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Abstract
In seismically active regions the process of stress–strain accumulation near earthquake faults
during aseismic period (period in between two major seismic events) has become a subject of
research during the last few decades. The occurrence of multiple faults (for example Calaveras,
Garlock in the neighbourhood of San Andreas fault) in seismically active region is more likely
than that of a single fault (i.e. Sierra Madre fault, Raymond fault). Moreover the earthquake
faults involve both the strike-slip and dip-slip faults some of which may be finite and others
infinite. The way of interaction of faults with each other controls fault geometries, displacements
and strains. Such phenomena encourage us to consider a model of interacting strike-slip and dip-
slip faults in which a finite and an infinite interacting faults are taken to study the stress–strain
accumulation in the neighbouring fault due to the movement across the other fault. The solutions
for displacement, stress and strain are then found before the onset of fault slip and then superpose
the effect of fault slip for both the interacting faults using Laplace transform, suitable
mathematical technique of modified Green’s function and Correspondence principal. The
analytical results and the graphical presentations show that the velocities of both the faults
movement and their inclinations have noticeable effects on displacements, stresses and strains.

Keywords: infinite and finite strike-slip fault, infinite strike-slip and finite dip-slip fault, creeping
fault, aseismic period, Green’s function technique

(Some figures may appear in colour only in the online journal)

1. Introduction

Active fault system in seismically active regions often con-
sists of multiple faults some of which are interacting faults
having different inclinations with the horizontal. Faults like
Calaveras, Garlock, Hayward, San Jacinto etc. are neigh-
bouring and interacting faults which are found in the western
part of North America near San Andreas fault. In such
neighbouring faults, movement across any one will have a
significant effect on the accumulation of stress and strain near
the others and thereby affect the possibilities of movement
across them. There are some dynamic models of fault systems
which consists of two interacting strike-slip faults and some

other models in which combination of strike-slip and dip-slip
faults are found. Some theoretical models of the lithosphere-
asthenosphere system in seismically active regions during
aseismic periods with two interacting creeping/slipping faults
have been developed by Mukhopadhyay et al (1978b [1],
1979c [2]), Mukhopadhya and Mukherji (1984 [3], 1986 [4])
Ghosh et al (1992a [5], 1992b [6]) and Ghosh and Sen (2011
[7]). Kato and Lei (2001 [8]) demonstrated a numerical
simulation of the activities of many parallel strike-slip faults
embedded in an elastic layer over a viscoelastic half-space.
Bonafede et al (1984 [9]) developed a model for two parallel
strike-slip faults to investigate interactions between them. A
model has been described by Debnath and Sen (2014 [10])
about the interaction between two neighbouring infinite strike-
slip faults in standard linear solids. Wesnousky (1988 [11])
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cited many earthquakes on major strike-slip faults that both
were bounded by and ruptured through compressional and
dilational step-overs. In analyzing the seismic hazard of the San
Francisco Bay region, Parsons et al (2003 [12]) studied the
potential interaction of the Hayward and Rodgers Creek faults
at the extensional step-over that separates the two faults
underneath San Pablo Bay. One of the important issues that
they addressed is whether a normal fault exists in the step-over
region, under such assumption that such linking normal faults
could increase the probability of rupture propagating across
the step-over. Oglesby (2005[13]) developed a model of the
dynamics of fault systems consisting of strike-slip fault step-
over linked by dip-slip faults. Harris and Day (1993 [14])
analyzed two-dimensional dynamic models of stepovers in
strike-slip faults to consider their interaction. Segall and Pollard
(1980 [15]) did include fault interaction in their two-dimen-
sional quasi-static study of strike-slip faults. Mavko (1982 [16])
also modelled fault interaction using two dimensional quasi-
static calculations. He used his results to successfully explain
the creep records on the San Andreas fault near Hollister,
California. Shao and Guiting (2019 [17]) have discussed the
interactions of fault patterns and stress fields during active
faulting in Central North China Block by using numerical
simulation. Attanayake et al (2019 [18]) have explained about
interacting intraplate Fault Systems in Australia.

Debnath (2013 [19]) have described a model of two
interacting creeping vertical finite strike-slip faults in a visco-
elastic half-space of the lithosphere. A model of interaction
between two long inclined strike-slip faults in layered med-
ium has been described by Manna and Sen (2017 [20]). The
fault system can comprise of both the infinite (i.e. long) and
finite faults. For example San Andreas fault in California is
infinite strike-slip fault and in the neighbouring of this fault
Calaveras, Hyward, san Jacinto are finite strike-slip fault. To
the best of our knowledge no theoretical models involving
interaction between an infinite and finite strike-slip fault have
still been developed. The fault system may involve not only
set of finite faults or set of infinite faults, but it may also
involve set which is combination of finite and infinite faults
some of which may be strike-slip and the others may be dip-
slip in nature. Hence fault movement ether across an infinite
strike-slip or across interacting faults of the nature of strike-
slip and dip-slip may have effect on displacement, stress and
strain of the other. Hence for elaborate study, a model of
interacting strike-slip faults—one infinite and other finite—in
viscoelastic half-space of Maxwell medium has been con-
sidered in this paper. The variation of displacement, stress and
strain components have been studied analytically. Also a
model of interaction between an infinite strike-slip and a finite
dip-slip fault is studied. The objective of these studies is to
observed the effect of movement of one fault on displace-
ment, stress and strain of the other during the following three
situations for different inclinations of the faults and different
velocities of their movement; (i) when there is no fault
movement across any fault (ii) when there is movement
across infinite fault but no movement across finite fault and
(iii) when the movement occurs across both the faults.

