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Abstract
In this paper, we construct a tensor network representation of quantum causal 
histories, as a step towards directly representing states in quantum gravity via 
bulk tensor networks. Quantum causal histories are quantum extensions of 
causal sets in the sense that on each event in a causal set is assigned a Hilbert 
space of quantum states, and the local causal evolutions between events are 
modeled by completely positive and trace-preserving maps. Here we utilize 
the channel-state duality of completely positive and trace-preserving maps 
to transform the causal evolutions to bipartite entangled states. We construct 
the matrix product state for a single quantum causal history by projecting 
the obtained bipartite states onto the physical states on the events. We also 
construct the two dimensional tensor network states for entangled quantum 
causal histories in a restricted case with compatible causal orders. The 
possible holographic tensor networks are explored by mapping the quantum 
causal histories in a way analogous to the exact holographic mapping. The 
constructed tensor networks for quantum causal histories are exemplified by 
the non-unitary local time evolution moves in a quantum system on temporally 
varying discretizations, and these non-unitary evolution moves are shown to 
be necessary for defining a bulk causal structure and a quantum black hole. 
Finally, we comment on the limitations of the constructed tensor networks, 
and discuss some directions for further studies aiming at applications in 
quantum gravity.
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1.  Introduction

Tensor networks are efficient combinatoric descriptions of many-body quantum states in vari-
ous areas ranging from condensed matter to gravity. (See [9] for a recent introduction to tensor 
networks.) In particular, the entanglement properties of many-body systems become acces-
sible from the network structures. This feature leads us to new understandings of the results 
in quantum information and computation. Meanwhile, since tensor networks arise as efficient 
(numerical) algorithms to extract physically relevant information from the whole many-body 
Hilbert space of exponentially large dimension, they are very suitable for renormalization 
group analyses, the striking results of which are the applications in gauge/gravity duality 
using the multi-scale entanglement renormalization ansatz (MERA) [43]. An interesting com-
bination of the above two features makes it possible to study the holographic entanglement 
entropy and holographic error correction codes through random tensor networks [22]. It is not 
difficult to see from the holographic duality that there should be a tensor network representa-
tion for the spacetime geometry in addition to the tensor network representation of quantum 
states. Such tensor networks for spacetime geometries are usually studied in the anti-de Sitter/
conformal field theory (AdS/CFT) correspondence with a tacit tensor network of quantum 
states in the corresponding quantum field theory (QFT). (See, for example, the new develop-
ments [4] and references therein).

Although the holography principle appears to be a generic conviction in different models 
of quantum gravity, in most of these models one does not work in an explicit holographic 
context, even if they are indeed holographic. If one neglects the dual QFT and restricts oneself 
to the gravity side, then the tensor network representation of (quantum) gravity should still 
hold. This raises the question of constructing tensor networks for quantum gravity without 
guidances from a boundary QFT. Relevant to this question is the recent work [11] relating 
the random tensor networks to the spin network structure in the group field theory approach 
to loop quantum gravity. The spin networks are quantum gravitational excitations and carry 
the discrete geometric data of quantum spacetime. However, after contracting the tensors liv-
ing on a spin network, one obtains a tensorial group field theory on the boundary of the spin 
network, and the dynamical bulk quantum spacetime, i.e. spin foams, is obtained by expand-
ing the boundary group field theory correlation functions into Feynman graphs. So such a 
construction of tensor networks for quantum spacetime is still a holographic one. Besides, the 
special relations between group field theories and spin foams are model-dependent, and they 
are not applicable to other models of quantum gravity. But we can see from this construction 
that we need to know what the tensors represent and what we mean by the tensor contractions 
so as to represent a spacetime structure with tensor networks.

In this paper, we would like to study tensor network representations of general quantum 
spacetimes. Here by quantum spacetimes we mean that, on the one hand, the pertinent geom-
etry is dynamically described by a quantum theory of gravity, and on the other hand, the 
spacetime structures such as causality and locality remains to hold in quantum gravity. A 
recent impetus for studying such quantum spacetime tensor networks comes from the paper 
[46] where a causal tensor network is proposed for a Lorentzian spacetime. In [46], the causal 
structure of a Lorentzian spacetime is encoded in a tensor network in the way of algebraic 
QFT. That is, the causal structures are implemented as the local unitaries between operator 
algebras defined on different parts of the tensor network. In particular, a global causal struc-
ture requires that the underlying graph of the tensor network is an oriented acyclic graph. 
This graphical structure is similar to causal sets (causets) [8]. But only local causal unitaries 
are considered in [46] and the causal structure of Cauchy slices in a Lorentzian spacetime is 
built from local unitaries, while in canonical quantum gravity one usually hopes to unitarily 
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evolve a spacelike Cauchy surface in extenso and then describe the local evolutions by some 
not necessarily unitary subsystem dynamics. In tensor networks, the Trotter tensor network 
is exactly the case in which a global unitary evolution can be decomposed into local unitar-
ies via a Suzuki–Trotter decomposition. The local unitaries still need to be written in the 
Choi–Jamiołkowski representation so as to be glued together to form a tensor network [13].

Here we are interested in the case where the local evolutions of histories are not unitary, 
because it is not clear whether the local dynamics of quantum gravity should come from a 
Trotterization of a global unitary one. But we hope the Choi–Jamiołkowski representation 
might still hold. To this end, we shall consider in the following an old theory of quantum 
causal histories [21, 33]. A quantum causal history is a sequence of events (or a history) 
in a causet with a Hilbert space of quantum states assigned to each event. The dynamical 
evolutions between the quantum states on causally related events are unitary evolutions if 
the events at an equal time form a complete set of events as a discrete analog of spacelike 
Cauchy surface. However, for a single event, the causal evolutions of the states on it can be 
effectively described by completely positive and trace-preserving (CPTP) maps [12, 27], since 
these states on a single event are in effect a subsystem in a complete set of events. The CPTP 
maps have the property known as the channel-state duality [28], with which we can treat a 
CPTP map as a bipartite state in the composite system consisting of the two Hilbert spaces on 
the initial and final events. In this way, each CPTP map connecting a pair of causally related 
events can be changed to a bipartite state |φe〉 living on the causal link e. By further specifying 
the state |Mv〉 in the Hilbert space over an event at the node v, we obtain the following formal 
definition of the tensor network representation for quantum causal history states (see defini-
tion 3.2)

|h〉 =
⊗

e

〈φe|
⊗

v

|Mv〉,� (1)

which has the same form as in previous works [11, 22].
In section 3, we give an explicit construction of the tensor network state of a single quantum 

causal history. The procedure is similar to the construction of matrix product states (MPS) 
from one-dimensional projected entangled pair states (PEPS). We also show that these tensor 
network states of quantum causal histories contribute a history-dependent weighting factors to 
the transition amplitude of that history. Unlike the consistent histories in the history approach 
to quantum theory [19], the single-history tensor network states are themselves entangled 
states. This major difference is due to the fact that the causal relations between events are now 
translated into the entanglement between the states on events via the channel-state duality. So 
the extra weights can be easily obtained by contracting the tensorial coefficients without refer-
ring to the decoherence functionals.

Classically, the dynamical evolutions on a causet can be described by classical stochastic 
processes, such as the Markov processes in the sequential growth dynamics [42]. Now for 
quantum causal histories, the dynamical evolutions of the subsystem of events are described by 
CPTP maps, which are quantum Markov processes. Now that the history states are quantum, 
they can be quantum mechanically superposed, leading to entangled quantum histories [15]. 
In section 3, we define a version of entangled quantum causal histories that preserves the 
causal order in a single history. This definition, though restrictive, avoids the complication of 
indefinite causal structure, so that we will be safe in working with causets. We also discuss 
possible ways to formulate the holographic entanglement renormalization in quantum causal 
histories.

Quantum causal histories underlie the causal evolutions in many models of quantum grav-
ity. However, in most of the existing examples, such as spin networks [35], strings [36] and 
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spin foams [30], the causal evolutions are unitary, even if they are local. Although there are 
strong reasons to study a model of quantum gravity by local unitaries (see for example [3]), 
the possible discretization or graph changing dynamics will lead to non-unitary evolutions. In 
section 4, an example of non-unitary local time evolutions for a quantum system on tempo-
rally varying discretizations [23] is discussed in comparison with quantum causal histories. 
An explicit MPS is constructed for a history of local evolutions that includes the non-unitary 
ones. These non-unitary local evolution moves are important for describing a local causal 
structure and hence a black hole region in the related tensor network, thereby making the 
constructed tensor networks physically more relevant.

In section 5, we comment on the potential weakness in our construction in view of the lack 
of examples in most existing models. We also point out several directions of further studies.

In appendix A, we show that the tensor network state of a single quantum causal history is 
indeed a superstate in spacetime quantum mechanics [14]. In appendix B, we discuss some 
categorical aspects of quantum causal histories and their tensor netwrok representations.

2.  Quantum causal histories revisited

In this section, we first recollect the essentials of the theory of quantum causal histories. The 
basic references are [21, 33]. Then we discuss two new assumptions on quantum causal his-
tories: the first is imposing the internal causal condition for the evolutions overlapping at a 
single event, which ensures the background independence of the sum over histories (section 
2.2); the second is choosing the reference states such that the channel-state duality can be 
applied in quantum causal histories (section 2.3).

2.1. The old story: quantum causal histories

The phrase ‘quantum causal history’ reveals itself the content of this theory: by ‘quantum’ 
it means a quantum theory for gravitational evolutions with the existence of well-behaved 
Hilbert spaces and evolutions assumed; by ‘causal’ it means the causet approach to quantum 
gravity where the causal evolutions between events are collected into a partially ordered set 
(poset); finally, by ‘history’ it means the history formulation of quantum theory that can 
describe a sequence of events. Altogether, quantum causal histories are causets with Hilbert 
spaces on the events and there are evolution operators mapping between these Hilbert spaces.

