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Abstract. We propose a novel deep learning tool in order to study the evolution of dark
energy models. The aim is to combine two architectures: the Recurrent Neural Networks
(RNN) and the Bayesian Neural Networks (BNN), we named this full network as RNN+BNN.
The first one is capable of learning complex sequential information to classify objects like
supernovae and use the light-curves directly to learn information from the sequence of obser-
vations. Since RNN is not capable to calculate the uncertainties, BNN emerges as a solution
for problems in deep learning like, for example, the overfitting. For the trainings we use
measurements of the distance modulus µ(z), such as those provided by Pantheon Supernovae
Type Ia. In view of our results, the reported approach turns out to be a first promising step
on how we can train a new neural network that can compute their own confidence regions
for specific cosmological data. It is worth stressing that the new technique allows to reduce
the computational load of expensive codes for dark energy models and probe the necessity
of modified dark energy models at large redshifts for a supernovae trained sampler.

Keywords: dark energy theory, modified gravity, supernova type Ia - standard candles

ArXiv ePrint: 1910.02788
1https://orcid.org/0000-0002-8929-250X.

c© 2020 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516/2020/03/008

mailto:celia.escamilla@nucleares.unam.mx
mailto:maryi.carvajal@udea.edu.co
mailto:capozziello@na.infn.it
https://arxiv.org/abs/1910.02788
https://orcid.org/0000-0002-8929-250X
https://doi.org/10.1088/1475-7516/2020/03/008


J
C
A
P
0
3
(
2
0
2
0
)
0
0
8

Contents

1 Introduction 1

2 Models for dark energy equations of state 3

3 Pantheon Type Ia supernovae compilation 4

4 Basics on deep learning 5
4.1 Training Recurrent Neural Networks (RNN) 6
4.2 Bayesian Neural Networks (BNN) 8

5 RNN+BNN architecture for deep learning dark energy EoS 9

6 Bayesian versus deep learning significance 11
6.1 Information criteria results 12
6.2 Evidence criteria results 12
6.3 Statistical predictions using RNN+BNN network results 15

7 Conclusions 20

1 Introduction

What is dark energy? This question has been addressed in a fundamental context since the
discovery of the cosmic acceleration [1, 2] and what can be driving it. Its nature is one of the
most fundamental issues facing cosmologists today and it is the subject of several current
and future experiments that will survey the sky, e.g DESI [3], DES [4], WFIRST [6] and
LSST [5]. Adjoint to these surveys, current observations as SNeIa, BAO, CMBR anisotropies,
LSS formation and WL set a strong confirmation of the present-day accelerated expansion
of the universe, consistent with the current standard cosmological model ΛCDM, where the
Λ is usually related to an extra constant component of cosmological fluid (with equation of
state — EoS — w = −1). Such a cosmological constant, if evolving, is dubbed dark energy.
However, we cannot measure directly dark energy because we can only observe its effects
on the Hubble flow measuring observable components like matter and radiation. Since the
standard model interplays gravity and dark energy, we can encode the distribution of matter
in the universe in w = p(ρ), where p is the pressure and ρ the matter-energy density. As a
simple choice, we can assume w = p/ρ. It can be characterised by a distribution derived from
statistical measures in two (or three)-point correlation functions [7, 8] or other frequentist
statistics [9–13].

Currently, a great debate is around the validity of ΛCDM model, where tensions are aris-
ing between Planck [14] and other cosmological measurements as: Cefeids (SH0ES), strong
lensing time delays (H0LiCOW), tip of the red giant branch (TRGB), megamasers, Oxygen-
rich Miras and surface brightness fluctuations [15]. These tensions which justify the study of
possible alternatives to the concordance model. One of the most interesting approach seeks
for dynamical properties of dark energy, which should be able to mimic Λ at the present time
as required by the cosmological observations. The approach starts from quintessence scenar-
ios [16, 17], dark energy parameterisations [18–22], modify gravity [23, 24], extended theories
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of gravity [25], w(z) reconstructions [26], non-parametric reconstructions of w(z) [27, 28],
till Bayesian reconstruction of a time-dependent EoS [29] or dynamical wx from f(R) mod-
els [30, 31] which offers a large overview on how we are trying to explain the effects of dark
energy. However, a consensus of a unique model is still missing and all the proposals imply a
dependency which can be significantly different by imposing a different theoretical landscape.
Clearly, current and future data from the surveys will certainly clarify the issue by improv-
ing the determination of H0 and w(z), meanwhile we are dealing with wide distributions of
matter proposals.

In order to present a relevant step in the study of dark energy, one can use a technique
capable to combine all features in the distribution of matter that can give an insight into the
nature of dark energy. A powerful technique is the deep learning (DL), which is a field of
machine learning (ML) that uses several layers of nonlinear processing neurons to obtain and
transform at each successive layer an output from the previous layer [33]. The algorithms for
this subset are created and operate similar to those in ML, but there are numerous layers of
these algorithms, each providing a different interpretation to the data it feeds on. Many prob-
lems in modern cosmological data analysis are tightly related to fundamental problems in ML,
such as classifying stars and galaxies and cluster finding of dense galaxy populations [34, 35].
Other typical problems include data reduction, probability density estimation, how to deal
with missing data and how to combine data from different surveys [36–38]. Unfortunately,
up to now, there is not target distribution of w(z) for dark energy where one has an efficient
parameterisation with an error parameter space. An increasing part of modern cosmology
aims at the development of new statistical data analysis tools and the study of their be-
haviour and systematics is often not aware of recent developments in ML and computational
statistics. Of course, with the emergence of big data in recent years, the DL architecture will
optimise algorithms that can handle the complexity of new cosmological models.

