gravity, in which the restriction to the spatial coordinates coincides with the 
geodesic of the Friedman–Robertson–Walker models on general relativity.

For the sake of completeness, we remind to the readers that due to the isotropy, one can set 
θ = π

2 , and thus the spatial part of equation (64) are

r̈ +
kr

1 − kr2 ṙ2 +
(
kr3 − r

)
ϕ̇2 = 0

ϕ̈+ 2
ṙϕ̇
r

= 0.
�

(65)

Hence, in terms of the new affine parameter, the geometry of the r(ϕ)-curves is determined by

r(ϕ) =



sin(l) for κ = 1
l for κ = 0
sinh(l) for κ = −1

,� (66)

for ϕ̇ = 0, i.e. for radial self-parallels, and

r(ϕ) =
1√

κ+ B2 cos2(ϕ+ β)
,� (67)

for ϕ̇ �= 0.
Interestingly, in this context, although the equation that describes the geometry of the orbits 

is the same, in polynomial affine gravity there is no way to differentiate among the orbits of 
massive and massless particles, since the absence of a metric precludes the classification of 
vectors into time-like, space-like or null-like.

5. The Ricci tensor as a metric

From the last section, we understood that—generically—the geometry of the self-parallel 
curves (or geodesics) is solely determined by the notion of parallelism, however, their rela-
tion with physical notions (as trajectories, equivalence principle and principles of relativity) 
requires the existence of a metric. Nonetheless, our proposal stands on the idea that no metric 
is required to formulate the model.

A coruscating fact is that, unlike in general relativity, a metric field is not necessarily a 
fundamental geometric object. In what follows, we highlight that under certain conditions 
the Ricci tensor could play the role of a emergent (or derived) metric. Therefore, we shall 
consider the affine connection as the fundamental field of polynomial affine gravity, while the 
(non-degenerated) symmetric part of the Ricci tensor serves as metric. Let us first remind the 
formal definition of a metric.

Definition 5.1 (Metric).  Let M be an m-dimensional differential manifold. A pseudo-Rie-

mannian metric on M is a 
(0

2

)
-tensor field g on M satisfying:

	 (i)	�g is a symmetric tensor field, and
	(ii)	�g is nondegenerated, i.e. ∀X ∈ TM  the quantity g(X, Y) = 0 if and only if TM � Y = 0.

A pair (M, g) is called a pseudo-Riemannian manifold.

Notice that the second condition in definition 5.1 ensures that as a map, g : TM → T∗M , 
the metric field has trivial kernel and thus it is invertible.
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The metric is the fundamental field in general relativity, and all other geometrical proper-
ties of the manifold—connection, curvature, etc—are derived from it,

g → Γ → Riem → Ric → R .� (68)

A peculiar, and particularly important type of manifolds are the Einstein spaces, since the 
chain of derived quantities closes, see figure 1.

The closure condition for Einstein manifolds is expressed as

Rµν = Λgµν .� (69)

It is worth mentioning that in the vanishing Ricci case, despite the equation (69) is satisfied, 
one cannot say that the chain really closes, since

g → Γ → Riem → Ric = 0.

In our model, we start with an affinely connected manifold (M,Γ), were the ansatz of the 
affine connection is determined by the symmetries of the problem18. Without the use of a met-
ric, the chain of derided products stops at the Ricci tensor,

Γ → Riem → Ric.� (70)

Nevertheless, the above chain could close if the Ricci tensor—as in the case of Einstein mani-
folds—satisfies the conditions of a metric, i.e. conditions in definition 5.1. Assuming such, the 
chain of derived quantities closes, see figure 2, and therefore it is possible to define an affine 
analogue of Einstein manifolds.

Noticeable, along the developing of this work we restricted ourselves to locally equiaffine 
connections, which ensure the symmetry of the Ricci tensor (see proposition 3.1 in [56]). This 
is precisely the requirement to fulfil the first condition in definition 5.1. The second condi-
tion the Ricci tensor should satisfy in order to be a good metric field is not to posses a zero 
eigenvalue.

