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Abstract
We compute the statistical distribution of index-1 saddles surrounding a given 
local minimum of the p -spin energy landscape, as a function of their distance 
to the minimum in configuration space and of the energy of the latter. We 
identify the saddles also in the region of configuration space in which they are 
subdominant in number (i.e. rare) with respect to local minima, by computing 
large deviation probabilities of the extremal eigenvalues of their Hessian. As 
an independent result, we determine the joint large deviation probability of 
the smallest eigenvalue and eigenvector of a GOE matrix perturbed with both 
an additive and multiplicative finite-rank perturbation.

Keywords: high-dimensional random landscapes, statistics of critical points, 
random matrix theory

(Some figures may appear in colour only in the online journal)

1.  Introduction

High-dimensional systems are typically associated to complex, highly non-convex energy 
landscapes, in which the number of stationary points (local minima, maxima or saddles) 
increases steeply with the dimensionality. Classifying these points in terms of their energy, of 
their stability and of their location in the underlying configuration space is a topic that is of 
interest in a large variety of fields, including disordered systems [1–15, 50], ecology and biol-
ogy [16–19], neural networks [20, 21], inference [22–26], game theory [27], string theory and 
cosmology [28, 29]. In many of these contexts, a crucial motivation for determining the dis-
tribution of stationary points is to understand how the energy functional is explored dynami-
cally, through algorithms that proceed via local moves in configuration space, biased towards 
lower-energy configurations. When metastable local minima proliferate, indeed, the dynami-
cal search of the global minimum (or optimal state) is likely hampered by the ruggedness and 
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glassiness of the landscape. In high-dimensional glassy systems, several features of the result-
ing slow dynamics (such as aging [39–41]) have been characterized in detail. However, it is 
still to large extent an open question [42, 43] how the system escapes dynamically from the 
metastable, trapping local minima via activated crossings of the surrounding energy barriers.

Addressing this question is notoriously challenging, as it requires to determine the ener-
getic cost of the paths in the landscape connecting different local minima. It is clear that a 
pivotal role in fixing such cost is played by the critical points lying along the path, in particular 
by the saddles: characterizing how the saddles are arranged with respect to local minima 
and how they are connected in configuration space is therefore crucial. Key questions in this 
respect are: given a local minimum, what is the number and what is the energy distribution of 
the saddles that lie at a fixed distance from it in configuration space? Which among these sad-
dles are geometrically connected to the minimum, meaning that there exist descending paths 
in the landscape that connect the saddle to the minimum? Do these saddles represent potential 
escape states for the system that is dynamically trapped in a metastable local minimum? 

For random landscapes, these questions can be approached within a statistical framework. 
The so called spherical models are prototypical incarnations of random landscapes, that allow 
one for explicit analytical results [1, 30–34], including mathematically rigorous ones [35–38]. 
The pure p -spin is the simplest model belonging to this class: the energy functional is in this 
case a monomial of degree p  with random coefficients and Gaussian statistics, defined on a 
sphere of large dimension N � 1. In this model the random fluctuations give rise to a rugged 
landscape, with an exponentially-large (in the dimension N) number N ∼ exp [NΣ+ o(N)] 
of stationary points, Σ being their ‘complexity’. These points are non-trivially distributed in 
terms of their energy and stability: local minima are typically confined below a certain energy 
level called the threshold, above which saddles of extensive index k = O(N) dominate (the 
index being the number of unstable directions in configuration space). More precisely, at 
any value of energy below the threshold one typically finds an exponentially-large number 
Nk ∼ exp [NΣk + o(N)] of saddles of arbitrary non-extensive index k = o(N). These saddles 
are distributed hierarchically, with complexities Σk that are strictly decreasing with k: the 
dominant (at the exponential scale in N) stationary points below the threshold are minima with 
k  =  0, followed by index-1 saddles, index-2 saddles and so on [2, 11].

Because of the large-dimensionality of configuration space, for any given local minimum 
of the p -spin landscape the saddles lie in overwhelming majority at very large distance from it 
in configuration space, and are geometrically disconnected to it. Those saddles that are close 
and connected to the minimum are atypical in the sense that they constitute an exponentially-
small (in N) fraction of the whole population: computing their complexity requires to condi-
tion explicitly to be nearby the reference minimum in configuration space. A calculation of 
this type was first performed in [45], where the constrained complexity of stationary points 
at fixed distance from a reference minimum was obtained through the replica formalism and 
within the so called annealed approximation (see also [46, 47] and the more recent [48]). More 
recently, the same results have been recovered within a quenched formalism exploiting the 
Kac–Rice formalism [44], and supplemented with the statistical analysis of the Hessian of the 
counted stationary points, that allowed to determine their stability. The stability analysis heav-
ily relies on a connection with random matrix theory [11, 49, 50]. For the p -spin model, it is 
found that the stationary points that are closer to the minimum are typically saddles of index-1 
connected geometrically to it, while those at larger distance are other local minima. As a con-
sequence, information on the statistics of the energy barriers surrounding the minimum can be 
extracted from the energy distribution of the nearby index-1 saddles.
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The information obtained in this way is however not fully complete, as it corresponds 
only to the saddles that are closest to the reference minimum. In other words, the calculation 
performed in [44] allows to identify only the saddles that lie in the region of configuration 
space where they are the typical stationary points (i.e. those having larger complexity). At 
larger distance from the reference minimum, it is likely that other index-1 saddles connected 
to the minimum are present, but are not traced as they have smaller complexity with respect 
to minima. The purpose of this work is to identify these saddles and determine their energy 
distribution and complexity.

To target the saddles in the regions of configuration space dominated by minima, we need 
to impose explicit constraints on the Hessian matrices of the stationary points we are count-
ing. These matrices have the statistics of a GOE matrix deformed with finite-rank perturba-
tions, that are generated by conditioning the stationary point to be at fixed distance from 
the reference minimum. Computing the complexity requires to determine the joint probabil-
ity distribution of the smallest eigenvalue of such deformed GOE matrix, and of the corre
sponding eigenvector. Random matrix ensembles deformed with low-rank perturbations have 
been widely investigated in the literature: extensive effort has been devoted in particular to the 
characterization of the eigenvalues transitions (named BBP transitions after Baik, Ben Arous 
and Péché [51]) occurring when outliers (or isolated eigenvalues) appear in the spectrum. 
For deformed Wigner matrices (in particular in the case of Gaussian entries), several results 
have been derived on the typical value of the isolated eigenvalues [52–56], on their fluctua-
tions [57–59] and on the typical value of the eigenvector projection along the direction of the 
perturbation [60, 61]. The large deviations of the isolated eigenvalue in the case of a determin-
istic additive perturbation have been determined in [62]. This result has been recently pushed 
forward in [63], by computing the joint large deviations of the isolated eigenvalue and of the 
projection of the corresponding eigenvector along the direction of the additive perturbation. 
This paper builds on [63] to extend the large deviation results to the case in which the GOE 
matrix is deformed with a combination of both an additive and multiplicative perturbations, 
which is relevant to characterize the statistics of the p -spin Hessian matrices at a critical point.

The paper is split into three parts: in the the first part (section 2) we present the results 
on the p -spin energy landscape. In the second part (section 3) we state the large deviation 
functions of the smallest eigenvalue and eigenvectors of a deformed GOE matrix in general 
form, and summarize the main steps of the derivation. The third part (section 4) is devoted to 
the derivation of these large deviation principles. The second and third parts of the paper are 
formulated in general terms, and can be read independently from the first. A more detailed 
summary of the structure of the paper is given at the beginning of each part. The conclusions 
are given in section 5.

2.  Part I: rare saddles in the landscape of the spherical p -spin model

In this first part of the work, we discuss how the complexity of index-1 saddles of the spherical 
p -spin model is obtained, and present the results of the calculation. In section 2.1 we summa-
rize the general formalism for the computation of the complexity and we recall the statistical 
properties of the Hessian of the energy landscape, evaluated at the stationary points. In sec-
tion 2.2 we set up the calculation of the complexity of the atypical saddles, and we state the 
expressions of the large deviation functions for the minimal eigenvalue and eigenvector of the 
Hessian matrices. In section 2.3 we present the resulting complexity of the index-1 saddles 
at fixed given overlap from a reference minimum of the landscape, and we comment on the 
implications for the dynamical exploration of the landscape.
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2.1. The p -spin energy landscape: total constrained complexity and Hessian statistics

2.1.1.  Constrained complexity and Kac–Rice formula.  We consider the energy landscape of 
the spherical p -spin model with p � 3:

E [s] = −
∑

i1<i2···<ip

Ji1,i2,...,ip si1 si2 . . . sip ,
� (1)

where ik ∈ {1, · · · , N}, the configurations s = (s1, · · · , sN) lie on the surface of a sphere and 
satisfy 

∑N
i=1 s2

i = N , and their closeness is measured in terms of the overlap q(s, s′) = s · s′/N . 
The quenched random couplings Ji1,i2,...,ip are independent Gaussian variables with zero mean 
and variance 〈J2

i 〉 = p!/2N p−1. The random energy landscape (1) is therefore itself Gaussian, 
with zero average 〈E [s]〉 = 0 and covariance

〈E [s]E [s′]〉 = N
2

(
s · s′

N

) p

� (2)

that is isotropic, meaning that it depends on s, s′  only through their overlap. In the follow-
ing, we denote the energy density of a configuration s by ε = limN→∞ E[s]/N . The threshold 
value of the energy is εth = −[2( p − 1)/p]1/2, while εgs denotes the density of the ground state 
configurations.

At energy densities ε > εth the landscape is dominated by saddles with a huge index 
k = O(N): this portion of the landscape is easily explored dynamically since stationary points 
have plenty of directions in configuration space in which the energy landscape is descending 
[39], and it is not of interest in the light of activated dynamics. We therefore restrict to the 
energy regime εgs � ε � εth, which is dominated by stationary points that are either trapping 
local minima or saddles with few negative directions k ∼ o(N). The complexities Σk(ε) count 
the number of such stationary points of energy density ε and index k, at the exponential scale 
in N. The total complexity Σ(ε) is obtained as

Σ(ε) = max
k

Σk(ε).� (3)

For the spherical p -spin Σ(ε) = Σ0(ε) for all εgs � ε � εth: at each value of energy below the 
threshold the typical (most numerous) stationary points are local minima.

In the following we aim at characterizing stationary points s of energy density ε and index 
k that are at overlap q = s · s0/N  with respect to some fixed local minimum s0 of the land-
scape, extracted with uniform measure among those at energy ε0. We denote with Σk(ε, q|ε0) 
the corresponding complexities, and with Σ(ε, q|ε0) the total one, obtained maximizing over 
k. More precisely, following the notation of [44] we define rescaled spin configurations on 
the unit sphere, σ = s/

√
N, and introduce the rescaled energy h[σ] ≡

√
2/NE[

√
Nσ]. Given 

a reference local minimum σ0 drawn at random from the population of minima with energy 
ε0 (εgs � ε0 � εth), we denote with Nσ0(ε, q|ε0) the number of stationary points with energy 
ε that are at fixed overlap σ0 · σ = q with the minimum, and define the associated total 
quenched complexity as:

Σ(ε, q|ε0) = lim
N→∞

1
N

〈
logNσ0(ε, q|ε0)

〉
0
,� (4)

where the average 〈·〉0 is over both the local minima of energy ε0 at fixed realization of the 
random energy field (1), and over the different realizations of the latter. Notice that for q  =  0, 
which is the typical value of the overlap between an arbitrary pair of stationary points, the 
constraint is ineffective and (4) reproduces the well-known complexity curve of local minima 
Σ(ε) = Σ0(ε).
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The total complexity (4) has been computed in [44] using the Kac–Rice formula and its 
generalizations [8, 11, 25]. From that calculation it followed that the quenched complexity 
actually coincides with its annealed counterpart computed in [46], obtained exchanging the 
average with the logarithm in (4). The latter be easily obtained as the large-N asymptotic of the 
Kac–Rice formula for the first moment of Nσ0. To state the formula, we introduce the gradi-
ent g [σ] of the energy field h[σ]: since the functional is restricted to the sphere, its gradient 
lies in the M = (N − 1)−dimensional tangent plane to the sphere at the point σ; similarly, 
the Hessian matrix H [σ] collects the components of the second derivatives of h[σ] along the 
directions corresponding to some basis {ei[σ]}M

i=1 spanning the tangent plane. In terms of 
these quantities, the constrained complexity reads:

Σ(ε, q|ε0) = lim
N→∞

1
N

log

[∫
dσ δ

(
σ · σ0 − q

)
Eσ|σ0(ε, q|ε0) pσ|σ0(0, ε)

]
,

� (5)
where the integration is over the configurations σ at fixed overlap q with the reference mini-
mum, pσ|σ0(0, ε) denotes the joint density function of the gradient and field (g[σ], h[σ]), con-
ditioned to the values of gradient and field at σ0 and evaluated at (0,

√
2Nε), and Eσ|σ0(ε, q|ε0) 

is the following expectation value

Eσ|σ0(ε, q|ε0) =
〈
|detH[σ]|

∣∣∣
{

g[σ0] = 0, g[σ] = 0
h[σ0] =

√
2Nε0, h[σ] =

√
2Nε

}〉
.� (6)

Notice that, while in principle the quantity inside the logarithm in (5) depends on the particular 
local minimum σ0, as a consequence of the isotropy of the p -spin covariances the dependence 
is only on the overlap parameter q. Therefore the uniform average on the local minima at fixed 
value of q yields a constant factor equal to one (see the Supplemental Material of [44], in par
ticular section G.1, for the derivation of this formula). The asymptotic of (5) is determined by 
computing the conditional distribution of the energy field and of its derivatives, which can be 
determined explicitly due to Gaussianity. In particular, the average of the Hessian determinant 
in (5) is done over the distribution of H[σ] conditioned to the fact that σ is a stationary point 
of energy density ε, at fixed overlap q from another stationary point (a minimum) of energy ε0, 
as we recall in the following section.

2.1.2.  Statistics of the Hessians at overlap q from a reference minimum.  In absence of con-
ditioning (equivalently, for q  =  0) the Hessian at a stationary point σ has the statistical dis-
tribution of a GOE matrix, shifted by a constant diagonal matrix that depends only on the 
energy density ε. This follows from the isotropy of the correlations (2), which translates into 
a matrix distribution that is itself invariant under basis rotations in the tangent plane. The 
energy-dependent shift follows from the spherical constraint imposed on the variables σ, and 
it is such that for any ε < εth the typical configuration of the Hessian density of states (in the 
large-N limit) is a semicircle which is entirely supported on the positive semi-axis, implying 
that typical stationary points are minima. Saddles are generated by large deviations of the 
smallest eigenvalues of the Hessian, that are pulled out of the bulk of the density of states and 
into the negative semi-axis: this happens with a large-deviation probability that is exponen-
tially decaying in N [64], implying the exponential suppression of the complexity of saddles 
with respect to that of minima [2, 11].

When we enforce the point σ to be at finite overlap q from another local minimum σ0, the 
isotropy is broken along the direction in configuration space that connects the two stationary 
points. At the level of the Hessian statistics, this translates into rank-1 perturbations (both 
additive and multiplicative) to an otherwise GOE distributed matrix, that depend explicitly 
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on the parameters ε, ε0 and q [44] (see also [12]). To express it compactly, it is conveni-
ent to choose a basis {ei[σ]}M

i=1 in the tangent plane at σ in such a way that the last vector 
eM = (qσ − σ0)/

√
1 − q2  is the only one having a projection on σ0, while all the remain-

ing ones are arbitrary vectors spanning the space orthogonal to σ,σ0, see figure 1. With this 
choice of basis the conditioned Hessian is distributed as:

H[σ] ∼ M−
√

2Npε ,� (7)

where  is the identity matrix and M is an M-dimensional matrix with the following proper-
ties: the (M − 1)−dimensional block made of the entries mij( �=M) has GOE statistics with zero 
average and variance

σ2( p) = p( p − 1);� (8)

the elements miM for i �= M have a different variance ∆2(q) < σ2 depending explicitly on the 
overlap parameter q, and the element mMM has a non-zero average µ(q, ε, ε0) and yet another 
variance ∆̃2(q) < ∆2(q). These functions depend explicitly on p : for p   =  3, for instance, one 
finds ∆̃2(q) = 0. Their explicit form is recalled in appendix A.

To further simplify the notation, we introduce an M × M  deterministic matrix of the form:

F(q) ≡ −
[

1 − ∆(q)
σ

]
eMeT

M ,� (9)

and define a complex (purely imaginary) variable ζ(q) through the identity:

∆4(q)
σ2 + [ζ(q)]2 = ∆̃2(q).� (10)

The matrix M can then be re-written as:

M = F(q)XF(q) +
(√

Nµ+ ζ(q) ξ
)

eMeT
M .� (11)

Here X  is a GOE matrix with variance (8) and ξ is a Gaussian random variable independent of 
X , having zero average and unit variance. Notice that the variance of the MM element of the 
perturbed matrix F(q)XF(q) equals to ∆4/σ2, which is different with respect to the variance 
of mMM: the fluctuating variable ξ is added to compensate for this difference. As we recall in 
the next section, the main effect of the finite-rank perturbation in (11) is to modify the typical 
configuration of the density of states giving rise to an isolated eigenvalue.

2.1.3. The isolated eigenvalue of the Hessian and the saddles.  When the finite-rank pertur-
bations to the GOE matrix M in (7) are sufficiently strong, they generate a sub-leading cor-
rection to the density of states

ρε(λ) =

√
4σ2( p)− (λ+

√
2pε)2

2πσ2( p)
� (12)

of the Hessian matrix, in the form of a single eigenvalue λ0(q, ε, ε0) that is isolated and 
detached from the support of (12), meaning that λ0(q, ε, ε0) < −2σ2 −

√
2 p ε. The explicit 

expression of this eigenvalue has been determined in [44]. It is more conveniently given in 
terms of the resolvent1 of the unperturbed GOE matrix X  with variance σ:

1 The resolvent is defined for |z| > 2σ as the solution of the quadratic equation σ2G2
σ(z)− zGσ(z) + 1 = 0 satisfy-

ing Gσ(z) → 0 as |z| → ∞.
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Gσ(z) =
〈

1
M

Tr
1

z −X

〉
z real
=

1
2σ2

(
z − sign(z)

√
z2 − 4σ2

)
∈
[
− 1
σ

,
1
σ

]
.

