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Abstract
We study the coupled atomic–molecular quantized ring vortices of 87Rb Bose–Einstein
condensates trapped in a rotating 3D anisotropic cylindrical trap using both time-independent
and time-dependent Gross–Pitaevskii approaches. For atomic to molecular conversion and
vice versa, a two-photon Raman photoassociation scheme has been used. Atomic and molecular
stationary state solutions show that the different number of nodes and crests formed in the
density profile (as a function of r and z) for different combinations of radial (n) and axial (nz)
quantum numbers at a fixed azimuthal quantum number l=2, give rise to different structures
around the 3D ring vortex centered at r=0. We have considered both spontaneous and induced
decays and compared the results with those without considering the decays. The out-of-phase
oscillation of atomic and molecular numbers in two vortex states, both in the presence and
absence of external decays, is the signature of coherence due to the atomic–molecular coupling.
This coherence is also implemented in the evolution of coupled atomic and molecular vortices.
The intensity of molecular ring vortices grows with time at the expense of that of atomic ring
vortices, and vice versa. It is found that the intensity of the coupled atomic and molecular ring
vortices starts to oscillate out of phase during evolution. Dependence of the atomic–molecular
conversion efficiency and the lifetime of the system on the laser intensity of photoassociation
lasers and the total number of atoms in two different vortex states reveals that the formation of
atomic–molecular coupled vortices and the efficiency of formation can be controlled by varying
these parameters. Linear stability analysis of vortex states as a function of different system
parameters shows that the atomic vortices are more stable than molecular vortices, and the stable
atomic and molecular vortices can be achieved by controlling these parameters.

Keywords: Bose–Einstein condensate, atomic–molecular coupled system, atomic–molecular
coupled vortices, dynamics of coupled vortices in atomic–molecular BECS

1. Introduction

Experimental observations of atomic Bose–Einstein condensate
(BEC) in trapped dilute gases [1] using laser light has led to
many experimental and theoretical investigations into atomic
BEC systems [1–5]. Experimental observations of the atomic
vortex and its characterizations have been performed by dif-
ferent groups [6]. A number of theoretical works have been
done to investigate atomic vortex [7], such as spontaneous
shape deformation leading to the formation of a vortex,

dynamics of vortex formation in merging BEC fragments,
‘hidden’ vortices in a rotating double well potential, the
nucleation of spontaneous vortices in trapped Fermi gases
undergoing a BCS–BEC crossover, 3D atomic vortex solitons,
dynamics of single and multiple ring vortices, vortex-antivortex
pairing in decaying superfluids, vortex formation in dipolar
BEC, and recently active investigations on turbulence in trap-
ped BEC. Dalfovo’s group [7] have shown that after releasing
the trap the core of quantized atomic vortices expands faster
than the atomic cloud of BEC, which will facilitate the obser-
vation of atomic vortices by solving the Gross–Pitaevski
equation numerically and comparing it with analytical results.
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Consequently, investigations into two-component BECs were
started. Mathews et al observed vortices in two-component
BECs and explored differences in the dynamics and stability of
vortices [8]. Extensive theoretical studies [9] have been carried
out to explore different aspects of two-component BECs e.g.
considering dipole–dipole interaction, both attractive and
repulsive atom–atom interactions, spin–orbit (SO)-coupling etc,
using the Gross–Pitaevskii equation (GPE).

With the advent of studies on photoassociation (PA) pro-
cesses in cold atoms and atomic BECs [10, 11], investigations
into atomic–molecular coupled BEC systems have started. The
formation of molecules from atomic BEC or ultracold atoms by
PA was first introduced by Julienne’s group [10] through a two-
step process involving stimulated free–bound transition fol-
lowed by spontaneous bound–bound emission, where the latter
results in the production of an incoherent mixture of a large
range of vibrational levels in the electronic ground state of the
molecules. Hence stimulated bound–bound transition was
chosen to achieve the state-specific population of the final
molecular state of interest either through an adiabatic or a
nonadiabatic pathway, which is essentially a stimulated two-
photon Raman PA. Experimentally state selective molecules at
rest have been created from atomic BEC by the PA process
adopting the Raman two-photon stimulated free–bound and
bound–bound transition technique [12, 13] and by the magne-
toassociation process applying the Feshbach resonance techni-
que [14–16]. This technique has also been used for
condensation of molecular Fermi gases [17]. Many theoretical
[18–24] attempts were also made to understand and set the
guidelines for the realisation of molecular BECs using two-
photon Raman PA, as well as magnetic Feshbach resonances. A
number of theoretical efforts have been made to find out the
enhancement of conversion efficiency through different
approaches such as time-dependent magnetic field in conjunc-
tion with stimulated Raman transition [23], proper tuning of the
pulse duration [24, 25] and the coherent population trapping in
Feshbach resonance-assisted stimulated Raman adiabatic path-
ways [26, 27]. Dastidar’s group [21] explored the coherences in
the evolution of atomic and molecular density due to the
atomic–molecular coupling via Raman two-photon association
and by magnetic Feshbach resonance using a modified Gross–
Pitaevskii approach in the coupled atomic–molecular BEC
system, and the nature of out-of-phase oscillation of atomic and
molecular density has been compared with experimental results.

