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1.  Introduction

Indium oxide is one of the basic transparent semiconducting 
metal oxides, whose advantages and unique properties have 
been demonstrated in widespread applications in micro- and 
optoelectronics, chemical sensors, catalysis, photovoltaics, 
thermoelectric devices, etc [1–3]. In spite of rather intensive 
fundamental studies some aspects of its physico-chemical, 
electronic and magnetic behaviour remain unclear and their 
understanding may serve for further developments in afore-
mentioned and possibly new areas of application. The crystal-
lographic complexity of cubic In2O3 lattice impedes studies 
and interpretation of its physical properties. Even primitive 
cell consists of 8 formula units, i.e. 40 atoms.

One of the characteristic features of In2O3 lattice is an exist-
ence of structural vacancies (SVs) which form a kind of voids 
in the crystal lattice. The proportion of such vacancies in the 

unit cell is equal to the number of formula units. Additionally, 
the presence of structural vacancies results in distortions of 
oxygen in the 1st shell surrounding indium atoms. These lat-
tice sites differ from ordinary interstitial sites because they 
can be considered as a continuation of lattice nodes and are 
placed at positions of so-called ‘missed’ anions. Therefore, 
it seems that the nature and point defect formation due to 
the impurity atoms embedded in SVs should be different in 
comparison with ordinary interstitial sites. Gallium is one of 
the interesting and prominent candidates for doping of binary 
In–O, ternary In–X–O and quaternary In–X–Y–O oxide mat
erials where X, Y  =  Zn or Sn [4, 5]. Experimental studies [6] 
of In2O3:Ga thick films with large grains in µm scale have 
showed a strong increase of electrical conductivity versus Ga 
additive increase (more than 1 order of magnitude at 8 at.% 
Ga). Within the concept of isovalent impurity substitution 
by III group element it is difficult to explain such behavior 
and donor-like effect of Ga atom. Moreover, a weak mono-
tonic decrease with Ga concentration of fundamental band 
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gap (FBG) was observed. Thermal conductivity also demon-
strates drastic decrease with Ga (~3 times of magnitude) and 
Sn doping in the same concentration range [6, 7] and there is a 
lack of unambiguous explanation of this drop. Strong depend
ence of thermal conductivity on the defect concentration is 
crucial for phonon engineering, i.e. tuning of thermal and/or 
electrical conduction of materials via modification of their 
phonon properties [8–10].

In this paper we theoretically investigate the electronic 
band structures, formation energies, partial charges and bond 
configurations of In2O3 structure with different point defects 
conformed by Sn, Ga and O atoms that include both In lattice 
nodes (substitutional defects) and also structural vacancies 
(interstitial defects) as a possible sites for an atom’s inclusion. 
Hereafter we will refer to interstitial atoms as those located 
in structural vacancies. Employing density functional theory 
(DFT), we determine the geometrical and energetic (forma-
tion) parameters of these effects and their impact on the unit 
cell structure. We also analyze donor or acceptor behavior of 
these effects as well as defect-induced modification of the 
electronic band structure, Bader partial charges [11] and elec-
tronic density of states (DOS).

The reminder of the paper is arranged as follows. In sec-
tion 2 we describe our computational model of In2O3 with var-
ious point defects. Discussions of defect energetics and bonds 
configuration are given in sections 3.1 and 3.2 respectively. 
Section 3.3 describes key-features of electronic band structure 
in In2O3 with point defects conformed by Sn, Ga and O atoms. 
Conclusions are given in section 4.

2.  Computational details

All electronic calculations were performed within density 
functional theory formalism as implemented in the Quantum 
ESPRESSO first-principles simulation package [12, 13]. The 
generalized gradient approximation (GGA) for exchange-cor-
relation functional of Perdew, Burke and Ernzerhof (PBEsol) 
[14] was used. The plane wave cutoff energy of 650 eV and 
3  ×  3  ×  3 k-point mesh of the Monkhorst–Pack type [15] 
were found sufficient to converge the total energy and atomic 
coordinates. A comparative study by Rasander and Moram 
[16] of different approximations to exchange-correlation 
functional over a range of semiconductors and insulators 
have shown that PBEsol is a distinct improvement over local 
density approximation (LDA) and GGA-PBE approximation 
when comes to structure properties (bond lengths, stresses, 
etc). In defected systems this advantage of PBEsol could be 
important, as one should first obtain a structurally well relaxed 
lattice containing the defects. Moreover, Buckeridge et al [17] 
have found for a vacancy containing In2O3 a less than 1% 
variation in both electron and hole concentrations when com-
paring results of PBEsol and hybrid functional calculations.