� (13)
Setting

λ0(q, ε, ε0) = λtyp
min(q, ε, ε0)−

√
2pε,� (14)

it is found in [44] that the typical value λtyp
min(q, ε, ε0) of the smallest eigenvalue of M is the 

solution of λ− µ(q, ε, ε0)−∆2(q)Gσ(λ) = 0, and reads explicitly:

λtyp
min(q, ε, ε0) =

1
2(σ2 −∆2)

(
2µσ2 −∆2µ+∆2

√
µ2 − 4(σ2 −∆2)

)
= µ+∆2Gσ′(µ),� (15)

where Gσ′(µ) has a modified variance

σ′( p, q) =
√
σ2( p)−∆2(q).� (16)

Notice that this expression is independent of the Gaussian fluctuations with variance ζ(q) of 
the element mMM. Using the equation satisfied by λtyp

min we get:

λtyp
min(q, ε, ε0) = G−1

σ (Gσ′(µ)) =
1

Gσ′(µ)
+ σ2Gσ′(µ),� (17)

where

G−1
σ (z) =

1
z
+ σ2z� (18)

Figure 1.  Schematic representation of configuration space, with the reference minimum 
σ0 and a saddle σ at overlap q, that is geometrically connected to the minimum. The 
vector eM lies in the tangent plane to the sphere at σ, along the direction connecting σ 
to the reference minimum σ0.
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is the inverse of the resolvent operator, restricted to the domain |z| < 1/σ. This expression 
is consistent provided that the argument of G−1

σ  belongs to [−1/σ, 1/σ]. Assuming that 
Gσ′(µ) < 0, this gives:

Gσ′(µ) > − 1
σ

−→ µ < −σ

[
1 +

(σ′)2

σ2

]
,� (19)

which identifies the regime of parameters for which the isolated eigenvalue exists. We denote 
the threshold value with:

µc( p, q) ≡ −σ( p)

[
1 +

(
σ′( p)
σ( p)

)2
]
= −

√
p( p − 1)

[
2 − ∆2(q)

p( p − 1)

]
.

� (20)

In this regime, the eigenvector v0 associated to λtyp
min has a projection v0 · eM[σ] along the 

direction connecting the two stationary points which remains non-zero as N → ∞. Notice 
that limσ′→0 Gσ′(µ) = 1/µ, implying that when ∆(q) → σ the eigenvalue exists for µ < −σ 
and reduces to λtyp

min = µ+ σ2/µ, reproducing the well-known expression resulting from a 
purely additive perturbation [52–55]. In presence of a multiplicative perturbation given by the 
matrices F(q), the same form holds with 1/µ replaced with Gσ′(µ).

When the parameters are such that the shifted eigenvalue λ0(q, ε, ε0) < 0, the associated 
stationary points are saddles of index-1. As found in [44], this happens when the overlap q 
with the reference minimum is large enough (for any fixed ε, larger than a given qms(ε|ε0), 
see figure 2): the total complexity (4) is therefore contributed by saddles for large enough 
q. These saddles are geometrically connected to the reference minimum σ0, meaning that 
their unstable direction has an O(1) projection along the direction pointing towards σ0 in 
configuration space. Notice that no large deviation calculation is necessary to find these 
saddles, as the typical configurations of the Hessian have a negative mode: in other words, 
at these values of the overlap index-1 saddles are the typical, exponentially most numerous 
stationary points. At smaller values of q, the typical stationary points are instead minima 
with no isolated eigenvalue; in this regime the complexity of saddles has to be obtained with 
a large deviation calculation, by conditioning explicitly the Hessian to exhibit one negative 
isolated eigenvalue.

2.2.  Computing the complexity of atypical saddles

2.2.1. The constrained complexity of saddles.  We now give a formula for the constrained 
complexity of saddles at overlap q with the reference minimum, in the annealed approx
imation. Let us denote with Nσ0(ε, q,λ, u|ε0) the number of stationary points σ having an 
Hessian with smallest eigenvalue taking a given value λmin = λ and such that the corre
sponding eigenvector vmin has a macroscopic projection umin = |vmin · eM[σ]|2 = u > 0 along 
the direction connecting the two stationary points in configuration space. The complexity 
Σ(ε, q,λ, u|ε0) of these points in the annealed approximation is given by:

Σ(ε, q,λ, u|ε0) = lim
N→∞

1
N

log
〈
Nσ0(ε, q,λ, u|ε0)

〉
0
,� (21)
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where the average number can be written as:

〈
Nσ0(ε, q,λ, u|ε0)

〉
0
=

∫
dσ δ

(
σ · σ0 − q

) 〈
|detH[σ]|

∣∣∣




g[σ0] = 0, g[σ] = 0
h[σ0] =

√
2Nε0, h[σ] =

√
2Nε

λmin = λ, umin = u





〉

× pσ|σ0(0, ε)Gσ|σ0 (λ, u) .
� (22)

In this modified version of the Kac–Rice formula, the expectation value of the Hessian is 
conditioned also to the event λmin = λ and umin = u. The case λ < 0 corresponds to saddles 
with at least one unstable direction. The constraint on the overlap umin = u is added to track 
whether the saddles are geometrically connected to σ0 (when u  >  0), or whether the downhill 
direction is uncorrelated with the minimum σ0 (when u  =  0). The function Gσ|σ0 (λ, u) is the 
joint distribution of (λmin, umin) induced by the statistics of the conditioned Hessian described 
in section 2.1.2.

In appendix B we argue that conditioning on λ and u does not modify the typical density of 
states of the Hessian to leading order in N, which therefore remains equal to (12). The effect 
of the conditioning is (at most) to generate isolated eigenvalues, that are sub-leading correc-
tions to the density of states. As a consequence, to (exponential) order in N the expectation 
value of the determinant in (22) is insensitive to the conditioning on the smallest eigenvalue. 
Additionally, the distribution Gσ|σ0 (λ, u) depends on σ and σ0 only through the parameters 
q, ε and ε0, because the full distribution of the Hessian does. We re-label it as Gε,q|ε0 (λ, u) in 
the following. For values of λ, u that are different with respect to the typical ones, Gε,q|ε0 (λ, u) 
is a large deviation probability with a given rate function to be determined:

lim
N→∞

logGε,q|ε0 (λ, u)
N

= −Lε,q|ε0(λ, u).� (23)

It follows from these considerations that we can re-write (21) as:

Σ(ε, q,λ, u|ε0) = Σ(ε, q|ε0)− Lε,q|ε0(λ, u),� (24)

Figure 2.  Plot of the energy curves ε(q|ε0), εms(q|ε0) and ε+(q|ε0). Inset. Zoom of the 
main plot. The dashed lines identify the overlaps q+(ε|ε0), qms(ε|ε0) and qM(ε|ε0) for 
ε = −1.1565.
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where Σ(ε, q|ε0) is the total constrained complexity already computed in [44]. In the follow-
ing, we shall consider typical values utyp(λ) of the overlap u, defined as:

utyp(λ) ≡ argmin
u∈[0,1]

Lε,q|ε0(λ, u),� (25)

and set

Fε,q|ε0(λ) ≡ Lε,q|ε0(λ, utyp(λ)).� (26)

The complexity of the most numerous stationary points with λmin = λ is then:

Σ(ε, q,λ|ε0) = Σ(ε, q|ε0)− Fε,q|ε0(λ),� (27)

and thus it is readily obtained from the large deviation rate Fε,q|ε0(λ) of the smallest eigenvalue 
of an Hessian. Saddles are obtained setting λ < 0. The second and third parts of this work are 
devoted to the computation of the rate function Fε,q|ε0(λ). In the following section, we adapt 
the general result to the case of the p -spin Hessians.

2.2.2.  Large deviations of the smallest eigenvalue of the Hessians.  In the third part of this 
work we derive the large deviation function of the smallest eigenvalue of matrices of the gen-
eral form:

Y =

(
− β

1 + β
eMeT

M

)
X

(
− β

1 + β
eMeT

M

)
+ θ eMeT

M ,� (28)

where X  is a GOE matrix with variance σ2, β is a non-negative constant and θ is a Gaussian 
random variable with mean θ < 0 and variance σ2

θ. The Hessian matrices (11) follow this 
distribution, with

σ → σ( p) ≡
√

p( p − 1), β →
√

p( p − 1)
∆(q)

− 1, θ → µ(q, ε, ε0),� (29)

and

σ2
θ → ζ2(q) = ∆̃2(q)− ∆4(q)

σ2 ,� (30)

where the explicit expressions of these functions are given in appendix A. We let Fε,q|ε0(λ) be 
the corresponding rate function for the minimal eigenvalue. Given the diagonal shift in (7), we 
have that the rate in (26) is obtained as:

Fε,q|ε0(λ) = Fε,q|ε0(λ+
√

2 p ε).� (31)

We not adapt the general result of section 3.3 to this case. We introduce the threshold values:

λ±
p (ε, q|ε0) ≡ x±σ( p)

(
µ(q, ε, ε0),

√
p( p − 1)
∆

− 1

)
−
√

2 p ε,� (32)

where the functions x±σ  are given in (81). Given the shifted variance (16) and the critical value 
(20), we define the following three regimes:

	 •	�Regime A: −2σ′( p, q) < µ(q, ε, ε0) < 0
	 •	�Regime B.1: µc( p, q) � µ(q, ε, ε0) � −2σ′( p, q)
	 •	�Regime B.2: µ(q, ε, ε0) < µc( p, q).
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These three Regimes can be understood in terms of the typical value of the smallest eigen-
value λtyp

min(q, ε, ε0) of the matrix (11): in Regime B.2 the eigenvalue isolated from the bulk 
of the density of states, λtyp

min(q, ε, ε0) < −2σ( p), see (19). In regime B.1. it holds instead 
λtyp

min(q, ε, ε0) = −2σ( p), and the quantities (32) are real. The Regime A corresponds to val-
ues of the parameters q, ε and ε0 for which the quantities (32) are complex. Notice that it 
always holds µc( p, q) < −2σ′( p, q) � 0. When ∆(q) �= σ( p), we find σ′( p) → 0: therefore, 
Regime A is present only when the multiplicative perturbation to the Hessian is present.

To state the form of the large deviation function, we further introduce the function:

µ∗
p(x|q, ε, ε0) = θ∗0

(
x
∣∣∣σ( p),

√
p( p − 1)
∆

− 1,µ(q, ε, ε0), ζ2(q)

)
,� (33)

where the function θ∗0  is defined in (179)2. Given these quantities, the large deviation function 
Fε,q|ε0(λ) reads as follows:

	 •	�In Regime A,

Fε,q|ε0(λ) = G0(λ+
√

2 p ε).� (35)

	 •	�In Regime B.1,

Fε,q|ε0(λ) =





Gq,ε|ε0(λ+
√

2 p ε) λ−
p (ε, q|ε0) < λ < λ+

p (ε, q|ε0)

G0(λ+
√

2 p ε) λ < λ−
p or λ+

p < λ < −2σ( p)−
√

2pε
.

� (36)
	 •	�In Regime B.2,

Fε,q|ε0(λ) =

{
Gq,ε|ε0(λ+

√
2 p ε) λ−

p (ε, q|ε0) < λ < −2σ( p)−
√

2pε
G0(λ+

√
2 p ε) λ < λ−

p (ε, q|ε0).
� (37)

Here the large deviation function G0(x) is the one of an unperturbed GOE matrix, given by 
[64]:

G0(x) =
∫ −2σ

x

√
z2 − 4σ2

2σ2 dz =
x2

4σ2 − I(x)− 1
2
+ log σ,� (38)

where for x < −2σ:

I(x) = log

(
− x

2
+

1
2

√
x2 − 4σ2

)
− 1

2
+

x2

4σ2 +
x

4σ2

√
x2 − 4σ2.� (39)

The other rate function is obtained as:

Gq,ε|ε0(x) ≡ Gθ,β(x)
∣∣∣
θ→µ∗

p , β→
√

p( p−1)
∆(q) −1� (40)

2 For generic p , this function has a lengthy expression in terms of the parameters q, ε, ε0. In the special case p   =  3, 
however, some simplifications occur due to the fact that ∆̃(q) = 0, meaning that in this case the MM-element of the 
Hessian does not fluctuate. In this particular case we find:

µ∗
p=3 = µ−

(1 − q2)x +
√

4µ2(1 + q2)2 − 4µ(1 + 3q4 + 4q2)x + (3q2 + 1)2x2 + 24(1 − q2)2

2 (1 + q2)
.

�

(34)
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where the explicit form of Gθ,β(x) is given in (82). In the regimes in which the large deviation 
function equals to G0(x) it holds utyp(λ) = 0, while in the other regimes one finds utyp(λ) > 0: 
therefore, the latter regimes correspond to the saddles that are geometrically connected to the 
reference minimum. In the following, these results are used to determine statistical distribu-
tion of index-1 saddles.

2.2.3.  Quenched versus annealed complexity: a comment.  Before discussing the results of 
the complexity calculation of saddles, it is necessary to comment on the ‘annealed’ nature of 
the calculation we are performing. The complexity in (21) gives the asymptotic value of the 
average number of stationary points with the desired properties; this may in principle differ 
from the asymptotic value of the typical number of such stationary points, that is controlled 
by the so-called quenched complexity which is obtained exchanging the average and the loga-
rithm in (21). The calculation of the latter is in general more involved; it requires to resort to 
representation of the logarithm in terms of higher moments of the number of stationary points,

〈
logNσ0(ε, q,λ, u|ε0)

〉
0
= lim

n→0

〈N n
σ0(ε, q,λ, u|ε0)〉0 − 1

n
,

� (41)
and to analytically continue the expression of these moments in order to take the limit n → 0. 
As shown explicitly in [44], when computing the total constrained complexity Σ(ε, q|ε0) the 
two procedures are equivalent. The computation of the quenched complexity through the rep-
lica trick, indeed, naturally leads to the emergence of an order parameter q1 that can be inter-
preted as the typical overlap between the stationary points of energy ε that are at overlap q 
from the reference minimum. The calculation shows that this overlap takes the particularly 
simple value q1 = q2, indicating that the stationary points have the weakest possible cor-
relation with each others. It is this feature that implies that (i) the quenched and annealed 
constrained total complexities Σ(ε, q|ε0) coincide, (ii) the statistical properties of the Hessian 
described in section 2.1.2 can be themselves determined in an annealed setting, computing the 
distribution of H[σ] over the realizations of the random energy field only, and not over all the 
stationary points σ at fixed overlap from the reference minimum. In the calculation presented 
here, we are assuming that the same remains true when conditioning to the value of the small-
est eigenvalues of the Hessian. As we discuss in appendix C, this corresponds to assuming that 
the conditioning does not affect the value of the typical overlap q1 between stationary points 
with those stability properties, introducing additional correlations between them. This is a 
priori not guaranteed, and it is therefore an approximation: in the same appendix, we discuss 
what would be the steps required to perform a quenched calculation of Σ(ε, q,λ, u|ε0) and 
comment further on the assumptions on which the annealed approximation relies.

2.3.  Complexity of saddles: the results

2.3.1. Transitions in the population of saddles.  For fixed energy ε0 of the reference mini-
mum σ0, we are interested in characterizing the properties of the dominant saddles (i.e. of 
those having higher complexity) as a function of their overlap q with σ0 and of their energy 
density ε. We anticipate that for the values of q, ε for which the complexity of saddles is non-
zero, the dominant ones have always index k  =  1. Their properties however change as a func-
tion of q, ε. To discuss this, it is convenient to introduce three special values of the overlap 
q+(ε|ε0), qms(ε|ε0), qM(ε|ε0) and of the energy density ε+(q|ε0), ε(q|ε0), εms(q|ε0) defined in 
terms of the total constrained complexity Σ(ε, q|ε0) and of λ+

p (ε, q|ε0) in (32) in the following 
way:
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	 •	�The overlap qM(ε|ε0) is the one at which the total constrained complexity becomes non-
negative, i.e. for each q > qM(ε|ε0) one finds Σ(ε, q|ε0) < 0, implying that typically there 
are no stationary points at those values of the overlap. Similarly, the energy curve ε(q|ε0) 
gives the energy density of the deepest stationary points found at overlap q with the 
reference minimum, and it is defined from Σ(ε, q|ε0) = 0: for ε < ε(q|ε0), typically there 
are no stationary points at overlap q with the reference minimum.

	 •	�The overlap qms(ε|ε0) is the one at which the stationary points contributing to the 
total constrained complexity are marginal saddles, with an Hessian having an isolated 
eigenvalue that is exactly equal to zero: λ0(qms, ε, ε0) = 0. In the high-overlap regime 
qms(ε|ε0) � q � qM(ε|ε0) the complexity Σ(ε, q|ε0) is contributed by index-1 saddles that 
are geometrically connected to the reference minimum, whereas for 0 � q � qms(ε|ε0) it 
is contributed by local minima. The energy curve εms(q|ε0) gives the energy at which the 
typical value of the isolated eigenvalue vanishes, and it is defined by λ0(q, εms, ε0) = 0.

	 •	�The overlap q+(ε|ε0) and the energy density ε+(q|ε0) are defined as the points where 
λ+
σ (ε, q|ε0) is exactly equal to zero:

λ+
σ (ε, q|ε0)

∣∣∣
ε=ε+(q|ε0)

= 0 = λ+
σ (ε, q|ε0)

∣∣∣
q=q+(ε|ε0)	 .

A plot of the transition overlaps and energies is given in figure 2 for ε0 = −1.167 and p   =  3, 
and the notation is summarized in table 1.