A fault is said to be an infinite fault if its length is large
enough compared to its width, otherwise the fault is said to
be finite. The line of the intersection of the fault plane with
the free surface of the Earth is known as the strike direction
while a line in the fault plane perpendicular to the strike in the
downwards direction is the dip of the fault. The characteristic
of the fault is determined according to the relative motion
across it. If this relative motion is predominantly parallel to
the fault strike is called strike-slip fault, whereas if the motion
is predominantly parallel to the fault dip is called dip-slip
fault.

The rest of the paper is organised as follows: In section 2,
description of the model and the formulation of the problem
with constitutive equations, stress equations of motion,
boundary conditions and initial conditions has been dis-
cussed. The solution of displacements, stresses and strains
have been analyzed and some numerical computations have
been carried out in section 3. Further in section 4, the results
have been discussed. Finally the paper ends with a conclusion
and future scope of our work as given in section 5.

2. Formulation

Two interacting faults F1 and F2 have been shown in figure 1
where F1 is infinite and F2 is finite. To study the effect of the
fault movement two cases have been considered that is case-I
for both F1 and F2 are strike-slip and case-II for F1 strike-slip
but F2 dip-slip.

Case-I:
The interacting strike-slip faults F1 and F2 are inclined to

the horizontal at an angle θ1 and θ2 respectively and both
buried in a visco-elastic half-space of Maxwell medium
(figure 1) where F1 is infinite and F2 is finite of length 2L (L
—finite).

Let D1 and D2 be the respective widths of the faults F1

and F2 with d1 and d2 as their corresponding depth and D be
the distance between them on the free surface.

Two sets of rectangular cartesian co-ordinate system
y y y, ,1 2 3( ) and ( ¢ ¢ ¢y y y, ,1 2 3 ) have been chosen as for F1 and two
other sets (z z z, ,1 2 3) and (   y y y, ,1 2 3 ) for F2 as described in
figure 1. y3 and z3 axes are pointing into the half-space with

=y 03 and =z 03 as free surface. y1 and z1 axes are vertically
above the upper edges of the faults. These systems are
associated by the following relations:
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Thus faults F1 and F2 are given by ¢ = F y: 0, 01 2(
¢ y D3 1) and -   =    F L y L y y D: , 0, 02 1 2 3 2( )

Here we assume that the length of the fault F1 is large
compared to its width, so that the displacements, stresses and
strains are independent of y1 and depend on y2, y3 and t. Since
F2 is finite, the displacements, stresses and strains are function
of y1, y2, y3 and t.

2.1. Constitutive equations

The constitutive equations relate the stresses acting on a
materiel element to the resultant strains and/or rates of strain.

Since for the infinite strike-slip fault, displacement, stress
and strain components are independent of y1, these compo-
nents associate with F1 fault are u1, t13 (stress act on the plane
perpendicular to y1 axis and in y3 direction), τ12 ((stress act on
the plane perpendicular to y1 axis and in y2 direction), e13
(strain on the plane perpendicular to y1 axis and in y3 direc-
tion) and e12 (strain on the plane perpendicular to y1 axis and
in y2 direction).

For a visco-elastic medium of Maxwell type, the con-
stitutive equations have been taken as for infinite fault F1:
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and for finite fault F2:
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where η is effective viscosity and μ is shear modulus.

2.2. Stress equation of motion

The stresses satisfy the following equations by assuming
quasi-static deformations for which the inertial terms are
neglected and body forces do not change during our
consideration.

For infinite fault F1

t t
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+
¶
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y y

0 5
2

12
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Figure 1. Two interacting buried strike-slip faults: one infinite and other finite.
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and for finite fault F2
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2.3. Boundary conditions

The boundary conditions are taken as with t=0, representing
an instant when the medium is in aseismic state. The infinite
fault F1 moves after time = >t T 01( ) and finite fault F2 moves
after time t=T2, where <T T1 2.

Since for the fault F1 the stress components only act on
the plane perpendicular to y1 axis and in y2 and y3 direction,
then the boundary conditions will be as follows:

t
=

= -¥ < < ¥ 
y

y t

On the free surface i.e. on 0,

0 , 0 7
3

13 2( ) ( )

t ¥  -¥ < < ¥ y y tAs , 0 , 0 , 83 13 2( ) ( )
t t  ¥¥  t y y tas 0, 0 , 912 2 3( ) ∣ ∣ ( ) ( )

where τ12 is the main driving force for strike-slip fault and
t¥ t( ) is the value of τ12 far away from the fault maintained by
tectonic forces. It may or may not change with time, but it is
independent of y3. If it changes with time

t t= +¥ ¥t kt0 1( ) ( )( ) (say), where k0 is a constant.
Then

t t t = +
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12
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t¥ 0( )=the value of t¥ t( ) at t=0
t t ¥0 012 ( ) ( ) as  ¥y2∣ ∣ for t=0.

