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Abstract
Rapidly rotating Myers–Perry-AdS5 (MPAdS5) black holes are shown to be 
unstable against rotational superradiance of a Maxwell field. From the onset 
of the instability, time-periodic neutral black hole solutions equipped with a 
nontrivial electromagnetic wave are obtained, which we call photonic black 
resonators. In the horizonless limit, they reduce to geon solutions which 
may be called photon stars. Specifically, we introduce a cohomogeneity-1 
ansatz for the metric and Maxwell field and construct such solutions with 
an R × SU(2) isometry group. We compute thermodynamic quantities and 
obtain phase diagrams. It turns out that a photonic black resonator has a higher 
entropy than a MPAdS5 black hole, while it also has a smaller entropy than a 
black resonator without the Maxwell field. This suggests what is expected for 
nonlinear dynamics following the Maxwell superradiant instability with the 
SU(2) isometry.

Keywords: black holes, general relativity, AdS/CFT correspondence

(Some figures may appear in colour only in the online journal)

1.  Introduction

A variety of black hole solutions have been investigated in higher dimensions and asymptoti-
cally anti de Sitter (AdS) spacetime. In higher dimensions, extra spatial directions accommo-
date more symmetries, and various types of black hole solutions can be constructed (see [1] 
for a review). The construction of black hole solutions in asymptotically AdS spacetime has 
been motivated to study in line with the development of the AdS/CFT duality [2–4].

We focus on rotating black holes in five-dimensional asymptotically AdS spacetime 
(AdS5). The Myers–Perry black hole [5], which is the higher dimensional generalization of 
the Kerr black hole solution, was generalized to include a cosmological constant in [6–8]. The 
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thermodynamics of Myers–Perry-AdS (MPAdS) black holes was closely discussed in [9] (see 
also [10]). There are phase transitions for the rotating black hole solutions [11].

Superradiant instability is one of the most drastic phenomena that rotating black holes 
exhibit in AdS spacetime [12, 13]. This is caused by the repetition of the wave amplification 
by superradiance and the reflection of the wave by the boundary of the AdS spacetime. In 
Kerr-AdS4 and MPAdS spacetimes, the superradiant instability has been studied for gravita-
tional perturbations in [14–18]. (See also [19] for a review.) At the onset of the superradiant 
instability, there is a normal mode.

By the nonlinear extension of the normal mode, a new family of dynamical black hole solu-
tions is expected to branch from the rotating black holes at the onset of the gravitational super-
radiant instability [15]. Such black holes have been first constructed in [20] and named black 
resonators because these represent time periodic black holes, having less isometries than 
the original stationary black holes. In particular, we will call such black resonator solutions 
obtained in pure Einstein gravity as gravitational black resonators in order to distinguish them 
from the solutions we will construct in the presence of a Maxwell field in this paper. In AdS4, 
the construction of the gravitational black resonators was done by solving three-dimensional 
partial differential equations without assuming spatial isometries [20]. In AdS5, in contrast, a 
cohomogeneity-1 metric ansatz for gravitational black resonators with an R × SU(2) isom-
etry group has been proposed, and solutions were obtained by solving ordinary differential 
equations (ODEs) [21]. The horizonless limits of black resonators are geons, which can be 
obtained as the nonlinear extension of the normal modes of AdS [21–25]. In previous works, 
black resonators and geons have been considered in pure Einstein gravity.

In this paper, we consider time periodic spacetimes induced by a dynamical Maxwell field 
in AdS5. The stability against Maxwell perturbations has been proven in [12] for the Kerr-
AdS4 and MPAdS with the angular velocities Ω < 1 in units of the AdS radius. In Ω > 1, 
however, Maxwell perturbations also can cause the superradiant instability3. For Kerr-AdS4, 
the Maxwell superradiant instability is shown in [26]. In MPAdS5, we will study it in sec-
tion 2. From the onset of the Maxwell rotational superradiant instability, we can extend a 
new family of time periodic black hole solutions. We will call such solutions equipped with 
an electromagnetic wave as photonic black resonators. Their horizonless limit may be called 
photon stars. Based on our previous work [21], we introduce a cohomogeneity-1 ansatz for 
the metric and Maxwell field with an R × SU(2) isometry group. With this ansatz, the Einstein 
and Maxwell equations reduce to ODEs. Solving them, we construct photonic black resona-
tors and photon stars.

This paper is organized as follows. In section 2, we study the Maxwell perturbation in 
MPAdS5. We evaluate the onset of the superradiant instability for SU(2)-symmetric pertur-
bations. In section 3, we introduce the cohomogeneity-1 ansatz for metric and the Maxwell 
field for photonic black resonators and photon stars. We also write down the complete set of 
Einstein and Maxwell equations given by ODEs. In section 4, we construct photon star solu-
tions by perturbative and fully numerical methods. In section 5, we obtain photonic black 
resonators numerically and compute their thermodynamical quantities. We also discuss the 
phase diagram of the photonic black resonators and photon stars. We conclude in section 6 
with a summary and discussion.

3 In this paper, we consider only the rotational superradiant instability and not the charged one. Therefore, we may 
simply use the term superradiant instability to represent the rotational one.
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2.  Maxwell superradiant instability of Myers–Perry-AdS5 with equal angular 
momenta

In this section, we study a Maxwell perturbation of MPAdS5 with equal angular momenta. 
We first introduce the setup for MPAdS5 and then evaluate the superradiant instability by a 
Maxwell field.

2.1.  Setup

We consider the Einstein–Maxwell theory in asymptotically global AdS5 spacetime. The 
action is given by4

S =
1

16πG5

∫
d5x

√
−g

[
R +

12
L2 − 1

4
FµνFµν

]
,� (2.1)

where G5 is the five-dimensional Newton’s constant and L is the AdS radius. The normaliza-
tion of the gauge field Aµ is chosen so that the Newton’s constant is factored out in the action.

