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Abstract
Quantum secure multi-party computation (SMC) is a vital field in quantum cryptography. In this
paper, we try to resolve SMC problems universally via graph states. Firstly, three kinds of
quantum SMC protocols are investigated, which are quantum private comparison protocol,
quantum millionaire protocol and quantum multi-party summation protocol. Secondly, three
proposed protocols are reviewed, and then the core of them is summarized. We further find that
the computation, deduced as modulo subtraction, can be resolved by using graph state. This
implies that our protocols are universal in part and will be widely applicable. Thirdly, analyses
show that the proposed protocols are correct and secure. Our research will promote the
development of quantum secure multi-party computation.

Keywords: quantum secure multi-party computation, graph state, stabilizer formalism, security,
universality

1. Introduction

In secure multi-party computation (SMC), each player has a
private input. All the players want to compute and obtain an
output cooperatively. SMC is widely used in distributed
networks [1–4], such as secret sharing, electronic voting,
secure sorting, data mining and so on [5]. Yao [6] firstly
investigated the millionaire problem, which is a kind of SMC
problems. In this problem, two millionaires want to compare
their value of assets without the help of any others.

Quantum cryptography is a vital branch of cryptography.
It is a possible approach to achieve the unconditional security
of protocols. In 2008, Markham et al [7] presented a quantum
secret sharing (QSS) protocol via two-dimensional
graph state. Then, Keet et al [8] designed a QSS protocol with
d-dimensional graph state. Graph states are a kind of quantum

entangled states which are tractable and widely applied in
quantum information processing [7–11].

Quantum private comparison (QPC) protocols are the
quantum solutions of the socialist millionaire problem. In 2010,
Chen et al [12] introduced the semi-honest third party (TP) into
QPC protocol, and designed an efficient protocol. Here, semi-
honest TP will not be corrupted by any player or adversary, but
he may record all the intermediate computations and steal
players’ inputs from the record [12]. Recently, Liu et al [13]
researched a QPC protocol via single-photon interference.

Considering millionaire problem, Jia et al [14] proposed
a quantum millionaire (QM) protocol in 2011. The inputs are
coded into phases of d-dimensional entangled states [15].
After that, Lin et al [16] also designed a QM protocol based
on d-dimensional Bell states.

Another kind of quantum SMC protocol is quantum multi-
party summation (QMS) protocol. In 2007, Du et al [17]
investigated a novel QMS protocol based on non-orthogonal

Physica Scripta

Phys. Scr. 95 (2020) 055106 (8pp) https://doi.org/10.1088/1402-4896/ab73d5

5 Author to whom any correspondence should be addressed.

0031-8949/20/055106+08$33.00 © 2020 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0002-2995-7186
https://orcid.org/0000-0002-2995-7186
mailto:flyover100@163.com
https://doi.org/10.1088/1402-4896/ab73d5
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ab73d5&domain=pdf&date_stamp=2020-03-03
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ab73d5&domain=pdf&date_stamp=2020-03-03


states. Recently, Yang et al [18] proposed a QMS protocol, in
which the traveling particles are transmitted in a tree-
type mode.

In 2017, we proposed the concept of universality in a
quantum communication protocol [19]. A feature of uni-
versality is that one protocol could be used to resolve another
problem with a little modification. Up to now, most researches
of different SMC problems are independent. The relationship
among these problems and the universality of quantum SMC
protocols remain vague. In this paper, we attempt to find a
universal solution of SMC problems by employing the
graph state and stabilizer formalism. Firstly, we propose a QPC
protocol, a QM protocol and a QMS protocol. The procedures
of protocols are simple and efficient. Secondly, we summarize
these protocols and find that the difference between numbers of
performing Pauli operators could also be computed in the same
way. If inputs of players are represented by numbers of per-
forming Pauli operators, we are able to obtain the difference
between players’ inputs. Therefore, if a problem can be
deduced as subtraction module dim, it can be resolved by our
protocol. From this point of view, our proposed protocols are
partly universal. Thirdly, analyses indicate that our protocols
are correct and secure. Our research will be helpful for the
development of quantum SMC protocols.

The structure of this paper is organized as follows. Pre-
liminaries are provided in section 2. Later, our proposed pro-
tocols and two examples are introduced in section 3. Then, we
analyze the universality, correctness and security of our pro-
tocols in section 4. Finally, conclusions are given in section 5.

2. Preliminaries

2.1. Graph states

An undirected graph ( )=G V E, comprises n vertices. Here,
{ }=V vj is the set of vertices while { ( )}= =E e v v,jk j k is

the set of edges. A pure graph state is a state which could be
represented by a graph.