When q � qms(ε|ε0) and local minima are the dominant stationary points, a population of 
saddles with finite complexity exists, with a whole range of values of λ < 0 and complexity 
(27). These saddles are have at least one negative mode of the Hessian, but not extensively-
many of them, i.e. k = o(N)3. The complexity of the dominant ones is obtained minimizing 
the large deviation function in (27) over λ � 0. It can be checked that in the relevant regime 
of parameters the following inequality is satisfied:

−2σ′( p, q)− µ(q, ε, ε0) � 0� (42)

and therefore that Regime B holds (see figure 3). The large deviation function to optimize 
is therefore (36), which is a decreasing function of λ, minimal at the boundary value λ = 0. 

Table 1.  Summary of the special values of the overlaps/energy densities defined in the 
text. Each function depends on the energy density ε0 of the reference minimum.

Special overlaps and energies at fixed ε0

qM(ε|ε0): overlap of stationary points at energy ε that 
are closer to the reference minimum

ε(q|ε0): energy of deepest stationary points 
at overlap q with the reference minimum

qms(ε|ε0): transition between typical (q > qms) and 
atypical (q < qms) saddles

εms(q|ε0): transition between typical 
(ε > εms) and atypical (ε < εms) saddles

q+(ε|ε0): transition between connected (q  >  q+ ) and 
disconnected (q  <  q+ ) saddles

ε+(q|ε0): transition between connected 
(ε < ε+) and disconnected (ε > ε+) saddles

q∗(ε0): overlap of the deepest saddle(s) connected to 
the reference minimum

ε∗(ε0): energy of the deepest saddle(s)  
connected to the reference minimum

qmx
ms (ε0): overlap of the farthest saddle(s) connected 

to the reference minimum
ε
∗

1 (ε0): energy of the farthest saddle(s)  
connected to the reference minimum

3 Indeed, the bulk of the density of states is not altered by the conditioning, and it is therefore equal to a semicircle 
law entirely supported on the positive semi-axis for all ε < εth.
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It follows that for q � qms(ε|ε0) the dominant saddles are marginally stable, with a single 
Hessian mode that is exactly equal to zero. We denote the complexity of these saddles with:

Σms(ε, q|ε0) ≡ Σ(ε, q|ε0)−

{
Gq,ε|ε0(

√
2 p ε) if λ−

p (ε, q|ε0) < 0 < λ+
p (ε, q|ε0)

G0(
√

2 p ε) if 0 < λ−
p (ε, q|ε0) or λ+

p (ε, q|ε0) < 0� (43)

where the subscript stands for ‘marginal saddles’. These saddles are geometrically connected 
to the reference minimum only whenever λ−

p (ε, q|ε0) < 0 < λ+
p (ε, q|ε0). We find that, for the 

values of parameters we are interested in, λ−
p (ε, q|ε0) < 0 always, and the relevant condition 

is 0 < λ+
p (ε, q|ε0): for ε < ε+(q|ε0) defined above, it holds λ+

p (ε, q|ε0) > 0 and thus the corre
sponding saddles satisfy u  >  0.

As a consequence, we find that the saddles dominating the energy landscape are always 
index-1 saddles, with complexity:

Figure 3.  Total constrained entropy Σ(ε, q|ε0) (black) and entropy of the marginal 
saddles Σms(ε, q|ε0) (purple) for fixed ε0 = −1.167 and different values of q. The 
continuous part of the purple lines corresponds to saddles that are geometrically 
connected to the reference minimum (meaning that utyp > 0), while the dashed part 
corresponds to disconnected saddles. Top left. For this value of q none of the lines in 
figure 2 is crossed: typically the Hessian has no isolated eigenvalue, and the index-1 
saddles are not connected to the minimum as ε+(q|ε0) < ε(q|ε0). Top right. For this 
value of q the line ε+(q|ε0) in figure 2 is crossed: the index-1 saddles at smaller energy 
have utyp > 0 while those at higher energy have utyp = 0. Bottom left. For this value 
of q the curve εms(q|ε0) is crossed: above a given energy (point in the figure) the 
typical stationary points are index-1 saddles with a negative isolated eigenvalue, which 
vanishes at the point where Σ(ε, q|ε0) = Σms(ε, q|ε0). Bottom right. Plot of the function 
−2σ′( p, q)− µ(q, ε, ε0) (blue surface) for ε0 = −1.167, p   =  3 and ε � ε(q|ε0). The 
function is always larger than zero (gray surface), indicating that for these parameters 
Regime B holds.
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Σ1(ε, q|ε0) =





0 if qM(ε|ε0) < q
Σ(ε, q|ε0) if qms(ε|ε0) � q � qM(ε|ε0)

Σms(ε, q|ε0) if q < qms(ε|ε0).
� (44)

The population of dominating saddles displays three regimes, separated by two transitions: 
(i) at high-overlap with the reference minimum, the saddles have a single Hessian mode that 
is strictly negative, and are geometrically connected with the minimum; (ii) at intermediate 
overlaps, the saddles are marginal, and still geometrically connected to the minimum; (iii) at 
low overlaps, the dominant saddles are marginal, but uncorrelated to the reference minimum. 
Plots of the total constrained complexity Σ(ε, q|ε0) and of the complexity Σms(ε, q|ε0) of mar-
ginally stable saddles are given in figure 3, in the different regimes.

2.3.2.  Iso-complexity curves and deepest saddles at fixed overlap.  A convenient way to rep-
resent the saddles complexity is through iso-complexity curves ε1

x(q|ε0), see figure 4, which 
give the energies of the index-1 saddles having a fixed value of the complexity:

Σ1(ε
1
x , q|ε0) = x.� (45)

The smallest of these curves ε1
x=0(q|ε0) corresponds to zero complexity and gives the energy 

of the deepest index-1 saddles found at overlap q with the reference minimum. A comparison 
between this energy and the energy of the deepest stationary points ε(q|ε0) at the same overlap 
is given in figure 5. The two curves coincide for overlap larger than q∗(ε0) ≡ qms(ε

1
x=0|ε0), 

which is also the local minimum of the two curves, as shown explicitly4 in [44]. Following 
the notation of that work, we denote the corresponding energy with ε∗(ε0). It follows from 
figure 4 that this is the energy of the deepest saddles that are geometrically connected to the 
reference minimum, and therefore it corresponds to the optimal (i.e. lowest) energy barrier.

For q < q∗(ε0), the energy of the deepest marginal saddles ε1
0(q|ε0) is higher than the one of 

the deepest minima (as it follows naturally from the fact that their complexity is smaller). This 
curve has a local maximum at an overlap q ≡ qmx

ms (ε0), corresponding to an energy density 
ε∗1(ε0). We find that this overlap coincides with the point at which ε1

0(q|ε0) intersects ε+(q|ε0),

ε∗1(ε0) = ε1
0(q

mx
ms |ε0) = ε+(qmx

ms |ε0),� (46)

meaning that exactly at these overlap the deepest saddles become geometrically disconnected 
from the reference minimum. Notice that also the curve ε(q|ε0) is maximal at the point where 
ε∗(q|ε0) = ε+(q|ε0): this overlap is smaller than qmx

ms (ε0), and corresponds to saddles that are 
not geometrically connected to the minimum.

2.3.3.  Distribution of escape states and dynamical barrier.  From the analysis above it fol-
lows that local minima below the threshold are surrounded by an exponential multiplicity of 
index-1 saddles that are geometrically connected to the minima. The energy density of these 
saddles is distributed over an interval ε ∈ [ε∗(ε0), εth] whose width depends on the energy ε0 of 
the local minimum. These connected saddles are distributed in a region of configuration space 
that corresponds to overlaps q ∈ [qmx

ms (ε0), qM(ε0)]: outside this interval, saddles are either 
absent, or the dominant ones are uncorrelated to the reference minimum, in the sense that the 
corresponding downhill direction in configuration space does not point towards the minimum.

4 Actually, it is shown in [44] that for arbitrary value of x, the iso-complexity curve have local minima at overlaps 
qx which coincide with the overlaps qms at which the typical value of the isolated eigenvalue vanishes: the transition 
between the marginal saddles and the saddles with a negative eigenvalue occurs exactly at the minimum of these 
iso-complexity curves.
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Each of the connected index-1 saddles represents a potential escape state for the system 
that is dynamically trapped in the reference minimum. However, it is not guaranteed that once 
the system escapes through a saddle, it is able to decorrelate from the initial minimum, i.e. 
to reach regions of configuration space that are orthogonal to it. It is indeed likely that the 
escape from a local minimum is a complicated dynamical process involving a sequence of 
jumps between minima that are sufficiently close to each others in configuration space, until 
decorrelation is achieved. The true ‘dynamical barrier’ would then correspond to the maximal 
energy barrier crossed in this composite process.

A lower bound to the dynamical barrier can be obtained from the zero-temperature Franz–
Parisi potential [67, 68], as the energy corresponding to the local maximum of the potential 
curve. As shown in [44], the local maximum of the Franz–Parisi potential coincides exactly 

Figure 4.  Iso-complexity curves of index-1 saddles, see (45). The different symbols 
correspond to saddles with one negative Hessian mode (squares), marginal saddles 
geometrically connected to the reference minimum (circles) and marginal saddles 
that are disconnected (triangles). The gray part of the curves correspond to the typical 
saddles already determined in [44]. Inset. Zoom of the iso-complexity curves. The black 
lines are the curves ε+(q|ε0) and εms(q|ε0).

Figure 5.  Left. Comparison between the energy of the deepest minima (black) and of 
the deepest saddles (purple) either correlated (solid) or uncorrelated (dashed) with the 
minimum. The local maximum corresponds to ε∗1(ε0) (red dot), the local minimum to 
ε∗(ε0) (black dot). Right. Dependence of the energies ε∗1(ε0) and ε∗(ε0) on the energy 
density of the reference minimum ε0.
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with the local maximum of the curve ε(q|ε0) (and it is thus contributed by local minima). The 
minimal-energy saddles at q∗(ε0) correspond to a smaller energy barrier, indicating that when 
the system escapes through those saddles, it does not fully decorrelate from the initial local 
minimum. Indeed, this is consistent with the study of the dynamics [69]. On the other hand, 
some of the marginal saddles at smaller overlap q identified in this work satisfy the bound, see 
figure 5. In particular, the local maximum of the curve ε1

0(q|ε0), where the transition occurs 
between saddles that are geometrical connected to the minimum and saddles that are not, cor-
responds to an energy barrier ε∗1(ε0)− ε0 satisfying the bound. The dependence of ε∗1(ε0) on 
the depth ε0 of the reference minimum is shown in figure 5. These saddles represent potential 
candidates for the dynamical barriers: checking whether this is the case through the study of 
the dynamics is an interesting open problem.

3.  Part II: general statements of the large deviation functions

In this second part of the paper, we give the general expressions of the large deviation func-
tions of the smallest eigenvalue and eigenvector of GOE matrices deformed with both and 
additive and multiplicative perturbation along a fixed direction in configuration space. In par
ticular, in section 3.1 we recall the general expression for the typical value of the isolated 
eigenvalue of the Hessian, and define the various large deviation functions to be determined. 
In sections 3.2–3.4 we report the general expressions of these large deviation functions, and 
discuss their interpretation in terms of a BBP-like transition of the second-smallest eigenvalue 
of the perturbed matrices. In section 3.5 we give a summary of the main steps of the calcul
ation, which is presented in detail in the third part of the paper.

3.1.  Perturbed GOE matrix: typical values and large deviations

We let X  be a M-dimensional GOE matrix with entries xij with respect to some basis ei, and 
variances 〈x2

ij〉 = (σ2/M)[1 + δij]. This corresponds to the distribution:

P(X ) =
1

ZM(σ)
e−

M
4σ2 TrX 2

,� (47)

where ZM(σ) is the normalization. For β � 0 we define the M × M  matrix:

Fβ = − β

1 + β
eMeT

M� (48)

where  is the identity matrix, eM is a unit vector and we set

Y = FβXFβ + θ eMeT
M ,� (49)

where θ is the strength of the additive perturbation, which we take to be a fluctuating variable 
with distribution:

fθ,σθ
(θ) =

1√
2πσ2

θ

e
− M

2σ2
θ

(θ−θ)2

.� (50)

We denote with µM � µM−1 � · · · � µ1 the eigenvalues of Y . Notice that the statistics of the 
rescaled, conditioned Hessian described in section 2.1.2 (up to the shift by the ε-dependent 
diagonal matrix) is the one of a matrix of the form (49) with parameters σ2 → p( p − 1), 
β → σ/∆(q)− 1, θ → µ(q, ε, ε0) and σθ → ζ(q).
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In the following, we restrict to the case θ < 0, which is of interest for the p -spin landscape 
problem. We denote with ρtyp

M (µ) the typical eigenvalue density of the matrix Y . For certain 
values of the parameters θ,β, the latter exhibits a sub-leading correction with respect to the 
GOE semicircle:

ρσ(µ) =

√
4σ2 − µ2

2πσ2 ,� (51)

that corresponds to the smallest eigenvalue being isolated from the bulk of the density of 
states. This happens whenever:

θ � θc ≡ −σ

(
1 +

σ′2

σ2

)
= −σ

(
1 + 2β2 + 4β

[1 + β]2

)
� (52)

or equivalently

σ2Gσ′(θ) � −σ,� (53)
where

σ′ = σ

√
β(β + 2)
(1 + β)2 < σ

� (54)
and where Gσ is the GOE resolvent:

Gσ(z)
z real
=

1
2σ2

(
z − sign(z)

√
z2 − 4σ2

)
∈
[
− 1
σ

,
1
σ

]
.� (55)

In this case one has that the typical value of the smallest eigenvalue µM  reads:

µtyp
M = µ0(θ,β) ≡ G−1

σ (Gσ′(θ)) =
1

Gσ′(θ)
+ σ2Gσ′(θ) � −2σ,� (56)

and thus the typical density of eigenvalues is

ρtyp
M (µ) =

√
4σ2 − µ2

2πσ2 +
1
M
δ
(
µ− µ0(θ,β)

)
+ o

(
1
M

)
.� (57)

When (52) is not satisfied, the sub-leading contribution to (57) is absent and µtyp
M = −2σ . In 

absence of the multiplicative perturbation (when β = 0), we have σ′ → 0; using that

lim
σ′→0

Gσ′(x) =
1
x

� (58)

we recover the well known results for the minimal eigenvalue of a GOE matrix subject to an 
additive rank-1 perturbation [52, 54, 55],

lim
β→0

µ0(θ,β) = θ +
σ2

θ
.� (59)

Notice that the typical density of states (57) does not depend on the fluctuations of θ but 
only on its average value. The fluctuations enter into play when looking at large deviations of 
µM . We denote with vM  the corresponding eigenvector, and define uM = |vM · eM|2. We use 
the notation Pθ,σθ ,β(x) for the distribution of the smallest eigenvalue µM , which is given by:
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Pθ,σθ ,β(x) =
∫ 1

0
du

∫ ∞

−∞
dθ fθ,σθ

(θ) P̃θ,β(x, u),� (60)

where P̃θ,β(x, u) is the joint probability density of µM  and uM, conditioned to a fixed value of 
the additive perturbation θ. In the following we compute the large deviation function:

lim
M→∞

log P̃θ,β(x, u)
M

= −Lθ,β(x, u).� (61)

For each x, we determine the typical value utyp(x) maximizing the large deviation function,

utyp(x) ≡ argmin
u∈[0,1]

Lθ,β(x, u)� (62)

and set

Lθ,β(x) ≡ Lθ,β(x, utyp(x)).� (63)

The large deviation function for fluctuating θ is then obtained as:

lim
M→∞

Pθ,σθ ,β(x)

M
≡ −Fθ,σθ ,β(x) = −min

θ

[
(θ − θ)2

2σ2
θ

+ Lθ,β(x)
]

.� (64)

This large deviation function exhibits an explicit dependence on the variance σ2
θ; nevertheless, 

as we shall see, its minimum is always attained at the typical value µtyp
M  of the smallest eigen-

value, that does not depend on σ2
θ and it is given by µ0(θ,β) in (56) when (52) is satisfied, and 

by −2σ otherwise.

3.2.  Large deviation function at fixed u and θ

We begin by stating the form of the large deviation function (61). We define the constants:

C2 = −2θ (1 + β)4, C3 = 2β(2 + β), C4(x, u) = C2 +
C2

3

2
xu,� (65)

and introduce:

κθ,β(x, u) =
σ2C3[2 + C3(1 − u)]3

C2
4(x, u)(1 − u)

=
4σ2β(2 + β)[1 + β(β + 2)(1 − u)]3

(1 − u)[β2(β + 2)2ux − (β + 1)4θ]2
.

� (66)
We identify the following two regimes of parameters:

Case A : κθ,β(x, u) > 1
Case B : κθ,β(x, u) � 1,
� (67)

and define the rate functions:

L(a)
θ,β(x, u) =

1
4σ2

(
x2 + C2xu +

C2
3

4
x2u2 + C3x2u

)
− I(x) + 1

2
− 1

2
log

(
2σ2(1 − u)

C3(1 − u) + 2

)

− C2
4(x, u)(1 − u)2

4σ2 [2 + C3(1 − u)]2
,

L(b)
θ,β(x) =

1
4σ2

(
2x2 + C3x2 + C2x +

C2
3

4
x2
)
− 3

2
I(x) + 1

2
+

1
2
log

[
C2

3x + 2C3x + 2C2

4σ2

]
�

(68)
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where:

I(z) =
∫

dλ ρσ(λ) log |λ− z|

=




log

(
− z

2 + 1
2

√
z2 − 4σ2

)
− 1

2 + z2

4σ2 +
z

4σ2

√
z2 − 4σ2 if z < −2σ

z2

4σ2 − 1
2 + log σ if − 2σ < z < 0

,
�

(69)

and

l(θ,β) = 1 − 1
2
log

(
2σ4

C3 + 2

)
− C2

2

4σ2(C3 + 2)2 = 1 − log

(
σ2

1 + β

)
− θ2

2σ2[1 + β]2
.� (70)

When Case B holds, we further define the following functions:

F(x, u) = −
C4(x, u)(1 − u) +

√
C2

4(x, u)(1 − u)2 − σ2C3(1 − u) [2 + C3(1 − u)]3

σ2 [2 + C3(1 − u)]2

µ1(x, u) = −
2
(

C4(1 − u) [1 + C3(1 − u)]−
√
(1 − u)

[
C2

4(1 − u)− σ2C3 [2 + C3(1 − u)]3
])

C3(1 − u) [2 + C3(1 − u)]2
.

