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Abstract
The quantum-mechanical transition amplitude of an ionization process induced 
by a strong laser field is typically expressed in the form of an integral over the 
ionization time of a highly oscillatory function. Within the saddle-point (SP) 
approximation this integral can be represented by a sum over the contributions 
of the solutions of the SP equation for complex ionization time. It is shown 
that, for the general case of an elliptically polarized polychromatic laser field, 
these solutions can be obtained as zeros of a trigonometric polynomial of the 
order n and that there are exactly n relevant solutions, which are to be included 
in the sum. The results obtained are illustrated by examples of various tailored 
laser fields that are presently used in strong-field physics and attoscience. For 
some critical values of the parameters two SP solutions can coalesce and the 
topology of the ‘steepest descent’ integration contour changes so that some 
SPs are bypassed. Around the critical parameters a uniform approximation 
should be used instead of the SP method.

Keywords: saddle-point method, strong-field ionization, strong-field 
approximation, above-threshold ionization, bicircular laser field, 
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1.  Introduction

The discovery of the chirped-pulse amplification method in the 1980s to generate 
high-intensity, ultra-short optical pulses has triggered the exploration of atomic processes 
induced by strong laser fields. Since the intensity of such laser fields is comparable with the 
intensity of the electric field experienced by an electron bound in an atom, the laser-induced 
atomic processes are highly nonlinear and cannot be treated using perturbative quantum-
mechanical approaches. For the analysis of such strong-field processes, the so-called strong-
field approximation (SFA) has turned out to be most useful. For the process of ionization the 
SFA was introduced in [1–3] and it is sometimes referred to as Keldysh–Faisal–Reiss theory; 
for reviews, see, e.g. [4–10].

The SFA builds on the Gordon–Volkov states [11, 12], which are exact solutions of the 
time-dependent Schrödinger equation for an otherwise free electron in the presence of a time-
dependent laser field. Gordon–Volkov states are known in analytical form. They describe the 
final continuum state of an electron liberated from its initial bound state by the intense laser 
field and determine the quantum-mechanical ionization amplitude. In the case of strong-field 
ionization one has to integrate over all possible ionization times t ∈ [0, Tp], where Tp is the 

pulse duration. The ionization amplitude has the form 
∫ Tp

0 dtf (t)eiS(t), with f (t) and S(t) real 
functions. The subintegral function contains the highly oscillatory factor eiS(t) where S(t) is 
the action, which is large for high laser-field intensities and low frequencies. Straightforward 
evaluation of this integral, especially for long pulse duration Tp and/or low laser frequency, 
is impeded by these rapid oscillations. In the theory of asymptotic analysis of integrals [13, 
14] such integrals are usually solved using the saddle-point or steepest-descent method. The 
stationarity condition dS(t)/dt = 0 leads to a nonlinear equation for the complex time t. In 
most cases it should be taken into account that the laser field is a periodic function of time 
with a period T = 2π/ω (ω  is the fundamental frequency; in this case the integral over t is 
from zero to T). For a laser pulse of duration Tp = npT , np integer, the fundamental frequency 
is ωp = ω/np (see section 5.2).

Almost always, the solutions of the stationarity equation lie in the complex plane, off the 
original integration axis, which is the real axis. Hence, one tries to deform the original inte-
gration contour between its real endpoints 0 and T into the complex plane so that it passes 
through the SPs in the hope that the integral along the deformed contour is dominated by the 
contribution of the immediate vicinity of the complex SPs. This deformation does not change 
the value of the integral because of the analyticity of the functions f (t) and S(t). The deter-
mination of the integration path is a difficult problem [15]. Fortunately, as we will show and 
illustrate with examples, in most cases it is sufficient to sum over the saddle-point solutions in 
the upper half complex time plane taking for granted that a contour with the desired properties 
exists.

Recently, tailored laser fields have been used to control the microscopic electron dynamics 
with unprecedented spatial and temporal resolution [16]. Examples of such fields are bicir-
cular fields, few-cycle laser fields with specified carrier-envelope phase and orthogonally 
polarized two-color (OTC) fields. In the case of strong-field ionization within the SFA, it 
is necessary to find the number of solutions of the saddle-point equation for such complex 
field configurations. We will show that, in addition to a simplified calculation of the highly 
oscillatory integrals, these solutions allow for penetrating insight into the physics of the time-
dependent ionization process, enabling its control and optimization.

In this paper, we first present the transition amplitude for the strong-field ionization 
obtained using the SFA and then apply the saddle-point (SP) approximation to the integral 
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over the ionization time. Using the example of an elliptically polarized monochromatic laser 
field we illustrate (i) the case when the topology of the integration contour changes as a func-
tion of some parameter. At some critical value, two SP solutions temporarily merge and only 
one of them must be taken into account for parameter values larger than this critical value. 
(ii) Near this critical value, a uniform approximation has to be used, which treats both SPs 
on an equal footing. We discuss in detail how the contour of integration has to be deformed 
so as to pick up the contributions of the SPs. The number of SP solutions for the general case 
of the SP equation in the form of a trigonometric polynomial is analysed in the next section. 
The examples of the bicircular field, few-cycle laser pulse and OTC field are investigated in 
section 3. They illustrate how the SP analysis allows one to understand the detailed features 
of the electron spectra by tracing their properties to the times of ionization, which are defined 
on the time scale of a small fraction of the laser period. Finally, our conclusions are given in 
section 4. In the appendices we present the explicit forms of the matrix elements used in the 
numerical examples. We do not, in this paper, consider recollision processes. The atomic sys-
tem of units is used throughout.

2. Theory

The quantum-mechanical transition amplitude for strong-field ionization (or detachment), 
within the strong-field approximation, dipole approximation and in length gauge, is deter-
mined by the integral [4, 7]

Mp�m = −i
∫ ∞

−∞
dt〈p + A(t)|r · E(t)|ψ�m〉eiS(p;t),� (1)

where the ket vector |p〉 denotes a plane wave such that 〈r|p〉 = (2π)−3/2eip·r and

S(p; t) = Sp(t) + Ipt, dSp(t)/dt = [p + A(t)]2 /2.� (2)

The electric-field vector is E(t) = −dA(t)/dt . The final electron momentum and kinetic 
energy are p and Ep = p2/2, respectively. The ground-state wave function is ψ�m, with orbital 
quantum number �, magnetic quantum number m and the atomic ionization potential Ip > 0 
(for electron detachment off a negative ion, Ip > 0 is the electron affinity).

For a strong laser field the modified action S(p; t) is large and one can apply the method 
of steepest descent (saddle-point (SP) method) to solve the integral over time t in (1). The 
SP times are determined by the condition ∂S(p; t)/∂t|t=ts ≡ S′(p; ts) = 0 and the transition 
amplitude is approximated by the following sum over the contributions of the SP times ts

Mp�m = −i
∑

ts

√
2πi

S′′(p; ts)
〈p + A(ts)|r · E(ts)|ψ�m〉eiS(p;ts),� (3)

with S′′(p; ts) = ∂2S(p; t)/∂t2|t=ts = −E(ts) · [p + A(ts)] [17]. More details and a justifica-
tion of the SP method along with its limitations will be presented below in section 3.