For local density of states (LDOS) and band structure 
calculations a finer 8  ×  8  ×  8 k-point grid was employed. 
Using the supercell approach the defect-free In2O3 with 
bixbyite crystal structure (space group Ia-3) and with various 
point defects containing Sn, Ga and O impurity atoms were 

modeled. A 40-atoms primitive cell was chosen as a defect-
free reference. Following the Wyckoff notation [18] the refer-
ence cell contains 4 indium atoms in position b, 12 indium 
atoms in position d, 24 oxygen atoms in position e and 8 SVs 
in position c. Both In(b) and In(d) atoms are surrounded by 
six oxygen atoms, while all O atoms are four-fold coordinated 
with indium. The position of b, d, e, and c sites in In2O3 lat-
tice is shown in figure 1. It is seen that the c-sites provide the 
natural space to accommodate the interstitial atoms.

The In2O3 with various point defects was simulated by 
adding (removing) a certain number of In, O, Sn or Ga atoms 
to (from) the defect-free cell. The characteristic sites consti-
tuting the defects are marked in figure 1 as follows: b0 and 
d0 are b- and d-sites for substitutional atoms, c0, c1, c2—c-
sites for interstitial atoms, e0—e-site for an oxygen vacancy. 
All cells were structurally relaxed until forces acting on the 
ions became below 0.01 eV Å−1 and internal stress decreased 
below 0.005 GPa. For pure In2O3 the equilibrium lattice con-
stant was found to be a  =  10.157 Å, only 0.4% larger than the 
experimental value 10.117 Å [19]. The calculated volumetric 
density was 7.04 g cm−3 that is about 2% less than exper
imental value 7.18 g cm−3 [20].

3.  Results and discussion

3.1.  Point defect energetics

Following the [21, 22] the formation energy (FE) of a neutral 
point defect can be obtained from DFT total energy calcul
ations as:

Ed
form = Ed

tot − E0
tot −

∑
i

nd
i µi,� (1)

where Ed
tot is the total energy of a supercell calculation con-

taining the defect, E0
tot is the total energy of a defect-free 

supercell calculation, nd
i  is the number of atoms of type i that 

have been added to (nd
i > 0) or removed from (nd

i < 0) the 
supercell to form the defect, µi is the chemical potential of ith 

Figure 1.  Schematic view of In2O3 lattice sites in the vicinity 
of b-site that is one of the corners of primitive unit cell. Blue 
nodes indicate In(b-site), yellow nodes show In(d-site), red nodes 
correspond to O(e-site), while gray sites indicate structural vacancy 
(c-site).
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atom type. For complex defects containing several impurity 
atoms we have presented formation energy per one atom.

Within the thermodynamic approach chemical potentials 
of In, Sn, Ga and O can be expressed through thermochem-
ical heats of phase formations for In2O3, SnO2, Ga2O3 and O2 
using the following expressions:

2µIn + 3µO = ∆HIn2O3 ,� (2)

µSn + 2µO = ∆HSnO2 ,� (3)

2µGa + 3µO = ∆HGa2O3 ,� (4)

2µO = ∆HO2 ,� (5)

where ∆HIn2O3, ∆HSnO2, ∆HGa2O3 and ∆HO2 are the respec-
tive heats of formation. Note, for exothermic reactions these 
values are negative. Each of equations  (2)–(5) describes 
only the part of total thermochemical reaction—the forma-
tion process of the corresponding compound. This means 
that the rate of reverse process (decomposition) is too small 
and can be excluded from consideration. Otherwise, the 
establishment of equilibrium would lead to changes in the 
basic thermodynamic parameters of the system, including 
chemical potentials. Therefore, the sum of chemical poten-
tial values (left side of equations  (2)–(5)) determines the 
transition boundary between the formation/decomposition 
of secondary phases only. The appearance of reverse reac-
tions results in decomposition onset of secondary phases to 
their elementary phases. It occurs when the sum of chemical 
potentials exceeds the FE. In terms of interaction particles, 
the chemical potentials reflect the reservoirs for atoms that 
are involved in creating the substance and their values are 
also defined by experimental conditions. Naturally, at cer-
tain temperatures and pressures the chemical potentials of 
the same primary phases entering into different compounds 
have equal values.

At the same time these cohesive/formation energies for 
bixbyite In2O3, cassiterite SnO2, ε-polymorph phase of Ga2O3 
(orthorhombic phase) and molecular oxygen can be determined 
by the first-principles DFT approach as a difference between 
the total intrinsic electronic energies of indicated oxides and 
elementary phases participating in their formation i.e. In metal 
(space group 139, I4/mmm), Sn metal (space group 141, I41/
amd), Ga metal (space group 64, Cmca) and O2 molecule, 
respectively. Our approach based on equations (1)–(5) allows 
one to calculate formation energies of defects without intro-
ducing in the model of so-called ‘metal rich’/‘oxygen poor’ 
and ‘metal poor’/‘oxygen rich’ conditions imposed on In and 

O chemical potentials, respectively. The latter results in non-
physically wide range of formation energies (see [23], where 
FE of an O-vacancy is ranged from  −0.49 eV to  +2.74 eV 
depending on the metal/oxygen limits). In fact, it introduces 
an empirical uncertainty associated with the ‘technological’ 
factor which is beyond the first-principles calculations.