Given the classification of solutions of the field equation (19), one concludes that: (i) as 
in general relativity, the relation between the Ricci tensor and the metric interpretation is lost 
for Ricci-flat connections; (ii) in the case of parallel Ricci—if nondegenerated—it is a good 
metric field, which additionally satisfies the ‘metricity’ condition; (iii) in the case of proper 

g

Γ

Riem

Ric

Figure 1.  Closed chain of derived quantities for (Riemannian) Einstein manifolds.

18 A noticeable difference with the approach in General Relativity is that (in principle) a choice of the connection 
does not determine the signature of the manifold.
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solutions of the harmonic curvature, the Ricci tensor accept interpretation of a metric, but it is 
not compatible with the connection, i.e. does not satisfy the metricity condition.

Since we started from an affinely connected space, (M,Γ), and a derived geometric object, 
the Ricci tensor, introduces a metric structure, we call it an emergent metric.

It can be shown with ease, given a locally equiaffine connection whose Ricci tensor is par-
allel and nondegenerated, that

Γµ
λ
ν =

1
2
Rλσ (∂µRσν + ∂νRµσ − ∂σRµν ) .� (71)

Consequently, in the analysed case the geometry is naturally Riemannian, and we can relate 

the Ricci tensor to a canonical covariantly constant 
(0

2

)
-tensor, g, by

Rµν = Λgµν , with Λ ∈ R∗,� (72)

i.e. the space is an Einstein manifold. An additional comment is that given the relation in equa-
tion (72) it follows that

Γ(R ) = Γ (g).

The fact that the Ricci tensor—or its symmetric part—could play the role of a metric was 
(somehow) anticipated by Schrödinger [31].

6.  Cosmological quantities

In the previous section we argue that even when in principle the space does not posses a metric 
structure, under certain conditions a metric structure emerges through the symmetric comp
onent of the Ricci tensor.

A consequence of the emergence of a metric is that one can now distinguish between null-
like and time-like self-parallel curves, which could be interpreted as the trajectories of free-
falling particles—as mentioned in section 4. In particular, it is possible to define a null-like 
self-parallel curve by the equations

ẍµ + Γλ
µ
ρẋλẋρ = 0,

Rµν ẋµẋν = 0.
� (73)

Γ

Riem

Ric

Figure 2.  Closed chain of derived quantities for affine Einstein manifolds.
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The special case of a light ray coming in the radial direction yields

dt = ±
√

Rrr

Rtt

dr√
1 − κr2

,
� (74)

Figure 3.  Behaviour of the function A(t) for certain values of the parameters 
(A1,A2,κ, Ch, Cf ).

Figure 4.  Behaviour of the function A(t) in equation  (61), for certain values of the 
parameters (A1,A2,κ, Cf ).
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which by renaming

a(t) =

√
Rrr

Rtt
,

� (75)
is the same equation that serves to define the cosmological redshift, i.e.

1 + z =
a(t0)
a(t1)

=

√
Rrr (t0)Rtt (t1)
Rtt (t0)Rrr (t1)

.
� (76)

Not surprisingly, after the emergence of the metric, the physical properties of the space are 
determined by a single function, i.e. the scale factor. If we focus on the nondegenerated Ricci 
tensors found in section 3, the standard scale factor is defined as

a(t) =
√

A(t),

where A(t) is the function defining the Ricci tensor in equation (46).

7.  Conclusions and remarks

In this paper we have extended the set of known solutions to the parallel Ricci and harmonic cur-
vature equations, when these are defined in terms of a connection instead of a metric19. We also 
analysed the equation of self-parallel curves and noticed that, without the aid of a metric, it is 
not possible to distinguishing between the (yet hypothetical) trajectories followed by massive or 
massless free-falling particles. Then, we show that the Ricci derived from the connection would, 
under certain conditions, be a good metric. In these cases, it is possible to surpass the mentioned 
limitation, and distinguish trajectories followed by massive and massless free-falling particles. 
Moreover, the emergent metric allows us to make contact with the standard cosmological quanti-
ties such as the redshift, scale factor, Hubble and des-acceleration parameters, etc.

We first would like to highlight the fact that a very important step toward the simplification 
of the polynomial affine model of gravity was due to the change of the field decomposition of 
the connection, equation (2), which alleviate both the geometric interpretation of the irreduc-
ible components of the connection and the process of finding the complete field equations (see 
appendix B). An advantage of having the complete field equations at hand, is that readers can 
convince themselves that the torsion-free sector is a consistent truncation of the model.