For a laser field with the fundamental frequency ω  and the period T = 2π/ω we calculate 
the ionization rate with absorption of n photons [18–20]

wp�(n) = 2πp
�∑

m=−�

|Tp�m(n)|2 ,� (4)

where the T-matrix element is
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Tp�m(n) =
∫ T

0

dt
T
〈p + A(t)|r · E(t)|ψ�m〉eiS(p;t).� (5)

In the SP approximation we have

Tp�m(n) =
1
T

∑
ts

√
2πi

S′′(p; ts)
〈p + A(ts)|r · E(ts)|ψ�m〉eiS(p;ts).� (6)

The energy-conserving condition is Ep = nω − Up − Ip, where Up = (2T)−1
∫ T

0 dtA2(t) is the 
ponderomotive energy. The modified action takes the form S(p; t) = nωt + p ·α(t) + U1(t) 
with the T-periodic functions α(t) =

∫ t dt′A(t′), U1(t) = 1
2

∫ t dt′A2(t′)− Upt . Using partial 
integration and the fact that the Gordon–Volkov states [11, 12] |ψp(t)〉 = |p + A(t)〉e−iSp(t) sat-
isfy the time-dependent Schrödinger equation i∂|ψp(t)〉/∂t =

[
(−i∇)2/2 + r · E(t)

]
|ψp(t)〉 

[4], equation (5) can be written as [18, 19]

Tp�m(n) = −
∫ T

0

dt
2T

eiS(p;t)(q2 + κ2)ψ̃�m(q)� (7)

with q = p + A(t), ψ̃�m(q) = (2π)−3/2
∫

drψ�m(r)e−iq·r, S′(p; t) = (q2 + κ2)/2 and 
Ip = κ2/2. The integral over the ionization time t is calculated using standard Gauss–Legendre 
quadrature with a few hundred points, depending on the used laser wavelength and intensity. 
We will call this result ‘exact’. The results obtained using the SFA and the SP approximation 
are valid for a wide range of laser-field parameters, mainly in the tunnelling regime but not 
limited to it [4–10].

3.  Elliptically polarized monochromatic laser field

We will first consider an elliptically polarized laser field, since it allows us to illustrate some 
peculiarities of the SPs that were encountered some twenty years ago in the investigation of 
above-threshold ionization (ATI) [21–23]. Namely, the ellipticity distributions of liberated 
electrons with fixed kinetic energy were experimentally found to exhibit oscillations, which 
were explained to occur via the interference of the two SP contributions to the ionization prob-
ability amplitude. In the context of the present paper, the following observation is of special 
interest: for a fixed value of the ellipticity, there is a critical value of the electron energy after 
which only one SP time must be taken into account. That is, in this case the integration contour 
in the complex plane has to be routed only through the solution that is closest to the real axis, 
bypassing the other one. In this regime, the afore-mentioned oscillations go away.

The electric-field vector and the vector potential of an elliptically polarized monochromatic 
laser field with ellipticity ξ are

E(t) =
E0√

1 + ξ2
[sin(ωt)êx − ξ cos(ωt)êy] , A(t) =

A0√
1 + ξ2

[cos(ωt)êx + ξ sin(ωt)êy] .� (8)

The ponderomotive energy is Up = A2
0/4, with A0 = E0/ω. For simplicity, here we only 

consider electrons emitted in the direction of the large component of the field, so that 
p · êx = p cos θ = p, θ = 0◦. Introducing the notation ζ = (1 − ξ2)/(1 + ξ2), ε2 = Ep/(2Up) 
and γ2 = Ip/(2Up) (γ  is the Keldysh parameter [1]), the SP equation  S′(p; ts) = 0, i.e. 
[p + A(t)]2 /2 + Ip = 0, can be rewritten as
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ζ cos2(ωt) +
2ε√

1 + ξ2
cos(ωt) + ε2 +

ξ2

1 + ξ2 + γ2 = 0,� (9)

which is a quadratic equation with the two solutions

cos(ωt) =
−ε± i

√
D

ζ
√

1 + ξ2
, D = ζ

[
γ2(1 + ξ2) + ξ2]− ε2ξ2.� (10)

We denote the real (imaginary) part of the complex time t = tR + itI  by tR (tI). Since equa-
tion (9) has real coefficients, with any solution ωt its complex conjugate is a solution as well.

For linear polarization, we have D = γ2 > 0. We use the relation cos(ωtR + iωtI) =
cos(ωtR) cosh(ωtI)− i sin(ωtR) sinh(ωtI) and find two solutions in the upper half plane hav-
ing the same imaginary parts and their real parts symmetrical on either side of ωt = π.

For elliptical polarization, the location of the SPs in the complex plane depends upon 
whether the discriminant D is positive or negative. For D  >  0, we have the same situation as 
for linear polarization. However, for D � 0, cos(ωt) on the right-hand side of (10) is real so 
that we have the two solutions

(ωtR)1,2 = π, (ωtI)1,2 = arcosh

(
ε±

√
−D

ζ
√

1 + ξ2

)
,� (11)

which have the same real parts and differ by their imaginary parts. Here arcosh(z) =  
ln(z +

√
z2 − 1). For D  =  0 we have a double root.

In figure 1 we compare the differential detachment rate (4) obtained by numerical integra-
tion and using the relations (7) and (A.4) with the one obtained using the SP method, relation 
(A.5). Below the critical point, for which the discriminant D is equal to zero, we take into 
account the two complex SP solutions t1 and t2 in the upper half complex plane, which are 
determined by (10) for D  >  0. For the ellipticity ξ = 0.5, which underlies figure 1, the critical 
electron energy, determined by the condition D  =  0, is Ep,c = 1.62Up. For Ep < 1.62Up two 
SP contributions interfere and the resulting spectrum agrees very well with the exact spectrum 
obtained by numerical integration in relation (A.4). With Ep approaching 1.62Up this agree-
ment becomes worse and for Ep = 1.62Up the SP approximation exhibits an artificial spike. 
For Ep > 1.62Up we separately present the spectra obtained using the contributions of the 
solutions t1 and t2. The contribution of the solution t2 starts from the afore-mentioned spike, 
but for Ep > Ep,c, the agreement with the exact result is becoming better again. On the other 
hand, the contribution of the solution t1 increases for Ep > Ep,c and diverges upon further 
increase of Ep. From the inset of figure 1 we see that for Ep � Ep,c the real parts of the solu-
tions t1 and t2 are equal to π/ω  while their imaginary parts are such that Im t2 < Im t1 and 
Im t1 increases while Im t2 decreases with increasing Ep, see (11). If for Ep � Ep,c the contour 
of integration in the complex plane is deformed such that it passes only through the SP that is 
nearest the real axis (i.e. the SP t2), then the agreement of the SP result and the exact numer
ical result is very good except in the region of the spike near Ep,c. The physical interpretation 
of this result in [21, 22] was given in terms of the tunnelling time: the real part of the time t 
is attributed to the time at which the electron ‘leaves the tunnel’. For Ep < Ep,c, there are two 
such times per cycle and their contributions interfere. For Ep > Ep,c, there is only one such 
time and, correspondingly, no interference. This theoretical interpretation is in agreement with 
the measured photoelectron ATI spectra [21, 22].