Formation energies of metal oxides and defects calculated 
in this work employing Quantum ESPRESSO simulation 
package with PBEsol functional is presented in tables 1 and 2,  
respectively. Available experimental data from [24–28] are 
also presented for comparison. Due to significant overbinding 
of O2 molecule within LDA/GGA approximations [29–31] the 
formation energy of O2 calculated in this work using GGA-
PBEsol is  −8.3 eV that significantly deviates from  −5.29 eV 
obtained using hybrid functional [32] or  −5.11 eV determined 
experimentally [24]. Therefore, in our calculations of defects 
energy formation we used formation energy of molecular 
oxygen from [32] to correctly obtain the oxygen chemical 
potential. Small deviation between theoretical and exper
imental results provided in table  1 could be attributed to a 
temperature difference between theory (T  =  0 K) and exper
imental conditions (T  =  298.15 K).

Our value for FE of VO, which is one of the most exten-
sively studied defects in In2O3, is in accordance with those 
reported by Tanaka et al [33] (1.53 eV) and by Agoston et al 
[34] (1.2 eV). However, their FE values were obtained in 
strongly different O-rich and O-poor conditions, respectively. 
Since these limiting conditions were necessary attributes in 
their models of a defect formation, reconsideration of the 
characteristic value for oxygen chemical potential indicated 
in [33, 34] may be in order.

Besides the FEs of defects with different composition, 
table  2 contains the Bader partial charges for impurity and 
host atoms. Bader analysis demonstrates that atoms initially 
introduced as neutral transited to charged states after DFT 
calculation. Interestingly, the partial charges of host atoms are 
far from values of pure ionic states i.e. In3+ and O2− deter-
mined by chemical formula. The Bader charges together with 
the analysis of band diagrams and the position of the Fermi 
level allow to confirm the electronic donor or acceptor nature 
of these impurities. The position of Fermi level, discussed 
in section  3.3 below, provide an additional confirmation of 
donor/acceptor nature of the defects.

As one can see from table 2 there is a correlation between 
the highest FE and lowest reducing/oxidation states in the 
case of single Ga/O interstitials. Probably, this correlation is 
related to large local distortions of the lattice due to additional 
point charge and under-coordinated orbitals of the defect. 

Table 1.  Formation energy.

Material Formation energy, eV (theory)
Standard enthalpy of 
formation, eV (experiment)

In2O3 −10.0 (this work) −9.47 [25–28]
SnO2 −5.77 (this work) −5.98 [25, 26]
Monoclinic β-Ga2O3 appears at T  >  800 °C −10.78 (this work) −11.28 [25]
Orthorhombic ε-Ga2O3 most stable up to 800 °C −9.44 (this work) N.A.
Molecular oxygen −5.29 [32] −5.11 [24]
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Bond length changes in the 1st atomic shell of these intersti-
tials and increase of a unit cell volume indirectly confirm this 
assumption (see table 3).

Comparative analysis of defect FEs allows separating them 
into several groups depending on their values:

	 –	�defects with negative or close to zero FE � 0; such 
defects consist of Sn or Ga substitutional atoms in the 
lattice sites b or d, they are formed either from single 
atoms (single substitution) or pairs of atoms of the same 
type (double substitution) or different type (mixed-type 
substitution); such FE indicate that formation of defect 
is spontaneous while the defects listed below require 
activation by external energy and in real conditions this 
can be achieved by temperature activation during the 
material growth; 

	 –	�defects with low activation energies 0  <  FE  <  1 eV; 
such defects consist of the pair of metal atoms in lat-
tice sites b and d and third O or Ga atom located in SV 
vicinity; 

	 –	�defects with moderate activation energies 1 eV  <  FE  < 
2 eV; among these defects are Snb–Gai–2Oi, Snb–Gai 
and Gai–Oi, i.e. defects consisting of 2 or 3 filled SVs; 
in terms of FE magnitude these defects are also ordinary 
O-vacancies with FE  =  1.55 eV; 

	 –	�defects with high activation energies FE  >  2 eV; they are 
represented as single SVs filled by O or by Ga atoms as 
well as Frenkel-type defect Gai–VO; their formation are 
the most energetically unfavourable.