Despite the field equations of polynomial affine gravity are well-defined in the torsion-free 
sector, the limit A → 0 and B → 0 is meaningless at the action level because all the terms 
are at least linear in either A or B. Hence, the Feynman rules for the model lack vertices with 
only gravitons20. Furthermore, the effective action from which one can derive the field equa-
tion (19) contains vertices with three and four gravitons.

In the formulation of the polynomial affine model of gravity there is not something such 
as a cosmological constant. Nevertheless, the integration constant included in the process of 
solving equation  (19), plays the role of cosmological constant. This changes the paradigm 
on the cosmological problem, similarly as in unimodular gravity models. The most relevant 
feature of Unimodular Gravity is that vacuum fluctuations of the energy–momentum tensor 

19 For solutions of the mentioned equations in terms of the metric, we refer the readers to chapter 16 of [57]. In ad-
dition, a detailed exposition of the SKY model of gravity can be found in Chap. 7 of [66].
20 Here we call gravitons to the spin-2 field within the symmetric part of the connection, Γµ

λ
ν. This feature suggests 

that the polynomial affine model of gravity could bypass the no-go theorems found in [45, 46].
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do not gravitate [67], removing the discrepancy between the observed and estimated values of 
the vacuum energy [68–70]21.

Although cosmological solutions, in the torsion free sector of the polynomial affine model 
of Gravity, were found in [44], in this work we were able of developing further arguments that 
allows us to obtain explicit solutions in cases that were previously unexplored.

The field equations  of general relativity—without cosmological constant—in vacuum 
are equivalent to Ricci-flat manifolds. In general these solutions are curved spacetimes (i.e. 
Schwarzschild space), however, once one asks for cosmological solutions the field equa-
tions require the manifold to be flat. In the analysis of the solutions of polynomial affine grav-
ity field equations, we notice that they accept Ricci-flat cosmological solutions which are not 
flat. Let us work out the interpretation of this situation.

Remember first that a connection, ∇, on a vector bundle π : E → M assigns to each vector 
field, X, a map ∇X from the space of sections C∞(E) to itself. Therefore, for a given direc-
tion, the connection represents an endomorphism on the space of sections, i.e. C∞(End(E)). 
Similarly, the curvature of a linear connection, R∇, on a vector bundle π : E → M is a two-
form on M with values in C∞(End(E))22. In the gravitational case, the vector bundle is the 
tangent bundle, TM, and in particular when one considers pseudo-Riemannian geometries the 
group structure of End(TM) is a subgroup of the orthogonal group, O( p, q)23.

Now, from equations (26) and (27), it follows that the Ricci-flat condition allows the comp
onents Rti

t
j = −Rit

t
j and Rmi

n
j = −Rim

n
j  of the curvature not to vanish. Thus, the group 

structure underling the endomorphisms of the tangent bundle is the homogeneous Carroll 
group [74]24. The homogeneous Carroll groups can be obtained from the Lorentz group 
through the Inönü–Wigner contraction in the limit c → 0.

Notice that the nonvanishing components of curvature tensor for the Ricci-flat manifolds 
obtained in section 3.1 are

Rti
t
j = −Rit

t
j = −2Sij

(
gh + κ

)
,

Rmi
n

j = −Rim
n

j = Sij δ
n
m

(
gh + κ

)
.

� (77)

Thus, for example the solution in equation (34) is flat—irrespective of the value of κ—if and 
only if Cg vanishes.

The family of solutions in section 3.1.2 has vanishing curvature for Cg  =  0, while the fam-
ily from section 3.1.3 requires Cg = −κCh. Solutions in section 3.1.4 and 3.1.5 are flat solely 
for κ = 0.

The second class of solutions of the field equations are those connections with parallel 
Ricci tensor, ∇λRµν = 0. In order to solve the field equations we required the Ricci tensor to 
be compatible with the cosmological principle, i.e. to preserve the isotropic and homogeneity 
symmetries. We analyse the time-independent and Friedman–Robertson–Walker-like cases.

Noticeable, there are no connections with parallel, nondegenerated, time-independent Ricci 
tensor. However, we found solutions with degenerated Ricci (see equations (44) and (45)).

