
Quantum phases of the 1D anisotropic spin-
1/2 frustrated ferromagnetic model: view
point of quantum correlations

Fatemeh Khastehdel Fumani1, Mostafa Motamedifar2 and
Saeed Mahdavifar1

1Department of Physics, University of Guilan, 41335-1914, Rasht, Iran
2Department of Physics, Shahid Bahonar University of Kerman, Kerman, Iran

E-mail: smahdavifar@gmail.com

Received 26 November 2019, revised 26 January 2020
Accepted for publication 5 February 2020
Published 3 March 2020

Abstract
We have studied the ground state phases of the one-dimensional (1D) spin-1/2 anisotropic
frustrated ferromagnetic model, using the numerical Lanczos method. We have focused on the
quantum correlations as the concurrence and the quantum discord (QD) between the nearest
neighbor (NN) and the next-nearest neighbor (NNN) spins. Numerical results show that the
Tomonaga-Luttinger liquid (TLL), the even-parity dimer, and the vector chiral phases can be
distinguished from each other using the long-distance quantum correlations. Specially, the
critical points are explicitly detected in the first derivative of the concurrence between the nearest
neighbor spins with respect to the frustration parameter.
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1. Introduction

Frustration refers to a condition where different competing
interactions affect spins simultaneously. The spins conflict
and as a result, they do not get an orientation satisfying all
underlying interactions, that causes spins to fluctuate [1]. The
topology of the lattice or interaction between farther-neighbor
spins can drive a spin system into a frustrated state. Pauling
[2] and Wannier [3] began the study of frustration more than
65 years ago. Wannier studied frustration in a triangular lat-
tice with antiferromagnetic interactions, the simplest geome-
trical spin frustration. In this lattice, all three spins cannot be
antiparallel and have to compromise.

1D strongly correlated frustrated spin systems have
recently generated great interests for both experimental and
theoretical researches in condensed matter physics [4–8].
These systems have been noticed specially because they have
various phases in the ground state, high ground state degen-
eracy, and also gapful or gapless as well as magnetic or non-
magnetic phases. Besides, some materials based on copper

oxides can be described by frustrated chains such as
Rb2Cu2Mo3O12 [9, 10], LiCuVO4 [11–14], Li ZrCuO2 4 [15],
La Ca Cu O6 8 24 41 [16], LiCuSbO4 [17], and PbCuSO4 [18].
Recently, there have been experimental efforts to generate
frustrated configurations, in which, a system of four frustrated
spins as a tetramer plaquette and a two-dimensional triangular
optical lattice have been successfully simulated [19, 20].

In this paper, we consider a 1D spin-1/2 model with fer-
romagnetic exchange interaction (J1<0) between the nearest-
neighbors (NN) and antiferromagnetic (J2>0) exchange inter-
action between the next-nearest-neighbors (NNN) that induces
the frustration (see figure 1). The Hamiltonian of the system is
defined as
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where Sn is the spin-1/2 operator of the n-th site and Δ is the
anisotropy parameter. We have considered Δ in the easy-plane
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case, 0�Δ�1. From the theoretical point of view, this model
has been the subject of many studies [21–48]. For Δ=1
(SU(2)-symmetric case) and the region with a = < -4J

J
1

2
, the

ground state is in the saturated ferromagnetic phase and placed in
the subspace =Stot

N

2
with the degeneracy N+1 and becomes

an incommensurate singlet state (Stot=0) for Δ=1 and
α>−4. Moreover, the lattice translational symmetry is thought
to be broken [21–23]. At the critical point, αc=−4, two distinct
configurations with the energy = - JE

N

3

16 1 construct the degen-
erate ground state [22, 28]. It is suggested that in the incom-
mensurate singlet state, the energy gap is strongly
suppressed [29].

Furukawa et al [31–33] studied the ground state phase
diagram of the model for 0�Δ<1 by means of the infinite
time evolving block decimation algorithm and the bosoniza-
tion approach. It was suggested that there is a variety of
phases, including the Haldane dimer, the TLL, the Neel, the
even-parity dimer, and the vector chiral phases (see figure 2).
In the region with α−4, the anisotropic system is in the
TLL phase. By increasing the frustration parameter α,
depending on the anisotropy parameter, a quantum phase
transition into the Neel phase or the even-parity dimer occurs
[30, 31]. It is also pointed out that by further increasing α, the
model converts to the vector chiral ordered phase. Further-
more, the existence of a narrow intermediate phase where the
vector chiral and dimer orders coexist in 0.61Δ0.63
and α=−2 is recognized by entanglement entropy [33].