Let us now consider the choice of the integration contour more carefully [23]. We first 
consider the case Ep = 1.3Up < Ep,c where both SP solutions should be taken into account. 
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In the entire complex time plane there are four SP solutions: t1 and t2 (t3 = t∗1 and t4 = t∗2) are 
in the upper (lower) half plane. Introducing the quantity Φ(t) = S(p; t)ω/Up we consider the 
factors Im (iΦ) and Re (iΦ), which appear in the exponent of the integral (1). The ‘steepest 
descent’ integration path should be chosen so that Im (iΦ(t)) = Im (iΦ(ts)) = const in order 
to quench the otherwise rapid oscillations along the path. These lines in the complex time 
plane are shown in figure 2: the blue dot-dashed lines run through the SPs t1 (white circle) 
and t3 (black circle) while the red solid lines run through t2 (white circle) and t4 (black circle). 
In addition, in the contour plot the value of R ≡ Re (iΦ(t)) is indicated by the blue-yellow 
color scale. A bright (yellow) shade means a large real part of the exponent. Thus the inte-
grand diverges in the brightest (yellow) areas and vanishes in the darkest (blue) areas. (Since 
|R| � 1 in parts of the complex plane, we use a logarithmic scale; more precisely, we present 
sign(R) log10(|R|/mint(|R|))). The integration contour goes from t  =  0 to its upper limit at 
ωt = 2π. The steepest-descent method calls for the contour to stay in regions as dark (blue) 
as possible so that it collects its dominant contributions from the vicinity of the SPs at which 
R is maximal, all the while maintaining Im (iΦ(t)) = const [13, 14]. This excludes routing 
the path through the SPs t3 and t4 in the lower half complex plane. Therefore, there is exactly 
one possible integration path (denoted by the bold lines for visual convenience): from t  =  0 
to i∞, then along the blue dot-dashed line over the first saddle point (left white circle) to 
ωt = π + i∞, subsequently via the second saddle point (right white circle) to ωt = 2π + i∞, 
and finally along the imaginary axis to ωt = 2π. The two integrals along the imaginary axis 

Figure 1.  Differential detachment rate of the F− ion by an elliptically polarized laser 
field as a function of the photoelectron kinetic energy Ep (in units of the ponderomotive 
energy Up) for the electron emission angle θ = 0◦ (in the direction of the large 
component of the laser field). The laser-field ellipticity is ξ = 0.5, the intensity is 
8 × 1013 W cm−2 and the wavelength is 1800 nm. The results obtained using the 
strong-field approximation and numerical integration are presented by the black dotted 
line with circles. The spectra obtained using the SP method taking into account both 
solutions below the critical point and only the solution 1 (2) after this point are denoted 
by SP1 (SP2). The results obtained using the uniform approximation are presented by 
the blue dashed line and denoted by UA. The inset in the upper right corner shows the 
SP solutions t1 (dark green dotted line) and t2 (red solid line) in the complex plane for 
the electron energies Up < Ep < 2.2Up.
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for ωt = 0 and ωt = 2π cancel each other (their magnitudes are identical and, because of the 
reversed boundaries, they add to zero). Therefore, only the sections of the contour contribute 
that run through the SPs t1 and t3. They are approximated by the sum of two SP contributions 
(6). As we have seen, for Ep < Ep,c this approximation agrees very well with the exact result.

For Ep > Ep,c the shape and topology of the contour in the complex time plane change. This 
is illustrated in the right panel of figure 2 for Ep = 2Up. The integration extends via the SP t2 
(lower white circle) with the lower but positive imaginary part. Taking into account only the 
SP t2 leads to a good agreement with the exact result for Ep > Ep,c. Note that there is no way to 
deform the contour so that it passes through both SPs while Im (iΦ(t)) = Im (iΦ(ts)) = const.

For Ep ≈ Ep,c the SPs very closely approach each other. In this case, neither the expan-
sion of the exponent in the integrand up to the second order, as it is done in the standard SP 
method, nor treating the two SPs as independent is justified. In this case a uniform approx
imation [24, 25] has to be used in place of the standard SP (steepest descent) approximation. 
The results obtained using the uniform approximation of [26] are represented in figure 1 by 
the blue dashed line. The agreement with the exact result is excellent, even in the region near 
Ep = 1.62Up where the SP approximation produces a spike. Other examples of the use of the 
uniform approximation in strong-field physics can be found in [26–28]. The case of three SPs 
in close proximity is more complicated, but the corresponding approximate methods can be 
found in [24]. As far as we know, in strong-field physics such a case appeared in high-order 
ATI where one backward and two forward scattering solutions approach each other [29].

The change of the topology of the SP solutions as a function of some parameter is ubiqui-
tous in problems involving rescattering where it always happens at a cutoff in energy where 
two solutions approach each other and almost merge, see e.g. [4, 7], but it is rare for direct 
electrons.

Figure 2.  Choice of the integration contour for constant imaginary part of the exponent 
iΦ(t). The arrows and bold lines mark the only possible integration contour. In the left 
panel, the energy Ep = 1.3Up < Ep,c is below the critical value; the two SPs have the 
same imaginary part and the contour in the upper half plane runs over both of them; 
in the right panel, where Ep = 2Up > Ep,c, the two SPs lie on top of each other, and 
the contour runs over the one with the smaller imaginary part bypassing the other one. 
The blue dot-dashed curves indicate contours with Im (iΦ(t)) = Im (iΦ(t1,3)), the red 
solid ones with Im (iΦ(t)) = Im (iΦ(t2,4)). The blue and yellow scales represent the 
magnitude of the real part of the exponent. Dark blue shading stands for small real parts, 
light yellow for large real parts. The color scale is logarithmic. The other parameters 
parameters are as in figure 1.
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4.  Number of solutions of the saddle-point equation

We want to determine the number of solutions of the SP equation S′(p; ts) = 0 for the ioniz
ation time. According to (2), this equation has the form

