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ABsTRACT: This paper presents a scintillation detector fault diagnosis method based on wavelet
packet analysis and multi-classification support vector machine(multi-SVM). In the proposed
method, a wavelet packet algorithm is used to analyze waveform characteristics of output signals
caused by different faults of detectors, then characteristic vectors can be extracted. The multi-SVM
is employed to establish a fault recognition model and fault types can be concluded. Performances
of the proposed method are validated by experimental data obtained from the plastic scintillation
detector for the single fault diagnosis and hybrid fault diagnosis. The experimental results show
that faults can be diagnosed automatically and quickly by analyzing signal waveform features.
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1 Introduction

Various nuclear detectors, which are essential sources of nuclear radiation information and important
devices for radioactive monitoring of nuclear facilities, are commonly used to measure intensities
of radiations in a nuclear power plant [1]. As ones of them, scintillation detectors are important and
widely used in detecting of particles. Their reliabilities have critical impacts on the safety of radiation
sites [2]. However, bad conditions, such as intense radiation damages, high temperatures and strong
humidities, will accelerate aging probes and result in frequent instrument failures [3]. As always,
manual troubleshootings are cumbersome and time-consuming, and followed misjudgements may
cause radiation accidents. Consequently, it is necessary to explore an efficient and stable fault
diagnosis method which monitors operating data of scintillation detectors and attempts to locate
faults in time, then immediate measurements to prevent the system from catastrophic accidents
would follow.

Fault diagnosis can improve maintenance efficiency and reduce maintenance costs [4]. Cur-
rently, numerous achievements have been obtained regarding the fault diagnosis of nuclear power
industries, especially nuclear power plants [5].Reference [5] propose an online diagnostic method
based on model-based for faults. Faults in the system are detected and diagnosed by checking con-
sistency between the observed behavior and the predicted behavior through the model. However,
practical applications of model-based methods are very limited due to the requirement of an accurate
model that is always hard to obtain in practice. In reference [6], a data-driven method for faults is
proposed. The empirical model is used to estimate true values of new measurements, and faults
are detected and diagnosed by evaluating the estimation residuals. In reference [7], signal-based
methods make decisions by comparing features(e.g., spectrum) extracted from a signal of desired
normal baseline values. Reference [8] reports on the application of Principal Component analysis



(PCA) for pulse-shape discrimination (PSD) of scintillation radiation detectors. It depicts great
advantages of automatic extraction of the pulse-shape characteristics of PCA analysis. However,
PCA cannot identify the classification of the samples and expands the difference among all samples.
In this paper, a fault diagnosis model is proposed for scintillation detectors based on wavelet
packet analysis and multi-classification support vector machine (multi-SVM). With great advantages
of decomposing and reconstructing signals, of performing the multilevel frequency division of the
whole band, of displaying signal characteristics at different levels, the wavelet packet analysis
based on wavelet transform has wide applications in analog circuits, sensors, mechanical fault
diagnosis and signal noise reduction [9]. The multi-SVM, which is based on machine learning,
is an excellent classifier of the fault diagnosis of systems and equipments [10]. Deriving from a
mathematical model in scintillation detectors, there are four types of faults: scintillator aging fault,
photomultiplier fault, resistor and capacitor (RC) circuit fault, and radiation damage fault. By using
wavelet packet algorithm, current signals of faults could be decomposed and analyzed. Energy
characteristic vectors were calculated by using wavelet decomposition coefficients, which can tell
the different changes of waveform characteristics of output signals [11]. A multi-SVM diagnosis
model is established by recognizing the four types of scintillation detectors faults through the energy
vectors. This model is practical in engineering application in proof of the training of history data
and the recognition of monitoring data.The validity of this model is verified through simulations.

2 Methods

As a result of complexities and diversities of scintillation detector faults, traditional classification
methods can bare determine the existence of a fault. However, these methods can not accurately
locate faults and catalog the types. In this study, a mathematical model, which is based on
wavelet packet analysis and multi-SVM method, is proposed to detect and classify various faults of
scintillation detectors.

