
A self-sustained oscillator to the Lorenz-
Haken dynamics

Belkacem Meziane

Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181 – UCCS – Unité de Catalyse et
Chimie du Solide, F-62300 Lens, France

E-mail: belkacem.meziane@univ-artois.fr

Received 17 September 2019, revised 14 January 2020
Accepted for publication 21 January 2020
Published 2 March 2020

Abstract
An operative transformation of the 3D Lorenz-Haken model into an exclusive second-order
differential equation is proposed. The periodic solutions highlighting the original set forthrightly
generate with the basic analytical tools and procedures of a one-dimensional forced oscillator, as
that of a mass-spring system experiencing external harmonic-excitation. Evidencing with the
oscillator structure, the inherent nonlinear dynamics interprets in terms of a resonant singularity
rooted in the original 3D system. Appropriate analyses consistently adjust to the small and strong
harmonic signals, supplying crucial formulations to ascertain the solution characteristics with the
ultimate goal to describe, analytically, periodic phase-space trajectories.

Keywords: Lorenz equations, laser theory, instabilities and chaos, nonlinear dynamics, fluid
turbulence, Chaos

(Some figures may appear in colour only in the online journal)

1. Introduction

After more than half-a-century of sustained investigations, the
Lorenz-Haken equations, known to deliver a wealth of solu-
tions, extending from ordered periodic trajectories to chaotic
attractors, remain a subject filled with yet to unravel com-
plexities [1–11]. The one way to pull out any information
with respect to the system’s transient and permanent output
signals is to call for numerical analysis. However, in terms of
the physics underlining the quite capricious behavior, no
simple scheme is easy to capture and to put forward with mere
digital results, thus leaving to reckless nonlinear interactions
full accountability of the quite-often unpredictable behavior.
As a challenge to elucidate a few ambiguities they carry, we
aim at transforming the three nonlinearly coupled first-order
differential equations into a single second-order structure for
the population inversion. The electric field and intensity
variations acting as the main excitation mechanisms com-
peting to force the system into small or high-amplitude
oscillations, contingent to the exact initial conditions and
control parameter values the system submits-to.

After exposing the main steps of the conversion proce-
dure, we shall analyze the non-linear oscillator in both the
small and strong-harmonic regimes, extracting first-hand and

useful analytical information. In particular, we shall derive
two expressions that perfectly quantify the phase difference
between the electric field and population inversion, when
these develop in the vicinity or away from steady state. Such
new outcomes will enable trustful reconstitutions of typical
closed loops with well-ordered orbits, perfectly matching
those simulated with the original 3D set.

Even though much of the report gravitates around Laser
physics, the mathematical outcomes extend to the general
issue of applied mathematics. Worth reminding is that, in
1998, Stephen Smale, the 1966, medal-Field laureate included
the Lorenz equations-originally derived to deal with dis-
sipative hydrodynamic flows [1]- in a list of 18 mathematical
problems to challenge the 21st century [5]. The oscillator
approach shines enough light to answer a few questions to
Smale concerns and reactivate a subject left on a stand-by
mathematical-mode by the scientific community, computers
having taken the lead, without cracking the attractor mystery.

The presentation organizes according to the following
hierarchy. The structuring procedure and basic algebra pro-
vide in section 2. Section 3 focuses on the small harmonic
case, for which the phase space portraits consist of single-
branch loops conforming to the regular oscillations that
take place around steady state. Analytical descriptions of
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these trajectories relate to the derivation of a phase factor
that quantifies the time lag between the electric field and
population inversion along with the associated amplitude
response, exclusively relating to the control parameters. Some
resonant phenomenon identifies to characterize the population
response with respect to the cavity decay rate. Section 4
follows to focus on the strong harmonic mode, analytical
reconstitutions of the phase-space double-branch trajectories
as a primary goal to accomplish. Likewise, some character-
istic phase factor and amplitude curves construct analytically
to adequately follow those of the numerical solutions.
Section 5 points out auxiliary notes, bringing to attention the
driving role of the population inversion on the electric-field
dynamics. Section 6 concludes with a few remarks pertaining
to yet to explore aspects. Finally, four appendixes devote to
detailing the primary steps to smooth-out some of the lengthy
algebra, and a fifth one to recall, with some compulsory
details, the main properties of the forced mass-spring har-
monic oscillator. Its understanding points-out as a funda-
mental prerequisite for the newly proposed model to take
hold of the complex Lorenz-Haken dynamics and main
specifics. For that reason, reading appendix D first is highly
recommended!

2. The structuring procedure

Using Newton’s notation for time derivatives, the Lorenz-
Haken equations write [7, 12]

( ) ( ( ) ( )) ( ) k= - +E t E t CP t a2 , 1

( ) ( ) ( ) ( ) ( ) = - +P t P t E t D t b, 1

( ) ( ( ) ( ) ( )) ( ) g= - + +D t D t E t P t c1 . 1

Where ( )E t , ( )P t , and ( )D t represent, respectively, the laser
field amplitude, the polarization, and the population inversion
of the amplifying medium. κ and γ are the field and popu-
lation relaxation rates, both scaled to the polarization decay
rate, while 2 C quantifies some external power supply, meant
to break the natural thermodynamic equilibrium and trans-
form an initially absorbing material into an amplifier. The dot
above all three variables represents the first derivative with
respect to time.

The key clue to the conversion method consists in reor-
dering equation (1a) as

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )



k
= - +P t

C
E t

E t
a

1

2
, 2

transforming equation (1b) into

( ) ( ) ( ) ( ) ( ) ( ) 

k
= + +P t

E t

C

E t

C
E t D t b

2 2
. 2

Equation (1c) second derivative follows

̈ ( ) ( ) ( ) ( ) ( ) ( ) ( )  g g g= - - -D t D t E t P t E t P t c2

Subsequent to elementary transformations, equations (2a)
and (2b) inject into equation (2c) to end-up with
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or, equivalently
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This last equation specifies the dynamics of light-matter
interactions to point out that, as the driving forces, the field
intensity and its derivative implicate with competing influences.
While the electric-field intensity-impact is to lessen the popu-
lation inversion, its derivative has the inverse effect to enhan-
cing it.

In view of its simple structure, one is entitled to wonder
whether equations (3a) or (3b) is not contained inside any of
the contributions –counting in hundreds, if not thousands–
that dealt with the Lorenz-Haken equations since the first
papers, from the early 1960’s, for Lorenz [1,] to the mid
1970’s, for Haken [2]. To the best of our knowledge, this is its
first coming out in a report devoted to the basic example of
nonlinear dynamics. If no author proposed such a structure,
thus far, it is almost certainly because none thought of the
clue to transforming equation (1a) into equation (2a). The
conversion to a second-order differential equation is quite
easy, yet impossible to carry out, in the oscillator form,
without such a hint.