1
2
[p + A(t)]2 = −Ip,� (12)

where the ionization potential Ip is a positive number and the photoelectron momentum p is 
a real vector. Since electromagnetic waves are transverse, the vector A(t) is defined in a plane 
(say the xy plane), so that, for the real time t, it is defined by two real numbers, viz. the comp
onents Ax(t) and Ay (t). One usually considers the electrons emitted in the laser-field polariza-
tion plane, determined by the real components px = p cos θ  and py = p sin θ, where p = |p| 
and θ is the electron emission angle with respect to the x axis. Since −Ip < 0, equation (12) 
has solutions only for complex times t. The vector potential of the laser field is a 2π-periodic 
function of the parameter ϕ = ωt  which means that A(t + jT) = A(t), with j  integer and 
T = 2π/ω the period of the laser field. For an arbitrary polychromatic elliptically polarized 
laser field with frequencies equal to integer multiples of the fundamental frequency ω , (12) 
can be rewritten as f (ϕ) = 0 where f (ϕ) is a trigonometric polynomial of nth order

f (ϕ) =
n∑

k=0

ak cos(kϕ) +
n∑

k=1

bk sin(kϕ),� (13)

with real coefficients ak and bk. Introducing the variable z = eiϕ and using the relations

cos(kϕ) =
zk + z−k

2
, sin(kϕ) =

zk − z−k

2i
,� (14)

we rewrite (13) as f (ϕ) = e−inϕF(eiϕ) where

F(z) = a0zn +

n∑
k=1

[
ak

2
(
zn+k + zn−k)+ bk

2i
(
zn+k − zn−k)

]
.� (15)

With the substitutions l  =  n  +  k (for the terms with the factor zn+k) and m  =  n  −  k (for the 
terms with the factor zn−k) we obtain

F(z) = a0zn +
n−1∑
m=0

cmzm +
2n∑

l=n+1

c2n−lzl� (16)

with

ck = c∗2n−k =
an−k + ibn−k

2
, k = 0, 1, 2, . . . , n − 1.� (17)

Denoting also cn = a0  we rewrite F(z) as the following polynomial of order 2n

F(z) =
2n∑

k=0

ckzk� (18)

which has exactly 2n zeros z1, . . . , z2n provided c2n �= 0. The corresponding zeros of the trigo-
nometric polynomial f (ϕ) are

ϕk = −i lnzk, 0 � Reϕk < 2π, k = 1, 2, . . . , 2n.� (19)
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Our final result is that the trigonometric polynomial (13) of the nth order, with real coef-
ficients ak, bk, such that an and bn are not simultaneously equal to zero, has exactly 2n zeros, 
i.e. 2n complex solutions ϕ, 0 � Reϕ < 2π. Since the coefficients ak and bk are real, for any 
solution ϕs = ωts its complex conjugate ϕ∗

s = ωt∗s  is another solution. In applications, the 
steepest-descent method requires that we take into account the n solutions in the upper half 
complex plane. In the examples, to be presented in the next section, we will find all solutions 
of the relevant SP equation using standard methods of numerical analysis. One equation for 
the complex time can be expressed as a system of two real equations for two real unknowns: 
the real and the imaginary parts of the complex time t. This system can be solved using the 
subroutine ZSPOW from the International Mathematics and Statistics Library (IMSL). The 
computational time is very short (a few seconds on a typical PC) and is comparable with that 
of the conventional saddle-point method.

5.  Examples of tailored fields

5.1.  Bicircular field

A bicircular laser field is a special case of a bichromatic field with two coplanar counter-rotat-
ing circularly polarized components. It is particularly interesting since it can serve as a source 
of circularly polarized soft x rays emitted in laser-field-induced high-order harmonic genera-
tion. High harmonics generated by a bicircular field were observed in 1995 [30] and the pro-
cess was modeled using a zero-range atomic binding potential [31] and quantum-orbit theory 
[32]. The circular polarization of the high-order harmonics was confirmed in the experiment 
[33] which revived the exploration of this process (see, for example [34–36], and references 
therein). Strong-field ionization, the process we are considering in the present paper, by such 
a field was first considered in [37, 38]. For more recent results see [20, 39] and references 
therein. We consider a bicircular field with the components having intensities I1 and I2 and 
angular frequencies rω and sω, where r and s are integers and ω = 2π/T  is the fundamental 
frequency. The components of the corresponding vector potential, defined in the xy plane, are

Ax(t) =
1√
2
[A1 cos(rωt) + A2 cos(sωt)] , Ay(t) =

1√
2
[A1 sin(rωt)− A2 sin(sωt)] ,� (20)

where A1 = E1/(rω), E1 =
√

I1, A2 = E2/(sω), E2 =
√

I2 and

A2(t) = 2Up + A1A2 cos((r + s)ωt), Up =
1
4
(A2

1 + A2
2),� (21)

with Up the ponderomotive energy. Introducing (20) and (21) into (12) and comparing with 
(13) we conclude that for the bicircular field we have n  =  r  +  s so that the SP equation (12) 
has 2(r + s) solutions of which the r  +  s solutions in the upper half complex time plane should 
be taken into account.

The bicircular-field vector potential is invariant with respect to a rotation by the angle 
360◦/(r + s). It also obeys reflection symmetries about axes at the angle 180◦/(r + s) as well 
as integer multiples of this angle, with respect to the positive Ax axis. Examples are exhib-
ited in the right-hand part of figure 4 and in the upper right corner of the upper left panel of 
figure 5.

We will first consider the simplest example of the bicircular field with r  =  1 and 
s  =  2. Figure  3 displays the corresponding spectra for emission in the direction 
θ = 0◦. We compare the case where the two field components have equal intensities 
( I1 = I2 = 4 × 1013 W cm−2) (left panel) with the case of almost circular polarization (I1 
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as before, I2 = 0.13 × 1013 W cm−2 � I1). In either case, there are three SP solutions in the 
upper half plane, which are presented in the insets, as well as their complex conjugates in the 
lower half plane. One solution (solution 2) has Re t = T/2 and the other two (solutions 1 and 
3) are located symmetrically on either side of the former. For either intensity ratio, the solu-
tion 2 is completely dominant. Indeed, the two panels show that the exact result (denoted by 
‘Int’) is indiscernible from the contribution of only the SP 2 (denoted by ‘2’). For the close-to-
circular case the contribution of the SP pair (1,3) is suppressed by a huge factor, in agreement 
with the fact that the imaginary parts of the solutions t1,3 are very much larger.