There are connections with parallel, nondegenerated Friedman–Robertson–Walker-like Ricci 
tensor. In this cases the Ricci represents an emergent metric, and thus the underling structure of 
the manifold is Riemannian. From equation (48) one notices that depending on the sign of the 

21 Very recently, it has been pointed that from an affine point of view, the nature of the cosmological constant is 
related with the volume preserving property (instead of being related to the sectional curvature) [71].
22 See [57, 72, 73].
23 We are using the standard notation that n  =  p   +  q is the dimension of the pseudo-Riemannian manifold, p  the 
number of space-like coordinates and q the number of time-like dimensions.
24 We thank Dr Zurab Silagadze for help us with the identification of this group.
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constant R1 the manifold is a sphere- or hyperbolic-like space25. It can be checked that the solu-
tion in equation (48) satisfies—as the standard Friedman–Robertson–Walker solutions—:

f = 0, a =
√

A,

g = aȧ, h =
ȧ
a

.

Such result, as expected from the discussion in section 5 is not very interesting from the view 
point of the polynomial affine model of Gravity.

The third class of solutions to the field equations, i.e. connections with harmonic curvature, 
does not accept degenerated solutions for the time-independent Ricci case, since either f  or g 
diverge when R1 ∨ R2 vanish. The solutions shown in equation (53) assume that R1R2 > 0, 
which ensures, since the Ricci tensor endows the manifold with a metric structure, a Lorentzian 
signature of the metric. Worth mentioning that it is possible to set β2 = 0 which implies that f  
vanishes (similar to the behaviour of standard Friedman–Robertson–Walker models).

Even more interesting are the solutions of the harmonic curvature equations, whose Ricci 
contains a scale factor. We found solution with nondegenerated Ricci tensor, which again 
endows the manifold with a metric structure. Although this metric structure has a similar form 
than the expected from the Friedman–Robertson–Walker models, the cosmological scale fac-
tor, a =

√
A, admits richer behaviour in the cosmological evolution. Of course, one has to 

remind that that these are (so far) vacuum solutions in polynomial affine gravity.
Notice for example that for constant f   =  Cf  and h  =  Ch, equation (57) becomes the equa-

tion of motion of a damped harmonic oscillator on which a constant force is exerted. This case 
is the simplest case of a cosmological model in polynomial affine gravity with an emergent 
metric, with no equivalent in general relativity. These kind of solutions generalise the metric 
solutions to the field equations ∇[µRν]λ = 0 reported in [44]. The behaviour of the A function 
for certain set of values of the parameters (A1,A2,κ, Ch, Cf ) is shown in figure 3.

We were able to solve the field equations for the harmonic curvature in the case β3 = 0, 
which introduces interesting models of cosmologies through the appearance of the incomplete 
gamma function within the scale factor (see equation (61)). In figure 4 the behaviour of the 
scale-like factor A(t) is shown for a set of values of the parameters (A1,A2,κ, Cf ). Notice the 
complex behaviour for the particular case with dashed lines.

It is noticeable that connections with harmonic curvature could provide an emergent metric 
(i.e. Ricci tensor) corresponding to the standard metric on a Eucliean or Minkowskian space, 
even though their curvature do not vanish.

Further studies, which take the nature of the dark sector into account, will need to be under-
taken. Interesting proposals—in models other than the polynomial affine model of Gravity—
could be found in [71, 75–81].
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Appendix A.  Building the simplified polynomial affine action

Our goal is to build the most general action using the irreducible fields, Γµ
λ
ν, Bµ

λ
ν  and Aµ, 

where the dynamics is given by the covariant derivative with respect to the symmetric part 
of the connection, i.e. ∇ = ∇Γ. Now, the strategy to write down the action is to define the 
most general scalar density. For that sake, inspired by the procedure described in [42], we 
introduced a two operators, N  and W , that count the number of free indices and the weight 
density—respectively—of a given term.

The action of the operators N  and W  on the irreducible components of the connection,

N (A) = −1, N (B ) = −1,
N (∇) = −1, N (dV) = 4,
W (A) = 0, W (B ) = 0,
W (∇) = 0, W (dV) = 1.