For fundamental and straightforward comparisons, let us
recall the well-known mass-spring oscillator and basic theory
[see appendix D for detailed reminders]. Subject to an
external harmonic force, its motion along some x axis
describes with the typical second-order differential equation

̈ ( ) ( ) ( ) ( ) ( )a w w+ + =x t x t x t t aa cos . 40
2

The solution, which monitors the instantaneous mass
position, follows

( ) ( ) ( ( )) ( )w w j w= +x t A t bcos . 4

Amplitude ( )wA and phase ( )j w pull out through direct
plugging equation (4b) into equation (4a).

Equation (3b) bears some formal similarity with the one-
dimensional forced oscillator, the population inversion as the
equivalent of the mass-spring system, whereas the field
intensity and derivatives play the roles of two competing
driving forces. Equation (3b), right-hand side, clearly indi-
cates that while the field intensity, with its negative sign,
tends, as expected, to reduce the population inversion; on the
contrary, both the field and intensity variations, with their

2
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positive signs, incline to increasing it. Let us also note that
light-matter interactions fully act through the product

( ) ( )E t D t ,2 which couples the laser intensity to the population
inversion.

In addition, let us recall that, at the atomic level, during
its transitions between low and high energy levels, an inverted
atom has all the characteristics of a forced harmonic oscillator
interacting with an electromagnetic field. It describes with a
theoretical model identical to equation (4a). Therefore, it
should be of no surprise to retrieve, at the macroscopic level,
the equation of a forced oscillator with some higher level of
complexity, bound to unravel in the coming sections.

Indeed, just as in the case of the forced mass-spring
oscillator, we need some initial expression for the driving
electric field in order to inspect the population inversion
response and characteristics. Leaning on the solution features
of the 3D system, as numerically simulated with adapted
algorithms, the following sections successively deal with the
small and strong-harmonic modes.

3. The small-harmonic mode

To draw straightforward similarities with the dynamic char-
acteristics of the mass-spring system, we shall first derive an
analytical expression of the phase mismatch between the
exciting variable (the electric field) and the population
response, with respect to the cavity decay rate. A few ana-
lytical solutions will follow, calling for phase mismatch
evaluation, before focusing on the oscillator resonant prop-
erties, validating a one to one similarity between the popu-
lation dynamics and any oscillator undergoing external
excitation with varying frequency.

3.1. Phase mismatch factor

We know, from numerical analysis, that the Lorenz equations
possess both soft harmonic and more complex solutions of the
strong amplitude type. Aside from mere computing, analytical

modelling may achieve with high-order harmonic-expansions,
in the case of regular pulse structuring and subharmonic
cascading [7, 12, 13], which take place when the initial
conditions are strong enough to shift the system away from its
stable state with growing amplitude oscillations.

For small enough perturbations, the electric field signal
consists of small amplitude undulations around steady state,
describing as

( ) ( ) ( )w= +E t E e tcos 50

With e E .0

Neglecting second order terms in e, equations (3a) and
(3b) rewrite

⎜ ⎟
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6
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2

0

indicative of a driving force

( ) ( ) ( ) ( )w w= + +f t f f t f t bcos sin , 60 1 2

The population response is bound to follow a similar
expansion

( ) ( ) ( ) ( )w w= + +D t D d t d t ccos sin 60 1 2

With straightforward algebra (see appendix A for
details), equation (6a) yields
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At the instability threshold, we know from linear stability
analysis [7] that the steady state intensity E0

2 and pulsation
w w= 0 relate to the control parameters κ and γ, to fulfill the
following expressions

( )( ) ( )k k g
k g

= - =
+ + +

- -
E C a2 1

1 1

1
, 70

2

( ) ( )w
kg k
k g

=
+

- -
b

2 1

1
70

2

Both combining to yield

( ) ( )( )

( )

w
g k g

k k g
k g

k- =
+

- -
-

+ + +
- -

= +E

c

2 1

1

1 1

1
1

7

0
2

0
2

Figure 1. Electric field and population phase-mismatch with respect
to the cavity decay-rate κ.
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From equations (6c), (6d) and (7c), we pull out a rela-
tionship between the in-phase and out-of-phase population
components, which simplifies into

( )( ) ( )k k g
kg

=
+ - -d

d

1 1

2
82

1

This ratio represents an important information pertaining
to the phase difference between the electric field and popu-
lation inversion oscillations. In fact, with no phase difference,
each variable is bound to converge towards its stable state.

The population harmonic-components rearranging as

( ) ( ) ( ) ( )w w w j+ = -d t d t d t acos sin cos , 91 2 0

we deduce an expression for ( )jtan with an exclusive
dependence on κ and γ

( ) ( )( ) ( )j
k k g

kg
= =

+ - -d

d
btan

1 1

2
, 92

1

from which, we infer ( )j k = 0, for k g= +1 , and an
asymptotic value ( )j k  p ,

2
when k  ¥.

At this point, it is worth emphasizing on the main
differences between the forced mass-spring system and the
self-sustained oscillator. Under some harmonic force, the
mechanical oscillator response (or its equivalent electrical) fol-
lows that of the external excitation. Once the mass and spring
characteristics are fixed, the amplitude and phase of the mass
motion relate exclusively to the excitation pulsation it undergoes,
eventually concluding in the well-known resonance phenom-
enon for some characteristic pulsation w0 [see appendix D for
full tutorial]. On the other hand, the nonlinear laser oscillator

drives with a constant external excitation 2C, its behavior being
contingent to the cavity and decay rates κ and γ. Beyond the
instability threshold, and under bad-cavity conditions (κ > γ),
the interacting electric-field and population-inversion compete

and start to oscillate with a frequency ( )=
p

kg k
k g

+
- -

f ,0
1

2

2 1

1
and a

phase difference ( )( )( )j = k k g
kg

+ - -a tan ,1 1

2
with exclusive

dependency on κ and γ. In other words, when instability sets in,
the cavity and population decay rates play, implicitly, the same
role as the external driving pulsation of a mass-spring oscillator.

Figure 1 represents ( )j k , for γ=1. The graph shows
rapidly increasing values for small κ’s and much slower
growth converging towards p ,

2
in the higher region.

3.2. Analytical solutions

In order to check for the extent of validity of these first ele-
ments, let us focus on a few harmonic solutions, numerically
obtained from equation (1). Represented in a ( )D t -versus-

( )E t phase-space axes, figure 2 shows four examples of limit
cycles that correspond to a sequence of arbitrarily chosen κ

values, indicated in the figure caption.
To match the examples of figure 2, the phase values

compute from equation (9b) as (a) k = 2.001, j
p

@
100

;

(b) k = 2.01, j
p

@
36

; (c) k = 2.1, j
p

@
12

; and (c)

k = 3.75, j
p

@
4

.

Figure 2. Phase-space limit cycles, numerically simulated with equation (1); (a) k = 2.001, (b) k = 2.01, (c) k = 2.1, and (d) k = 3.75.
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According to equations (5), (6c) and (9a), soft harmonic
solutions should follow

( ) ( ) ( )w= +E t E e t acos , 100

for the electric field, and

( ) ( ) ( )w j= + -D t D d t bcos , 100 0

for the population inversion.
Given the electric field and population steady-states

values, along with the perturbation strength e and associated
amplitude d ,0 the numerical orbits of figure 2 reproduce with
exact similarities.