The structure of vortices in two-species or two-component
atomic condensates and its dependence on the system para-
meters have been studied [8, 9]. However, the studies of the
formation of vortices in atomic–molecular coupled BEC sys-
tems are different from that of two-component atomic BEC
systems due to the presence of atomic–molecular conversion
coupling and the mass of molecules is twice that of atoms in the
former. Some theoretical investigations have been carried out
on the formation, structure and stability of vortices and vortex
lattices in atomic–molecular coupled BEC systems. Julienne’s
group analyzed the structure and stability of vortices in hybrid
atomic–molecular BEC using the Gross–Pitaevskii model,
adopting the stimulated Raman-induced PA process [28]. They
predicted new types of topological vortex states in coherently

coupled two-component condensates even without a trap, and
demonstrated the nontrivial dynamics of the coupled system in
the presence of losses. Bigelow’s group has studied the effect of
atomic–molecular coupling on the formation and structure of
vortex lattices in rotating atomic–molecular coupled BEC sys-
tems [29]. The structural phase transitions in this coupled sys-
tem have been explored by studying the dependence of the
degree of phase matching on the system parameters e.g.
atomic–molecular coupling strength, atomic–molecular inter-
action and rotation frequency of the coupled system. Liu’s
group has explored the dependence of the nature of vortices on
different combinations of quantum numbers, principal and
secondary quantum numbers in a rotating atomic–molecular
coupled BEC system, by using analytical solutions for vortices
[30]. They have studied the formation of vortex lattices in
atomic–molecular coupled BEC systems considering space
modulated nonlinearity and the dependence of the structure of
vortex lattices on the Raman detuning and atomic–molecular
coupling strength. They have shown that atomic–molecular
interaction plays a crucial role in controlling the structure of
vortex lattices. However, to our knowledge, an experimental
study has not yet been carried out on coupled atomic–molecular
vortices.

In the present study we have investigated the dynamics,
stability and control over the formation of atomic and mole-
cular coupled vortices in a rotating coupled atomic–molecular
BEC of 87Rb atoms. In this scheme coherent 87Rb2 molecules
are obtained in the lowest vibrational level of the electronic
ground state via two-photon Raman PA of 87Rb atoms. Here
the GPE with an additional rotational term has been used. For
the formation of coupled atomic–molecular quantized vortices
in the steady state, time-independent 3D coupled GP
equations have been solved using the imaginary time method.
The dependence of the structure and shape of the atomic and
molecular vortices on the different combinations of radial and
axial quantum numbers (due to the presence of nodes and
crests in the density profiles) have been studied. To study the
dynamics of these coupled vortices in 3D we have solved
time-dependent coupled GP equations using the Crank–
Nicholson method. It has been shown previously that atomic
and molecular density in a (nonrotating) coupled atomic–
molecular BEC system in the ground state oscillate coherently
due to the presence of atomic–molecular conversion coupling
[19, 21]. In this work we have explored the signature of
coherences in the dynamics of atomic and molecular quan-
tized 3D ring vortices (which are the excited states of the
coupled system) in a rotating atomic–molecular coupled BEC
system. The feasibility of formation and the stability of
coupled atomic–molecular quantized vortices have been
investigated by choosing different system parameters which
are experimentally realizable.

In practice, external decays (spontaneous and induced)
may play a crucial role in the stability of the coupled system.
Hence spontaneous decay of excited atoms and the decay of
molecules in two different channels (bound and the con-
tinuum of the ground state) induced by PA lasers have been
considered. The dependence of conversion efficiency and the
decay time of the total number of particles to 1/e times its
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initial value on the initial number of atoms and the laser
intensities have been studied considering the external decays.
To investigate the stability of atomic and molecular vortices
formed in different vortex states the imaginary part of the
energy of the vortex states of atoms and molecules have been
studied as a function of system parameters e.g. initial number
of atoms, laser intensity, atomic–molecular interaction and the
rotation frequency of the coupled system.