The Myers–Perry-AdS black hole is an exact solution of (2.1). Throughout this paper we 
consider only uncharged black holes, and we set the gauge field trivial for the time being: 
Aµ = 0. While in general the form of the Myers–Perry black hole solution is cumbersome, 
in the case of equal angular momenta the solution is cohomogeneity-1 and the metric can be 
simply written as

ds2 = −(1 + r2) f (r)dτ 2+
dr2

(1 + r2)g(r)

+
r2

4
[
σ2

1 + σ2
2 + β(r)(σ3 + 2h(r)dτ)2] ,

� (2.2)
where we introduced SU(2)-invariant 1-forms σ1,2,3 as

σ1 = − sinχdθ + cosχ sin θdφ,
σ2 = cosχdθ + sinχ sin θdφ,
σ3 = dχ+ cos θdφ .
� (2.3)

Here, (θ,φ,χ) are angular coordinates on S3. Their ranges are 0 � θ � π , 0 � φ < 2π ,  
and 0 � χ < 4π with the periodicity of a twisted torus 
(θ,φ,χ) ∼ (θ,φ+ 2π,χ+ 2π) ∼ (θ,φ,χ+ 4π). The functions in the components of the 
metric are explicitly given by

g(r) = 1 − 2µ(1 − a2)

r2(1 + r2)
+

2a2µ

r4(1 + r2)
, β(r) = 1 +

2a2µ

r4 ,

h(r) = Ω− 2µa
r4 + 2a2µ

, f (r) =
g(r)
β(r)

,
�

(2.4)

4 We do not consider the Chern–Simons term in this paper because it breaks parity symmetry and makes the ansatz 
for the metric and Maxwell field complicated. (See section 3.1.) Therefore, photonic black resonators and photon 
stars which will be constructed in this paper are not solutions in the five-dimensional minimal gauged supergrav-
ity. However, we could generalize our solutions as those in U(1)3-gauged N = 2 five-dimensional supergravity, 
which has three U(1) gauge fields A1, A2, A3. If we set A1 = A2 = 0 and A3  =  A, the Chern–Simons term does not 
contribute to the equations of motion. Then, we would be able to construct photonic black resonators and photon 
stars in the U(1)3-gauged supergravity by using our metric ansatz, while we will also need to consider other fields in 
the theory. We would like to postpone this direction as a future work.
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where µ, a,Ω are parameters. The event horizon is located at r  =  rh defined by the largest root 
of g(r). In h(r), there is a freedom to choose the constant Ω. We fix it so that h(rh)  =  0:

Ω =
2µa

r4
h + 2a2µ

.� (2.5)

Then, ∂τ  becomes the horizon Killing vector: gττ |r=rh = 0. We will consider only MPAdS5 
with equal angular momenta hereafter.

The isometry group of the equal angular momentum solution is R × U(2) where R denotes 
τ -translations generated by ∂τ . That the dependence on the angular coordinates (θ,ψ,χ) 
is only through the SU(2)-invariant 1-forms indicates that the metric (2.2) possesses an 
SU(2)-isometry. This spacetime also has a U(1)-isometry generated by ∂χ. This rotates σ1 and 
σ2: introducing σ± as

σ± ≡ 1
2
(σ1 ∓ iσ2),� (2.6)

we obtain

Li∂χ
σ± = ±σ±,� (2.7)

where L denotes the Lie derivative. Thus the 1-forms σ± have U(1)-charges ±1, respectively. 
However, the combination σ2

1 + σ2
2 = 4σ+σ− is neutral under the U(1)-rotation, and the 

spacetime (2.2) is invariant under ∂χ although each σ1,2 is rotated. In summary, the isometry 
group of the spacetime (2.2) is R × SU(2)× U(1) � R × U(2).

The choice of h(r) employed in (2.4) with (2.5) corresponds to the rotating frame at infin-
ity. We have h(rh)  =  0 and h(∞) = Ω, and this indicates that the AdS boundary, locating at 
r = ∞, is rotating in this coordinate frame. On the other hand, one can also go to the non-
rotating frame at infinity by

dt = dτ , dψ = dχ+ 2Ωdτ .� (2.8)

In the new frame, we introduce h̄(r) ≡ h(r)− Ω together with the 1-forms in that frame σ̄a  
as σ̄1 = − sinψdθ + cosψ sin θdφ, etc. With the bar-notations, the metric (2.2) remains the 
same form under the frame change. The behavior of h̄(r) is h̄(rh) = −Ω and h̄(∞) = 0, which 
means that the AdS boundary is not rotating. In the non-rotating frame at infinity, the horizon 
Killing vector is helical: ∂τ = ∂t +Ω∂ψ/2

5.

2.2.  Onset of Maxwell superradiant instability

Let us consider a Maxwell perturbation which preserves the SU(2) isometry in the spacetime 
(2.2). To discuss the onset of a superradiant instability, it is sufficient to use a τ -independent 
perturbation because a normal mode is induced at the onset of the instability. Then our task 
is to identify the value of Ω when the normal mode arises. We introduce an SU(2)-invariant 
perturbation given by6

A = γ(r)σ1 = γ(r)(σ+ + σ−) .� (2.9)

This has U(1)-charges ±1 and hence breaks the U(1) isometry. The other components of 
SU(2)-invariant Maxwell perturbations are all neutral under the U(1)-rotation. (Namely, dτ , 

5 We define Ω so that it is the angular velocity with respect to ψ/2 ∈ [0, 2π). This definition matches other literature 
such as [9, 15, 16].
6 In [27], the separation of the variables in the Maxwell equations in the Myers–Perry-AdS geometry has been 
shown generally. In the present case, it is easy to identify the ansatz (2.9) by considering symmetries.
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dr  and σ3 are invariant under ∂χ.) Therefore, the perturbation (2.9) decouples from the other 
Maxwell perturbations. For (2.9), the Maxwell equation ∇µFµν = 0 gives