� (71)
Notice that the functions (71) are complex in Case A, when κθ,β(x, u) > 1. In terms of 

these quantities, the large deviation function (61) is given by the following expressions:

	 •	�When Case A holds:

Lθ,β(x, u) = L(a)
θ,β(x, u)− l(θ,β).� (72)

	 •	�When Case B holds:

Lθ,β(x, u) =





L(a)
θ,β(x, u)− l(θ,β) if σ2F(x, u) � −σ

L(b)
θ,β(x)− l(θ,β) if σ2F(x, u) < −σ and x � µ1(x, u)

L(a)
θ,β(x, u)− l(θ,β) if σ2F(x, u) < −σ and x < µ1(x, u).

� (73)
		 This expression is continuous at the point x = µ1(x, u).

The constant shift equals to l(θ,β) = L(a)
θ,β(xtyp, utyp), where xtyp, utyp are the typical values 

for the given parameters; it is added to ensure that Lθ,β(xtyp, utyp) = 0. In (appendix D), we 
discuss how limiting cases known in the literature are recovered.

3.2.1.  Interpretation in terms of the second-smallest eigenvalue.  When θ is kept fixed, the 
typical value of the smallest eigenvalue µM  undergoes a transition at θ = θc given in (52): for 
θ � θc, it equals to µ0(θ,β), which can be equivalently written as:

µ0(θ,β) = G−1
σ (Gσ′(θ)) = m+

σ [C2, C3]� (74)

in terms of the constants (65), where

m±
σ [a, b] =

2
b(b + 2)2

(
−a(b + 1)±

√
a2 − σ2b(b + 2)3

)
.� (75)
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The different regimes of the large deviation function (73) in Case B can be interpreted in terms 
of an analogous transition of the typical value µtyp

M−1 of the second-smallest eigenvalue of the 
matrix Y . As it will appear from the explicit calculation in section 4.1, fixing µM = x and 
uM  =  u leads to a modification of the joint distribution of the remaining eigenvalues {µi}M−1

i=1 . 
In particular, the resulting joint distribution has the same form of the joint distribution of all 
the eigenvalues {µα}M

α=1 of the matrix (49), but with modified parameters θ̃, β̃ defined by:

θ̃ =
θ(1 − u)(1 + β)4 − xu(1 − u)β2(2 + β)2

[1 + β(1 − u)(2 + β)]2
, (1 + β̃)2 = 1 + β(1 − u)(2 + β).� (76)

This is equivalent to mapping C3 → C3(1 − u) and C2 → C4(x, u)(1 − u). One can easily 
check by substitution that the function F(x, u) in (71) can be written in terms of these param
eters as:

F(x, u) =
1

σ2Gσ̃(θ̃)
,� (77)

where

σ̃2 = σ2

[
β̃(β̃ + 2)
(1 + β̃)2

]
� σ2.� (78)

A comparison with (53) shows that the two regimes of (73) correspond to the regimes in which 
the typical value of the second- smallest eigenvalue sticks to the boundary of the semicircle 
ρσ(λ) (when σ2F(x, u) � −σ) or is smaller that −2σ (when σ2F(x, u) < −σ). In the latter 
case, the typical value of the second-smallest eigenvalue takes precisely the form:

µtyp
M−1(x, u) = µ1(x, u) = G−1

σ

(
Gσ̃(θ̃)

)
= G−1

σ

(
1

σ2 F(x, u)

)

= m+
σ [C4(x, u)(1 − u), C3(1 − u)].

� (79)

Notice that the argument of G−1
σ  is larger than −1/σ, as it should. Therefore, Lθ,β(x, u) 

is proportional to L(a)
θ,β(x, u) whenever the parameters x, u are chosen in such a way that 

x � µtyp
M−1(x, u), and it is proportional to L(b)

θ,β(x) otherwise. As it will follow from section 4.6, 

this last regime is relevant only whenever u is taken to be different from its typical value 
utyp(x) defined in (62): when the overlap is allowed to adjust itself to its typical value, one 
naturally finds that x � µtyp

M−1(x, utyp(x)).
Case A can be analogously interpreted in terms of the effective parameters (76). Indeed, we 

find that (66) can be re-written as:

κθ,β(x, u) =
4σ̃2

θ̃2
,� (80)

and therefore Case A corresponds to the regime in which −2σ̃ < θ̃ < 0. In this regime, the 
functions m+

σ [C4(x, u)(1 − u), C3(1 − u)] are complex (and exactly equal at the boundary 
value θ̃ = −2σ̃).

When interpreted in terms of the second-smallest eigenvalue, the large deviation function 
Lθ,β(x, u) displays the same three regimes that will appear in section 3.3, with the substitu-
tions θ → θ̃ , β → β̃ and σ′ → σ̃ .

V Ros﻿J. Phys. A: Math. Theor. 53 (2020) 125002



22

3.3.  Large deviation function optimized over u at fixed θ

We now state the form of the large deviation function (63), obtained by optimizing (61) over 
the overlap u, at fixed x. The behavior of the resulting function Lθ,β(x) depends on whether 
the parameters θ,β are such that µtyp

M  is typically out of the bulk of the semicircle of not, and 
whether the parameter x is taken to be larger or smaller than the following two thresholds:

x±σ (θ,β) =
(1 + β)[1 + 2β(β + 2)]θ ±

√
(1 + β)2θ2 − 4β(β + 2)σ2

2β(β + 1)(β + 2)
= m±

σ [C2, C3].� (81)

For fixed β and as a function of θ, these thresholds have three regimes, see caption in figure: 6, 
that correspond to three different regimes for the large deviation function Lθ,β(x):

	 •	�Regime A: −2σ′ � θ: in this regime the functions x±σ (θ,β) in (81) are complex; 
	 •	�Regime B.1: θc � θ � −2σ′ or equivalently σ2Gσ′(θ) < −σ and θ � −2σ′: in this 

regime µtyp
M = −2σ ; 

	 •	�Regime B.2: θ � θc = −σ[1 + (σ′)2/σ2] or equivalently σ2Gσ′(θ) � −σ. In this regime 
the typical value µtyp

M  of the smallest eigenvalue is out of bulk and equals to µ0(θ,β), see 
(52) and (74).

Figure 6.  Plot of the functions x±σ (θ,β) for β = .4 and σ = 1. The different colors 
correspond to the regions of parameters where the large deviation function Lθ,β(x) 
equals either to Gθ,β(x) (red) or to G0(x) (blue). The dashed vertical lines denote θ = θc 
(green) and θ = −2σ′ (black). The plot shows three regimes: (i) Regimes B.2, for 
θ < θc: the function x+σ (θ,β) equals to the typical value for the smallest eigenvalue 
of the matrix, i.e. x+σ (θ,β) = µ0(θ,β). At θ = θc it becomes equal to −2σ, signaling 
that the smallest eigenvalue is reabsorbed into the bulk; (ii) Regime B.1: the smallest 
eigenvalue is typically not out of the bulk, x+σ (θ,β) gives the analytic continuation of 
the isolated eigenvalue into the second Riemann sheet in the complex plane. This ends 
at θ = −2σ′, when x+σ (θ,β) = x−σ (θ,β); (iii) Regime A: for θ > −2σ′, both functions 
are complex.

V Ros﻿J. Phys. A: Math. Theor. 53 (2020) 125002



23

Given the functions:

G0(x) =
∫ −2σ

x

√
z2 − 4σ2

2σ2 dz =
x2

4σ2 − I(x)− 1
2
+ log σ,

Gθ,β(x) =
[1 + β(β + 2)]2

4σ2 x2 − I(x)
2

+
(1 + β)4θ2 − 2θx

4σ2 +
1
2
log[β(β + 2)x − (1 + β)2θ],

� (82)
it holds:

Lθ,β(x) =





G0(x) in Regime A

G(1)
θ,β(x) in Regime B.1

G(2)
θ,β(x) in Regime B.2,

� (83)

where in the Regime B.1 one has:

G(1)
θ,β(x) =

{
G0(x) if x < x−σ (θ,β) or x+σ (θ,β) < x < −2σ
Gθ,β(x) if x−σ (θ,β) < x < x+σ (θ,β),� (84)

while in Regime B.2 one has:

G(2)
θ,β(x) =

{
Gθ,β(x) if x−σ (θ,β) < x < −2σ
G0(x) if x < x−σ (θ,β).� (85)

The function G(1)
θ,β(x) has a minimum at xtyp = −2σ, while G(2)

θ,β(x) vanishes at:

xtyp = G−1
σ (Gσ′(θ)) = µ0(θ,β),� (86)

that is indeed the typical value of µM  in this regime of parameters. Both large deviation func-
tions are continuous at x±σ (θ,β). We notice that the explicit expressions of µ0(θ,β) and of 
x+σ (θ,β) coincide, even though µ0(θ,β) is well defined only in the regime θ � θc (otherwise 
the resolvent in (86) would not be invertible), while x+σ (θ,β) is defined in the opposite regime 
of parameters. The coincidence of the two expressions follows from a symmetry of the GOE 
resolvent evaluated on the real axis, as we discuss more precisely in section 4.3 . Plots of the 
large deviation function Lθ,β(x) are given in figure 7.

Figure 7.  Plots of the large deviations function Lθ,β(x) for the smallest eigenvalue 
(solid lines), for values of parameters for which its typical value is at the boundary 
of the semicircle (left), or it is out of the bulk (right). The black ticks mark the values 
x±σ (θ,β). When the large deviation function coincides with Gθ,β(x) (red curves), the 
eigenvector corresponding to the minimal eigenvalue has a typical projection along the 
special direction that is utyp(x) > 0.
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For what concerns the typical overlaps, Gθ,β(x) corresponds to a non-trivial typical overlap 
utyp(x) > 0 with the special direction, while G0(x) corresponds to zero overlap, i.e. in Regime 
B.1 we have

utyp(x) =





0 if x+σ (θ,β) < x < −2σ
u+θ,β(x) if x−σ (θ,β) < x < x+σ (θ,β)
0 if x < x−σ (θ,β),

� (87)

while in Regime B.2 it holds:

utyp(x) =
{

u+θ,β(x) if x−σ (θ,β) < x < −2σ
0 if x < x−σ (θ,β).

� (88)

The expression for u+
θ,β(x) is given explicitly in (162). Notice that when the eigenvector asso-

ciated to the smallest eigenvalue is uncorrelated with the special direction (utyp(x) = 0), the 
large deviation function G0(x) coincides with the one in absence of perturbations [64]. In the 
limit of a purely additive perturbation β → 0, the Regime A disappears as σ′ → 0. Moreover, 
one finds x+σ → θ + σ2/θ and x−σ → −∞. The typical value of the overlap, when positive, 
reduces to utyp(x) → 1 − [xθ −

√
θ2(x2 − 4σ2)]/(2θ2). The known results are recovered [63].

3.4.  Large deviations for fluctuating θ

We finally state the expression for the large deviation function Fθ,σθ ,β(x) in (64), obtained 
optimizing over the Gaussian fluctuations of θ. In Regime A the optimization is trivial. In 
Regime B we shall show that all the inequalities in the previous section survive with the sub-
stitution θ → θ , meaning that we can identify once more the three regimes:

	 •	�Regime A: −2σ′ � θ (the functions x±σ (θ,β) are complex); 
	 •	�Regime B.1: σ2Gσ′(θ) < −σ, meaning −θc � θ � −2σ′. In this regime µtyp

M (θ,β) = −2σ ; 
	 •	�Regime B.2: σ2Gσ′(θ) � −σ, meaning θ < θc. In this regime µtyp

M (θ,β) = µ0(θ,β), see 
(52), (74).

The large deviation function for fluctuating θ reads:

Fθ,σθ ,β(x) =




G0(x) in Regime A

F (1)
θ,σθ ,β

(x) in Regime B.1

F (2)
θ,β(x) in Regime B.2,

� (89)

where

F (1)
θ,σθ ,β

(x) =
{
G0(x) if x < x−σ (θ,β) or x+σ (θ,β) < x < −2σ
Gθ∗,β(x) if x−σ (θ,β) < x < x+σ (θ,β).

� (90)

and

F (2)
θ,σθ ,β

(x) =
{
Gθ∗,β(x) if x−σ (θ,β) < x < −2σ
G0(x) if x < x−σ (θ,β).

� (91)

Therefore the large deviation function has the same form as in the previous section  with 
θ → θ , except for Gθ,β  which has to be computed at the shifted point θ → θ∗ = θ∗0 (x) whose 
explicit expression is given in (179). Notice that, as it should,

θ∗0 (x)
σθ→0−→ θ.� (92)
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3.5.  Derivation of the large deviations: the idea of the calculation

In this section we summarize the skeleton of the derivation of the large deviation functions, 
whose details are presented in the following. The starting point is the derivation of the joint 
density of the eigenvalues µα of the matrix Y  given in (49), and of the corresponding eigen-
vector components along eM. We set µM � µM−1 � · · ·µ1 and let vα be the matrix eigenvec-
tors, and uα = |vα · eM|2 ∈ [0, 1]. As we derive in the following, the joint probability density 
of µα, uα reads:

Pθ,β(µα, uα) =
e−MV(µα,uα)

ZM[θ,β]

∏
γ<α

(µγ − µα)
M∏

α=1

θ (µα − µα+1) δ

(
M∑

α=1

uα − 1

)∏
α

1

u1/2
α

,� (93)

with ZM[θ,β] a normalization and

V(µα, uα) =
1

4σ2


∑

α

µ2
α +

C2
3

4

(∑
α

µαuα

)2

+ C2

∑
α

µαuα + C3

∑
α

µ2
αuα


 ,� (94)

with the constants given in (65). Therefore, the effect of the additive and multiplicative per-
turbations is to introduce a coupling between the µα and uα through the confinement potential 
V(µα, uα). The joint probability density of µM = x and uM  =  u has to be obtained integrating 
over all the other eigenvalues and eigenvector projections, as:

Pθ,β(x, u)
p(u)

=
e
− M

4σ2

[
x2+C2xu+

C2
3

4 x2u2+C3x2u
]

Z∗
M[θ,β]

∫ M−1∏
α=1

dµα[(µα − x)θ(µα − x)]F (�µ) Ix,u(�µ).� (95)

In this formula p(u) is the distribution of a single eigenvector component for a GOE matrix, 
F (�µ) is the measure on the remaining M  −  1 eigenvalues:

F (�µ) =

M−1∏
α>γ=1

(µγ − µα)θ(µγ − µα)e
− M

4σ2 [
∑M−1

α=1 µ
2
α],� (96)

Ix,u(�µ) is the integral over the remaining eigenvectors components, and the normalization 
is rescaled as Z∗

M[θ,β] = ZMΓ(M/2)/πM/2. From the explicit expression:

Ix,u(�µ) =

∫ ∞

−∞

M−1∏
α=1

deα
Γ
(M−1

2

)

π
M−1

2

δ

(
M−1∑
α=1

e2
α − 1

)
×

× e
− M

4σ2

[
C4(x,u)(1−u)

∑M−1
α=1 µαe2

α+
[C3(1−u)]2

4 (
∑M−1

α=1 µαe2
α)

2
+C3(1−u)

∑M−1
α=1 µ

2
αe2

α

]

�

(97)

one sees that (97), up to normalization constants, has the same structure as (93) with 
C3 → C3(1 − u) and C2 → C4(x, u)(1 − u). Therefore, at fixed x and u the distribution of the 
remaining eigenvalues is the one of a GOE matrix perturbed exactly as the original one, with 
modified parameters given in (76). We made use of this observation in the interpretation of the 
large deviation function.

Given (95), the core of the calculation is the computation of the integrals over the matrix 
eigenvalues and eigenvectors. This is done in three steps: (i) introducing two auxiliary fields 
y,λ the integration over the eα becomes Gaussian and can be performed; (ii) the integration 
over the µα is performed solving a variational problem for the eigenvalue density, both for its 
continuous part and for the isolated eigenvalue generated by the perturbations; (iii) the auxil-
iary parameters y,λ are fixed with a saddle point calculation.
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More precisely, the integration over the eigenvector components and over the continuous 
part of the eigenvalue density leads to the following expression for the joint probability:

Pθ,β(x, u) ∼ AM e−MΨ0(x,u)
∫

ξ�x
dξe−M

[
ξ2

4σ2 −I(ξ)
] ∫

D(ξ)

dydλ eMφ(y,λ),� (98)

where the remaining integrals are over the auxiliary parameters (with φ(y,λ) their action) and 
over the variable ξ, which represents the value of the second-smallest eigenvalue µM−1 of the 
matrix. The integration over this eigenvalue has to be done separately, since for certain values 
of parameters the effective perturbations (76) give rise to an outlier in the spectrum, that cor-
responds to its smaller eigenvalue µM−1. The two integrals are coupled by the fact that (λ, y) 
belong to a domain D(ξ) that depends explicitly on the value of ξ. All the integration can be 
performed with a saddle point approximation. Depending on the values of ξ, the solutions 
(λ∗, y∗) of the minimization problem for the action φ(y,λ) are either within the domain, or 
outside the domain; in that case, the ξ-dependent boundary values have to be taken. Once the 
optimization over the auxiliary parameters is performed, performing the integral over ξ with a 
saddle point approximation we are left with:

Pβ,θ(x, u) = AMe−M[Ψ0(x,u)+inf−2σ�ξ�x Ψ1(x,u,ξ)],� (99)

where Ψ1(x, u, ξ) is (up to additive terms that are constant in ξ) the large deviation function 
for the smallest eigenvalue of a matrix perturbed according to (76). The optimization over ξ 
depends on wether x is larger or smaller than the typical value µtyp

M−1 of this eigenvalue: the dif-
ferent cases correspond to the different regimes of (73). In particular, when x, u are such that 

µtyp
M−1 = −2σ (meaning that σ2F(x, u) � −σ), the optimum of (99) is attained at ξ∗ = −2σ . 