2.1 Modelling for normal and fault detector output signals

The plastic scintillation detector signal is a series of random pulse signals with specific shapes. Time
interval of adjacent pulses abides by the rule of exponential distribution, the output pulse amplitude
and noise followed the Gaussian distribution have statistical characteristics, and the output pulse
waveform can be approximately expressed by the double exponential function. Equation (2.1) shows
the function representation:

vo(r) = u(r) - A(e™™ = e7H/™) + (1), 2.1

where u(t) indicates the step function; A is the signal amplitude; v(z) is the white noise superimposed
on the signal; 7; and 7, are the fast and slow time constants of the double exponential function
respectively, both of which determined the decay time jointly. By using equation (2.1) to set the
three parameters of signal amplitude, white noise and decay time, the mathematical model of four
types of faults which are scintillator aging, photomultiplier, RC circuit and radiation damage faults
is established.

The scintillation detector ages with operatings under high-temperature surroundings for a long
time. Moreover, the luminous efficiency of scintillator gradually decreases, and the output of light



gradually reduces. In this model, 20% reduction of light outputs is catalogued as the aging fault,
which manifests changes on the pulse height and corresponds to A in equation (2.1). For providing
sufficient samples in the multi-SVM, this experiment simulates 100 sets of fault signals from the
range 35% to 80% of the original efficiency.

The photomultiplier tube is an electric vacuum. Its performances, such as sealing capability,
amplification ability, and current noises, deteriorated as situations like external force impact, the
photomultiplier tube seat or pins are damp or stained and the strong-radiation field. Specially, its
noise caused by dark currents increases dramatically. Citing an no-exceeding 10 times of dark
currents instance in the study, the photomultiplier fault is defined as noises exceeding the deadline
of that under normal working. Furthermore, in this model, the range of 10 to 15 times of an increase
of noise is catalogued as the photomultiplier fault, which manifests changes on the noise increase
and corresponds to v(¢) in equation (2.1). This experiment simulates 100 groups of fault signal
waveform data.

The scintillation detector analogy output circuit can be equivalent to an output circuit consisting
of an RC and a preamplifier. The detector converts the incident particle energy into a charge number,
forms a current pulse, and outputs a voltage pulse through the RC loop impedance. In this method,
50% changes of the component values in R or C are considered to be a soft fault model [12]; That
is, a RC fault is defined in following three cases like RC value exceeding or equal 4 times, RC value
shrinking by 3/4 or more, RC value tending to infinity. This experiment simulates a 100-group RC
value including all three cases which can be set through 71 and 7 in equation (2.1).

In addition, there are two aspects of changes of a scintillation detector after a long term
under radiation: an increasing of noise output and a decreasing of light output. Under normal
circumstances, a probe cannot meet the radiation resistance requirement if a 15% reduction luminous
efficiency of the scintillator. Consequently, the radiation damage fault is characterized by two
conditions: a reduction from the range 35% to 85% of the original luminous efficiency and an
increasing of more than 10 times of noise outputs. The former one could be set through A
in equation (2.1), the other through V(t) either. This study simulates 100 sets of fault signal
waveform data.

According to the variation characteristics of output signal waveforms caused by the typical four
types of faults described above, the pulse amplitude of the signal, the energy resolution, the white
noise standard deviation, the expectation, and the fast and slow time constants are equal to 1 V, 15%,
0.005, 0, 5, and 30, respectively [13]. Comparisons of the various faults shown in figure 1 with
one normal nuclear signal in one single pulse are simulated. Among them, the aging fault reflects
a signal waveform where the luminous efficiency drops 50%. The photomultiplier fault reflects an
another waveform where noises are 10 times higher than the usual. The RC fault (a) presents the
value of RC has quadrupled, RC fault (b) presents it has shrunk by 3/4, and RC fault (c) presents
it tends to infinity. Furthermore, the radiation damage fault reflects one signal waveform in both
cases where the luminous efficiency became 55% and the noise doubled 5 times.