γ′′ = −
{

g′

g
+

1 + 3r2

r(1 + r2)

}
γ′ − 4

(1 + r2) fg2

{
gh2

1 + r2 − f 2

r2

}
γ .� (2.10)

If the background is pure AdS, i.e. f   =  g  =  1, the onset can be analytically obtained. The 
perturbation equation (2.10) can be analytically solved by

γ(r) = r2(1 + r2)−Ω
2F1(1 − Ω, 2 − Ω; 3;−r2),� (2.11)

where regularity was imposed at the center of the AdS, r  =  0. Near the AdS boundary r → ∞, 
the solution behaves as

γ(r) =
2

Γ(2 − Ω)Γ(2 +Ω)
+ · · · .� (2.12)

The Dirichlet boundary condition γ(r)|r=∞ = 0 is satisfied only if Ω = 2 + n (n = 0, 1, 2, · · · ). 
We hence obtain a tower of normal modes in global AdS5.

In the MPAdS5 background, we solve (2.10) numerically with the Dirichlet boundary 
condition at r = ∞ as well as regularity at r  =  rh. Near the horizon, the regular solution 
approaches a constant. Imposing this behavior, we integrate (2.10) from r  =  rh to r = ∞ and 
find the values of (rh,Ω) so that γ = 0 is satisfied at r = ∞. Such (rh,Ω) correspond to the 
onset of the superradiant instability. Depending on the number of nodes between r  =  rh and 
r = ∞, we obtain a tower of normal modes. We label them by n = 0, 1, 2, · · · and call n  =  0 
the fundamental tone and n � 1 overtones.

In figure 1, the instability frequencies are shown for the n = 0, 1, 2 modes. It is expected 
that the onset curves collide the frequency of the extreme MPAdS5 black hole. In appendix B, 
we directly evaluate the linear perturbation on top of the extreme black hole and find that the 
endpoints of the onset curves for the n  =  0 and n  =  1 modes would be located at rh  =  0.5559 
and 0.3720, respectively.

3.  Cohomogeneity-1photonic black resonators

In this section, we introduce the ansatz for cohomogeneity-1 black resonators equipped with 
a nontrivial Maxwell field.

3.1.  Ansatz for metric and Maxwell field

We will take into account the backreaction of the Maxwell perturbation (2.9) to the metric, 
i.e. we will solve the full nonlinear equations of motion derived from the action (2.1). For the 
Maxwell field, we assume the form given in (2.9). For the metric, we use the cohomogeneity-1 
metric ansatz introduced in [21]:

ds2 = −(1 + r2) f (r)dτ 2+
dr2

(1 + r2)g(r)

+
r2

4

[
α(r)σ2

1 +
1

α(r)
σ2

2 + β(r)(σ3 + 2h(r)dτ)2
]

,

� (3.1)
where, compared with (2.2), we introduced an extra function α(r) which deforms the S2 base 
space. The isometry group preserved by the metric (3.1) is R × SU(2).
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We can show that equations  (2.9) and (3.1) form a consistent ansatz as follows. If the 
τ -translation and SU(2) symmetries are assumed, we can write the Maxwell field and metric 
as A = Aa(r)ea  and ds2 = gab(r)eaeb where ea = (dt, dr,σ1,σ2,σ3). Let us consider parity 
transformations P1 and P2 defined as

P1(τ ,χ,φ, θ) = (−τ ,−χ,−φ, θ),
P2(τ ,χ,φ, θ) = (−τ ,−χ,φ,π − θ) .
� (3.2)

By these transformations, the 1-forms ea are transformed as

P1(dτ , dr,σ1,σ2,σ3) = (−dτ , dr,−σ1,σ2,−σ3),
P2(dτ , dr,σ1,σ2,σ3) = (−dτ , dr,σ1,−σ2,−σ3) .
� (3.3)

We choose the Maxwell perturbation to be even under P2. Then we have A = Ar(r)dr + γ(r)σ1
7. Using the U(1) gauge freedom, we can impose Ar  =  0 and thus obtain (2.9). We assume that 
the metric is even under both P1 and P2. Then we obtain the metric (3.1). While the Maxwell 
field (2.9) is odd under the parity P1, the energy momentum tensor made out of it is quadratic 
in the gauge field and therefore is even under P1. Thus the Maxwell field (2.9) is consistent 
with the metric ansatz (3.1)8.

Substituting the ansatz (2.9) and (3.1) into the Einstein and Maxwell equations, we obtain 
the complete set of the equations of motion as

Figure 1.  Onset for the Maxwell superradiant instability. The angular velocity of the 
extreme MPAdS5 black hole Ω = Ωext  is plotted in the dashed line. There are no regular 
MPAdS5 solutions in the upper right region.

7 Adopting P1 instead corresponds to consider A = Ar(r)dr + γ(r)σ2.
8 This argument does not apply if the Chern–Simons term exists, which breaks the parity symmetry. We can still 
impose cohomogeneity-1 to the ansatz for the metric and Maxwell field even in the presence of the Chern–Simons 
term. However, we need to use a much more complicated ansatz without assuming the parity symmetry. It would be 
interesting to construct such solutions in a future work.
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f ′ =
1

r3(1 + r2)2gα2(rβ′ + 6β)
[4r4h2(α2 − 1)2β

+ r3(r2 + 1)g{r(1 + r2) fα′2β − r5h′2α2β2 − 2r2(2 + 3r2) fα2β′}
− 4r2(1 + r2) f{6r2α2β(g − 1) + 3gα2β + (α2 − αβ + 1)2 − 4α2}
+ 4r2(1 + r2)2fgαβγ′2 + 16α3{r2βh2 − (1 + r2) f}γ2],