In this paper, the theoretical framework has been
described in section 2. The theoretical formulation is given in
section 2.1 and the numerical methods have been described in
section 2.2. The results and discussions have been given in
section 3. Results on the formation of vortices in the steady
state have been given in section 3.1 and the results on the
dynamics of atomic–molecular quantized vortices have been
described in section 3.2. The variation in decay time of the
system, atom to molecule conversion efficiency and the
dependence of the stability of vortex states on different sys-
tem parameters have been discussed in section 3.3. Finally the
conclusions have been drawn in section 4.

2. Theoretical framework

2.1. Theoretical model

Figure 1 schematically shows the two-photon Raman PA
scheme where two atoms initially in the state |i〉, of total
energy 2E1, collide to form a molecule in the rovibrational
state |v〉, of energy Ev, of an excited electronic state in the
presence of the coupling laser field of frequency ω1, which
subsequently undergoes a transition to the ground state |g〉, of
energy E2, through stimulated emission by the second cou-
pling laser of frequency ω2. The two-photon Raman detuning
is given as δ=(2E1−E2)/ħ−(ω2−ω1) and the two-photon
transition will be resonant when δ equals to zero.

In order to study the evolution of atomic and molecular
vortices in rotating coupled atomic and molecular BECs, we
solved the coupled GPE of motion for atoms (wavefunction
ψa) and molecules (wavefunction ψm) as follows.
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where ( ) ( )w l= +U r z m r z,a r
1

2
2 2 2 2 and ( )=U r z,m

( )w l+m r zr
2 2 2 2 are the external anisotropic cylindrical

harmonic trap potentials for atoms and molecules respec-
tively, λ is the anisotropic factor (=w

w
z

r
), where wr and wz are

the angular trapping frequencies along radial and axial
direction of the system, respectively. l ,a l ,m lam are the
atom–atom, molecule–molecule and atom–molecule inter-
action strength, respectively. According to Bogoliubov

mean field theory ћl = p ,a
a

m

4 2

where a is the s-wave scat-
tering length for atom–atom interaction and we consider that
l l l= =a m am for simplicity. The spontaneous decay rate
is denoted by α and Г Г,1 2 indicate induced decay rates, b ,1

b2 represent the atomic and molecular light shift terms.
Furthermore, d̃ is related to effective two-photon Raman
detuning (˜ )d d b b= + - 22 1 and Ω is the angular frequency
of rotation of the system.The last terms in equations (1) and
(2) represent the rotational energy terms producing vortices.
χ is the atomic–molecular Raman coupling constant, i.e., the
conversion factor from atom to molecule and vice versa.

The form of atomic–molecular Raman coupling is
expressed as

ћ
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where W1 is the free-bound and W2 is the bound-bound Rabi
frequencies, which are functions of laser intensities I1 and I2
respectively: W µ I .1,2 1,2 The expression for the atom–atom
scattering length can be written as
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Here abg is the background scattering length, I v1, is the
free-bound and ¢I sv2, are the bound-bound Frank–Condon
factors. The spontaneous decay rate from an excited state of

Figure 1. Schematic representation of two-photon Raman PA.
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an atom is
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Two induced decay rates, atomic loss rates due to one
photon association and the spontaneous Raman scattering
rates for molecules are denoted as (stimulated)
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The atomic and molecular light-shift terms are repre-
sented as, respectively,
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Here ga and gM are the spontaneous decay rates of atoms and
molecules, respectively, w w= -Di i0 are the detuning of
lasers from the resonant frequency w0 of the atomic transition
between the dissociation limit of the ground and excited state
energy. The expression for the respective detuning factors are
given below,
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The above coupled GP equations (1) and (2) reduce to
dimensionless GP equations by rescaling the length by linear
harmonic oscillator length ћ/ w=a m ,HO energy by ћw and
time by /w1 in a cylindrical polar coordinates system, as
follow:
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We assume the form of the wave function ( )y qr z t, , , ,
both for atom and molecule, as

( ) ( ) ( )y q = q m-r z t f r z e, , , , 14i i
il i ti

where i corresponds to atoms and molecules. m ¢si are the
chemical potentials, ‘l’ is the azimuthal quantum number also
known as intrinsic vorticity and ( )f r z,i ’s are the time-inde-
pendent wavefunctions. Using the wavefunction from
equation (14) in equations (12) and (13), the time-indepen-
dent forms of the GP equations take the following forms
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The approximate stationary state solutions of the
equations (15) and (16), neglecting the nonlinearity of the
system, can be written as [31]
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where the functions fa and fm involve Gaussian–Laugurre–
Hermite functions and the corresponding chemical potentials
are (as λa=λm)
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1

2

2.2. Numerical approach

We obtained the numerical stationary state solutions for the
atomic and molecular vortices in a coupled BEC system
by solving the time-independent atomic–molecular coupled
GP equations (15) and (16) using an imaginary time evolution
method taking fa and fm as the initial wavefunctions.
We reduce the nonlinear Schrödinger equations (NLSE),
which have been used for our coupled system in its dimen-
sionless form, replacing radial distance = ¢r a r ,HO axial dis-
tance = ¢z a zHO and time /t w=t , where ђ/ w=a mHO as
follows:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )

∣ ∣ ∣ ∣
( )

l

c m

-
¶
¶ ¢

+
¢
¶
¶ ¢

-
¢

+
¶
¶ ¢

+ ¢ + ¢

+ + + ¢ - W¢ =

r r r

l

r z
r z

g f g f f f f l f f

1

2

1 1

2

20
a a am m a a m a a a

2

2

2

2

2

2
2 2 2

2 2 *

4

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 065303 S Dutta et al



⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

( )

∣ ∣ ∣ ∣

( )

l

c

m

-
¶
¶ ¢

+
¢
¶
¶ ¢

-
¢

+
¶
¶ ¢

+ ¢ + ¢

+ + + ¢ +
¢

- W¢

=



r r r

l

r z
r z

g f g f f f f l f

f

1

4

1

2

21

m m am a m a a m

m m

2

2

2

2

2

2
2 2 2

2 2 *

where μa and μm are the eigenvalues of the atomic and
molecular time-independent NLSEs. In order to obtain the
numerical solutions of the stationary state equations (20) and
(21), we implement the imaginary time method as follows:

( ) ( ) ( ) ( )t t t t¢ ¢ + D = - D ¢ ¢ ¢f r z i H f r z, , 1 , , 22j j j

where ¢H j denotes the Hamiltonian corresponding to the
atomic and molecular coupled equation in its dimensionless
form. Numerical iteration is performed using the length step
0.01 along both the direction r and z within the range (0 to 5)
and (−5 to 5) respectively. To get the converged solution for
atomic and molecular vortices, the convergence of the solu-
tion has been checked to be 10−6 for the wavefunction. The
time step we have used in this imaginary time iteration is
5×10−8 and at each time step of imaginary time, the
total number of atoms and double the number of molecules
have been normalized to the total number of particles N

i.e. (∣ ∣ ∣ ∣ )ò ò p+ ¢ ¢ ¢ =f f r dr dz N2 2 .a m
2 2

To study the dynamical behaviour of atomic and mole-
cular vortices in a coupled atomic–molecular system we have
solved the time-dependent coupled GP equations by applying
the steepest descent method in the Crank–Nicholson scheme.
We assume the wavefunction is of the form /y f= r
for the sake of simplicity of our cylindrical system and to
solve the equations (12) and (13) we impose the boundary
conditions, which are ( )f  r z t as r z, , 0 , 0;a m, and
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Using the Crank–
Nicholson scheme we discretise coupled atomic and mole-
cular time-dependent nonlinear Schrödinger equations (12)
and (13) (in dimensionless form) in both the radial and axial
directions and hence we obtain a pair of dimensionless
equations for atomic BEC as follows:
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and a pair of dimensionless equations for molecular BEC as
follows:
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where the discretized wavefunctions are ( )f f t= r z ;i j k
n

i j k n, , , ,

=i a m, , for atoms and molecules, respectively. Here the
dimensionless r′, z′ and τ′ have been substituted by r, z and
τ for simplicity.

For numerical calculation, the stationary state solution
obtained numerically by solving the time independent
equations has been used as a wavefunction in the time-
dependent equation at t=0. The maximum length in the
radial and axial directions have been taken in units of aHO is
5. We use the step size (h) along the radial and axial direc-
tions, which are the same, 0.01, and the time step ( tD ) is
0.1 μs. The dynamics of the coupled system has been studied
for 0.3 ms.

2.3. Linear stability analysis

For the linear stability analysis we consider the perturbed
solution of equations (12) and (13), as follows.

[ ( ) ] ( )Y = F + +l l m- -r z u e w e e, 27a a
i t i t i t

1 1 a

[ ( ) ] ( )Y = F + +l l m- -r z u e w e e, 28m m
i t i t i t

2 2 m
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where ∣ ∣ u 1,1 ∣ ∣ u 1,2 ∣ ∣ w 11 and ∣ ∣ w 12 are the
small perturbations, neglecting the higher order term. Sub-
stituting these wave functions (27) and (28) into the
equations (12) and (13), we get the following eigenvalue
equation with eigenvalue λ.

The matrix elements L1 and L2 are defined as
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We solved the eigenvalue equation (29) to get the
eigenvalues. If the eigenvalues are purely real then the
wavefunctions are stable, otherwise they are unstable.