Here we present a novel technique to study dark energy models using a DL trained
network in order to identify theoretical cosmological models through the data processed
within layers of the network. In comparison to ML, DL technique does not require any
labeled/structure data, as it relies on the different outputs processed by each layer which
is amalgamated to form an unified way to identify theoretical models via images (matrices
of observational data). Another novel result of our proposal is the ability to compute the
confidence regions for each kind of training, within so far in ML astrophysical methods this
has not been employed before. For this purpose, we combine the architecture of Recurrent
Neural Networks (RNN) with the architecture of Bayesian Neural Networks (BNN) in view
of a join network RNN+BNN representation learning, which can yield parameter spaces
for the cosmological models. The advantage of this idea is that the proposed RNN+BNN
network is trained and tested on observed supernovae data, and otherwise has no physical
parameterisation related to the physical processes of cosmic acceleration. This is different in
comparison if we train simulated data, e.g CMB and gravitational lensing, where a physical
parameterisation needs to be used.

This paper is organised as follow: in section 2 we describe four cosmological models:
two standard ones and two unified dark fluid equations of state, in order to point out the
issues to achieve the cosmological analysis. In section 3 we denote the astrophysical sampler
used. In section 4 we explain the basics of the deep learning technique employed to design
a standard RNN architecture and how to add the Bayesian architecture in order to solve
problems like overfitting. In section 5 we present the methodology to train the observational
supernovae data using four activation functions on our proposed neural network RNN+BNN.
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In section 6 we perform a bayesian comparison on the robustness of our RNN+BNN network
approach against the proposed cosmologies, and use a ΛCDM simple scenario to demonstrate
how to carry out parameter estimation from our networks results. Finally in section 7 we
discuss our former results.

2 Models for dark energy equations of state

In this paper we are going to consider four dark energy models: from the standard scenarios
as ΛCDM and CPL to unified dark energy fluid scenarios as Generalised Chaplygin gas
(GCG) and Modified Chaplygin gas (MCG) models. In the following lines we enlisted these
dark energy models with their respectively mathematical derivation.

ΛCDM is a Friedmann-Robertson-Walker (FRW) cosmology with a partition ρ into (at
least) three components: matter ρm, radiation ρr and a poorly understood dark energy ρΛ,
where the latter goes one step further by also invoking the constraint w = −1/3. Towards this
direction, many attempts have already been done, starting from the above simple relation to
several complex ones, always an explicit relation between the pressure p and density ρ.

• ΛCDM model. We shall take the standard model: H(z)2/H2
0 =Ωm(1+z)3+(1−Ωm),

where wΛ = −1, which provide a good fit for a large number of observational data com-
pilations without addressing some important theoretical problems, such as the cosmic
coincidence and the fine tuning of the Λ value [39].

• CPL model. So-called by Chevallier-Polarsky-Linder [40, 41], can be represented by
two parameters that exhibit the present value of the EoS w0 and its overall time
evolution wa:

w(z)CPL = w0 +

(
z

1 + z

)
wa. (2.1)

As an extrapolation of these standard scenarios, in the same homogeneous and isotropic
universe framework, we consider that the gravitational sector to which the matter sector is
minimally coupled, is described by the standard General Relativity. We also assume that the
total energy of the universe comes in the form of photons (γ), baryons (b), neutrinos (ν) and
a unified dark fluid (UDF, XU ) [42]. This component can behave as dark energy, dark matter
or a different type of fluid while the universe expands. Therefore, the full energy budget is
denoted by pi/ρi, where i = γ, b, ν,XU . Additionally, each fluid i obeys a continuity equation
of the form ρ̇i + 3 ȧa(pi + ρi) = 0. Standard solutions are: ρb ∝ a−3 and ργ,ν ∝ a−4. For a
UDF, a constant adiabatic sound speed cs is assumed and can be modelled as p = c2

s(ρ− ρ̃),
where cs and ρ̃ are positive constants. One part of this expression behaves as the usual
barotropic cosmic fluid and the other as a Λ, which unifies the dark energy and dark matter
components (effect so-called as dark degeneracy). By integrating for a UDF we obtain:

ρ = ρΛ + ρXUa
−3(1+c2s), (2.2)

p = −ρΛ + c2
sρXUa

−3(1+c2s), (2.3)

where ρΛ = c2
sρ̃/(1+c2

s) and ρXU = ρ0−ρΛ, with ρ0 as the dark energy density at the present
time. The dynamical EoS is given by:

w = −1 +
1 + c2

s(
ρΛ
ρXU

)
(1 + z)−3(1+c2s) + 1

. (2.4)
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At this point, a specific form which specifies pXU as a function of ρXU : pXU = f(ρXU ) needs
to be considered:

• Generalised Chaplygin gas (GCG) model. For a given XU is characterised by:
pgcg = − A

(ρgcg)α , where A and 0 ≤ α ≤ 1 are two free parameters. The case α = 1

correspond to the original Chaplygin gas model. Solving the continuity equation using
the evolution of the GCG energy density, one gets:

ρgcg(a) = ρgcg,0

[
bs + (1− bs)a−3(1+α)

]
1

1+α , (2.5)

where ρgcg,0 denotes the energy density of the GCG fluid at present time and

bs = Aρ
−(1+α)
gcg,0 . This density contains all the i components described above. Then we

can compute the GCG dynamical equation of state wgcg as a function of the redshift z:

wgcg(z) = − bs

bs + (1− bs)
(

1
1+z

)−3(1+α)
. (2.6)

This establish the regions of dominations for an effective dark matter component and
an effective dark energy one, with an intermediate region for α = 1.