3.2.  Bonds configuration

The information about bonds configuration around the defects 
in In2O3 is presented in table  3. Analyzing table  3, the fol-
lowing features in the defect geometry can be revealed:

	 •	�Sn or Ga substitution results in slight bond contraction with 
O atoms located in the 1st shell; the contraction is practically 
the same for both single and double substitution; in the case 
of Sn atoms it is about 3%; in the mixed case or double Ga 
substitution such relative distance changes to around 7%; 

	 •	�introduction of a single O atom in SV together with 
double substitution of Sn atoms results in Oi shift toward 
Sn by ~6%–10% from the geometrical center of SV; 
mixed or double Ga substitution results in Oi shifts from 
b-site towards d-site with relative displacement from 
the geometrical center by ~35% and 20%, respectively, 
wherein the contraction between metal atoms and the 1st 
O shell are within 2%–13%; 

	 •	�introduction of a single Ga atom in SV results in Gai rela-
tive shift ~17% from Inb and Ind atoms towards O nodes; 
Snb–Gai complex also demonstrates Gai shift from Ind 
towards O nodes (~40%) and additionally it is character-
ized by Ind atom shift towards Snd with corresponding 
bond contraction ~20%; the latter case is also character-
ized by the largest change in the unit cell volume (~4%); 
Snb-Gai complex with additional 2 Oi atoms positioned 
in neighbor SVs retains the specified behavior although 
with smaller Snb–Ind bond contraction; 

Table 2.  Defect formation energiesa,b.

Type of defect
Formation 
energy, eV

Formation 
energy, eV 
per atom

Bader charge of impurity atoms, 
electron charge

Average Bader charge of 
host atoms, electron charge

VO 1.55 1.55 In  =  +1.78 O  =    −  1.24
Snb   −  0.17   −  0.17 +2.35 In  =  +1.83 O  =    −  1.24
Snd   −  0.11   −  0.11 +2.32 In  =  +1.83 O  =    −  1.24
Snb–Snd 0.47 0.235 +2.28;  +2.25 In  =  +1.81 O  =    −  1.24
Snb–Snd–Oi 1.56 0.52 +2.38;  +2.40;   −  1.21 In  =  +1.86 O  =    −  1.23
Gab   −  0.39   −  0.39 +1.90 In  =  +1.86 O  =    −  1.24
Gad   −  0.28   −  0.28 +1.88 In  =  +1.86 O  =    −  1.24
Gab–Gad   −  0.71   −  0.36 +1.90;  +1.88 In  =  +1.86 O  =    −  1.24
Gab–Gad–Gai 2.43 0.81 +1.79;  +1.80;  +1.02 In  =  +1.79 O  =    −  1.24
Gab–Gad–Oi 2.78 0.93 +1.89;  +1.90;   −  0.67 In  =  +1.86 O  =    −  1.21
Gai–Oi 3.95 1.98 +1.72;   −  1.22 In  =  +1.83 O  =    −  1.23
Snb–Gad   −  0.40   −  0.20 +2.35;  +1.86 In  =  +1.83 O  =    −  1.24
Snb–Gad–Oi 2.86 0.95 +2.40;  +1.90;   −  1.01 In  =  +1.86 O  =    −  1.22
Snb–Gai 3.73 1.87 +1.00;  +1.34 In  =  +1.81 O  =    −  1.23
Snb–Gai–2Oi 5.69 1.42 +2.37;  +1.79;   −  1.20;   −  1.21 In  =  +1.84 O  =    −  1.23
Oi 4.58 4.58   −  0.94 In  =  +1.87 O  =  −1.21
Gai 3.65 3.65   +  1.01 In  =  +1.79 O  =  −-1.23
Gai–VO 4.67 2.34   +  0.94 In  =  +1.71 O  =  −1.23

a Three of processes are highlighted (in bold italic) as the most energetically unfavourable.
b In2O3 Bader charges: In  =  +1.86e; O  =    −  1.24e.
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Table 3.  Bond lengths and unit cell volumea.

Defect type Neighbor pair Bond length, Å ΔL/LIn2O3, % Vcell, Å3
ΔV/VIn2O3, 
%

Pure In2O3 In(b)–O 2.18 (6) 523.89
In(d)–O 2.14 ÷ 2.23 (6)
In(b)–In(d) 3.81 (6)
In(b)–V(i) 2.35 (1)
In(d)–V(i) 2.33 (3)
O–V(i) 2.36 ÷ 2.42 (6)
V(i)–V(i) 3.59

VO 524.78 +0.17
SnIn(b) Sn(b)–O 2.11 (6)   −  3.21 527.05 +0.60
SnIn(d) Sn(d)–O 2.08 ÷ 2.16 (6)   −  2.80 ÷   −  2.70 527.01 +0.595
SnIn(b)–SnIn(d) Sn(b)–O 2.12 ÷ 2.16 (6)   −  2.75 ÷   −  0.92 530.51 +1.26

Sn(d)–O 2.09 ÷ 2.17 (6)   −  2.33 ÷   −  2.69
SnIn(b)–SnIn(d)–Oi Sn(b)–O 2.12 ÷ 2.21 (6)   −  2.75 ÷  +1.38 526.54 +0.51

Sn(d)–O 2.09 ÷ 2.26 (6)   −  2.33 ÷  +1.35
Sn(b)–O(i) 2.21 (1)   −  5.96
Sn(d)–O(i) 2.09 (1)   −  10.3
In(d)–O(i) 2.18 (1)   −  6.44

