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Abstract
In this paper, we give the solutions on a periodic background in terms of the determinant form
for the derivative nonlinear Schrödinger equation. Because its rogue wave on a periodic
background has been studied, we investigate only the breather and breather-rogue wave on a
periodic background for the derivative nonlinear Schrödinger equation. We obtain Kuznetsov–
Ma breather, Akhmediev breather and spatio-temporal breather on a periodic background for this
equation. In addition, we mainly focus on three types of the breather-rogue wave on a periodic
background: (1) the interaction between a Peregrine soliton and a breather; (2) the interaction
between a Peregrine soliton and two breathers; (3) the interaction between a second-order rogue
wave and a breather. For the first type, we analyse the effects of the free parameters on its
dynamical behaviour. The second type is described as ‘rogue wave quanta’ on a periodic
background. The third type has two spatial-temporal distribution structures: the fundamental
structure and the triangular structure.

Keywords: derivative nonlinear Schrödinger equation, dynamical behaviour, breather on a
periodic background, breather-rogue wave on a periodic background
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1. Introduction

In the nonlinear science field, nonlinear evolution equations
play an important role and their solutions have been a hot
research spot, including soliton, rogue wave (RW), lump
wave and others [1–29]. As one of the most important
nonlinear waves, RW has been widely applied in various
fields, such as oceanography [7, 8], plasma physics [9–11],
financial system [12], geophysical fluids [13, 14], Bose–
Einstein condensate [15, 16] and nonlinear optics [17, 18].
There are various structures of RWs, including the funda-
mental, four-peaked, triangular, ring and semi-rational
structures [7–25]. In addition, the above RWs are obviously
on a constant background. Recently, RW on a periodic
background, called rogue periodic wave, has been reported
for some soliton equations, for example, the nonlinear
Schrödinger equation [30–34], the modified KdV equation

[35], the derivative nonlinear Schrödinger equation [36] and
Gerdjikov–Ivanov equation [37]. Many methods of con-
structing rogue periodic wave have been presented, e.g.
Jacobi elliptic functions [30, 32, 35], integrable equations
with variable coefficients [31] and vector form [34],
 -symmetric [33], the odd-th fold Darboux transformation
(DT) [36, 37].

The derivative nonlinear Schrödinger equation

(∣ ∣ ) ( )+ + =q iq q q 0, 1.1t xx x
2

plays a significant role in plasma physics and nonlinear optics
[10, 11, 22, 23, 36, 38, 39]. All kinds of RW solutions on a
constant wave background have been obtained for the deri-
vative nonlinear Schrödinger equation [10, 11, 22, 23].
Moreover, Liu, Zhang and He showed the fundamental
structure and the triangular structure for RWs on a periodic
background by means of the odd-th order DT [36].
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Subsequently, Ding, Gao and Li used this method to obtain
the richer structures of RWs on a periodic background for
the Gerdjikov–Ivanov equation [37]. More recently, Xu, He
and Mihalache discussed a new mechanism of RW genera-
tion through multiphase solutions degeneration for the
derivative nonlinear Schrödinger equation [39]. To our best
knowledge, the breathers and breather-RWs on a periodic
background have not been obtained for the derivative non-
linear Schrödinger equation (1.1). In this paper, we will give
the solution on a periodic background in terms of the
determinant form for equation (1.1). As an application, we
obtain Kuznetsov–Ma breather (KM), Akhmediev breather
(AB) and spatio-temporal breather (STB) on a periodic
background. More importantly, we shall exhibit three types
of the breather-rogue periodic waves: (1) the interaction
between a Peregrine soliton (PS) and a breather; (2) the
interaction between a PS and two breathers; (3) the inter-
action between a second-order RW and a breather. We
analyse the dynamics of the first type by taking the different
values for the free parameters. The second type can be
referred as ‘rogue wave quanta’ on a periodic background
[40]. For the third type, we show two spatial-temporal dis-
tribution structures: the fundamental structure and the tri-
angular structure.

This paper is organized as follows. In section 2, we will
present the formula of the local wave on a periodic back-
ground by modifying the odd-th order DT for equation (1.1).
In section 3, we will consider the breathers and breather-RWs

on a periodic background for equation (1.1) and display their
dynamical behaviour.