�
(3.4)

g′ =
1

6r(1 + r2)2fα2β
[−4r2h2(α2 − 1)2β

+ r(1 + r2)g{−r(1 + r2) fα′2β + r3h′2α2β2

− (−r(1 + r2) f ′ + 2f )α2β′}+ 4(1 + r2) f{−6r2α2β(g − 1)− 3gα2β

+ α4 + 4α3β − 5α2β2 − 2α2 + 4αβ + 1} − 8(1 + r2)2fgαβγ′2],
� (3.5)

h′′ =
1

2r4(1 + r2) fgα2β
[8r2fh(α2 − 1)2

− r3(1 + r2)h′α2{r( fg′β − f ′gβ + 3fgβ′) + 10fgβ}+ 32fhα3γ2],
�

(3.6)

α′′ =
1

2r4(1 + r2)2fgαβ
[2r4(r2 + 1)2fgα′2β

− r3(r2 + 1)αα′{r(1 + r2)( fgβ)′ + 2(3 + 5r2) fgβ}
− 8r2(α2 − 1){r2h2β(α2 + 1)− (1 + r2) fα(α− β)− (1 + r2) f}
− 4r2(1 + r2)2fgαβγ′2 − 16α3{r2h2β − (1 + r2) f}γ2],

�

(3.7)

β′′ =
1

2r4(1 + r2) fgα2β
[−2r6gh′2α2β3

− r3α2β′{r(1 + r2)( f ′gβ + fg′β − fgβ′) + 2(3 + 5r2) fgβ}
− 8r2fβ(α4 + α3β − 2α2β2 − 2α2 + αβ + 1)

+ 4 r2(1 + r2)2fgαβ2γ′2 − 16α3β{r2h2β + (1 + r2) f}γ2],

�

(3.8)

γ′′ = −1
2

[
( fgβ)′

fgβ
− 2α′

α
+

2(1 + 3r2)

r(1 + r2)

]
γ′ − 4α2(r2h2β − (1 + r2) f )

r2(r2 + 1)2fgβ
γ .

� (3.9)
We will solve the coupled nonlinear ordinary differential equations  numerically. Because 
of the SU(2)-symmetric ansatz, the problem of solving the Einstein–Maxwell equations  is 
reduced to the one-dimensional problem.

3.2.  Physical quantities at the AdS boundary

From the asymptotic behavior of the fields near the AdS boundary, we can obtain the boundary 
stress tensor Tij and current j i. For the boundary condition, we assume that the spacetime is 
asymptotically AdS and there is no external electromagnetic field at the AdS boundary:

f ,α,β → 1, γ → 0 (r → ∞) .� (3.10)

T Ishii and K Murata﻿Class. Quantum Grav. 37 (2020) 075009
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Note that g → 1 follows from the above conditions and the equations of motion (3.4)–(3.9). 
Solving the equations of motion near the AdS boundary, we obtain the asymptotic form of the 
fields as

f (r) = 1 +
cf

r4 + · · · , g(r) = 1 +
cf + cβ

r4 + · · · , h(r) = Ω +
ch

r4 + · · · ,

α(r) = 1 +
cα
r4 + · · · , β(r) = 1 +

cβ
r4 + · · · , γ =

j
2r2 + · · · ,

�

(3.11)

where Ω, ck (k = f , g, h,α,β), and j  are constants. Note that, as we assume α �= 1, we can no 
longer freely shift the value of Ω while keeping the form of the metric (3.1). The asymptotic 
form of the metric is given by

ds2 � −(1 + r2)dτ 2 +
dr2

1 + r2 +
r2

4
[
σ2

1 + σ2
2 + (σ3 + 2Ωdτ)2] .� (3.12)

The ansatz (3.1) actually corresponds to the rotating frame at infinity. We can move to the 
non-rotating frame by the coordinate transformation (2.8). In this frame, the Killing vector ∂τ  
is written as

K = ∂τ = ∂t +Ω∂ψ/2 .� (3.13)

This can be regarded a helical Killing vector with respect to (t,ψ). In the rotating frame at 
infinity, one might interpret that the rotational U(1) symmetry for χ is simply broken, while in 
the non-rotating frame the interpretation is that the time translations and rotations generated 
by ∂t and ∂ψ are broken to the helical subgroup as (3.13).

The constants Ω and ck are related to the boundary stress tensor Tij (i, j = t, θ,φ,ψ) as

8πG5Tijdxidx j =
1
2
(cβ − 3cf )dτ 2 + 2chdτ(σ3 + 2Ωdτ)−

cf + cβ
8

(σ2
1 + σ2

2)

+
cα
2
(σ2

1 − σ2
2) +

1
8
(−cf + 3cβ)(σ3 + 2Ωdτ)2 .

� (3.14)
See [21] for the detail of the derivation. The boundary electric current j i is defined by

ji ≡
γij√
−γ

δS
δAcan

j
,� (3.15)

where Acan
j  is the boundary value of the canonically normalized Maxwell field,  

Acan
i = Ai/

√
16πG5|r=∞, and γij  is the boundary metric: γijdxidx j = −dτ 2 + {σ2

1 + σ2
2 + (σ3 +  

2Ωdτ)2}/4. The constant j  corresponds to the electric current as
√

16πG5 jidxi = jσ1 .� (3.16)

We will ignore the irrelevant prefactor 
√

16πG5  and simply call j  as the electric current.
To discuss physical conserved charges, it is convenient to work in the non-rotating frame at 

infinity. In that frame, the asymptotic form of the metric becomes

ds2 � −(1 + r2)dt2 +
dr2

1 + r2 +
r2

4
(σ̄2

1 + σ̄2
2 + σ̄2

3) .� (3.17)