To cover the prospects to asymptotic κ values, the
phase-space loops of figure 3 extend from (a) k = 2.001,
(b) k = 2.1, (c) k = 3.75, to (d) k = 1000. All related
coefficients gather in table 1.

Close inspections and comparisons between the graphs of
figures 2 and 3 are persuasive enough to endorse the second-
order self-sustained model of the Lorenz equations, inside the
whole control parameter domain, as long as initial conditions
sustain soft harmonic solutions.

3.3. Resonant characteristics in the small-harmonic mode

The equivalence with the forced mass-spring oscillator would
not be complete without recognizing the out of sight resonant
features of the amplitude variations with respect to the cavity
decay rate. A few carefully chosen population oscillations
clearly indicate increasing and decreasing amplitudes when κ

scans from low to high values, as shown in figure 4.

Close inspections of the oscillations represented in
figure 4 indicate that d0 follows the variations of the steady-
state population-inversion values. For small enough electric-
field perturbation e

( ) ( )
( )

( )k k
k

k k
@ - = =

-
+

d D
C

1

2

2

4
110 0

Just like the resonant curve of a forced mass-spring
oscillator [figure E2, appendix D], d0 follows figure 5 to
exhibit a region of stronger amplitudes, cresting at k =0

+2 2 3 . For this optimal cavity rate value, we extract from
equation (11), @D 0.067.M

The specific k0 value may consider as the equivalent of
the mass-spring oscillator characteristic frequency =f0

p
k

m

1

2
at which extreme resonance occurs, amplitude

response reaching its apex.
It is interesting to note that defining, as in electric circuits, a

frequency bandwidth as the extent of values for which the
amplitude situates in the range /  D D D2 ,M M0 0 0 the
corresponding κ range extends fromk = 2.56m tok = 23.29,M

yielding a resonance bandwidth k k kD = - = 20.73.M m

Numerous simulated examples all converge to the con-
clusion that these resonant phenomena verify quite well with
the original set of equation (1). All simulations follow the
same amplitude scaling as the curve of figure 5. Indeed, in
order to simulate small amplitude oscillations, the initial
conditions, which must be the same for all κ’s, call for careful
choice, in order to avoid the system to diverge towards its
chaotic solution. We found that the highest electric-field

Figure 3. Analytical orbits obtained with equations (10a) and (10b), and the numerical coefficients of table 1. Note the perfect
correspondence with the numerically simulated counterparts of figure 2. Also note the symmetrical elliptic orbit obtained with the asymptotic
constants k = 1000 and j = p .

2
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initial perturbation to keep the system from diverging, inside
the whole domain of the unique control parameter κ, is
= -e 0.7. The initial condition for the electric field fixing to
= +E E e0 for each κ value.
Let us note that, to allow for first-glance comparison,

attached to all four solutions appearing in figure 4 the same
vertical scale. The harmonic part of the population scales in
exact proportions to that of the steady state value. While for
k = 2.1, the oscillation takes place with small amplitude, it
gradually grows to attain its peak at k = +2 2 3 , before
lessening again, in a qualitatively and quantitatively perfect
agreement with the steady-state-population resonant-curve of
figure 5. Even though the oscillation amplitudes, as obtained
from the original set equation (1), scale according to =d D ,0 0

a comparable amplitude value evaluates directly from the in-
phase and out-of-phase amplitudes d1 and d ,2 through

= +d d d0 1
2

1
2 (see appendix A for details) with, again, a

sole dependence on κ (g = 1).
Let us note that the general aspect of the graphs ( )kD0

and ( )kd0 is the same. The slight quantitative differences
appear as follow. While the ( )kD0 characteristic decay rate is
k = + @2 2 3 5.46,0 that of ( )kd0 is k¢ @ 4.21.0 The

( )kd0 amplitude is half its maximum value for k = 2.2m and
k = 17.9,M implying a kD @ 15.7 bandwidth (compare to
the kD @ 20.7 associated to the ( )kD0 curve). Surprising is
the fact that the ( )kd0 graph delimits, satisfactorily, the region
of chaotic solutions, obviously suggesting that chaos may
consider the result of a resonant phenomenon typical of the
Lorenz-Haken equations (added clarifications put forward in
appendix C).

As extensive numerical analyses indicate, soft solutions
characterize the non-linearly coupled equations for small
perturbations only. The system rapidly diverges towards
strong-harmonic oscillations for slightly different initial con-
ditions. Therefore, the next step consists in the analysis of the
second-order differential equation to extract further evidence
pertaining to the nonlinear oscillator propensity to describe
both the soft and strong amplitude dynamics.

4. The strong harmonic mode

For quick comparisons, we shall follow the same presentation
scheme as that of the small amplitude case of section 3.

4.1. Phase mismatch factor

As already mentioned, the small amplitude orbits of section 3
become rapidly unstable to end-up in trajectories for which
the electric field and population inversion undergo strong
oscillations, around zero mean-value for ( )E t and = -D

C0
1

2
for ( )D t . Outside the chaotic region, for low and high cavity
decay rates, the general solution for ( )E t is a Fourier
expansion, with an exclusive odd spectral parity, developing
as [7, 13]

( ) [( ) ] ( )å w= +
=

+E t E n tcos 2 1 . 12
n

N

n
1

2 1

Full plugging equation (12) into equation (3) yields
numerous (theoretically infinite) and inextricable expressions,
out of which no information is easy to pull out. A reasonable
procedure consists in considering the effect of each harmonic
separately.

Let us start with the fundamental component

( ) ( ) ( )w=e t E t acos , 131 1

for the field, and

( ) ( ) ( ) w w= -e t E t bsin , 131 1

for its derivative.
Calling for elementary trigonometry, the forcing terms in

equation (3) gather as

( ) ( ) ( ) ( ) ( )w
w

= =
+

e t E t t E
t

ccos
1 cos 2

2
, 131

2
1
2 2

1
2

( ) ( ) ( ) ( )

( ) ( )

 w w w

w w

=-

=-

e t e t E t t

E t d

sin cos
1

2
sin 2 , 13

1 1 1
2

1
2

( ) ( ) ( ) ( ) w w w
w

= =
-

e t E t E
t

esin
1 cos 2

2
, 131

2 2
1
2 2 2

1
2

transforming equation (3) into (see appendix A for main
algebra)

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

̈ ( ) ( ) ( ) ( )

( ) ( ) ( )


g
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w
k

w
k

w
w

k
w

+ +
+

= - - +

´ - -

D t D t E
t

D t

C

E
E

C

E
E

t
C

E
t

1 1 cos 2

2

1

2

1

2

1

2

1

2

cos 2
1

2 2
1

1
sin 2 14

1
2

2
1
2

1
2

2
1
2

1
2

1
2

The driving constituents assemble as

( ) ( ) ( ) ( )w w= + +f t a a t a t acos 2 sin 2 , 150 1 2

imposing a similar expression to the population response

( ) ( ) ( ) ( )w w= + +- -D t D d t d t bcos 2 sin 2 . 152 02 1 2 2 2

Table 1. Details and coefficients relating to the analytical structures
of figure 3.