• Modified Chaplygin gas (MCG) model. Its relation between pressure pmcg and energy
density ρmcg is given by: pmcg = Bρmcg − A

(ρmcg)α , where again A, B, and α are three

real constants with 0 ≤ α ≤ 1. If A = 0, the MCG behaves as a perfect fluid with
w = B, whereas, if B = 0, we can recover the GCG model. Again, the standard
Chaplygin gas model can be obtained by setting α = 0. Solving the equation we find
that the evolution of the MCG energy density with all its i components:

ρmcg(a) = ρmcg,0

[
Bs + (1−Bs)a−3(1+B)(1+α)

] 1
1+α

, (2.7)

where ρmcg,0 denotes the energy density of the MCG fluid at present time, and

Bs = Aρ
−(1+α)
gcg,0 /(1 +B). The evolution of the MCG EoS is given by:

wmcg(z) = B − Bs(1 +B)

Bs + (1−Bs)
(

1
1+z

)−3(1+B)(1+α)
. (2.8)

As an extension of the GCG model, the MCG model behaves accordingly with each
cosmological regions described.

3 Pantheon Type Ia supernovae compilation

Since we are interested in the behaviour of the cosmic late acceleration using the proposed
dark energy models, in this paper we employ the recent Type Ia supernovae (SNeIa) sample
called Pantheon [43].

This sampler consists of 1048 SNeIa in 40 bins compressed. It is the largest spectro-
scopically confirmed SNeIa sample to date. This characteristic makes it attractive to develop
with our DL test. Since we are performing tests of EoS’s that, at some point, recover ΛCDM,
the binned catalog is not a problem in the sense of favoring this model.
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SNeIa can give determinations of the distance modulus µ, whose theoretical prediction
is related to the luminosity distance dL according to:

µ(z) = 5 log

[
dL(z)

1Mpc

]
+ 25, (3.1)

where the luminosity distance is given in Mpc. In the standard statistical analysis, one adds
to the distance modulus the nuisance parameter M , an unknown offset sum of the supernovae
absolute magnitude (and other possible systematics), which is degenerate with H0.

As we are assuming spatial flatness, the luminosity distance is related to the comoving
distance D via dL(z) = c

H0
(1 + z)D(z), where c is the speed of light, so that, we can obtain

D(z) =
H0

c
(1 + z)−110

µ(z)
5

−5. (3.2)

Therefore, the normalised Hubble function H(z)/H0 can be obtained by taking the inverse
of the derivative of D(z) with respect to the redshift

D(z) =

∫ z

0
H0dz̃/H(z̃), (3.3)

where H0 is the Hubble constant consider as a prior value to normalise D(z).

4 Basics on deep learning

The deep learning technique allows algorithms to learn more complex patterns by adding
more layers to the Neural Network (NN), using Convolutional (CNN) or Recurrent Neural
Networks (RNN) [44]. DL has demonstrated its versatility in the application of new methods
where rich data (as the supernovae Pantheon sampler presented above) will play an important
role. Additionally, it allows to automatically built a (usually highly nonlinear) model that
maps from a given input (e.g a redshift z) to an output (e.g. a modulus distance µ(z)) with
different algorithms to use several prescriptions to build up a specific model.

Can this information be used by the DL algorithm to gain a better understanding of
a dark energy cosmological model? Currently, the interest over these kind of algorithms
are bringing new opportunities for data-driven cosmological discovery, but they will also
present new challenges for adopting DL methodologies and understanding the results when
the data are too complex for traditional model development and fitting with statistics. Some
proposals in that regards have been done in order to explore the DL methods to measure
cosmological parameters for future large-scale photometric surveys [34] and from density
fields [45]. Even more, the advantage to use DL is that the overfitting can be avoided, it
increases the robustness of classifier and carries a coverage of trained data. In our case, we
select the extensive knowledge of supernovae to obtain a DL training data sampler.

In this paper we used, as first piece of the new network proposed, a supervised learning
training called Recurrent Neural Network (RNN), which is a type of algorithm that adopts
the real target to teach the NN and penalizes when it is far from the real data. Then this
algorithm output is compared with the using of a loss function, i.e. we take into account the
Mean Squared Error (MSE) function, where the objective of the algorithm is to minimise the
loss function. Afterwards, we use the Adam optimizer [46] to find the minimum and obtain
the best cosmological model. In order to compute the confidence errors for our cosmological
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models, we unify this first piece of architecture with our second piece, a Bayesian Neural
Network (BNN). Along the rest of this paper we refer to the union of these architectures as
our RNN+BNN network.

In the next two subsections, we describe each architecture separately. Afterwards, we
will explain how to join both in order to design our RNN+BNN network.

4.1 Training Recurrent Neural Networks (RNN)

There are many applications of DL for large photometric surveys, such as: (1) the measure-
ment of galaxy shapes from images; (2) automated strong lens identification from multi-band
images; (3) automated classification of supernovae; (4) galaxy cluster identification. We will
focus on a non-linear regression-like method for supernovae using deep RNN. It was show
in [34, 47] that deep RNN are capable to learn complex sequential information to classify
supernovae. In our approach, instead of performing feature extraction before classification,
we use the redshifts of light-curves directly as inputs to a RNN, which is able to learn in-
formation from the sequence of observations. Due to the intrinsic relation of our data with
time, we employ RNN that has show a successful behaviour with sequential series, being
used in problems like translation or transcription. These kind of networks are similar to Feed
Forward Neural Networks (FFNN) [33, 48], but have an essential difference in comparison to
RNN since a recurrent network feed itself during the training, e.g. one network with a neuron
will have a connection from the input and also from the output of its previous time step —
from which feed itself — a characteristic which make them adequate to train a supernovae
data sampler. We will explain mathematically this aspect in the next system of equations.

Even more, these connections allow the algorithm to have a contest above all the se-
quence, alike FFNN where we must show all the sequence at the same time, so, these networks
could not identify who is first and who is not. Then, the FFNN only see a gate as a free pa-
rameter which it does not feed itself with the latter value, i.e there is not a direct connection
with the backward data.