When instead µtyp
M−1 ≡ µ1(x, u) < −2σ (meaning that σ2F(x, u) < −σ), the optimum is at 

ξ∗ = µ1(x, u) if x < µ1(x, u), or at the boundary value ξ∗ = x  otherwise.
The other large deviation functions follow straightforwardly from an optimization over the 

overlap u and over the additive perturbation θ.

4.  Part III: detailed derivation of large deviation functions

In this part of the paper, we present the derivation of the results summarized above. In par
ticular, in section 4.1 we show how the joint distribution of eigenvalues µα and eigenvectors 
components uα is modified by adding a combination of additive and multiplicative perturba-
tions. In section 4.2 we re-write the joint distribution Pθ,β(x, u) as the integral of an action 
depending on the configuration of the second-smallest eigenvalue ξ, and over two additional 
auxiliary parameters λ, y. In sections 4.3 and 4.4 we solve the saddle point equations for the 
auxiliary parameters λ, y, and in section 4.5 we optimize over the value of the second-smallest 
eigenvalue. Finally, in section 4.6 we determine the optimal value of the overlap utyp(x), and in 
section 4.7 we optimize over the fluctuations of the additive perturbation θ. Additional details 
on the calculation are given in the Appendices.

4.1. The joint density of the smallest eigenvalue and eigenvector projection

Let µα be the eigenvalues of the matrix Y  given in (49), with µM � µM−1 � · · ·µ1. Let vα be 
the corresponding eigenvalues and uα = |vα · eM|2 ∈ [0, 1]. We consider θ to be fixed. We first 
argue that the joint probability density of µα, uα reads:
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Pθ,β(µα, uα) =
e−MV(µα,uα)

ZM[θ,β]

∏
γ<α

(µγ − µα)
M∏

α=1

θ (µα − µα+1) δ

(
M∑

α=1

uα − 1

)∏
α

1

u1/2
α

,� (100)

with ZM[θ,β] a normalization and

V(µα, uα) =
1

4σ2


∑

α

µ2
α +

C2
3

4

(∑
α

µαuα

)2

+ C2

∑
α

µαuα + C3

∑
α

µ2
αuα


 ,� (101)

with the constants given in (65). As a matter of fact, for the GOE matrix X  the joint density of 
the ordered eigenvalues λα and of the eigenvectors squared components zα = |e · wα|2 along 
an arbitrary direction e is factorized, and reads:

pGOE(λα, zα) =
M!

ZM(σ)
e−M

∑M
α=1

λ2
α

4σ2
∏
α<γ

|λγ − λα|
∏
α

θ(λα − λα+1)

× Γ(M/2)
(Γ(1/2))M δ

(
M∑

α=1

zα − 1

)∏
α

1

z1/2
α

�

(102)

with ZM(σ) a normalization. The distribution (100) is obtained through the change of variable:

X = F−1
β

(
Y − θeMeT

M

)
F−1
β = F−1

β YF−1
β − θ(1 + β)2eMeT

M ,� (103)

where

F−1
β = + β eMeT

M .� (104)

The confinement potential is modified, since

TrX 2 = Tr
(

F−1
β YF−1

β

)2
+ θ2(1 + β)4 − 2θ(1 + β)2 Tr

(
F−1
β YF−1

β eMeT
M

)
.

�

(105)

Using that:

Tr(F−1
β YF−1

β eMeT
M) = (1 + β)2 eM · Y · eM

Tr
(

F−1
β YF−1

β

)2
= TrY2 + (4β2 + 4β3 + β4) (eM · Y · eM)

2
+ (4β + 2β2)eM · Y2 · eM ,

� (106)

one finds

TrX 2 = TrY2 +
C2

3

2
(eM · Y · eM)

2
+ C2eM · Y · eM + C3eM · Y2 · eM + θ2(1 + β)4� (107)

with the constants given in (65). The confinement potential for the eigenvalues of Y  is there-
fore given by (101) and depends explicitly on their eigenvector components uα (the constant 
term θ2(1 + β)4 is absorbed in the normalization). On the other hand, it can be easily argued 
that the joint measure of the eigenvector components and of the eigenvalues is left invariant by 
the change of variables (for an additive rank-1 perturbation, this was shown in [65] following 
[66]). As a consequence, the only effect of the additive and multiplicative perturbations is to 
introduce a coupling between the µα and uα through the confinement term. From (100) we can 
then get that the joint density of µM = x, uM = u reads:
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Pθ,β(x, u)
p(u)

=
e
− M

4σ2

[
x2+C2xu+

C2
3

4 x2u2+C3x2u
]

Z∗
M[θ,β]

∫ M−1∏
α=1

dµα[(µα − x)θ(µα − x)]F (�µ) Ix,u(�µ).� (108)

In this formula p(u) the distribution of a single eigenvector component:

p(u) =
Γ(M/2)

√
πΓ

(M−1
2

) (1 − u)
M−3

2

√
u

∼ (1 − u)
M
2 ,� (109)

Z∗
M[θ,β] = ZMΓ(M/2)/πM/2 is a rescaled normalization, F (�µ) is the measure on the remain-

ing M  −  1 eigenvalues:

F (�µ) =

M−1∏
α>γ=1

(µγ − µα)θ(µγ − µα)e
− M

4σ2 [
∑M−1

α=1 µ
2
α],� (110)

while Ix,u(�µ) is an integral over the remaining uα:

Ix,u(�µ) =

∫ ∞

0

M−1∏
α=1

duα p(�u|u)e
− M

4σ2

[
C4(x,u)

∑M−1
α=1 µαuα+

C2
3

4 (
∑M−1

α=1 µαuα)
2
+C3

∑M−1
α=1 µ

2
αuα

]

.� (111)

Here C4(x, u) = C2 + (C2
3/2) xu , and p(�u|u) is the uniform distribution on a sphere of 

radius 1  −  u in dimension M  −  1:

p(�u|u) =
Γ
(M−1

2

)

π
M−1

2 (1 − u)
M−1

2 −1

M−1∏
α=1

1

u1/2
α

δ

(
M−1∑
α=1

uα − (1 − u)

)
.� (112)

Notice that 0 � uα � 1, but the distribution (100) can be integrated on the whole positive 
semi-axis because the delta enforces this constraint automatically. Explicitly, we can write:

Ix,u(�µ) =

∫ ∞

−∞

M−1∏
α=1

deα
Γ
(M−1

2

)

π
M−1

2

δ

(
M−1∑
α=1

e2
α − 1

)

× e
− M

4σ2

[
C4(x,u)(1−u)

∑M−1
α=1 µαe2

α+
[C3(1−u)]2

4 (
∑M−1

α=1 µαe2
α)

2
+C3(1−u)

∑M−1
α=1 µ

2
αe2

α

]

.

�

(113)

As anticipated, the distribution (113), up to normalization constants, has the same structure 
as (100) but with modified constants C3 → C3(1 − u) and C2 → C4(x, u)(1 − u). This implies 
that, fixing x and u, the distribution of the remaining eigenvalues is the one of a GOE matrix 
perturbed exactly as the original one, with modified parameters given in (76).

4.2.  Integration over the remaining eigenvectors and eigenvalues

As we show in appendix E, (113) can be re-written in the following more convenient form:

Ix,u(�µ) = −
Γ
(M−1

2

)

π
M−1

2

√
M3 4σ2

πC2
3(1 − u)2

[
2σ2

C3(1 − u)

]M−3
2

∫ ∫ i∞

−i∞
dy dλeM

(
y2

σ2 −λ
)

I2

� (114)
with

I2(y,λ, �µ) =
∫ ∞

−∞

M−1∏
α=1

deαe−
M
2

∑M−1
α=1 e2

α

[
µ2
α+

(
C4(x,u)

C3
−2y

)
µα−2λ 2σ2

C3(1−u)

]
.

� (115)
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The parameters y  and λ in (114) are auxiliary fields that will be fixed through a saddle point 
calculation, while the integrals (115) are decoupled Gaussian integrals whose convergence 
imposes some constraints on the domain of y,λ. In particular, given the functions

µ±
x,u(y,λ) = −1

2

(
C4(x, u)

C3
− 2y

)
± 1

2

√
8λ

2σ2

C3(1 − u)
+

(
C4(x, u)

C3
− 2y

)2

,

� (116)
the condition for the convergence of the integrals in (115) reads (assuming that λ, y are real):

µ2
α +

(
C4(x, u)

C3
− 2y

)
µα − 2λ

2σ2

C3(1 − u)
= [µα − µ+

x,u(y,λ)][µα − µ−
x,u(y,λ)] > 0 ∀α.� (117)

For a given configuration of eigenvalues µα, we denote with D[µα] the domain of λ, y for 
which (117) is satisfied. Performing the Gaussian integration, (108) becomes equal to:

Pθ,β(x, u)
p(u)

=
αM(u)

ZM Γ
(M

2

)
[

2πσ2

e C3(1 − u)

]M
2

e
− M

4σ2

[
x2+C2xu+

C2
3

4 x2u2+C3x2u
]

Jθ,β(x, u)

� (118)
where

αM(u) = − M2

2σ2 Γ

(
M − 1

2

)(
2e
M

)M
2
√

C3(1 − u)
π

� (119)

scales less than exponentially with M,

Jθ,β(x, u) =
∫ M−1∏

α=1

dµα 1x<µM−1<···�µ1

∫
dy dλ 1λ,y∈D[µα] e−M2S̃1[�µ]−MS̃0[y,λ,�µ]

� (120)
where 1 is the indicator function, and the actions have the following expression:

S̃1[�µ] =
1

4σ2

1
M

M−1∑
α=1

µ2
α − 1

M2

M−1∑
α>γ=1

log(µγ − µα),

S̃0[y,λ, �µ] = λ− y2

σ2 +
1

2M

M−1∑
α=1

log[(µα − µ+
x,u)(µα − µ−

x,u)]−
1
M

M−1∑
α=1

log(µα − x).

�

(121)

Notice that the action S̃1[�µ] is the one corresponding to the joint distribution of the eigen-
values of an unperturbed GOE matrix, and is given by one-point functions of the eigenvalues. 
These actions can be expressed in terms of the eigenvalue density ν(µ) =

∑M
α=1 δ(µ− µα), 

performing the change of variable �µ → ν(µ). Naturally, the density ν(µ) can have both a con-
tinuous part and some poles, corresponding to the isolated eigenvalues. The dominating term 
of S̃1 depends only on the continuous part of ν(µ), and reproduces exactly then term that one 
would get from an unperturbed GOE; therefore, the corresponding action is zero at the typical 
density ν typ

cont(µ) = ρσ(µ) corresponding to the semicircle law (51). Any contribution to ν(µ) 
coming from isolated poles is of O(1/M), and gives rise to sub-leading contributions to S̃1 that 
have to be added to the linear term in M of the exponent in (118).

To proceed with the calculation, we assume that only one of these poles can be present, 
corresponding to the second-smallest eigenvalue µM−1 of the matrix. We show that, under 
this assumption, the saddle-point equations obtained by minimizing the linear term in M of 
the resulting action fix this eigenvalue to its typical value µtyp

M−1(x, u) at fixed x and u, which 
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is either −2σ when σ2F(x, u) � −σ, or (79) otherwise, consistently with the results in sec-
tion  3.2.1. We subsequently need to check that the hypothesis is consistent, meaning that 
whenever the second eigenvalue is fixed to its typical value, the third-smallest eigenvalue 
typically sticks to the boundary of the semicircle µtyp

M−2 = −2σ. We discuss this check in 
appendix I.

We therefore assume that the only eigenvalue that can take values smaller that −2σ is µM−1 
and integrate over the remaining ones, getting:

Jθ,β(x, u) = AM

∫

ξ�x
dξ h(ξ, x)

∫
dy dλ 1λ,y∈D[ξ]

× e−M
[

ξ2

4σ2 −
∫

dµ log[(µ−ξ)(µ−x)]ρσ(µ)+λ− y2

σ2 +
1
2

∫
dµ log[(µ−µ+

x,u)(µ−µ−
x,u)]ρσ(µ)

]
,

� (122)

where h(ξ, x) = (ξ − x)/[(ξ − µ+
x,u)(ξ − µ−

x,u)]
1/2, and AM contains constant terms coming 

from the change of variables �µ → ν(µ). Combining everything, asymptotically at the expo-
nential scale in M we find:

Pθ,β(x, u) ∼ AM e−MΨ0(x,u)
∫

ξ�x
dξe−M

[
ξ2

4σ2 −I(ξ)
] ∫

D(ξ)

dydλ eMφ(y,λ),� (123)

with

Ψ0(x, u) =
1

4σ2

(
x2 + C2xu +

C2
3

4
x2u2 + C3x2u

)
− 1

2
log

(
2σ2

C3

)
− I(x) + 1

2
,

φ(y,λ) =
y2

σ2 − λ− 1
2

∫
dµρσ(µ) log

[
(µ− µ−

x,u(y,λ))(µ− µ+
x,u(y,λ))

]
.

�

(124)

The expression for I(z) is given in (69) (and we are using that x � −2σ), and we made use 
of the identity:

√
z2 − 4σ2

2
= σ2G(z)− z

2
for z < −2σ.� (125)

The constant AM  in (123) contains exponential contributions that have to be determined from 
the condition:

Pθ,β(xtyp, utyp) ∼ O(1),� (126)

where xtyp, utyp are the typical values of µM  and uM at fixed θ,β.
Finally, we comment on the domain D. The latter changes depending on whether the roots 

µ±
x,u are real or complex. We can distinguish the following two cases :

	 •	�Case A: the roots µ±
x,u(y,λ) are complex: this happens whenever the discriminant is nega-

tive, corresponding to

λ < −1
8

(
C4(x, u)

C3
− 2y

)2 C3(1 − u)
2σ2 � 0.� (127)

		 In this case the condition (117) is always met, and one can set

D = {(y,λ) : λ � 0 and y ∈ R} .� (128)

V Ros﻿J. Phys. A: Math. Theor. 53 (2020) 125002



31

	 •	�Case B: The roots µ−
x,u(y,λ) � µ+

x,u(y,λ) are real; for θ < 0, one can self-consistently check 
that µ+

x,u(y,λ) < 0. A necessary condition for (117) to hold true is that µ+
x,u(y,λ) � −2σ, 

meaning that the support of the continuous part of the eigenvalue distribution lies to the 
right of µ+

x,u. Additionally, we have to impose that the eigenvalues that do not belong to 
the continuous part of the eigenvalue density satisfy the condition. This implies that either 
ξ < µ−

x,u(y,λ) or µ+
x,u(y,λ) < ξ, meaning:

D(ξ) =
{
(y,λ) : ξ � µ−

x,u(y,λ) or µ+
x,u(y,λ) � ξ and µ+

x,u(y,λ) < −2σ
}

.
� (129)

4.3.  Saddle point equations for the auxiliary fields I: inside the domain

In this section we discuss the saddle point equations for φ(y,λ) in (124), at fixed values of ξ. 
To simplify the notation, we denote µ±

x,u simply with µ±.
The minimization of φ(y,λ) gives the following two equations:

C3(1 − u)
2σ2

(
µ+ − µ−) = Gσ(µ

−)− Gσ(µ
+)

4
σ2 y +

C3(1 − u)
2σ2

(
µ+ + µ−) = Gσ(µ

−) + Gσ(µ
+).

�

(130)

Summing and subtracting these equations we get the relations:

C3(1 − u)
2σ2 µ+ +

2
σ2 y = Gσ(µ

−)

C3(1 − u)
2σ2 µ− +

2
σ2 y = Gσ(µ

+).
�

(131)

Assuming that Gσ can be inverted, these can be re-written as:

µ+(λ, y) = G−1
σ

(
C3(1 − u)

2σ2 µ−(λ, y) +
2
σ2 y

)

µ−(λ, y) = G−1
σ

(
C3(1 − u)

2σ2 µ+(λ, y) +
2
σ2 y

)
.

�

(132)

As we show in appendix F, regardless of whether µ±
x,u are complex or real, the solutions of 

these equations is given by:

y∗ =
C4(x, u)C3(1 − u)2

2 [2 + C3(1 − u)]2
, λ∗ = −

[
σ2(C3(1 − u) + 2)2 + C2

4(1 − u)2
]

σ2(C3(1 − u) + 2)3 .

� (133)
When µ± are computed at the saddle point solutions y∗,λ∗, the correspondent action is given 
by:

φ(λ∗, y∗) =
1
2
− 1

2
log

[
σ2

(
1 +

2
C3(1 − u)

)]
+

C2
4(x, u)(1 − u)2

4σ2 [2 + C3(1 − u)]2
.

� (134)
We now discuss the conditions under which the GOE resolvent can be inverted, and the 

saddle point solutions lie in the right domain D[ξ]. If Case A holds, the equation are always 
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invertible given that the resolvent is never singular. When µ±
x,u are real, i.e. when Case B holds, 

to write (132) it must hold:
∣∣∣C3(1 − u)

2σ2 µ± +
2
σ2 y

∣∣∣ � 1
σ

.� (135)

Since for µ± < 0 and thus G(µ±) < 0, these conditions become

F± ≡ C3(1 − u)
2σ2 µ±(λ∗, y∗) +

2
σ2 y∗ � − 1

σ
,� (136)

and given that F+ > F− one has to impose that

F(x, u) ≡ F− = −
C4(1 − u) +

√
C2

4(1 − u)2 − σ2C3(1 − u) [2 + C3(1 − u)]3

σ2 [2 + C3(1 − u)]2
� − 1

σ
.� (137)

As we anticipated in (77), this condition is equivalent to [Gσ̃(θ̃)]
−1 � −σ, which is the 

condition under which the typical value of the second-smallest eigenvalue µtyp
M−1 is not out of 

the bulk. In this case we find:

ξ±σ (x, u) ≡ µ±
x,u(λ

∗, y∗) = m±
σ [C4(x, u)(1 − u), C3(1 − u)],� (138)

where m±
σ  are given in (75). In this regime of parameters, the saddle point solution (y∗,λ∗) 

lies within D[ξ] iff

ξ � µ+(y∗,λ∗) = G−1
σ (F(x, u)) = G−1

σ

(
1

σ2Gσ̃(θ̃)

)
or ξ � µ−(y∗,λ∗),

� (139)
and has to be discarded otherwise.

