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Abstract
We study the entangling properties of multipartite unitary gates with respect 
to the measure of entanglement called one-tangle. Putting special emphasis 
on the case of three parties, we derive an analytical expression for the 
entangling power of an n-partite gate as an explicit function of the gate, 
linking the entangling power of gates acting on the n-partite Hilbert space of 
dimension d1 . . . dn to the entanglement of pure states in the Hilbert space of 
dimension (d1 . . . dn)

2. Furthermore, we evaluate its mean value averaged over 
the unitary and orthogonal groups, analyze the maximal entangling power and 
relate it to the absolutely maximally entangled (AME) states of a system with 
2n parties. Finally, we provide a detailed analysis of the entangling properties 
of the three-qubit unitary and orthogonal gates.

Keywords: entangling power, multipartite systems, quantum gates, 
absolutely maximally entangled states, one-tangle

(Some figures may appear in colour only in the online journal)

1.  Introduction

Quantum entanglement is among the most important resources of modern quantum technolo-
gies. Along with quantum superposition, it is the main tool needed for superdense coding 
[1], quantum teleportation [2], efficient quantum tomography, measurement precision beyond 
classical limit [3], and many other practical applications [4, 5].
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In quantum computation, the computation algorithms are realized with quantum gates—
unitary transformations U acting on the state-space of the system, that describe non-trivial 
interactions between different subsystems. In this context, a crucial property of a given gate 
acting on a composed quantum system is its entangling power ετ (U), which is defined [6] as 
the average entanglement created by the gate when acting on a generic fully separable pure 
state |ψsep〉:

ετ (U) := 〈τ
(
U|ψsep〉

)
〉|ψsep〉∈H.� (1)

Here τ  denotes the chosen measure of entanglement and the brakets 〈·〉 represent the average 
over the set of pure states in the Hilbert space H with respect to the unique, unitarily invariant 
measure. For instance, characterizing the entanglement of an initially separable state by its 
negativity [7] allows one to introduce a quantity accessible in an experiment [8].

In general, independently of the measure τ  selected, there exists no closed-form expres-
sion for the entangling power as a function of the gate. In other words, given a certain gate U, 
its entangling power has to be computed numerically by performing the average (1), which is 
time-consuming and yields only approximate results.

The key exception is the class of bipartite gates of dimension d × d. For these systems, 
Zanardi [9] derived an expression relating the entangling power of the gate (1) with its linear 
entropy:

εSL(U) =
d

d + 1
[SL(U) + SL(US)− SL(S)] ,� (2)

where SL is the linear entanglement entropy of the gate, determined by the purity of its Schmidt 
vector in the operator Schmidt decomposition, and S is the SWAP gate. Note that above, the 
linear entropy is used in two different meanings with two different arguments: on the left as 
the chosen measure of entanglement of the pure state SL

(
|ψ〉

)
, and on the right as a function 

of the unitary matrix SL(U). Needless to say, for most applications the expression of Zanardi 
is superior to the original definition (1), allowing one to make precise, analytical statements 
regarding the entangling power of bipartite quantum gates.

In this contribution, we generalize the notion of entangling power to multipartite unitary 
gates. Investigation of the problem was started by Scott [10], who derived formulae for entan-
gling power in the case of several subsystems of an equal dimension d. These results are 
particularly important in the context of quantum correction codes [11–13]. In this work, we 
study entangling power from a different perspective, not as a resource for a given quantum 
protocol, but as a physical property of a given gate, possibly acting on subsystems of different 
dimensions.

More recently, investigation of the problem of the entangling power of quantum gates act-
ing on multipartite systems was pursued by Chen et al [14]. They analyzed the minimal entan-
glement created by a given unitary gate acting on a pure product state, described by Shannon 
entropy of entanglement. In this work we use the linear entropy of entanglement in the form 
of the so-called one-tangle measure [15], which allows us to derive explicit analytical expres-
sions for entangling power of an arbitrary unitary gate.

Multiple reasons led us to consider the linear entropy of entanglement instead of other 
metrics, such as the Shannon / von Neumann entropy. Firstly, the linear entropy SL is easier 
to compute than the von Neumann entropy SV and it is also easier to observe: it concerns the 
sum of the terms p2

i  which have a direct experimental interpretation of a probability that a 
coincidence of two independent events occurs. Secondly, the linear entropy provides a direct 
lower bound for the Shannon entropy, SV � − log(1 − SL) [16]. Thirdly, unlike entanglement 
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measures such as three-tangle, the linear entropy of entanglement in the form of one-tangle is 
applicable to all possible systems, which is crucial for our work. Finally, aside from concep-
tual arguments, significant rationale for adoption of the one-tangle measure was the relative 
simplicity of calculations.

We start by following the strategy of Zanardi [9] for tripartite systems of dimension d1d2d3. 
We rewrite the formula (1) for the entangling power of a tripartite unitary gate with respect 
to one-tangle in terms of explicit functions of the unitary matrix. Besides its potential to be 
utilized in practical applications, such as looking for optimal entangling gates, the formula 
offers additional physical insight into the gates’ entangling power, linking it to the entangle-
ment of states in the extended Hilbert space of dimension (d1d2d3)

2. These results are then 
generalized to unitary gates acting on a system with an arbitrary number n of subsystems. 
A thorough analysis of the entangling properties of n-partite gates, in particular three-qubit 
gates, is also provided.

This work is organized as follows. In section 2, we briefly characterize one-tangle—the 
aforementioned measure of entanglement, as well as relevant related topics. In section 3, we 
present and prove the analytical formula for the entangling power as an explicit function of 
the matrix U ∈ U(d1d2d3)—see theorem 2. In section 4, we explore the entangling proper-
ties of general tripartite gates, including the mean entangling power averaged over ensemble 
of random orthogonal/unitary matrices of a fixed size with respect to the Haar measure on 
the corresponding groups. Furthermore, we investigate the maximal entangling power and 
its relation to absolutely maximally entangled (AME) states [17, 18] of six-party systems. In 
section 5, we extend all the previous results to the general case of unitary gates acting on an 
arbitrary number of parties. In section 6, we characterize the entangling properties of several 
relevant classes of three-qubit unitary gates. Finally, in section 7, we summarize our findings 
and propose some related open problems.