2.4. Initial conditions

The time t is measured from a suitable instant when the model
is in aseismic state and no seismic disturbance occurs. Let
ui 0( ) , tij 0( ) and eij 0( ) are the value of ui, tij and eij at t=0.

3. Solution

Now differentiating the first and second equation of (3) w.r.t
y2 and y3 respectively, then adding and finally using
equation (5) we get

=u 0 detail in APPENDIX . 112
1▿ ( ) ( )

The displacement satisfy Laplace’s equation and this is a
general solution.

3.1. Displacement, stress and strain in the absence of fault
movement

The displacement, stress, and strain components are con-
tinuous throughout the system. All the constitutive equations
and boundary conditions (3)–(10) are valid. Laplace

Transform of all the constitutive equations and boundary
conditions results in the boundary value problem which can
be solved (detail in appendix). By taking inverse Laplace
transform, the solutions for displacements, stresses and strains
are obtained in the absence of fault movement (for <t T1) as
follows:

t

t

t t t

t t
t
t
t

= + + +

=
=
=

= + - +

=
=
=
=

= + + +

=

h m h

t
h m h

¥

-
¥

-

-

m
h

m
h

m
h

¥

u u t t y

u
u

kt

e e t

e e

0
0
0

e 0 1 e

e
0
0
0

. 12

k kt

t k kt

1 1 0
1

2 2

2

3

11

12 12 0

13 13 0

22

23

33

12 12 0 2

1

2

13 13 0

t t

t

2

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎫

⎬

⎪⎪⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪⎪⎪

( )

( )

( )
( )

( ) ( )

( ) ( )[ ]

( )

( )

( )

( )

( )

Now, t¢12=Stress component which tends to cause
strike-slip movement across the fault F1=t q -sin12 1

t qcos13 1 = t t q¢ + - +-
¥

-m
h

m
h kte 0 1 e sin12 0 1
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where t t q t q¢ = -sin cos .12 0 12 0 1 13 0 1( ) ( ) ( )

It is observed that for the fault F1 the relevant stress
component t¢12 increases with time and finally tends to
t q¥ sin 1. The fault F1 starts to slip when the magnitude of
stress t¢12 reaches a threshold value say tc1

( t q< ¥ sin 1) after a
time T1.

3.2. Displacement, stress and strain components after the
commencement of fault movement

We assume that the movement of the fault F1 occurs at time
t=T1(>0) while the other fault F2 remains locked. The
equations (3), (5), (7)–(10) remain valid for t T1. But in
addition we have the following condition which characterizes
the slip across F1:

= ¢
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where u F1 1[ ] is the relative displacement across F1 and the
discontinuity of displacement u1 is given by

= -
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u u ulim lim 14F
y y

1
0

1
0

11

2 2

[ ] ( ) ( ) ( )
( ) ( )

H t1( ) is the Heaviside function, ¢f y3( ) is a continuous
function which gives the spatial dependence of the slip
movement along the fault F1 and =U t v t1 1 1 1( ) , v1 is the
velocity of the fault movement across F1.

Taking Laplace transform on equation (13) gives
= ¢u U p f yF1 1 31[ ¯ ] ( ) ( ), where u1̄ represents Laplace

transform of u1.
The fault creep commences across F1 after time T1.
Clearly =u 0F1 1[( )] for t 01 , where = -t t T1 1.
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Let us first consider the slip across the fault F1 after a
time T1. Due to movement across the fault F1, the near region
of F1 becomes distributed and hence the constitutive
equations do not remain valid and this short duration of time
leave out. However, the disturbances gradually die out with
time and an aseismic state re-established. This model have re-
considered after the restoration of this aseismic state in the
region. Then the solution of displacements, stresses and
strains after the commencement of fault movement across F1

can be obtained in the following form:
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where =u i 1, 2, 3i 1( ) ( ), t ,ij 1( ) and =e i j, 1, 2, 3ij 1( ) ( )
are given in equation (12). =u i 1, 2, 3i 2( ) ( ), t ,ij 2( ) and

=e i j, 1, 2, 3ij 2( ) ( ) satisfy the conditions (3), (5), (7)–
(10). They are obtained by using modified form of Green’s
function technique developed by Maruyama [21, 22] and
Rybicki [23, 24] as explained in appendix. Since the fault F1

is infinite and strike slip, the components u u,2 2 3 2( ) ( ) , t11 2( ) ,
t23 2( ) , t22 2( ) , t33 2( ) are all equal to zero and u1 2( ) satisfy the
dislocation condition (14).
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From these solutions that the stress accumulation or
release has been found due to movement across the fault F1.

Next It is assumed that the finite fault F2 slips after time
T2 >T T2 1( ) when the accumulated stress near it exceeds the
critical value tc2

(say).
The slip condition is characterized by:
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u F1 2[ ] is the relative displacement across F2 given by
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H t2( ) is the Heaviside function,  f y y,1 3( ) gives the
spatial dependence of the slip movement along the fault F2

and =U t v t2 2 2 2( ) , v2 is the velocity of the fault movement
across F2.