More explicitly, consider a finite set C ≡ { p, q, r, ...} of (spacetime) events labelled by 
points p, q, r, .... For two events p  and q, we denote by p � q the condition that p  causally 
precedes q. Then the set C is a poset. C becomes a causet if the causal relation � is reflexive 
(p � p), antisymmetric (if p � q and q � p, then p   =  q), and transitive (if p � q and q � r , 
then p � r). The antisymmetry condition precludes the closed timelike curves. A sequence of 
events in C related by the causal relation � form a causal history (or chain) h( p). Let us denote 
by P( p) the causal past of the event p , i.e. all events r ∈ C such that r � p. Likewise, denote 
by F( p) the causal future of p  consisting of all q ∈ C such that p � q. The causal past (or 
future) of p  consists of many (past/future oriented) causal histories, e.g. P( p) =

⋃
i hi( p), but 

we should keep in mind that these causal histories may intersect each other. For example, in 
figure 1 the causal past P(p 1) comprises the causal histories {r � q1 � p1} and {r � q3 � p1}, 
but {r � q3 � p1} intersects {r � q3 � p2}.

Not all events in C can have causal relations. Those events a, b, c, ... ∈ C that cannot be 
causally related to each other are said to be spacelike separated, and they form an acausal 
set A ⊂ C. Using acausal sets, we can in some sense complimentarily characterize the causal 
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events. To see this, we call an acausal set A a complete past of an event p  if A ∩ hi( p) �= ∅ 
for each causal history hi( p), and likewise for a complete future. For two acausal sets A and 
B, define a relation A � B to be the condition that A is the complete past of B and B is the 
complete future of A. We call such a pair A, B with A � B a complete pair, which is the dis-
crete analog of a pair of successive Cauchy surfaces. It is easy to check that the relation � 
is reflexive, anti-symmetric and transitive. So we denote the poset of acausal sets by A. An 
example is given in figure 1 where the acausal sets A = {q1, q2, q3, q4} and B = { p1, p2, p3} 
form a complete pair.

Next, let us assign a finite-dimensional Hilbert space H(q) to each event q ∈ C. For an 
acausal set A = {q1, q2, ..., qn}, the Hilbert space of A is the tensor product of event Hilbert 
spaces, H(A) =

⊗
i H(qi), since the events in A are spacelike separated with respect to each 

other. Similarly, if two acausal sets A and B are spacelike separated, we have the composite 
Hilbert space H(A)⊗ H(B).

For two acausal sets A, B ∈ A that are partially ordered as A � B, we assign an evolution 
operator EAB : H(A) → H(B) to their Hilbert spaces. If furthermore dimH(A) = dimH(B), 
then EAB is a unitary operator. Here the unitary evolution operator need not to be generated by 
a physical (gravitational) Hamiltonian because of the discreteness of the time steps, although 
it is quite possible to have relations to the Hamiltonian in continuous time. Now the properties 
of the relation � can be expressed through these evolution operators, e.g. the reflexive prop-
erty is EAA = 1A and the transitive property is EABEBC = EAC.

Notice that the unitary evolutions on acausal sets hide the causal relations between indi-
vidual events in a causet. To amend this, consider the C*-algebra U( p) of linear operators 
acting on H( p), and similarly for an acausal set A we have U(A) =

⊗
i U( pi). Here the invo-

lutions in a C*-algebra are defined by the inner products in the assigned Hilbert space. Then a 
C*-algebra U(B) can be unitarily changed to U(A) = E†

ABU(B)EAB through a *-isomorphism, 
but the EAB’s cannot be used to evolve an algebra U( p) on a single event p . To define consist-
ent maps between the C*-algebras on events, we use the CPTP maps between C*-algebras. 
Intuitively, an evolution map Epq : H( p) → H(q) from H( p) on an event p  to H(q) with 
p ∈ A, q ∈ B and A � B is the evolution of the subsystem in a complete acausal set. The 
CPTP maps are then natural descriptions of such subsystem evolutions in open quantum sys-
tems. Here the map Epq should be a map of density matrices which are states on matrix alge-
bras. The use of matrix algebras is due to the fact that the C*-algebras acting on the assigned 
finite-dimensional Hilbert space are type I von Neumann factors.

To relate the CPTP maps on C*-algebras to the CPTP maps on states, let us consider the fol-
lowing: on a type I factor as a matrix algebra there is a unique trace τ = tr, i.e. the normalized 
matrix trace. The trace τ  defines an inner product on the C*-algebra U( p), e.g. τ(a∗b) for 
a, b ∈ U( p), and hence the C*-algebras U( p) are also Hilbert spaces. We denote the algebraic 
involution in C*-algebras by * and the adjoint of map in the C*-algebra as Hilbert spaces by 

Figure 1.  An example of causet. The direction of causal evolution is from bottom to 
top.
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†. Then the evolution map Epq is indeed the adjoint of the map φ( pq) on operator algebras, 
Epq = φ†

pq where φpq : U(q) → U( p). With these notations, we have the following local defi-
nition according to [21]:

Definition 2.1.  A quantum causal history h is a sequence of events in a causet C, where to 
each event p ∈ C is assigned a type I von Neumann factor U( p) and to every pair of causally 
related events p � q is assigned a CPTP map φpq : U(q) → U( p), satisfying the following 
conditions:

	 1.	�Extension. For any q ∈ C, there exists a homomorphism φPq : U(q) → U(P), where P is 
the complete past of q, such that for each p ∈ P it reduces to a CPTP map φpq. Likewise, 

for a complete future R of q, there exists a homomorphism φ†
qR : U(q) → U(R) such that 

for each r ∈ R, φqR reduces to the CPTP map φqr .
	 2.	�Locality. If p, q ∈ C are spacelike separated, then for the complete past A of p, q the 

images of φAp and φAq commute. Likewise, for the complete future B of p, q, the images 

of φ†
pB and φ†

qB commute.
	 3.	�Transitivity. If C is a complete future of p  and a complete past of q, then φpq = φpCφCq.

The assignment of von Neumann algebras to spacetime events does not allow us to form
ulate a complete QFT on quantum causal histories. We can only have parts of the properties 
of an algebraic QFT. To this end, let us define for a subset X ⊂ C  its causal complement X′ as 
the set of events that are spacelike to all of X. Then the causal completion of X is X′′, and X is 
causally complete if X = X′′. Given an acausal set A, we have U(A′′) = U(A) =

⊗
a∈A U(a). 

Then for another acausal set B such that A is the complete past of B, we have the isotony 
of algebras U(A′′) ⊂ U(B′′). We thus obtain the two most important properties of algebraic 
QFTs that are relevant to tensor network constructions, namely the (Einstein) locality and 
isotony of algebras, see [46].

2.2.  Interlude: background independence

The quantum causal histories defined above constitute a discrete, causal, quantum and finite 
model of quantum spacetime (or QFT on quantum spacetime). However, since the causal 
structure is fixed, such a model is not background independent, which is important if we use 
this model to study quantum gravity. A direct thought is to consider unfixed histories and sum 
over these histories as in [33]. Formally, given a complete pair A � B, we denote by γ(A, B) 
the graph underlying all the causal histories between A and B. Now if A is not a fixed set, then 
on each distinct graph γ  in between we can assign an evolution operator Eγ

AB. The transition 
amplitude from a state |ψA〉 ∈ H(A) to |ψB〉 ∈ H(B) on this graph γ  is obviously 〈ψB|Eγ

AB|ψA〉, 
and the total transition amplitude is obtained by a sum over histories

A(A, B) =
∑
γ

〈ψB|Eγ
AB|ψA〉.� (2)

It is unclear whether the histories summed over are still causal, because the causal struc-
tures inside these histories are invisible in the final transition amplitude even if one starts 
with a fixed quantum causal history. In [44] the causal evolutions in a sum over histories is 
prescribed by borrowing the ideas of prescribing the race condition and deadlock in parallel 
programming. The main idea (of race conditions), when stated in the current case of quantum 
causal histories, is that at an event there might be more than one possible future-oriented his-
tories, which poses the question of which causal evolution happens ‘first’. The prescription is 
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then to simply restrict ourself to non-overlapping histories by taking as granted that the causal 
evolutions that overlap on the same event have been properly ordered.

Let QC be a set of quantum causal histories based on a causet C, then for two or more 
quantum causal histories hi, i = 1, 2, ... coinciding at an event p ∈ C, we introduce a new 
causal ordering hi( p) � hj( p) at p , or equivalently we change the event p  into many copies 
ordered as p1 � p2 etc. With this new ordering at an overlapping event, these histories become 
disjoint. For example, consider two quantum causal histories h1, h2 coinciding only at p , we 
change them to h′1, h′2 with p  replaced respectively by p 1 and p 2 satisfying p1 � p2. We have 
then

h1 ∩ h2 = p, QC = h1 ∪ h2 ⇒ h′1 ∩ h′2 = ∅, QC = h′1 � h′2/{ p1 = p2}.

See also figure 2.
This additional ordering is internal to the event p  and does not affect the structure of 

quantum causal histories in QC, and in a sense is hidden in the reflexivity condition p � p, 
which replaces the sometimes assumed irreflexivity in the literature. We call this assumed 
causal relation as internal causality. Importantly, the quantum causal histories can still have 
overlaps and even can be entangled. This internal causality makes the quantum causal histo-
ries into an enriched category, see appendix B.

2.3.  A new story: channel-state duality

The use of CPTP maps as local evolution maps in quantum causal histories allow us to utilize 
tools from quantum information theory, since the CPTP maps are actually a class of quantum 
channels [26]1. This prospect has been explored in [32] where possible extensions to non-CP 
maps are also discussed. Notice that non-CP maps or affine maps typically arise when there 
are initial system-environment correlations. By the assumed internal causality, the quantum 
causal histories overlapping at an event should be causally ordered in a way that these histories 
are effectively disjoint. So, it is reasonable to consider only the cases without initial correla-
tions, and treat the local causal evolutions in quantum causal histories as CPTP maps.

Here we exploit the channel-state duality of CPTP maps [28]. Let Ha be a finite-dimen-
sional Hilbert space, and B(Ha) be the space of bounded linear operators on Ha. B(Ha) is also 
a Hilbert space with the Hilbert–Schmidt inner product 〈a1|a2〉 = tr(a†1a2). Let Hb be another 
finite-dimensional Hilbert space, then a CPTP map ϕ : B(Ha) → B(Hb) corresponds to a 
bipartite states on Ha ⊗ Hb by the following duality, also known as the Choi–Jamiołkowski 
isomorphism [12, 27] (for unitaries),

ϕ → ρϕ = 1 ⊗ ϕ(|ψ〉〈ψ|) =
∑

ij

eij ⊗ ϕ(eij),� (3)

Figure 2.  The assumption of internal causality.