In analogy with figures 2 and 4 illustrates how the contour of integration has to be deformed 
so that is runs over the relevant SPs. For I1 = I2, these are indicated by the white filled cir-
cles in the upper half plane. As in the case of figure 2, the complex conjugate SPs, which are 
denoted by the black filled circles, cannot be accessed by a contour that satisfies all require-
ments. We concluded above that the SP 2 with Im t2 = T/2 is completely dominant. The 
reason is that its imaginary part is much smaller than that of the other two SPs 1 and 3 (owing 
to the scale of figure 4, this is difficult to see in the figure). The red squares in figure 4 denote 
the SPs for the near-circular case. Here, the disparity of the imaginary parts between solution 
2 and solutions 1 and 3 is much larger and very evident in the figure. The color coding of fig-
ure 4 corresponds to the case I1 = I2. For I1 � I2, the yellow (light) areas in the upper half 
plane will move to larger values of ωtI so that the red squared SPs will come to lie in the blue 
(dark) area. Therefore, the contour of integration will stay in the blue (dark) area and run over 
all three SPs. The main message of this discussion is that for a bicircular field, in contrast to 
elliptical polarization considered in section 3, the topology of the SP solutions and the integra-
tion contour in the complex plane are independent of the parameters (here the intensity ratio).

As another example, we consider the case r  =  3, s  =  5. We only discuss the SP solutions 
and take it for granted, on the basis of the previous investigation of the case r  =  1 and s  =  2, 

Figure 3.  Energy spectrum (in multiples of Up) in the direction θ = 0◦ for ionization 
of the F− ion by a bicircular (r = 1, s = 2) field with wavelength 1800 nm and equal 
component intensities I1 = 4 × 1013 W cm−2 and I2 = I1 (left panel) and the close-
to-circular case where I2 = 0.13 × 1013 W cm−2 (right panel). In either case, the SP 
solutions are presented in the upper right corners. In the text, they are numbered by 
1, 2, 3 from left to right. The curves display the results of numerical integration (‘Int’), 
the SP approximation with all SPs (‘sum’), the SP solutions 1 and 3 (‘1,3’) and only 
solution 2 (‘2’).
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that the integration contour will pick up all SPs in the upper half plane. The field is sketched 
in the inset in the upper left panel of figure 5. In view of the rotation and reflection symmetries 
discussed above, for the 3ω–5ω  bicircular laser field it is sufficient to analyse the spectra for 
the electron emission angle θ ∈ [0, 22.5◦]. It should be mentioned that the 3ω–5ω  field was 
utilized in the experiment in which bright circularly polarized soft x-ray high harmonics were 
used for x-ray magnetic circular dichroism [35, 39].

In figure 5 we present spectra for the angles θ = 0◦, 11.25◦ and 22.5◦. We notice that the 
results for these angles are qualitatively different. For θ = 0◦, the rates for the electron energies 
Ep > 1.1Up are much larger than for the other two cases. For θ = 22.5◦ the spectrum exhibits 
very rapid oscillations. This behaviour can be explained using the SP method. Let us first 
consider the θ = 0◦ case (lower right panel). The r  +  s  =  8 SP solutions for the complex time 
are presented in the upper right part of this panel. The corresponding photoelectron energy 
is 0 < Ep < 4Up, with, generally, Ep = 0 at the bottom (smallest Im t) and Ep = 4Up at the 
top of each trace (largest Im t). These solutions are symmetric with respect to the Re t = 0.5T  
line, i.e. they come in pairs (1, 8), (2, 7), (3, 6) and (4, 5). The pair (4, 5) in the middle makes 
the dominant contribution. The interference of the contributions of this pair is responsible for 
the oscillations in the spectrum for energies larger than 1Up, especially for the deep suppres-
sion at about 1.16Up. For lower energies the pair (2, 7) also contributes and the interference 
picture due to the four SP solutions is more complicated. The inset in the lower right panel of 
figure 5 shows that indeed the pairs (4,5) and (2,7) have the smallest imaginary parts of the 
ionization time. For the angle θ = 11.25◦ all eight solutions contribute leading to the spectra 

Figure 4.  Left panel: analog of figure 2 for the bicircular field with r  =  1 and s  =  2. 
The parameters are the same as in figure 3. The SPs are indicated by white (black) 
filled circles in the upper (lower) half plane for the case where I1 = I2 and by red 
filled squares for I1 � I2. The color code is for the case I1 = I2; the case I1 � I2 is 
not presented. Right panels: parametric plots of the vector potential (equation (20); red 
solid line) and the electric field (black dotted line) for I1 = I2 (upper panel) and I1 � I2 
(lower panel) for 0 � t � T . The values of A(Re ts) and E(Re ts) are represented by the 
filled circles on the curves. For either set of field parameters, A(Re ts) for the dominant 
solution s  =  2 is located on the negative horizontal axis, while A(Re ts) for the solutions 
s  =  1 and s  =  3 are located symmetrically on either side of the horizontal axis. In the 
limit of purely circular polarization, the curves of the lower panel turn into circles.
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shown in the lower left panel. The contributions of the solutions 4 and 5 are again dominant. 
However, their partial rates are not equal, as was the case for θ = 0◦, so that the interference 
minima and maxima are less pronounced. For the angle θ = 22.5◦ (upper right panel), the 
two pairs of solutions, (5, 7) and (4, 8), make comparable contributions in the high-energy 

Figure 5.  Differential detachment rates of the F− ion by the 3ω–5ω  bicircular laser 
field as functions of the photoelectron kinetic energy Ep (in units of Up) for the electron 
emission angles θ = 0◦, 11.25◦ and 22.5◦, as denoted in the legend. Component 
intensities and wavelengths are I1 = I2 = 4 × 1013 W cm−2 and 1800 nm (3ω) and 
1080 nm (5ω). Upper left panel: the spectra obtained using the SFA and numerical 
integration are represented by symbols. The corresponding spectra obtained using the 
SP method are denoted by lines. In the upper right corner of this panel the polar diagram 
of the vector potential A(t) is presented. The symbols denote the values of A(Re ts) 
for θ = 22.5◦, Ep = 0.2Up and s  =  2 (green circle), 5 (magenta triangle) and 7 (cyan 
square). In the remaining panels, denoted by the corresponding angle θ, the spectra 
obtained using the SP method are exhibited. The partial contributions of each of the 
eight SP solutions ts are identified by the numbers 1, 2, . . . , 8. In the upper right corner 
of each panel the solutions ts, s = 1, 2, . . . , 8 (from left to right) are presented in the 
complex time plane, for 0 < Ep < 4Up.
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region, which leads to the wild oscillation in this part of the spectrum. In addition, for low 
energies the solution 2 is significant. Indeed, looking at the parametric plot of A(t) in the upper 
right corner of figure 5 and recalling that direct electrons are roughly emitted in directions 
compatible with p = −A(t) one will notice a small triangle formed by A(t) around the angle 
−θ = −22.5◦, which consists of three different small segments of the curve A(t). The real 
parts of the afore-mentioned SP solutions 2 (green circle), 5 (magenta triangle) and 7 (cyan 
square) lie on these segments (they correspond to the energy Ep = 0.2Up). The SP-method 
results described above agree very well with the results obtained by numerical integration, 
which are displayed by the symbols in the upper left panel. Small differences appear only for 
the high-energy part of the spectra for the angle θ = 0◦. The advantage of the SP method is 
that one can explain the behaviour of the obtained spectra in terms of the partial contributions 
of particular SP solutions and their interference. Hence, one can infer with attosecond preci-
sion at which times electrons that make up a certain part of the spectrum have been released.