2. Tripartite entanglement

We begin with tripartite systems, H = H1 ⊗H2 ⊗H3, dimHi = di. As the measure of entan-
glement we choose the one-tangle [15, 19], defined as:

τ1
(
|ψ〉

)
:=

1
3
[
τ12|3

(
|ψ〉

)
+ τ13|2

(
|ψ〉

)
+ τ23|1

(
|ψ〉

)]
,� (3)

where for pure states

τg|g′
(
|ψ〉

)
:= 2

(
1 − tr

(
trg|ψ〉〈ψ|

)2
)

� (4)

denotes the so-called generalized concurrence—a measure of entanglement with respect to 
the given splitting g|g′ of the Hilbert space. One-tangle can be thus interpreted as a measure 
of the total amount of entanglement in the state with respect to all bipartitions of the system.

The range of one-tangle is defined by the range of generalized concurrence [20]:

0 � τg|g′
(
|ψ〉

)
� 2

min(dg, dg′)− 1
min(dg, dg′)

,� (5)

where dg denotes the dimension of the partition g, with the former attained by separable states 
and the latter by maximally entangled states with respect to the bipartition g|g′.

Contrary to the bipartite case, in the case of tripartite systems, there is a number of locally 
inequivalent classes of entangled states, and even maximally entangled states [21] (which 
shows why tripartite entanglement is significantly more complex than in the bipartite case). In 
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particular, in the case of three qubits, there are two such classes: the GHZ class, represented 
by the state

|GHZ〉 :=
1√
2

(
|000〉+ |111〉

)
,� (6)

as well as the W class, represented by the state

|W〉 :=
1√
3

(
|001〉+ |010〉+ |100〉

)
.� (7)

Intuitively, the entanglement in GHZ states can be understood as ‘genuine’ tripartite entangle-
ment. If one qubit is traced out, the resulting state is separable. The entanglement in W states, 
on the other hand, is more akin to bipartite entanglement. If one qubit is traced out, the result-
ing state is still entangled. The amount of entanglement in the GHZ and the W states with 
respect to one-tangle is equal to 1 and 8/9, respectively, the former of which is in this case 
maximal and equal to the right hand side of inequality (5).

We stress that one-tangle is not capable of distinguishing between different types of entan-
glement. Rather, it is concerned with the total amount of entanglement in the state, which is 
in the main focus of this work. Working with one-tangle makes it possible to derive results for 
the entangling power of any gate acting on a tripartite as well as general multipartite systems. 
In scenarios in which one is interested in a specific entanglement type, such as the GHZ type, 
one needs to apply other measures of entanglement, such as three-tangle [15, 19].

3.  Entangling power of a given tripartite gate

We state the main result of this work—an analytical formula for the entangling power of 
unitary matrices, in two steps. Firstly, in lemma 1, we write and prove the formula in a basis-
explicit form. Then, in theorem 2, we rephrase it in geometric terms. There are two reasons for 
such a choice: firstly, dividing the statement into two steps should make it more accessible for 
the reader. Secondly, and more importantly, for some purposes, including several results stated 
further in this work, the basis-explicit form is more practical than its geometric counterpart.

To this end, we observe that the matrix elements of any unitary operator U ∈ SU(d1d2d3) 
acting in the Hilbert space H = H1 ⊗H2 ⊗H3, dimHi = di, can be conveniently written in 
a six-index notation as

U j1j2j3
j1′ j2′ j3′

:= 〈j1j2j3|U|j1′ j2′ j3′〉,� (8)

where ji, ji′ ∈ {0, di − 1}.
Before we proceed, we note that the Einstein summation convention is used throughout the 

whole work, i.e. repeating indices are summed upon.
We can now state the following.

Lemma 1.  The definition (1) of the entangling power for a tripartite system with one-tangle 
(3) as the entanglement measure is equivalent to

ε1(U) ≡ ετ1(U) =
1
3
[
ε12|3(U) + ε13|2(U) + ε23|1(U)

]
,� (9)

where
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εab|c(U) := 〈τab|c
(
U|ψsep〉

)
〉|ψsep〉∈H = 2

[
1 −

(
3∏

i=1

1
di(di + 1)

)
u�r u�s u�t f ab|c

�r,�s,�t (U)

]

� (10)

defines the entangling power of the gate U with respect to the bipartition ab|c. Above, 
u�v := δv1

v2
δv3

v4
+ δv1

v4
δv3

v2
, while

f ab|c
�r,�s,�t (U) := δia

la δ
ib
lb δ

ic
jc δ

ka
ja δ

kb
jb δ

kc
lc Ui1i2i3

r1s1t1

(
U†)r2s2t2

j1j2j3
Uk1k2k3

r3s3t3

(
U†)r4s4t4

l1l2l3
.� (11)

We emphasize that implied summation over all possible four-component vectors �r , �s , �t  is 
taken in equation (10), with vector elements spanned by {0, . . . , di − 1}.

Proof.  Instead of averaging over states, we can average over local unitaries acting on some 
chosen separable state |ψ0〉. In other words, we can rewrite definition (1) as

ετ (U) = 〈τ
[
U (U1 ⊗ U2 ⊗ U3) |ψ0〉

]
〉Ui∈SU(di),� (12)

where we have assumed a tripartite system. It is clear from the definition of one-tangle (3), 
that the entangling power (12) with one-tangle as the input is the sum of three terms of the 
form

εab|c(U) := 〈τab|c
[
U (U1 ⊗ U2 ⊗ U3) |ψ0〉

]
〉Ui∈SU(di).� (13)

All we need to do is to show that the above quantity has the conjectured form (10).
The proof consists of two steps. In the first step we compute τab|c. With no loss of general-

ity, we choose the basis of the Hilbert space to be such that |ψ0〉 =: |000〉 is its first element. 
Then,

U (U1 ⊗ U2 ⊗ U3) |ψ0〉 = Ua1a2a3
b1b2b3

(U1)
b1
0 (U2)

b2
0 (U3)

b3
0 |a1a2a3〉.� (14)

Using this notation, one can patiently calculate τab|c according to the definition (4): first per-
forming the outer product |U〉〈U|, then the partial trace trab|U〉〈U|, next its square 

(
trab|U〉〈U|

)
2. 