A two-dimensional graph state is created from the n-qubit
uniform superposition state

∣ (∣ ∣ ) ( )
/

+ñ = ñ + ñÄ Ä1

2
0 1 . 1n

n
n

2

Then, the two-qubit controlled phase operator ∣ ñ =CZ ab2

( ) ∣- ñab1 ab is performed in the particles whose corresponding
vertices on the graph are joined by an edge [7]. The state will
be denoted as:

∣ ( ) ∣ ( )ñ = + ñ
Î

ÄG CZ . 2
e E

e
n

2 2

Similarly, in the dim-dimensional case, the graph state is
created from the n-qudit uniform superposition state [8]

∣ (∣ ∣ ∣ ) ( )
/

ñ = ñ + ñ+ + - ñÄ Ä

dim
dim0

1
0 1 ... 1 . 3n

n
n

2

Here, ∣ ∣ ∣/ å wñ = ñ = ñj F j k ,dim dim k
jk1

n 2
/w = pe .i dim2 The

two-qudit controlled phase operator is symbolled as
∣ ∣wñ = ñCZ jk jk .dim

jk Therefore, a dim-dimensional graph state

will be denoted as:

∣ ( ) ∣ ( )ñ = ñ
Î

ÄG CZ 0 . 4dim
e E

dim e
n

2.2. Stabilizer formalism

The stabilizer formalism is a tool to describe the quantum
state. Many states could be graphically described by working
with the operators that stabilize them [20].

The two-dimensional graph state could be defined by the
stabilizers [7]

( )= Ä ÎK X Z . 5j j e E k2, 2, 2,j k,

That is to say, ∣ ∣ñ = ñK G G .j2, 2 2 Here, ∣ ∣ ∣ ∣= ñá + ñáX 0 1 1 02

and ∣ ∣ ∣ ∣= ñá - ñáZ 0 0 1 1 .2 For the dim-dimensional
graph state, the stabilizers are [8]

( )= Ä ÎK X Z . 6dim j dim j e E dim k, , ,j k,

The state ∣ ñGdim is stabilized by the operator K .dim j, We also
have ∣ ñK Gdim j dim, ∣= ñG ,dim ∣ ∣å= + ñáX l l1dim l

and =Zdim

∣ ∣å w ñál l .
l

l

3. The proposed quantum multi-party computation
protocol

Based on graph state, three quantum SMC protocols are
designed. Concretely, a QPC protocol, a QM protocol and a
QMS protocol are investigated in subsection 3.1, subsec-
tion 3.2 and subsection 3.3, respectively. After that, two
examples of our QM protocol and QMS protocols are given in
subsection 3.4 and 3.5 successively.

3.1. A new quantum private comparison protocol

A two-particle two-dimensional graph state could be prepared
as follows:

∣ ( ) ∣ (∣ ∣ ) ( )f ñ = ++ñ = +ñ + -ñCZ
1

2
0 1 . 72 2 12

It is the eigenstate of

( )= Ä = ÄK X Z K Z X; 82,1 2,1 2,2 2,2 2,1 2,2

with eigenvalues (1, 1).
Suppose that the player Alice and Bob has the secret

XC and YC, respectively. Here, XC and YC could be repre-
sented by the n-bits string ( )- -xc xc xc, , ...,n n1 2 0 and
( )- -yc yc yc, , ..., ,n n1 2 0 severally. Players will determine
whether =XC YC or not with the help of semi-honest TP.
The procedures of the QPC protocol are given as follows.

[C-1] TP prepares a sequence of ∣f ñ.2 Then, he mixes all
the first (second) particles of states ∣f ñ2 with a sequence of
decoy states {∣ ∣ ∣ ∣ }ñ ñ +ñ - ñ0 , 1 , , , and sends the mixed
sequence to Alice (Bob).

[C-2] After receiving the particles, players and TP check the
eavesdropping. TP tells each player the exact position of each
decoy state and the measurement basis in the mixed sequences.

2
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If the decoy state is ∣ ñ0 or ∣ ñ1 , players need to measure it in Z2

basis {∣ ∣ }ñ ñ0 , 1 . Otherwise, X2 basis {∣ ∣ }+ñ -ñ, will be
employed. After that, TP analyzes the error rate of measurement
result. If the rate is higher than the preset threshold, players and
TP will deduce that eavesdropper has disturbed the transmission
of mixed sequences. Players and TP will discard all the
sequences and restart the step [C-1]. Otherwise, two players
collaborate to verify the authority of state ∣f ñ.2 Concretely, they
measure some of states ∣f ñ2 in their hands with prearranged basis
(Z2 basis or X2 basis), respectively. After that, they compare the
relationship of their ∣f ñ2 measurement results. If the results of
two players are relative, the authority of state is verified. Players
will go to the step [C-3]. Otherwise, the carrier ∣f ñ2 is fake.
Players will restart the step [C-1].