2.2 [Extracting characteristic vectors by wavelet packet analysis

The detector output signal is decomposed into approximate and detail coefficients by the wavelet
packet algorithm which extract the eigenvectors of nuclear signals. Different wavelet basis functions
induce different results, even for identical output signals. In order to determine one suitable function,
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Figure 1. Comparisons of various faults signals with one normal nuclear signal.

some important rules must be obeyed, such as the self-similarity principle, the discriminant function
and the support length. Therefore, the db4 wavelet basis function combined with characteristics of
detector output signals is fully qualified for the high regularity with comprehensive considerations of
the relationship between support length and vanishing moment. This function performs a three-layer
decomposition of random nuclear signals of nodes which gives coefficients of different frequency
bands sequently, then energies of nodes are calculated as characteristic vectors. As a fault occurs,
energies of each node change, the fault signal can be distinguished from normal one. Consequently,
the selected has not only the compact support feature, also good time-frequency characteristics.

The wavelet packet algorithm decomposes the output signal of scintillation detectors, and steps

for signal characteristic extraction are as follows [9]:

(a) The detector output signal x is normalized:

X' =D [x-EX)],

2.2)

where x represents the detector output signal sequence; E (X) is the expectation of x; and D,

is the standard deviation of x.

(b) The three-layer wavelet packet decomposition is performed on x’, and the decomposition
coeflicient vectors of the eight different frequency bands of the third layer from low to high

are respectively represented by xéo, xé 1 xéz, x§3, xé 4>

’/ ’ ’
X350 X360 X37-



(c) Total energyEs,, of each frequency band signal is calculated according to equation (2.3):

Esy = / esil? de = > Jeai (2.3)
j=1

where n is the number of decomposition coefficients in each band.

(d) Normalize to Eg,,, and a characteristic vector T is constructed.

Es,,
Es, = =) (2.4)
i=0 ES3L
T = ES:;()’ ES319 ES325 ES33’ ES34’ ES357 ES367 ES’;7:| b (2‘5)

Table 1 gives the set of characteristic vectors obtained by the wavelet packet algorithm before
and after faults happened in cases shown in figure 1.

Table 1. Normalized table of eigenvectors.

Detector state E K E m m E E E
Normal 0.99990 0.00511 0.00510 0.00504 0.00502 0.00506 0.00506 0.00513
Aging fault 0.99977 0.00804 0.00820 0.00819 0.00800 0.00797 0.00812 0.00797
Photomultiplier
fault 0.98883 0.05605 0.05555 0.05510 0.05657 0.05628 0.05755 0.05709

RC fault (a) 0.99998 0.00220 0.00218 0.00223 0.00222 0.00214 0.00221 0.00219
RC fault (b) 0.99706 0.02883 0.02893 0.02916 0.02921 0.02867 0.02853 0.02929
RC fault (c) 0.99999 0.00087 0.00087 0.00086 0.00088 0.00089 0.00088 0.00086

Radiation damage
fault 0.96724 0.09574 0.09561 0.09613 0.09773 0.09636 0.09362 0.09632

Table 1 shows that the energy of detector signals does not change apparently in the first
column (the first low frequency band) with the comparation between normal conditions and faulty
conditions. However, the energy changes in the high-frequency band are more pronounced because
of most of the energy concentrating at the first low-frequency band.

2.3 Fault diagnosis based on multi-classification support vector machine

Multi-classification support vector machine (multi-SVM) is a machine-learning algorithm based
on statistical learning machine theory [14]. Innovations of the theory are saving spaces and
computational complexity in practical applications for the machine-learning with small samples.
The basic principle of the theory is structural risk minimization. It can ensure that the number of
training samples is small enough, and the training ability is optimized, which speeds up the operation
and makes up for disadvantages of the traditional learning machine such as large computations,
slow convergence and large data samples. According to the principle of that theory, the multi-SVM
method seeks the best compromise between the model complexity and the learning ability based on
limited sample information to obtain the best generalization ability, thereby facilitating the quick
and accurate classification and locating faults in nuclear detectors [15]. It is very suitable for
classifying nuclear random signals.



For separable samples: (x;, y;),i = 1,2,---,N,x; € R",y; € {—1,+1}, an optimal separating
hyperplane H: o - x + b = 0 can accurately divide the samples into two categories. The support
vectors are defined as two types of sample vectors nearest to the hyperplane. Meanwhile, the
summation of distance between the two types of support vectors and hyperplane is 2/||w||. ® is a
normal vector of hyperplane H. The classification problem is creating an optimal hyperplane which
can be transformed to an optimization problem [16]:

1
yi((@-x)+b)=1,i=12---,N; min = |o|? (2.6)
\/_/2
w,b

where b is the threshold. The constraint condition shows the distance between each sample and the
optimal hyperplane H is greater than or equal to 1. However, data samples in the training dataset
are linearly inseparable for most application cases.