The final result can be written as

τab|c
[
U (U1 ⊗ U2 ⊗ U3) |ψ0〉

]
= 2

[
1 − (U1)

�r(U2)
�s(U3)

�t f ab|c
�r,�s,�t (U)

]
,� (15)

where

(Ui)
�v := (Ui)

v1
0 (U

†
i )

0
v2
(Ui)

v3
0 (U

†
i )

0
v4

,� (16)

while the functions f ab|c
�r,�s,�t (U) are defined in equation (11).

The second step is to compute εab|c. By definition (13),

εab|c(U) =

∫
dU1

∫
dU2

∫
dU3 τab|c

[
U (U1 ⊗ U2 ⊗ U3) |ψ0〉

]
,� (17)

where the integration is to be performed in accordance with the normalized Haar measure on 
the unitary group. Formula (15) implies that
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εab|c(U) = 2
[

1 − f ab|c
�r,�s,�t (U)

∫
dU1(U1)

�r
∫

dU2(U2)
�s
∫

dU3(U3)
�t
]

,� (18)

where we have moved the function f ab|c
�r,�s,�t (U) in front of the integrals to emphasize that it does 

not depend on matrices Ui, i = 1, 2, 3. Now, all three mutually independent integrals can be 
easily calculated using the handy result from [22, 23] regarding the integration of the second 
moments of random unitary matrices over the relevant unitary group:

∫

U(d)
dUUi1

j1 (U
†)

j′1
i′1

Ui2
j2 (U

†)
j′2
i′2
=

1
d(d2 − 1)

[
d
(
δi1

i′1
δi2

i′2
δ

j′1
j1 δ

j′2
j2 + δi1

i′2
δi2

i′1
δ

j′2
j1 δ

j′1
j2

)

−
(
δi1

i′1
δi2

i′2
δ

j′2
j1 δ

j′1
j2 + δi1

i′2
δi2

i′1
δ

j′1
j1 δ

j′2
j2

)]
.

� (19)

In the case at hand,
∫

U(di)

dUi(Ui)
�v =

1
di(di + 1)

(
δv1

v2
δv3

v4
+ δv1

v4
δv3

v2

)
.� (20)

Substituting into equation (18), we immediately obtain the conjectured formula (10).� □ 

In order to restate formula (10) in geometric terms, we observe that to every unitary opera-
tor U ∈ SU(d1d2d3) acting in the Hilbert space H = H1 ⊗H2 ⊗H3, dimHi = di, there 
corresponds a pure state |U〉 in the extended Hilbert space H⊗H′, H′ = H1′ ⊗H2′ ⊗H3′, 
dimHi′ = dimHi = di. This is essentially an application of the Choi–Jamiołkowski isomor-
phism [24, 25] to the special case of unitary operations.

Given a basis {|j1j2j3〉} of the Hilbert space H, the coefficients of the state |U〉 ∈ H ⊗H′ 
are defined by the following relation:

|U〉 :=
1√

d1d2d3
U j1j2j3

j1′ j2′ j3′
|j1j2j3j1′ j2′ j3′〉,� (21)

where the dimensional factor ensures proper normalization. Note that the equality (21) is valid 
in any basis, so the association U → |U〉 may be viewed as a geometric statement.

We can now restate lemma 1 in geometric terms:

Theorem 2.  Definition (1) of the entangling power for a tripartite system with one-tangle 
(3) as the entanglement measure is given by equation (9) with the entangling power of the gate 
U on the bipartition ab|c (10) equal to

εab|c(U) = 2


1 −

(
3∏

i=1

di

di + 1

)∑
x′|y′

tr
(
trabx′ |U〉〈U|

)2


 .� (22)

In the above expression, the summation is over all ordered bipartitions x′|y′ of H′:

x′|y′ ∈
{

1′2′3′|·, 1′2′|3′, 1′3′|2′, 2′3′|1′, 1′|2′3′, 2′|1′3′, 3′|1′2′, ·|1′2′3′
}

,
� (23)

including the two trivial bipartitions 1′2′3′|· and ·|1′2′3′, where the dot denotes an empty set, 
while |U〉 is the state (21) associated with the matrix U.
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Proof.  The proof consists of a relatively lengthy but straightforward direct calculation of 
the expression (22) in any chosen basis and comparison with the formula (10).� □ 

It is worth emphasizing that while the auxiliary Hilbert space H′ is formally an identical 
copy of the original Hilbert space H, from the point of view of this work, the two play differ-
ent roles. In particular, it makes no sense to consider any divisions of H other than the only 
three unique, ordered bipartitions ab|c ∈ {12|3, 13|2, 23|1}. However, in order to properly 
account for all the divisions of the total Hilbert space H⊗H′, it is necessary to consider all 
eight, unordered bipartitions x′|y′ of H′ as in equation (23). We stress that this convention is 
used throughout the rest of this work.

4.  Statistical properties of ensembles of tripartite gates

After establishing an explicit formula (22) for the entangling power of tripartite gates, we 
would like to explore some of its consequences regarding the entangling properties of general 
tripartite unitary gates.

We begin with a formula for the upper bound for the entangling power.

Theorem 3.  The entangling power of tripartite unitary gates U ∈ U(d1d2d3) is bounded 
from above by

ε̃1 :=
1
3
(
ε̃12|3 + ε̃13|2 + ε̃23|1

)
,� (24)

where ε̃ab|c is the upper bound for the entangling power of the gate U on the bipartition ab|c 
(22):

ε̃ab|c := 2 − 2

(
3∏

i=1

di

di + 1

)[
8 −

∑
x′|y′

min(dabx′ , dcy′)− 1
min(dabx′ , dcy′)

]
,� (25)

where the summation is over x′|y′ as in (23) and dabx′, dcy′ denote the dimensions of the respec-
tive bipartitions of the extended Hilbert space H⊗H′.