[C-3] Alice (Bob) will perform the Pauli operators on her
(his) own particles. For Alice, if =xc 0,i she will perform the
operator I ,2 otherwise the operator X .2 For Bob, if =yc 0,i he
will perform the operator I ,2 otherwise the operator Z .2

[C-4] Two players mix particles with new decoy states, send
the sequences back, and check the eavesdropping with TP again.
Later, TP measures the received particles. The measurement
bases are {(∣ ∣ )/= +ñ + -ñB 0 1 2 ,2 (∣ ∣ )/-ñ + +ñ0 1 2 ,
(∣ ∣ )/+ñ - -ñ0 1 2 , (∣ ∣ ) }/-ñ - +ñ0 1 2 , which are con-
structed by ÄI H2 2 and Bell bases.

⎛

⎝

⎜⎜⎜⎜⎜
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⎠

⎟⎟⎟⎟⎟
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⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

(∣ ∣ )
(∣ ∣ )
(∣ ∣ )
(∣ ∣ )

(∣ ∣ )
(∣ ∣ )
(∣ ∣ )
(∣ ∣ )

( )

/

/

/

/

/

/

/

/

+ñ + -ñ

-ñ + +ñ

+ñ - -ñ

-ñ - +ñ

=

Ä
Ä

Ä
Ä

´

ñ + ñ

ñ + ñ

ñ - ñ

ñ - ñ

I H
I H

I H
I H

0 1 2

0 1 2

0 1 2

0 1 2

00 11 2

01 10 2

00 11 2

01 10 2

. 9

2 2

2 2

2 2

2 2

Corresponding measurement results are encoded as cj =0, 1, 2
and 3, respectively.

[C-5] The bits xci and yci will be equal if =c 0,j and not
equal if =c 1.j But if =c 2j or 3, some unexpected errors
have happened. That is to say, secrets XC and YC will be
equal if all the =c 0.j They will be not equal if any =c 1.j If
any =c 2j or 3, some errors have happened, players and TP
should restart the protocol.

3.2. A novel quantum millionaire protocol

A two-particle 2d-dimensional graph state could be repre-
sented as follows:

∣ ( ) ∣ (∣ ∣

∣ ) ( )

f ñ = ñ = ñ + ñ+

+ - - ñ

CZ
d

d d

00
1

2
00 11 ...

2 1, 2 1 . 10

d d2 2 12

It is the eigenstate of

( )= Ä = ÄK X Z K Z X; 11d d d d d d2 ,1 2 ,1 2 ,2 2 ,2 2 ,1 2 ,2

with eigenvalues (1, 1).
Next, the proposed QM protocol will be described ana-

logously. We also suppose that two players want to compare
XM and YM with the help of semi-honest TP. XM and YM
are two n-length sequences ( )- -xm xm xm, , ...,n n1 2 0 and
( )- -ym ym ym, , ..., ,n n1 2 0 where - xm ym d0 , 1j j

for - j n0 1.
[M-1] TP prepares a sequence of ∣f ñd2 and two sequen-

ces of decoy states {∣ ∣ñ ñ0 , 1 , ∣ ∣ ∣- ñ ñ ñd..., 2 1 , 0 , 1 , ...,
∣ }- ñd2 1 . Then, he mixes the first (second) particles of all
the ∣f ñd2 with the first (second) decoy states sequence, and
send the new sequence to Alice (Bob).

[M-2] After receiving the particles, two players ask TP to
publish the position and measurement basis of each decoy state.
If the decoy state is one of ∣ ∣ ∣ñ ñ - ñd0 , 1 , ..., 2 1 , the basis is
Z d2 basis {∣ ∣ ∣ }ñ ñ - ñd0 , 1 , ..., 2 1 . Otherwise, the basis is F d2

basis {∣ ∣ñ ñ0 , 1 , ..., ∣ }- ñd2 1 . Then, two players measure all
decoy states, and tell results to TP. TP can analyze the error rate
of measurements to judge the existence of eavesdropper. If the
check is passed, two players will measure some ∣f ñd2 particles
in two sequences to verify whether the states are authentic or
not. If the measurement results of two players are not relative, it
can indicate that the state ∣f ñd2 is not real. Players will restart
the protocol. Otherwise, they go to the step [M-3].