3. Results and discussion

In the two-photon Raman PA scheme used here the formation
of the 87Rb2 molecules is considered to be in the lowest
vibrational level of the ground state 3S +

u (Vg(R)) via -0g

excited state (Ve(R)) by association of two 87Rb atoms
from the continuum of the ground state (figure 1). The
parameters used in these calculations are γA=3.7×107 S−1,
γM=2γA, Ω1=2.3×10

10 S−1 Ω2=6.324×10
9 S−1, χ/ħ =

7.6×10−7m3/2s−1, Г1=1.629×10
−23m3s−1, Г2=304.4 s

−1,
β1=2.108×10

7 s−1, β2=3.344× 106 s−1, α=134.06 s−1,
δ=3.879×107 s−1 [19] unless otherwise mentioned. In this
calculation the effective detuning delta-tilde (which includes the
Ac Stark shift, β1, β2 and the two-photon Raman detuning, delta)
has been kept fixed. The s-wave scattering length is 5.4 nm [21].
We have started with the initial number of atoms N=50 000
unless another variation of N is considered. The frequency of
cylindrically symmetric harmonic trap potential in the radial
direction has been taken as ωr/2π=100Hz, whereas in the axial
direction the frequency ωz=0.36ωr [21]. The angular frequency
of rotation of the condensate system has been taken as Ω=0.6ωr.
For the sake of simplicity we have considered the strengths of all

three interactions, atom–atom, molecule–molecule and atom–
molecule are equal, i.e., λa=λm=λam unless otherwise the
interactions are varied to study the dependence of results on the
particle-particle interactions.

3.1. Formation of vortices

To demonstrate the formation of quantized vortices in the
rotating coupled atomic–molecular condensate, we obtained
the stationary state solutions of time-independent rotating
coupled GP equations (15) and (16) numerically, using the
imaginary time evolution method, taking the Gaussian–
Laguerre–Hermite functions as initial wavefunctions
(equations (17) and (18)). The iteration has been continued
until the convergence of wavefunctions reaches 10−6.

Results of stationary state solutions have been shown in
figure 2 for different values of radial (n) and axial (nz) quantum
numbers for a fixed value of azimuthal quantum number (l).
Figures 2(a) and (b) show the plot of density profiles
(∣ ( )∣F r z,a m,

2) as a function of r and z (in the units of aHO) for
atoms and molecules, respectively, for different values of radial
and axial quantum numbers (n and nz) for a fixed azimuthal
quantum number l=2. It is found that with the increase in n,
the number of nodes in the density profile along the r-axis
increases for a fixed value of nZ. However, with the increase in
nz the density profile (crest and trough structure) obtained for
the particular value of n is replicated or repeated nz times along
the z-axis, giving rise to the total number of nodes along the r-
axis, k=(n+1)(nz+1), including the node (minimum) at
r=0, for a fixed value of l=2. It is to be noticed that due to
this replication or repeatation along the z-axis, minima in the
density profile are developed along the z-axis. The central
vortex appears around r=0 line.

Corresponding 3D ring vortices for atoms and molecules
have been plotted in figures 2(c) and (d), respectively. It is
evident from these two figures that different combinations of
radial (n) and axial (nz) quantum numbers for a fixed value of
azimuthal quantum number l=2 give rise to a different
structure of ring vortices and are centred at the r=0 line.
With the increase in the number of nodes and crests in the
atomic density profile with the increase in n for a fixed value
of nz (as shown in figure 2(a)), more layers of crests and
troughs are added around the central vortex, giving rise to a
different structure around the central vortices, as shown in
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Figure 2. (a) Atomic density ∣ ( )∣F r z,a
2 of the stationary state vortex solution for 3D coupled BEC system as a function of radial distance r

(unit of aHO) and axial distance z (unit of aHO) for different combinations of radial (n) and axial (nz) quantum numbers keeping azimuthal
quantum numbers (l) fixed at 2. (b) Molecular density ∣ ( )∣F r z,m

2 of the stationary state vortex solution for 3D coupled BEC system as a
function of radial distance r (unit of aHO) and axial distance z (unit of aHO) for different combinations of radial (n) and axial (nz) quantum
numbers keeping azimuthal quantum numbers (l) fixed at 2. (c) Atomic vortices for different combinations of radial (n) and axial (nz)
quantum numbers for a fixed azimuthal quantum number l=2. (d) Molecular vortices for different combinations of radial (n) and axial (nz)
quantum numbers for a fixed azimuthal quantum number l=2.
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figure 2(c). A similar feature has been obtained previously for
atomic ring vortices for nz=0 by Li et al [7]. However, with
an increase in nz, the 3D ring vortex structure obtained for a
fixed value of n is replicated or repeated (nz+1)-fold in the
vertical direction (centred at the r=0 line). Figure 2(d)
shows that the same structure of molecular ring vortices as

that of atomic vortices appear for different combinations
of n and nz and for l=2. A comparison of these two
figures shows that the molecular vortices are localized to a
smaller region in comparison to atomic vortices by an
amount (1/ 2 ) due to a greater mass, which is twice that of
the atom.