�

(A.1)

As example of how the dimensional analysis works, we consider a general term of the form 

O = AmBn∇ p dVq , the action of the N  and W  operators on the term yield the equations

N (O) = 4q − m − n − p,
W (O) = q.
� (A.2)

We are interested in the Lagrangian, i.e. a scalar density. Equation (A.2) require q  =  1 and 
m  +  n  +  p   =  4. The terms contributing to this construction are shown in table A1.

From table A1 one can straightforwardly read terms that vanish, e.g. the term with four A 
does not contribute to the action since its contraction with the volume element is identically 
zero. Whenever two covariant derivatives are contracted with the volume form they give a 
curvature tensor, and since the curvature is defined for the symmetric component of the con-
nection, such curvature satisfy the torsion-free Bianchi identities, which relate some of the 
several possible contractions of indices. An additional argument that helps to drop contraction 
of indices is that B is traceless. Finally, the terms contributing to the action come from

AABB → F4 AAB∇ → D6, D7

ABBB → F3 ABB∇ → D4, D5

AB∇∇ → B3, B4, B5, E2 BBBB → F1, F2

BBB∇ → D1, D2, D3 BB∇∇ → B1, B2, E1

B∇∇∇ → C1, C2.
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Appendix B.  Explicit calculation of the field equations

In order to obtain the field equations we proceed as proposed in [32]26, where an auxiliary field 
is introduced to ease the process. Additionally, we calculate the contribution of each term in 
the action to the field equations separately, since this allows us to obtain manageable expres-
sions, and to check explicitly the possible consistent truncations of the model.

B.1.  Field equations for Γµ
λ
ν

We shown in section 2.1.1 that the field equations for the symmetric part of the connection are

∇µΠ
µν ρ

Γ λ =
∂∗L

∂Γν
λ
ρ

.

The asterisk on the right-hand side denotes the partial derivative with respect to the connection 
that is not contained in the curvature tensor.

B.1.1.  Calculation of the Π µν ρ
Γ λ .  We start calculating the z µν ρ

Γ λ  and then use the equa-
tion (8), to obtain

B1 :
[
2δ[µλ Bα

ν]
βBγ

ρ
δ + 2δ[µλ Bα

ρ]
βBγ

ν
δ

]
dVαβγδ

B2 : 2Bγ
σ
δBσ

(ρ
λ dVν)µγδ

B3 : 2δ[µλ Bβ
ν]

γAδ dVρβγδ +2δ[µλ Bβ
ρ]
γAδ dVνβγδ

B4 : −2Bγ
(ρ

δAλ dVν)µγδ

B5 : −2Bγ
σ
δAσδ

(ρ
λ dVν)µγδ

C1 : 2∇βBγ
ρ
δδ

[µ
λ dVν]βγδ +2∇βBγ

ν
δδ

[µ
λ dVρ]βγδ

C2 : −2∇σBγ
σ
δδ

(ρ
λ dVν)µγδ .

26 Notice that the original method was proposed by Tulczyjew in [86–88] and developed further by Kijowski and 
Tulczyjew in [89].

Table A1.  Possible terms contributing to the action of polynomial affine gravity.

m n p  Terms

4 0 0 AAAA
3 1 0 AAAB
3 0 1 AAA∇
2 2 0 AABB
2 1 1 AAB∇
2 0 2 AA∇∇
1 3 0 ABBB
1 2 1 ABB∇
1 1 2 AB∇∇
1 0 3 A∇∇∇
0 4 0 BBBB
0 3 1 BBB∇
0 2 2 BB∇∇
0 1 3 B∇∇∇
0 0 4 ∇∇∇∇
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B.1.2.  Calculation of ∂∗L
∂Γν

λ
ρ

.  In equation (3), the connection appears explicitly (non in the 

curvature tensor) in the covariant derivative. However, the covariant derivative contains dif-
ferent terms depending on the field it is acting on. The two different terms in which the con-
nection appears are

∇αBβ
γ
δ = ∂αBβ

γ
δ + Γα

λ
βBλ

γ
δ + Γα

λ
δBβ

γ
λ − Γα

γ
λBβ

λ
δ

and

∇αAβ = ∂αAβ − Γα
λ
βAλ.