When (135) is not met and F+ � −1/σ > F−, the equation  for µ+(y,λ) still admits a 
solution µ+(y∗,λ∗), which nevertheless belongs to the second Riemann sheet in the complex 
plane. This is due to the fact that the quadratic equation for the resolvent of a GOE matrix 
σ2G2

σ(z)− zGσ(z) + 1 = 0 admits another solution

G(II)
σ (z) =

1
2σ2

(
z + sign(z)

√
z2 − 4σ2

)
� (140)

for z real, which is obtained from Gσ(z) changing the sign in front of the square root. This 
function is defined on the second Riemann sheet, and it takes values in |z| > 1/σ. Its inverse is 
again given by G−1

σ (z) = z−1 + σ2z, but now evaluated in this domain |z| > 1/σ.
When F+ � −1/σ > F−, µ+(y∗,λ∗) solves the second of equation (131) with Gσ → GII

σ . 
In this case, the saddle point solution (y∗,λ∗) can still be considered, and it lies within the 
integration domain D[ξ] iff ξ < µ−(y∗,λ∗). Notice that this is the regime of parameters in 
which the typical value of the second-smallest eigenvalue is out of the bulk. Using the results 
of section 3.2.1 we know that the latter can be written as:

µ1(x, u) ≡ µtyp
M−1 = G−1

σ

(
Gσ̃(θ̃)

)
= G−1

σ

(
1

σ2 F(x, u)

)
,� (141)

where here the argument of G−1
σ  is larger than −1/σ.

We notice that the explicit expression of the typical value (141) is exactly the same as the 
one of ξ+σ (x, u) = µ+

x,u(λ
∗, y∗) = G−1

σ (F(x, u)). The two expressions coincide due to the fol-
lowing symmetry of the function G−1

σ  on the real axis:
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G−1
σ (x) = G−1

σ

(
1
σ2x

)
.� (142)

Therefore, the threshold value ξ+σ (x, u) can be though of as the analytic continuation of the 
expression for µ1(x, u), extended to a regime of parameters for which typically the eigenvalue 
is not out of the bulk of the semicircle5. The difference between the two quantities is that in 
this regime, while µ1(x, u) lies in the first Riemann sheet, ξ+σ (x, u) lies in the second.

Finally, the case F+ < −1/σ needs not to be considered, since F+ becomes complex before 
reaching the threshold value F+ = −1/σ6. In summary, the saddle point solutions is accept-
able whenever the resulting µ±(y∗,λ∗) are either complex (case A), or when they satisfy any 
of the two conditions (139).

4.4.  Saddle point equations for the auxiliary fields II: boundary of domain

When Case B holds but (139) is not met, y∗,λ∗ do not belong to the domain D[ξ], and the rate 
function φ has to be computed at boundary manifold, where one of the two following equali-
ties hold:

ξ = −1
2

(
C4

C3
− 2y

)
± 1

2

√
8λ

2σ2

C3(1 − u)
+

(
C4

C3
− 2y

)2

= µ±
x,u(y,λ).� (144)

This is an equation  relating y,λ. Assuming that (144) holds for some λ = λext(ξ) and 
y = yext(ξ), taking its square we get the relations:

λext(y; ξ) =
C3(1 − u)

4σ2

[
ξ2 +

(
C4(x, u)

C3
− 2y

)
ξ

]
,

yext(λ; ξ) =
1
2

[
C4(x, u)

C3
− 4σ2λ

C3(1 − u)ξ
+ ξ

]
.

�
(145)

Substituting the first of these equations into φ(λ, y) and minimizing over y  we get:

2y
σ2 +

C3(1 − u)
2σ2 ξ − G

(
−ξ − C4

C3
+ 2y

)
= 0.� (146)

The two equations are solved by:

yext(ξ) = − C3σ
2

C3ξ(C3(1 − u) + 2) + 2C4
− 1

4
C3(1 − u)ξ,

λext(ξ) =
C3ξ(1 − u)

4σ2 G−1
(

2C3

2C4 + C3ξ [2 + C3(1 − u)]

)
.

�

(147)

If the second equation in (145) is used we get an equivalent result, see appendix F for the 
details. The rate function φ(y,λ) computed at (147) reads

5 Notice that when β → 0, we correctly recover F → µ(1 − u)/σ2 and thus (137) reduces to µ(1 − u) > −σ. The 
other threshold value ξ−σ (x, u) diverges to −∞ in this limit.
6 Indeed, exactly at the point when F± develop a complex part and we transition to Case A, the functions take the 
value:

F±(x, u) = − C4(1 − u)
σ2[2 + C3(1 − u)]3

= − 1
σ

√
C3(1 − u)

2 + C3(1 − u)
� − 1

σ
.� (143)
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φ(yext,λext) = − (1 − u)ξ [4C4 + C3ξ(4 + C3(1 − u))]
16σ2 − I(ξ)

2
+

1
2
log

[
2C3

C3ξ(C3(1 − u) + 2) + 2C4

]
,

� (148)
as we derive in the same appendix.

4.5. The variational problem for the second-smallest eigenvalue

Combining (123) with the results of the last two section, we find that:

Pβ,θ(x, u) = AMe−M[Ψ0(x,u)+inf−2σ�ξ�xΨ1(x,u,ξ)] = e−M[Ψ0(x,u)+inf−2σ�ξ�x Ψ1(x,u,ξ)−l(θ,β)]
� (149)

with l(θ,β) defined by AM = exp (Ml(θ,β) + o(M)), and

Ψ1(x, u, ξ) =
1

4σ2 ξ
2 −

∫
dµρσ(µ) log(µ− ξ)− Φ(x, u; ξ).� (150)

The function Φ(x, u; ξ) is given by:

Φ(x, u; ξ) =
{
φ1(x, u) if Case A, Cond 1 or Cond 4
φ2(x, u; ξ) if Cond 2 or Cond 3� (151)

where

φ1 ≡ 1
2
− 1

2
log

[
σ2

(
1 +

2
C3(1 − u)

)]
+

C2
4(x, u)(1 − u)2

4σ2 [2 + C3(1 − u)]2

φ2 ≡ 1
2
log

[
2C3

C3ξ(C3(1 − u) + 2) + 2C4(x, u)

]
− (1 − u)ξ [4C4 + C3ξ(4 + C3(1 − u))]

16σ2 − I(ξ)
2

� (152)
where the conditions are:

Cond 1 : σ2F(x, u) � −σ and ξ � ξ+σ (x, u) or ξ � ξ−σ (x, u)

Cond 2 : σ2F(x, u) � −σ and ξ−σ (x, u) < ξ < ξ+σ (x, u)

Cond 3 : σ2F(x, u) < −σ and ξ−σ (x, u) < ξ

Cond 4 : σ2F(x, u) < −σ and ξ−σ (x, u) � ξ.

�

(153)

The function Ψ1 in (150) is (up to constants) the large deviation function for the second 
eigenvalue, that we need to optimize in the domain [x,−2σ]. We can distinguish the following 
two cases:

	 •	�If σ2F(x, u) � −σ, typically the second-smallest eigenvalue is not out of the bulk. In this 
case the large deviation function has three regimes:

Ψ1(x, u, ξ) =





1
4σ2 ξ

2 − I(ξ)− φ1(x, u) if ξ+σ � ξ � −2σ
1

4σ2 ξ
2 − I(ξ)− φ2(x, u, ξ) if ξ−σ < ξ < ξ+σ

1
4σ2 ξ

2 − I(ξ)− φ1(x, u) if ξ � ξ−σ

� (154)

		 and it is always minimal at ξ = −2σ, meaning that:

inf
−2σ�ξ�x

Ψ1(x, u, ξ) = 1 − I(−2σ)− φ1(x, u) =
1
2
− log σ − φ1(x, u).� (155)

	 •	�If σ2F(x, u) < −σ, typically the second-smallest eigenvalue is out of the bulk, and takes 
value µ1(x, u). In this case for any ξ ∈ [ξ−σ ,−2σ] it holds:
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Ψ1 =
ξ2

4σ2 − I(ξ)
2

+
(1 − u)ξ [4C4 + C3ξ(4 + C3(1 − u))]

16σ2 − 1
2
log

[
2C3

C3ξ(C3(1 − u) + 2) + 2C4

]
,

� (156)
		 which has a minimum at µ1(x, u); indeed the derivative of Ψ1 is proportional to:

2σ2C3(C3(1 − u) + 2)
C3ξ(C3(1 − u) + 2) + 2C4

+
ξC3(1 − u)(C3(1 − u) + 4)

2
+ C4(1 − u)− ξ +

√
ξ2 − 4σ2 = 0.

� (157)
		 Among the solutions to this equation, the only one that does not diverge in the limit 

β → 0 is precisely given by µ1(x, u). Depending on the position of x with respect to 
µ1(x, u), the infimum is either attained at the minimum or at the boundary, meaning:

inf
−2σ�ξ�x

Ψ1(x, u, ξ) =
{
Ψ1(x, u, ξ = x) if µ1(x, u) � x
Ψ1(x, u,µ1(x, u)) if x < µ1(x, u).� (158)

In appendix G, we comment on the consistence between the large deviation function for the 
second-smallest eigenvalue Ψ1(x, u; ξ) and known results in the literature [62] valid in the 
limit β → 0. To conclude this section, we simplify the resulting expressions by noticing that 
Ψ1 in (156) one has the identity:

Ψ1(x, u; y → x) =
x2

4σ2 − 1
2
I(x)− 1

2
log

[
2C3

C2
3x + 2C3x + 2C2

]

+
(1 − u)x

4σ2

(
C4(x, u) + C3x +

C2
3

4
x(1 − u)

)
,

�

(159)

implying that in the relevant regime, Ψ0(x, u) + Ψ1(x, u; y → x) = L(b)
θ,β(x) given in (68). 

Similarly, as we show in the same appendix it holds:

Ψ1(x, u; y → ξ+σ ) = −1
2
log

(
C3(1 − u)

C3(1 − u) + 2

)
− C2

4(x, u)(1 − u)2

4σ2 [2 + C3(1 − u)]2
=

1
2
− log σ − φ1(x, u),

� (160)

and thus in all other regimes the sum Ψ0(x, u) + Ψ1 equals to L(a)
θ,β(x, u) given again in (68). 

Combining all this we recover the results stated in section 3.2, up to the constant l(θ,β). In the 
following subsection, we determine the typical value of the overlap parameter u at fixed x, and 
compute the constant l(θ,β).

4.6.  Optimization over the overlap u

We now discuss the optimization of the large deviation function Lθ,β(x, u) over the overlap 

u ∈ [0, 1]. The functions to be optimized change across the different regimes. Since L(b)
θ,β(x) 

does not depend on u, the integral over u in this case does not give any exponential contrib

ution. We therefore focus on L(a)
θ,β(x, u) and identify the solutions of

∂L(a)
θ,β(x, u)

∂u
= 0� (161)
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that lie within the unit interval. This variational equation is quadratic in u, with two solutions

u±θ,β(x) =
4C2

2 + 4C2[C3(C3 + 3) + 1]x + C3(C3 + 2)[(C3(C3 + 4) + 2)x2 + 4σ2]

4C2
2 + 4C2C3(C3 + 3)x + C2

3 {(C3 + 2)(C3 + 4)x2 + 4σ2}

±
2
√
(x2 − 4σ2) (2C2 + C3(C3 + 2)x)2

4C2
2 + 4C3C3(C3 + 3)x + C2

3 {(C3 + 2)(C3 + 4)x2 + 4σ2}
,

�

(162)

of which the relevant one satisfying 0 � u � 1 for at least some values of x is u+
θ,β(x), which 

corresponds to a minimum of L(a)
θ,β(x, u). Notice that in the limit C3 → 0 (equivalently, β → 0) 

corresponding to a purely additive perturbation, this reduces to (using θ < 0):

u+
θ,β(x) → 1 − x +

√
x2 − 4σ2

2θ
,� (163)

which agrees with the known results [63]. When u+
θ,β(x) is non-negative, we always find 

u+
θ,β(x) < 1. Therefore we can set:

u(a)
typ (x) ≡ max

{
0, u+θ,β(x)

}
.� (164)

Here the superscript denotes that u(a)
typ (x) is obtained assuming Lθ,β(x, u) ∝ L(a)

θ,β(x, u). In order 
to discuss the form of u(a)

typ (x), we find it convenient to separate the three following regimes of 
the parameters θ,β:

	 •	�Regime A: When −2σ′ < θ < 0, we find that u+
θ,β(x) < 0 and thus u(a)

typ (x) = 0.
	 •	�Regime B1: When θc < θ < −2σ′ with θc = −σ[1 + 4β + 2β2]/(1 + β)2, given in (52), 

we find that the function u+
θ,β(x) behaves as in figure 8 (left): it is non-monotonic in x7, 

and at x = −2σ  it takes the value

u+θ,β(−2σ) =
(1 + β)4θ + σ(β + 1)2[1 + 2β(2 + β)]

(1 + β)4θ + σβ(β + 2)[3 + 2β(2 + β)]
,� (165)

Figure 8.  Plots of u+
θ,β(x) for values of parameters in which the smallest eigenvalue 

is typically at the boundary of the semicircle (left) or out of the bulk (right). The 
dashed blue curve denotes v+

θ,β(x), see the discussion in appendix H. The region where 
u+
θ,β(x) � v+θ,β(x) corresponds to the regime of parameters in which σ2F(x, u) + σ > 0.

7 This is due to the fact that the coefficient of the quadratic term in the equation for u depends on x, and vanishes at 
a value of x which corresponds to the poles of (162). So at this value of x one has a divergence of the solution for u 
to −∞ [the pole diverges to −∞ when C3 → 0]. The divergence gives the non-monotonicity.
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		 which is always negative. Indeed, θ � −2σ′ implies that the denominator is always 

negative, while the numerator changes sign exactly at θ = θc. The function u+
θ,β(x) 

vanishes exactly at the points x±σ (θ,β) given in (81), and it positive in the regime 

x−σ (θ,β) < x < x+σ (θ,β). Therefore in this regime the optimization of L(a)
θ,β(x, u) subject 

to the constraint u ∈ [0, 1] gives:

u(a)
typ (x) =





0 if x+σ (θ,β) < x < −2σ
u+
θ,β(x) if x−σ (θ,β) < x < x+σ (θ,β)

0 if x < x−σ (θ,β).
� (166)

		 Notice that these values of θ coincide with the regime in which typically the smallest 
eigenvalue of the perturbed matrix is at the boundary of the semicircle.

	 •	�Regime B2: When θ � θc the function u+
θ,β(x) behaves as in figure 8 (right): it is again 

non-monotonic in x, but it is positive at x = −2σ , with only one zero at x = x−σ (θ,β). 
Therefore in this case:

u(a)
typ (x) =

{
u+θ,β(x) if x−σ (θ,β) < x < −2σ
0 if x < x−σ (θ,β).

� (167)

		 Notice that these values of θ coincide with the regime in which typically the smallest 
eigenvalue of the perturbed matrix is smaller than −2σ, and equals to µ0(θ,β).

In order for u(a)
typ (x) to be the correct solution for the optimal overlap, we have to check self-

consistently that the conditions that imply Lθ,β(x, u) ∝ L(a)
θ,β(x, u) are satisfied when u → u(a)

typ. 

In appendix H we perform this self-consistent check, showing that when the optimization over 

u is performed, the relevant rate function is always L(a)
θ,β: when the overlap u is allowed to take 

its typical value, one always finds that the typical value of the second-smallest eigenvalue is 
out of the bulk and larger than x, which is the large-deviation value of the smallest one, as it 
is natural to expect. Using the above expressions, we find:

L(a)
θ,β(x, u+θ,β(x)) = 1 − log σ2 +

1
2
log

C3

2
+

x2

4σ2 − I(x)− φ̃2(x),

L(a)
θ,β(x, 0) = 1 − log σ2 +

1
2
log

C3

2
+

x2

4σ2 − I(x)− φ̃1(x)
�

(168)

with:

φ̃1 =
1
2
− 1

2
log

(
σ2(C3 + 2)

C3

)
+

C2
2

4σ2(2 + C3)2

φ̃2(x) = − x
16σ2 [4C2 + C3x(4 + C3)] +

1
2
log

(
2C3

2C2 + C3x(2 + C3)

)
− I(x)

2
,

�
(169)

implying that for θc < θ < −2σ′ we have:

L(a)
θ,β(x, utyp(x))−

(
1 − log σ2 +

1
2
log

C3

2

)





x2

4σ2 − I(x)− φ̃1 if x+σ (µ,β) < x < −2σ
x2

4σ2 − I(x)
2 −

(
φ̃2(x) +

I(x)
2

)
if x−σ (µ,β) < x < x+σ (µ,β)

x2

4σ2 − I(x)− φ̃1 if x < x−σ (µ,β),

�

(170)

V Ros﻿J. Phys. A: Math. Theor. 53 (2020) 125002



38

while for θ < θc:

L(a)
θ,β(x, u(a)

typ (x))−
(

1 − log σ2 +
1
2
log

C3

2

)

=




x2

4σ2 − I(x)
2 −

(
φ̃2 +

I(x)
2

)
if x−σ (µ,β) < x < −2σ

x2

4σ2 − I(x)− φ̃1 if x < x−σ (µ,β).

� (171)

The expression (170) agrees -up to a constant- with the one for the large deviation func-
tion of the second-smallest eigenvalue that appears in the calculation (see equation (154)), 
provided one keeps in mind the substitution C4(1 − u) → C2 and C3(1 − u) → C2, see sec-
tion 3.2.1. Similarly, (171) is consistent with equation (156).

To conclude this section, we determine the constant l(θ,β) = L(a)
θ,β(xtyp, utyp). When θc < θ, 

the typical value of the smallest eigenvalue is xtyp = −2σ and utyp = 0 leading to:

L(a)
θ,β(−2σ, 0) = 1 − 1

2
log

(
2σ4

C3 + 2

)
− C2

2

4σ2(C3 + 2)2 = 1 − log

(
σ2

1 + β

)
− θ2

2σ2[1 + β]2
.