[M-3] If the states are authentic, Alice (Bob) will perform
the operator X d

xm
2

j (Z d
ym

2
j) on the j-th particle. This means that

X d2 (Z d2 ) will be performed xmj (ymj) times.
[M-4] Then, two players send the particles with decoy

states to TP. After the eavesdropping check, TP measures the
state in the bases B d2

( )

{(∣ ∣ ∣ )
(∣ ∣ ∣ )
(∣ ∣ ∣ )

(∣ ∣ ∣ )

(∣ ∣ ∣ )

(∣ ∣ ∣ ) }

( )

( )

( )

/

/

/

/

/

/

w w

w w

w w

ñ + ñ+ + - - ñ

ñ + ñ+ + - ñ

- ñ + ñ+ + - - ñ

ñ + ñ+ + - - ñ

ñ + ñ+ + - ñ

- ñ + ñ+ + - - ñ

- -

- -

- -

12

d d d

d d

d d d d

d d d

d d

d d d d

00 11 ... 2 1, 2 1 2 ,

01 12 ... 2 1, 0 2 , ...,

0, 2 1 10 ... 2 1, 2 2 2 , ...,

00 11 ... 2 1, 2 1 2 ,

01 12 ... 2 1, 0 2 , ...,

0, 2 1 10 ... 2 1, 2 2 2 .

d d

d d

d d

2 1 2 1

2 1 2 1

2 1 2 1

2

2

2

Likewise, bases B d2 could be constructed by ÄI Fd d2 2 and
2d-dimensional Bell bases. The measurement results are
denoted as mj=0, 1, 2, K, -d4 1,2 respectively.

[M-5] If the result =m 0,j TP will know that =xm ym .j j

If - m d1 1,j he will obtain that <xm ym .j j What’s
more, >xm ymj j if + - d m d1 2 1.j If any other
results show up, some errors must have happened. Likewise,
TP will further know that =XM YM if all the =m 0,j

<XM YM if -- m d1 1n 1 or if - m d1 1k

when all the ( )= > >m j k0 0j , >XM YM if + d 1
-- m d2 1n 1 or if + - d m d1 2 1k when all

the ( )= > >m j k0 0 .j

3.3. A new quantum multi-party summation protocol

In this subsection, we design a quantum multi-party sum-
mation protocol based on graph states. The utilized two-

3
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particle d-dimensional graph state could be denoted in
equation (13).

∣ ( ) ∣

(∣ ∣ ∣ ) ( )

f ñ = ñ

= ñ + ñ+ + - - ñ

CZ

d
d d

00

1
00 11 ... 1, 1 . 13

d d 12

Similarly, the state is the eigenstate of

( )= Ä = ÄK X Z K Z X; 14d d d d d d,1 ,1 ,2 ,2 ,1 ,2

with eigenvalues (1, 1).
In this protocol, there are n players Pj (  j n1 ) who

want to compute the summation of their private inputs xj

(  j n1 ). The steps are given below.
[S-1] Suppose that player P1 prepares some states ∣f ñ.d

Then he mixes the second particle of each state with some
decoy states {∣ ∣ ∣ñ ñ - ñd0 , 1 , ..., 1 , ∣ ∣ ∣ }ñ ñ - ñd0 , 1 , ..., 1 ,
and sends the mixed sequence to P .2

[S-2] When P2 receives the particle, P2 and P1 check
the eavesdropping. P1 publishes positions and measurement
bases of decoy states, so P2 can measure these states by
using correct bases. To be specific, if the decoy state is
one of ∣ ∣ ∣ñ ñ - ñd0 , 1 , ..., 1 , the basis is Zd basis
{∣ ∣ ∣ }ñ ñ - ñd0 , 1 , ..., 1 . Otherwise, the basis is Fd basis
{∣ ∣ ∣ }ñ ñ - ñd0 , 1 , ..., 1 . Then, P1 analyzes the error rate of
decoy state measurements. If the rate is unexpectedly high,
the transmission of mixed sequence is disturbed by eaves-
dropper. Players will restart the protocol. Otherwise, P2 and P1

further analyze whether the states ∣f ñd are real or not. Con-
cretely, P2 asks P1 to measure the first particles of some ∣f ñd
with specified bases (Zd basis or Fd basis). After that, P2

measures the second particles of the same states with the same
bases, and analyzes the error rate. If the rate is acceptable,
players go to the next step. Otherwise, the state ∣f ñd is fake,
they restart the protocol.

[S-3] If the state is real, P2 will choose a random number
r2 ( - r d0 12 ), and perform the operator Zd

r2 (i.e., per-
form Zd for r2 times) on the entire remaining particles. Later,
P2 will send all the particles to P .3

[S-4] When Pj (  j n3 ) obtains the particles, Pj and
-Pj 1 will check the eavesdropping as P2 and P .1 Subsequently,

Pj and P1 analyzes the authenticity of the states ∣f ñd as P2 and
P .1 If the state is real, Pj will select a random number rj

( - r d0 1j ), and perform Zd
rj on the remaining particles.