To design a RNN architecture, we start with a cell were the output of the previous time
step is used to compute the new one (see figure 1). The same weights are used to compute all
the sequence, and each cell is feeding with the output before using the following expression:

h<t> = g
(
Wh · h<t−1> +Wx · x<t> + ba

)
, (4.1)

y<t> = g
(
Wy · h<t> + by

)
, (4.2)

where h<t> is called the hidden state and its h<t−1> value represent the hidden state before
it, g is the activation function and y<t> is the output. Here, t is the time referring to the
first sequence (t = 1, for the first redshift) with the data and b are the bias. From now on,
the superscript <> indicates a vector and the dot is a matrix product.

However, basic RNN fails in large sequences due to the loss of information from the
initial inputs. In order to improve our training performance we use a modification of RNN
cells, the so-called Long Short Term Memory (LSTM) cells [33]. The goal of these kind of
cells are their capability of forgetting and adding information step by step. However, a lot of
modifications have been done to these cells by incrementing the number of matrix functions
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for each layer which correspond to [49]:

i<t> = σ
(
W T
xi · x<t> +W T

hi · h<t−1> + bi
)
, (4.3)

f<t> = σ
(
W T
xf · x<t> +W T

hf · h<t−1> + bf
)
, (4.4)

o<t> = σ
(
W T
xo · x<t> +W T

ho · h<t−1> + bo
)
, (4.5)

g<t> = Af
(
W T
xg · x<t> +W T

hg · h<t−1> + bg
)
, (4.6)

c<t> = f<t> ⊗ c<t−1> + i<t> ⊗ g<t>, (4.7)

y<t> = h<t> = o<t> ⊗Af (c<t>), (4.8)

where W are the weights of each layer, σ is the sigmoid function that takes values between 0
and 1. Here ⊗ is the direct product. In the rest of the paper, we denote the superscript T as
the transpose of the quantity where it is indicated. Notice how the feed process is explicitly
given in the second r.h.s. term of the eqs. (4.3)–(4.6).

We compare several trainings for µ(z) using four kind of activation functions Af defined
as1[50]:

AfTanh
= tanh(x), in (−1, 1), (4.9)

AfReLU
=

{
0 for x ≤ 0,
x for x > 0.

in [0,∞), (4.10)

AfELU
=

{
α(ex − 1) for x ≤ 0,
x for x > 0,

in (−α,∞), (4.11)

AfSELU
=

{
αλ(ex − 1) for x ≤ 0,
x for x > 0,

in (−αλ,∞). (4.12)

In this full system of equations, we consider three layers called gate controllers: (a) Input
gate: this gate is giving by (4.3) and helps the cell to know which values must remember
in a long term. (b) Forget gate: giving by (4.4), this gate allows the cells to forget certain
values. (c) Output gate: it controls which values will be the output and which not, as it is
seen in (4.5). Eq. (4.6) gives a possible new state to remember in a long term. However,
according to the LSTM, the final state (4.7) and (4.8) give the output of the cell, e.g if
we obtain a null vector for the forget gate, taking into account (4.7), the network will not
remember anything about the previous state. Whereas, if we obtain values of one, it will
remember everything.

Nevertheless, NN have a large number of parameters, which can cause a high possibility
of overfitting. In addition of these technical parameters, we have at hand the free param-
eters from each cosmological models. Therefore, we improve this by using a regularization
technique [48]. But, in RNN few regularization models works well and a good suggestion is
the Variational Dropout (VD) [51]. Dropout is a powerful and inexpensive method of reg-
ularization, which randomly turns off some neurons to avoid overfitting and the probability
of turning off a neuron is given by the hyperparameters. These can be adjusted depend-
ing on size, epochs, layers, neurons and batchsize adopted. In the VD, we repeat the same
dropout mask for inputs, hidden states and outputs. This method allows a good behaviour
for dropout in RNN and is very useful in BNN to compute the corresponding confidence
contours for our trainings.

1We consider here the values for α = 1.673 and λ = 1.051 for a monotic behaviour.
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Figure 1. RNN architecture. The input zi are the redshifts and the output yi are the corresponding
modulus distance µi. This network example has one layer, and the small white squares inside each
circle node represent the number of neurons hi. In our proposal the number of neurons is equal to
100. Each neuron receives inputs from other neurons through the paths. After several steps there is
some processing on the input and the calculated result is passed to other neurons connected through
another path. Each node is associated to an activation function (Tanh, ReLU, ELU and SELU) which
transforms the input to an output value. The output value of these functions acts as an input to the
next connected neurons. Final output helps in deciding the class of input data. The number of steps
is given by n.

4.2 Bayesian Neural Networks (BNN)

They emerge as a solution for problems in DL like overfitting and the incapability of networks
to calculate their uncertainty. Uncertainties are crucial to evaluate the validity of a reliable
result. So far, for astrophysical scenarios, the error calculations are misleading due the
deterministic performing of the networks and at this point they are unable to provide a good
estimation of the error.

