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Abstract
Genuine multipartite entanglement is of great importance in quantum 
information, especially from the experimental point of view. Nevertheless, it 
is difficult to characterize genuine multipartite entangled states, because the 
genuine multipartite entanglement is unruly. There are scattered results on the 
criteria for genuine multipartite entangled states. We propose another product 
based on the Kronecker product in this paper. The Kronecker product is a 
common product in quantum information with good physical interpretation. 
We mainly investigate whether the proposed product of two genuine 
multipartite entangled states is still a genuine entangled one. We understand the 
entanglement of the proposed product better by characterizing the entanglement 
of the Kronecker product. Then we show the proposed product is a genuine 
multipartite entangled state in two cases. The results develop nontrivial criteria 
for a class of genuine multipartite entangled states. One can use such criteria to 
systematically construct genuine multipartite entangled states of more parties.

Keywords: genuine multipartite entanglement, biseparable states, Kronecker 
product

1.  Introduction

The essence of quantum entanglement, recognized by Einstein, Podolsky, Rosen (EPR), and 
Schrödinger [1, 2] has puzzled scientists for several decades. Entanglement, which involves 
nonclassical correlations between subsystems, plays a central role in every aspect of quantum 

Y Shen and L Chen

Construction of genuine multipartite entangled states

Printed in the UK

125302

JPHAC5

© 2020 IOP Publishing Ltd

53

J. Phys. A: Math. Theor.

JPA

1751-8121

10.1088/1751-8121/ab7521

Paper

12

1

16

Journal of Physics A: Mathematical and Theoretical

IOP

2020

4 Author to whom any correspondence should be addressed.

1751-8121/ 20 /125302+16$33.00  © 2020 IOP Publishing Ltd  Printed in the UK

J. Phys. A: Math. Theor. 53 (2020) 125302 (16pp) https://doi.org/10.1088/1751-8121/ab7521

https://orcid.org/0000-0002-6138-3653
https://orcid.org/0000-0002-8367-3651
mailto:yishen@buaa.edu.cn
mailto:linchen@buaa.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1088/1751-8121/ab7521&domain=pdf&date_stamp=2020-03-03
publisher-id
doi
https://doi.org/10.1088/1751-8121/ab7521


2

information theory and the foundations of quantum mechanics [3, 4]. Not only of great impor-
tance in theory, quantum entanglement has recently been regarded as physical resource. Lots 
of experiments show that entanglement has plenty potential for many quantum information 
processing tasks, including quantum cryptography [5], quantum teleportation [6], quantum 
key distribution [7], and dense coding [8]. Genuine entanglement, as a kind of special mul-
tipartite entanglement, is considered to be the most important resource, and has been used 
in various experiments [9–11]. Hence, it is essential to experimentally prepare the genuine 
entanglement of as many qubits as possible. So far, genuine multipartite entangled (GME) 
states in the form of Greenberger–Horne–Zeilinger (GHZ) states have been reported with 10 
superconducting qubits, 14 trapped ions, and 18 photonic qubits [12–14]. Recently Gong et al 
have realized the creation and verification of a 12-qubit linear cluster (LC) state, the largest 
GME state reported in solid-state quantum systems [15].

It is known that to determine a bipartite state is separable or entangled is an NP-hard prob-
lem [16]. Obviously, for the multipartite case, the relation between local and global properties 
of quantum states, and the interplay between classical and quantum properties of correlations 
are much more complicated [17]. To characterize a multipartite state, it is necessary to distin-
guish between genuine multipartite entanglement and biseparable entanglement. Suppose ρ  
is a multipartite state. Then ρ  is said to be biseparable if it can be written as a convex linear 
combination of states, each of which is separable with respect to some partition. Otherwise 
ρ  is a GME state. For instance, a tripartite state ρABC is biseparable, if it admits the following 
decomposition [18].

ρbs = p1ρ
sep
A|BC + p2ρ

sep
B|AC + p3ρ

sep
C|AB,� (1)

where ρsep
A|BC means it is separable with respect to the fixed partition A|BC, i.e. 

ρsep
A|BC =

∑k
i=1 |ψi〉〈ψi|A ⊗ |φi〉〈φi|BC , the same for ρsep

B|AC and ρsep
C|AB.