Then, he will send all particles with decoy states to +P .j 1

[S-5] Afterwards, Pn sends the remaining particles with
decoy states to P .1 They also check the eavesdropping at first.
After that, P1 measures the state in the bases B .d

( )

{(∣ ∣ ∣ )
(∣ ∣ ∣ )
(∣ ∣ ∣ )

(∣ ∣ ∣ )

(∣ ∣ ∣ )

(∣ ∣ ∣ ) }

( )

( )

( )

/

/

/

/

/

/

w w

w w

w w

ñ + ñ+ + - - ñ

ñ + ñ+ + - ñ

- ñ + ñ+ + - - ñ

ñ + ñ+ + - - ñ

ñ + ñ+ + - ñ

- ñ + ñ+ + - - ñ

- -

- -

- -

15

d d d

d d

d d d d

d d d

d d

d d d d

00 11 ... 1, 1 ,

01 12 ... 1, 0 , ...,

0, 1 10 ... 1, 2 , ...,

00 11 ... 1, 1 ,

01 12 ... 1, 0 , ...,

0, 1 10 ... 1, 2 .

d d

d d

d d

1 1

1 1

1 1

2

2

2

Bases Bd could be constructed by ÄI Fd d and d-dimensional
Bell bases. Subsequently, P1 marks the results as
= -s d0, 1, ..., 1,2 severally.

[S-6] If the result holds - s d0 1, P1 will ask
everyone else Pj (  j n2 ) to publish the result -x r .j j

Then, he computes [ ( ) ]å - + +x r s x dmod
j j j 1 and pub-

lishes it. Otherwise, the result satisfies - d s d 1.2 It
means that some errors have happened. All the players will
restart the protocol soon.

3.4. An example of proposed quantum millionaire protocol

In this subsection, our QM protocol will be illustrated by
narrating the case d=3. A two-particle six-dimensional
graph state could be represented as follows:

∣ ( ) ∣ (∣ ∣ ∣ ) ( )f ñ = ñ = ñ + ñ+ + ñCZ 00
1

6
00 11 ... 55 . 166 6 12

It is the eigenstate of

( )= Ä = ÄK X Z K Z X; 176,1 6,1 6,2 6,2 6,1 6,2

with eigenvalues (1, 1).
XM and YM are two n-length sequences,

( )- -xm xm xm, , ...,n n1 2 0 and ( - -ym ym, ,n n1 2 )ym..., ,0

where  xm ym0 , 2j j for - j n0 1. Brief steps of
protocol are described below.

[M-1] TP prepares a sequence of ∣f ñ,6 and send the first
(second) particles of all the ∣f ñ6 with decoy states to
Alice (Bob).

[M-2] After receiving the particles, two players and TP
check the existence of eavesdropper. If the transmission is
secure, two players will verify whether the states ∣f ñ6 are
authentic or not.

[M-3] If the states are authentic, Alice (Bob) will perform
the operator X xm

6
j (Z ym

6
j) on the j-th particle. This means that

∣ ∣å= + ñá=X l l1
l6 0

5 ( ∣ ∣å w= ñá=Z l l
l

l
6 0

5 ) will be per-
formed xmj (ymj) times.

[M-4] Then, two players send these particles to TP. After
the eavesdropping check, TP measures the state in the bases B6

{(∣ ∣ ∣ )
(∣ ∣ ∣ )
(∣ ∣ ∣ )
(∣ ∣ ∣ )
(∣ ∣ ∣ )
(∣ ∣ ∣ ) } ( )

/

/

/

/

/

/

w w

w w

w w

ñ + ñ+ + ñ

ñ + ñ+ + ñ

ñ + ñ+ + ñ

ñ + ñ+ + ñ

ñ + ñ+ + ñ

ñ + ñ+ + ñ

00 11 ... 55 6 ,

01 12 ... 50 6 , ...,

05 10 ... 54 6 , ...,

00 11 ... 55 6 ,

01 12 ... 50 6 , ...,

05 10 ... 54 6 . 18

5 25

5 25

5 25

Likewise, bases B6 could be constructed by ÄI F6 6 and six-
dimensional Bell bases. The measurement results are denoted
as mj = 0, 1, 2, K, 35, respectively.

[M-5] If the result =m 0,j TP will know that =xm ym .j j

If  m1 2,j he will obtain that <xm ym .j j And,
>xm ymj j if  m4 5.j If any other results show up, some

errors must have happened. Likewise, TP will further know
that =XM YM if all the =m 0,j <XM YM if - m1 2n 1

or if  m1 2k when all the ( )= > >m j k0 0 ,j

>XM YM if - m4 5n 1 or if  m4 5k when all
the ( )= > >m j k0 0 .j

4
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3.5. An example of proposed quantum multi-party summation
protocol

In this subsection, our QMS protocol will be illustrated by
narrating the case d=3. The utilized two-particle three-
dimensional graph state could be denoted in equation (19).

∣ ( ) ∣ (∣ ∣ ∣ ) ( )f ñ = ñ = ñ + ñ + ñCZ 00
1

3
00 11 22 . 193 3 12

Similarly, the state is the eigenstate of
( )= Ä = ÄK X Z K Z X; 203,1 3,1 3,2 3,2 3,1 3,2

with eigenvalues (1, 1).
Brief steps of our protocol are given below.
[S-1] Suppose that player P1 prepares some states ∣f ñ3 and

sends the second particle of each state with decoy states to P .2

[S-2] When P2 receives the particle, P2 and P1 check the
eavesdropping. Afterwards, they analyze whether the states
∣f ñ3 are real or not.