Proof.  It is immediate to see from the definition of the entangling power (9) that if the 
quantity (25) is indeed the upper bound for the the entangling power (4) of the gate U on the 
bipartition ab|c (22), the theorem is true. All that remains is to prove this assumption.

Let us add and substract the following quantity

2

(
3∏

i=1

di

di + 1

)∑
x′|y′

[
1 +

min(dabx′ , dcy′)− 1
min(dabx′ , dcy′)

]
� (26)

from the right hand side of equation (22). After regrouping the terms, we arrive at

εab|c(U) = ε̃ab|c −

(
3∏

i=1

di

di + 1

)∑
x′|y′

[
2
min(dabx′ , dcy′)− 1
min(dabx′ , dcy′)

− τabx′|cy′
(
|U〉

)]
.

� (27)
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Recall that in accordance with equation (5), the quantity 2min(dabx′ ,dcy′ )−1
min(dabx′ ,dcy′ )

 is the upper bound 

for τabx′|cy′, reachable only by states that are maximally entangled with respect to the biparti-
tion abx′|cy′. This means that each and every term in the above sum, and thus the sum itself, 
is non-negative. Since the sum enters the equation with a minus sign, εab|c(U) is at most equal 
to the quantity ε̃ab|c. This completes the proof.� □ 

Besides bounding the maximum value of the entangling power of unitary gates 
U ∈ U(d1d2d3) from above, the theorem provides us with an interpretation of the formula for 
the entangling power. Looking at equation (27) we can see that the value εab|c(U) is the high-
est when the values τabx′|cy′(|U〉) are the highest. The entangling power of the tripartite gate U 
is proportional to the total amount of entanglement in the sixpartite state |U〉.

Note that theorem 3 provides only an upper bound for the maximum value of the entan-
gling power of unitary gates U ∈ U(d1d2d3). This bound may not be tight in general. It fol-
lows immediately from our discussion that the bound is tight if and only if the maximizing U 
fulfills

τabx′|cy′
(
|U〉

)
= 2

min(dabx′ , dcy′)− 1
min(dabx′ , dcy′)

� (28)

for all bipartitions abx′|cy′ of H⊗H′ entering the formula for the entangling power. In fact, 
further inspection reveals that for the bound to be tight the above relation must be true also 
for all the other bipartitions. This is either because of the symmetric property of generalized 
concurrence: τabx′|cy′ = τcy′|abx′, or the origin of the state |U〉 as a unitary matrix. In other 
words, U must be such that the state |U〉 is a maximally entangled state with respect to each 
of the bipartitions.

Such states are known in the literature as absolutely maximally entangled states (AME) 
[17, 18, 26]. They can exist only in multipartite quantum systems where each subsystem has 
the same dimension [18]. The set of all such states in an n-partite Hilbert space of subsystem 
dimension d is denoted by AME(n,d). Curiously, there exist pairs (n, d), for which AME states 
do not exist. For instance, there are no such states for four- and seven-qubit systems [27, 28]. 
However, it has been shown [29, 30], that the set AME(6,d), which corresponds to tripartite 
gates studied here, is non-empty for all dimensions d.

Because of the property of the AME states called multiunitarity [26], utilizing the recipe 
(21), one can use the AME states to construct a unitary matrix U maximizing the entangling 
power ε1 for tripartite gates acting on H⊗3

d . A link between large entangling power of uni-
tary operators and strongly entangled multipartite states in an extended space was already 
discussed by Scott in [10]. We are now in position to establish a more precise relation and 
propose here the following result.

Corollary 4.  The upper bound ε̃1 for the maximum entangling power of unitary gates 
U(d1d2d3) given in theorem 3 is tight if and only if d1 = d2 = d3 ≡ d .

Furthermore, given a state |ψ(6, d)〉 ∈ AME(6, d) the matrix elements of the maximizing U 
can be recovered using the recipe (21), explicitly

U j1j2j3
j1′ j2′ j3′

=
√

d3〈j1j2j3j1′ j2′ j3′ |ψ(6, d)〉.� (29)

It is worth adding that one can generate states |ψ(6, d)〉 ∈ AME(6, d), and therefore gates 
U that maximize entangling power, using known algorithms [30, 31].
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As our last general result, we compute the mean entangling power over the unitary group 
U(d1d2d3) and the (real) orthogonal group O(d1d2d3).

Theorem 5.  Mean entangling power of tripartite unitary gates averaged over the unitary 
group U(d1d2d3) and the orthogonal group O(d1d2d3) with respect to the Haar measure read

〈ε1〉U(d1d2d3) =
2A

3(d1d2d3 + 1)
,� (30)

〈ε1〉O(d1d2d3) =
2A

([∏3
i=1 di(di + 1)

]
− 8

)

3(d1d2d3 − 1)(d1d2d3 + 2)
[∏3

i=1(di + 1)
] ,� (31)

where A := 3 − d1 − d2 − d3 − d1d2 − d1d3 − d2d3 + 3d1d2d3.

Proof.  The proof relies on the expression (10). Since the functions f ab|c
�r,�s,�t (U) are given (11) 

in terms of the second moments of the unitary matrix, one can integrate the basis-dependent 
expression using the previously utilized formula (19), which results in the conjectured expres-
sion (30) for the unitary group.

In the case of the orthogonal group, it is possible to find an analog of the formula (19) for 
orthogonal matrices—we refer the reader to appendix A for details. The proof is then fully 
analogous to the unitary case.� □ 

We conclude the section by applying theorems 3 and 5 to the special case of evenly divided 
tripartite systems d1 = d2 = d3 = d , called three-qudit systems, in which the expressions 
given therein simplify significantly.