Therefore, we propose a combination of RNN and bayesian approaches by BNN that
can solve this problem by making the networks probabilistic. We positioned them in order
to deal with the uncertainty issue and take all assumptions into account, i.e. we can obtain
a probability distribution over the weights, given the distributional training data, to be used
as next inputs. At the end of the process, we are capable to obtain an entire distribution
over the network output, which increases our predicting accuracy and confidence regions.
For this purpose, we need to know what kind of distribution follows the weights. Having a
prior distribution on their weights and their biases, and giving a dataset X, Y, we search for
the posterior distribution over the space of parameters: p(ω|X,Y ). Hence, we can predict an
output for a new input point x by integrating the following:

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗, ω)p(ω|X,Y)dω. (4.13)

This dropout could be used in model uncertainty estimation and it is an approximation of
the Gaussian process. In this way, we can calculate model uncertainty applying dropout in
the training n-times. We consider a BNN modelled with a simple dropout which offers a
same mask at each time step leading to improved results and without overfit quickly [51, 52].
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5 RNN+BNN architecture for deep learning dark energy EoS

In this section we describe the methodology to train the observational data given by the
Pantheon supernovae sample in section 3 using our proposed RNN+BNN network. We analise
four different architectures of activation functions. The implementation of these analyses were
done using TENSORFLOW [32]. All of them were built out of layers shown in figure 1. The
first layer of the network is a RNN with one activation function. The last layer is a connected
layer with no activation function to map the output value of the last residual neuron to the
desired output size. The value of the size needs to be fixed at hand in order to reduce
the dispersion of the data at low redshifts while the NN adjusts during the training. The
control of this value can be achieved by computing the χ2 for each activation function. The
RNN+BNN network was trained on two cosmological parameters: an input z and the output
µ. The advantage of this process if that we can add a BNN to the architecture to always
predict a valid covariance matrix. Finally, we used a negative log-likelihood loss function

L =
1

2

(
ln ζ + (θp − θt)T ζ−1(θp − θt)

)
, (5.1)

where θp if the vector of predicted parameters, ζ−1 is the predicted inverse covariance matrix
given by BNN and θt are the input (real) parameters. It is important to remark that at this
first stage of the DL technique we can only use data that share the same cosmological obser-
vations, e.g. luminosity (modulus) distance. While the results of several data samplers are
already statistically promising, we found that combining the prediction of different datasets
have high noise levels which make difficult the convergence of our RNN+BNN network.

In order to construct and train our network, we carry out the following algorithm:

(i) Construction of the neural network. For the RNN, our model uses the LSTM cell
described in section 4.1. We consider one layer with 100 neurons and use a projector
to obtain the same shape of the input. The input is z and the output µ. We construct
the sequence from lower to higher redshift z.

(ii) Organising the cosmological data. After ordering from lower to higher redshift z, we
need to re-arrange the data using the number of steps n. According to our architecture
in figure 1, we choose a number of steps n = 4.

(iii) Computing the BNN. Our dropout has the following parameter: the probability to drop
the input is 0. This is because, after testing it several times, we found that our models
could not be trained with an input dropout due the lost of information. Alternatively,
the state dropout is 0.4 and the output is 0.5 [33]. Finally, the cost function is MSE
type, therefore we can use the Adam optimizer.

(iv) Training the RNN+BNN neural network. We start the training by consider 1000
epochs. Afterwards, we read the model and apply 500 times the same dropout to
our initial model. This allows to obtain the uncertainty contours (figure 2). After the
training, we predicted a data sampler of 1000 data points.

(v) Calculation of the bestfits. We use the CLASS2 and Monte Python codes3 to constrain
the models using the new Pantheon sampler obtained from the RNN+BNN training
(Step v). For each theoretical model proposed we obtained the values reported in
tables 8, 9, 10, 11.

2https://github.com/lesgourg/class public.
3https://github.com/baudren/montepython public.

– 9 –

https://github.com/lesgourg/class_public
https://github.com/baudren/montepython_public


J
C
A
P
0
3
(
2
0
2
0
)
0
0
8

Figure 2. RNN-BNN network training models for Pantheon sampler using activation functions (4.9)–
(4.12) from top (left) to bottom (right), respectively. Outside plot: the uncertainty contours at 1–2σ
are represented by blue color, the green line represent the mean data trained and the red color dots
are the real data. Inside plot: Loss plots were also created to show the mean absolute error loss over
the training epochs for both the train (blue color) and test (orange color) sets.

(vi) Calculation of µ(z). For each of our cosmological models, we consider now 2000 epochs
to redo (iv). Once we obtain the new predicted sampler, we perform the integration
in (3.3) to compute the functions µ(z) and E2(z) by using a specific dark energy EoS
in terms of z. The results for each model are given in figure 3.

Given the stochastic nature of our training algorithm for Pantheon sampler, some spe-
cific results may vary. We run our chain up to 100 times in order to obtain a homogeneous
result and to extrapolate the redshift up to z = 4, given as a result that the model learned the
problem, achieving a near zero error, at least to two decimal places. In figure 2, it is worth
noticing that for each activation function the training models seems to have converged. The
loss plots show good convergence behaviour, although somewhat bumpy. The model may be
good configured given no sign of over or under fitting and the learning rate or batch size may
be tuned to even out the smoothness of the convergence in this case. We change the activation
functions to improve our performance and reduce uncertainty contours. As it is expected,
uncertainty contours change with the activation functions due the change on the covariance
matrix. As a main result, the activation function (4.9) gives the better evolution to perform
our dark energy trainings. This result will be probed from a bayesian point of view in the
next section. According to the trainings (figure 3), we notice that unified dark fluids models
seems to be preferred at large redshift less than 1-σ in comparison to the standard models.

The models in figure 2 are in agreement of what it is expected of the activation functions:
ReLU is not implemented in models with one layer and neither in LSTM cells since their
unbounded values could easily explode. LSTM cells commonly use the sigmoid and Tanh
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Figure 3. Left: trainings for dark energy EoS: ΛCDM model (blue line), CPL model (green-dashed
line), GCG model (red line) and MGCG (yellow-dashed line) using the activation function (4.9).
Right: trainings for E2(z) for each model.

activation functions. Our results support the use of this last activation function in these
types of cells.

Our proposed RNN+BNN network algorithm for SNeIa is composed by 8 hyper-
parameters:

• Size=4, Epochs=1000, Layers=1, Neurons=100, Bathsize=10.

• A variational dropout composed by: an input z, a hidden state h and an output µ(z).