(c)

(d)

Figure 2. (Continued.)
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3.2. Evolution of vortices

We studied the formation and evolution of atomic and molecular
vortices by solving the time-dependent coupled equations (12)
and (13) using the steepest-descent method in the Crank–
Nicholson scheme, with and without the external decay term.

Figure 3 illustrates the variations of the number of atoms
and molecules in figures 3(a) and (c), respectively, with time
for x=1 and x=4 without any decay at two different
combinations of radial and axial quantum numbers (i) n=1,
nz=0 and (ii) n=3, nz=2 at a fixed value of azimuthal
quantum number l=2. These two figures show there exists
coherence in the oscillation of atomic and molecular numbers
in two different vortex states leading to out-of-phase oscil-
lations of atomic and molecular numbers with time due to the
presence of atomic–molecular coupling in this coupled sys-
tem. For a larger intensity of lasers i.e. x=4, the oscillation
frequency increases due to the increase in the Rabi frequency
between states coupled by the lasers I1 and I2, but the
coherence is maintained in the atomic and molecular number
oscillations. Furthermore, the amplitude of oscillation is large
for a lower vortex state (n=1, nz=0) for a fixed x (compare
blue and red lines with olive and wine lines) both in the case
of atomic and molecular vortices.

It is found that with the inclusion of external decay
(figures 3(b) and (d)), the nature of oscillations are the same
and coherence is preserved, but the amplitude of oscillations
die out much faster than that in the absence of decay. The
damping in amplitude of oscillations is larger in the higher
vortex state (n=3, nz=2) than that in the lower vortex state
(n=1, nz=0), both in atomic and molecular cases for both

the values of x. Moreover, for higher intensity (x=4) the
damping in oscillation is largely due to the increase in
the induced decay, with the increase in intensity for both
the species in two vortex states. Therefore we show that the
coherence in number oscillation is present in the evolution of
rotating atomic–molecular condensate system coupled by
two-photon Raman PA in different vortex states, similar to
that in the nonrotating coupled BEC in the ground state [21].

Figure 4 shows the evolution of coupled atomic and mole-
cular quantized 3D ring vortices in the vortex state for n=3,
l=2, nz=2 at different times without external decay
(figure 4(a)) and with external decay (figure 4(b)) considering
x=4 for both the cases. In figures 4(a) and (b) we have also
shown how the number of atoms and molecules oscillate out of
phase with time in this vortex state without and with external
decay, respectively. Comparing the set of figures for atomic
vortices at different times with the corresponding molecular
vortices at the same time, it is found that the intensity of crests of
the molecular vortices grows at the expense of that for atomic
vortices and vice versa. This feature is present for both the cases,
without and with external decay. However, faster decay of the
intensity of the crests is found in coupled ring vortices in the
presence of external decay than that in the absence of it.
Therefore, the signature of coherence is found to be implemented
on the evolution of coupled atomic and molecular ring vortices.

3.3. Stability analysis

The variations of conversion efficiency (η) of atoms into
molecules and the lifetime (τ) of the system (time for the

Figure 3. Variation of atomic (a) and molecular (c) number with time for x=1 and x=4 with decay=0 for two different combinations of
radial quantum number (n=1,3) and axial quantum number (nz=0,2) with azimuthal quantum number fixed at l=2 and the variation of
atomic (b) and molecular (d) numbers with time for the same combination of n, l and nz with external decay.
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decay of the total number of atoms to 1/e times its initial
number) with x and the total number of atoms N in two vortex
states in the presence of external decays (both spontaneous
and induced decay) are presented in figure 5. The dependence
of efficiency of conversion from atoms to molecules and the
lifetime for two different vortex states as a function of x are
shown in figures 5(a) and (c) respectively. For both the vortex
states (n=1, l=2, nz=0 and n=3, l=2, nz=2) the
variation of conversion efficiency and the lifetime with x
show opposite nature, conversion efficiency sharply increases
to saturation, whereas lifetime sharply decreases to a small
value with the increase in x. Conversion efficiency is saturated
in the lower vortex states after x=8, while it starts to saturate
from x=15 for higher vortex states. It is also found that
efficiency of conversion is lower for higher energy vortex
states (n=3, l=2, nz=2), which is separated by an energy
of about 2.6 in units of ħω from the lower state. However, the

decay rate is the same for both the vortex states. The variation
in conversion efficiency and the lifetime with N are shown in
figures 5(b) and (d), respectively. Similar to the variation with
x (figures 5(a) and (c)), conversion efficiency increases and
the lifetime decreases with increase in N. The rate of increase of
conversion efficiency is higher for the lower vortex state than
that for the higher vortex state (figure 5(b)), whereas the rate of
decrease of lifetime is higher for the lower vortex state than that
for the higher vortex state with an increase in N (figure 5(d)).