5.2.  Few-cycle linearly polarized laser pulse

The electric-field vector and the vector potential of a linearly polarized few-cycle laser pulse 
with a sine-squared envelope and the carrier-envelope phase φ are defined by [7, 40, 41]

E(t) = êxE0 sin
2
(ωpt

2

)
cos(ωt + φ) = êx

∑
j=0,1,2

Ej cos(ωjt + φ),� (22)

A(t) = −êx

∑
j=0,1,2

Ej

ωj
sin(ωjt + φ),� (23)

where E0 = E0/2, Ej = −E0/2 ( j = 1, 2), ωp = ω/np, ω0 = ω, ω1,2 = ω ± ωp. We assume 
that the pulse duration during which the electric field is different from zero is an integer num-
ber np of optical cycles, Tp = npT . The field (22) is trichromatic comprising the frequencies 
ω  and ω ± ωp. The above-described theory can also be applied to this field assuming that the 
fundamental frequency is ωp (instead of ω). In this case, the vector potential is expressed as 
a linear combination of sine functions with the arguments npϕ and (np ± 1)ϕ, where now 
ϕ = ωpt. Introducing this into (12), after some trigonometric transformations, independently 
of the value of the carrier-envelope phase φ, we obtain a trigonometric polynomial of the order 
n = 2(np + 1). Therefore, the SP equation (12) for our few-cycle linearly polarized laser pulse 
with sine-squared envelope has 4(np + 1) solutions of which we take the 2(np + 1) solutions 
in the upper half of the complex time plane. Examples of these solutions can be found in sec-
tion 6 of [7] (see figures 12 and 13 therein; see also the more recent paper [42] and references 
therein).

5.3.  Orthogonally polarized two-color laser field

In this section we consider the number of SP solutions for an orthogonally polarized bichro-
matic laser field. The field is a superposition of two mutually orthogonal linearly polarized 
laser fields with frequency rω and sω, with r and s integers. According to our knowledge, first 
experiments with ω–2ω  and ω–3ω  OTC fields were reported in [43] and [44], respectively. 
For more references, see the recent work [45]. The electric-field vector E(t) and the corre
sponding vector potential A(t) of the OTC field can be written as

E(t) = E1 sin(rωt)êx + E2 sin(sωt + φ)êy, A(t) = A1 cos(rωt)êx + A2 cos(sωt + φ)êy,� (24)
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where E1 =
√

I1, A1 = E1/(rω), E2 =
√

I2, A2 = E2/(sω) and φ is the relative phase between 
the two orthogonal components. It is straightforward to show that, for such a field, equa-
tion (12) reduces to

A2
1

4
cos(2rωt) +

A2
2

4
cos(2sωt + 2φ) + A1px cos(rωt) + A2py cos(sωt + φ) + Up + Ep = −Ip,

� (25)
where Up = (A2

1 + A2
2)/4 is the ponderomotive energy and Ep = p2/2 the electron kinetic 

energy. Using trigonometric addition formulas the relation (25) can be rewritten in the form 
(13) with n  =  2s and s  >  r. Therefore the number of SP solutions in the upper half of the 
complex plane is 2s.

Let us consider ATI of neon atoms by an OTC field and analyse the results. In figure 6 we 
present the differential ionization rates of Ne by the ω–3ω  (upper panels) and ω–4ω  (lower 
panels) OTC field as a function of the photoelectron kinetic energy Ep. Ionization rates are 
obtained for two values of the relative phase: φ = 90◦ (left panels) and φ = 180◦ (right panels), 
electron emission at the angle θ = 15◦ and laser-field parameters as stated in the caption. In 
the upper left corner of each panel, a polar diagram of the vector potential A(t) for 0 � t � T  
is shown, while in the upper right corners we present the SP solutions in the complex plane.

For the ω–3ω  field, we find, as expected, six SP solutions. Three of them, namely the 
solutions denoted by 3, 4 and 5 significantly contribute to the spectra for φ = 90◦ (upper 
left panel), while the other three SPs can be neglected (their contributions are more than five 
orders of magnitude lower and are not shown in the panel; the corresponding imaginary parts 
of the complex ionization time for these three solutions are much larger in comparison with 
the other three solutions, so that the corresponding tunnelling probability is negligible). The 
solutions denoted by 3 and 5 interfere for energies below 1Up, which results in the oscillations 
visible in this region of the spectrum. A destructive interference of the contributions 3 and 4 
is responsible for the pronounced dip in the spectrum at energies about 1.5Up. For energies 
higher than 1.5Up only one solution, denoted by 4, contributes to the spectrum.

If we change the phase between the two orthogonal field components from φ = 90◦ to 
φ = 180◦, the partial contributions as well as the overall spectrum change significantly. With 
increasing φ the partial contributions shift to the right (i.e. to larger values of Re t), but the 
contributions of the solutions 2, 3, 4 and 5 remain dominant. For φ = 180◦ the solutions 
become symmetric with respect to the line Re t = 0.5T , and they come in three pairs denoted 
by (1, 6), (2, 5) and (3, 4) so that the two members of each pair make identical contributions. 
For energies lower than 0.5Up only the pair (2, 5) contributes to the spectrum and is responsible 
for its oscillatory character. For higher energies the pair (3, 4) alone is sufficient to reproduce 
the overall spectrum. These observations are nicely reproduced by the plots of the complex 
ionization times displayed in the inset of the upper right panel of figure 6. Namely, for small 
energies the solutions (2,5) are dominant (having the smallest imaginary parts) while for 
larger energies the pair (3,4) takes over (as a function of the energy, its imaginary parts start 
at large values, assume a minumum around Ep = 1.2Up and then increase again). Since the 
absolute values of the ionization amplitudes of the two members of each pair are equal, these 
amplitudes interfere constructively or destructively, depending on the electron energy, and 
therefore we notice more pronounced oscillations in the ATI spectrum for the phase φ = 180◦ 
compared with the phase φ = 90◦.