κ 2.001 2.1 3.75 1000
j /p 100 /p 12 /p 4 /p 2
E0 109.6 11.3 3.95 33
e 3.4 1.25 0.55 15
D0 0 −0.01 −0.06 −0.001
d0 0.016 0.055 0.07 0.022
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Likewise, one may easily verify that any high-order
harmonic

( ) (( ) ) ( )w= ++ +e t E n t acos 2 1 , 16n n2 1 2 1

expands the driving excitation into

( ) ( ( ) )
( ( ) ) ( )

w
w

= + +
+ +

f t f f n t

f n t b

cos 2 2 1

sin 2 2 1 , 16
c 1

2

forcing the population response to develop according to

( ) ( ) ( )
( )

w w= + +- -D t D d n t d n t
c

cos 2 sin 2
16

n n n n2 02 1 2 2 2

From these elements, it becomes obvious that, driven
with an electric field expansion analogous to equation (12),
the population inversion is bound to develop with an exclu-
sive even parity

( ) ( ) ( )å w j= + - ¢
=

D t D D n tcos 2 . 17c
n

N

n
1

Such an expression holds here a fundamental validity,
giving credit to the Lorenz-Haken dynamics analytical-fra-
mework, which we intuitively proposed to retrieve a few
phase space portraits replicating their numerical counter-
parts [13].

To find-out how these results allow for regular orbit
description with closed-form expressions, let us first look for
a phase relationship, limiting equation (17) to its second-order
harmonic. Assuming

( ) ( ) ( )
( ) ( )

w j w
w

= + - ¢ =
+
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-

D t D d t d n
d n t

cos 2 cos 2
sin 2 18
c 0 1 2

2 2

From equation (14), we extract

⎛
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Transforming, with =E E21
2

0
2 and w w=2

0
2 (see

appendix A for main algebra), into

( ) ( )( ) ( )j
k k
k k

k k
k

¢ =
- +
- +

+ -
btan

7 13 2

9 2

1 2

2
19

2

2

Revealing, as in the case of soft harmonics, an exclusive
dependence on the cavity decay-rate κ (for simplifying pur-
poses, and without loss of generality, we inferred g = 1 [12]).

Similarly, two specific values appear, ( )j k¢ = 0, for

k = 2, and ( )j k
p

¢ 
2

, when k  ¥. However, inside the

whole κ range, ( )j k¢ undergoes some appreciable lowering
with respect to the small-amplitude ( )j k , as evidenced in the
representations of figure 7. For comparison, the small and
strong amplitude phase-mismatch outline in the same figure.

4.2. Amplitude characteristics

In the strong harmonic regime, the original equation (1)
deliver solutions with much higher amplitudes for all three
variables. The electric field and polarization both oscillate
around zero mean values, while the (normalized) population
amplitude does not undergo sensible variations for periodic
solutions. Figure 8 indicates that d0 evolves with maximum
values not exceeding 0.4. Let us insist again on the fact that

Figure 4. Population amplitudes, consequent to κ increase; (a) κ=2.1, (b) κ=5.5, (c) κ=10, and (d) κ=50.
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the κ values, deliberately selected outside the chaotic region,
cover a large span inside which the solution is a period-one
signal.

If adapted, the oscillator model should recover, at least
qualitatively, these results. Likewise, evaluating the in-phase
and out-phase population components -d1 2 and -d ,2 2

accordingly yields = +- -d d d0 1 2
2

2 2
2 (see appendix A for

detailed algebra), strictly relating to the cavity decay rate

As compared to steady state, the ( )kd0 graph, represented
in figure 9, shows higher amplitudes for low κ values.
However, a single glance to figure 8 reveals that the numer-
ical population amplitude does not compare to what
equation (20) figures out.

Such easy to understand discrepancies call for useful
comments and adjustments. Contrary to the small amplitude
regime, for which the signal follows a simple first-order
cosine for all three variables, the strong harmonic solutions
expand according to equation (12) for the electric field and
equation (17) for the population inversion. However, the
analysis limited the developments to first orders only. In so
doing, a great part of the field and population disregard. These
must take into account for better agreements with the num-
erical solutions.

To find out how to do so, let us explore a few periodic
solutions through spectra representations, with various κ

values. Figure 10 is a series of Fast-Fourier-Transforms
generated with typical time traces of the electric-field signals.

The spectra indicate that for the lower range of κ value
( k 2 2.11) for which the solution is and S1 orbit, the
electric field expansion limits to dominant first and third order
components. Analytically, these structures describe with

( ) ( ) ( )w@E t E t acos , 21M
3

However, with higher κ’s (and in the range of period-one
solutions), the signals expand with increasing cosine

Figure 5. Population steady state as a function of the cavity decay
rate κ. Consistent with the external excitation 2 C, it also
characterizes some resonant response of the population oscillator
submitting to an electric-field perturbation ( )we tcos .

Figure 6. Resonant response to a perturbing electric field ( )we tcos ,
describing the amplitude development d0 with respect to the cavity
decay rate κ.

Figure 7. Graphical representation of the phase difference with
respect to the cavity decay-rate κ, corresponding to the small (upper
trace) and strong (lower trace) harmonic cases, indicative of phase
lowering for the strong-amplitude mode.

( )( )
( )

[ ( )( ) ( )( )] ( )( ) [( )( ) ]

( )( ) ( )
( )k k

k k

k k k k
k k

k k k

k k k k
=

+ +
+

- - + + - +
+ -

- - -

+ - + -
d

2 1 2

4

2 1 2 1 7 2
1 2

2
1 7 2 4

1 7 2 8 2
200

2 2

2
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exponent

( ) ( ) ( )w@E t E t bcos , 21M
11

for κ=29, and

( ) ( ) ( )w@E t E t ccos 21M
21

for κ=100.
A common signature to these solutions is the general

expression

( ) ( ) ( )w@E t E tcos 22M
m

Empirically, integer m approximates in terms of the
cavity decay rate as k@m 2 .

As a consequence, adapted modifications should take
into account these peak-intensity variations, which constrain
the electric field and population amplitudes to evolve
according to k@E E2 ,M 0 and k@d d2 .M 0

With these simple revisions, we retrieve for the popula-
tion amplitudes, more accurate values, as indicated in the
graph of figure 11. Consistent with the numerical time traces
of figure 8, the population amplitude clamps to values close to
0.4, for any cavity decay-rate κ, comprising the chaotic
window.

4.3. Analytical solutions

To confirm further the nonlinear oscillator assets, let us
represent a few numerically simulated solutions, in the
population versus electric-field phase-space.