Conversion efficiency curves (solid lines in figures 5(a) and
(b)) are obtained by fitting the calculated points shown in the
figures. In figure 5(a) the fitted efficiency curve follows the
relation with x as ( )h = - -A e1 ,bx where ‘A’ and ‘b’ are
constants (table 1) and they depend on the initial number of
atoms and the energy of the system. Furthermore, the variation
of conversion efficiency with initial particle numbers follow a
similar trend as it changes with x ( ( ))h = - -A ei.e. 1 bN

Figure 4. Evolution of coupled atomic and molecular 3D ring vortices in the vortex state for n=3, l=2, nz=2 at different times
(a) without and (b) with external decay for atom (on the left) and for molecule (on the right) for x=4 and N=50 000. Evolution of number
of atoms and molecules with time for n=3, l=2, nz=2 vortex state has also been shown below that of the corresponding ring vortices.
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(figure 5(b)). The curve fitting of calculated data points shows
the variation of the average lifetime of the particles with ‘x’ as
τ=A/xd (figure 5(c)), where d is slightly greater than unity
(table 1). But the lifetime of the system falls linearly with N
(τ=A+bN) (figure 5(d)) unlike its variation with x. The
tabulated fitting parameters in table 1 shows that for η versus x
and η versus N variations, the constant A is lower for higher
vortex states while the constant b is double for the lower state
than that of the higher state. For τ versus x variation of both the
constants A and b are the same for both the lower and higher
states. For τ versus N the variation of constant A is almost the
same for both the lower and upper states, and the value of b is
larger for the lower vortex state.

In the study of the formation and evolution of coupled
atomic and molecular vortices in the rotating atomic–mole-
cular BEC system, it is necessary to investigate the stability of

such a system. It is known that the stability of the atomic and
molecular vortices are inversely proportional to the value of
the imaginary part of the energy of atomic and molecular
vortex states Im(Ea,m). To demonstrate the stability of atomic
and molecular vortices in a rotating coupled system we have
plotted Im(Ea,m) for two different vortex states (figure 6).
Figures 6((a)–(d)) provide the variation of Im(Ea,m) for both
the atomic and molecular vortex states with respect to x, N,
λam/λa and Ω/ωr, respectively. In the stability analysis, the
effect of external decay has been considered. Variation of
Im(Ea,m) with x (figure 6(a)) shows that atomic vortices in
both the energy states are almost stable. But the stability of
molecular vortices decreases sharply in the lower energy state
than that in the higher energy state. It is shown in figures 5(a)
and (c) that the conversion efficiency and the lifetime behave
oppositely with an increase in x and hence it will contribute to

Figure 5. Variation of (a) conversion efficiency of atoms into molecules and (c) average lifetime with x (light intensity factor) for two
different vortex states n=1, l=2, nz=0 (red line) and n=3, l=2, nz=2 (blue line). Variation of (b) conversion efficiency and
(d) lifetime for vortex states with the quantum numbers n=1, l=2, nz=0 (red) and n=3, l=2, nz=2 (blue) for x=1, with total
number of particles (N). Here λa=λm=λam.. Results of calculations are given as points and the lines are from curve fittings.

Table 1. Fitting parameters for the conversion efficiency (η) and average lifetime (τ) of the system with x and N.

X variable Y variable Energy level Parameter (1) Parameter (2)

x η n=1, l=2, nz=0 A=77.62 b=0.784
x η n=3, l=2, nz=2 A=73.01 b=0.355
N η n=1, l=2, nz=0 A=67.33 b=2.10×10−5

N η n=3, l=2, nz=2 A=62.33 b=9.26×10−6

x τ n=1, l=2, nz=0 A=3.42 d=1.069
x τ n=3, l=2, nz=2 A=3.42 d=1.082
N τ n=1, l=2, nz=0 A=3.75 b=−7.04×10−6

N τ n=3, l=2, nz=2 A=3.58 b=−2.67×10−6
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the energy of the system oppositely. With the increase in x the
rate of increase of conversion efficiency, i.e. the rate of for-
mation of molecules, is higher for the lower vortex state
whereas the rate of decay of the system is the same for both
the states. By repeating the calculation using a lower value of
conversion efficiency (1/4 of its original value) we found that
the stability of the lower state increases (not shown here).
Thus a higher value of conversion efficiency of a lower state
may give rise to the instability for the lower molecular vortex
state higher than that for the upper molecular vortex state
when the decay rate of both the states are the same.