Therefore, a slack variable E; is substituted into multi-SVM and a penalty parameter C is added
to minimize &;. Thus, the objective function can be changed to

N
1
yi((@-x)+b) 2 1=Epi= 1,2+, N; min_ 2 flol”+C ) & 2.7
2 i=1
w,b

This problem can be solved using the Lagrange multiplier method. The corresponding constraint
condition isZi’\; L%y = 0,0; > 0, where a; is the Lagrange multiplier. For nonlinear cases,
¢(x) can be applied to map samples in the low-dimensional space to the high-dimensional space,
where samples can be separated linearly in the high-dimensional space. Define the kernel function
K(xi, x7) = ¢(x:)T §(x;), the optimized objective function can be expressed as:

N N
L= Z a; — % Z OL,'OLJ'yiyjK (x,-, xj) (28)
i=1 ij=1

Usually, the Gaussian kernel function is chosen as the kernel one. Main advantage of this function is
that it can map the samples to higher dimensional spaces. Compared with other kernel functions, it
needs less parameter than others, these parameters effectively reduce the computational complexity
of numerical values. There is afact: plastic scintillation detectors have fewer fault characteristics and
moderate sample sizes. The chosen function is more suitable for classifying fault signals according
to the fact. Penalty parameter C and kernel parameter y(y = 1/(2 - 62)), are important factors that
significantly influence the performance of multi-SVM. They must be optimized in advance.

K (x;,x;) = exp 52

(2.9)

2.4 Multi-SVM -based classification strategy

Multi-SVM is an essentially binary classifier [17].In the case of single fault diagnosis, the multi-
SVM establishes only one classifier. In another case of dealing with multifaults, the number of
classifiers must be equal to that of fault modes minus one. To improve its applicability, several
methods have been suggested for extending multi-SVM, including one-versus-one (1-v-1) and one-
versus-rest (1-v-r) [18, 19]. In this research, multi-SVM using 1-v-r SVM strategy is designed
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Figure 2. Multi-SVM-based classification strategy.

to realize hybrid fault diagnosis for a plastic scintillation detector (shown in figure 2). Greater
values indicate a further distance between input samples and the classification hyperplane, and
classification results are more reliable. There are four fault types to be classified: scintillator aging
fault, photomultiplier fault, RC fault and radiation damage fault.

SVM1 is trained to separate the scintillator aging fault from the other three fault types. As
an input is characterized as the aging fault, a correlated output of SVMI is set to —1 then the
classification process ends; Otherwise, the output is set to +1, the process continues and transfers
the output to SVM?2.

SVM2 is trained to classify the photomultiplier fault from the rest three types. Taken the
transferred output as a new input, SVM2 determines an output to be —1 and the process ceases if
the input owns the feature of photomultiplier fault, or the output is set to +1, and the process keeps
moving forward.

SVM3 is for classifying RC fault and radiation damage fault. Continued with previous step,
SVM3 assorts faults into two kinds due to their features, two values are given as +1 and —1, —1
indicates the RC fault type and +1 indicates the rest one, then the process quits.

2.5 Fault diagnosis mechanism

Wavelet packet analysis determines characteristics of scintillation detectors’ faults and constructs
energy vectors. Wavelet transform is capable for time-frequency analysis and suitable for non-
stationary fault signals, then multi-SVM gives a diagnosis model to solve the contradiction between
the learning ability and the generalization ability of machine learning. Excellent learning and
classification accuracy can be achieved, especially for small sample problems. The fault diagnosis
mechanism is shown in figure 3. The key steps are described as follows:

Step 1: The db4 wavelet basis function is applied for performing three-layer analysis of fault
signals. A specific process follows equations (2.2) to (2.5) for obtaining one energy vector
which reflects fault characteristics.

Step 2: All vectors gather around and construct a database according to step 1. These vectors are
then used to train a model from Multi-SVM.