GaIn(b) Ga(b)–O 2.03 (6)   −  6.88 515.23   −  1.65
GaIn(d) Ga(d)–O 1.99 ÷ 2.12 (6)   −  7.01 ÷   −  4.93 515.48   −  1.61
GaIn(b)–GaIn(d) Ga(b)–O 2.01 ÷ 2.09 (6)   −  7.80 ÷   −  4.13 506.93   −  3.24

Ga(d)–O 1.97 ÷ 2.12 (6)   −  7.94 ÷   −  4.93
GaIn(b)–GaIn(d)–Gai Ga(b)–O 1.89 ÷ 2.22 (5)   −  13.3 ÷  +1.83 532.27 +1.60

Ga(d)–O 1.89 ÷ 2.08 (5)   −  11.68 ÷   −  6.73
Ga(b)–Ga(i) 2.78 (1) +18.3
Ga(d)–Ga(i) 2.63 (1) +12.88
In(d)–Ga(i) 2.61 (1); 2.71 (1) +12.02;  +16.31

GaIn(b)–GaIn(d)–Oi Ga(b)–O 1.99 ÷ 2.17 (6)   −  8.72 ÷   −  0.46 515.31   −  1.64
Ga(d)–O 1.91 ÷ 2.26 (6)   −  10.75 ÷  +1.35
Ga(b)–O(i) 3.28 (1) +39.6
Ga(d)–O(i) 1.91 (1)   −  18.0
In(d)–O(i) 2.24 (1); 2.81 (1)   −  3.86;  +20.6

Gai–Oi O–Ga(i) 1.85 ÷ 2.17 (5)   −  21.6 ÷   −  10.3 543.72 +3.79
Ga(i)–O(i) 3.40 (1)   −  5.29
In(b)–Ga(i) 2.72 (1) +15.74
In(d)–Ga(i) 2.73 ÷ 2.82 (3) +17.17 ÷  +16.53
In(b)–O(i) 2.29 (1)   −  2.55
In(d)–O(i) 1.69 (1); 2.07 (1)   −  27.47;   −  11.16

SnIn(b)–GaIn(d) Sn(b)–O 2.09 ÷ 2.13 (6)   −  4.13 ÷   −  2.29 518.73   −  0.98
Ga(d)–O 1.98 ÷ 2.11 (6)   −  7.48 ÷   −  4.48

SnIn(b)–GaIn(d)–Oi Sn(b)–O 2.07 ÷ 2.14 (6)   −  5.05 ÷   −  1.83 521.49   −  0.46
Ga(d)–O 1.90 ÷ 2.11 (6)   −  11.21 ÷   −  5.38
Sn(b)–O(i) 3.04 (1) +29.4
Ga(d)–O(i) 1.90 (1)   −  18.45
In(d)–O(i) 2.19 (1); 2.33 (1)   −  6.0; 0

SnIn(b)–Gai Sn(b)–O 2.28 (3) +4.59 546.48 +4.31
Sn(b)–Ga(i) 2.48 (1) +5.53
O–Ga(i) 1.90 (3)   −  19.49 ÷   −  21.49
Sn(b)–In(d) 2.98 (3)   −  21.78
In(d)–Ga(i) 3.31 (3) +42.06

SnIn(b)–Gai–2Oi Sn(b)–O 2.03 ÷ 2.20 (6)   −  6.88 ÷  +0.92 546.27 +4.27
Sn(b)–Ga(i) 2.81 (1) +19.57
O–Ga(i) 1.87 ÷ 2.06 (5)   −  20.76 ÷   −  14.88
Sn(b)–In(d) 3.60 ÷ 3.67 (3)   −  5.51 ÷   −  3.67
In(d)–Ga(i) 2.70 ÷ 2.81 (3) +5.88 ÷  +20.60

Oi In(b)–O(i) 2.35 (1) 0 529.66   +  1.10
In(d)–O(i) 2.22 (3)   −  4.72

Gai O–Ga(i) 1.98 (3)   −  16.1 ÷  −18.2 543.00   +  3.65
In(b)–Ga(i) 2.69 (1)   +  14.47
In(d)–Ga(i) 2.70 (3)   +  15.88

Gai–VO O–Ga(i) 1.94 ÷ 2.12 (3); 2.89 (1)   −  17.8 ÷  −12.40;  +19.42  540.93   +  3.25
In(b)–Ga(i) 2.82 (1)   +  20.0
In(d)–Ga(i) 2.65 ÷ 2.70 (3)   +  13.73 ÷  +15.88

a The most energetically unfavourable processes are highlighted in bold italic.
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	 •	�the defect totally constituted from 3 Ga atoms (Gab–Gad–
Gai) is also characterized by Gai shift from b- and d-sites 
towards O nodes; its displacement is almost the same as 
for the single Gai defect.