Laplace transform on equation (17) gives
=  u U p f y y,F1 2 1 32[ ¯ ] ( ) ( ), where U p2 ( ) is Laplace

transform of U t2 2( ).
Since the fault creep commences across F2 after time T2

hence =u 0F1 2[( )] for t 02 , where = -t t T2 2.
Then final solution for displacements, stresses and

strains after the movement across both the faults F1 and F2

are given by
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where =u i 1, 2, 3i 1( ) ( ), t =i j, 1, 2, 3ij 1( ) ( ), e12 1( ) ,
e13 1( ) are taken from equations (12) and =u i 1, 2, 3 ,i 2( ) ( )
t =i j, 1, 2, 3 ,ij 2( ) ( ) e12 2( ) , e13 2( ) are from equation (16).
It has found that the values of =u i 1, 2, 3i 3( ) ( ),
t =i j, 1, 2, 3 ,ij 3( ) ( ) e12 3( ) and e13 3( ) depending on the
fault slip across F2. =u i 1, 2, 3 ,i 3( ) ( ) t =i j,ij 3( ) (
1, 2, 3), e12 3( ) , e13 3( ) satisfy equation (4), (6)–(10) and their
values are assumed to be zero for t T2.
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Finally the complete solutions for displacement, stress
and strain after both F1 and F2 fault movement are obtained as
follows:

Case-II:
If the fault F1 is infinite strike-slip and the fault F2 is

finite dip-slip fault then for >t T2 the slip condition can be
characterized by:

= ¢¢ ¢¢
- ¢¢ ¢¢ = ¢¢

= -
   


22

u U t f y y H t

L y L y y D
t t t T

, ,

, 0, 0 ,
0

F3 3 2 1 3 2

1 2 3 2

2 2 2

2

( )
[ ] ( ) ( ) ( )

( )
( )

where u F3 2[ ] is the relative displacement across F2 given by

= -
   + -

u u ulim lim 23F
y y

3
0

3
0

32
2 2

[ ] ( ) ( ) ( )
( ) ( )

H t2( ) is the Heaviside function,  f y y,1 3( ) give the
spatial dependence of the slip movement along the fault F2

and =U t v t3 2 2 2( ) , v2 is the velocity of the F2 fault movement.
Laplace transform of equation (22) gives

=  u U p f y y,F3 3 1 32[ ¯ ] ( ) ( ), where u3( )¯ is Laplace
transform of u3.

Now the displacement, stress and strain components for
dip-slip movement of the fault F2 are:
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Figure 2. Creep function for F1 fault. Figure 3. Creep function for F2 fault.
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where f given in appendix andf f f= = =f f f¶
¶

¶
¶

¶
¶

, ,
y y y1 2 3

1 2 3
.

The final solutions of displacement, stress and strain due
to interaction between two faults, one infinite strike-slip and
the other finite dip-slip fault are as follows:
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3.3. Numerical computations

It is to be noted that in both the models, fault F1 is taken to be
infinite while fault F2 is taken to be finite.

We consider following numerical values of the model
parameters as suggest Cathles (1975 [25]), Clift et al (2002
[26]) and Karato (2010 [27]):

m = ´ -3.5 10 N m10 2

h = ´3.5 10 Pa s19

t =¥ t 200( ) bar= ´2 10 N7 m−2

t=150 year, T1=50 year, T2=100 years
L=10 kms
D1=10 km, D2=10 km
d1=5 km, d2=5 km
D=8 km
v1=1 cm/year, v2=1 cm/year
t t= + =¥ ¥

-t kt k0 1 , 10 9( ) ( ) ( )
t = ´¥

-0 20 10 N m5 2( )
t = ´ -20 10 N m12 0

5 2( )
t = ´ -20 10 N m .13 0

5 2( )
For the inclinations θ1 and θ2 of the faults F1 and F2

respectively, we assume their values only in the range q 0 1

p 2 and q p 0 22 . For inclinations θ>π/2, say q p= -
q q p 0 21 1( ) or q p q q p= -  0 22 2( ), the nature
of displacements, stresses and strains in the medium will be
similar to the case for which θ1 or q q=2 . The values of θ1 and
θ2 has been taken here as 30 , 45 , 60 , 900 0 0 0 and creep

function for infinite fault ¢ = - +¢ ¢
f y U 1

y

D

y

D1 3 1
3 22

3

1
2

3
3

1
3( )( )

(Figure 2) and for finite fault ¢ ¢ = -
¢

f z z U, 1
L z2 1 3 2

1
2

1
2( ) ( )

- ¢ + ¢z z1
D D

3
3

2 3
3

3
2

2
2

2( ) (figure 3) whereU U,1 2 are constant and

taken as =U 1 cm1 and =U 1 cm2 .