Corollary 6.  The mean entangling power of three-qudit gates U ∈ U(d3) reads

〈ε1〉U(d3) = 2
(d − 1)2

d2 − d + 1
,� (32)

in the case of the unitary group U(d3), and

〈ε1〉O(d3) = 2
d3(d + 1)3(d − 1)− 8(d − 1)
(d3 + 2)(d2 + d + 1)(d + 1)2 ,� (33)

in the case of the orthogonal group O(d3). Furthermore, the maximum value of the entangling 
power is equal to

ε̃1 = 2
d2 + d − 2
(1 + d)2 .� (34)

Figure 1 is a comparison of the maximum value (34) of the entangling power of unitary 
three-qudit gates, denoted by orange squares, with the general upper bound, equal to one-
tangle of the maximally entangled state

max τ1 = 2
d − 1

d
,� (35)

denoted by green diamonds. For reference, the mean entangling power (32) of three-qudit 
gates has also been plotted as blue circles. As seen, while for large dimension d the three 
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quantities practically converge, for smaller dimensions the maximum is noticeably smaller 
than the theoretical upper bound.

It is also worth emphasizing, that the limiting value of the three quantities is 2. Since in 
our normalization this is the limiting value of one-tangle of the maximally entangled state 
(see equation (35)), this means that in large dimensions, on average, the action of a typical 
tripartite unitary gate on a separable state results in a state close to the maximally entangled 
one. This may be seen as a consequence of the fact that unitary gates correspond to quantum 
states (equation (21)) and the fact that the in large dimensions generic quantum states tend to 
be highly entangled [32].

Example 7.  As an example, we consider three of the most popular three-qubit quantum 
gates [33]: the Fredkin gate UF (also known as controlled SWAP), the Toffoli gate UT (also 
known as controlled-controlled NOT) and the Deutsch gate UD(θ) (a controlled-controlled 
complex rotation by angle θ)—see [33] for explicit matrix forms. We find that

ε1
(
UD(θ)

)
=

1
27

[7 − 3 cos(2θ)] � ε1(UF) = ε1(UT) =
10
27

≈ 0.37,� (36)

which is much smaller than the mean value 〈ε1〉U(23) = 2/3 ≈ 0.67, as calculated using corol-
lary 6. We can thus conclude that all three gates are on average much less entangling than a 
random three-qubit unitary gate.

5.  Multipartite unitary gates

In this section, we generalize the results from sections 3 and 4 to an arbitrary number of parti-
tions. With the exception of lemma 1, which is skipped due to its auxiliary nature, each of the 
theorems provided therein is reiterated here in a version for n partitions. The proofs are omit-
ted, as they follow the same lines of reasoning as their tripartite counterparts.

In full analogy to the tripartite case, to every unitary matrix U acting in the Hilbert 
space H =

⊗n
i=1 Hi we relate the state |U〉 in the extended Hilbert space H⊗H′, where 

H′ =
⊗n

i=1 Hi′ and dimHi = dimHi′ = di using the following equation:

Figure 1.  Comparison of the upper bound (34) for the entangling power of three qudit 
unitary matrices, denoted by squares (orange), with the theoretical maximum (35), 
denoted by diamonds (green), and the mean entangling power (32), denoted by circles 
(blue). Dashed lines connecting the points have been plotted to guide the eye.
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|U〉 :=
1√

d1 . . . dn
U j1...jn

j1′ ...jn′
|j1 . . . jnj1′ . . . jn′〉.� (37)

The 2n-index notation has been used here to denote matrix elements,

U j1...jn
j1′ ...jn′

:= 〈j1 . . . jn|U|j1′ . . . jn′〉.� (38)

Furthermore, we establish the following summation convention. Summation over p|q is 
understood as a summation over all non-trivial, unordered bipartitions of H. Summation over 
x′|y′, on the other hand, is understood as a summation over all ordered bipartitions of H′, 
including trivial cases. For example, in the simplest case of two partitions, n  =  2, we have

p|q ∈ {1|2}, x′|y′ ∈ {1′2′|·, 1′|2′, 2′|1′, ·|1′2′},� (39)

where a single dot represents an empty set. As the measure of entanglement, we choose the 
natural generalization of one-tangle (3) to n parties,

τ1(U) =
1

2n−1 − 1

∑
p|q

τp|q(U),� (40)

where 2n−1  −  1 is the number of bipartitions and τp|q is defined in equation (4). We are now 
ready to present the results concerning unitary gates acting on n-partite systems.

Theorem 8.  Definition (1) of the entangling power for an n-partite system with the the en-
tanglement measure given by the n-particle generalization of one-tangle (40) is equivalent to

ε1(U) =
1

2n−1 − 1

∑
p|q

εp|q(U),� (41)

where

εp|q(U) = 2


1 −

(
n∏

i=1

di

di + 1

)∑
x′|y′

tr
(
trpx′ |U〉〈U|

)2


� (42)

denotes the entangling power of the matrix U with respect to the bipartition p|q of H.

Theorem 9.  The entangling power of n-partite unitary gates U ∈ U(d1 . . . dn) is bounded 
from above by

ε̃1 :=
1

2n−1 − 1

∑
p|q

ε̃p|q(U),� (43)

where ε̃p|q is the upper bound for the entangling power of the matrix U on the bipartition p|q:

ε̃p|q := 2 − 2

(
n∏

i=1

di

di + 1

)
2n −

∑
x′|y′

min(dpx′ , dqy′)− 1
min(dpx′ , dqy′)


 .� (44)

In the above expression, dpx′, dqy′ denote the dimensions of the respective bipartitions of the 
extended Hilbert space H⊗H′.
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Corollary 10.  The upper bound ε̃1 for the maximum entangling power of unitary gates 
U(d1 . . . dn) given in theorem 9 is tight if and only if d1 = . . . = dn ≡ d and the set AME(2n,d) 
is non-empty.

Furthermore, given a state |ψ(2n, d)〉 ∈ AME(2n, d) the matrix elements of the unitary 
gate U maximizing the entangling power can be recovered explicitly using the recipe (37), 
explicitly

U j1...jn
j1′ ...jn′

=
√

dn〈j1 . . . jnj1′ . . . jn′ |ψ(2n, d)〉.� (45)

We stress that contrary to the tripartite case, in general the set AME(2n,d) is not always 
non-trivial. A table on the existence of AME states along with construction algorithms can be 
found in [31].