1 Usually quantum channel is a synonym for CPTP map. But there are non-CP maps which can be quantum chan-
nels with initial system-environment correlations.
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where |ψ〉 =
∑

i |i〉 ⊗ |i〉 is a maximally entangled state in Ha ⊗ Ha and eij = |i〉〈j| for an 
orthonormal basis {|i〉} of Ha. The dual states obtained by the map (3) belong to a Hilbert 
subspace of the Hilbert space Ha ⊗ Hb, because the CPTP map ϕ preserves the Hilbert space 
structure.

In the current case, the CPTP map φ†
pq mapping the density matrix in H( p) to that in H(q) 

is dual to a bipartite state

φ†
pq → ρpq = 1 ⊗ φ†

pq(|ψ〉〈ψ|).� (4)

For later use, we also consider the images of φ†
pq in terms of state vectors. By noticing that the 

map ϕ : (eij)a �→ ϕ(eij) = (eij)b in (3) changes the basis vectors of Ha to those of Hb, we can 
write the corresponding transformations of state vectors obtained by channel-state duality as

|ψpp〉 =
∑

p

|p〉 ⊗ |p〉 �→ |ψpq〉 =
∑

pq

|p〉 ⊗ |q〉 ≡
∑

p

|p〉 ⊗ φ̌†
pq(|p〉)� (5)

〈ψpp| =
∑

p

〈p| ⊗ 〈p| �→ 〈ψpq| =
∑

pq

〈p| ⊗ 〈q| ≡
∑

p

〈p| ⊗ φ̂†
pq(〈p|)� (6)

for |p〉 ∈ H( p), |q〉 ∈ H(q) and 〈p| ∈ H∗( p), 〈q| ∈ H∗(q).
Now we face the problems of choosing a pair of reference states |ψ〉 on each causal link 

and choosing the basis {|i〉} on each event. For the reference state, we can still choose a 
maximally entangled state on the condition that the (reference) basis of H( p) has been cho-
sen. This choice is consistent with gluing of polyhedra in loop quantum gravity. Although 
this point is not manifest in most of the approaches to loop quantum gravity, it is manifest in 
the so-called bosonic representation of squeezed vacua [5] that the gluing of two polyhedra 
requires the entanglement between two intertwiners to be maximal2. The CPTP maps repre-
sent the dynamical evolutions of events that can possibly change the maximal entanglement. 
In loop quantum gravity terms, these evolution maps can be understood as propagating 
curvature excitations along the edges that originally maximally entangle the polyhedra in 
the squeezed vacua.

As for choosing the basis of reference, the problem does not lie in the existence of an ortho-
normal basis for a finite-dimensional Hilbert space, but in the fact that the state in (3) becomes 
basis-dependent when we change the basis using local operations [28]. Here we choose the 
basis of the Hilbert space H( p) at an event p ∈ A according to other events in the acausal set 
A. In this sense, the fixation of basis by choosing other events becomes similar to the problem 
of choosing a suitable quantum reference frame in a composite system, but with a notable dif-
ference: in canonical quantum gravity, it is required that a choice of quantum reference frame 
should give the physical unitary Schrödinger dynamics of quantum gravity, whereas here we 
work with an event in an acausal set (i.e. a point in a Cauchy surface) and its open system 
dynamics rather than unitary dynamics. To avoid further complications, we simply assume 
that such a choice of orthonormal basis for the Hilbert space assigned to each event is not only 
unique but also consistent with the evolutions of acausal sets.

2 We also note that the bosonic representation of squeezed vacua is closely related to the spinor representation of 
loop quantum gravity [31] where the Hilbert space of quantized spinors are the Bargmann space of holomorphic 
square integrable functions over C. An interesting thing pointed out in [28] is that the inverse channel-state dual-
ity, namely constructing a channel ϕσ(·) = tra[(· ⊗ 1)σ] from a given state σ, is also formally analogous to the 
Segal–Bargmann transform B(·) =

∫
dx(·)|z, x〉 from coherent states |z, x〉 ∈ L2(R2) to holomorphic functions on 

the Bargmann space. We therefore expect an exact formal correspondence between the spinor representation of loop 
quantum gravity and state-channel duality, which is worthy of further investigations.
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3. Tensor networks for quantum causal histories

We construct in this section the tensor network representation of quantum causal histories. 
For a single quantum causal history, its tensor network representation of MPS form is first 
constructed in section 3.1. We then discuss some properties of these MPS on a set of histories 
in section 3.2. In section 3.3, we define tensor networks for entangled quantum causal histo-
ries, but with their causal structures kept intact. And finally we discuss in section 3.4 the pos-
sible ways to realize holography in quantum causal histories with the help of tensor network 
representations.

3.1.  Matrix product state of a single history

To construct a tensor network representation of a single quantum causal history, let us take 
a step back and look at the history states in the theory of consistent histories [19, 24]. For 
a quantum system whose dynamics is given by the unitary operators U, consider a finite 
sequence of projection operators αt1 ,αt2 , ...,αtn corresponding to quantum logical proposi-
tions made at different times t1, t2, ..., tn. Then the history states of this quantum system are 
states in the Hilbert space H =

⊗
i H(ti) where H(ti) is the Hilbert space of the system at time 

ti. In particular, a history h in H is projected out by a class operator

Ch = U†(tn)αtn U(tn)...U†(t1)αt1 U(t1).� (7)

For two histories h1 and h2, their decoherence functional is D(h1, h2) = tr(Ch1ρ0C†
h2
) where 

ρ0 is the initial density matrix of the system. The decoherence functional gives the probabil-
ity distribution p(h) = D(h, h) of a history h if the consistency condition, D(h1, h2) = 0 for 
h1 �= h2, is satisfied.

Now for quantum causal histories, we see two major differences when compared to con-
sistent histories: (i) the dynamics of events in a single quantum causal history are not unitary 
but described by CPTP maps, and consequently the Hilbert spaces on different events in a 
quantum causal history might be very different; (ii) in quantum causal histories the projection 
operators are not explicitly included. However, these two differences are closely relevant to 
the tensor network constructions: on the one hand, the CPTP maps can be transformed via 
channel-state duality to bipartite states on the ‘bond’ corresponds to contracting the tensor 
indices; on the other hand, the projection operators tell us that we need extra ‘physical’ indices 
to represent the events themselves in addition to bond indices.

Let h be a quantum causal history consisting of n events p1, p2, ..., pn. On each p i,i  =  1,2,...,n, 
we have a Hilbert space H(p i) and a type I factor U( pi), and the states |ψi〉 in H(p i) are related 
by local causal evolutions or CPTP maps. In terms of density matrices, we write the causal 
evolutions at the level of states as a one-dimensional directed chain or graph,

ρ1
φ†

12−−→ ρ2
φ†

23−−→ ...
φ†
(n−1)n−−−−→ ρn.� (8)

Each φ†
ii+1 can be changed into a bipartite entangled state as in (3), which in effect puts an 

entangled pair on the bond of the graph. Since the graph is directed according to the causal 
relations in h, the evolved state φ†(|ψi〉) should be put at the target node (i + 1) of the bound 
(i, i + 1), and the other state of the entangled pair at the source node (i) of the bond. For 
example, consider the following part of the graph

ρ1
φ†

12−−→ ρ2
φ†

23−−→ ρ3
φ†

34−−→ ...� (9)
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then the effects of the maps φ†
12,φ†

23 result in the following bipartite states

|ψ12〉 =
∑

i

|ψ1,i〉 ⊗ φ̌†
12(|ψ1,i〉), |ψ23〉 =

∑
i

|ψ2,i〉 ⊗ φ̌†
23(|ψ2,i〉).� (10)

At the event p 2 we insert a projection operator

β2 =
∑

ijk

M(2)
12,ijk|ψ

(2)
k 〉φ̂†

12(〈ψ1,i|)〈ψ2,j|,� (11)

where the M’s are some tensorial coefficients. The states |ψ(2)〉 ∈ H( p2) are those states that 
characterize h at the event p 2 and also specifies the way of gluing two CPTP maps linked to p 2. 

Note that {|ψ(2)
k 〉} is again a basis of H(p 2) such that |ψ(2)〉 =

∑
k M(2)

k |ψ(2)
k 〉.

We emphasize that the projection operator β2 is used to glue two causal evolutions, since 
the evolved state φ̌†

12(|ψ1〉) may stop at p 2 and the subsequent evolution is about another state 
|ψ2〉 ∈ H( p2). This is because the channel-state duality applies only on the condition that 
the maximally entangled reference states are chosen. In this case, the (unnormalized) refer-
ence state is 

∑
ij |ψ1,i〉|ψ2,j〉. The tensorial coefficients M12,ijk’s thus encode the transition from 

φ̌†
12(|ψ1,i〉) to |ψ2,j〉, and in the state |ψ(2)〉 is encoded the pertinent property of the event p 2, e.g. 

the eigenstate of the operators from U( p2). In the simple case where φ̌†
12(|ψ1,i〉) = |ψ2,i〉, we 

can take |ψ(2)
i 〉 = |ψ2,i〉 and M = 1 as an identity matrix.

For the total graph (8), we insert the projection operators βi, i = 2, 3, ..., n − 1 at the corre
sponding events, and obtain a history state, schematically as in figure 3,

|h〉 =β2 ⊗ ... ⊗ β(n−1)|ρ1
φ†

12−−→ ρ2
φ†

23−−→ ...
φ†
(n−1)n−−−−→ ρn〉

=
∑

i1i2...in,k2k3...kn

M(2)
12,i1i2k2

M(3)
23,i2i3k3

...M(n−1)
(n−1)n,in−1inkn

|ψ(1)
i1 〉|ψ(2)

i2 〉...|ψ(n)
in 〉.