The examples in figure 12 correspond to control-para-
meter values that deliver periodic S1 solutions. Starting with
k = 2.0001, the trajectory consists of a parabola. The system
perpetually oscillates from one tip to the other, with no phase
difference between the electric field and population inversion.
Analytically, the orbit of figure 12(a) describes with

( ) ( ) ( )w=E t E t acos , 23M

( ) ( ) ( )w= +D t D d t bcos 2 . 23c M

However, the value @ @- d8.10 0.4,
C M
1

2
6 disregards the

Dc term in equation (23b), thus imposing the population to
evolve according to

Figure 8. Population inversion signals obtained numerically with (a) κ=2.0001, (b) κ=2.1, (c) κ=29, and (d) κ=100, showing
identical oscillation-amplitudes.

Figure 9. Graphical representation of the population amplitude with
respect to the cavity decay-rate k, considering the first-order electric-
field amplitude only.
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( ) ( ) ( )w=D t d t ccos 2 23M

Complying with an in-phase fit to the electric field.
For k = 2.01, the parabola converts into some symmetric

loop with thin branches. The phase difference between the
electric field and population becoming more significant,
increasing according to equation (19b), and the lower
graph of figure 7. For k = 2.1, the closed orbit expands
further, turning out thicker to follow figure 12(c), before fully
stretching out, for k = 29. All four orbits symmetry is of the
S1 type [12], describing with

( ) ( ) ( )w=E t E t acos , 24M

( ) ( ) ( )w j= + + ¢D t D d t bcos 2 . 24c M

Analytical counterparts of the numerically simulated
trajectories gather in figure 13. The corresponding coefficients
collect in table 2 for quick representations with any graphical
software, including that of a pocket calculator.

Let us note that, for k = +2 , the phase difference is
almost half that of the small harmonic case. This is of no
surprise, either. Since, when the small oscillations around
steady state convert into strong amplitude signals, a slowing
down effect occurs, the frequency and phase both shifting
towards lower values. This behavior verifies numerically with
the simulated signals for k = +2 . For example, for k = 2.1,
the time lag between the field and population inversion scales
as D =t 0.02, and a corresponding period =T 0.55,st

implying j p
p

@
D

@
t

T
2

12
,

st

for the small amplitude oscilla-

tions; while measuring D =t 0.01, and a period between
pulses =T 0.7p (population inversion period), indicates

j p
p

¢ @
D

@
t

T
2

35
,

p
for the strong harmonic case.

For high κ values, the solution converges towards the orbit
of figure 12(d), obtained with k = 29. The analytical descrip-
tion does not follow equations (24a) and (24b). Because, as
already mentioned, for high κ’s, high-order harmonics cannot
be neglected. Considering the third harmonic in the electric field
expansion, figure 12(d) trajectory adjusts with

( ) ( ) ( )w=E t E t acos , 25M
3

( ) ( ) ( )/w p= + +D t D d t b2 2.5 25c M

Figure 10. Electric-field spectra, simulated from equation (1) and corresponding time traces (a) k = 2.0001, (b) k = 2.1, (c) k = 29, and (d)
k = 100. Note the third-order amplitude growth with increasing κ.

Figure 11. Adjusted population amplitude with respect to κ,
considering the effective peak amplitude of the electric-field and its
direct impact on ( )D t .
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Figure 12. Numerical phase-space orbits obtained with equation (1) for (a) k = 2.0001, (b) k = 2.01, (c) k = 2.1, and (d) k = 29.

Figure 13. Analytical phase-space trajectories obtained with the coefficients of table 2. Note the equivalence with the simulated counterparts
of figure 12, and the distinct orbit shaping for low and high κ’s.
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Indeed, equation (25a) contains both the fundamental and
the third harmonic components. Since

( ) ( ) ( ) ( )= +x x x acos
3

4
cos

1

4
cos 3 , 263

Equation (25a) is equivalent to

( ) ( ) ( ) ( )w w= +E t E t E t bcos cos 3 , 261 3

with =E E ,M1
3

4
and =E E .M3

1

4
These adjustments best understand with the electric field

Fourier-spectra represented in figure 10. For low κ’s, the
fundamental frequency dominates, as in the example of
figures 10(a) and (b), obtained respectively with k = 2.0001
and k = 2.1. This justifies the limited to first order develop-
ment in equation (24a). However, for high cavity decay rates,
spectra become broader, exhibiting numerous high order
components with protruding amplitudes. The third one scales
approximately half the amplitude of the fundamental fre-
quency f0, for the k = 29-example of figure 10(c), justifying
the third order electric-field development in equation (25a)
used to describe the corresponding phase space portrait of
figure 13(d), while time signal representations require higher
order developments, as equation (21c). Increasing k further,
the spectra enlarge to contain up to the twenty-first harmonic,
while the third order dominates the first one, an example of
which represents in figure 10(d), with k = 100.

These examples, selected among a wealth of others,
deliberately focused on the control parameter space inside
which periodic and symmetric trajectories are the rule. A
main conclusion to draw is the fact that contrary to the soft
case, for which the method applies to any control-parameter
value, the strong amplitude analysis cannot apply to describe
any irregular orbit. Yet, the resonance curve may serve as a
reference chart to delimit the range of cavity decay rates
inside which chaos takes place (see further clarifications in
appendix C). Nonetheless, the perfect match between the
computer solutions and their analytical descriptions suffers no
ambiguity with respect to the second-order nonlinear oscil-
lator approach. It has probably much to offer in terms of
modelling asymmetric and higher order periodicities. Further
inspections are in progress.

5. Auxiliary clarifications

The second order population oscillator constructing with the
combination of two equations out of three, one may wonder
whether the third one, i.e. Equation (1b), is of no use,

therefore dismissible. In fact, it is not! It is not a difficult task
either to demonstrate that the above results do not contradict
the polarization dynamic, as conforming to equation (1b). To
do so, let us combine equations (2a) and (2b) and derive an
equation for the electric field, reorganizing in the form

̈ ( ) ( ) ( ) ( ) ( ) ( ) ( )k k k+ + + + =E t E t E t C E t D t1 2 0 27

This equation is of the second-order differential type for
the electric field, with the population as the driving variable.
Let us limit the analysis to the small harmonic case and find
out which information may extract from it.