� (172)
When θ < θc instead we have

xtyp = µ0(θ,β) = G−1
σ (Gσ′(θ)) , Gσ′(θ) =

√
C2

2 − C3(C3 + 2)3σ2 − C2

C3(C3 + 2)σ2

�

(173)

and utyp = u(a)
typ (xtyp). Using that Gσ′(θ)[2C2 + C3x+σ (2 + C3)] = 2(C3 + 2), we obtain that 

also in this regime:

L(a)
θ,β(xtyp, utyp) = 1 − 1

2
log

(
2σ4

C3 + 2

)
− C2

2

4σ2(C3 + 2)2 = 1 − log

(
σ2

1 + β

)
− θ2

2σ2[1 + β]2
.

� (174)
Thus, we recover (70). The final expression for the function Lθ,β(x) in (83) is obtained as 

Lθ,β(x) = L(a)
θ,β(x, utyp(x))− l(θ,β), substituting the expressions above.

4.7.  Optimization over the Gaussian fluctuations of θ

The above calculations are performed for fixed θ < 0. In this section, we allow for fluctuations 
of θ and determine the rate function in (64):

Fθ,σθ ,β(x) = min
θ

[
(θ − θ)2

2σ2
θ

+ Lθ,β(x)
]

,� (175)

focusing on Regime B. Viewed as a function of θ and at fixed x, the rate function Lθ,β(x) in 
(83) takes different forms depending on whether θ is such that x±σ (θ,β) are smaller or larger 
than x. More precisely, we find that

x � x−σ (θ,β) −→ θ � θ∗+(x) =
x + 2β(β + 2)x +

√
x2 − 4σ2

2(1 + β)2

x � x+σ (θ,β) −→ θ � θ∗−(x) =
x + 2β(β + 2)x −

√
x2 − 4σ2

2(1 + β)2 .
�

(176)
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Notice that θ∗±(x) are also the stationary points satisfying

∂

∂θ
[Gθ,β(x)] = 0.� (177)

In particular, θ∗−(x) is a local minimum of Gθ,β: when the additive perturbation equals to θ∗−(x), 
then x is precisely the typical value of the smallest eigenvalue, i.e. x = G−1

σ

(
Gσ′(θ∗−(x))

)
, 

see (17). The point θ∗+(x) is a local maximum of Gθ,β . For x < −2σ  it holds θ∗−(x) < θ∗+(x) 
and θ∗−(x) < θc. The position of the local maximum θ∗+(x) with respect to θc depends 
instead on x: θ∗+(x) < θc for x < x∗σ(β) while θ∗+(x) > −θc for x∗σ(β) < x < −2σ , with 
x∗σ(β) = −2σ − σ[β(1 + β)2(2 + β)]−1. Therefore, viewed as a function of θ the rate Lθ,β(x) 
in Regime B reads, see figure 9:

Lθ,β(x) =
{
Gθ,β(x) if θ � θ∗+(x)
G0(x) if θ > θ∗+(x).

� (178)

The Gaussian weight in (175) shifts the local minimum from θ∗−(x) to

θ∗0 (x|σ,β, θ,σ2
θ) ≡

2θσ2 + 2β(β + 2)σ2(θ + x) + [2β(2 + β) + 1](β + 1)4xσ2
θ −

√
T

4(1 + β)2σ2 + 2(1 + β)6σ2
θ

� (179)

with

T =4σ4(1 + β)4[θ
2 − 2σ2

θ] + 4σ2(1 + β)2θx[(1 + β)4σ2
θ − 2β(2 + β)σ2]

+[(1 + β)4xσ2
θ − 2β(β + 2)σ2x]2 − 4(1 + β)8σ2σ4

θ.
� (180)

Henceforth we denote θ∗0 (x|σ,β, θ,σ2
θ) simply with θ∗0 (x). This point lies in the correct domain 

provided that:

θ∗0 (x) � θ∗+(x).� (181)

We find that, irrespectively of the value of the variance σθ, the two curves in (181) meet at at 
most two values of x, see figure 10, that are given precisely by:

x = x±σ (θ,β),� (182)

Figure 9.  Left. Large deviation function Lθ,β(x) as a function of θ for β = 2,σ = 3 and 
x = −7 < x∗σ(β). The ticks correspond to the local minimum and maximum attained at 

θ∗− and θ∗+, respectively. In this case the local maximum θ∗+ < θc. Right. Large deviation 
function Lθ,β(x) for β = 0.2,σ = 3 and x = −7 > x∗σ(β). The dashed vertical lines 
marks θc, which is smaller than θ∗+ in this case.
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where x±σ  are as in (81) and we are assuming that θ∗0 (x) is real. When the curve meet, they 
equal to:

θ∗0 (x
±
σ (θ,β)) = θ.� (183)

More precisely, as it appears from figure 10, we find that:

Figure 10.  Comparison between the function θ∗+(x) and θ∗0 (x) for either positive and 
negative values of σ2

θ = ±0.8 and β = .2,σ = 3 (giving θc = −3.92) and θ = −3.7 
(Top Left), θ = θc (Top Right), θ = −3.96 (Bottom Left) and θ = −4.5 (Bottom Right).

Figure I1.  Values of u+
θ,β(µ0) and v+

θ,β(µ0) for σ = 1, β = 0.6 and θ < θc = −1.61. The 
plot shows that the inequality (I.2) is always satisfied, implying (I.1).
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	 •	�When θc � θ, the two functions in (181) cross at both x±σ , and the solution θ∗0 (x) is to 
be retained for x ∈ [x−σ , x+σ ]; at the boundary of the interval one has θ∗0 = θ, that is the 
solution to be kept for all x outside the interval; 

	 •	�When θ < θc the solutions cross only at x−σ  for σ2
θ < 0 (orange curves), and the solution 

θ∗0 (x) is to be retained for x > x−σ ; for σ2
θ < 0 a transition occurs: if σθ becomes large 

enough the solution θ∗0 (x) becomes complex before crossing at x−σ  (as it follows from 
section 2.1.2, this regime of positive variance is not of direct interest for applications to 
the p -spin landscape).

Evaluating the rate functions at the correct value of θ, we recover (91) and (90). Notice that the 
fact that the conditions are unaltered provided one performs the substitution θ → θ  is consis-
tent with the observation that x+σ  is related to the typical value of the smallest eigenvalue, that 
should not be shifted by fluctuations of order 1/

√
M of the MM element of the matrix. For the 

purely additive case, this is proved in [60], see the Remark 2.16 in that paper.

5.  Summary and conclusions

Characterizing the geometry of high-dimensional landscapes in terms of the distribution of 
their stationary points is a fundamental step to understand quantitatively the dynamical explo-
ration of the landscape. This is particularly true when the landscape is rugged with plenty 
of minima separated by energy barriers, and the dynamics is expected to be dominated by 
activated processes. In this work we have considered a prototypical landscape, that of the 
spherical p -spin model, and we have determined the statistics of the index-1 saddles sur-
rounding an arbitrary local minimum, as a function of its energy. In particular, we have iden-
tified the range of energy densities and overlaps in which an exponentially large population 
of saddles is found, and computed their complexity. This completes the analysis initiated in 
[44], where only the saddles at shorter distance from the reference minimum were obtained. 
We have found that the dominant saddles at larger distance are marginally stable, with a single 
eigenvalue of the Hessian exactly equal to zero. Moreover, we have characterized a transition 
occurring in the population of dominant saddles, separating a regime in which they are geo-
metrically connected to the local minimum and a regime in which they are not, meaning that 
the corresponding downhill direction in the landscape points in a random direction in configu-
ration space that is not correlated to the direction connecting the saddle to the local minimum.

A relevant question to address once the saddles are identified concerns the properties (typi-
cal energy and overlap) of the minima that are connected to the reference one through a given 
index-1 saddle. For the saddles that are closer to the reference minimum, these properties are 
determined in [69], where it is shown that the closest saddles connect the reference minimum 
to other minima that are quite close to it in configuration space. Therefore, escaping through 
these saddles the system is likely unable to decorrelate from the first trapping minimum. 
It is an interesting open question whether the same holds true also for the saddles at larger 
distance from the minimum, whose statistics is determined in this work. An alternative pos-
sibility (which is not ruled out by known results, see the discussion in section 2.3.3) is that 
the marginal saddles found in this work allow the system to decorrelate, i.e. to reach regions 
of configuration space that are orthogonal to the reference minimum. This would open inter-
esting scenarios for the activated dynamics in this model, allowing the system to decorrelate 
from the trapping minimum while staying at energies that lie below the threshold value. How 
to validate or rule out this scenario through numerical simulations [70, 71] and how to embed 
this type of processes within simple phenomenological models [72, 73] are open directions 
to explore.
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On the technical side, the landscape analysis performed in this work required to extend the 
large deviation principles derived in [63] to the case of a GOE matrix deformed with both an 
additive and a multiplicative finite-rank perturbation. The resulting large deviation functions 
display features similar to the ones obtained in case of a purely additive perturbation: in par
ticular, we find that the different regimes of these functions have an interpretation in terms of 
a BBP-like transition of the second-smallest eigenvalue of the perturbed matrix, as it happens 
in the purely additive case [63]. Some new feature emerge nonetheless as a consequence of the 
multiplicative part of the perturbation: for instance, when the smallest eigenvalue is fixed to 
values of x for which the second-smallest eigenvalue is not an outlier but lies within the bulk 
of the eigenvalue density (see figure 7 left), the large deviations are affected by the finite rank 
perturbation only in an intermediate regime x ∈ [x−σ , x+σ ], while they coincide with the unper-
turbed GOE large deviation for both small-enough and large-enough x. Correspondingly, the 
correlation of the smallest eigenvector with the direction of the perturbation (measured by 
utyp(x)) displays a non-monotonic behavior in x. The scale x−σ  appears only in presence of 
a multiplicative perturbation, and diverges to x−σ → −∞ in the limit of a purely additive 
perturbation.

Another interesting question is how to recover these results within the replica approach; 
the formalism developed in [74], which allows one to target stationary points with exactly one 
zero mode in the Hessian, may be suited in this respect. Obtaining a rigorous proof of these 
results, and more generally of the fact that the annealed constrained complexities of saddles 
are exact for the p -spin model, are also interesting open problems.
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Appendix A. The statistics of conditioned Hessian

In this appendix, we recall the explicit expressions of the functions ∆, ∆̃ and µ defining the 
statistics of the Hessian matrices discussed in section 2.1.2. We recall that σ2 = p( p − 1). The 
variances of the elements miM (i �= M) of the matrix M are given by:

∆2(q) = p( p − 1)
[

1 − ( p − 1)(1 − q2)q2p−4

1 − q2p−2

]
� σ2.� (A.1)

The element mMM has a different variance given by:

∆̃2(q) = p( p − 1)
b1(q)
b2(q)

,� (A.2)

with

b1(q) = p( p − 1)q4p − ( p − 1)( p − 2)2q2p+2 + ( p − 1)2( p − 2)q2p+8 + 2q8 − p
(
3p2 − 13p + 14

)
q2p+6

+ ( p − 2)( p − 3)q4p+4 +
(
3p3 − 14p2 + 17p − 6

)
q2p+4 − 2( p − 1)( p − 2)q4p+2

b2(q) = q4 [q4 − ( p − 1)2q2p + q4p + 2p( p − 2)q2p+2 − ( p − 1)2q2p+4]
�

(A.3)
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and we find that in general ∆̃2(q) < ∆2(q). For p   =  3, in particular, one finds ∆̃2(q) = 0. 
Finally, the element mMM has a non-zero average given by:

µ(q, ε, ε0) ≡
√

2( p − 1) p
(
1 − q2

)
(a0(q)ε0 − a1(q)ε)

q6−p + q3p+2 − q p+2 (( p − 1)2(q4 + 1)− 2( p − 2) pq2)
� (A.4)

with

a1 = q3p + q p+2 ( p − 2 − ( p − 1)q2)

a0 = q4 + q2p (1 − p + ( p − 2)q2) .
� (A.5)

Appendix B.  Computing the expectation value of the Hessian determinant

In section 2.2.1 we use the fact that the expectation value of the Hessian determinant in the 
Kac–Rice formula, conditioned to the values of the smallest eigenvalue λmin = λ and of 
umin = u, to leading order in N is independent of this conditioning. To show this, we first 
notice that the diagonal shift in (7) is independent of the conditioning, which only affects the 
matrix M. We let µα be the eigenvalues of M, ordered as µM � µM−1 � · · · � µ1. Setting 
x = λ+

√
2 p ε, we condition M to the event µM = x and to the overlap u, and denote with 

Pε,q,ε0

(
{µα}M−1

α=1 |x, u
)
 the joint distribution of the remaining eigenvalues. We can therefore 

write:

〈
|detH[σ]|

∣∣∣




g[σ0] = 0, g[σ] = 0
h[σ0] =

√
2Nε0, h[σ] =

√
2Nε

λmin = λ, umin = u





〉
= |λ|

∫ M−1∏
α=1

dλα |λα|

× Pε,q,ε0

({
λα +

√
2 p ε

} ∣∣∣λ+
√

2 p ε, u
)

.
�

(B.1)

As we derive in more generality in section 4.1, the joint distribution Pε,q,ε0

(
{µα}M−1

α=1 |x, u
)
 

has the same structure as the one of the eigenvalues of the unconditioned matrix M, i.e. it 
equals to the joint distribution of eigenvalues of a matrix perturbed with both an additive 
and a multiplicative rank-1 perturbation along the same direction in configuration space. The 
values of the additive and multiplicative perturbations depend explicitly on the parameters 
x and u, see section  3.2.1. These perturbations do not modify the typical eigenvalue den-
sity of the matrix M to leading order in N, which remains a GOE semicircle of the form 
ρσ(µ) =

√
4σ2 − µ2/2πσ2: their only effect is to generate (for certain values of parameters) 

isolated eigenvalues, that correspond to sub-leading corrections of order 1/N to the eigen-
value density. Nevertheless, these perturbation do not matter when computing (B.1) to leading 
exponential order in N, as only the bulk of the density of states does. In particular, using the 
fact that the determinant is a 1-point function of the eigenvalues, and computing (B.1) with a 
saddle point in the space of eigenvalue densities we get:

〈
|detH[σ]|

∣∣∣



g[σ0] = 0, g[σ] = 0
h[σ0] =

√
2Nε0, h[σ] =

√
2Nε

λmin = λ, umin = u




〉
= e[

M
2 log M+

∫
dλ ρσ(λ+

√
2 p ε) log |λ|+o(N)],� (B.2)
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which is exactly the same contribution that we would obtain from the unconstrained Hessian. 
Notice that this contribution does not depend neither on the geometrical conditioning on q, nor 
on the conditioning to the value of the smallest eigenvalue.

Appendix C.  Generalized Kac–Rice formula for the quenched complexity

The general expression of the higher moments appearing in (41) is given by:

〈
N n

σ0(ε, q,λ, u|ε0)
〉

0
=

∫ n∏
a=1

dσ(a) δ
(
σ(a) · σ0 − q

)
× p�σ|σ0(0, ε)G(n)

�σ|σ0

(
�λ,�u

)

×
〈 n∏

a=1

∣∣∣detH[σ(a)]
∣∣∣
∣∣∣





g[σ0] = 0, g[σ(a)] = 0
h[σ0] =

√
2Nε0, h[σ(a)] =

√
2Nε

λ
(a)
min = λ, u(a)

min = u





〉�

(C.1)

where p�σ|σ0  now denotes the joint distribution of all gradients g[σ(a)] and all energy fields 
h[σ(a)], each Hessian H[σ(a)] in the expectation value is conditioned to gradients, energy 

fields and smallest Hessian eigenvalues at all the other points σ(b), and G(n)
�σ|σ0

(
�λ,�u

)
 is the 

joint probability distribution of the smallest eigenvalues and of the correspondent eigenvector 
components of these conditioned Hessians. Following the reasoning elucidated in [25, 44] one 
can show that, as a consequence of the isotropy of the correlations of the random energy field, 
all these statistical distributions depend on the points σ(a) only through their mutual over-
laps qab ≡ N(σ(a) · σ(b)). Introducing an n × n symmetric overlap matrix Q̂ with components 
Qab = δab + (1 − δab)qab we can parametrize the above integral as:

〈
N n

σ0(ε, q,λ, u|ε0)
〉

0
=

∫ n∏
a<b=1

dqab exp
[
NSn(ε, q, Q̂|ε0) + o(Nn)

]
G(n)

ε,q,Q̂|ε0

(
�λ,�u

)
.� (C.2)

This integral can now be computed with a saddle-point approximation, optimizing over the 
matrix Q̂. The total constrained complexity is contributed by stationary points for which λmin 

and umin take their typical values, implying that the joint distribution G(n)
ε,q,Q̂|ε0

(
�λ,�u

)
 does not 

scale exponentially with N but it is of O)(1). In that case the saddle point of the remaining 
action is attained at qab ≡ q1 = q2 [44]. In presence of the conditioning, to compute (C.2) 
one has to determine the large deviations of the smallest eigenvalues and eigenvectors of all 
the n Hessian matrices. This will in general depend on the parameters qab: to prove that the 
annealed calculation is correct, one has to show that this dependence is such that the saddle 
point value qab ≡ q1 = q2 is not shifted by additional contributions coming from this large 
deviation function, that are exponentially large in N. Notice that for all values of qab �= 0 the 
Hessian matrices are coupled with each others: therefore, determining the joint distribution 

G(n)
ε,q,Q̂|ε0

(
�λ,�u

)
 to linear exponential order in N, and its generic dependence on the parameters 

qab, is a highly non-trivial task.