�
(12)

This state (12) takes the form of a MPS state, and when compared to the consistent history 
states in H =

⊗
i H(ti), it is obviously entangled. This state is also a superstate in temporally 

extended, or spacetime, quantum mechanics, see appendix A.
The above construction of the tensor network state (12) follows the construction of MPS 

from one-dimensional PEPS [9]. We can in fact give a direct definition by relating the Hilbert 
spaces to the tensor indices in those M’s. Let the Hilbert spaces on events be d-dimensional. 
Consider the quantum causal history h with an underlying directed graph structure as above, 
then on each node v of the graph there is a tripartite node state

|Mv〉 =
∑

ijk

V(v)
ijk |ψi〉|ψj〉|ψ(v)

k 〉� (13)

where |ψi〉 and |ψj〉 are on the two bonds linked to the node v, and |ψv
k〉 is not related to the 

causal evolutions but resides on the node v. Here each index of the tensorial coefficients V(v)
ijk  

Figure 3.  Illustration of the MPS of a single quantum causal history.
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stands for a Hilbert space on the event pv of dimension d. On each bond of the graph, there is 
a bipartite bond state obtained from a CPTP map φ via channel-state duality. This state on the 
bond e can be written in the dual space as in (6),

〈φe| =
∑

i

〈ψi|φ̂†(〈ψi|) =
∑

ij

Eij〈ψi|〈ψj|� (14)

where the tensorial coefficients Eij encodes the transition from φ̂†(〈ψi|) to 〈ψj|. A tensor net-
work state such as (12) is then obtained by contracting the tensors V  and E (resulting in the 
tensorial coefficients M). We can thus formulate the formal definition of the tensor network 
representation of a quantum causal history:

Construction 3.1.  Let h be a quantum causal history of events { pv} each of which is a 
subsystem of the complete acausal set Av . The tensor network representation of h is

|h〉 =
⊗

e

〈φe|
⊗

v

|Mv〉� (15)

where the states |Mv〉 and 〈φe| are respectively given by (13) and (14). The bonds e and nodes 
v are in the graph underlying the history h.

If each event in h is a complete acausal set, then the tensor network representation can 
still be constructed as above, since the Choi–Jamiołkowski isomorphism holds for a unitary 
transform. Of course, one can also construct tensor networks with local unitaries along the 
lines of [46].

3.2.  Many histories

We now consider the question of summing over histories in light of the constructed tensor 
network representation of a single quantum causal history. In the simple expression (2), the 
amplitude for a single history can be written as

〈ψn|Eh|ψ1〉 = 〈ψn|φ̌†
n−1...φ̌†

1|ψ1〉� (16)

where we have made the abbreviation the 1 ⊗ φ̌† ≡ φ̌†. Here the composition of the channel-

state duality works as φ†
n−1...φ†

1 →
∑

ij eij ⊗ φ†
n−1...φ†

1(eij) with each state on an event coin-
cides with that of the maximally entangled reference state. This (16) is a transition amplitude 
from |ψ1〉 to |ψn〉, while in the tensor network state (12) we include the additional states |ψ( p)〉 
residing at the events p ’s, so we also need to consider some n-point functions of tensor net-
work states |h〉. As in the class operators of consistent histories, we consider the n-point func-
tions of the projection operators ηi = |ψ(i)〉〈ψ(i)|, i = 1, 2, ..., n, to wit

〈h|η1η2...ηn|h〉 =
(
M(2)

12 M(3)
23 ...M(n−1)

(n−1)n

)†
M(2)

12 M(3)
23 ...M(n−1)

(n−1)n,� (17)

where the right hand side is totally contracted. This n-point function 〈h|η1η2...ηn|h〉 gives an 
extra weight to the transition amplitude of the quantum causal history h. Indeed, we note that 
the plain transition amplitude (16) only uses the maximally entangled reference states. For 
states other than the reference states, we consider their transitions to the reference ones with 
additional tensorial coefficients,

〈ψn|M(n−1)
(n−1)nφ̌

†
n−1...M(2)

12 φ̌†
2φ̌

†
1|ψ1〉 = M(2)

12 M(3)
23 ...M(n−1)

(n−1)n〈ψn|φ̌†
n−1...φ̌†

1|ψ1〉,
� (18)
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where the tensors M’s have been contracted.
We can therefore perform the weighted sum over quantum causal histories to obtain the 

amplitude

A(ψ1,ψn) =
∑
γ

√
〈hγ |η1η2...ηn|hγ〉〈ψn|Ehγ |ψ1〉� (19)

where the internal causality condition is assumed to hold. Notice that the local operators ηi 
will not pick out a special frame or direction, since the states |ψ(i)〉 just encode the transition 
of hγ at the events p i and the histories γ  are not fixed in the sum-over-histories approach. 
Therefore, the weighted sum over histories (19) is background independent.

If we replace the projection operators ηi by some local operator Oi, we get the correlation 
function of these operators Oi,

〈h|η1...Oj...Ok...ηn|h〉 =〈ψ( j)|Oj|ψ( j)〉〈ψ(k)|Ok|ψ(k)〉·

·
(
M(2)

12 M(3)
23 ...M(n−1)

(n−1)n

)†
M(2)

12 M(3)
23 ...M(n−1)

(n−1)n.
�

(20)

This correlation function now depends on the residing states |ψ( j)〉 and |ψ(k)〉 which are caus-
ally related by the MPS structure of |h〉. In fact, since the h is by definition a causal history, 
the operators inserted on its events are causally correlated. But unlike the usual homogeneous 
MPS, the correlation strength now depends on those states residing at the events. See also 
appendix A.

We remark that the sum over single-history amplitudes is made possible by the assumption 
of internal causality. At the level of causets, the histories still can intersect. Given a subset 
A′ of a complete acausal set A, the number of events in A′ will change amidst evolutions. To 
see this, we can introduce two operations on events in the acausal set A′: one is the coarse-
graining C  of events; the other is the fine-graining F  of events. For the example of two events 
p1, p2 ∈ A′, these act as

C : { p1, p2} �→ { p1 = p2}, F : { p1} �→ { p3, p4}� (21)

where the events p3, p4 ∈ A are such that A′ ∪ { p3, p4}/{ p1} is still acausal. Here the causal 
evolutions have been encoded in causal histories, and these operations C  and F  can be merely 
interpreted as coarse-grainings and fine-grainings of the acausal set making the histories to 
intersect or to branch.

We hope that the total amplitude is invariant, or cylindrically consistent, under the actions 
of C  and F . For the coarse-grainings, the single-histories hγ are unaltered if one recovers the 
events before a coarse-graining by internal causality. But the (spaces of) states will change 
after these operations, since the events on which the states are assigned are changed. In this 
sense, the operations effectuate the transitions between different single-history states |hγ〉 on 
the same history hγ but with different states. In other words, these operations induce fluctua-
tions of states around the history hγ. We can take the reference states |ψi〉ref assigned to a 
quantum causal history hγ as its ‘stationary’ states, then the fluctuations around |ψi〉ref at each 
event is encoded in the tensorial coefficients M(i) as 

∑
i M(i)|ψi〉ref. In this way, the single-

history MPS |hγ〉 can be understood as the superposition of all fluctuations around hγ, as a 
consequence of which the sum over histories (19) indeed sums over all these fluctuations. As 
for the fine-grainings, generically there will be new events (and hence new histories) added 
to A′, in addition to the changes in the states. The addition of new events amounts to the 
fluctuations in the quantum causal history hγ itself. In the sum over histories (19), since the 
trajectories γ’s are not fixed, we can simply add some new trajectories. In this sense, the total 
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amplitude of the sum over histories (19) sums over all the fluctuations of the histories and is 
therefore cylindrically consistent.

Notice that we can also interpret these operations C  and F  as local time evolution moves 
[16] of the acausal set A′. In this interpretation we also need to define the identity evolution 
moves for events upon which the C  and F  do not act:

I : { pj ∈ A′|j ∈ J}t �→ {qj ∈ A′′|j ∈ J}t+1� (22)

where J is the index set for events in the kernels of C  and F . I is a one-to-one map keeping 
the number of events. Again by internal causality, these evolution moves C,F and I have been 
encoded in the MPS of single-histories.

3.3.  Entangled quantum causal histories

We have constructed the MPS of a single quantum causal history from one-dimensional PEPS. 
It is natural to ask what the history states constructed from higher dimensional PEPS are. 
Starting with single-history states, one expects the possible two-dimensional PEPS to be the 
entangled superpositions of these single-history states. In [15], the entangled histories are 
studied for consistent histories. Here we shall consider entangled quantum causal histories3.

Intuitively, given a set of states |hγ〉 of single histories, one can get a general superposed 
history state |H〉 =

∑
γ aγ |hγ〉 with aγ ∈ C. To formulate inner products for the superposed 

history states |H〉, we observe an obvious difference between consistent and quantum causal 
histories: in defining the single-history state |h〉 the causal evolutions between events have 
been taken into account, while in consistent histories one needs the class operators to specify 
particular histories. As a consequence, the inner product of two single-history states depends 
solely on the relations between two quantum causal histories. For example, for disjoint histo-
ries hγ , hγ′, we should have 〈hγ |hγ′〉 = 0. With the assumption of internal causality at events, 
we only need to consider disjoint quantum causal histories with internal causality, so that a 
non-vanishing inner product is defined only when two quantum causal histories are consistent, 
i.e. 〈hγ |hγ〉 �= 0. In this way, an inner product of |H〉’s can be defined as usual without refer-
ring to class operators.