Now their partial derivatives with respect to the connection are

∂∇αBβ
γ
δ

∂Γν
λ
ρ

= 2δ(να δ
ρ)
β Bλ

γ
δ + 2δ(να δ

ρ)
δ Bβ

γ
λ − 2δc

λδ
(ν
α Bβ

ρ)
δ

and

∇αAβ

∂Γν
λ
ρ
= −2δ(να δ

ρ)
β Aλ.

The terms coming from these derivatives are

C1 : 2Rµλ
µ
αBγ

(ρ
δ dVν)αγδ

C2 : 2Rαβ
σ
σ

[
2Bλ

(ν
δ dVρ)αβδ −δ

(ν
λ Bγ

ρ)
δ dVαβγδ

]

D1 : 2Bτ
σ
λBσ

τ
αBγ

(ρ
δ dVν)αγδ

D2 : 2Bα
σ
βBσ

(ν
τ

[
2Bλ

τ
δ dV |ρ)αβδ −δτλBγ

|ρ)
δ dVαβγδ

]

D3 : 2Bα
σ
τBβ

(ν
γ

[
δρ)σ Bλ

τ
δ + δ

ρ)
δ Bσ

τ
λ − δτλBσ

|ρ)
δ

]
dVαβγδ

D4 : −2Bα
ν
βBγ

ρ
δAλ dVαβγδ

D5 : 2Bα
(ν

βAσ

[
2Bλ

σ
δ dV |ρ)αβδ −δσλBγ

|ρ)
δ dVαβγδ

]

D6 : 2Bα
(ν

βAγAλ dVρ)αβγ

D7 : 0

E1 : 4∇σBα
σ
β

[
2Bλ

(ρ
δ dVν)αβδ −δ

(ν
λ Bγ

ρ)
δ dVαβγδ

]

E2 : 2Fαβ

[
2Bλ

(ρ
δ dVν)αβδ −δ

(ν
λ Bγ

ρ)
δ dVαβγδ

]
.

Notice that in the last set of contributions, the one coming from the term accompanied by the 
coupling D7 yields zero. This is because the antisymmetrization of ∇A is nothing but the field 
strength of the potential A (or the curvature of an Abelian one-form). The strength does not 
depend on the symmetric connection.

B.1.3.  Complete contribution.

B1 : ∇µ

([
2δ[µλ Bα

ν]
βBγ

ρ
δ + 2δ[µλ Bα

ρ]
βBγ

ν
δ

]
dVαβγδ

)
= 0� (B.1)

B2 : ∇µ

(
2Bγ

σ
δBσ

(ρ
λ dVν)µγδ

)
= 0� (B.2)
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B3 : ∇µ

(
2δ[µλ Bβ

ν]
γAδ dVρβγδ +2δ[µλ Bβ

ρ]
γAδ dVνβγδ

)
= 0� (B.3)

B4 : ∇µ

(
−2Bγ

(ρ
δAλ dVν)µγδ

)
= 0� (B.4)

B5 : ∇µ

(
−2Bγ

σ
δAσδ

(ρ
λ dVν)µγδ

)
= 0� (B.5)

C1 : ∇µ

(
2∇βBγ

ρ
δδ

[µ
λ dVν]βγδ +2∇βBγ

ν
δδ

[µ
λ dVρ]βγδ

)
= 2Rµλ

µ
αBγ

(ρ
δ dVν)αγδ� (B.6)

C2 : ∇µ

(
−2∇σBγ

σ
δδ

(ρ
λ dVν)µγδ

)
= 2Rαβ

σ
σ

[
2Bλ

(ν
δ dVρ)αβδ −δ

(ν
λ Bγ

ρ)
δ dVαβγδ

]
� (B.7)

D1 : 2Bτ
σ
λBσ

τ
αBγ

(ρ
δ dVν)αγδ = 0� (B.8)

D2 : 2Bα
σ
βBσ

(ν
τ

[
2Bλ

τ
δ dV |ρ)αβδ −δτλBγ

|ρ)
δ dVαβγδ

]
= 0� (B.9)

D3 : 2Bα
σ
τBβ

(ν
γ

[
δρ)σ Bλ

τ
δ + δ

ρ)
δ Bσ

τ
λ − δτλBσ

|ρ)
δ

]
dVαβγδ = 0� (B.10)

D4 : −2Bα
ν
βBγ

ρ
δAλ dVαβγδ = 0� (B.11)