Here, we use the Lanczos numerical method as a pow-
erful tool for diagonalizing the Hamiltonian of finite size
chains (up to N= 28 spins). We show how the competition
between different couplings in a frustrated chain is reflected in
quantum correlations such as the concurrence and the QD. It
has been realized that quantum correlations can influence the
low-temperature behavior of the bulk properties such as
magnetic orders in a system. In addition, it can be used to
pinpoint quantum phase transitions. These facts raised the
interest in probing the relationship between quantum corre-
lations and quantum phase transitions in this model. We also
show that quantum correlations as the concurrence and the
QD can help us to determine the critical regions in such a very
complicated model. Our numerical results show that quantum
correlations are able to separate three different phases: the
TLL, the even-parity dimer, and the vector chiral phases.

The rest of the paper goes in the following sequence. In
section 2, the concurrence as a measure of entanglement and
the QD have been defined. In section 3, using the Lancsoz
method, the Hamiltonian has been diagonalized and numer-
ical results are presented. The results have been summarized
in section 4.

2. The concurrence and the quantum discord

Due to the long-range correlations among the constituents of
the system near the quantum critical points, the ground state
of the 1D spin-1/2 frustrated ferromagnetic model must be
nontrivial. It is suggested that in these complicated situations,
quantum correlations could be also useful for studying
quantum phase transitions [49]. Furthermore, it is widely
argued that distinguishing quantum phase transitions in fru-
strated spin systems is feasible by analysis of the quantum
correlation measures as the concurrence [50] and the QD [51].
It should be noted that in the mentioned works the frustrated
antiferromagnetic model is considered.

One of the most important predictions of modern
quantum physics is the entanglement [52, 53]. The entan-
glement is a unique property of any superposition state in
quantum systems that consist of two or more elements. It is
known that at the quantum critical point where the quantum
phase transition happens, fluctuations of the order parameter
extend throughout the system and the length of correlation
diverges. Consequently, quantum correlations can mark
quantum phase transitions at the critical points [54, 55]. The
entanglement between two spins can be measured by the
concurrence. The concurrence between two spins at sites n
and n+m is determined by the corresponding reduced
density matrix [56]

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )r =+

+
+

+
+

+

+ +
-

+
-

X

Y Z

Z Y

X

0 0 0

0 0

0 0

0 0 0

, 2n n m

n n m

n n m n n m

n n m n n m

n n m

,

,

, ,

, ,

,

*

Figure 1. A sketch of the one-dimensional frustrated spin chain with
J1 exchange interaction between the nearest-neighbors and J2
exchange interaction between the next-nearest-neighbors.

Figure 2. Ground state phase diagram of the 1D anisotropic spin-1/2
frustrated ferromagnetic Heisenberg model obtained in [33].
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, = S S iSx y. One should

note that the brackets symbolize expectation values on the
ground state of the system. Finally, the concurrence is
obtained as

{ (∣ ∣ )} ( )= -+ +
+

+
-C Z X Xmax 0, 2 . 4m n n m n n m n n m, , ,

It is known that there exist quantum correlations that are
not spotlighted by the entanglement measures. These uni-
lluminated correlations are thoroughly included in the for-
mulation of so-called the QD as a measure for representing all
quantum correlations [57, 58]. The QD coincides with the
entanglement for pure quantum states, but for mixed quantum
states, these two measures differ from each other. QD has
motivated a search for a complete description of all quantum
correlations specially where no entanglement exists [59, 60].
Here, we follow Sarandy’s prescription [61] to study the QD
in the frustrated model. The QD between a pair of spins at
sites n and n+m is defined as

( ) ( ) ( )r r= -+ + QD , 5m n n m n n m, ,

where  denotes the mutual information and  stands for the
classical correlations. Mutual information is given by

( ) ( ) ( ) ( ) ( )år r r l l= + +
a

a a+ +
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 S S log , 6n n m n n m,
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In addition, the entropy is determined as
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The classical correlations, ( )r + n n m, , are given by
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where 0�θ�π and 0�f�2π. Therefore, the QD
between a pair of spins located at sites n and n+m can be
calculated.

In recent years, the entanglement and the QD have been
analyzed as a function of the distance between a pair of spins
in the transverse magnetic field for spin-1/2 chains [54, 55,
62–70]. In the next section, the concurrence and the QD
between spin pairs with different distances in the 1D ferro-
magnetic frustrated anisotropic spin-1/2 model will be stu-
died and different ground state phases are recognized from the
viewpoint of the quantum correlations.