Formally, one can consider the normalized superposed states |H̄〉 and define a ‘higher-
level’ complete orthonormal basis {|H̄i〉}. That is, one requires that 〈H̄i|H̄j〉 = 0 for i �= j and ∑

i bi|H̄〉 gives a complete set of histories. One can also construct ‘higher-level’ entangled 
states based on the basis {|H̄i〉}. However, unlike the consistent histories, the causal evo
lutions are now CPTP maps whose behaviors under linear superposition is not easy to see. 
Moreover, superposing different quantum causal histories will mix the definite causal rela-
tions in these histories, leading to indefinite causal structures. Although there are attempts to 
study quantum gravity with indefinite causal structure [20], these theories are drastically dif-
ferent from the causet theory we have used here4. To avoid further conceptual difficulties, we 

3 In [15], the single histories are defined on distinct spatial quantum trajectories, so by superposing history states on 
distinct trajectories one can construct entangled histories. But for a single quantum causal history, the underlying 
trajectory is unique and its MPS is really an entangled state on a single trajectory. A simple way to see this is that 
for consistent histories the projections in a class operator are into the space coordinate eigenstate, e.g. |xi〉〈xi|, while 
for quantum causal histories, the spacetime metric has not been constructed yet and the states residing on event are 
only internal for now.
4 The most obvious difference is the treatment of causality: in causet the causal relations of each history are definite 
and one actually only knows the causal relations at the outset, whereas an indefinite causal structure makes the 
causal order between events unfixed. In addition, causets are pre-geometric theories, while the existing theories with 
indefinite causal structure are operational theories with much wider applicability.
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want to define superposed or entangled quantum causal histories with their respective causal 
relations kept intact. An apparent example is a two-arm single-particle interferometer where 
the two quantum states on the two arms can be entangled but their causal evolutions along 
the arms are definite. Let H1 be the Hilbert space of states localized in the first arm, and H2 
in the second arm, then the Hilbert space of a single particle in the two-arm interferometer is 
H = H1 ⊕ H2. If on each arm the evolution is determined by some CP (not necessarily TP) 
map, the superpositions of two CP maps on the two arms have been deeply studied by Åberg 
[1]. What we need from [1] is the following:

Let ϕ : B(HS) → B(HT) be a CP map from the algebra of bounded linear operators on the 
source (S) Hilbert space to that on the target (T) Hilbert space5. Suppose HS and HT are all 
finite-dimensional. Consider the case in which the source and target Hilbert spaces are respec-
tively decomposed into orthogonal sums, HS = Hs1 ⊕ Hs2 and HT = Ht1 ⊕ Ht2. Denote by 
Psi, Ptj, i, j = 1, 2 the projection operators onto the respective subspaces, then for any operator 
Q ∈ B(HS), the action of a CP map ϕ is

ϕ(Q) =
∑

i,j,k,l=1,2

Ptiϕ(PsjQPsk)Ptl.� (23)

When ϕ is a CPTP map, we say ϕ is subspace preserving if

tr(Ptiϕ(Q)) = tr(PsiQ), i = 1, 2, ∀Q ∈ B(HS)� (24)

which means that the probability weight on each subspace in the orthogonal sum decomposi-
tion (on the arm of the interferometer) is preserved under the CPTP map. Importantly, a CPTP 
map ϕ is subspace preserving iff it is a ‘gluing’ of two CPTP maps ϕ1,ϕ2 defined on the sub-
spaces. Here by ‘gluing’ we mean that when a CP map ϕ is restricted to the source subspace 
Hs1 (or Hs2) and to the target subspace Ht1 (or Ht2), the restriction ϕ|1 ≡ ϕ1 (or ϕ2) is also a CP 
map on the subspace Hs1 (or Ht2), to wit

ϕ|Hsi,Hti(Q) = Ptiϕ(PsiQPsi)Pti = ϕi(Qi), i = 1, 2,� (25)

where Q1 ∈ B(Hs1), Q2 ∈ B(Hs2) and Q ∈ B(HS). The ‘gluing’ of CPTP maps is in effect the 
superposition of two evolutions on those two arms in the interferometry setup.

The ‘gluing’ of CPTP maps is indeed a suitable concept for superposing quantum causal 
histories. On the one hand, the orthogonal sum of two Hilbert spaces allows general quantum 
coherence including entanglement between states of the two spaces. On the other hand, since 
the subspace preserving property preserves the probability weights under joint evolutions, the 
causal relations in a single history, which present themselves as the transition probabilities in 
a (quantum) Markov process, are preserved under joint evolutions. In this way, the indefinite 
causal structure for entnagled quantum channels is avoided.

To be definite, we take the entangled two events, which are possibly the same but with 
internal causality, of two distinct quantum causal histories to be in the same acausal set A. As 
an example, consider two events p1, p2 ∈ A, through which passes two quantum causal histo-
ries h1, h2. At p 1 the projection operator βp1 of the single history h1 should be modified by a 
new part coming from the entangled pair between states at p 1 and p 2. Let us write

βp1 =
∑
ijkl

M( p1)
ijkl |ψ( p1)

k 〉φ̂†(〈ψP1−1,i|)〈ψp1,j|〈ξp1,l|,� (26)

and similarly at p 2, where 
∑

l |ξp1,l〉|ξp2,l〉 is the entangled pair shared by p 1 and p 2. Obviously 
such projection operators project out the states from the inter-history entangled pairs if we 

5 Here the direction of the map is treated for simplicity. The relation to that in definition 2.1 is obvious.
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restrict ourselves to h1, thereby preserving the causal relations as well as the causal evolutions 
in h1. But for joint evolutions of h1, h2, the ‘gluing’ of subspace states have the form of

∑
i1i2...in

(
a1|h1〉|ξ1,i1i2...in〉+ a2|h2〉|ξ2,i1i2...in〉

)
, a1, a2 ∈ C� (27)

and therefore the subspace evolutions can be regained by using the projection operators 
Pξi =

∑
j |ξi,j〉〈ξi,j|, i = 1, 2. The Hilbert spaces Hp1 , Hp2 on the events p1, p2 are thus ‘glued’ 

to Hp1 ⊕ Hp2. Denoting the Hilbert space of the single-history states |hi〉 by Hi, we obtain the 
direct or orthogonal sum H1 ⊕H2. See for example figure 4.

As for the tensor network representation of such ‘gluing’ of histories, we only need to 
apply the projection operators as in (26) at each event to perform the higher dimensional PEPS 
construction. On the other hand, we have at each node v of the underlying graph of the joint 
histories

|Mv〉 =
∑
ijkl

V(v)
ijkl |ψi〉|ψj〉|ψ(v)

k 〉|ξ(v)
l 〉� (28)

where |ξ(v)
l 〉 is part of the (maximally) entangled pair 

∑
l |ξ

(v)
l 〉|ξ(v′)

l 〉 with v, v′ being the nodes 
on different histories but in the same complete acausal set. In addition to the bipartite bond 
states, there are also inter-history entangled bond states

〈ξv| =
∑

i

〈ξ(v)
i |〈ξ(v′)

i |.� (29)

We can formulate the following formal definition.

Construction 3.2.  Let hi, i = 1, 2, be two quantum causal histories. The tensor network 
representation of the ‘gluing’ of two histories is

|h1 ⊕ h2〉 =
⊗

e

〈φe|
⊗

v

〈ξv|
⊗

v

|Mv〉� (30)

where the |Mv〉 are given by (28), the 〈φe| by (14), and the 〈ξv| by (29).

Two remarks are in order. Firstly, this kind of ‘gluing’ of histories is a ‘second-level’ entan-
gled structure in the sense that both in the history direction and in the inter-history direction we 
have entangled states. But it is not an isotropic PEPS even if one consider superposes n histo-
ries, because in the inter-history direction there is no causal evolutions. Secondly, the choice of 
the entangled pairs is not unique, and it is event possible to consider only quantum coherences 
between two histories. The choice of maximally entangled pairs in (29) is again motivated by 
the results in loop quantum gravity. The kinematical Hilbert space of loop quantum gravity is 
Hkin =

⊕
e

⊗
v Hv,e, where v and e are vertices and edges of a spin network graph. From this 

we can see that the vertex Hilbert spaces are glued by colored edges, which are required to 
carry maximally entangled states of intertwiners [5]. If the inter-history entanglement exists 

Figure 4.  Schematic ‘gluing’ of quantum causal histories.
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only for events in the same complete acausal set A, the ‘gluings’ of quantum causal histories 
induce the direct sum of Hilbert spaces on events of A, which is exactly the structure of the 
kinematical Hilbert space for the spin network states in a three-dimensional spacelike slice. 
In this case, the ‘gluings’ of events in causet and the gluings of polyhedra in loop quantum 
gravity then nicely match.

3.4. Towards holographic quantum causal histories

In addition to MPS and PEPS, another typical tensor network is MERA which can have a 
holographic description [43]. We try to find a holographic relation in the tensor network rep-
resentation of quantum causal histories. Possible holographic properties in quantum causal 
histories have been explored in [37] where on each event is assigned a ‘holographic’ screen 
and the causal evolutions between events are assumed to be the flows of quantum informa-
tion between screens. Instead of the bulk-boundary holography, this kind of holography is a 
local one without referring to the bulk theory. Besides, the interpretation of quantum informa-
tion flow only applies for the locally unitary evolutions, otherwise there will be information 
loss, so this assumption cannot be directly imposed on CPTP maps. A nice way to amend 
these problems is to supplement a quantum channel ϕ with a local environment but keep the 
causal structure, so that the unitary evolution of the purified history-environment system can 
be implemented by some local isometries. Using these isometries one can construct a de Sitter 
MERA [6]. Here we first formulate a coarse-graining mapping analogous to the unitary exact 
holographic mapping [40], but it is not exactly holographic since it does not preserve all the 
information. Then we argue that the holographic purification is a possible way to implement 
the local history-environment total unitary system, thereby allowing the MERA construction 
on quantum causal histories.

Consider an acausal set A of spacelike separated events p1, p2, ..., pn. Recalling from defini-
tion 2.1 that a CPTP map φqp1 : U( p1) → U(q) maps the type I factor U( p1) on p 1 into U(q) 
on some event q in its causal past, we can take the fine-grainings in the direction of causal 
evolution as the coarse-grainings in the direction of the actions of CPTP φ’s. In the above, 
we have assumed the internal causality for those quantum causal histories coinciding in the 
same event. Let U( p1),U( p2) be the algebras on p1, p2 ∈ A respectively, then the CPTP maps 
φp1q : U( p1) → U(q) and φp2q : U( p1) → U(q) both end on the algebra U(q) over the event 
q ∈ P(A). With the assumption of internal causality, there would be events r1, r2 such that the 
two quantum causal histories {r1 � q � p1} and {r2 � q � p2} are effectively disjoint with 
e.g. q1 � q2. At the event q, there are also two projection operators βq1 ,βq2, realizing the PEPS 
construction,

βq1 =
∑

ijk

M(q1)
ijk |ψ(q1)

k 〉φ̂†(〈ψr1,i|)〈ψp1,j|, βq2 =
∑

ijk

M(q2)
ijk |ψ(q2)

k 〉φ̂†(〈ψr2,i|)〈ψp2,j|.