It can be concluded that substitutional atoms weakly 
change the bond lengths and unit cell volume (within several 
%). The greatest distortions are observed in the case of inter-
stitial Ga atoms. However, the real change in bond lengths 
near the defect does not exceed 12%. The highest enlarge-
ment of the unit cell volume can be explained quantitatively 
through the increase of Snb and Gai effective sizes due to their 
low oxidation states Sn+1.0 and Ga+1.34 according to the Bader 
partitioning. Stronger shifts revealed for some atomic posi-
tions which are related to interstitial atoms in SV only. The 
latter is a result of the rather free movement of interstitial 
atom within the SV cavity due to a lower coordination number 
and bond strength with nearest environment.

Introduction of interstitial Ga defects in In2O3 leads to 
a crystal lattice disorder. We can presume that the disorder 
induced by the rattling nature of interstitial atoms could 
strongly reduce the thermal conductivity of doped In2O3. 
Recent experimental results by Liu et al [6] on the significant 
drop of thermal conductivity in Ga-doped In2O3 indirectly 
confirm this assumption. Similar reduction of the thermal con-
ductivity was found in other thermoelectric materials [35–39].

3.3.  Electronic band structure

In our electronic calculations we have used the fol-
lowing valence configurations for atoms: O 2s22p4, In 
4d105s25p1, Sn 4d105s25p2 and Ga 3d104s24p1. Figure  2 
shows calculated electronic band structure along 
Γ (0, 0, 0)-H (1/2,−1/2, 1/2)-N (0, 0, 1/2)-Γ-P (1/4, 1/4, 1/4) 
Brillouin zone path and the orbital-specific LDOS of pure 
In2O3.

We have considered the FBG as a difference in energies 
between the valence band maximum (VBM) and conduction 

band minimum (CBM). Our calculated FBG is 1.03 eV. 
Although this value is in a good accordance with other 
GGA-PBE calculations [40–42] it is much smaller than the 
values 2.7–3.2 eV obtained from experiments [43–49] and 
from more accurate DFT models with hybrid functionals [50, 
51] or empirical Coulomb interaction parameters (DFT  +  U) 
[52]. The optical band gap (OBG) for pure In2O3 turns out to 
be larger than FBG due to the very low probability of photon 
absorption of interband direct optical transitions for the 1st 
(top) valence band (formally FBG transitions are forbidden). 
We estimated OBG as an energy distance between Г8 VB 
state and CBM (see [53] and figure  2). The obtained value 
of 1.79 eV is by 0.76 eV larger than FBG. This difference 
(denoted with gray arrows in figure 2) is close to values of 
0.62 eV [44], 0.71 eV [54] and 0.8 eV [53] calculated from the 
hybrid functional and DFT  +  U calculations.

The FBG and OBG differ from each other, since in addi-
tion to the occupancy of electronic states optical transitions 
are affected by the selection rules and the corresponding 
transition probabilities. Due to the complexity of the In2O3 
cubic lattice there is a set of bands in VB. The allowed optical 
transitions for the states of opposite parity between CBM and 
VBs were found  at ~0.7–0.8 eV (bands state Г8 by Walsh et al 
[53] or Г159–Г161 by Sabino et al [54]). Namely these transi-
tions determine the OBG [53, 54].

The band structure details can be further analyzed from the 
LDOS calculations resolved for different orbitals. The upper 
part of the valence band (VB) shows a small dispersion and 
it is dominated by O 2p states with a weak overlap with In 4d 
and In 5p states. In the lowermost part of the first conduction 
band (CB) the In 5s states prevail. These states are character-
ized by a parabolic dispersion with an isotropic effective mass 
m∗

x = m∗
y = m∗

z = 0.17m0. For higher energies up to 5 eV 
with respect to CB minimum a strong hybridization between 
In 5s and O 2p states is found.

Band structures and orbital-dependent DOS for In2O3 
with different point defects are presented in figures 3–5. The 

Figure 2.  Defect-free In2O3 electronic band structure and LDOS with contribution from different orbitals. Fermi level is placed at 0 eV 
(dashed line). Г8-point shows valence band states responsible for the optical transitions.
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Figure 3.  Electronic band structure and LDOS of indium oxide with one-site point defects: (a) VO, (b) SnIn(b) and (c) Gai.
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introduction of single GaIn(b) and SnIn(b) substitutions only 
weakly affects the band structure dispersion in comparison 
with pure In2O3. The major difference is the position of Fermi 
level, while for GaIn(b) case it remains inside the gap close 
to its center, for SnIn(b) it has climbed up to 1.76 eV above 
the bottom of CB (see figure 3(b)) turning the corresponding 
material into an n-type degenerate semiconductor. The intro-
duction of an O vacancy (figure 3(a)) or an interstitial Ga 
(figure 3(c)) changes the band structure somewhat similarly, it 
splits the first CB into two subbands with a minimum energy 
gap in-between ~1 eV at point N (0, 0, 1/2) of the Brillouin 
zone. For both these defects the Fermi level lies above the 
first subband manifesting strong donor behaviour. The LDOS 
of the first conduction subband revealed an overlap between 
oxygen and indium electronic orbitals with an additional 
mixing with Ga 4p and Ga 4s states in case of Gai defect. 
The second conduction subband is low-dispersive with min-
imum at N (0, 0, 1/2) characterized by heavy electrons and 
by a pronounced peak in DOS. The LDOS analysis of this 
subband shows a strong mixing between O 2p, O 2s, In 5p 
and In 5s electronic states, again with some additional mixing 
with Ga 4p and Ga 4s orbitals for interstitial Ga defect. We 
note also, that for VO defect the calculated value of ~1 eV for 
energy gap between two lowest conduction subbands is not 
far from 0.9 eV of Lu et al [50] obtained within a PBE  +  U 
method and from 0.91 eV of Melendez and Wierzbowska 
[55] obtained within LDA with self-interaction correction. 
Moreover, our additional calculation with GGA-PBE method 
[56] have revealed a very similar band structure for In2O3:VO 
with maximal 5% difference at some parts of the Brillouin 
zone, as compared to GGA-PBEsol calculation.