T Ishii and K Murata﻿Class. Quantum Grav. 37 (2020) 075009



9

The boundary stress tensor and electric current are rewritten as

8πG5Tijdxidx j =
1
2
(cβ − 3cf )dt2 + 2chdtσ̄3 −

cf + cβ
8

(σ̄2
1 + σ̄2

2)

+ cα(e4iΩtσ̄2
+ + e−4iΩtσ̄2

−) +
1
8
(−cf + 3cβ)σ̄2

3,
� (3.18)

√
16πG5jidxi = j(e2iΩtσ̄+ + e−2iΩtσ̄−) .� (3.19)

The energy density (∝ Ttt ) and angular momentum density (∝ Ttψ) depend on neither time 
nor spatial coordinates. Therefore, the energy and angular momentum are constant in time 
and given by

E =

∫
dΩ3Ttt =

π(cβ − 3cf )

8G5
, J = −

∫
dΩ3Tt(ψ/2) = − πch

2G5
.� (3.20)

On the other hand, the stress part of the boundary stress tensor (the coefficients of σ̄±) and the 
electric current depend on the asymptotic time t. The dependence is time periodic. Hence, the 
photonic black resonators are considered as time periodic solutions in terms of the time t in 
the non-rotating frame. From the viewpoint of the AdS/CFT correspondence, black resonators 
would be considered to be dual to time periodic states in the boundary field theory.

For notational simplicity, we will set G5  =  1 when we show our numerical results. We can 
easily recover G5 by replacing E → G5E , J → G5J , etc.

4.  Photon stars

In this section, we consider horizonless ‘geon’ solutions in the presence of a nontrivial 
Maxwell field. We refer to them as photon stars. In the absence of the black hole horizon, the 
boundary condition is imposed at the center of the global AdS r  =  0 and different from that 
for black resonators. Therefore, we separately discuss the horizonless solutions in this section.

4.1.  Perturbative construction

We start by constructing photon stars perturbatively near pure AdS background. We consider 
the perturbative expansion of the solution as

Φ(r) =
∞∑

m=0

Φ(m)(r)εm,� (4.1)

where Φ(r) = ( f (r), g(r), h(r),α(r),β(r), γ(r))T  collectively denotes the fields, and ε is a 
small parameter. We substitute (4.1) into (3.4)–(3.9) and expand them in powers of ε. Resulting 
equations are solved perturbatively.

The lowest order m  =  0 is the background solution given by the global AdS5 with the trivial 
gauge field in the rotating frame: Φ(0)(r) = (1, 1,Ω(0), 1, 1, 0)T. We set Ω(0) = 2 for the onset 
of the fundamental tone n  =  0. In the leading order m  =  1, we turn on γ(r) as the contribution 
triggering a photon star9: Φ(1)(r) = (0, 0, 0, 0, 0, γ(1)(r))T . The solution at m  =  1 is nothing 
but (2.11), which at Ω = 2 becomes
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γ(1)(r) =
r2

(1 + r2)2 .� (4.2)

The nonlinear perturbation to higher orders can be continued in a similar way as in [21]. To 
solve the perturbative equations of motion, we impose regularity at r  =  0 and asymptotically 
AdS behavior in r → ∞ with a trivial gauge field γ(m)(r)|r=∞ = 0. We obtain the solution as

f (r) = 1 + f (2)(r)ε2 + f (4)(r)ε4 +O(ε6),

g(r) = 1 + g(2)(r)ε2 + g(4)(r)ε4 +O(ε6),

h(r) = 2 + h(2)(r)ε2 + h(4)(r)ε4 +O(ε6),

α(r) = 1 + a(2)(r)ε2 + a(4)(r)ε4 +O(ε6),

β(r) = 1 + β(2)(r)ε2 + β(4)(r)ε4 +O(ε6),

γ(r) = γ(1)(r)ε+ γ(3)(r)ε3 + γ(5)(r)ε5 +O(ε6),

� (4.3)

where

f (2)(r) = −24 + 84r2 + 74r4 + 23r6

27(1 + r2)5 , g(2)(r) = − r2(66 + 5r2 + 20r4)

27(1 + r2)5 ,

h(2)(r) = −1031 + 573r2 + 258r4 + 86r6

945(1 + r2)3 ,

α(2)(r) = −2r2(−223 + 1380r2)

4851(1 + r2)4 , β(2)(r) =
r2(10 + r2)

9(1 + r2)4 ,

γ(3)(r) = − r4(−703 672 + 343 582r2 + 1055 778r4 + 778 037r6 + 187 393r8)

873 180(1 + r2)7 ,

� (4.4)
while we do not reproduce the lengthy expressions in m � 4. It is important that a nontrivial 
γ(1) induces a nonzero α(2). In this way, the nontrivial gauge field deforms the global AdS 
geometry into a time periodic photon star. Up to O(ε5), the physical quantities are obtained as

E = π

(
1
3
ε2 − 403 335 607

7059 660 300
ε4
)

, J = π

(
1
6
ε2 − 349 796 737

14 119 320 600
ε4
)

,

Ω = 2 − 86
945

ε2 +
102 955 247

1111 896 497 250
ε4, j = 2ε− 187 393

436 590
ε3 .

�

(4.5)

4.2.  Full nonlinear solution

To construct photon stars away from the pure AdS, we numerically solve the equations of 
motion (3.4)–(3.9). Imposing boundary conditions at r  =  0 and r → ∞, we use the shooting 
method. On the one hand, evaluating near the center of the AdS (r = 0) and requiring regular-
ity, we obtain series solutions,

9 Alternatively, a purely gravitational perturbation by α(1) �= 0 while γ(1) = 0 could be also turned on at Ω(0) = 2, 
but this does not result in a solution with a nontrivial γ(m). We also find that we cannot simultaneously turn on both 
α(1) and γ(1) in the leading order for a trigger because doing that results in inconsistency in higher orders. There-
fore, one of them must be zero.
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f (r) = f0 +
4
3

f0γ2
2r2 +O(r4), g(r) = 1 − (β2 +

4
3
γ2

2)r
2 +O(r4),

h(r) = h0 +
4
3

h0γ
2
2r2 +O(r4), α(r) = 1 + α2r2 +O(r4),

β(r) = 1 + β2r2 +O(r4), γ(r) = γ2r2 +O(r4) .