� (31)
Now let us relax the internal causality (letting q1 = q2), and discard in the action of βq2 the 
transformation from φ̌†(|ψr2,i〉) to the reference state |ψp2,j〉. Then φ̌†(|ψr2,i〉) does not qualify 
for the next-step causal evolution in our constructions. We can still define the tensor networks 
by basing the two events p1, p2 on a common past {r1 � q}. The projection βp2 is changed to

β′
q =

∑
ijk

M′(q)
ijk φ̌†(|ψr2,i〉)φ̂†(〈ψr1,i|)〈ψp2,j|� (32)

with the tensorial coefficients M′ encoding the transformations from φ̂†(〈ψr1,i|) to 〈ψp2,j|. The 
states φ̌†(|ψr2,i〉) evolved from the event r2 are now left out in the tensor network construction, 
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which, however, constitute the bulk states living on bulk events, while the remaining tensor 
networks, in which each history is a MPS, provide a fine-graining flow in the direction of 
causal evolution. See for instance figure 5. In the direction of CPTP maps, we have a coarse-
graining flow of the algebras on events that maps out a two-dimensional net of algebras from 
the algebras on the acausal set A.

The above flows are constructed in a way similar to the exact holographic mapping, but 
with the obvious difference that the CPTP maps are not unitary and even not isometries. Due 
to these non-unitary local causal evolutions, many results from the tensor networks with local 
unitaries cannot be directly applied here. But recall that a quantum state that can be approxi-
mated by a MPS usually follows an area law. One can indeed formulate an area law for a 
single history by bounding the tensorial coefficients in the MPS. Let us suppose that a single-
history state, in addition to be a MPS, is a one-dimensional gapped quantum system following 
an area law. This means that if we cut the one-dimensional quantum causal history at an event 
p , the von Neumann entropy S(F( p)) of the causal future F( p) is bounded as S(F( p)) � k 
for some constant k. Then by the holographic compression theorem [45], the state |F( p)〉 on 
F( p) can be unitarily compressed into a state |N( p)〉 near the boundary event p  up to some 
error ε depending on k. If we denote by |hP( p)〉 the single-history state on the causal past of 
p , the joint state |hP( p)〉 ⊗ |N( p)〉 can be made into a holographically purified state. See also 
figure 6. The causal future of p  can be unfolded by acting a unitary on the purified state, so 
that the causal evolutions in a single causal history can be holographically understood as the 
unitary evolutions of the purified states.

Another way to understand this is to note that the compressed state |N( p)〉 is near the 
boundary event p  up to some error ε. As a result, the correlation functions of any operators 
in these states have almost-vanishing correlation lengths ∼ ε. In other words, the compressed 
states are renormalization group fixed point states, where the renormalization group is pro-
vided by the tensor network renormalization group defined for example by the holographic 
mapping (32). The addition of future events will all be compressed into the states |N( p)〉 and 
will not affect the tensor network states defined up to p . This also in some sense assures the 
scale invariance of a MERA.

Figure 5.  Holographic mapping for quantum causal histories.

Figure 6.  Schematic holographic purification. The boundary is at p , and the causal 
future is compressed into a state (black dot) near the boundary. The total system 
(black  +  white dots) is a pure state following unitary evolutions.
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With these local purifications, one can construct a de Sitter MERA along the lines of [6], 
or use the holographic mapping suggested above.

4.  Example from temporally varying discretization

In this section, we discuss an example of the tensor network representation for local quantum 
causal histories in the theory of fully constrained quantum systems on temporally varying 
discretizations [23]. This kind of temporally varying discretizations are naturally associated to 
discretization-changing dynamics such as those in the canonical simplicial gravity and cosmo-
logical mode creations. The non-unitary maps are shown to be necessary for defining a local 
causal structure in temporally varying discretizations, and they also give a simple representa-
tion of the black hole horizon in the related tensor networks.

4.1.  Re-interpretation of temporally varying discretization

Consider a quantum system defined on a temporally varying discretization of spacetime. To 
be concrete, let the discretized space be a graph Γ, and suppose the time evolution moves of Γ 
are between discrete time steps. Global time evolution moves evolve the entire graph Γn at the 
nth time step into the graph Γn+1 at the next time step, which is generically graph-changing. 
Let Hkin

n  be the kinematical Hilbert space assigned to Γn, then dimHkin
n �= dimHkin

n+1 when the 
time evolution moves are graph-changing.

If the system is furthermore a totally constrained system with only first class constraints 
(with the second class constraints solved at the classically), there exist (Hamiltonian) con-
straint operators Cn,I at the nth step such that the physical states of Γn are selected by the group 
averaging projector, or rigging map,

Pn =
∏

I

δ(Cn,I) : Hkin
n → Hphys

n ; |ψkin
n 〉 �→ Pn|ψkin

n 〉 = |ψphys
n 〉.� (33)

Denoting by xn the configurations of Γn, we can express the evolution of the state through 
some propagators K(xn+1, xn) as

|ψphys
n+1(xn+1)〉 =

∫
dxnK(xn+1, xn)|ψkin

n (xn)〉� (34)

if the dimension the kinematical Hilbert space does not change. The group averaging pro-
jectors Pn, Pn+1 have been incorporated into K(xn+1, xn) = Pn+1(Pn)

∗k(xn+1, xn) where 
k(xn+1, xn) is the propagator on the kinemtatical Hilbert spaces.

When the evolution moves are graph-changing, the dimensions of the kinematical Hilbert 
spaces will change, e.g. dimHn �= dimHn+1. We can extend the kinematical Hilbert spaces 
Hkin

n , Hkin
n+1 according to the evolution step n → n + 1 such that dim H̄n = dim H̄n+1 as follows:

	 1.	�extend Hkin
n  by adding to it ‘new’ configurations xn that appear in Hkin

n+1 but are absent in 
Hkin

n , resulting H̄kin
n ; 

	 2.	�extend Hkin
n+1 by adding to it ‘old’ configurations xo that appear in Hkin

n  but are absent in 
Hkin

n+1, with the resulting extended Hilbert space H̄kin
n+1.

These extensions are required to be cylindrically consistent such that the physical states (and 
the physical inner products) are kept intact. In this way, we can still define the kinematical 
propagators k̄(xn+1, xn) on the extended Hilbert spaces.
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By (34) the global physical states at each time step can be obtained from the initial kin-
ematical state. Now suppose we know the global physical state |ψphys

k 〉 after k steps of evo
lution, and consider local evolution moves of Γk. Here by local we mean only some nodes in 
a local region γk of Γ is changed by the time evolution moves. These local moves will result 

in a new global physical state |ψphys
k+1 〉 which differs from |ψphys

k 〉 only by these local moves. By 
(34) we can construct a physical state updating transform uk→k+1 between |ψphys

k 〉 and |ψphys
k+1 〉,

|ψphys
k+1 〉 = uk→k+1(|ψphys

k 〉).� (35)

What uk→k+1 interests us is that for some cases it is not unitary [23]. Let us consider the simple 
case of 2  −  1 Pachner moves (e.g. figure 7). It is not difficult to see that not all of the physi-
cal state |ψphys

k 〉 will evolve to the next step k  +  1, because the configuration xok is moved. We 
need a new constraint operator C′

k such that the corresponding group averaging projector P′
k  

selects the evolving part P′
k|ψ

phys
k 〉 �= 0. It is proved in [23] that the physical inner product are 

not preserved,

〈ψphys
k+1 |φ

phys
k+1〉 = 〈ψphys

k |P′
k|φ

phys
k 〉 �= 〈ψphys

k |φphys
k 〉.� (36)

If the Dirac observables at the step k all commute with the constraint C′
k, the evolution 

k → k + 1 is still unitary. But if not, the 2  −  1 Pachner moves can be non-unitary.
The above non-unitary evolution moves can be rewritten in the formalism of quantum 

causal histories. Indeed, we can take the configurations xi
k, e.g. coordinates, at the nodes of Γk 

as the events in a causet, and the time evolution moves as causal evolutions. The links in Γk 
are other relations between events than the causal ones, so that Γk is a spatial Cauchy surface 
or a complete acausal set. The quantum states |ψkin(xi

k)〉 are then quantum states on events, 
and the global state is a compound state of these local states, which can be superposed or just 
product states. The distinction between kinematical and physical states allows us to select a 
physical subset Aphys of the acausal set A. Then as in [16], the global or local evolution moves 
of Aphys can be interpreted as the operations of coarse-graining C , fine-graining F , entangling 
⊕ and the identity I, all of which have been introduced in section 3. When composing these 
evolution moves, one needs to match the constraint operators of different steps, or to add new 
constraints if non-unitary evolution moves are possible, which corresponds to the projection in 
the PEPS construction. However, for the unitary evolution moves, such a rewriting is reward-
less, so we focus on the non-unitary part:

In the above example of 2  −  1 Pachner move, we can alternatively take the configurations 
(x1

k , xok , x2
k) as an event e. These configurations (x1

k , xok , x2
k) in e are acted upon by F , while 

the rest configurations in the extended kinematical Hilbert space H̄kin
k  remain unchanged or 

undergo the action of I. More generally we can consider the configurations (xok , xk) of e that 
undergo non-unitary local evolution moves. Since only these configurations of e are changing, 
the physical states |ψphys

k 〉 at the step k can be chosen to be the states |ψe
k〉 localized on e. These 

states |ψe
k〉 can be obtained by tracing over all the states acted by I, i.e.

Figure 7.  A 2  −  1 Pachner move.
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ρe
k = trI|ψkin

k 〉〈ψkin
k |, |ψkin

k 〉 ∈ H̄kin
k .� (37)

Now the physical state updating map uk→k+1 : ρe
k → ρe

k+1 is simply the mapping of the states 
over the event e. When uk→k+1 is non-unitary, it becomes a map between the density matrices, 
which is a CPTP map6. We thus obtain a single quantum causal history he passing through the 
event e where each causal evolution is described by a CPTP map of physical state updating.