The characterization of multipartite entanglement, especially genuine mulitpartite entan-
glement, turns out to be quite challenging. In spite of massive efforts, there are little progress 
on the separability for multipartite states. Some inequalities were formulated to guarantee the 
biseparability, and thus the violation of the inequalities would imply the genuine mulitpartite 
entanglement. [19, 20]. As we know, a bipartite separable state is necessarily a positive partial 
transpose (PPT) state [21, 22]. To generalize the PPT criterion to the mulipartite states, the 
concept of PPT mixtures was proposed [23]. For example, we call a tripartite state ρABC a PPT 
mixture, if it can be written as

ρpmix = p1ρ
ppt
A|BC + p2ρ

ppt
B|AC + p3ρ

ppt
C|AB.� (2)

If a state is not a PPT mixture, it should not be a biseparable one. It is thus a GME state by 
definition. Although there exist states which are PPT mixtures but not biseparable states [24], 
it indeed provides a relaxed method to characterize genuine multipartite entanglement due 
to the fact that the set of PPT mixtures can be fully characterized with the method of linear 
semidefinite programing (SDP) [25]. Further, by the approach of PPT mixtures the necessary 
biseparability criterion for permutationally invariant states were presented [26]. In addition, 
several genuine entanglement witnesses were presented to detect the GME states [27–29]. 
They all have their own advantages to detect some classes of multipartite states.

Therefore, it is essential to develop nontrivial criteria for a class of GME states. In experi-
ment, the more parties share the genuine entanglement, the more useful such genuine entan-
glement is. For this reason, in this work we try to generate a GME state of more parties by 
regrouping two GME states of less parties. Due to this motivation, we first propose a different 
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product of two states dependent on the Kronecker product which is a terminology widely used 
in various problems in quantum information theory [30, 31]. Denote the proposed product 
by α⊗Kc β  for m-partite state α and n-partite β, m � n. It is defined by only applying the 
Kronecker product on some subsystems of α and β. Thus, the product α⊗Kc β  is a multi-
partite state of partites more than n. We mainly investigate whether the two GME states α 
and β can guarantee α⊗Kc β  is a GME state. This problem is formulated by conjecture 7. 
Let us recall the two common products in quantum information theory to better understand 
the product α⊗Kc β , and thus conjecture 7. The first one is the tensor product, denoted by 
α⊗ β, which represents an (n + m)-partite state. The second one is the Kronecker product, 
denoted by α⊗K β, which represents an n-partite state supported on the Kronecker product 
of the two Hilbert spaces which α and β are supported on respectively. Since α⊗Kc β  is 
closely connected to α⊗K β in form, the characterization of the multipartite entanglement 
of α⊗K β enables us to see the features of the multipartite entanglement of α⊗Kc β  better. 
Hence, we characterize the entanglement of α⊗K β by lemma 6. Then we focus on conjecture 
7. We study it from the point of ranges of α and β, and derive our first main result theorem 
8 for conjecture 7 (i). We next show our second main result theorem 11 for conjecture 7 
(ii) using the SLOCC equivalence. Our main results develop nontrivial criteria for a class of 
GME states and present a novel method to construct GME states of more parties. Moreover, 
there is another fundamental problem related to the two products. That is to determine the 
Schmidt ranks of |ψ〉 ⊗ |φ〉 and |ψ〉 ⊗K |φ〉 for given |ψ〉 and |φ〉. Although it is also known as 
an NP-hard problem, there have been some attempts at this problem in recent years [32, 33].

The remainder of the paper is organized as follows. In section 2, we define GME states and 
the Kronecker product formally, and introduce the background information related to them as 
preliminaries. In section 3, we partially characterize the entanglement of α⊗K β for mixed 
α, β in section 3 respectively. Next, in section 4, we investigate the main problem conjecture 
7 in this paper, which involves a novel product based on the Kronecker product. We partially 
prove conjecture 7, and thus present a method to systematically construct GME states of more 
parties. Finally, the concluding remarks are given in section 5.

2.  Preliminaries

Suppose ρA1A2···An is an n-partite state on the Hilbert space HA1A2···An := HA1 ⊗HA2 ⊗ · · · ⊗ HAn, 
where the dimension of HAi  is di for any Ai. Denote ρA1A2···An by ρ  for simplicity, and denote 
by ρAj1 Aj2 ···Ajk

 the reduced state of ρ . Unless stated otherwise, we shall not normalize quantum 

states for convenience. So ρ =
∑k

j=1 |ψj〉〈ψj|. Denote by R(ρ) the range of ρ . By definition 
R(ρ) = span{|ψj〉}k

j=1.
In order to characterize the multipartite entanglement, we first define the composite systems.