[S-3] If the state is real, P2 will choose a random number
r2 (  r0 22 ), and perform the operator Z r

3
2 (i.e., perform

∣ ∣å w= ñá=Z l l
l

l
3 0

2
for r2 times) on the entire remaining

particles. Later, P2 will send all the particles to P .3

[S-4] When Pj (  j n3 ) obtains the particles, Pj and
-Pj 1 will check the security of transmission. Subsequently, Pj

and P1 analyzes the authenticity of the states ∣f ñ.3 If the state
is real, Pj will select a random number rj (  r0 2j ), and
perform Z r

3
j on the remaining particles. Then, he will send all

the particles to +P .j 1

[S-5] Afterwards, Pn sends the particle to P .1 They also
check the eavesdropping at first. After that, P1 measures the
state in the bases B .3

{(∣ ∣ ∣ )
(∣ ∣ ∣ )
(∣ ∣ ∣ )
(∣ ∣ ∣ )
(∣ ∣ ∣ )
(∣ ∣ ∣ ) } ( )

/

/

/

/

/

/

w w

w w

w w

ñ + ñ + ñ

ñ + ñ + ñ

ñ + ñ + ñ

ñ + ñ + ñ

ñ + ñ + ñ

ñ + ñ + ñ

00 11 22 3 ,

01 12 20 3 ,

02 10 21 3 , ...,

00 11 22 3 ,

01 12 20 3 ,

02 10 21 3 . 21

2 4

2 4

2 4

Bases B3 could be constructed by ÄI F3 3 and three-dimen-
sional Bell bases. Subsequently, P1 marks the results as
=s 0, 1, ..., 8, severally.

[S-6] If the result holds  s0 2, P1 will ask everyone
else Pj (  j n2 ) to publish the result -x r .j j Then, he
computes [ ( ) ]å - + +x r s x mod 3

j j j 1 and publishes it.

Otherwise, the result satisfies  s3 8. It means that some
errors have happened. All the players will restart the proto-
col soon.

4. Analyses

Mathematics provides many tools [21, 22] to research prac-
tical problems. In this section, we analyze the core of our
proposed protocols, and then discuss the universality of our
protocols at first. After that, the correctness and security about
the protocols are given one by one.

4.1. The universality of our quantum multi-party computation
protocol with graph state

In section 3, we proposed three protocols to resolve the QPC,
QM and QMS problems, severally. Here, circuit simulations
of them are illustrated by the figures 1–3.

From these figures, we can find that procedures of these
protocols are similar. Then, a question comes naturally: is
there any other problem could also be resolved by using
graph state and stabilizer formalism? In this subsection, we
will discuss this.

For a set of two-particle dim-dimensional orthogonal
graph states ∣ ( )j ñ,0 ∣ ( )j ñ,1 K and ∣ ( )j ñ- ,dim 1 each of these
states is the eigenstate of the operator ÄX Z .dim dim In other
words, ∣ ∣( ) ( )j jÄ ñ = ñX Z .dim dim

j j We know that
= =X Z I ,dim

dim
dim
dim and can further deduce that

∣ ∣ ∣ ( )( ) ( ) ( )j j jÄ ñ = Ä ñ = ñ- -X Z X Z . 22dim
x

dim
y

dim dim
y x y x0 0 0

From equation (22), we know that players can obtain the
value of ( )-y x dimmod naturally by measuring the final
state. Therefore, the graph state and stabilizer can be utilized
to resolve any computation problem which can be reduced as
the equation ( )-y x dimmod . Our proposed QPC, QM, QMS
protocols are three examples. Besides, the quantum anon-
ymous ranking (QAR) [23, 24] is another one.

In table 1, we list dimensions of graph states and the
computation that needs to be performed for these four pro-
tocols. These problems can all be resolved by using

Figure 1. Circuit simulation of the proposed QPC protocol.

Figure 2. Circuit simulation of the proposed QM protocol.

Figure 3. Circuit simulation of the proposed QMS protocol.

Table 1. Four quantum SMC protocols and their coefficients.

The protocol DIMENSION The computation

QPC dim=2 ( )-y x mod 2
QM dim=2d ( )-y x dmod 2
QMS dim=d ( )å =y d xmod , 0
QAR dim=d ( )å =y d xmod , 0

5

Phys. Scr. 95 (2020) 055106 Z Dou et al



graph state and stabilizer formalism. Procedures of these
protocols are much the same. In other words, our protocols
are partly universal [19].