�

(4.6)

There are five free parameters in the above expression: ( f0, h0,α2,β2, γ2). On the other hand, 
at r = ∞, we need to satisfy the four conditions in (3.10). Therefore, the photon stars are in 
a one-parameter family. To obtain a solution, in our numerical calculations, we fix the value 
of γ2 and tune the other four parameters ( f0, h0,α2,β2) by the shooting method so that (3.10) 
is satisfied. We repeat this procedure by varying γ2 and construct the family of photon stars.

In figure 2, we show the profile of the functions f , g, h,α,β and γ  for γ2 = 1, 1.5, 2, 2.5. 
Note that γ2 = 0 corresponds to the pure AdS. As γ2 increases, the spacetime is deformed 
from the pure AdS. Shown in the last panel is the norm of the Killing vector (normalized by 
a function of r), gµνKµKν/(1 + r2). It is timelike near r  =  0 but becomes spacelike near the 
infinity. The latter implies that the spacetime of the photon star is dynamical.

Figure 2.  Profile of f , g, h,α,β and γ  for photon stars with γ2 = 1, 1.5, 2, 2.5. The 
norm of the helical Killing vector, K2 = gττ , is also shown, which is normalized by 
1  +  r2 for visibility.

Figure 3.  Mass E, angular velocity Ω, and electric current j  of photon stars as a function 
of the angular momentum J. The perturbative results (4.5) are also plotted for ε � 1.5 
for comparison. For visibility, E  −  2J is taken in the plot of the mass. In each diagram, 
there is a turning point where J is maximum. (a) Mass. (b) Angular velocity. (c) Current.
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From the asymptotic behavior of the numerical solutions, we can read out the coefficients 
Ω, ck and j  in (3.11). They are converted into the physical quantities of photon stars by (3.16) 
and (3.20). In figure 3, we plot the mass E, angular velocity Ω, and electric current j  of the 
photon star as a function of the angular momentum J. For visibility, we take E  −  2J as the 
vertical axis in the plot of the mass. The results for full numerical and perturbative solutions 
are shown in purple and black curves, respectively. We can see a good agreement of them in 
J � 0.5. Here, we only focus on the photon stars for the fundamental tone n  =  0 bifurcating 
from Ω = 2 in the pure AdS. Overtones are studied in appendix A.

It is remarkable that each diagram has a ‘turning point’ where the value of J reaches its 
upper limit. The physical quantities of photon stars are multivalued around the maximum J. In 
particular, the mass should form a cusp at the maximum J because of the first law: dE = ΩdJ . 
This is actually seen in figure 3(a). In comparison, in the geons studied in [21], we did not find 
such turning points as long as we constructed solutions within numerical limitations.

In the photon star solutions we constructed, the angular velocity always satisfies Ω > 1 
although it decreases from the value Ω = 2 of the pure AdS. This again implies that the spa-
cetime of the photon star is dynamical.

5.  Photonic black resonators

In this section, we study the cohomogeneity-1 photonic black resonator solutions given by our 
ansatz (2.9) and (3.1).

To solve the equations of motion (3.4)–(3.9) numerically, we need to decide how to fix the 
constants at the boundaries of the computational domain rh � r < ∞. We impose the metric 
functions f (r) and g(r) to be zero at the horizon r  =  rh. Then, solving (3.4)–(3.9) near the 
horizon, we obtain the asymptotic solution as

f (r) = f1(r − rh) + · · · , g(r) = g1(r − rh) + · · · ,
h(r) = h0 + h1(r − rh) + · · · , α(r) = α0 + α1(r − rh) + · · · ,
β(r) = β0 + β1(r − rh) + · · · , γ(r) = γ0 + γ1(r − rh) + · · · ,
� (5.1)

where

g1 =
2{6r4

hα0β0 + 3r2
hβ0(α

2
0 − α0β0 + 1)− 2α2

0γ
2
0}

3r3
h(1 + r2

h)α0β0
, h0 = 0,

α1 =
6{r2

h(α
2
0 − 1)(α2

0 − α0β0 + 1) + 2α3
0γ

2
0}

rh{6r4
hα0β0 + 3r2

hβ0(α2
0 − α0β0 + 1)− 2α2

0γ
2
0}

,

β1 = − r2
hβ

2
0h2

1

f1(1 + r2
h)

−
6β0{r2

h(α
4
0 + α3

0β0 − 2α2
0β

2
0 − 2α2

0 + α0β0 + 1) + 2α3
0γ

2
0}

rhα0{6r4
hα0β0 + 3r2

hβ0(α2
0 − α0β0 + 1)− 2α2

0γ
2
0}

,

γ1 =
6rhα

3
0γ0

6r4
hα0β0 + 3r2

hβ0(α2
0 − α0β0 + 1)− 2α2

0γ
2
0

.

�

(5.2)

The condition h0  =  0 indicates that the helical Killing vector (3.13) is the null generator of 
the horizon. It turns out that we have six free parameters at the horizon: (rh, f1, h1,α0,β0, γ0). 
These are compared with the four conditions (3.10) at infinity. Therefore, we are left with two 
parameters. Thus, the photonic black resonator solutions are in a two-parameter family.