Theorem 11.  Mean entangling power of tripartite unitary gates averaged over the unitary 
group U(d1 . . . dn) and the orthogonal group O(d1 . . . dn) with respect to the Haar measure 
read

〈ε1〉U(d1...dn) = 2

[
1 −

(
n∏

i=1

1
di + 1

)
BC

(2n−1 − 1)(D + 1)

]
,� (46)

〈ε1〉O(d1...dn) = 2

[
1 −

(
n∏

i=1

1
di + 1

)
2n(D + 1)− 2B + BD−2n

2n−1−1 C

(D − 1)(D + 2)

]
,� (47)

where B :=
∑1

i1,...,in=0 di1
1 . . . din

n , C :=
∑

p|q(dp + dq) and D := d1 . . . dn.

Observe that if we set n  =  2, the expression (46) is equivalent to the result of Zanardi for 
bipartite systems [6], up to the multiplicative factor 1/2 due to different normalizations of 
generalized concurrence used.

Corollary 12.  The mean entangling power of n-qudit gates U ∈ U(dn) reads

〈ε1〉U(dn) =
2n(dn + 1)− 2(d + 1)n

(2n−1 − 1)(dn + 1)� (48)

when averaged over the unitary group U(dn), and

〈ε1〉O(dn) =
[2n(dn + 1)− 2(d + 1)n] [dn(d + 1)n − 2n]

(2n−1 − 1)(d2n + dn − 2)(d + 1)n� (49)

when averaged over the orthogonal group O(dn). Furthermore, this entangling power is 
bounded from above by

ε̃1 = 2 − 2dn

(d + 1)n


2n − 1

(2n−1 − 1)

n∑
j=0

(
n
j

) �n/2�∑
l=1

(
n
l

)
dn−|l−j| − 1

dn−|l−j| 2δl
n/2


 ,

� (50)

where �·� denotes the floor function.
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Let us make three remarks regarding the above corollary.
Firstly, we note that the result (48) regarding the mean over n-qudit unitary group could 

also be obtained by considering an appropriately weighted average of means of entangling 
power classes introduced in [10].

Secondly, we observe that due to the effect of concentration of measure investigated 
recently in the context of the entangling power of random unitary matrices [14], one can 
expect that for large dimension d or the number of parties n the value of the entangling power 
for a given unitary gate U will typically be close to the averaged values derived above.

Finally, we note that aside from the domain where d, n are ‘small’, the mean values (48) 
and (49) over the unitary and orthogonal groups are nearly identical. Indeed, one can check 
that

lim
n→∞

〈ε1〉O(dn)

〈ε1〉U(dn)
= lim

d→∞

〈ε1〉O(dn)

〈ε1〉U(dn)
= 1.� (51)

Moreover, numerical simulations suggest similar results regarding the upper bound (50) for 
the entangling power ε̃1. In other words, in any n-qudit system with a sufficiently large dimen-
sion d or number of partitions n, the values of the quantities 〈ε1〉O(dn), 〈ε1〉U(dn) and ε̃1 are prac-
tically indistinguishable. A visual comparison of the three quantities, which further supports 
our claim, has been provided in figure 2.

The above results generalize our findings for tripartite systems, showing that for higher 
dimensions a generic unitary matrix acting on n-partite systems is characterized by entangling 
power close to the maximal one. Hence, the corresponding random state determined in equa-
tion (37) becomes asymptotically close the AME state of 2n parties.

Example 13.  In [34], the entangling properties of the n-qubit unitary gate

Gn(α) := diag
(
1, . . . , 1, eiα)� (52)

have been analyzed. Note that Gn(α) is a generalization of the controlled sign gate, 
Gn(π) = diag

(
1, . . . , 1,−1

)
.

Figure 2.  The ratio 〈ε1〉U(dn)/ε̃1 as a function of the number of partitions n for partition 
dimensions d  =  2—circles (blue), d  =  4—squares (orange), d  =  16—diamonds 
(green). Lines joining the points have been plotted to guide the eye. In the inset: an 
analogous plot of the ratio 〈ε1〉O(dn)/〈ε1〉U(dn).
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Using our formalism, we were able to calculate the entangling power of the gate

ε1
(
Gn(α)

)
= cn(1 − cosα) ∈ [0, 2cn],� (53)

where

cn =
23

6n(2n − 1)

∑
p|q

(
3np − 2np

)(
3nq − 2nq

)
� (54)

and np  and nq denote the number of qubits in partitions p , q. As seen, the closer the parameter 
α is to π, the more entangling the gate. This is, of course, exactly what one should expect, as 
Gn(π) is intuitively the furthest from the non-entangling identity gate Gn(0). In the particular 
case of three qubits, G3(π) = 10/27 ≈ 0.37.

6.  Entangling properties of three-qubit unitary gates

In example 7, we have considered three three-qubit gates: the Fredkin, Toffoli, and Deutsch 
gates. In this section, we generalize these results and characterize the entangling properties of 
generic three-qubit gates. We consider the following four classes of such gates:

	 •	�Permutation matrices P(8),
	 •	�Diagonal unitary matrices D(8),
	 •	�Unitary matrices U(8),
	 •	�Orthogonal matrices O(8).

We mention that the latter three are also known in the literature [35, 36] as the circular pois-
sonian ensemble (CPE), circular unitary ensemble (CUE) and circular real ensemble (CRE), 
respectively.

6.1.  Permutations P(8)

There are exactly 8! = 40 320 three-qubit permutation matrices P ∈ P(8). Since this num-
ber is finite and relatively small, it is possible to calculate the entangling power (9) of 
every permutation. This yields exactly 21 different entangling classes, ranging from 0 to 
maxP(8) ε1 = 64/81 ≈ 0.79, with mean 〈ε1〉P(8) =

184
315 ≈ 0.58. The classification of permu-

tations with respect to their entangling power is provided in table B1 in appendix B.