Step 3: The after-training model gives a detail classification at a new fault signal’s arrival on one
hand; an energy vector of the new signal is extracted by the function in step 1, calculated and
saved to the database for further training on the other hand. This process would start over
and over while a new signal comes.
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Figure 3. Fault diagnosis mechanism.

3 Results and discussion

3.1 Single fault diagnosis

Single fault diagnosis is the basis. When a fault occurs, output signal waveforms(n is the number
of faults) of the (n+1)*100 plastic scintillation detector are simulated before and after the fault, and
the eigenvectors are extracted by the wavelet packet algorithm according to variation characteristics
of the waveforms. The eigenvectors of normalized fault signals and that of the normal signal are
combined into a single fault diagnosis data sample set. 50% samples are selected for training the
multi-SVM diagnostic model, and the remains are used for testing and performing fault diagnosis.
The diagnostic accuracy is obtained through dividing the correct number of diagnosis groups by
the total number of simulation samples. Table 2 to 5 presents the single fault diagnosis results.

Table 2. Aging fault diagnosis.

Scintillator  Correct ) . Scintillator  Correct . .
. Diagnostic . Diagnostic
luminous sample luminous sample
efficiency % number accuracy o efficiency % number accuracy o
80 184 92 55 200 100
75 186 93 50 200 100
70 192 96 45 200 100
65 200 100 40 200 100
60 200 100 35 200 100
Table 3. Photomultiplier fault diagnosis.
Noise becomes Diagnostic Noise becomes Diagnostic

n times the original accuracy % n times the original accuracy %

n=10 100 n=13 100
n=11 100 n=14 100
n=12 100 n=15 100

According to the data in table 2 to 5, if a fault occurs, the diagnostic accuracy of plastic
scintillators is above 92% due to the aging problem, and it will gradually increase as the luminous
efficiency decreasing for the same reason. The diagnostic accuracy of the photomultiplier, RC, and
radiation damage faults are 100%.



Table 4. RC fault diagnosis.

RC becomes Diagnostic RC becomes Diagnostic
n times original accuracy % n times original  accuracy %
n=1/4 100 n=4 100
n=1/5 100 n=>5 100
n=1/6 100 n==6 100
n=1/7 100 n=7 100
n=1/8 100 n=2_8 100

n=0 No output signal n tends to infinity 100

Table 5. Radiation damage fault diagnosis.

Scintillator Diagnostic accuracy %
“ ,1 ao 10 times 11 times 12times 13 times 14 times 15 times
luminous
more more more more more more
efficiency % . i i . . .
noise noise noise noise noise noise
35 100 100 100 100 100 100
45 100 100 100 100 100 100
55 100 100 100 100 100 100
65 100 100 100 100 100 100
75 100 100 100 100 100 100
85 100 100 100 100 100 100

3.2 Hybrid fault diagnosis

In real work conditions, plastic scintillation detectors may have a single fault, and sometimes
multifaults may overlap each other. Consequently, analyzing the multifault mixing situation is
necessary.Compared with single fault diagnosis, the hybrid one is more complex. As multiple
faults superimposed on each other, the output signal waveforms are extracted by wavelet packet
algorithm, then a multi-SVM model is established after the normalization to perform fault diagnosis.
Firstly, this simulation experiment performed a mixed fault diagnosis of every two combining of four
types. Figure 4 to 6 exhibits the various diagnostic results. Taking a combining of the scintillator
aging fault and the photomultiplier fault for instance, the diagnosis results contains 10x6 groups
(figure 4a), wherein an increase of noises caused by the photomultiplier fault has little effect on
diagnostic accuracy, the luminous efficiency caused by the scintillator aging fault reduced, and it
has impact on the diagnostic accuracy. That is, the diagnostic accuracy gradually increase as the
scintillator aging problem gets worse. For the apparent features of faults, fault signals are easily
distinguished from normal ones. When the luminous efficiency reduced to 70%, the diagnostic
accuracy reaches 100%. However, the accuracy will fluctuate as a reduction of the luminous
efficiency to the range of 65% to 50% due to the similarity between the normal waveform and
the combined one, this combined one comes from the aging fault and the photomultiplier fault.
Futhermore, the similarity may lead misclassfication. Figure 4b shows diagnostic results of a
combination of the scintillator aging fault and the RC fault. Obviously, the diagnostic accuracy has