4. Result and discussion

(a) Rate of Change of surface displacement:
(i) Both F1 and F2 are strike-slip faults:
The rate of change of surface displacement RD1

per year has
been considered due to creeping movement only across F1

< <T t T1 2( ), there being no movement across F2. This rate is

given by (RD1)= t- + + +
h m h

¶
¶ ¥u u t y0

t

k kt
1 1 0

1

2 2
2⎡

⎣⎢
⎤
⎦⎥( )[ ( ) ( ) ]. In

figure 4(a), RD1
is plotted against y2, the distance from the fault

F1 on free surface, including its limiting values as  +y 02 and
 -y 02 for different inclinations of F1. It is found that this rate

depends significantly on the inclination θ1 of the fault F1. The
maximum magnitude of the rate of change of surface displace-
ment due to fault creep is attained near the fault for both >y 02
and <y 02 . This rate decreases rapidly as we move away from
the fault on either side of the free surface for all values of θ1 but
with varying rate. The rate of decrease of RD1

with y2 is higher
for lower value of θ1. This rate becomes very small for y 02  .
For >y 02 and <y 02 rates of change of surface displacement
due to fault creep are of opposite sings. It is found that apart from
these similarities, there are considerable differences between the
rate of change of surface displacement due to fault creep for
faults with different inclinations. For >y 02 , this rate is found to
increase as θ1 decreases. For <y 02 , this rate decreases as θ1
increases. For q = 901

0, the rate is anti-symmetrical with respect
to =y 02 . However, for q ¹ 901

0, there is no such anti-
symmetry.

In figure 4(b), RD1
plotted against y2 for different velocity

of the fault movement across F1 when there is no movement
across F2 and θ1 is taken as 600. At y2=0 i.e on the fault,
rate of displacement is equal to zero. For >y 02 , it first
increases rapidly and then decreases sharply towards zero for
different velocities of F1. For <y 02 , RD1

first decreases
rapidly and then increases gradually and finally tends towards
zero. Rate of displacement attains its maximum and minimum
value as y 02∣ ∣ . For >y 02 , rate of displacement increases
with increasing values of velocity and for <y 02 , it decreases
with increasing values of velocity.

Figure 5 shows the rate of change of surface displace-
ment (RD1

) due to creeping movement across both F1 and F2

(for >t t2) for different values of θ1 and θ2 and different
values of v1 and v2. In figure 5 (a) and (b), rate of displace-
ment has been plotted against y2 for different inclination of
the fault F1 when inclination of F2 is taken as 600 and 900

respectively. Comparing them with figure 4(a), it is found that
there is no significant changes in the nature of RD1

for <y 02
after a movement across F2. In this case for all θ1, there is a
change in RD1

for >y 02 only. A significant change is found
in RD1

in both the figure 5 (a)and(b) at a distance D=8 km
from F1, where F2 is located. It shows that when the fault F2

starts creeping for >y D2 , RD1
is positive and increases
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Figure 4. Rate of change of surface displacement with y2 due to fault creep only across F1 (no movement across F2) (a) for different
inclination of the fault and (b) for different velocity of the fault movement with q = 601

0.

Figure 5. Rate of change of surface displacement with y2 due to fault creep across both F1 and F2 for different inclination θ1 of F1 with
(a) q = 602

0 and (b) θ2=900.

Figure 6. Rate of change of displacement (u1) with y2 after fault movement across F1 and F2 for (a) different depth of the fault from the free
surface (b) different distance of the fault F1 and F2.

8

Phys. Scr. 95 (2020) 055004 P Kundu and S S (Mondal)



sharply and then gradually decreases as y2 become much
greater than D. The maximum positive value of RD1

for >y 02
is attained near the fault F2 and this value depends on θ2. From
figure 5 (a) and (b), it is observed that when θ2=900 rate of
change of displacement for different inclination of θ1 is greater
than for q = 602

0. If θ1 and θ2 are 90
0 that is both the faults are

vertical then the fault displaced due to earthquake is less than
the displacement of the other inclined faults which is clear from
figure 5(b). The propagation of crack tips of the fault increases
with displacement increases.

If the depth of the faults from the free surface increase then
rate of displacement decrease which is described in figure 6 (a). If
distance between two neighbouring fault is increasing then rate of
u1 is decreasing which is clear from figure 6 (b).

(ii) F1 is strike-slip and F2 is dip-slip fault:
Since the fault F1 is strike-slip and F2 is finite dip-slip fault,

then fault movement F1 effects on displacement component u1

and the fault movement F2 effects on displacement component
u3. That is if F2 is dip-slip then rate of u3 changes across the fault
movement F2 only. For F1 infinite strike slip and F2 finite dip-
slip fault, there is a displacement of the fault F1 in y1 direction
and F2 in y3 direction. The rate of change of displacement RD2

=

f=
p

¶
¶

¶
¶

- m
hu H t e

t t

U t t
3 2 2

2 2⎡⎣ ⎤⎦( )( ) ( )( ) has been plotted against y2 for

different inclination of the fault F2 and different velocity of the
fault movement F2 in figures 7 (a) and (b) respectively. It is
observed that for y2=0–8 km, the rate of change of displace-
ment is very small while for >y 82 km it is high.