Appendix D.  Large deviations at fixed θ, u : limiting cases

From the above expressions, we can easily recover the limiting cases of the large deviations for 

an unperturbed GOE [64] and for a purely additive perturbation [63]. In the case in which all 

the perturbations vanish, µ1(x, u) diverges and F(x, u) → 0. The function L(a)
θ,β(x, u) tends to:
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L(a)
θ,β(x, u)− l(θ,β)

θ,β→0−→ − x
4σ2

√
x2 − 4σ2 − log

(
− x

2
+

1
2

√
x2 − 4σ2

)
+ log σ,� (D.1)

which for u  =  0 coincides exactly with the large deviations for the smallest eigenvalue of an 
orthogonal matrix with variance σ2, given by:

G0(x) =
∫ −2σ

x

√
z2 − 4σ2

2σ2 dz =
(

x4

4σ2 − I(x) + 1
2

)
+ log σ − 1,� (D.2)

where I(z) is defined in (69). This function vanishes at x = −2σ , which is indeed the typical 
value of the smallest eigenvalue.

In the case of a purely additive perturbation β = 0, the relevant case is Case B. For a nega-
tive perturbation θ < 0, it holds σ2F(x, u) → θ(1 − u), and the typical value of the second-
smallest eigenvalue, when smaller than −2σ, becomes:

µ1(x, u)
β→0−→ θ(1 − u) +

σ2

θ(1 − u)
≡ µ1(u),� (D.3)

consistently with the fact that in this case the effective perturbation induced by fixing x is 
an additive perturbation with strength θ̃ = θ(1 − u), see equation  (76). Therefore, for 
θ(1 − u) � −σ

L(a)
θ,β(x, u)

β→0−→ x2

4σ2 − θxu
2σ2 − I(x)− 1

2
log(1 − u)−

[
−1

2
+ log σ +

θ2(1 − u)2

4σ2

]
,� (D.4)

which coincides8 with what is found in [63]. For θ(1 − u) < −σ we have instead:

Lθ,β(x, u) + l(θ,β)
β→0−→




a(x, u)−
[
− x2

4σ2 +
I(x)

2 + θ(1−u)x
2σ2 − 1

2 log
(

θ(1−u)
σ2

)
− 1

2

]
if x � µ1(u)

a(x, u)−
[
− y2

4σ2 +
I(y)

2 + θ(1−u)y
2σ2 − 1

2 log
(

θ(1−u)
σ2

)
− 1

2

] ∣∣∣
y=ξ+σ (u)

if x < µ1(u)

�
(D.5)

with

a(x, u) =
x2

4σ2 − θ
xu

2σ2 − I(x)− 1
2
log(1 − u),� (D.6)

which again coincides with the result in [63].

Appendix E.  Introduction of the auxiliary fields y ,λ

In this appendix we show how the representation (114) is obtained. First, using the Hubbard–
Stratonovich transformation we set:

e−
M
2

C2
3(1−u)2

8σ2 (
∑M−1

α=1 µαe2
α)

2

=

√
4σ2

πC2
3(1 − u)2

∫ ∞

−∞
dy e

− 4σ2y2

C2
3(1−u)2 +i

√
My(

∑M−1
α=1 µαe2

α)

� (E.1)

8 See the combination of equation (1) in [63] and the beginning of section 7; in particular C′ = −1/2 + log σ  and 
σ = 1 in that work.
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so that the integral (113) can be re-written as:

Ix,u(�µ) =
Γ
(M−1

2

)

π
M−1

2

√
4M σ2

πC2
3(1 − u)2

∫ ∞

−∞
dy e

− 4M σ2y2

C2
3(1−u)2

×

[∫ M−1∏
α=1

deαδ

(
M−1∑
α=1

e2
α − 1

)
e−

M
2

[
C4(x,u)(1−u)

2σ2 −2iy
]∑M−1

α=1 µαe2
α+

C3(1−u)

2σ2
∑M−1

α=1 µ
2
αe2

α

]
.

�

(E.2)

Exponentiating the constraint, we can re-write the quantity in square brackets as:

re· = −iM
(

2σ2

C3(1 − u)

)M−1
2

∫ i∞

−i∞
dλe−Mλ

×
∫ M−1∏

α=1

deαe−
M
2

∑M−1
α=1 e2

α

[
µ2
α+

(
C4(x,u)

C3
−2iy 2σ2

C3(1−u)

)
µα−2λ 2σ2

C3(1−u)

]
.

�

(E.3)

The representation (114) is obtained with the change of variable:

y′ = iy
2σ2

C3(1 − u)
.� (E.4)

Appendix F.  Derivation of the solutions for the auxiliary fields y ,λ

In this appendix we report the derivation of the solutions (133) of the saddle point equa-
tions for y,λ, as well as of (147). We begin with the derivation of (133), starting from equa-
tion (132). We introduce the notation:

a =
C3(1 − u)

2σ2 , b =
2
σ2 .� (F.1)

If µ± are complex, they can be written as:

µ± = −1
2

(
C4

C3
− 2y

)
± i

2

√
−8λ

2σ2

C3(1 − u)
−
(

C4

C3
− 2y

)2

≡ X ± iY ,

� (F.2)
where now the quantity under the square root is positive. The two equation (132) are one the 
adjoint of the other, and read explicitly:

X + iY =
aX + by + iaY

(aX + by)2 + a2Y2 + σ2 (aX + by − iaY) ,� (F.3)

and equating real and imaginary parts (assuming Y �= 0) gives:

1
(aX + by)2 + a2Y2 =

1 + aσ2

a
−→ (aX + by)

(
a−1 + 2σ2) = X,� (F.4)

that gives the solution for y *. The first equation (F.4) allows then to solve for λ as:

8
λ∗2σ2

C3(1 − u)
= −

16
[
σ2(C3(1 − u) + 2)2 + C2

4(1 − u)2
]

C3(1 − u)(C3(1 − u) + 2)3 .� (F.5)
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If on the other hand µ± are real, they can be written as

µ± = −1
2

(
C4

C3
− 2y

)
± 1

2

√
8λ

2σ2

C3(1 − u)
+

(
C4

C3
− 2y

)2

≡ X ±
√

Y ,

� (F.6)
where the quantity under the square root is again positive. Equation (132) read in this case:

(
X ±

√
Y
)(

aX + by ∓ a
√

Y
)
= 1 + σ2

(
aX + by ∓ a

√
Y
)2

,� (F.7)

which are equivalent to:

aX2 + byX − aY − 1 − σ2(aX + by)2 − σ2a2Y = ∓
√

Y
(
by + 2aσ2(aX + by)

)
.

� (F.8)
Summing and subtracting these two equations, we get two linear equations for λ∗, y∗:

by + 2aσ2(aX + by) = 0

aX2 + byX − aY − 1 − σ2(aX + by)2 − σ2a2Y = 0,
� (F.9)

which are again solved by (133). Notice that λ∗ < 0, which implies that µ+ is the largest of 
the two real solutions, and it is negative. The action φ(λ∗, y∗) is obtained noticing that the 
saddle point equations imply:

I(µ+) + I(µ−) = log

[
σ2

(
1 +

2
C3(1 − u)

)]
− 1 + aµ+µ− +

by∗

2
(
µ+ + µ−) .� (F.10)

We now come to the derivation of (147). First, taking y  as a free parameter we find that the 
expression for λext(y; ξ) in (145) implies that:

y <
C4(x, u)

2C3
+ ξ −→ ξ = µ+

x,u(y,λext(y; ξ))

y >
C4(x, u)

2C3
+ ξ −→ ξ = µ−

x,u(y,λext(y; ξ))
� (F.11)

and at the threshold value:

y =
C4(x, u)

2C3
+ ξ −→ ξ = µ−

x,u(y,λext(y; ξ)) = µ+
x,u(y,λext(y; ξ)).� (F.12)

Using that in both cases:

µ−
ext = µ+ −

√
8λ

2σ2

C3(1 − u)
+

(
C4

C3
− 2y

)2

= −ξ − C4

C3
+ 2y = − 4σ2λ

C3(1 − u)ξ
,

µ+
ext = µ− +

√
8λ

2σ2

C3(1 − u)
+

(
C4

C3
− 2y

)2

= −ξ − C4

C3
+ 2y = − 4σ2λ

C3(1 − u)ξ
,

�
(F.13)

for any value of y  we get that the action evaluated at λext(y; ξ) reduces to:

φ̃(y) =
y2

σ2 − C3(1 − u)
4σ2

[
ξ2 +

(
C4

C3
− 2y

)
ξ

]
− 1

2M

M−1∑
α=1

log(µα − ξ)− 1
2M

M−1∑
α=1

log(µα − µ±
ext(y)).

� (F.14)
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Equivalently, if yext(λ; ξ) is used one finds

φ̃(λ) =
1

4σ2

(
C4

C3
− 4σ2λ

C3(1 − u)ξ
+ ξ

)2

− λ− 1
2M

M−1∑
α=1

log(µα − ξ)− 1
2M

M−1∑
α=1

log(µα − µ±
ext(λ)).

� (F.15)
These functions can be further optimized in y  or λ, by solving the equations:

2y
σ2 +

C3(1 − u)
2σ2 ξ − G

(
−ξ − C4

C3
+ 2y

)
= 0

2C4

C3
+ 2ξ + C3(1 − u)ξ − λ

8σ2

C3(1 − u)ξ
− 2σ2G

(
− 4σ2λ

C3(1 − u)ξ

)
= 0.

�

(F.16)

Note that in the first equation the argument of the resolvent is positive, in the second equa-
tion it is negative because λ < 0. Both these equations are linear for a GOE (the coefficients 
of the quadratic terms simplify, with solutions given in (147). The threshold condition (F.12) 
becomes equivalent to:

ξ(C3(1 − u) + 4) +
4C3σ

2

C3ξ(C3(1 − u) + 2) + 2C4
+

2C4

C3
= 0.� (F.17)

To determine (148) we use that µ±
ext = ξ (with ± chosen depending on the value of yext), as 

well as (F.13) and the saddle point condition for yext, we get

I(µ∓
ext) = log

[(
C3(1 − u)

2
+ 1

)
ξ +

C4(x, u)
C3

]
− 1

2
−

ξ + C4
C3

− 2yext

2

[
2yext

σ2 +
C3(1 − u)

2σ2 ξ

]
,

� (F.18)
and calling

H(ξ) =
2C3

C3ξ(C3(1 − u) + 2) + 2C4
� (F.19)

this is:

I(µ∓
ext) = log

(
1

H(ξ)

)
− 1

2
− H(ξ)

2
G−1 [−H(ξ)] = log

(
1

H(ξ)

)
+

σ2

2
H2(ξ).

� (F.20)
The expression (148) is obtained using that:

y2
ext

σ2 − λext = − (1 − u)ξ
16σ2 [4C4 + C3ξ(4 + C3(1 − u))] +

σ2

4
H2.� (F.21)

To conclude the appendix, we remark that equation (160) follows from the general identity:

I(x) = log

(
− 1

Gσ(x)

)
− 1

2
+

x
2

Gσ(x),� (F.22)

using that:

ξ+σ = G−1
σ

(
1

σ2F(x, u)

)
, 2C4(x, u) + ξ+σ C3(2 + C3(1 − u)) = −2σ2F(x, u)[2 + C3(1 − u)]

(1 − u)
� (F.23)
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as well as:

(ξ+σ )
2

4σ2

(
1 +

(1 − u)C3

4
[4 + C3(1 − u)]

)
+

ξ+σ
4σ2

(
C4(1 − u)− 1

F(x, u)

)

= −1
4
− (1 − u)2(2C2 + C2

3 u x)2

16σ2[2 + C3(1 − u)]2
.

�

(F.24)

Appendix G.  Large deviations for the second-smallest eigenvalue: the case of 
purely additive perturbation

In this appendix we compare the large deviation function for the second-smallest eigenvalue 
computed in section 4.5 with the results given in [62] for the large deviations in the case of a 
purely additive perturbation. Indeed, for β = 0 and x, u fixed, the eigenvalue µM−1 is the small-
est eigenvalue of a matrix subject to an additive rank-1 perturbation of strength θ̃ = θ(1 − u), 
see equation (76). In this limit, given that σ2F(x, u) → θ(1 − u) and that ξ−σ → −∞, the two 
cases discussed in section 4.5 reduce to the following:

	 •	�If θ(1 − u) < −σ, typically the second-smallest eigenvalue is out of the bulk and

Ψ1(x, u, ξ) → 1
4σ2 ξ

2 − 1
2
I(ξ)− θ(1 − u)ξ

2σ2 +
1
2
log(−2θ)− 1

2
logC3,� (G.1)

and the logarithmic divergence due to C3 gets canceled by another term in Ψ0. This func-
tion (up to constants that do not depend on ξ) matches with Lβ

θ (ξ) in Th. 1.1 of [62]. It 
has a minimum in ξ∗ = θ(1 − u) + σ2/(θ(1 − u)), that is indeed the typical value of 
the smallest eigenvalue of a GOE matrix subject to the additive perturbation of strength 
θ̃ = θ(1 − u).

	 •	�If θ(1 − u) > −σ, typically the second-smallest eigenvalue is not out of the bulk. In this 
case the large deviation function has only two regimes:

Ψ1(x, u, ξ) →

{
1

4σ2 ξ
2 − I(ξ)− φ1(x, u) if ξ � ξ∗

1
4σ2 ξ

2 − 1
2I(ξ)− θ (1−u)ξ

2σ2 + 1
2 log(−2θ)− 1

2 logC3 if ξ < ξ∗,
� (G.2)

which matches with the function Mβ
θ (x) of [62] (up to constants that do not depend on ξ).

The difference in the constants comes from the fact that the large deviation function Ψ1(x, u, ξ) 
in section 4.5 is not normalized to zero at the typical value.

Appendix H.  Self-consistent checks on utyp(x)

In this appendix we check under which conditions the rate functions to be optimized is 
L(a)(θ,β). If Case A holds (see (67)), this is always the case. In Case B, in order to perform 
the check we need to determine the sign of the function:

F̃(x, v) = σ2F(x, v) + σ,� (H.1)
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evaluated at v = u(a)
typ (x). This function is quadratic in v, with two roots given by:

v±θ,β(x) =
−2C2 + C2

3(4σ + x) + 6C3σ ±
√(

2C2 + C2
3x
)2 − 4C3σ(6C2 + C3(3C3 + 4)x) + 4C2

3σ
2

2C2
3(2σ + x)

.

� (H.2)
Again, it is convenient to consider the above regimes of θ,β:

	 •	�Regime A: In this case u(a)
typ = 0. Plugging u  =  0 into (67), it can be checked that the 

condition to be in Case A becomes:

4σ2β(β + 2)
θ2(1 + β)2 > 1,� (H.3)

which is always satisfied for −2σ′ < θ < 0. Therefore, in this regime Case A holds and 

L(a)
θ,β(x, u) is the right large deviation function to be optimized.

	 •	�Regime B1: When θc < θ < −2σ′, we find that v−
θ,β(x) � v+θ,β(x); moreover, when real, 

F̃(x, v) � 0 for v+
θ,β(x) � v � v−θ,β(x). The function v−

θ,β(x) is a monotonically increasing 
function of x which satisfies v−

θ,β(x)
x→−∞→ 1 and v−

θ,β(x)
x→−2σ→ ∞. Similarly, v+

θ,β(x) is 
monotonic and satisfies v+

θ,β(x)
x→−∞→ 0, while v+

θ,β(−2σ) = u+θ,β(−2σ) < 0, implying 
that v+

θ,β(x) < 0 for any x. Therefore, we always have v+
θ,β(x) < u(a)

typ (x) < v−θ,β(x), which 
implies that F̃(x, u(a)

typ (x)) � 0. Therefore, also in this regime the solution is self-consistent, 
meaning that the correct large-deviation function to optimize is L(a)

θ,β(x, u).
	 •	�Regime B2: When θ < θc, we find v+

θ,β(−2σ) = u+θ,β(−2σ) > 0 and v+
θ,β(x) > 0 for 

any x. The functions v+
θ,β(x) and u+

θ,β(x) cross at a point x−σ (µ,β) < x∗∗ < −2σ, where 
F̃(x, u+θ,β(x)) becomes negative. It can be checked that µ1(x, utyp(x))− x � 0 for x  <  x**, 
meaning that also in this regime the function to be optimized is again L(a)

θ,β .

Appendix I.  Self-consistent check: at most one isolated eigenvalue  
is generated

In the derivation of the large deviation function, we made the assumption that for any value of 
the parameters θ,β and for any choice of x and u, the M  −  1 eigenvalues µM−1, · · · ,µ1 typi-
cally arrange themselves in such a way that at most one of them, namely µM−1, is found to be 
smaller than −2σ and isolated from the continuous part of the density of states. In order to 
validate this hypothesis self-consistently, we have to check that when µM−1 takes its typical 
value, the third-smallest eigenvalue satisfies µtyp

M−2 = −2σ. As we pointed out several times 
already, once the values of µM  and uM are fixed to x, u the distribution of the remaining M  −  1 
eigenvalues is the one of a GOE matrix perturbed with both an additive and multiplicative 
perturbation along a given direction ,with parameters θ̃ and β̃ (that depend explicitly on x 
and u, see equation (76)). Similarly, when the values of µM−1 and uM−1 are kept fixed, the 
distribution of the remaining M  −  2 eigenvalues is again the one of a perturbed GOE matrix 
with modified parameters. Our goal is to argue that when fixing µM−1 = µtyp

M−1 and utyp
M−1, then 

µtyp
M−2 = −2σ. This is totally equivalent to stating that, when µM  and uM are fixed to their typi-

cal value, then µtyp
M−1 = −2σ. This is trivially true when µtyp

M = −2σ , i.e. when θ � θc. In the 
regime θ < θc, then µtyp

M = µ0(θ,β) and utyp = u+θ,β(µ0). In order for the second eigenvalue to 
stick to the boundary of the semicircle, it must hold:
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σ2F(µ0, u+θ,β(µ0)) + σ � 0,� (I.1)

see section 3.2.1. From the discussion in appendix H it follows that this is guaranteed if, for 
arbitrary values of σ,β and for θ < θc, we find:

v+θ,β(µ0) � u+θ,β(µ0).� (I.2)

This inequality can be checked graphically: in figure I1 we give an example for a fixed 
value of β,σ. Very similar results are obtained for different values of β,σ.
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