As a first tentative exploration, these DL parameters can be interpreted as the price we pay
in order to deal with a model-independent dark energy cosmology. Moreover, a homogeneous
sampler as SNeIa is not a complex model,4 therefore it only needs one layer as much, since we
do not require greater depth in the model. If we add more layers the computational cost is
unnecessary and can lead us to overfitting. Also, we notice that the number of neurons is high,
but it is important to remark that the dropout controls any overfitting that this can carried
out. Each of the latter hyperparameters can add complexity to the model, which can lead
us to overfitting (or underfitting), but none of them — at least for this homogeneous SNeIa
sampler) — can change drastically the covariance matrices, as the Af can indeed do it [51].

6 Bayesian versus deep learning significance

In this section we present a Bayesian model selection to describe the relationship between
the cosmological models described above and their DL trainings, the supernovae data and
the prior information about the free parameters. Using Bayes theorem [53] we can updated
the prior model probability to the posterior model probability. Additionally, when we com-
pare models, the evidence can be used to evaluate the model’s evolution using the sampler
available. The evidence can be denoted by

E =

∫
L(θ)P (θ)dθ, (6.1)

4More complex models, e.g natural language, requires thousands of inhomogeneous data.
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where θ is the vector of free cosmological parameters for each model and P (θ) is the prior dis-
tribution of these parameters. The evidence can be computed with several methods [54, 55],
but for our purpose we applied a multinested sampling algorithm [56] which has proven
practicable in cosmology applications [57].

6.1 Information criteria results

Since we are working with four cosmological models with different number of cosmological
parameters, the simplest procedure to compare them is the likelihood ratio test, which can
be applied when the simple model is nested within a more complex model [59]. The quantity
2 lnLsimple/Lcomplex, where L is the maximum likelihood of the model under consideration,
is approximately chi-squared distributed and Jeffreys’s scale can be used to look up the
significance of any increase in likelihood against the number of extra parameters introduced.
Also, due the number of free cosmological parameters and data sampler, we consider two
statistical criterias in order to compare our DL architecture results (tables 2, 3, 4, 5) with
the observational ones (table 1).

The Akaike information criterion (AIC) is defined as

AIC = −2 lnL+ 2k , (6.2)

where L is the maximum likelihood and k the number of parameters of the model. The best
model is the model which minimizes the AIC. Usually models with few parameters give a
poor fit to the data and hence have a low log-likelihood, while those with many are penalized
by the second term in (6.2).

The Bayesian information criterion (BIC) is defined as

BIC = −2 lnL+ k lnN , (6.3)

where N is the number of data points used in the fit.

6.2 Evidence criteria results

We compute the logarithm of the Bayes factor between two models Bij = Ei/Ej , where
the reference model (Ei) with highest evidence is the ΛCDM model. To compare between
ΛCDM and the other models we use Jeffreys’s scale [58]: if lnBij < 1 there is not significant
preference for the model with the highest evidence; if 1 < lnBij < 2.5 the preference is
substantial; if 2.5 < lnBij < 5 it is strong; if lnBij > 5 it is decisive.

The results of these analyses are reported in table 6. We compute AIC and BIC sta-
tistical criteria for each activation function and cosmological model. Each value is compared
with the pivot ΛCDM model using the trained RNN+BNN. From here we notice that the
activation function Tanh is statistically better in comparison to the others. Also, in order
to set a conclusive result in regards to this activation function we design a Bayesian portrait
(see figure 4) according to the number of free EoS parameters using the values given in ta-
ble 6. The qualitative color regions are detailed according to the Jeffreys’s scale (table 7).
We denote the number of free cosmological parameters for each model in the y-axes and the
evidence in x-axes. From figure 4 the yellow region indicates that if the models fall there, it
means that the trainings used for these models have a statistical preference over ΛCDM. All
our models are in this region. The more advanced towards the yellow region are the models,
a strongest evidence against ΛCDM appears. Notice that the MCG model using a Tanh
activation function is the best of all. ReLU and Tanh functions compete with each other
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Model Parameterisation χ2
min − lnLmin

ΛCDM w = −1 1027 513.430

CPL w(z) = w0 +
(

z
1+z

)
wa. 1028 514.237

GCG w(z) = − bs

bs+(1−bs)( 1
1+z )

−3(1+α) 1050 525.085

MCG w(z) = B − Bs(1+B)

Bs+(1−Bs)( 1
1+z )

−3(1+B)(1+α0) 1028 514.248

Table 1. Results for the dark energy parameterisations with best fits parameter using observational
Pantheon sampler. In 3-column it is show the χ2

min for each model and in 4-column the likelihood for
each model.

Model Activation function χ2
min

ΛCDM

AfTanh
= tanh(x) 606

AfReLU
=

{
0 for x ≤ 0,

x for x > 0.
647

AfELU
=

{
α(ex − 1) for x ≤ 0,

x for x > 0,
570

AfSELU
=

{
αλ(ex − 1) for x ≤ 0,

x for x > 0,
408

Table 2. χ2 analyses for ΛCDM using the activations functions (4.9), (4.10), (4.11) and (4.12).

Model Activation function χ2
min

CPL

AfTanh
= tanh(x) 932

AfReLU
=

{
0 for x ≤ 0,

x for x > 0.
971

AfELU
=

{
α(ex − 1) for x ≤ 0,

x for x > 0,
741

AfSELU
=

{
αλ(ex − 1) for x ≤ 0,

x for x > 0,
559

Table 3. χ2 analyses for CPL using the activations functions (4.9), (4.10), (4.11) and (4.12).