2. The formula of the solution on a periodic
background

In this section, we will give the formula of the solution on a
periodic background for equation (1.1), which includes RWs,
breathers, breather-RWs. To this end, the following spectral

problems are gave
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which can derive the derivative nonlinear Schrödinger
equation (1.1). Here, the classical odd-th fold DT of
equation (1.1) is recalled in the form of a theorem without
considering the first-fold DT.

Theorem 2.1. ([11], Xu et al) Let ( )+n2 1 distinct
eigenfunctions ( )f jY = ,k k k

T ( Î +n ) associated with the
eigenvalue lk and the seed solution q0 for the spectral
problems (2.1) have the following properties:
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Then, equation (1.1) has the ( )+n2 1 -order solutions:
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where

and Q̃12 is obtained from Q̃11 by replacing its first column
with ṽ.

According to theorem 2.1, we can only select ( )+n 1 dif-
ferent eigenfunctions ( ) ( )l f jY =x t, ; ,k k k k

T ( Î +n ) related
to the seed solution q0 for the spectral problems (2.1), which meet
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Subsequently, we can get a ( )+n2 1 -order solution for
equation (1.1):
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where

and Q̂12 is obtained from Q̂11 by replacing its first column
with v̂.

Obviously, equation (2.2) is a ( )+n2 1 -fold DT of
equation (1.1). In order to obtain the generalized DT, we

Figure 1. The third-order solution of equation (1.1) with s01=s02=0 and β2=1/10: (a) a KMB on a periodic background as
m n= = -2 ;1 1

3 4 (b) an AB on a periodic background as m n= = -2 ;1 1
5 4 (c) a STB on a periodic background as μ1=27/50 and

ν1=9/20.

ˆ

ˆ

ˆ ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )




     








     





l j l f l j l f j

l f l j l f l j f

l j l f l j l f j

l f l j l f l j f

l j l f l j l f j

l f l j l f l j f

l j l f l j l f j

l f l j l f l j f

l j l f l j l f j

l f l j l f l j f

v l f l j l f l j l f

Q =

- -

- -

Q =

- -

- -

= - ¼ -

- -

- -

- -

- -

+ + +
-

+ +
-

+ + + +

- -

- -

- -

- -

+ + +
-

+ +
-

+ + + +

+ + + +
+
+

+

,

,

, , , , , ,

n n n

n n n

n
n

n n
n

n n
n

n n n n

n
n

n n
n

n n
n

n n n n

n
n

n n
n

n n
n

n n n n

n n n

n n n

n
n

n n
n

n n
n

n n n n

n
n

n n
n

n n
n

n n n n

n
n

n n
n

n n
n

n n n n

n n
n
n

n n
n

n n
n

n
T

11

1
2

1 1
2 1

1 1
2 2

1 1 1 1

1
2

1 1
2 1

1 1
2 2

1 1 1 1

2 2 1 2 2

2 2 1 2 2

1
2

1 1
2 1

1 1
2 2

1 1 1 1

21

1
2

1 1
2 1

1 1
2 2

1 1 1 1

1
2

1 1
2 1

1 1
2 2

1 1 1 1

2 2 1 2 2

2 2 1 2 2

1
2

1 1
2 1

1 1
2 2

1 1 1 1

1
2 1

1 1
2 1

1
2 1 2 1

1
2 1

1

* * * * * * * * *

* * * * * * * * *

* * * * * * * * *

* * * * * * * * *

* * * *

3

Phys. Scr. 95 (2020) 055216 B Xue et al



introduce the following functions
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Figure 2. The fifth-order solution of equation (1.1) with s01=s02=s03=0 and β3=1/10: (a) the superposition of a PS and a KMB with a
second-order central RW on a periodic background as μ2=−ν2=13/25; (b) the superposition of a PS and a KMB without a second-order
central RW on a periodic background as μ2=ν2=13/25; (c) the superposition of a PS and an AB with a second-order central RW on a periodic
background as μ2=−ν2=12/25; (d) the superposition of a PS and an AB without a second-order central RW on a periodic background as
μ2=ν2=12/25; (e) the superposition of a PS and a STB with a second-order central RW on a periodic background as μ2=53/100 and
ν2=−1/2; (f) the superposition of a PS and a STB without a second-order central RW on a periodic background as μ2=53/100 and ν2=1/2.
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δk is a real small parameter and Î s j, . According to [11, 23, 29, 36], we can obtain the following ( )+N2 1 -order solution for
equation (1.1) by the limit technique and Taylor expansion:
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Figure 3. The contour plots for the fifth-order solution of equation (1.1) with μ2=−ν2=53/100, s03=0 and β3=1/10: (a) s01=10 and
s02=0; (b) s01=s02=0; (c) s01=−10 and s02=0; (d) s01=0 and s02=10; (e) s01=0 and s02=−10.
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On account of Î +n , we can easily obtain Î +N . Thus,
equation (2.4) can not obtain the first-order solution of
equation (1.1), which appeared as a periodic solution with a
constant amplitude in [11, 36]. When the seed solution q0 is
considered a plane wave solution, we can get various solutions of
equation (1.1) by utilizing the above formula (2.4): (1) breathers
on a periodic background as l=0; (2) RWs on a periodic
background as l=n; (3) breather-RWs on a periodic as
0<l<n. Comparing with [29, 36], we can obtain all kinds of
the breather-RWs or the breathers on a periodic background for
the derivative nonlinear Schrödinger equation (1.1) by the
formula (2.4). Similar to [37], we can also give the fundamental,
triangular, ring or ring-triangular structure for higher-order RWs
on a periodic background. Hence, we pay main attention to the