For an ω–4ω  OTC field, we numerically find eight SP solutions of equation (12), in accord-
ance with our analytical findings. These solutions, as well as their partial contributions, are 
shown in the lower panels of figure 6. The solutions 3, 4 and 7 reproduce the low-energy part 
of the spectrum for φ = 90◦ (lower left panel), while the solutions 4, 5 and 6 are dominant 
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in the energy range above 0.5Up. The contributions of the other three solutions are negligible 
and are not shown. By changing the phase from φ = 90◦ to φ = 180◦ the SP solutions become 
symmetric with respect to the line Re t = 0.5T , similarly to the case of the ω–3ω  OTC field. 
For energies below 1Up the pair (3,6) dominates the spectrum; above 1Up the pair (4,5) takes 
over. Like above, these observations are reflected in the imaginary parts of the ionization 
time. The corresponding interference patterns, where the oscillations are more closely spaced 
when the SP solutions are farther apart, are clearly visible in the spectrum. We note that the 

Figure 6.  Differential ionization rates of neon by the ω–3ω  (upper panels) and ω–4ω  
(lower panels) OTC field as a function of the photoelectron kinetic energy Ep (in units of 
the ponderomotive energy Up) for the relative phase φ = 90◦ (left panels) and φ = 180◦ 
(right panels) and electron emission angles θ = 15◦. The laser-field component 
intensities are I1 = I2 = 2 × 1014 W cm−2, while the fundamental wavelength is 
1800 nm. We present the relevant partial contributions of each SP solution and the 
corresponding spectra obtained by the SP method (black solid line) and numerical 
integration (violet circles). Some of the partial contributions, whose yields are more 
than five orders of magnitude lower than the overall yield, are not shown in the panels. 
In the upper left corner of each panel we present a polar diagram of the respective vector 
potential A(t), plotted for 0 � t � T , while in the upper right corners we display in the 
complex time plane the SP solutions for energies from 0 to 5Up.
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SP spectra agree very well with the results of the numerical integration, which are presented 
by circles in each panel of figure 6.

6.  Conclusions

Quantum-mechanical transition amplitudes of atomic and molecular processes induced by 
strong laser fields are typically expressed in the form of integrals of highly oscillatory func-
tions. Using the SP method such an integral is approximated by a sum over the solutions of the 
SP equation for the complex ionization time. For an arbitrarily polarized polychromatic laser 
field the solutions of the SP equation can be found as zeros of a trigonometric polynomial of 
the nth order. It is shown that such a polynomial has exactly 2n zeros—complex solutions for 
the ionization time within one optical cycle. For applications, the n solutions in the upper half 
complex time plane are relevant.

For some critical values of the atomic and photoelectron parameters and the laser field 
parameters the number of relevant SP solutions can be smaller. This can happen if two SP 
solutions approach each other so that the topology of the ‘steepest descent’ integration contour 
changes. In this case the contribution of the solution having the larger imaginary part of the 
ionization time should be neglected. Close to these critical values, the uniform approximation, 
which takes into account both solutions, should be used instead of the SP approximation. We 
used the example of an elliptically polarized monochromatic laser field to illustrate how the 
afore-mentioned topology changes for some critical value of the photoelectron energy and 
how the uniform approximation is used close to this critical point.

In most applications, it is sufficient just to insert the solutions of the SP equation  in the 
upper half complex time plane into equation (3), without the need to consider the choice of the 
integration contour, as we exemplified it in figure 2. A typical example is a linearly polarized 
monochromatic laser field for which there are two relevant SP solutions [23]. As further illus-
trations we utilized the examples of a bicircular laser field, a few-cycle laser pulse with sine-
squared envelope and an orthogonally polarized two-color laser field. These fields have become 
very important in the context of recent developments of strong-field physics and attoscience 
and the use of tailored fields for the control of the microscopic attosecond-dynamics dynamics 
of quantum-mechanical processes driven by such fields. The contributions of different SP solu-
tions to a given quantum-mechanical transition amplitude interfere in the fashion of Feynman’s 
path integral [46] and quantum-orbit theory [4, 47–49]. Knowledge of these solutions and their 
behaviour as a function of the observable quantities (for example, the photoelectron momen-
tum) enables better understanding and control of the strong-field processes. Physically, a larger 
imaginary part of a SP time solution implies a lower corresponding partial contribution to the 
ionization probability. (Recall that a vanishing imaginary part corresponds to Ip = 0).

In the present paper we have not considered modifications of the SFA theories due to the 
influence of the Coulomb potential (see the recent article [50] and references therein). Not 
going into detail, we mention that in these models one should solve the same or similar SP 
equation as those considered in our paper. Examples are the Coulomb-corrected SFA [51], 
the quantum trajectory-based Coulomb-corrected SFA [52], the Coulomb quantum-orbit SFA 
[53–55], the semiclassical two-step model [56] and the semiclassical approximation [57]. The 
results of our paper are relevant also in this context.

Explicit analytical results for the relevant matrix elements, given in the appendices, can 
also be used for the analysis of higher-order strong-field processes such as high-order har-
monic generation and high-order above-threshold ionization. More about these processes can 
be found in the review articles [4–10]; for other approaches to the calculation of the high-order 
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harmonic generation amplitude see [58, 59] and references therein. The mentioned high-order 
processes can be considered as three-step processes. To each of these steps a particular saddle-
point equation can be related. Strong-field ionization is the first step. The rule for the number 
of saddle-point solutions which we found in the present paper is useful for determining the 
saddle-point solutions for these high-order processes. For example, for the bicircular rω–sω 
field we found r  +  s solutions. For high-order above-threshold ionization [20] and high-order 
harmonic generation [36] we classified the SP solutions by the multi-index (α,β, m). The 
index m = 0, 1, 2, . . . counts the approximate length of the electron travel time in multiples 
of the laser period T, the index α distinguishes the long from the short orbit, while the index 
β counts the segments (traced out by the bicircular field in the polarization plane) within one 
optical cycle characterized by the index m. There are exactly β = 1, 2, . . . , r + s solutions 
which agrees with the results of the present paper. Analogously, for the strong-field ionization 
by an rω–sω OTC field there are 2s (s  >  r) solutions. Using the same classification by the 
multi-index (α,β, m) [45], we obtain that the index β takes 2s values. Knowing this makes it 
easier to find all SP solutions.

Acknowledgments

We acknowledge support by the Ministry for Education, Science and Youth, Canton Sarajevo, 
Bosnia and Herzegovina, the Federal Ministry of Education and Science, Bosnia and 
Herzegovina, and the Alexander von Humboldt Foundation.