In response to a driving population

( ) ( ) ( )w= +D t D d t acos 280

The electric field and derivatives follow

( ) ( ) ( ) ( )w w= + +E t E e t e t bcos sin 280 1 2

( ) ( ) ( ) ( ) w w w w= - +E t e t e t csin cos 281 2

̈ ( ) ( ) ( ) ( )w w w w= - -E t e t e t dcos sin 281
2

2
2

Limiting all developments to first order terms, we arrive
at

[ ( ) ] ( )
[ ( ) ] ( ) ( )
k w w k w

k w w w
+ - +

+ - + - =
e e C E d t

e e t a

1 2 cos

1 sin 0 29
2 2

2
0

1 2
2

From which we obtain

( )( ) ( )k
w

k k
k

= -
+

= -
+ -e

e
a

1 1 2

2
302

1

The rearrangement

( ) ( ) ( )

( ) ( )

w
k
w

w

w j

= + -
+

= + + -

E t E e t e t

E e t b

cos
1

sin

cos 30e d

0 1 1

0

yields

( ) ( )( ) ( )j
k k

k
= -

+ -
- atan

1 2

2
31e d

and

( )
( ) ( )( )( )

( )k k
k

k k
k k k k

=
+

-
+ -

+ + -
e d b

4

1

2

2 2 1 2
31

2 2

i.e. the exact replicas of equation (9b), for the phase, and
(A5b), for the amplitude!

The two equations (3a) and (27) represent two coupled
second order differential equations whose dynamics conforms
to the Lorenz equations. The effect of the polarization takes
into account through equation (2a). Indeed, at first glance, the
oscillator expressions seem more complicated than the ori-
ginal 3D set. However, they offer interesting shortcuts
towards the physics that hides behind some of the complex
dynamics. The one population oscillator is all it takes to clear
up the trajectory subtleties.

6. Conclusion and prospective

This paper main objective -that of constructing a second-order
oscillator from the Lorenz equations- fully fulfills. Extracting

Table 2. Parameter and coefficient details to -figure 13- orbit
modeling.

κ 2.0001 2.01 2.1 29
j¢ 0 /p 64 /p 24 /p 2.5
EM 589 59 19.3 15.6
Dc 0 0 −0.01 −0.03
dM 0.36 0.36 0.39 0.39
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new and genuine information has led to represent coherent-
light-matter- interactions during unstable operation, in the
easiest way possible. With this respect, investigations and
outcomes are quite satisfactory.

Let us recall that from the early days of nonlinear
dynamics, phase-space representations put in use as crucial
tools to describe and ascertain unsteady solutions and char-
acteristics. However, no author thought of considering phase
identifications and quantifying, the missing clues for closed-
form expressions and analytical trajectory-descriptions.
While, the second-order oscillator clarifies it all.

Also worth emphasizing on is that if Laser physicists put
their main attention on the field-intensity output, it is because
it represents the system’s sole observable, monitoring on an
oscilloscope screen with adapted sensors. Yet, as a macro-
scopic source, summed over microscopic dipoles, the
untraceable population dynamics plays a significant role. Our
study making it plain and visible.

Indeed, transforming the three nonlinearly coupled diff-
erential equations, which govern the dynamics of a single
mode homogeneously broadened laser, into a second-order
differential equation, reminiscent of a forced harmonic
oscillator, should switch-off the 3D trajectories, if numeri-
cally solved without imposing any initial harmonic structure
to the electric field. Similarly, the mass-spring system comes
at rest, with no external excitation. Nonetheless, from pur-
portedly harmonic fields, conforming to the numerical solu-
tions, we extracted new analytical information and properties
showing that, in the control parameter space of periodic
solutions, some suitably quantifiable phase difference
between the electric field and population inversion plays an
essential role in orbit shaping. Additional projections seem to
indicate that apart from chaotic trajectories, the approach may
apply, as well, to symmetric and asymmetric cascading with
higher periodicities. Further modelling is necessary.

Appendixes

Foreword: a good part of the algebra presented in the
following is time-consuming, but not -even though it may
seem- awkward. Thanks to the ‘copy and paste’ action in the
Word-Equation functionality, calculus becomes quite easy
and comforting to carryout. Its use highly recommends.

Appendix A

A.1. Population amplitude and phase-relationship in the small-
harmonic regime

The electric field and population signals, with their deriva-
tives, develop according to

( ) ( ) ( )w= +E t E e t acos , A10

( ) ( ) ( ) w w= -E t e t bsin , A1

( ) ( ) ( ) ( )w w= + +D t D d t d t ccos sin , A10 1 2

( ) ( ) ( ) ( ) w w w w= - +D t d t d t dsin cos , A11 2

̈ ( ) ( ) ( ) ( )w w w w= - -D t d t d t ecos sin . A11
2

2
2

Injecting each term into the equation

⎜ ⎟
⎛
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k k

+ +

= - + -

D t D t E t D t

C
E t E t

E t
E t

1

1

2
1

1
A2

2

2
2

limiting the developments to first-order amplitudes, we
obtain

⎜ ⎟

⎛
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2 cos
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sin 1
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2 cos A3
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Equating similar terms in the right and left-hand sides;

noting that = -E D
C

E
1

20
2

0 0
2 and = -eE D

C
eE2

1

2
2 ,0 0 0 we

end-up with

⎛
⎝⎜

⎞
⎠⎟ ( )w

g
w- - =E d d b0, A3

2

0
2

1 2

⎜ ⎟
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C
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1
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2

0
2

2 1 0

from which, we readily extract equations (6d) and (6e) of
the text, converting into

( )( )( )
( )

( )
( )( )
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k k k
k k

k
k k k

=
- + +

+
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d e
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( )
k k

k k
k k k
k k k

=
+
+

- + -
+ + -

d e b
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4

2 1 1

2 1 2
A42 2

In order to complete the quantitative elements associated
to the small amplitude dynamics, we must derive an expres-
sion for the real population amplitude. It forthrightly stems
from equations (6d) and (6e) as

⎜ ⎟⎛
⎝

⎞
⎠
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2
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Which, with equations (7a) and (7b), takes the form
(assuming g = 1)

( )
( )( )( )

( )( )
( )k

k k
k k k k
k k k

=
-
+

- + +
+ + -

d e b
1

4

2 2 1 2

2 1 2
A50 2

The population amplitude follows a resonant curve with
clear similarities with that of a mass-spring oscillator, the
cavity decay rate playing the same role as the excitation
frequency of the external driving force applied to the
mechanical system.

The general aspect of the population-amplitude ( )kd0

approximately follows that of the steady state figure 5, with
quite noticeable resonant features, appearing in Figure A1.
Included for comparison are the in-phase ( )kd1 and out-phase

( )kd2 components, indicating a region of strong competition
before ( )kd1 goes to zero for high κ values, signifying a
tendency towards some phase-quadrature evolution between
the electric field and population inversion.