4.2. Correctness

4.2.1. Correctness of quantum private comparison protocol.
In our QPC protocol, only stabilizer K2,1 is utilized. All the
possible operators that players perform are: ÄI I ,2 2 ÄI Z ,2 2

ÄX I2 2 and ÄX Z .2 2 Values of xcj and yc ,j operators, final
states, and encoding results cj are listed in table 2.

Here, ∣ (∣ ∣ )/f ñ¢ = -ñ + +ñ0 1 2 .2 From this table, the
equation ( )= -c yc xc mod 2j j j could be verified. TP can
obtain that whether =xc ycj j or not. He could further know
that whether XC=YC or not. That is the correctness of this
QPC protocol.

4.2.2. Correctness of quantum millionaire protocol. Just like
the proposed QPC protocol, correctness of our QM protocol
could also be shown in the table 3.

Here, it is obvious that

∣ ∣
(∣ ∣

∣ )
(∣ ∣

∣ ) ( )

/

/

f fñ¢ = Ä ñ

= ñ + + + ñ+

+ - - ñ

= - ñ + - + ñ+

+ - - - ñ

X Z

xm ym xm ym

xm ym d

ym xm ym xm

d ym xm d

, 1, 1 ...

1, 1 2

0, 1, 1 ...

2 1, 1 2 . 23

d d
xm

d
ym

d

j j j j

j j

j j j j

j j

2 2 2 2
j j

Then, ( )= -m ym xm dmod 2j j j could be obtained. Since
- xm ym d0 , 1,j j we will know that =m 0j if

=xm ym ,j j < < -m d1 1j if <xm ym ,j j and + <d 1
< -m d2 1j if >xm ym .j j That is the correctness of this

QM protocol.

4.2.3. Correctness of quantum multi-party summation
protocol. In the QMS protocol, each player Pj (  j n2 )
performs the operator Xd

rj on the second particle. The final
state will be

∣ (∣

∣ ∣ )
( )

fÄ ñ = + + ñ

+ + + + ñ+ + - + + - ñ

I Z Z
d

r r

r r d r r

...
1

0, ...

1, ... 1 ... 1, ... 1 .

24

d
r

d
r

d n

n n

2

2 2

n 2

Then, we can calculate that the result ( )= + +s r r d... mod .n2

Furthermore, the summation of all the players’ inputs can be

obtained by following equation.

⎡⎣ ⎤⎦( )

( )
( )

( )

å - + +

= - + + - + + + +

= + + +

x r s x d

x r x r r r x d

x x x d

mod

... ... mod

... mod .

25

j j j

n n n

n

1

2 2 2 1

1 2

That is the correctness of this QMS protocol.

4.3. Security

In this subsection, we analyze two kinds of outside attacks
and three kinds of inside attacks for our protocols minutely.

4.3.1. Outside attacks. There are two types of general outside
attacks. The first one contains the faked states attack, the time-
shift attack, the detector blinding attack and the Trojan horse
attacks [25–32]. For the faked states attack and the time-shift
attack, an extra detector could be utilized to monitor the time
when the state arrives at the sides of receiver Alice/ Bob/ TP/
player Pj [25, 26]. As far as the detector blinding attack, light
intensity monitor will play a vital role [27]. Trojan horse
attacks, such as the invisible photons eavesdropping (IPE)
Trojan horse attack and the delay-photon Trojan horse attack
could be resisted by using multi-photon detection [30].

The second type of attacks includes the intercept-resend
attack, measurement-resend attack, entanglement-measure
attack and correlation-elicitation attack [33]. Decoy state is
an effective tool to resist these attacks. Since eavesdropper
doesn’t know the position of each decoy state, he cannot
distinguish the carrier states and decoy states. His eavesdrop-
ping (the second kind of outside attacks) will disturb decoy
states. In this situation, the second kind of outside attacks will
be detected in the step [C-2]/ [M-2]/ [S-2]. The idea of this
tool is learned from the famous BB84 protocol [34] which is
already proved to be unconditionally secure [35].

Take our QPC protocol as an example. Utilized decoy
states are {∣ ∣ ∣ ∣ }ñ ñ +ñ - ñ0 , 1 , , . Here, ∣ ∣á +ñ = á -ñ =0 0

∣ ∣ /á +ñ = á -ñ =1 1 1 2 . Some of these states are not
orthogonal. What’s more, eavesdropper doesn’t know the
position and the measurement basis of each decoy state.
Therefore, he cannot perform eavesdropping without disturb
any decoy state. With the help of the decoy states and security
check in step [C-2], the proposed protocols are also immune
to these attacks. Attacks will be detected by legal participants
with a non-zero probability [36]. Similarly, these attacks are
invalid for our QM and QMS protocol.

In summary, our protocols are immune to outside attacks.