(the blue and red circles overlap for CPL model and GCG model), but for MCG model with
a ReLU activation function shows a better evidence in comparison to ELU function. SELU
is definitely far behind in this scale.
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Model Activation function χ2
min

GCG

AfTanh
= tanh(x) 1314

AfReLU
=

{
0 for x ≤ 0,

x for x > 0.
1367

AfELU
=

{
α(ex − 1) for x ≤ 0,

x for x > 0,
1055

AfSELU
=

{
αλ(ex − 1) for x ≤ 0,

x for x > 0,
753

Table 4. χ2 analyses for GCG using the activations functions (4.9), (4.10), (4.11) and (4.12).

Model Activation function χ2
min

MCG

AfTanh
= tanh(x) 4243

AfReLU
=

{
0 for x ≤ 0,

x for x > 0.
1651

AfELU
=

{
α(ex − 1) for x ≤ 0,

x for x > 0,
1180

AfSELU
=

{
αλ(ex − 1) for x ≤ 0,

x for x > 0,
922

Table 5. χ2 analyses for MCG using the activations functions (4.9), (4.10), (4.11) and (4.12).

Model
AfTanh

AfReLU
AfELU

AfSELU

lnBij AIC BIC lnBij AIC BIC lnBij AIC BIC lnBij AIC BIC

CPL 5.825 957.29 940 5.819 996.29 979 5.213 766.29 749 5.098 584.29 567

GCG 6.580 1339.29 1322 6.597 1392.29 1375 6.209 1080.29 1063 5.879 778.29 761

MCG 8.204 1682.61 1661 6.930 4274.61 4253 6.444 1211.61 1190 6.278 953.61 932

Table 6. Bayesian Deep Learning Pantheon results for the dark energy parameterisations using the
activations functions (4.9), (4.10), (4.11) and (4.12). In each the subcolumn it is show the Bayes
factor lnBij , AIC (6.2) and BIC (6.3), respectively. Each value is compared with the pivot ΛCDM
model using the trained RNN+BNN.

lnBi0 Strength of evidence Color region

> 5 Strong evidence for model i Yellow

[2.5, 5] Moderate evidence for model i Red

[1, 2.5] Weak evidence for model i Blue

[−1, 1] Inconclusive Green

Table 7. Jeffreys’s scale. The Bayes factor of CPL, GCG and MCG parameterisation were computed
in comparison to the model 0, ΛCDM. We used the information from table 6.
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Figure 4. Bayesian portrait according to the number of free EoS parameters using the values given
in table 6. The qualitative color regions are detailed in table 7. Each color in the plot legend indicates
the activation function used to calculated the value lnBij in comparison to ΛCDM model. The MCG
model is represented at level ν = 5 and CPL and GCG model at ν = 4.

6.3 Statistical predictions using RNN+BNN network results

In this section we present the parameter spaces using the Tanh activation function eq. (4.9)
according the results obtained in the latter sections. We proceed to compute the confidence
regions for the models described in section 2 using our deep learning Pantheon sampler. In
figures 5, 6, 7, 8 are reported the confidence contours and posteriors for each cosmological
model, respectively. Also we reported in tables 8, 9, 10, 11 the best fit parameters within 95%
C.L. The results obtained from these analyses show a better χ2 using a deep learning trained
sampler than about 1 unit in comparison to the pivot cosmological model. Furthermore, the
tension at low redshifts seems to be reduced using this new sampler, alike the observational
sampler, where a significant tension emerges at these z scales.

On one other hand, model uncertainty is indispensable for the RNN. With model
confidence at hand we can treat inputs and specific cases explicitly, e.g. in a scenario of
classification a model can return a result with high uncertainty. In our RNN+BNN we used
a specific Monte Carlo dropout which is supported by the Bayesian evidence. As an extension,
several dropouts have been used in the literature [60] in order to obtain the predicted values
for the network. Some of them have insensible values for the observational data, and the
others have the same inconvenient but with the additional information that the models are
uncertain about their predictions. In our case, with the Bayesian evidence developed, our
selected dropout do not affect directly the form of the confidence contours in comparison to
the activation function Af . Each proposed Af can indeed change these confidence regions
since they directly change their covariance matrix [51]. Notice that our results using evidence
are aligned with the reported in [60] with different dropouts.

On the other hand, a strong case of support for our RNN+BNN network is the following:
notice that our selected AfTanh

is bounded in comparison to the rest of activation functions.
This is a hint to follow a physical interpretation over the trend of an observable: since we are
using a sampler of SNeIa, we can expect that the observed differences in peak luminosities
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Ωm

-19.5 -19.4 -19.4

M=−19.4+0.0109
−0.0109

0.233 0.308 0.383

Ωm=0.299+0.0216
−0.023

0.617 0.692 0.767

ΩΛ=0.701+0.023
−0.0216

Figure 5. Left: confidence contours, Right: posterior, for ΛCDM model using Deep Learning Pan-
theon sampler.

Parameters Best-fit mean±σ 95% lower 95% upper

M −19.43 −19.43+0.011
−0.011 −19.45 −19.4

Ωm 0.298 0.299+0.022
−0.023 0.255 0.344

ΩΛ 0.702 0.701+0.023
−0.022 0.656 0.745

Table 8. Best fits values for ΛCDM model using Deep Learning Pantheon sampler.

of SNeIa are very closely correlated with observed differences in the shapes of their light
curves, i.e dimmer SNeIa decline more rapidly after maximum brightness, while brighter
SNeIa decline more slowly. This behaviour is not given for ReLU and SELU, which makes
them non-physical options of activation functions for our training according to the SNeIa
trend. Moreover, Tanh and ELU can have a physical trend with the SNeIa, but ELU exhibit
a higher error and weak evidence in comparison to Tanh.