(b) Rate of change of stress
(i) Both F1 and F2 are strike-slip fault:
The shear stresses ¢T F12 MID1( ) ( ) and T F12 MID2( ) ( ) near the

mid points of the faults F1 and F2 are respectively

where t q t q¢ = -T sin cosF12 0 12 0 1 13 0 11( ) ( ) ( ) and

where t q t q = -T sin cosF12 0 12 0 2 13 0 22( ) ( ) ( )

Figure 7. Rate of change of displacement (u3) with y2 after fault movement F1 and F2 for (a) different inclination θ2 of F2 (b) different
velocity of the fault movement F2.
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We consider the shearing stresses ¢T F12 MID1( ) ( ) and
T F12 MID2( ) ( ) in the half-space which tends to cause movements

across the faults. To study its changes with time the shearing
stresses ¢T F12 MID1( ) ( ) and T F12 MID2( ) ( ) have been plotted against

time for moderate earthquake for different values of θ1 and θ2
in figures 8 and 9. These figures shows that the shearing stress
¢T F12 1( ) near the fault F1 gradually increases with time upto

t=T1 (=50 years), i.e. the instant at which F1 starts creeping.

Figure 8. Total shear stress at the mid point of the fault F1 for different values of θ1 when (a) θ2=900 (b) q = 602
0.

Figure 9. Total shear stress at the mid point of the fault F2 for different values of θ2 when (a) q = 901
0 (b) q = 601

0.

Figure 10. Rate of change of shear stress τ12 with y2 due to fault creep across F1 only (no movement across F2) for (a) different inclination θ1
of F1 (b) different velocity of the fault movement.
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At t=T1, the slope of the curve changes. It continues upto
t=T2 (=100 years), i.e. the time when the fault F2 starts
creeping. After t=T2, again there is a change of the slope of
the shear stress curve. Figure 8 shows that the rate of increase
of ¢T F12 MID1( ) ( ) depends on θ1, the inclination of the fault F1

itself. For higher values of θ1, the rate is higher, being max-
imum for q = 901

0. This indicates the fact that there will be
more accumulation of shearing stress near the vertical faults
than the inclined faults with inclinations lesser than π/2.

Figure 9 shows the change of the shearing stress at the
mid point of the fault F2 denoted by t F12 MID2( ) ( ) with time. It
is noted that in the absence of any fault movement, shear
stress gradually accumulates in the system due to tectonic
force t¥. The maximum limiting values that may be attained
by ¢T F12 MID1( ) ( ) near F1 and T F12 MID2( ) ( ) near F2 are t q¥ sin 1( )
and t q¥ sin 2( ) respectively. It is observed that in the absence
of any fault movement <t T1( ), there is gradual accumulation
of shear stress near F1 with increasing rate of accumulation
depending upon the inclination of the fault, being maximum
for vertical faults. But after the commencement of fault creep
across F1 ( < <T t T1 2), this rate of accumulation changes.

This change depends on the inclination θ1 and θ2 with the
horizontal. This pattern of stress accumulation near F1 con-
tinues upto the instant t=T2 at which second fault F2 also
starts creeping. At t=T1 and t=T2, there is a change in the
rate of stress accumulation.

The rate of change of τ12 is t t-¶
¶t 12 12 0[ ( ) , t+-

¥
m
he 0t ( )

- +-m
h t kt1 e[ ]] = m

p
-H t T

2
1( )

ò t t- m
h

t- -m
hU t U e d

t t
1 1 0 1

1
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òy m t t f+ -
p

m
h

t- - -m
hU t U e d .H t T t t

2 2 2 2 0 2 2
2 2

2[ ( ) ]( ) ( ) Figure 10

has been explained the rate of chance of τ12 against y2 for
different inclinations and different velocities of the fault
movement across F1. The maximum stress is attained at
=t T1, i.e. when the fault F1 starts creeping. Rate of stress

accumulation/release of τ12 has been plotted against y2 due to
creeping movement of both the faults F1 and F2 in figure 11.
It is seen that there is a significant change in τ12 at D=8 km,
i.e when the fault F2 starts creeping. It is different for different
inclination θ1 of the fault F1 when θ2 is fixed. If θ1 increases,
rate of τ12 increases. From figures 11(a) and (b), it is analysed
that the rate of change of τ12 depends on θ2. This increases
with increasing value of θ2.

Figure 11. Rate of change of shear stress τ12 with y2 due to fault creep across both F1 and F2 for different inclination θ1 of F1 with
(a) q = 302

0 and (b) θ2=900.

Figure 12. (a) Rate of change of stress t23 with y2 and (b) rate of change of stress τ33 with y2.
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(ii) F1 infinite strike-slip fault and F2 is finite dip-slip
fault:

If F1 is infinite strike-slip fault and F2 is finite dip-slip
fault then there is an effect on the stress component τ12 and
t13 after the fault movement across F1 only. The fault
movement across F2 affects stress components t23 and τ33.
The changes of rate of t23 and τ33 with y2 have been described
in figures 12 and and (b) for q = 602

0. It has been observed
that after the fault movement across F2 at y2=8 km, t23

(stress acting in the y3 direction on the plane whose outward
normal is parallel to the y2 axis) decreases as y2 increases and
the maximum shear stress release occurs near y2=10 km.
After that it reaches zero near y2=20 km. This indicates that
maximum stress release occurs in the neighbourhood of the
fault F2 as seen in figure 12 (a). Figure 12(b) shows that for

>y 02 , τ33 (normal stress along y3 axis) decreases and attains
minimum value near =y 82 km, where F2 is located. For

y 82 km, it increases sharply and attains its maximum value
near y2=10 km followed by gradual decrease and it finally
approaches to zero as y2 increases further. That is for the
stress component τ33, normal stress along y3 axis first releases
and then accumulates.