6.2.  Diagonal unitary matrices D(8)

Any diagonal unitary D ∈ D(8) can be written as

D�ϕ := diag
(
eiϕ1 , . . . , eiϕ8

)
,� (55)

where ϕi ∈ [0, 2π) are taken with respect to the flat measure on the eight-torus.
In this parametrization, the entangling power (9) reduces to a relatively short expression

ε1(D�ϕ) =
10
27

− 4
81

(
c14

23 + c16
25 + c17

35 + c28
46 + c38

47 + c58
67

)

− 1
81

(
c36

45 + c27
45 + c27

36 + c18
45 + c18

36 + c18
27

)
,

�
(56)
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where cij
kl := cos (ϕi + ϕj − ϕk − ϕl). Since the average value of the cosine function over the 

whole period is 0, we can immediately state that the average entangling power of diagonal 
unitary matrices is equal to the constant term in the above expression, 〈ε1〉D(8) =

10
27 ≈ 0.37. 

Curiously, this number is precisely equal to the entangling power of the Fredkin, Toffoli and 
the three-qubit controlled sign gates.

Finding the maximum value is a more complex task that requires optimization over ϕi. To 
this end, we introduce new variables ωi , δj and perform the following change of variables:

�ϕ →
{
ω1,ω1 + ω2 + δ1,ω3,ω2 + ω3,−ω2 − ω3 + ω4 + δ2,

− ω3 + ω4 − δ3,−ω1 − ω2 + ω4 − δ1,−ω1 + ω4
}

.
� (57)

Note that while this operation reduces the number of parameters from eight to seven, it comes 
with no loss of generality, as the global phase of unitary gates is irrelevant for physical con-
siderations (including the entangling power). In other words, one of the eight parameters in 
equation (55) has been redundant from the start.

In the new parametrization (57), the formula for the entangling power (56) takes a par
ticularly simple form,

ε1(D�δ) =
1
81

[
29 − 8 cos δ1 − 2 cos δ2 − 2 cos δ3 − 8 cos(δ1 + δ2 + δ3)

− 4 cos(δ1 + δ2)− 4 cos(δ1 + δ3)− cos(δ2 + δ3)

]
.

� (58)

Notably, it depends only on the three parameters δi. This should not be surprising: a three-
qubit gate can be decomposed into a tensor product of three one-qubit gates if and only if it 
is possible to assign a definite phase differences between the three subgates. Thus, the entan-
gling power of the gate is proportional to how ‘difficult’ it is to assign these three phases, 
which is measured by the parameters δi.

With just three independent parameters, it is possible to find all the extremal points of the 
entangling power (58), i.e. points in which all of its first derivatives vanish. Since the cube 
[0, 2π]3 � (δ1, δ2, δ3) is a closed and bounded set, one of the extremal points has to be the 
global maximum of the function.

Using this method, we find that the maximum of the entangling power over diagonal uni-
tary matrices is equal to maxD(8) ε1 = 16/27 ≈ 0.59 and is obtained solely by diagonal uni-
tary matrices of the form

D�ω := diag
[
eiω1 ,−ei(ω1+ω2), eiω3 , ei(ω2+ω3), e−i(ω2+ω3−ω4),

e−i(ω3−ω4),−e−i(ω1+ω2−ω4), e−i(ω1−ω4)
]
,

� (59)

for example, the diagonal Hermitian matrix

HD(8) = diag(1, 1, 1,−1, 1,−1,−1,−1).� (60)

6.3.  Unitary matrices U(8)

In the case of random unitary matrices, using corollary 6 we immediately arrive at the mean 
value 〈ε1〉U(8) = 2/3 ≈ 0.67, as well as the maximum maxU(8) ε1 = ε̃1 = 8/9 ≈ 0.89. An 
example maximizing unitary matrix is given by the Hermitian matrix
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HU(8) =
1√
23




−1 −1 −1 1 −1 1 1 1
−1 −1 −1 1 1 −1 −1 −1
−1 −1 1 −1 −1 1 −1 −1
1 1 −1 1 −1 1 −1 −1
−1 1 −1 −1 −1 −1 1 −1
1 −1 1 1 −1 −1 1 −1
1 −1 −1 −1 1 1 1 −1
1 −1 −1 −1 −1 −1 −1 1




� (61)

which arises from direct application of the corollary to the AME(6,2) state provided in equa-
tion (10) in [26].

To put the things into a wider perspective, let us remind the reader that the amount of 
entanglement carried by the W state (7) is also equal to 8/9. This implies that the action of the 
maximizing unitary gates on random separable states produces entangled states with average 
τ1 equal to the entanglement characteristic of the state |W〉.

6.4.  Orthogonal matrices O(8)

Since the unitary matrix (61) maximizing the entangling power over the unitary group U(8) is 
orthogonal in addition to being unitary, it immediately follows that the maximum entangling 
power over the orthogonal group is equal to maxO(8) ε1 = maxU(8) ε1 = 8/9. As for the mean 
value, making use of corollary 6 once again we find 〈ε1〉O(8) = 208/315 ≈ 0.66.

The results of this section  are summarized in table  1 and further illustrated in figure  3 
showing a probability histogram of the entangling power for ensembles of 8! permutation 
matrices of size eight, the same number of random diagonal unitary matrices, random orthog-
onal matrices and random unitary matrices distributed according to the Haar measure.

7.  Concluding remarks

In this work we have studied the entangling properties of multipartite unitary gates with respect 
to the chosen measure of entanglement τ1. We have derived an analytical expression for the 
entangling power of a tripartite gate as an explicit function of the gate, linking the entangling 
power of gates acting in tripartite Hilbert space of dimension d1d2d3 to the entanglement 
properties of states in the extended Hilbert space of dimension (d1d2d3)

2. Building upon these 
results, we have computed the mean value of the entangling power of tripartite unitary gates 
of an arbitrary size and provided an upper bound for the maximum, which we have linked to 
the AME states in the extended six-party Hilbert space.