Notice that AIC is an estimate of a constant plus the relative distance between the
unknown true likelihood function of the trained sampler and the fitted likelihood function
of the cosmological model, so lower AIC means a model is considered to be closer to the
truth. And the BIC is an estimate of a function of the posterior probability of a model being
true, under a certain Bayesian setup, so that a lower BIC means that a model is considered
to be more likely to be the true model. According to these ideas and our information
criteria analyses, presented in table 6, SELU and ELU gives the lower AIC and BIC values in
comparison to Tanh and ReLU. But, since SELU and ELU does not have a physical trend for
our observable sample consider, as we explained above, Tanh is the only activation function
with a better penalized-likelihood criteria.

– 16 –



J
C
A
P
0
3
(
2
0
2
0
)
0
0
8

0.111

0.118

0.125

ω
cd
m

-1.36

-0.94

-0.523

w
0 f
ld

-2.39

-0.697

1

w
a
f
ld

-19.5

-19.4

-19.2

M

63.9

69.2

74.4

H
0

0.248

0.299

0.35

Ω
m

0.65 0.701 0.752
Ω0fld

2.14 2.22 2.3
100 ωb

0.65

0.701

0.752

Ω
0 f
ld

0.111 0.118 0.125
ωcdm

-1.36 -0.94 -0.523
w0fld

-2.39 -0.697 1
wafld

-19.5 -19.4 -19.2

M
63.9 69.2 74.4

H0
0.248 0.299 0.35

Ωm

2.14 2.22 2.3

100 ωb=2.22+0.0254
−0.0258

0.111 0.118 0.125

ωcdm=0.119+0.00236
−0.00228

-1.36 -0.94 -0.523

w0fld=−0.985+0.135
−0.173

-2.39 -0.697 1

wafld=−0.158+0.872
−0.54

-19.5 -19.4 -19.2

M=−19.4+0.0523
−0.0673

63.9 69.2 74.4

H0=68.6+1.52
−2.02

0.248 0.299 0.35

Ωm=0.3+0.0181
−0.0154

0.65 0.701 0.752

Ω0fld=0.7+0.0154
−0.0181

Figure 6. Left: confidence contours, Right: posterior, for CPL model using Deep Learning Pantheon
sampler.

Parameters Best-fit mean±σ 95% lower 95% upper

100 ωb 2.219 2.223+0.025
−0.026 2.172 2.275

ωcdm 0.119 0.119+0.002
−0.002 0.114 0.123

w0 −1.024 −0.985+0.14
−0.17 −1.284 −0.641

wa 0.064 −0.158+0.87
−0.54 −0.003 0.015

M −19.4 −19.39+0.052
−0.067 −19.52 −19.26

H0 68.41 68.64+1.5
−2 65.03 72.47

Ωm 0.301 0.300+0.018
−0.015 0.265 0.334

Ω0 0.699 0.700+0.015
−0.018 0.667 0.735

Table 9. Best fits values for CPL model using Deep Learning Pantheon sampler.
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Figure 7. Left: confidence contours, Right: posterior, for Generalised Chaplygin Gas (GCG) model
using Deep Learning Pantheon sampler.

Parameters Best-fit mean±σ 95% lower 95% upper

H0 55.07 55.67+0.12
−0.67 55 56.96

100 ωb 0.540 0.848+0.061
−0.35 0.5 1.548

ωcdm 0.001 0.004+0.001
−0.004 1.499× 10−7 0.011

α 0.7628 0.926+0.19
−0.26 0.4753 1.396

bs −1.494 −1.676+0.42
−0.26 −2.429 −1.012

Ωm 0.018 0.039+0.007
−0.019 0.016 0.071

Table 10. Best fits values for GCG model using Deep Learning Pantheon sampler.
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Figure 8. Left: confidence contours, Right: posterior, for Modified Chaplygin Gas (MCG) model
using Deep Learning Pantheon sampler.

Parameters Best-fit mean±σ 95% lower 95% upper

100 ωb 2.224 2.224+0.025
−0.025 2.175 2.273

ωcdm 0.118 0.118+0.002
−0.002 0.114 0.122

α0 1.089 17.35+−9.6
−37 0.002 0.002

Bs −1.901 10.96+−12
−36 −0.013 −0.013

M −19.4 −19.4+0.021
−0.025 −19.44 −19.35

H0 68.35 68.34+0.77
−0.98 66.71 70.14

Ωm 0.301 0.301+0.013
−0.011 0.277 0.323

Ω0 0.699 0.699+0.011
−0.013 0.677 0.722

Table 11. Best fits values for MCG model using Deep Learning Pantheon sampler.
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7 Conclusions

In this work we have trained a new neural network to parameterise efficiently dark energy EoS
coming from different models: specifically we have trained the standard ΛCDM, CPL and the
unified dark fluids with Chaplygin gas characteristics. With these kind of parameterisations
and their neural training, we reproduced the cosmic accelerated expansion currently observed.
This novel technique offers the combination of two architectures: (1) Recurrent Neural Net-
works (RNN) and (2) Bayesian Neural Networks (BNN), which we called BNN+RNN neural
network. In comparison to other proposals reported in the DL literature [52], with our pro-
posed network we can train the observational data (which only consist on one input type z
and one output type µ(z)), obtain trained data and compute their propagation error with
a Bayesian architecture and the way we perform the network allows to the algorithm to be
computational faster. Also, a direct physical trend related to the activation functions can
be followed in the case of homogeneous sampler as SNeIa. In these kind of processes, the
quality in the density of data points is important. In such case, our choice of Af can be
viewed as a choice of a prior since it is relevant in regions where the training data is sparse
(or even non-existent) and the resulting trained DL sampler explicitly depends of this choice.
Therefore, the described scheme is tested with SNeIa data available today. Finally, our new
method has a wide range of applicability to many problems in cosmology, for example to ex-
plore new constrains on cosmographic parameters. This latter is a working project currently
in progress.
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