breathers and breather-RWs on a periodic background
(0�l<n) for equation (1.1) in this paper, which have not been
fully studied in the previous literature.

3. Dynamics of the breathers and breather-RWs on a
periodic background

In this section, we will obtain the breathers and breather-RWs
on a periodic background of equation (1.1) by utilizing the
formula (2.4). Similar to [36], we still take the seed solution

= rq cei
0 with ( )r = + -ax a ac t2 2 for equation (1.1) and
choose the following eigenfunctions of the spectral problems

Figure 4. The seventh-order solution of equation (1.1): (a) the superposition of a PS, a STB and a KMB as l l= + 1 0 1
2,

( )l = + i53 1 1002 , ( )l = - i11 9 203 , l = i 104 , s01=5 and s02=s03=s04=0; (b) the superposition of a fundamental RW and a
KMB on a periodic background as l l= + 1 0 1

2, ( )l = - i7 1 102 , l = i 103 , m1=1, s01=s03=0 and s02=5; (c) the superposition
of a triangular RW and a KMB on a periodic background as l l= + 1 0 1

2, ( )l = + i13 1 252 , l = i 103 , m1=1, s01=s03=0
and s02=5.

Table 1. Structures of the breather-rogue periodic wave as = =s s 001 02 , l=1, m1=0 and n=2.

Parameters Structures on a periodic background

∣ ∣ ∣ ∣m n= > 1 22 2 , ν2<0, PS+KMB with a second-order central RW in figure 2(a)
∣ ∣ ∣ ∣m n= > 1 22 2 , n > 02 , PS+KMB without a second-order central RW in figure 2(b)

∣ ∣ ∣ ∣m n¹ = <0 1 22 2 , ν2<0, PS+AB with a second-order central RW in figure 2(c)
∣ ∣ ∣ ∣m n¹ = <0 1 22 2 , ν2>0, PS+AB without a second-order central RW in figure 2(d)
∣ ∣ ∣ ∣m n¹ ¹0 2 2 , ν2<0, PS+STB with a second-order central RW in figure 2(e)
∣ ∣ ∣ ∣m n¹ ¹0 2 2 , ν2>0, PS+STB without a second-order central RW in figure 2(f)
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and òk are real small parameters, Î j , = +k n1, 2, , 1.
Note that hk=0 as ( ) l l= - -a c ic2 2k
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0. For

equation (2.4), we can select l l= + r r0
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1 1
, l m= +r r2 2
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via
the Taylor expansion where ⧹{ }m n b Î+ , , 0r r n 12 2 , Î s ,
r1=1, 2, L, l and = +r l n1, ,2 . All kinds of the breather
(-RW) on a periodic background for equation (1.1) can be
obtained by taking the limit  0k ( = ¼ +k n1, 2, , 1). For
simplicity, we only consider the case of l=0,1 as a=c=1.