3. Numerical experiment

The theoretical investigation of physical problems requires
appropriate handling of very high-rank matrices. Although
the matrix is sparse in a lot of applications, it is not possible to
solve the problem by direct diagonalization of a very large
matrix using the standard methods. The Lanczos numerical
method with appropriate implementations has emerged as one
of the most applicable computational procedures, mainly
when the ground state is desired [71]. In fact, it is a method
for tridiagonalizing Hermitian matrices. In following, we
briefly summarize some basic features of the Lanczos method
in its standard formulation. To explain this method briefly, let
us consider Hamiltonian of the system as , with unknown
eigenvalues and eigenstates. First, an initial normalized state,
∣ ñf0 , is chosen arbitrary as the seed state of the procedure.
Applying the operator of Hamiltonian  on the initial nor-
malized state, a new state orthogonal to ∣ ñf0 is obtained as

∣ ∣ ∣ ( )gñ = ñ - ñF f f , 130 0 0 0

where ∣ ∣g = á ñf H f0 0 0 . The normalization of the new state,

∣ ñF1 , is indicated by ∣ ∣ ∣b = á ñF F1 1 1 , ∣ ∣ñ = ñ
b

f F1
1

1
1

. By iterating l
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times the procedure, a general form is obtained as

∣ ∣ ∣ ∣ ( )g bñ = ñ - ñ - ñ+ -F f f f . 14l l l l l l1 1

Finally, in the basis set {∣ }ñfl , the Hamiltonian is presented by
a tridiagonal matrix as
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It should be noted that the number of steps to be carried out in
the Lanczos procedure, can be reasonably small. The diag-
onalization of tridiagonal matrix form of the Hamiltonian
gives low energy states of the system.

Here, we used the Lanczos numerical method and diag-
onalized the Hamiltonian of the system for different values of
the frustration α and anisotropy parameter Δ. Periodic
boundary conditions are considered for chains with lengths
N=12, 16, ... 28, but only results of three largest sizes
(N=20, 24, 28) are reported. The ground state of the system,
∣ ñGS , is calculated by applying the Lanczos algorithm and
subsequently, quantum correlations are obtained.

Numerical results of the concurrence between the NN
and the NNN spin pairs for different chain lengths, N=20,
24, 28, and different values of the anisotropy parameter,
Δ=0.8, 0.4, 0.2, 0.0, are presented in figure 3. Figure 3(a)
shows that the NN spin pairs are entangled in the TLL phase.
This is in complete agreement with previous studies that the
NN spin pairs are entangled in the TLL phase of 1D spin-1/2
systems [54, 56, 66, 72]. By increasing the frustration para-
meter, α, the concurrence between the NN spin pairs grows
very slowly and will be maximized at the first critical frus-
tration point, ac1

. As soon as the frustration parameter crosses
the first critical point, the concurrence between the NN spin
pairs decreases rapidly and vanishes at the second critical

frustration point, ac2
. In the region a a> c2

, the NN spin pairs
are not entangled. For the same anisotropy parameter value,
Δ=0.8, the behavior of the concurrence between NNN spin
pairs is shown in figure 3(e). It should be noted that only in
the middle region, a a a< <c c1 2

, the NNN spin pairs are not
entangled. Unlike the NN spin pairs, when a a> c2

, the NNN
spin pairs are entangled and the value of the concurrence
increases by α.

Moreover, the same behavior is observed for other values
of the anisotropy parameter, Δ=0.4, 0.2, 0.0, in figure 3.
For a a< c1

, the NN spin pairs are entangled and concurrence
value remains almost constant by increasing α. As soon as the
frustration increases from ac1

, the concurrence between the
NN spin pairs starts to decrease and vanishes at the second
critical frustration point ac2

. Finally, in the vector chiral
phase, the NN spin pairs are not entangled. In contrast,
figures 3(f)–(h) show that the NNN spin pairs are only
entangled for a a> c2

.
In insets of figures 3(c) and (d), the first derivative of the

concurrence between NN spin pairs is plotted versus the
frustration parameter. As it is clearly seen, the concurrence
derivative is explicitly able to separate the even-parity dimer
region (located between two dashed lines in the mentioned
figure) from two other phases. In the even-parity dimer phase,
we observe non-zero value of the concurrence between NN
spin pairs. This fact accord with the picture that the ground
state is approximated by the product state of (∣ ∣ ) ñ +  ñ
that are maximally entangled. By increasing α in this phase,
the states with less entanglement create. Ultimately, new
states which can be expressed as a separable state become
dominant and the system undergoes a phase transition to an
unentangled phase.