Appendix A.  T-matrix element for detachment of negative ions

For the detachment of the negative halogen ion F−, which we considered as our first example, 
the ground-state wave function is [18, 19]

ψ�m(r) =
A
r

e−κrY�m(r̂),� (A.1)

with A  =  0.7, l  =  1 and Ip = 3.4 eV. The ground-state wave functions of other nega-
tive ions such as H−, Cl−, Br−, I− etc [19] have the same form, but with different val-
ues of the parameters A, � and Ip. For the laser field defined in the xy plane and with 
the z axis as the atomic quantization axis only the matrix elements with m = ±1 
in (5) are different from zero. The corresponding momentum-space wave function 
ψ̃�m(q) = (2π)−3/2A

∫
dΩr̂

∫∞
0 drre−iq·r−κrY�m(r̂) can be calculated using the plane-wave 

expansion in spherical harmonics: e−iq·r = 4π
∑∞

�=0(−i)�j�(qr)
∑�

m=−� Y∗
�m(r̂)Y�m(q̂). Here 

j�(ρ) =
√

π
2ρJ�+ 1

2
(ρ) are the spherical Bessel functions. The result is

ψ̃�m(q) =
4πA

(2π)3/2 (−i)�Y�m(q̂)X�(q), X�(q) =
∫ ∞

0
drre−κrj�(qr),� (A.2)

where the integral X�(q) can be solved analytically [60]. For � = 1 we have 
j1(ρ) = −ρ−1 cos ρ+ ρ−2 sin ρ, so that

X1(q) = −1
q

(
κ

q2 + κ2 − 1
q
arctan

q
κ

)
.� (A.3)
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Introducing this into (7) and using Y1m(q̂) = −m
√

3
8π sin θqeimφq with eimφq = (qx + imqy)/q, 

θq = 90◦, qx = q cosφq = p cos θ + Ax(t), qy = q sinφq = p sin θ + Ay(t), we obtain

Tp1m(n) = mi
A
√

3
4π

∫ T

0

dt
T

qx + imqy

q2

(
κ− q2 + κ2

q
arctan

q
κ

)
eiS(p;t).� (A.4)

According to (7) and (A.2), in order to apply the SP method, we should calculate the factor 
limq2+κ2→0(q2 + κ2)X�(q). It was shown in the appendix E of [19] that this factor is equal to 
(q/κ)�. Using this, for the T-matrix element (A.4) in the SP approximation we get

Tp1m(n) = C
∑

ts

Bm(ts)eiS(p;ts), Bm(ts) ≡
m(qx + imqy)√

iS′′(p; ts)
, C =

A
κT

√
3

8π
.

� (A.5)
For the bicircular field, in addition to (20) and (21), in order to calculate the rate (4) using 

(7) and (A.4), we need the relations

Ex(t) =
1√
2
[E1 sin(rωt) + E2 sin(sωt)] , Ey(t) =

1√
2
[−E1 cos(rωt) + E2 cos(sωt)] ,

αx(t) =
1√
2

[
A1

rω
sin(rωt) +

A2

sω
sin(sωt)

]
, αy(t) =

1√
2

[
−A1

rω
cos(rωt) +

A2

sω
cos(sωt)

]
,

U1(t) =
A1A2 sin((r + s)ωt)

2(r + s)ω
.

� (A.6)

For the elliptically polarized monochromatic laser field, used in section  3, we have 
S(p; t) = nωt + pA0 sin(ωt)/(ω

√
1 + ξ2) + Upζ sin(2ωt)/(2ω). The T-matrix element in the 

uniform approximation is given by

Tp1m(n) = C
√
πi
{
(±z)1/4 [Bm(t2)± iBm(t1)]Ai(−z)

+ i(±z)−1/4 [−Bm(t2)± iBm(t1)]Ai′(−z)
}

ei[S(p;t1)+S(p;t2)]/2,
� (A.7)

where z ≡ {3 [S(p; t1)− S(p; t2)] /4}2/3. For the electron energy Ep larger than the critical 
value Ep,c, for which the discriminant D in (10) is equal to zero, the argument of the Airy 
function Ai and its first derivative Ai′ should be replaced by −z → −ze−2πi/3. For Ep < Ep,c 
(Ep > Ep,c) the sign  +  (−) should be taken in (A.7).

Appendix B.  T-matrix element for ionization of noble gases

For ionization of noble gases, as the ground-state wave function of the valence electron we use 
the following asymptotic wave function [61]

ψ�m(r) = Arν−1e−κrY�m(r̂), r � 1.� (B.1)

For the Ne atom we have ν = 1/κ and A  =  2.1, � = 1 and Ip = 21.56 eV [20]. Expanding 
the plane wave in spherical harmonics and solving the appropriate integral [60], we obtain the 
momentum-space wave function

ψ̃�m(q) =
A(−iq)�

2�+
1
2 κ�−ν

Γ(�+ ν + 2)
Γ(�+ 3/2) 2F1

(
�− ν

2
,
�− ν + 1

2
; �+

3
2

;− q2

κ2

)
Y�m(q̂)

(q2 + κ2)
ν+1 ,� (B.2)
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where Γ(ν) is the gamma function and 2F1 (a, b; c; z) the Gauss hypergeometric function, 
which is calculated numerically using the method from [62]. Introducing this into equation (7) 
we get

Tp�m(n) = −A
T

κν

2�+3/2

Γ(�+ ν + 2)
Γ(�+ 3/2)

∫ T

0
dt
( q

iκ

)�

Y�m(q̂)

× 2F1

(
�− ν

2
,
�− ν + 1

2
; �+

3
2

;− q2

κ2

)
eiS(p;t)

(q2 + κ2)
ν .

�

(B.3)

Since the T-matrix element (B.3) is singular at the SPs defined by (12), we cannot apply 
equation (6) directly. Instead, we use a modification of the SP method described in [18], which 
leads to the expansion

∫

C

eiS(z)

[S′(z)]ν
dz ≈ iν

Γ(ν/2)
2Γ(ν)

∑
j

√
2πi

S′′(zj)

[
− 2i

S′′(zj)

]ν/2

eiS(zj),� (B.4)

where zj  are the SPs of the analytic function S(z). Applying formula (B.4) to solve the int
egral in equation (B.3), we obtain the following expression for the T-matrix element in the SP 
approximation

Tp�m(n) = −A
T

κν

2�+ν+3/2

Γ(�+ ν + 2)
Γ(�+ 3/2)

Γ(ν/2)
2Γ(ν) 2F1

(
�− ν

2
,
�− ν + 1

2
; �+

3
2

; 1
)

×
∑

ts

(qs

iκ

)�

Y�m(q̂s)

√
2πi

S′′(p; ts)

[
2i

S′′(p; ts)

]ν/2

eiS(p;ts).

�

(B.5)

For the special value z  =  1, the hypergeometric function 2F1 can be written in terms of gamma 
functions:

2F1(a, b; c; 1) =
Γ(c) Γ(c − a − b)
Γ(c − a) Γ(c − b)

, Re (c − a − b) > 0.� (B.6)

Applying this expression and the properties of the gamma function we obtain our final form 
of the transition amplitude

Tp�m(n) = −A
T

κν

23/2 νΓ(ν/2)
∑

ts

(qs

iκ

)�

Y�m(q̂s)

[
2i

S′′(p; ts)

](ν+1)/2

eiS(p;ts).

� (B.7)
Here S(p; t) = (Ep + Up + Ip)t + p ·α(t) + U1(t), where for our OTC field we have: 
Up = (A2

1 + A2
2)/4, α(t) = α1 sin(rωt)êx + α2 sin(sωt + φ)êy, α1 = A1/(rω), α2 = A2/(sω) 

and U1(t) = [α1A1 sin(2rωt) + α2A2 sin(2sωt + 2φ)] /8.
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