Appendix B

B.1. Population amplitude and phase-relationship in the strong-
harmonic regime

The dominant part of an electric field expansion of the form
equation (12) is the first order component

( ) ( ) ( )w=e t E t acos . B11 1

The following relations
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= =
+

e t E t t E
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transform equation (3) into
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The driving ( )wtsin 2 and ( )wtcos 2 in the right-hand side
imply similar expansions for the population inversion

( ) ( ) ( ) ( )w w= + +- -D t D d t d t acos 2 sin 2 , B30 1 2 2 2

( ) ( ) ( ) ( ) w w w w= - +- -D t d t d t b2 sin 2 2 cos 2 , B31 2 2 2
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Injected into equation (B2), these yield
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Collecting terms in ( )wtcos 2 and ( )wtsin 2 , we obtain
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Figure A1. In-phase d ,1 out-of-phase d ,2 and real amplitude d ,0 of the
population components, with respect to the cavity decay rate,
obtained in the small amplitude regime.
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From which we infer
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This last relation quantifies the phase difference between the
electric field and population signal, in the strong amplitude case.
Likewise, it transforms into an expression with as the sole vari-
able, with adapted clues and procedures, hereafter summarized.
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From equations (B5a) and (B5b) also derive the fol-
lowing expressions for the in-phase and out-of-phase popu-
lation amplitudes
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Both relations transform into formulas with an exclusive
dependence on the cavity decay rate
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Equations (B7a) and (B7b) combine to deduce the real
population amplitude
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Converting into

Equations (B8a), (B8b), and (B9b) follow the graphs of
figure B1.

Close inspection of figure B1 reveals unfitting quantities
with the numerical amplitudes that call for further adjust-
ments. To do so, let us remind that all the strong-amplitude
approach presented in the study limited to the electric-field
first-order component ( ) ( )w=e t E tcos .1 1 However, as
explained in section 4, the pulse peaks of the solutions

increase with cavity decay rate, approximately scaling as
k@E E2M 0 implying k@d d2M 0 for the population

inversion. With this empirically admitted fact, we obtain more
accurate graphs for the population amplitudes; representing in
figure B2. The prominent element to note is the very slow
variation of the population amplitude d0 with increasing κ,
amazingly adjusting with the numerical solutions, a few of
which represent in figure 8 of the text.

Indeed, these last elements constitute extra developments
that are not essential in the comprehension of the Lorenz
dynamics, describing in terms of our autonomous oscillator.
Nonetheless, they bring some quite valuable information to
the 3D features, which do not transpire from the original set.

Appendix C

C.1. High-order field and population components: general
expressions

A general expression for the electric field component is
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from which deduce
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These developments gather into equation (3) to yield
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Figure B2. Actual in-phase, out of phase, and real population
amplitudes, including higher order influence.

Figure B1. In-phase, out-of-phase, and real population-amplitude
response to first order field-component, obtained in the strong
harmonic regime.
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The driving left-hand expression contains exclusive even
harmonics,

( ) ( ) ( ) ( )w w= + +f t f f n t f n tcos 2 sin 2 C3n n n n2 2
0

2
1

2
2

imposing the population nth-order response to develop
accordingly

( ) ( ) ( ) ( )w w= + +D t D D n t D n tcos 2 sin 2 C4n n n n2 2
0

2
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2
2

Carrying out the algebra, a general formula for the phase-
lag expression between high-order field and population
components derives as
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Yielding, for the third order, in field amplitude
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We leave it as a simple exercise, using any graphical
software, to verify the perfect match between this last
expression and equation (19b). An additional indication of the
oscillator cogency. The fact that the same phase value obtains
with the first and third order harmonic of the electric field is
quite satisfactory. This only means that any electric field
harmonic carries the same time lag with its corresponding
population order. ( )wE tcos1 with ( )w j-d tcos0 1 and

( )wE tcos 33 with ( )w j´ -D tcos 2 3 ,3 3 and so on.
However, let us note that in order to retrieve the

population 4th order harmonic, for example, one has to
solve the oscillator equation imposing an electric field of
the form ( ) ( ) ( )w w= +E t E t E tcos cos 3 .1 3 Sa that ( ) =E t 2

( ( ) ( ))w w+E t E tcos cos 31 3
2 transforms into
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The importance of beat notes between the first and third
order field components transpires clearly in this last devel-
opment. A far-reaching analysis should consider such beat-
notes.

However, doing so will only bring minor quantitative
improvements with respect to population amplitudes, not
adding any qualitative features to the oscillator characteristics.

Appendix D

D.1. What about chaos?

The fascination the Lorenz equations carried, for more than
half a century, being due to the well-known deterministic
chaos they deliver for typical control parameter values; one
would be quite right to ask how the oscillator model may
provide some clues with respect to the inextricable solutions
that signature the strange attractor. Indeed, reducing the 3D
model to a second order differential equation confers the
system some permanency that handles the periodic attractors,
provided harmonic solution impose to the electric field, but
the single equation cannot depict any complicated aper-
iodicity such as the erratic signals that shape the strange
attractor. However, the oscillator model delimits astonish-
ingly well the region, i.e. the bandwidth for chaotic solutions
with respect to the lone control parameter κ. For thru clar-
ifications, let us represent again the population-oscillation
amplitude ( )kd0 (figure 6) in figure C1.

Quantitative elements summarize as follows. The ampl-
itude is half its maximum value for k = 2.2m and k = 17.9.M

While, numerical analyses show a region of full chaos
extending from k = 2.21m to k = 16.7M [13]. From such an
almost similar realm of values, one entitles to conclude that
the population half-maximum bandwidth corresponds to the
region of unpredictably non-periodic solutions, i.e. that of
deterministic chaos.

Figure C1. Resonant response to a perturbing electric field ( )we tcos ,
describing the population amplitude d0 with respect to the cavity
decay rate κ.
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A few examples of the population inversion time trace,
obtained with a series of κ values embedded inside the
bandwidth for resonance represent in figure C2. All signals
undergo irregular oscillations between a minimum lower limit

@ -d 0.7m and a positive peak value @d 0.5.M

For better resolution, the above figures limit to a time
span D =t 20. Phase space representations, figure C3, allow
for larger extensions of the signals duration and further
information with respect to the population amplitude. During
its development, amplitude may attain lower values,

Figure C2. Population signals obtained inside the chaotic region for (a) κ=4.45, (b) κ=7.5, (c) κ=14, and (d) κ=16.7.

Figur C3. Strange attractor shaping with increasing cavity decay rate; (a) κ=4.45, (b) κ=7.5, (c) κ=14, and (d) κ=16.7.
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extending down to @ -d 0.9,m for the negative limit and
@d 0.6,M for the positive one. These limits mainly char-

acterize the upper zone of the resonant curve, as in the
examples of figures C3(a) and (b).

Note the change in contour-shaping with respect to κ. For
κ close to the characteristic value k0(at resonance), the
strange attractor is asymmetric, as in figures C3(a) and (b).
Increasing κ, turns the orbit into symmetric, before being
forced to evolve along the S1 trajectory of figure 12(d), after a
few cascading of the higher-order type.

As for modelling these chaotic solutions, such a task goes
well beyond the simple oscillator model studied herein. Yet, a
few hints recently put forward to do so [13].

Appendix E

E.1. The forced mass-spring and other typical oscillators

The easiest way to capture the resonant features and other
properties of the non-linear laser oscillator is to recall the
main characteristics of the externally driven one-dimensional
mass-spring system, represented in figure E1.