D5 : 2Bα
(ν

βAσ

[
2Bλ

σ
δ dV |ρ)αβδ −δσλBγ

|ρ)
δ dVαβγδ

]
= 0� (B.12)

D6 : 2Bα
(ν

βAγAλ dVρ)αβγ = 0� (B.13)

E1 : 4∇σBα
σ
β

[
2Bλ

(ρ
δ dVν)αβδ −δ

(ν
λ Bγ

ρ)
δ dVαβγδ

]
= 0� (B.14)

E2 : 2Fαβ

[
2Bλ

(ρ
δ dVν)αβδ −δ

(ν
λ Bγ

ρ)
δ dVαβγδ

]
= 0.� (B.15)

B.2.  Field equations for Bµ
λ
ν  In section 2.1.2 we show that the field equations for the B 

field are

∇µΠ
µν ρ

B λ =
∂L

∂Bν
λ
ρ

.

We now calculate explicitly the contribution of each term in the action to the above field 
equation.
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B.2.1.  Calculation of Π µν ρ
B λ .  The explicit calculation of Π µν ρ

B λ  yield

C1 : −2Rσα
σ
λ dVµνρα

C2 : 2Rαβ
σ
σδ

µ
λ dVνραβ

D1 : −2Bσ
θ
λBθ

σ
α dVµνρα

D2 : 2Bα
σ
βBσ

µ
λ dVνραβ

D3 : −2Bα
ν
λBβ

µ
γ dVραβγ

D5 : 2Bα
µ
βAλ dVνραβ

E1 : 4δµλ∇σBα
σ
β dVνραβ

E2 : 2δµλFαβ dVνραβ .

B.2.2.  Calculation of ∂L
∂Bν

λ
ρ
.  The contributions to the right-hand side of the field equa-

tions for the B-field are,

B1 : 4Rµ(σ
µ
λ)Bγ

σ
δ dVνργδ

B2 : 2Rαβ
µ
σBµ

σ
λ dVνραβ +2Rαβ

[ν
λBγ

ρ]
δ dVαβγδ

B3 : 2Rµλ
µ
αAβ dVνραβ

B4 : 2Rαβ
σ
λAσ dVνραβ

B5 : 2Rαβ
τ
τAλ dVνραβ

D1 : 2Bλ
[ν

α∇βBγ
ρ]
δ dVαβγδ +2Bλ

[ν|
σ∇βBγ

σ
δ dV |ρ]βγδ

D2 : 2Bλ
µ
σ∇µBα

σ
β dVνραβ +2Bα

[ν
β∇λBγ

ρ]
δ dVαβγδ

D3 : 2Bβ
µ
γ∇µBλ

[ρ
δ dVν]βγδ +2Bγ

µ
σ∇λBµ

σ
δ dVνργδ

D4 : 4Bα
σ
β∇(λAσ) dVνραβ

D5 : 2∇λBα
σ
βAσ dVνραβ

D6 : 2Aγ∇λAδ dVνργδ

D7 : 2AλFγδ dVνργδ

F1 : 4Bα
µ
βBµ

σ
τBλ

τ
σ dVνραβ +4Bα

µ
βBγ

[ν
δBµ

ρ]
λ dVαβγδ

F2 : 2Bα
µ
σBβ

σ
τBλ

τ
µ dVνραβ +2Bα

µ
βBµ

σ
λBγ

[ρ
σ dVν]αβγ

− 2Bα
µ
βBγ

σ
λBµ

[ρ
σ dVν]αβγ +2Bα

[ν
βBγ

ρ]
σBδ

σ
λ dVαβγδ

F3 : 2Bλ
[ν

αBβ
ρ]
γAδ dVαβγδ +2Bα

σ
βAγBλ

[ν
σ dVρ]αβγ

+ 2Bσ
µ
λBµ

σ
αAβ dVνραβ

F4 : 4Bα
µ
βAµAλ dVνραβ .

B.2.3.  Complete contribution.