The structure of totally constrained system allows us to construct tensor networks without 
using the channel-state duality. Let us recall that for a single step of local evolution move 
k → k + 1, the constraint operators at step k and step k  +  1 are classified into three classes 
[23]: the first class of constraints are those preserved by the evolution move, i.e. Ck = Ck+1; 
the second are the new constraints C′

k added to Hk, as in the example of 2  −  1 Pachner move; 
similarly the third are the new constraints C′

k+1 added to Hk+1. Then the physical state updat-
ing map uk→k+1 can be, in analogy to (34), expressed by a kinematical propagator u(xk+1, xk) 
as

|ψphys
k+1 〉 =

∫
dxok P′

k+1P∗
k/k+1P′∗

k u(xk+1, xk)|ψphys
k 〉� (38)

where the integration is over the ‘old’ configurations xok, and the P’s are the group averaging 
projectors corresponding to the three classes of constraint operators. On the other hand, we 
can obtain each physical state from an initial kinematical state |ψkin

0 〉 by exploiting (34),

|ψphys
k 〉 =

∫
dx0PkP∗

0 k(xk, x0)|ψkin
0 〉.� (39)

By reflecting on (38) and (39), we can choose the reference state of the tensor network con-
struction as the initial kinematical state |ψkin

0 〉, and redefine the physics initial state of the 
history to be |ψphys

1 〉 at step 1. In other words, we can place a |ψkin
0 〉 on each event in he, and 

then perform the propagator transformation (39) to get the physical state |ψphys
k 〉 on the event 

at step k. Then the physical state |ψphys
k 〉 at step k is mapped to the physical state |ψphys

k+1 〉 at step 
k  +  1 via the physical state updating transformation (39). Schematically, such a history state is 
depicted in figure 8, where the K’s on nodes represent the propagator transformation (39) and 
the P′ on links represent the newly added constraints. Two K’s can be glued if the constraint 
operators of them match and the added constraints are satisfied.

Based on figure 8, we can return to the description via CPTP maps, and apply the construc-
tion of section 3. The resulting MPS is similar to the single-history state (12), with the resid-
ing states being the physical states. To extend this single-history MPS to the case with global 
moves, one can use the operations C,F, I and ⊕ to multiple histories. But these operations do 

Figure 8.  The history state of local moves.

6 The trace preserving property is obvious from the operation I. The complete positivity is assured by the freedom 
in extending the kinematical Hilbert spaces.
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not cover all the known Pachner moves. So further discussions require more tensor network 
constructions.

4.2.  ‘Light cone’ and quantum black hole

Consider two operators Oe1 and Oe2 on the events e1 and e2 respectively. If these two events 
e1 and e2 in Γk are ‘spacelike’ separated in the sense of Einstein locality, the operators satisfy 
[Oe1 , Oe2 ] = 0, which also holds when measured in the physical states on Γk that includes e2 
and e2:

〈ψphys
k |[Oe1 , Oe2 ]|ψ

phys
k 〉 = 0.� (40)

Here the Oe1 and Oe2 are assumed to have non-vanishing eigenvalues when acting on all the 
physical states.

The |ψphys
k 〉 will undergo the graph-changing local evolution moves, and the locality of 

events can be changed by the non-unitary moves. Then after n steps of local moves with some 
of them non-unitary, the expectation value (40) will become non-vanishing if the e1 or e2 are 
no longer separated. A ‘light cone’ structure, say on e1, is thus given by the minimal n such 
that the e1 or e2 are still separated:

〈ψphys
k+n |[Oe1 , Oe2 ]|ψ

phys
k+n 〉 = 0.� (41)

This structure can only be defined if there are non-unitary moves, because the unitary moves 
preserve the Dirac observables, i.e. [O, C′

k] = 0, so that

〈ψphys
k+1 |[Oe1 , Oe2 ]|ψ

phys
k+1 〉 = 〈ψphys

k |P′†
k [Oe1 , Oe2 ]P

′
k|ψ

phys
k 〉 = 〈ψphys

k |[Oe1 , Oe2 ]|ψ
phys
k 〉.

� (42)
For non-unitary moves, we may have [Oe2 , C′

k] �= 0, and hence the expectation value (40) will 
change.

This ‘light-cone’ structure is in fact a Schrödinger-picture version of the bulk causal struc-
ture defined by the generalized butterfly velocity in a subspace of the total Hilbert space [41]. 
Here the evolution of the region supporting the operator Oe1 is identified with the evolution 
of physical states, since they are on the same graph or network. In this particular situation, 
we thus see the important role played by non-unitary evolutions of a subspace in describing 
the local causal structure. Now the tensor network representation for quantum causal histories 
(e.g. figure 8) has the following advantage: each bond represents a non-unitary CPTP map, 
so that the local light-cone structure can always defined on each event in quantum causal 
histories.

Now that the local light cone can be defined on each node of the tensor network for the tem-
porally varying discretizations, we can obtain a global causal future J+(e) = ∪kLightcone(ek) 
of an event e as the succession of local light cones. This J+ (e) extends in principle all the way 
to the the future infinity J+ if the network can be infinitely extended. If the succession of local 
light cones stops at an event eh, then the events before eh will not have any influence on the 
network after eh. In this sense, the eh bounds a region in the quantum causal histories that does 
not affects its causal future, and this region is a black hole region when viewed from J+ . In 
the tensor network representation, the black hole region can be easily identified by the broken 
links at eh. See for example figure 9.

This simple identification of black hole region is due to the fact that the a quantum causal 
history state describes the local evolution of a subsytem, instead of the global evolution of a 
complete Cauchy surface. The part of the Cauchy surface that falls into a black hole cannot 
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influence the future infinity, but the entanglement between histories remains, which further 
implies the possibility of information transfer from a black hole.

5.  Concluding remarks

We have constructed the tensor network representations for quantum causal histories with 
local non-unitary open quantum system evolutions. The main idea is using the channel-state 
duality of CPTP maps to transform the CPTP maps describing the local dynamical evolutions 
of a quantum causal history to bipartite entangled states that are suitable for tensor network 
constructions. We have also constructed the tensor networks for entangled quantum causal 
histories and holographic relations in some restricted cases. An example has been found in 
fully constrained quantum systems on temporally varying discretizations. These tensor net-
works are constructed without any guidance of a dual QFT, thereby providing a direct bulk 
description of quantum gravity states.

We have spent most of the time on motivating and constructing these definitions. To apply 
the tensor networks defined here, one faces the problem of relevance of this construction on 
causets, in view of the lack of examples in most of the models of quantum gravity. Although 
there are strong reasons to study quantum gravity or quantum systems on discrete structures 
by local unitaries [3], the non-unitary time evolutions generically arise when we take an inter-
nal point of view that we can only probe the open quantum system with no knowledge on the 
‘environment’ part. The decomposition of global dynamical evolutions into local unitaries is 
an external approach in the same sense of the quantum simulation by quantum circuits that it 
requires an external agent to perform the decomposition and keep track of all possible correla-
tions between subsystems. The local, or internal, approach to quantum gravity returns to the 
old philosophy of relative formulation of a quantum theory for the universe as a whole [18]. 
Here we have used the more workable theory of open quantum systems, avoiding interpreta-
tional issues.

An obvious problem in the construction of tensor networks for entangled quantum causal 
histories is that the causal orders are allowed to be superposed in a fully quantum theory. This 
quantum superposition of causality will lead to indefinite causal structure, which has been 
shown in recent years to be very useful in quantum information and computation. See for 
example [10]. Here we have base the theory of quantum causal histories on causets which are 
defined by definite causal structure. The apparent inconsistency between causets and quantum 
theory with indefinite causal structure suggests us to look for other relational frameworks 
of quantum gravity. But the tensor network constructions need to be changed accordingly. 
Another problem concerns the technical assumption of internal causality which makes the the-
ory mathematically more manageable but hinds some structures such as the quantum common 
causes [2]. To relate the current model of spacetime to the quantum causal models studied in 
quantum foundation is an interesting topic for future investigations.

Figure 9.  The history state has unmatched constraints near the horizon event eh.
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Based on previous works on holographic tensor networks, one can think of calculating the 
entanglement entropy of the constructed tensor networks. We note that the MPS of a single 
quantum causal history is indeed a superstate in the sense of [14]. Therefore the entanglement 
entropies should be the spacetime entropies of superdensity operators, instead of the Rényi 
entropy. It is still unclear how to combine the spacetime entropy and the causet structure to 
reach a holographic entanglement entropy relation.

The temporally extended tensor network states for quantum causal histories, in addition to 
the relations with superstates, also have many similarities with the precess tensor approach to 
open quantum systems. The process tensor formalism has been recently applied to the causal 
tensor networks, which can be interpreted as the path integral geometries on curved space-
time. See the recent works [29, 38]. The process tensor formalism also has many similarities 
to the quantum causal models [2]. Given the usages of channel-state duality in these models, 
it is promising to relate these different formalisms.

Finally, we ask if the network structure has any guidances for constructing the quantum 
states (of gravity). In principle, the answer is yes, as abstractly revealed by (B.6) in appendix B.  
More practically, however, we need to work out the rules for the network structures to affect 
the quantum states. A plausible set of rules have been studied in [7]. In this way, we hope to 
see how the causal structure affects the quantum states (of gravity) via tensor networks.
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Appendix A.  Quantum causal history state as superstate

In the main text, the MPS |h〉 (12) of a single quantum causal history h encodes the multi-event 
correlations along h. This kind of states, although entangled, are different from the entangled 
consistent history states that are superpositions of histories on different spatial trajectories. 
But we show in the following that the MPS form of |h〉 certifies them as superstates, the gener-
alization of the entangled history states to the superdensity operator formalism [14].