In addition to the concurrence, we have calculated the
QD between the NN and NNN spin pairs. The Lanczos results
are presented in figure 4. As a general behavior, the QD

Figure 3. Concurrence between the NN spin pairs as a function of frustration parameter for (a) Δ=0.8, (b) Δ=0.4, (c) Δ=0.2,
(d) Δ=0.0 and concurrence between the NNN spin pairs for (e) Δ=0.8, (f) Δ=0.4, (g) Δ=0.2, (h) Δ=0.0, using Lanczos method
for chain sizes N=20, 24, 28. The insets of (c) and (d) parts show the first derivative of the concurrence with respect to the frustration
parameter for Δ=0.2 and Δ=0.0, respectively, for chain size N=28.
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between the NN spin pairs grows by increasing the frustration
(figures 4(a)–(d)). It will be maximized exactly at the first
critical frustration point ( )a Dc1

. As soon as the frustration
crosses the first critical point, the QD between the NN spin
pairs starts to decrease and shows a monotonic behavior in the
region a a a< <c c1 2

(It is clearly seen in figure 4(d) without
finite size level crossing). Finally, for a a> c2

, it shows a
plateau with a value of approximately zero. As it is seen in
figures 4(e)–(h), QD between the NNN spin pairs also shows
very interesting behavior. In the TLL phase, a quasi-plateau is
observed. Close to the first critical frustration parameter, ac1

,
it starts to increase and exactly at the first critical point a
maximum is seen as a cusp forΔ=0.8. Finally, in the region
a a> c2

, the QD between the NN spin pairs shows an
increasing behavior.

To have a complete knowledge of the concurrence
behavior in different phases, we added a density plot of the
concurrence in figure 5. The concurrence between the NN and
NNN spin pairs in the (Δ−α) plane for a chain size
N=20 are sketched in figures 5(a) and (b), respectively. As
it is displayed in panel (a) of the figure 5, in the TLL phase,
the NN spin pairs are entangled and by increasing frustration,
the concurrence almost remains constant. Moreover, in vector
chiral phase, concurrence between the NN spin pairs is dis-
appeared. Between these two phases, we observed the even-
parity dimer region with decreasing concurrence values.

The concurrence for the NNN spin pairs is displayed in
the panel (b) of figure 5. In contrast with the nearest neighbor
spin pairs, in the both TLL and even-parity dimer phases, the
concurrence for NNN spin pairs has zero values, except in a
small area in the TLL phase near Δ=1. Therefore, the
boundary line between TLL and even-parity dimer phases is
not recognizable in this diagram. Furthermore, in the vector
chiral phase by increasing frustration parameter, the NNN
spins start to be entangled and the concurrence value
increases by increasing frustration. It is worthy noting that

(Δ, α)=(1,−4) transition point is clearly signaled by
concurrence between NN and NNN spins.

4. Summary

In this work, we considered a 1D spin-1

2
anisotropic Hei-

senberg model with ferromagnetic interaction between the

Figure 4. QD between the NN spin pairs as a function of frustration parameter for (a) Δ=0.8, (b) Δ=0.4, (c) Δ=0.2, (d) Δ=0.0 and
QD between the NNN spin pairs for (e) Δ=0.8, (f) Δ=0.4, (g) Δ=0.2, (h) Δ=0.0, using Lanczos method for chain sizes N=20,
24, 28.

Figure 5. Density plot of the concurrence between (a) the NN (b) the
NNN spin pairs in (Δ-α) plane, for N=20 using the Lanczos
method results.
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NN spins which is frustrated by antiferromagnetic interaction
between the NNN spins. Using the Lanczos numerical
method we did a numerical experiment on the ground state
phases by focusing on the quantum correlations. We calcu-
lated the ground state of the finite chains with lengths
N=20, 24, and 28. Different values of the anisotropy and
frustration parameters are considered. The results of our
numerical experiment showed that quantum critical points can
be extracted from the behavior of quantum correlations. In
fact, entanglement between the NN spin pairs is almost
constant in the TLL phase region, ( )a a< Dc1

. In the
middle region, ( ) ( )a a aD < < Dc c1 2

, it shows a monotonic
decreasing behavior. Finally, in the vector chiral phase,

( )a a> Dc2
, the NN spin pairs are not entangled. On the

contrary, the NNN spin pairs are only entangled in the vector
chiral region.

In addition to the entanglement, we studied the QD
between the NN and the NNN spin pairs. From the numerical
results, we found that the QD between NN spin pairs will be
maximum at the first critical point, ( )a Dc1

. At the second
critical point ( )a Dc2

, it will almost become zero. Moreover,
the QD between the NNN spin pairs exists in the region

( )a a> Dc2
and increases by increasing frustration.
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