The band structures of In2O3 with point defect complexes 
consisting of substitutions (Sn, Ga) and interstitials (Ga, O) 
in different combinations are more complicated (see figures 4 
and 5). However, we conclude that some characteristic features 
described above for one-site defects are also found for defect 
complexes. Additionally, the introduction of oxygen intersti-
tials is accompanied by appearance of numerous energy levels 
inside the band gap dominated by O 2p electronic states. Also, 

the largest deviation in electron effective masses of the first CB 
is found for Gai–Oi (m∗

x = m∗
z = 0.15m0,m∗

y = 0.14m0) and 
GaIn(b)-GaIn(d)-Oi (m∗

x = 0.20m0 ,m∗
y = m∗

z = 0.19m0) defect 
complexes. The electron effective masses for some distinctive 
cases of In2O3 with defect complexes along the selected sym-
metries are presented in table 4.

In general, the position of Fermi level itself reflects the 
changes of some part of total electron density and its redis-
tribution in the CB or localization in the defect vicinity. In 
the first case, the Fermi level is located in the CB, whereas 
in the second case it is located in the band gap and reflects 
the formation of shallow or deep electronic levels. Bader par-
titioning can provide additional information on the electron 
density distribution over the lattice. It also may identify the 
donor/acceptor nature of electron levels located in the band 
gap. We will illustrate this for two characteristic defects. First 
defect is Snb, when according to electronic band structure the 
Fermi level lies in the CB. The second defect is Snb–Gad–Oi, 
when the Fermi level lies in the main forbidden zone.

	 •	�Snb case. The comparison of Bader partial charges 
between pure and defected In2O3 shows very small differ-
ence for all O atoms in both primitive cells and decrease of 
In (for all 15 atoms) partial charge from  ≈  +1.86e (pure 
case) to  ≈  +1.83e (defect case). Thus, charge acquired 
by In atoms for defect case is q  =  +0.03e · 15  =  +0.45e, 
which is almost equal (considering the simplicity of 
estimation) to the charge supplied by substituted Sn atom 
q  =  +2.35e  −  1.86e  =  +0.49e. The free electron charge 
tends to concentrate near In sublattice and is repelled by 
O sublattice. Such kind of inhomogeneity in the electron 
distribution additionally suggests on a polar nature of 
the whole lattice. The same electron density pattern for 
ITO was obtained by Kim et al within VASP simulation 
package [57].

	 •	�Snb-Gad-Oi case. A more detailed look into Bader parti-
tioning shows that the largest changes of partial charges 
occur in the 1st shell of the nearest cation and anion 
neighbors around the interstitial O, which possesses local 
charge of  −1.0e. Atoms that contributed mostly to the 
compensation of Oi local charge are Snb, Gad, two Ind, 

Figure 4.  Electronic band structure and LDOS of indium oxide with two-site point defects: (a) Gai–Oi and (b) SnIn(b)–Gai.
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Figure 5.  Electronic band structure and LDOS of indium oxide with three- and four-site point defects: (a) SnIn(b)–GaIn(b)–Oi, (b) SnIn(b)–
Gai–2Oi and (c) GaIn(b)–GaIn(d)–Gai.
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and two O atoms (all atoms are at distances in the range 
1.9–3.04 Å (see table 3). The total charge compensation 
effect from these atoms is about  +0.9e and the rest of the 
charge (+0.1e) comes from the 2nd nearest shell.

Thus, the Bader analysis shows that both Sn substitutions 
and Ga interstitials lead to donor-type behaviour, while O 
interstitials result in acceptor-type behaviour and to appear-
ance of band gap states. Moreover, donor-type behaviour 
should be accompanied by n-type conductivity because of the 
Fermi level position in the CB.