Figure 6(b) shows that atomic vortices are stable with N
whereas the stability of molecular vortices decreases with the
increase in the total number of particles and the stability is
much less than that of the atomic vortices. The dependence of
stability on the strength of atomic–molecular interaction in the
units of atom–atom interaction shows (figure 6(c)) that atomic
vortices are stable for both the vortex states although that, in
the higher energy state, increases slowly with an increase in
atomic–molecular interaction. However, the stability of
molecular vortices is much less than that of atomic vortices
and it becomes more unstable with an increase in atomic–
molecular interaction. The stability of molecular vortices in
the lower state is greater than that of the higher state by a
factor of two in the range λam�λa. Similarly, an increase in
rotation frequency in units of trap frequency (figure 6(d))
shows stable atomic vortices and the stability is much more
than that of the molecular vortices. The stability of molecular
vortices in the lower state is double that in the higher state in

the range Ω�ωr. These figures reveal that although atomic
vortices are stable in both the energy states, and more or less
independent of system parameters (x, N, λam/λa and Ω/ωr),
stability of molecular vortices is less than that of atomic
vortices and it decreases with the increase in these system
parameters, except for rotation frequency. With an increase in
Ω/ωr, molecular stability slightly increases. Moreover, the
stability in the higher energy vortex state is lower than that in
the lower energy vortex state, except in the variation with x.
Therefore the stability of atomic and molecular ring vortices
in a coupled rotating atomic–molecular BEC system can be
controlled by varying different system parameters such as the
intensity of PA lasers, the initial number of atoms, interaction
strengths and the rotation frequency of the system.

4. Conclusion

A detailed investigation into the rotating coupled atomic–
molecular BECs of 87Rb trapped in a 3D-anisotropic
cylindrical trap, in both time-independent and time-depen-
dent Gross–Pitaevskii approaches, reveal that coupled
atomic and molecular quantized ring vortices can be
achieved in a coupled BEC system. For different combi-
nations of radial (n) and axial (nz) quantum numbers at a
fixed azimuthal quantum number (l) different numbers of
nodes are obtained in the density profile (as a function of r
and z). The presence of these nodes and crests in the density
profile give rise to different structures around the central

Figure 6. Stability curve for atom (blue and wine line) and molecule (red and olive line) with the variation of (a) x, (b) N, (c) relative
interaction strengths λam/λa and (d) external rotating frequency to trap frequency Ω/ωr for vortex states with n=1, l=2, nz=0 (blue and
red lines) and n=3, l=2, nz=2 (wine and olive line). Here x=1 for N, λam/λa and Ω/ωr variation curves.
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vortex at r=0. Although the structure of vortices formed
for a particular combination of n, nz and l are the same for
atomic and molecular vortices, the nature of the vortices
(i.e. the spread and the peak density of crests) are different.
Molecular vortices are more localized than atomic vortices.
The evolution of the population of atoms and molecules
with time in two vortex states shows out-of-phase oscilla-
tions in both the cases, with and without external decays.
However, the amplitude of oscillation decays quickly in the
presence of external decay. The out-of-phase oscillation of
atomic and molecular numbers in this rotating coupled BEC
system shows a signature of coherences as with the coher-
ences present in the evolution of atomic and molecular
numbers in the ground state in the absence of any vortices.
This coherence is also implemented on the evolution of
coupled atomic and molecular ring vortices as their inten-
sity increases or decreases oppositely in the rotating cou-
pled BEC system, both in the presence and absence of
external decay. To investigate the feasibility and stability of
the atomic and molecular vortices in the rotating coupled
BEC system we have studied the lifetime of the system and
atom-to-molecular conversion efficiency as a function of
laser intensity and the initial number of atoms, considering
the external decay. It is found from the lifetime variation
that, although the system decays sharply with an increase in
laser intensity, the lifetime of the system decreases slowly
with an increase in the initial number of atoms. The varia-
tion in conversion efficiency shows that it is saturated with
an increase in laser intensity, and with an increase in the
initial number of atoms it increases steadily. Therefore it
can be stated that it is feasible to design coupled atomic and
molecular ring vortices in the rotating BEC system
depending on the choice of laser intensity and the initial
number of atoms. Linear stability analysis reveals that the
stability of the coupled atomic and molecular ring vortices
can be controlled by changing the system parameters e.g.
laser intensity, initial number of atoms, interaction strength
and rotation frequency of the system. It is found that the
atomic vortices are stable with the variation of these para-
meters, but the molecular vortices are less stable than the
atomic vortices. Therefore the stability of atomic and
molecular vortices can be controlled with the optimum
choice of the system parameters.
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