Submitted to some sinusoidal force ( ) ( )w=f t f tcos0 at
the opposite end of the spring, the mass oscillates on a hor-
izontal support with some viscous friction a. Its movement
obeys a second order differential equation of the form

̈ ( ) ( )a w w+ + =x x x t2 a cos E10
2

Where w0 is the system’s proper-pulsation-frequency. It relates
to the mass and to some characteristic constant k -which puts a

figure on the spring elasticity- through w =
k

m
.0

The solution to equation (E1) writes

( ) ( ) ( ) ( )w w= +x t A t B tcos sin E2

Straightforward manipulations and algebra yield
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The oscillator characteristics obtain transforming
( ) ( )w w+A t B tcos sin into ( )w j-C tcos , with
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E.2. Bandwidth for resonance and phase delay with respect to
the external excitation

As in electric circuits, frequency bandwidth is the frequency
domain for which the amplitude evolves from CM to C

2
M

(energy evaluating at half its maximum value). The band-
width frequency-limits w1 and w2 obtain setting ( )w =C ,C

2
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i.e.
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And a frequency pulsation bandwidth w wD = -+
w a@- 2 .

E.3. Resonance and phase depictions with normalized
quantities

For forthright graphical representations, amplitude and phase
rewrite in terms of the normalized pulsation w

w0
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Figure E1. Schematic representation of a forced mass-spring
oscillator placed on a horizontal plane. Some harmonic force acts at
one end of a spring to impose its rhythm to a mass m at the
other end.
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( )w
w

C ,
0

and figure E3, for ( )j w
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The resonant and phase curves indicate that for low
frequencies, the mass response is linear with respect to the
external force, the mass position phase locking with the
external excitation.

The amplitude and phase increase with frequency, up to a
maximum amplitude, occurring at the system’s characteristic
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i.e. with a phase quadrature with respect the external
excitation. Away from w ,0 the amplitude decreases towards
asymptotic values ( )w =

w
C ,a

2 whereas the phase continues to
increase towards its maximum value p, imposing a mass
movement of the form

( ) ( ) ( )
w

w= -x t
a

tcos E9
2

i.e. in total phase-opposition with the driving excitation.
Most of the described mass-spring resonant and phase

delay properties characterize the self-sustained Lorenz-Haken
oscillator, as fully demonstrated in the text and additional
substance in the appendixes.

As an ultimate proof to the fact that the field-population
oscillator and the mass-spring system have much in common,
let us follow the instantaneous position ( )x t as a function of
the driving force; the external pulsation w as a unique control
parameter.

In the limit of small w’s, the mass position and driving
force follow the straight line of figure E4(a); ( )x t softly
submitting to the external force, with no phase difference.
Any pulsation increase transforms the trajectory into an
ellipse, with the previous straight line as the principal axis.
Higher w values make the orbit swell, due to the phase
growth, in accordance to figure E3 and equation (E7b), before
orbiting a closed loop with maximum perimeter, at w w= 0

and j = p ,
2

reorienting gradually to end up again in a straight
line perpendicular to that of figure E4(a).

Phase space trajectories model through
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quantifying the movement of the spring extremity A,
undergoing the external force, and
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describing the mass movement.

The two equations assemble in the general contour of an
ellipse
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figure E4(a) following

( ) ( ) ( )
w

=x t
a

x t E12A
0
2

Figure E2. Resonant characteristics of the forced mass-spring
oscillator as a function of the normalized pulsation w

w
.

0

Figure E3. Phase difference between the exciting force and the
oscillator response as a function of the normalized pulsation w

w
.

0
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For j p= , the straight line reorients to follow
(figure E4(f))

( ) ( ) ( )
w

= -x t
a

x t E13A
0
2

Between these two extreme values, a series of inclined
ellipses at the left and right sides of the symmetric one, which
relates to j = p

2
(figure E4(d)): figure E4(b) associates to

j = p ,
64

figure E4(c) to j = p ,
4

figure E4(e) to j = p3

4

and j p= - p .
64

Comparisons between figure E4 orbits and the trajec-
tories of figures 2 and 3 in the text persuasively acknowledge
the compelling transformation of the Lorenz-Haken equations
into a nonlinear oscillator, out of which much of the phase
dependent dynamics pulls-out. The light-matter dynamics
embedded in the nonlinear oscillator appears as the result of
resonant effects described in terms of the population response
to the electric field, as conforming to the cavity decay-rate
value κ, the system’s lone control parameter.

Experimentally, instantaneous representations of the
phase space portraits depicted in figure E4 need some adapted
devices to monitor the movement of mass m as a function of
the position of the spring other-extremity. The required test
bench should not be easy to realize.

A simpler experiment is that of an equivalent electrical
RLC circuit, as that of figure E5. Submitted to a sinusoidal
electric potential ( ) ( )w=v t v tcos ,0 the current ( )i t circulat-
ing in the circuit obeys the same differential equation as

equation (E1), writing in terms of the electrical elements

( ) ( )w+ + =
d i

dt

R

L

di

dt LC
i i t

1
cos E14

2

2 0

It should only take a double-entry oscilloscope, mon-
itoring the excitation and circuit response, to reproduce any
orbit in phase space.

Another similarity, in terms of phase-space trajectories,
pulls out from basic optics and electromagnetism. Those
familiar with electric field reorientation occurring when a
linearly polarized beam of light crosses some birefringent
material, surely recognize the descriptive elements of light
polarization, which may rapidly summarize with normalized
quantities. Consider an x and y component of some linearly
polarized field propagating along some z-axis (figure E6).

Figure E4. Phase space orbits representing the mass position with respect to the spring end A submitted to some harmonic excitation. Phase
varies from (a) j=0, (b) j= /p 64, (c) j= /p 4, (d) j= /p 2, (e) j= /p3 4 and j= /p p- 64, to (f) j=p.

Figure E5. RLC circuit excited with a sinusoidal potential v(t). The
current response i(t) follows the same resonant properties as those of
a mass-spring system.
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When, at the entrance of a birefringent slab of thickness d,
some linearly field decomposes its Ex and Ey components,
these emerge from the slab with some phase difference
j p= d

l
2 , where λ is the electric field wavelength, considered

monochromatic. The two components describe as =Ex

( )wE tcosx0 and ( )w j= -E E tcos ,y y0 transforming into the
same expression as equation (E11).

An adequate variable change =X E

E
x

x0
and =Y

E

E
y

y0
yield

the normalized general form for an elliptical-polarization
description

( ) ( ) ( )j j+ - =X Y XY2 cos sin E152 2 2

Where j p= d
l

2 .
We immediately identify the linearly polarized output

=Y X, typical of a multiple wavelength slab of thickness d,
for which d l= n ; that of a half-wavelength slab = -Y X, for
which ( )d = + ln2 1 ;

2
and that of quarter-wavelength, with

( )d = + ln2 1 ,
4

which transforms linear into circularly
polarized light, rotating along the symmetric trajectory

+ =X Y 1,2 2 when the electric field hits the slab at 45° of
the birefringent-material proper-axes, x and y.
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