(c) Rate of change of strain:
(i) Both F1 and F2 are strike-slip fault:
Now the nature of surface shear strain accumulation

before and after the fault movement has been considered.
The rate of change of surface shear strain RS1

=

- + + +t
h m h

¶
¶

¥e e t
t

k kt
12 12 0

0

2

1

2

2( )[ ( ) { }]( ) = y +
p

H tU t

4 1 2
1 1[ ( )( )

f
p

H tU t

4 2 2
2 2 ( ) ]( ) . It is noted that, in the absence of any fault
movement, there is a steady accumulation of surface shear
strain near the fault with time. After the commencement of a
fault movement, this rate of strain accumulation falls off. The
maximum reduction take place near the fault itself across
which the movement occurs.

Figure 13 shows the rate of accumulation/release of
shear strain per year near and away from the fault due to

creep across F1 ( » =y y0, 02 3 ), from y2=−40 km to
= +y 402 km for different θ1 and different velocity of fault

movement. It is seen that the fault creep results in the accu-
mulation/release of the surface shear strain and this effect
decrease rapidly as we move far away from the fault trace on
the free surface. For θ1=900, RS1

is greatest near the fault
trace ( » =y y0, 02 3 ) and is symmetrical about the fault
trace. For q ¹ 901

0, the effect is not symmetrical. Maximum
strain accumulates near the fault trace and maximum rate of
release of surface shear strain occurs a little away from the
fault trace. The rate of release of shear strain due to fault creep
changes with change in the inclination θ1 and velocity of the
fault movement v1. As θ1 decreases from 900, rate of strain
release increases more for >y 02 and comparatively less for

<y 02 . On the fault trace strain accumulation increases with
velocity (v1) of the fault movement across F1. For >y2 0 and
<0, rate of strain increase as velocity v1( ) increases. The
differences in the effect of fault creep on the surface shear
strain for different inclinations and velocity of the fault may
be useful in estimating the inclinations and velocity of the
creeping fault using observational data on aseismic change in
the surface shear strain near the fault.

After the commencement of fault creep across F2 the rate
of shear strain changes significantly which is clear from
figure 14. Near the fault F1, RS1

increases for all θ1 and these
increments in the values of RS1

depend significantly on θ2,
higher the values of θ2, higher the increments. As we move
away from the fault F1 and approaches towards F2, RS1

decreases first upto a certain level and then start increasing
and reaches a higher value near F2 and then it gradually
decreases towards zero as y D2  . This value depends sig-
nificantly on the inclination θ2 of the fault F2 but not so
significantly on the inclination θ1 of the fault F1.

From figures 15 (a), (b) and 16, it is seen that if both the
faults are infinite and both the faults are finite ([19]) then the
rate of shear strain accumulation and release is different from
that when F1 is infinite and F2 is finite. If we compare these

Figure 13. Rate of change of strain e12 with y2 due to fault creep across F1 only (no movement across F2) for (a) different inclination θ1 of F1

and (b) different velocity v1 of the fault movement.
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three figures it is clear that rate of accumulation of shear strain
is greater if both F1, F2 are infinite than that if F1, F2 finite as
well as F1 infinite, F2 finite. It is also observed that rate of
shear strain release is greater if both the faults are finite. The
effect of fault movement of F1 and F2 on the rate of shear
strain is more significant when F1 is infinite and F2 is finite
(figure 16).

(ii) F1 is long strike slip fault and F2 is finite dip slip
fault:

If the fault F1 is infinite strike-slip and F2 is finite dip-slip
fault, then the movement across F1 affects strain components
e12 and e13 for  Tt 1 and the movement across both F1 and
F2 (t  T2) affects the strain components e13, e23 and e33.

Rate of change of e23 (strain acting in the y3 direction on
the plane whose outward normal is parallel to the y2 axis) is

f=
p

¶
¶

¶
¶

e H t
t t

u t
23 4 2 2

2 2( ) [ ( ) ]( ) . Figure 17 shows that maximum

strain e23 accumulates after the fault movement F2 near y2
≈8 km. Rate of e23 with y2 for different values of θ2 has been
plotted in figure 17(a). For >y 82 km, rate of accumulation of

Figure 14. Rate of change of shear strain e12 with y2 due to fault creep across both F1 and F2 for different inclination θ1 of F1 with
(a) q = 302

0 (b) θ2=900.

Figure 15. Rate of change e12 with y2 after the fault movement across F2 for (a) both the faults are infinite (b) both the faults are finite.