We have checked the consistency of our calculations in 
the case of single Snb substitution, using a relation between 
electron concentration nCB in CB and defect concentration. 
As it follows from semiconductor statistics nCB is a func-
tion of Fermi energy and CB effective mass. Single Snb 
substitution corresponds to doping of 6.25%, i.e. Sn concen-
tration nSn  =  1.93 · 1021 cm−3. From our calculations we have 
obtained the following parameters of the CB: Fermi energy 
with respect to the CB EF  −  EC  =  1.76 eV, electron CB effec-
tive mass m∗

C = 0.17m0, CB charge gain due to the Snb charge 
loss during the In substitution ∆qCB = 2.35e − 1.86e ∼= 0.5e 
(see table 2). For degenerated semiconductor nCB at T  =  0 K 
is given by [58]:

nCB =
8π
3

Å
2m∗

C(EF − EC)

h2

ã3/2

.� (6)

Using equation (6) we estimate CB electron concentration as 
nCB  =  7.4 · 1020 cm−3. Taking into account the released charge 
from Snb impurity, one can obtain the ‘recalculated’ Sn con-
centration as 1.48 · 1021 cm−3 that is in reasonable accordance 
with aforementioned value of nSn.

The doping of In2O3 by Ga can considerably increase the 
electrical conductivity of material in spite of its isovalent 
impurity nature. This effect should be observable in the case 
of interstitial Ga. We did not calculate the electron concentra-
tion in the case of Gai defect due to the complexity of CB 
structure. However, the high position of Fermi level in CB 
(see figure 3(c)) gives the reason to assume that this value is 

comparable with ne in ITO (Snb case). Increase of electrical 
conductivity in In2O3:Ga reported in [6] can be attributed 
to large number of Gai defects appearing in samples at high 
temperatures of oxide formation.

An accurate description of the electronic structure in 
In2O3 with different substitutional and interstitial impurities 
is important for an accurate quantitative description of elec-
tron-assisted processes, particularly for the calculations of 
electron-phonon interaction, electron scattering and electrical 
conductivity. The obtained electronic structure data are also 
necessary for a deeper study of electronic processes in In–
Ga–Sn–O- and In–Ga–O-based metal-oxide semiconductor 
field-effect and thin film transistors, photosensitive and ther-
moelectric devices.

4.  Conclusions

Within density functional theory approach the various point 
defect complexes in cubic In2O3 structure have been systemati-
cally studied. The considered defects were comprised from one 
to four atoms of Sn, Ga and O in substitutional and interstitial 
(structural vacancy) positions. The formation energies, Bader 
partial charges, bond configurations and electronic band struc-
tures were calculated and analyzed. The energies of defect for-
mation were ranged from  −0.7 eV to more than 4 eV, depending 
on the number of constituent atoms and their positions. It was 
demonstrated that defect formation energy can be calculated 
without introducing any ambiguous so-called technological 
factors using correct value of chemical potential of atomic 
oxygen determined from the formation energy of its molecular 
form. Substitutional Ga and Sn defects are the most energeti-
cally preferable and their formations are spontaneous, while Ga 
double-substitution complex has the lowest formation energy. 
Their isovalent and donating behaviour is explained within the 
traditional valence concept of substitutional doping.

The formation of interstitial atoms and their complexes 
requires an activation energy which usually decreases with 
the number of atoms comprising the complex. It was shown 
that interstitial Ga defects demonstrate donor-like behaviour 
and result in degenerated CB accompanied by its splitting into 
two subbands with light and heavy electrons. Contrariwise, 
interstitial O defects act as acceptors and lead to the formation 
of acceptor levels or subbands inside the band gap. These find-
ings can shed light on unusually strong increase of electrical 
conductivity in In2O3 doped by Ga.

It was also revealed the decrease of CB effective mass for 
interstitial Ga defects and corresponding increase of CB effec-
tive mass for interstitial O defects. The calculation of elec-
tron LDOS for conduction subbands demonstrated an overlap 
between O and In electronic orbitals with an additional mixing 
with Ga 4p and Ga 4s states in the case of Gai defects. The 
obtained results are important for the interpretation of trans-
port phenomena in In2O3 with different substitutional and 
interstitial defects. Physical properties of such defects could 
not be accurately described in the framework of the standard 
doping concept and density functional theory is required for 
both qualitative and quantitative predictions.

Table 4.  Electron effective mass.

Type of 
defect

Electron effective mass, m0

Γ → P Γ → N Γ → H

1st 
CB

2nd 
CB

1st 
CB

2nd 
CB

1st 
CB

2nd 
CB

Pure 
In2O3

0.17 0.17 0.17

Snb 0.16 0.16 0.17
Snb–
Snd–Oi

0.16 0.16 0.16

Gab–
Gad

0.17 0.17 0.17

Gab–
Gad–Oi

0.19 0.19 0.20

Gai 0.16 8.78 0.15 4.68 0.15 4.68
Gab–
Gad–Gai

0.16 3.51 0.16 4.68 0.16 4.26
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