Table 1.  Summary of the entangling properties of three-qubit gates, taken from 
ensembles of: diagonal unitary matrices D(8), permutation matrices P(8), random 
orthogonal matrices generated according to the Haar measure on O(8) and random 
unitary matrices from U(8).

D(8) P(8) O(8) U(8)

minε1 0 0 0 0
〈ε1〉 10/27 ≈ 0.37 184/315 ≈ 0.58 208/315 ≈ 0.66 2/3 ≈ 0.67
maxε1 16/27 ≈ 0.59 64/81 ≈ 0.79 8/9 ≈ 0.89 8/9 ≈ 0.89
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These results were then generalized to unitary gates acting on n parties. In particular, we 
have found that a gate U acting on H⊗n

d  which saturates the upper bound for entangling power 
corresponds to an AME state of 2n subsystems with d levels each.

Finally, we have employed our findings to analyze in detail the entangling properties of rel-
evant classes of three-qubit unitaries. We have shown that a generic unitary gate of size 23  =  8 
typically has a slightly larger entangling power than a generic orthogonal gate and much larger 
entangling power than typical permutation matrices or diagonal unitary matrices.

Based on this work, we propose two main directions for future research. Firstly, due to the 
existence of two inequivalent classes of maximally entangled three-qubit states, in addition 
to one-tangle studied in this contribution, there are two more valid measures of three-qubit 
entanglement. It would be especially interesting to find a formula analogous to ours for so-
called three-tangle, which measures genuine tripartite entanglement in the state. We stress that 
due to the way these measures are defined, finding the expression for the entangling power 
with respect to one of them would immediately yield the expression for the other upon the use 
of our formula.

Secondly, the nonlocal properties of a given unitary gate U applied k-times, and the influ-
ence of the local interlacing dynamics Vloc was recently studied for a bipartite setup [37–39], 
where the quantity ep

(
(UVloc)

k
)
, closely related to the entangling power, was investigated. It 

would be interesting to extend some of these results also to the multipartite case.
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Figure 3.  Probability histograms of the entangling power ε1 of all 40 320 permutation 
matrices P of size eight and the same number of diagonal unitary matrices D, orthogonal 
matrices O, and generic unitary matrices U. In addition, the maximum values over the 
respective ensembles have been denoted by εD = 16/27, εP = 64/81, εU = εO = 8/9.

T Linowski et alJ. Phys. A: Math. Theor. 53 (2020) 125303



18

Appendix A.  Averages over orthogonal group

In order to find second moments of the orthogonal group O(d), it is necessary to find proper 
orthogonal Weingarten functions, 〈WgO(q), r〉 for two permutations q and r. These were first 
provided in [40] and further extended for certain setups in [41, 42]. All the equations in this 
appendix are based on these two extensions.

The desired integral can be expanded by these means to the form:
∫

O(d)
dOOi1

j1 Oi2
j2 Oi3

j3 Oi4
j4 =

=
∑

q,r∈{ p1,p2,p3}

〈WgO(q), r〉δiq(1)
i1 δ

iq(2)
i2 δ

iq(3)
i3 δ

iq(4)
i4 δ

jr(1)
j1 δ

jr(2)
j2 δ

jr(3)
j3 δ

jr(4)
j4 ,

� (A.1)

where the sum is over all three possible permutations, created by two transpositions: p 1  =  {(12)
(34)}, p 2  =  {(13)(24)} and p 3  =  {(14)(23)}.

The Weingarten functions 〈WgO(q), r〉 are calculated by joining the two permutations q 
and r into a new permutation qr. This new permutation can be uniquely broken into cycles, 
whose lengths are the only property relevant for our purposes. For each cycle with length l in 
the structure of qr, there is another cycle of length l—see lemma 1.16 in [42]. By taking half 
of these cycles, the value of 〈WgO(q), r〉 is uniquely determined.

As an example, we consider 〈WgO( p1), p1〉 with an involution p i defined above:

p1p1 = {(12)(34)}{(12)(34)} = {(1)(2)(3)(4)},� (A.2)

so that the joint permutation p1p1 consists of four cycles of length one. Taking half of these 
cycles yields two cycles of length 1, which we write as [1, 1]. In [42] (appendix B2) one can 
find this value:

〈WgO( p1), p1〉 = WgO([1, 1], d) =
d + 1

d(d − 1)(d + 2)
.� (A.3)

The same result holds for 〈WgO( pi), pi〉 with any of the above p i. If the permutations p i and p j  
are different, then the permutation pipj consists of two cycles of length 2 and so

〈WgO( pi), pj〉 = WgO([2], d) =
−1

d(d − 1)(d + 2)
for i �= j.� (A.4)

Inserting the above formulas into the desired integral (A.1), we obtain the required formula

∫

O(d)
dOOi1

j1 Oi2
j2 Oi3

j3 Oi4
j4 =

(
δi2

i1 δ
i4
i3 δ

j2
j1 δ

j4
j3 + δi3

i1 δ
i4
i2 δ

j3
j1 δ

j4
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i1 δ
i3
i2 δ

j4
j1 δ

j3
j2

)

d(d − 1)

−

(
δi2

i1 δ
i4
i3 δ

j3
j1 δ

j4
j2 + δi2

i1 δ
i4
i3 δ

j4
j1 δ

j3
j2 + δi3

i1 δ
i4
i2 δ

j2
j1 δ

j4
j3

)

d(d − 1)(d + 1)

−

(
δi3

i1 δ
i4
i2 δ

j4
j1 δ

j3
j2 + δi4

i1 δ
i3
i2 δ

j2
j1 δ

j4
j3 + δi4

i1 δ
i3
i2 δ

j3
j1 δ

j4
j2

)

d(d − 1)(d + 1)
,

� (A.5)

used to derive expression (31).
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Appendix B. Three-qubit permutation matrices

There exist 8! = 40 320 permutation matrices of order 23  =  8. For each of them we have 
found their entangling power ε1 and identified 21 possible values. Their list and the number 
of elements in each class are presented in table B1, analogous to the table presented earlier in 
[43] for the bipartite case of two-qutrit system.
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