a normal fluctuation when the luminous efficiency is in the range of 75% to 80%. If the RC value
is less than 1, the diagnostic accuracy slightly reduced as the luminous efficiency attenuated from
65% to 50%. The reason is that fault waveform characteristics also have a certain similarity with
the normal ones. Figure 5a shows diagnostic results of a combination of the scintillator aging fault
and the radiation damage fault, and fluctuations of the diagnostic accuracy with similar to that of
figure 4a. Figure 5b shows the diagnostic results of a combination of the RC fault and the radiation
damage fault. Although the diagnostic accuracy fluctuates greatly and decreases sharply when the
RC value reduced to 1/7 and which changes continuously, the final result will not be affected during
the whole process. Figure 6a shows the diagnostic results of a combination of the photomultiplier
fault and the RC fault. As portions of waveforms of RC circuits and the photomultiplier overlap
on each other, they have a certain similarity with normal signals. If the RC value reduced to 1/8
and noises are 10 times of the original, the diagnostic accuracy has a drastic slide, and with noises
multiplying, it rapidly rises to 100%. Figure 6b shows the diagnostic results of a combination of
the photomultiplier fault and the radiation damage fault. It is more difficult for diagnosis procedure
as the complexity of mixed signals from the radiation damage fault and the photomultiplier fault.
As the radiation damage problem becomes more serious, the diagnostic accuracy fluctuates, and
the average of that is still within a normal range. Secondly, this simulation experiment conducts
hybrid diagnosis of three types of faults as well: the scintillator aging, the photomultiplier, and the
RC circuit. Results of the three types are shown in figure 7, wherein the accuracy is represented
in different colors. When the three kinds overlapped, an increase both in noises and the RC value
which are caused by the photomultiplier fault and the RC fault respectively has little effect on the
accuracy. Futhermore, it will gradually increase as the RC value becomes smaller which is from
1/4 to 1/8. The significant parameter which has a great influence on the diagnostic accuracy is
the luminous efficiency. Generally, this influence is the same for the two combined faults. As
the luminous efficiency decreases, the diagnostic accuracy gradually increases. However, there
is a conversion at the range of 65% to 50% of the luminous efficiency. This conversion leads
decreasing of the accuracy slightly. Results in figure 4 to 7 show that the average accuracy of hybrid
fault diagnosis is lower than that of the single one. However, the minimum of average diagnostic
accuracies with every combinations is still greater than 94%. This model can effectively diagnose
faults in most cases.

Table 6 shows the accuracy of partial hybrid fault diagnosis. The data in table 6 show that the
fault diagnosis method based on wavelet packet analysis and multi-SVM still has high diagnostic
accuracy while performing hybrid fault diagnosis, and which can effectively diagnose scintillation
detectors’ faults.

4 Conclusions

For the various faults of scintillation detectors, this paper took the plastic scintillation detector as an
example, discussed previous theories and experiments, proposed a fault detection model which is
based on the wavelet packet analysis and the multi-SVM through extracting the characteristic vector
of signals. This model identifies various faults through comparing the output signal waveform
of the scintillation detector under normal operating conditions and under typical fault conditions.
Numerous experiments show the model can quickly and accurately determine the fault types. Finally,
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Table 6. Part of the results of hybrid fault diagnosis.

Number Fault type Diagnosis Diagnostic accuracy
result (group) average Yo

1 Aging and photomultiplier 10x 6 97.93
2 Aging and RC 10 x 11 98.92
3 Aging and radiation damage 10 x 36 97.93
4 Photomultiplier and RC 6x11 97

5 Photomultiplier and radiation damage 6 % 36 96.01
6 RC and radiation damage 11 x 36 98.34
7 Aging, photomultiplier, and RC 10x6x11 96.2
8 Aging, photomultiplier, and radiation damage 10 X 6 x 36 94.87

it is suitable for the intelligent fault diagnosis of various digital nuclear detection instruments. Also
it has broad application prospects in the field of nuclear monitoring.
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