B1 : 4Rµ(σ
µ
λ)Bγ

σ
δ dVνργδ = 0� (B.16)

B2 : 2Rαβ
µ
σBµ

σ
λ dVνραβ +2Rαβ

[ν
λBγ

ρ]
δ dVαβγδ = 0� (B.17)
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B3 : 2Rµλ
µ
αAβ dVνραβ = 0� (B.18)

B4 : 2Rαβ
σ
λAσ dVνραβ = 0� (B.19)

B5 : 2Rαβ
τ
τAλ dVνραβ = 0� (B.20)

C1 : ∇µ (−2Rσα
σ
λ dVµνρα) = 0� (B.21)

C2 : ∇µ

(
2Rαβ

σ
σδ

µ
λ dVνραβ

)
= 0� (B.22)

D1 : ∇µ

(
−2Bσ

θ
λBθ

σ
α dVµνρα

)
= 2Bλ

[ν
α∇βBγ

ρ]
δ dVαβγδ +2Bλ

[ν|
σ∇βBγ

σ
δ dV |ρ]βγδ

� (B.23)

D2 : ∇µ

(
2Bα

σ
βBσ

µ
λ dVνραβ

)
= 2Bλ

µ
σ∇µBα

σ
β dVνραβ +2Bα

[ν
β∇λBγ

ρ]
δ dVαβγδ� (B.24)

D3 : ∇µ

(
−2Bα

ν
λBβ

µ
γ dVραβγ

)
= 2Bβ

µ
γ∇µBλ

[ρ
δ dVν]βγδ +2Bγ

µ
σ∇λBµ

σ
δ dVνργδ� (B.25)

D4 : 4Bα
σ
β∇(λAσ) dVνραβ = 0� (B.26)

D5 : ∇µ

(
2Bα

µ
βAλ dVνραβ

)
= 2∇λBα

σ
βAσ dVνραβ

� (B.27)

D6 : 2Aγ∇λAδ dVνργδ = 0� (B.28)

D7 : 2AλFγδ dVνργδ = 0� (B.29)

E1 : ∇µ

(
4δµλ∇σBα

σ
β dVνραβ

)
= 0� (B.30)

E2 : ∇µ

(
2δµλFαβ dVνραβ

)
= 0� (B.31)

F1 : 4Bα
µ
βBµ

σ
τBλ

τ
σ dVνραβ +4Bα

µ
βBγ

[ν
δBµ

ρ]
λ dVαβγδ = 0� (B.32)

F2 : 2Bα
µ
σBβ

σ
τBλ

τ
µ dVνραβ +2Bα

µ
βBµ

σ
λBγ

[ρ
σ dVν]αβγ

− 2Bα
µ
βBγ

σ
λBµ

[ρ
σ dVν]αβγ +2Bα

[ν
βBγ

ρ]
σBδ

σ
λ dVαβγδ = 0

�

(B.33)

F3 : 2Bλ
[ν

αBβ
ρ]
γAδ dVαβγδ +2Bα

σ
βAγBλ

[ν
σ dVρ]αβγ +2Bσ

µ
λBµ

σ
αAβ dVνραβ = 0� (B.34)

F4 : 4Bα
µ
βAµAλ dVνραβ = 0.� (B.35)
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B.3.  Field equations  for Aµ  In this section, we show the complete Euler–Lagrage equa-
tions for the A field.

B3 : Rστ
σ
αBβ

τ
γ dVαβγν = 0� (B.36)

B4 : Rαβ
ν
σBγ

σ
δ dVαβγδ = 0� (B.37)

B5 : Rαβ
σ
σBγ

ν
δ dVαβγδ = 0� (B.38)

D4 ∇µ

[
Bα

µ
βBγ

ν
δ dVαβγδ

]
= 0� (B.39)

D5 : Bα
σ
β∇σBγ

ν
δ dVαβγδ = 0� (B.40)

D6 : ∇µ

[
Bα

µ
βAγ dVαβγν

]
+ Bα

µ
β∇µAγ dVαβγν = 0� (B.41)

D7 : ∇µ

[
Bα

σ
βAσ dVαβµν

]
+ Bα

ν
βFγδ dVαβγδ = 0� (B.42)

E2 : ∇µ

[
∇σBα

σ
β dVαβµν

]
= 0� (B.43)

F3 : Bσ
τ
λBτ

σ
αBβ

λ
γ dVαβγν = 0� (B.44)

F4 : 2Bα
σ
βBγ

ν
δAσ dVαβγδ = 0.� (B.45)
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