Superstates or superdensity operators generalize the entangled history states by replac-
ing the (position) projection operators in the class operators by general operators. A simple 
illustration is given by a d-dimensional main quantum system coupled to n d2-level auxiliary 
quantum systems. Suppose the initial state of the main system is |ψ0〉. Consider the unitary 
evolutions of the main system where the ith step of the evolution corresponds to unitar-
ily transforming the ith auxiliary system, e.g. |0〉i �→

∑
j |j〉i, then if the joint initial state is 

|0〉1 ⊗ ... ⊗ |0〉n ⊗ |ψ0〉, we obtain, after n steps of evolution, the superstate

|Ψ〉 = 1
dn/2

∑
i1i2...in

|i1, i2, ..., in〉 ⊗ Xin U(tn, tn−1)Xin−1 ...Xi2 U(t2, t1)Xi1 |ψ0〉� (A.1)

where U is the unitary evolution operator of the main system, and the Xi’s are operators on the 
Hilbert space Hi of the ith auxiliary system. By tracing out the state of the main system, one 
obtains the superdensity operator (of the auxiliary systems)
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� =
1
dn

∑
i1i2...in,j1j2...jn

tr
(
Xin U(tn, tn−1)Xin−1 ...Xi1ρ0X†

j1 U†(t2, t1)X
†
j2 ...X†

jn

)
·

· |i1, i2, ..., in〉〈j1, j2, ...jn|
�

(A.2)

where ρ  is the density matrix of the initial state of the main system. Mathematically, such 
superdensity operators are in fact maps � : B∗(H)× B(H) → C from bounded operators on 
H to complex numbers. Therefore, the unitary evolution operators can actually be replaced by 
CPTP maps between the algebras ϕi : B(Hi) → B(Hi+1). In this way, we get the superdensity 
operator with CPTP maps,

� =
1
dn

∑
i1i2...in,j1j2...jn

tr
(
Xinϕn−1[...ϕ1[Xi1ρ0X†

j1 ]...]X
†
jn

)
|i1, i2, ..., in〉〈j1, j2, ...jn|.

�

(A.3)

Let us turn to the single-history MPS |h〉 (12). In the construction of (12), we have assumed 
a bipartite maximally entangled states 

∑
i |ψi〉|ψi〉 on each pair of causally related events, and 

the channel-state duality transforms this into 
∑

i |ψi〉φ†(|ψi〉). At each event, we have used the 
projection operator

βl =
∑

ijk

M(l)
ijk |ψ

(l)
k 〉φ†(〈ψi|)〈ψj|� (A.4)

to consistently glue the causal evolutions and give the states |ψ(l)〉. Based on these features, we 
can choose the quantum causal history h as the main system and the states |ψ(l)〉 as auxiliary. 
But the initial state |ψref〉 of the system should be n  −  1 pair of maximally entangled bipartite 
reference states on the causal relations for neighboring events, and then the evolutions as 
CPTP maps transform an entangled pair via the channel-state duality

∑
i

|ψi〉|ψi〉 �→
∑

i

|ψi〉φ†(|ψi〉).� (A.5)

The projection operators βl finally act on the states of the main system to give the auxiliary 
states |ψ(l)〉. In this way, we obtain the single-history state |h〉 as a superstate,

|h〉 = 1
N

∑
i1i2...in

βnφ
†
(n−1)nβn−1...β2φ

†
12β1|ψref〉� (A.6)

where N is a normalization factor, and β1 =
∑

jk |ψ(1)〉〈ψ1,j|,βn =
∑

jk |ψ(n)〉〈ψn,j|. Then sub-
stituting all terms into (A.6) we retain (12).

Notice that in βl the tensorial coefficients M(l)
ijk  can be interpreted as codifying the trans-

formations from the evolved states φ†(|ψi〉) to the reference state |ψj〉 and at the same time 
projecting them to the auxiliary |ψ(l)

k 〉. This is in line with the superdensity operator formalism 
where an arbitrary unitary operator Ui on the Hilbert space Hi of the main system is trans-
formed to the orthonormal basis operator Xi of such operators through a linear transform, e.g.

∑
ij

tr(XiU
†
j )Uj =

∑
i

Xi.� (A.7)

We can see that the transform coefficients in (A.7) are exactly tensorial contractions.
Now it is immediate to calculate the spacetime entropies [14] of quantum causal histories. 

A point to keep in mind is that for quantum causal histories the spacetime geometry has not 
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been constructed yet, so these entropies can be interpreted as pre-geometric or purely quant
um-gravitational results.

Another interesting point is that the single-history superstate (A.6) allows us to directly 
relate its causal relations to the quantum causal influence defined in [13]. To see this, let us 
write down the formal superdensity operator of a single-history superstate,

�h =
1

N2

∑
i1i2...in,j1j2...jn

tr
(
βinφ

†
n−1[...φ

†
1[βi1ρmaxβ

†
j1 ]...]β

†
jn

)
|ψi1 , ...,ψin〉〈ψj1 , ...,ψjn |

�

(A.8)

where ρmax  is the density matrix the maximally entangled initial reference state |ψref〉. Since 
the CPTP maps only form a dynamical semigroup, these φ†’s cannot be canceled as for uni-
tary evolution operators (UU† = 1) in the trace. Thus, the correlation functions involving 
CPTP maps are definitely related to the causal order in h, making the quantum causal influ-
ence non-vanishing for every quantum causal history.

Appendix B.  Categorical perspectives

Category theory first comes into play when Isham generalizes the quantum logic of consistent 
histories to the internal logic, i.e. topos, of consistent histories [25]. It is shown that the logi-
cal algebra of propositions in consistent histories is neither a Boolean algebra nor a quantum 
logic, but a Heyting algebra in a suitable topos. Similar structures in causets have been studied 
in [34]. For quantum causal histories with states living on the events, the Heyting algebra of 
logical propositions no longer holds, since the superpositions of quantum states are not dis-
tributive. One might expect a more general topos for quantum causal histories. But before that, 
there is a question of finding the suitable categorical description of local causal histories with 
non-unitary open quantum system dynamics. Here we restrict ourselves to this question, and 
put aside the topos theory.

First recall that the quantum causal histories can be obtained as a functor

Q : PSetC → Hilb� (B.1)

from the category of posets underlying the causet C to the category of finite-dimensional 
Hilbert spaces. The defining properties of a causet are thence required to be functorial with 
respect to Q in the sense that they persist for Hilbert spaces on events. This way we can alter-
natively work with a functor

Q̃ : CSetC → HilbC� (B.2)

that preserves the causal structure, where CSetC is the category of events and causal relations 
in a causet C and HilbC  is the category of Hilbert spaces over the events of C and the causal 
evolutions in between.

We can, as in [34], consider the past P( p) =
⋃

i hi( p) of an event p  which is a subset of the 
causet C. Suppose there exists an initial event for each history, then we can form the category 
HPC  of the histories hi( p) in the pasts P( p) of events p ∈ C and the maps between them that 
preserves the causal relations. These maps can chosen to be those defining a graded structure: 
the ‘ face map’ that deletes an event but keeps the causal orders, which is ensured by the 
transitivity condition; the ‘ degeneracy map’ that adds an event p  at p  such that p � p, which 
is just the reflexivity. Let the degree of a single quantum causal history h be the number n of 
events in it, then we have a simplicial set
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S : HPop
C → Set� (B.3)

where Set denotes the category of sets, and the graded structure in HPC  is labeled by n. 
Clearly, the category HPh of a single history h is equivalent to a poset category PSeth, because 
the causal order is preserved by morphisms introduced above. Then on each single history, we 
also have a simplicial set

Sh : HPop
h → Set� (B.4)

which comes from the nerves of the posets in PSeth.
The quantum counterpart of a history is of course Qh : PSeth → Hilb. For multiple histo-

ries of p  in P( p), each of them can be lifted to a quantum causal history by the functor Qh, 
but they can still intersect or overlap each other. The important point here is that for multi-
ple quantum causal histories, the assumption of internal causality turns the causal relations 
between two events into a poset. Therefore, the category HilbC  becomes a poset-enriched 
category. Using again the nerve construction, we can turn HilbC  into a simplicially enriched 
category. HilbC  is furthermore a two-category with two poset categories: one in the direction 
of causal evolution, and the other in the enrichment.

A simplicially enriched category can be converted into a differential graded (dg) category 
by using the cobar construction for many objects [39]. Without going into details, we can 
already see that a dg category is indeed a suitable way for describing the temporally evolving 
quantum causal histories. Intuitively, the differential in a dg category changes the degree of 
its objects or the number of events in a single quantum causal history, while the dg structure 
leads to the causet structure.

We turn to the next question of describing the open system dynamics for local quantum 
causal histories. To this end, one needs to select a particular subsystem and its time evolutions 
from many subsystems and keep the causal order at the same time, for which the lax functor 
is a suitable notion [17].

Consider again the two-category HilbC  of quantum states and causal evolutions on histo-
ries. We recall from definition 2.1 that the CPTP maps, when viewed from the algebras on 
events, take the reversed direction as compared to those on states. That is, given two caus-
ally related events p, q with p � q in a causet C, a CPTP map acts on the algebras on them 
as φ : U(q) → U( p), and acts on states as φ† : H( p) → H(q). The assumption of internal 
causality should also be imposed on the algebras on an coinciding event p  with a reversed 
order, e.g. U( p′) ⊆ U( p) for p � p′. In this way, the poset enrichment can be defined by 
the reversed partial order on algebras. We call the reversed order oplax, so that the following 
constructions on HilbC  are lax.

We can define the category D of ‘dynamics’ by lax functors and lax natural transformations 
as follows. The objects of D are the lax functors

L : HPC → HilbC ,� (B.5)

and the morphisms are the lax natural transformations between the lax functors, which 
we denote by L̇ : L � L′. Similarly, on a single history h, we have Lh : HPh → Hilbh and 
L̇(h, h′). Now the question is how to select from L a subsystem dynamics localized on the his-
tory h. A possible answer is given by the following lax natural transformation

(
L : HPC → HilbC

)
�

(
Sh : HPop

h → Set
)

� (B.6)

which picks out the subsystem dynamics according to the simplicial set on a single history h. 
Note that such an abstract selection of subsystem can only reveal its classical network struc-
ture, and the details of the quantum dynamics still need further physical inputs.
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