4.3.2. Inside attacks. Here, we analyze the inside attacks,
which contains the single player attack, collusion attack of
some players and the attack of TP/P .1 Since there only exist
two players in QPC protocol and QM protocol, collusion
attack is only involved in QMS protocol.

(1) Single player attack
As a player, Alice/ Bob/ Pj (  j n2 ) may want

to steal the private information of Bob/ Alice/ Pk

Table 2. Values of coefficients in our QPC protocol.

xcj ycj Operator Final state cj

0 0 ÄI I2 2 ∣f ñ2 0
0 1 ÄI Z2 2 ∣f ñ¢2 1
1 0 ÄX I2 2 ∣f ñ¢2 1
1 1 ÄX Z2 2 ∣f ñ2 0
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( ¹ k n k j2 , ). The most common way to deduce
the information is the reduced density matrix. Here, we
suppose the whole system is the state ∣ ∣( ) ( )j jñá ,s s and
the reduced matrix of Alice’s /Bob’s /Pj’s particle is
r1/ r2/ r .2

∣ ∣

[(∣ ∣ ∣ )

( ∣ ∣ ∣)]

(∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ )

(∣ ∣ ∣ ∣ ∣ ∣)

( )

( ) ( )

/

r j j= ñá

= ñ + + ñ+ + - - ñ

Ä á + á + + +á - -

= ñá á ñ + ñá á + + ñ+

+ - ñá - á - - ñ

= ñá + ñá + + - ñá -

=

tr

dim
tr s s dim s

s s dim s

dim
s s s s

dim dim s s

dim
dim dim

I dim

1
0, 1, 1 ... 1, 1

0, 1, 1 ... 1, 1
1

0 0 1 1 1 1 ...

1 1 1 1
1

0 0 1 1 ... 1 1

.

26

s s

dim

1 2

2

Similarly, we also can obtain that

∣ ∣ ( )( ) ( ) /r j j= ñá =tr I dim. 27s s
dim2 1

Since /r r= = I dim,dim1 2 the value of s will not be
revealed to any player. No player has access to any
other player’s information. Hence, the reduced density
matrix is useless for vicious players.

(2) Collusion attack
In our proposed QMS protocol, there are n players

who participate the computation. Therefore, some
players may cooperate to steal the information of the
others.

One of the most possible collusion attacks is that
players -Pj 1 and +Pj 1 ( - j n3 1) try to cooperate
to obtain Pj’s input x .j To be specific, -Pj 1 sends some
fake particles to P .j If Pj performs some operators on
these fake particles and sends them to +P ,j 1 his private
information will be stolen by +P .j 1 Fortunately, this
attack can also be resisted since Pj checks the security
of transmission and the authenticity of state ∣f ñd with P1
in step [S-2]. If -Pj 1 sends a fake particle to P ,j this
eavesdropping will be detected. As a result, players -Pj 1

and +Pj 1 cannot collude to obtain any extra information.
Another similar attack is that players P2 and Pn

cooperate to steal private information. Steps of this
attack are briefly introduced here. Firstly, when P2

obtains authentic particles from P ,1 he tries to prepare
some fake particles and sends them to P .3 Secondly,

players transmit fake particles as real ones. Thirdly,
when Pn receives these particles, he may compute

+ + + -x x x... .n3 4 1 Finally, P2 and Pn could deduce x1

after they know the summation of all the inputs.
Luckily, this attack are also invalid since Pj

( - j n3 1) can check the security of transmission
and the authenticity of state ∣f ñd with P .1

(3) TP’s and P1’s attack

On one hand, in our QPC and QM protocols, TP is
supposed to be semi-honest. That is to say, he may analyze
the intermediate results to steal the private inputs of players.
However, he cannot disturb the execution of protocol. The
only messages he can obtain are measurement results of the
final state. As we all know, he cannot know anything about
players’ inputs from the measurement results. Besides that,
preparing fake states will also be found in steps [C-2] and [M-
2]. In other words, TP’s attacks are invalid in our QPC and
QM protocols.

On the other hand, in our QMS protocol, P1 is a player
which also has the responsibility as the semi-honest TP.
Firstly, intermediate results are not helpful for him to obtain
the private input of any other player. Secondly, if he wants to
prepare some fake states, this attack will be found out by
performing check in step [S-2]. In other words, P1’s attacks
are also fruitless in our QMS protocol.

In short, inside attacks are ineffective for our protocols.

5. Conclusion

In this paper, quantum SMC protocols were investigated by
using graph state from the perspective of universality. A QPC
protocol, a QM protocol and a QMS protocol were designed,
respectively. On this basis, we discussed the core of these
protocols, and found that modulo subtraction can be calcu-
lated certainly by using graph state. If a SMC problem could
be deduced as modulo subtraction, it will also be resolved.
Our protocols are partly universal. Moreover, the correctness
and security of our protocols were ensured. Our research is
valuable for the development of quantum SMC protocols.
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