In our numerical calculations, we specify (rh, γ0) and tune the other parameters ( f1, h1,α0,β0) 
by the shooting method so that the asymptotically AdS conditions (3.10) are satisfied. In this 
way, we obtain a photonic black resonator solution. We then repeat this procedure by varying 
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(rh, γ0). For a small γ0, the geometry of the photonic black resonator is close to that of the 
MPAdS5. Hence, we use the value of MPAdS5 for ( f1, h1,α0,β0) as the initial guess. Once the 
shooting successfully converges, we use the resulting values of ( f1, h1,α0,β0) as the initial 
guess for the next solution where γ0 is slightly varied.

In figure  4, we show the profile of the functions f , g, h,α,β and γ  for rh  =  0.3 and 
γ0 = 0.05, 0.1, 0.15, 0.25. We also show the norm of the helical Killing vector K2 = gττ  in 
the last panel. Although the Killing vector is timelike near the horizon, it becomes spacelike 
near the infinity. This implies that the geometry of the photonic black resonator is dynamical.

The phase diagram is shown in figure 5. The data points we numerically calculated are plot-
ted in the dots, and the entropy S is shown by the color. For visibility, we take E  −  2J as the 
vertical axis. The black curve forming the lower boundary of the data points corresponds to 

Figure 4.  Profile of f , g, h,α,β and γ  for photonic black resonators with rh  =  0.3 
and γ0 = 0.05, 0.1, 0.15, 0.25. The last panel is the norm of the helical Killing vector, 
K2 = gττ , normalized by 1  +  r2 for visibility.

Figure 5.  Phase diagram of photonic black resonators. Dots correspond to the data 
points we numerically calculated. The entropy S is shown by the color map. The black 
curve in the bottom is the family of photon stars. The upper curve is MPAdS5 at the 
onset of the Maxwell superradiant instability. The endpoint of the curve shown by the 
red dot corresponds to an extreme black hole.
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the family of photon stars, which have zero entropy. Meanwhile, the MPAdS5 solutions at the 
onset of the Maxwell superradiant instability is also shown by the curve on the upper bound-
ary. This curve ends when it meets an extreme MPAdS5 as in figure 1.

The multivalued behavior of the physical quantities, discussed in figure 3 for the photon 
stars, also appears in the photonic black resonators. In the phase diagram, it is seen in the 
upper-right end of the plotted region. To see this behavior in detail, in figure 6(a) we show the 
entropy S as the function of the mass E at fixed J  =  0.9. In this figure, the turning point can 
be found at E � 1.7304.

Finally, in figure  6(b) we compare the entropies between different solutions as a func-
tion of J for fixed E  =  0.2. In this figure, as well as the photonic black resonator, we show 
the entropies of MPAdS5 and the n  =  0 purely gravitational black resonators studied in [21]. 
Around J  =  0.042 and J  =  0.046, the gravitational and photonic black resonators branch 
from MPAdS5, respectively. A photonic black resonator has a higher entropy than the corre
sponding MPAdS5 at the same (E, J). We can also see that the photonic black resonators exist 
in the region of (E, J) where no regular MPAdS5 do. Therefore, we find that the photonic black 
resonators extend the phase diagram from the case only MPAdS5 are included (otherwise 
there are singular over-rotating MPAdS5). However, we also find that the gravitational black 
resonators have a higher entropy than the photonic black resonators at the same (E, J). This 
implies that the photonic black resonators would be further unstable against SU(2)-symmetric 
perturbations which suppress the Maxwell field, and they would evolve into the gravitational 
black resonators if dynamical time evolution is considered.

Three-dimensional plots of the entropy S, angular velocity Ω, temperature T, and elec-
tric current j  of photonic black resonators are shown in figure 7. In figure 7(c), we see that 
the temperature approaches zero at a boundary of the region where photonic black resona-
tors exist. This suggests that there are limiting photonic black resonators whose temperature 
approaches zero. However, the perturbative analysis of the extreme MPAdS5 in appendix B 
indicates that the limiting solution would be singular.

Figure 6.  Entropy S of the photonic black resonators for fixed (a) J  =  0.9 and (b) 
E  =  0.2. In the right panel, the entropies of MPAdS5 and gravitational black resonators 
are also shown. (a) Fixed J. (b) Fixed E.
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6.  Conclusions

We constructed a family of photonic black resonators which bifurcate from MPAdS5 at the 
onset of the Maxwell superradiant instability. We also obtained photon stars as the horizonless 
limit of such photonic black resonators. These solutions have the isometry group R × SU(2) 
and are based on the cohomogeneity-1 metric ansatz together with a Maxwell field consis-
tent with the symmetries of the metric. The Einstein and Maxwell equations  then reduced 
to ODEs. Solving the ODEs and evaluating thermodynamical quantities, we determined the 
phase structure of the photonic black resonators and photon stars. The phase diagram is shown 
in figure 5. The photonic black resonators exist only in a finite domain in the (E, J) diagram, 
and there is an upper bound on J unlike the case of the purely gravitational black resonators 
studied in [21]. Because of this, physical quantities become multivalued near a boundary of 
the region where photonic black resonators exist. The angular velocity of the solutions we 
obtained always satisfies Ω > 1, and this implies that the photonic black resonators and pho-
ton stars describe dynamical spacetime. It has been already indicated by the theorem of [28] 
that such dynamical spacetime must be unstable. In the case of the photonic black resonators, 
we observed that they should be also unstable against SU(2)-symmetric perturbations by com-
paring the entropies of a photonic black resonator and a gravitational black resonator with the 
same (E, J): the former has a smaller entropy than the latter.