For N=1 in equation (2.4), when = =l n 1, we can get
the same results with [36], namely, a PS on a periodic
background. Hence, we discuss here only the case of l=0
and n=1. Under this case, a third-order solution of
equation (1.1) is obtained directly by means of the formula
(2.4) and the eigenfunctions (3.1) as l m n= + i1 1 1 and
l b= i2 2. Specifically, when m n = = 1 21 1 and s01=0, a
periodic solution is achieved

with w b= +1 4 2
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which implies equation (3.2) is nonsingular. Interestingly, the
periodic solution (3.2) is similar to the case of n=1, s1=0
and l b= i1 1 in [36]. However, the breather on a periodic has
not been well studied for the derivative nonlinear Schrödinger
equation in the previous research. More importantly, we can
also obtain a breather on a periodic background: a KMB as

∣ ∣ ∣ ∣m n= > 1 21 1 in figure 1(a); an AB as ∣ ∣ ∣ ∣m n= < 1 21 1 in
figure 1(b); a STB as ∣ ∣ ∣ ∣m n¹1 1 in figure 1(c). As shown in
figure 1, we take s01=0 because the parameter has indeed no
real influence upon the structure of breather, except in the
position of the breather. Considering the complexity, we only
show the expression as s01=s02=0 and m n= = -21 1

3 4,
i.e. the KMB on a periodic background displayed in
figure 1(a):
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Obviously, the expression (3.3) is more complex than the
periodic solution (3.2). Through complex and direct calcul-
ation, D kmb3, has the real part FR and imaginary part FI, i.e.
D = +F iFkmb R I3, . With the aid of Mathematica software, the
minimum of +F FR I

2 2 is about 0.438 when (x, t, β) is
approximately ( )- - -0.084, 2.175, 0.250 . Thus,D ¹ 0kmb3, .
That is to say, equation (3.3) is nonsingular.

For N 2 in equation (2.4), we shall not discuss the case
of l=0, i.e. the breather(s) on a periodic background. Next,
we will focus on the breather-RW on a periodic background
as l=1 and N�2 for the formula (2.4). Besides, we set
b =+ 1 10n 1 because the effect of b +n 1 on RWs on a peri-
odic background was investigated [36].

For N=2 in equation (2.4), let l l= + 1 0 1
2,

l m n= + i2 2 2, l = i 103 , l=1, m1=0 and n=2 as
described above ( ⧹ { }m n Î , 02 2 ). Under this case, the
fifth-order solution of equation (1.1) is a PS interacting with a
breather on a periodic background, as shown in figure 2. Note
that there are two structures for the fifth-order solution when
the parameters are taken different values: the interaction with
a second-order central RW in figures 2(a), (c), (e); the inter-
action without a second-order central RW in figures 2(b), (d),
(f). Taking no account of the parameters s01 and s02, table 1
shows the effects of the two free parameters μ2 and ν2 when
(∣ ∣ ∣ ∣)m n,2 2 is in a appropriately small neighborhood of (1/2,
1/2). The spatial-temporal structure of the fifth-order solution
shall become a soliton wave as (∣ ∣ ∣ ∣) ( )m n  ¥ ¥, ,2 2 while
it can degenerate into a PS on a periodic background as
m n+  02

2
2
2 . Additionally, figure 3 clearly indicates that the

PS shall move gradually with the change of the parameter s01
as well as how the parameter s02 affects the KMB for the
breather-RW on a periodic background. Furthermore, the
parameters s01 and s02 have the similar effect on other
structures in table 1. These dynamics are consistent with the
breather-RWs on a constant background [29].

For N=3 and l=1 in equation (2.4), there are roughly
two structures for the seventh-order solution of equation (1.1)
when we ignore the structures of the breathers and whether a
third-order central RW appears or not. One is the interaction
between a PS and two breathers on a periodic background as
l=1, m1=0 and n=3 in figure 4(a). The hybrid can be
called as ‘rogue wave quanta’ on a periodic background [40].
The other is the nonlinear superposition of a second-order
RW with a breather on a periodic background as l=1,

m1=1 and n=2. Under this case, we display the funda-
mental structure in figure 4(b) and the triangular structure in
figure 4(c).

4. Conclusions

In this paper, we give the expression (2.4) of the odd-th
solution for the derivative nonlinear Schrödinger
equation (1.1). On the basis of equation (2.4), we not only get
the same results in [36], but also can obtain the distinct
results, i.e. the breather and the breather-RW on a periodic
background. For the derivative nonlinear Schrödinger
equation (1.1), [11, 22, 23, 29] showed the soliton, RW and
breather on a constant background, but this paper displays the
breather and the breather-RW on a periodic background. As
applications, we show the structures and study the dynamics
for these solution of equation (1.1). Naturally, we can obtain
‘rogue wave quanta’ and the fundamental (or triangular or
ring or ring-triangular) pattern for higher-order breather-RW
on a periodic background like figure 4.
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