Figure 16.Rate of change e12 with y2 after the fault movement across
F2 for F1 infinite and F2 finite.
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e23 is maximum and its value decreases as θ2 decreases. Then
it falls off rapidly and after releasing the strain it gradually
increases and approaches towards zero. In figure 17(b), rate of
e23 has been plotted against y2 for different velocity of the
fault movement F2. If velocity decreases, strain accumulation
decreases after the fault movement F2.

The dip-slip nature of the fault F2 affects the rate of
change of e33 (normal strain along the y3 axis). Rate of change
of e33 is ¶

¶
e

t 33( ) = f
p

¶
¶

H t
t

u t

4 2 3
2 2⎡⎣ ⎤⎦( )( ) . Figure 18 shows that

maximum strain e23 accumulates after the fault movement F2

and then falls off rapidly towards zero. In figures 18(a) and
(b), rate of change of e33 has been plotted against y2 for
different inclinations of the fault F2 and for different velocity
of the fault movement F2.

From figures 17 and 18, It is seen that the maximum
strain accumulates and releases near the fault F2 and it is also
true from practical view, since F2 is dip-slip then the strain
components e23 and e33 are affected by the fault movement
F2 only.

5. Conclusion

In the present model, two buried, inclined interacting faults—
one infinite and the other finite—have been considered. A
detailed study of deformation of the half-space due to
creeping effect on displacement, stress and strain is analysed
when (i) both the faults are strike-slip type and (ii) one strike-
slip (infinite), other dip-slip (finite) type. If both the faults are
strike-slip then they release their energy through rock dis-
placement in a horizontal direction that is in y1 direction in
our model. On the other hand if one is strike-slip and the other
dip-slip then the displacement will be both in horizontal and
vertical direction that is in y1 and y3 direction of our model.
For case (i) stress (components τ12, t13) and strain (compo-
nents e12, e13) accumulate and/or release and for case
(ii) stress components τ12, t13, t23, τ33 and strain components
e12, e13, e23, e33 have effect on the deformation due to
earthquake fault. For infinite and finite interacting faults, the
effect of interaction is more prominent than both infinite and
both finite fault. The result emerges that an already existing

Figure 17. Rate of change e23 with y2 after the fault movement across F2 for (a) different inclination of the fault F2 and (b) different velocity
of the fault movement F2.

Figure 18. Rate of change of e33 with y2 after the fault movement across F2 for (a) different inclination of the fault F2 and (b) different
velocity of the fault movement F2.
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slip zone can activate the movement and slip along a neigh-
bouring slip zone. In our interacting fault model, due to stress
drop the local yield strength increases noticeably whereas for
single fault (Cowie and Scholz (1992a)[28]) the stress con-
centration is same as the local yield strength at the tip of the
fault. In order to enhancement of the length of the fault,
interacting fault requires sufficient strain energy to break new
fault surface ahead of the fault tip and to overcome the drop in
shear stress that is obtained by a neighbouring fault. Conse-
quently, as a fault grows toward another fault’s stress drop
region, its growth is retarded (figures 11(a) and (b)). Figures 5
and 11 show that the tip propagation is proportional to the rate
of increase of displacement near the fault tip in the higher
stress drop region. This observation suggests an expected
sequence of displacement accumulation on interacting fault
pairs. In this sequence, during advanced stages of interaction
most displacement accumulates in the over-lap zone
(figures 5(a) and (b)). This is supported by observations of a
three-segment array from the Malawi Rift Basin, East Africa.
It is also observed that the fault interaction at the slipping
zone becomes stronger as the angle approaches towards 900

and the velocity increases.
Such study may throw some light to foretell about the

occurrence of future fault movement and thereby help for
making earthquake prediction program which may eventually
save enormous life and property.

In future the concept of this paper can be extended for
mediums (like Standard liner solid, Burger Rheology etc.)
other than Maxwell type. It can also be extended for non-
planer faults instead of plane faults as discussed in out
model.
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Appendix

To solve the boundary value problem, we assume that u1̄ has
the form

= + +u y y p
u

p
B y C y, , . 281 2 3

1 0
1 2 1 3¯ ( ) ( ) ( )

Now taking Laplace transform on all constitutive equations
and boundary conditions (from 3 to 10) we get
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Now putting the value from (25) in (29), (30) and using
boundary conditions (31) and initial conditions we get the
values of B1 and C1. Then substituting the value of B1 and C1

in equation (25) and taking inverse Laplace transform we get

t= + + +
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Since the fault F1 is strike slip and infinite so =u 02 1( )
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Differentiating the first and second equation of (3) w.r.t
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Since for infinite strike-slip fault displacement compo-
nents are independent of y1 then
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The resulting boundary value problem can be now stated as
u1 2( ) satisfy = u 02

1 2( ¯ ) , where u1 2( ¯ ) is the Laplace transform
of u1 2( ) w.r.t t with modified boundary conditions.

To solve this boundary value problem, a suitable mod-
ified form of Greens function technique developed by Mar-
uyamma (1966 [22]) and Rybicki (1971 [23]). Following
Maruyamma (1966 [22])
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In similar way we can compute u1 3( ) due to sudden
movement of the fault F2 where (z z z, ,1 2 3) is the field point
in the half space and (x x x  , ,1 2 3) is the fault point. By simple
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