This observation would open up the time evolution of the Maxwell superradiant insta-
bility as an important future direction. In asymptotically AdS4 spacetime, the nonlinear 

Figure 7.  Thermodynamical quantities of photonic black resonators. (a) Entropy. 
(b) Angular velocity. (c) Temperature. (d) Current.
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time evolution of the superradiant instability has been studied in [29]. It has been argued 
that superradiant instabilities bring black resonators to evolve into small scales, and it makes 
the study of their time evolution difficult [30]. In the case of AdS5, we can exactly impose 
the SU(2)-symmetry in the dynamics, and we will just need to solve the time evolution of 
(1 + 1)-dimensional PDEs to see the dynamics of black resonators. Because a photonic black 
resonator has a lower entropy than the gravitational black resonator with the same conserved 
charges (E, J), we will see the time evolution that the Maxwell field would be absorbed by the 
black hole, while it remains neutral, and the spacetime will approach a purely gravitational 
black resonator. Similarly, we will also be able to study the weakly turbulent instability of 
AdS [31] triggered by the Maxwell field perturbation by making use of the setup in this paper.

Time periodic Maxwell fields in asymptotically AdS spacetime will be important in applied 
AdS/CFT—the application of the AdS/CFT correspondence to realistic systems. For instance, 
to understand nonequilibrium dynamics of strongly correlated quantum many-body systems 
under a periodic driving is one of the most significant problems in condensed matter physics. 
This has been addressed by using the AdS/CFT correspondence [32–40]. Our methodology 
to treat the time periodic Maxwell field in asymptotically AdS spacetime may provide a new 
hint to investigate nonequilibrium processes in strongly correlated systems. For example, in 
[32, 33, 36], a time periodic electric field was considered in the holographic superconductor 
[41–43] in the probe limit. The application of our method to holographic superconductors may 
help us to investigate new phases of matter in the presence of a time-periodic electromagnetic 
field.
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Appendix A.  Photonic black resonators and photon stars with overtones

In section 2, we studied the Maxwell perturbation in the MPAdS5 background and found the 
onsets of the superradiant instability for the fundamental tone n  =  0 and overtones n = 1, 2, · · ·. 
In the main text of this paper, we focused on the photon stars and photonic black resonators for 
the fundamental tone. In this appendix, we summarize the results for the first overtone n  =  1.

Shown in figure A1 are the mass E, angular velocity Ω, and electric current j  as a function 
of the angular momentum J for the photon stars with n  =  1. The angular velocity approaches 
Ω → 3 in the pure AdS limit J → 0, which is a normal mode frequency of the pure AdS. In 
the first panel in the figure, we took E  −  3J as the vertical axis for visibility. We again find a 
turning point for J in the diagrams as is the case for n  =  0. The angular velocity always satis-
fies Ω > 1, too, implying that the n  =  1 photon star is dynamical. The sign of j  here is opposite 
to that of the fundamental tone because of the number of nodes in γ(r).

Figure A2 is the phase diagram of photonic resonators with n  =  1. The values of (E, J) 
of the photonic black resonators are located by dots at the data points we obtained, and the 
color of the dots corresponds to the value of entropy S. We take E  −  3J as the vertical axis for 
visibility. The photonic black resonators with n  =  1 also exist only in a finite domain in the 
diagram. The physical quantities become multivalued at the upper-right boundary of the plot 
region.
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Figure A3 contains three-dimensional plots of the entropy S, angular velocity Ω, temper
ature T and electric current j  of the photonic black resonators with n  =  1. The angular velocity 
always satisfies Ω > 1. This implies that the photonic black resonators with n  =  1 are dynami-
cal. In figure 7(c), the temperature approaches zero in one of the boundaries of the data region. 
This indicates that there may be a zero temperature limit for the photonic black resonator 
solution although that may be singular.

Appendix B.  Perturbation of extreme MPAdS5

In this appendix, we consider the perturbation on an extreme MPAdS5 background in order to 
examine if the onset of the superradiant instability meets the extreme MPAdS5. The condition 
for the extreme MPAdS5 reads

Figure A2.  Phase diagram of the photonic resonators with overtone number n  =  1. 
Dots are data points for (E, J). Their color corresponds to the value of the entropy S. 
The black curve in the bottom represents the family of n  =  1 photon stars. The upper 
curve corresponds to the MPAdS5 at the onset of the n  =  1 Maxwell superradiant 
instability. The endpoint of this curve shown by the red point is an extreme black hole.

Figure A1.  The mass E, angular velocity Ω and electric current j  are shown as a 
function of the angular momentum J for the photon stars with the first overtone n  =  1. 
For visibility, E  −  3J is taken in the vertical axis in the plot of E. (a) Mass. (b) Angular 
velocity. (c) Current.
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Ωext =

√
1 +

1
2r2

h
.� (B.1)

Using this, we take the extreme limit in the linear perturbation equation (2.10). To identify the 
boundary condition at the extreme horizon, we solve the resulting equation near the extreme hori-

zon. We find that the field behaves γ ∼ (r − rh)
n± with n± =

(
−1 ±

√
1 − 2/(1 + 3r2

h)
2
)
/2. 

The exponent is real if rh >
√
(
√

2 − 1)/3 ∼ 0.3716. In that region, however, both exponents 

are negative, n± < 0 (with n+ → 0 and n− → −1 as rh → ∞). This means that γ  is singular 
at the horizon. It is then expected that full solutions with nontrivial γ  on the extreme MPAdS5 
might also be singular. Nevertheless, if we factor out the singular part as γ = (r − rh)

n+ γ̃ so 
that γ̃  is regular while we simply suppress the other solution with n− for simplicity, we can 
show the presence of normal modes which would correspond to the extreme limit of the onset 
of the superradiant instability. Imposing γ̃ = 1 at r  =  rh and γ̃ = 0 at r = ∞, we find normal 
modes at rh  =  0.5559 and 0.3720. These values are consistent with the endpoints for the n  =  0 
and n  =  1 curves as they approach the extreme BH limit. For n � 2 modes, we were not able 
to pin down where the onset curves end up on the extreme BH limit because these modes 
approach the extreme BH limit very slowly where numerical calculations become difficult.

Figure A3.  Thermodynamical quantities of n  =  1 photonic black resonators. (a) 
Entropy. (b) Angular velocity. (c) Temperature. (d) Current.
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