Definition 1.  Suppose A1, A2, · · · , An, and B1, B2, · · · , Bm are n systems, and m systems 
respectively, where m � n. Let S ⊂ {1, 2, · · · , n} be a subset. Denote by S̄  the complement 
of S .

	 (i)	�Define the composite system as AS := ⊗i∈SAi supported on the space ⊗i∈SHAi, and 
AS̄ := ⊗j∈S̄Aj  supported on the space ⊗j∈S̄HAj .

	(ii)	�Let M = {1, 2, · · · , m}. Define the composite system as 
(AB)S :=

(
⊗j∈S\M Aj

)
⊗
(
⊗i∈S∩M (Ai ⊗ Bi)

)
 supported on the corresponding space.

Then recall the definitions of fully separable states, biseparable states and genuine entan-
gled states, respectively.
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Definition 2.  Suppose ρ =
∑k

j=1 |ψj〉〈ψj| is an n-partite state.

	 (i)	�ρ  is fully separable if we can take each |ψj〉 to be fully factorized, e.g. |a j
1〉A1 |a

j
2〉A2 · · · |a j

n〉An.
	(ii)	�ρ  is biseparable if we can take each |ψj〉 to be unentangled in at least one bipartition, e.g. 

|ϕj〉AS |φj〉AS̄ . Further we have ρ =
∑

j ρ
sep
Sj|S̄j

, where each ρsep
Sj|S̄j

 is bipartite separable in the 
bipartition ASj |AS̄j

.
	(iii)	�ρ  is genuine entangled if for any ensemble there is at least one |ψj〉 that is not factorized 

with respect to any bipartition, i.e. if it is not biseparable.� □ 

For the bipartite case, a biseparable state shall indicate a fully separable one, and a pure 
biseparable state shall indicate a product state. In the following part of this paper, to be uni-
form with the multipartite case we will use pure biseparable states to denote product states.

In the following we define SLOCC equivalence [34]. The separability of a given state is 
invarient under SLOCC equivalence.

Definition 3.  We refer to SLOCC as stochastic local operations and classical communica-
tions.

	 (i)	�Two n-partite pure states |α〉, |β〉 are locally equivalent when there exists a product unitary 
operation X = X1 ⊗ ... ⊗ Xn such that |α〉 = X|β〉. For simplicity we write |α〉 ∼ |β〉.

	(ii)	�Two n-partite pure states |α〉, |β〉 are SLOCC equivalent when there exists a product 
invertible operation Y = Y1 ⊗ ... ⊗ Yn such that |α〉 = Y|β〉. For simplicity we write 
|α〉 ∼s |β〉.

		 We further extend the above definitions to spaces. Let V = span{|α1〉, ..., |αm〉} and 
W = span{|β1〉, ..., |βm〉} be two n-partite subspaces of m-dimension.

	(iii)	�V  and W are locally equivalent when there exist a product unitary operation X such that 
|αi〉 ∝ X|βi〉 for any i. For simplicity we write V ∼ W .

	(iv)	�V  and W are SLOCC equivalent when there exist a product invertible operation Y such 
that |αi〉 ∝ Y|βi〉 for any i. For simplicity we write V ∼s W .� □ 

By definition 3, one can show that the sets of fully separable states, biseparable states and 
genuine entangled states are all closed under local equivalence and SLOCC equivalence.

It is known that all bipartite NPT states can be converted into NPT Werner states 
ρw( p, d) ∈ HA ⊗HB, DimHA = DimHB = d using LOCC [35]. It implies that a bipartite 
NPT state is equivalent to an NPT Werner state under LOCC equivalence. Recall the definition 
of the Werner state.

Definition 4 ([36]).  The Werner state on B(Cd ⊗ Cd) is defined as

ρw(d, p) :=
1

d2 + pd

(
Id ⊗ Id + p

d−1∑
i,j=0

|i, j〉〈j, i|
)
,� (3)

where the parameter p ∈ [−1, 1].

The Werner state is closely related to the distillability problem which lies in the heart of 
quantum entanglement theory. The following is a well-known lemma on the distillability.

Lemma 5 ([37]).  The Werner state ρw(d, p) is

	 (i)	�separable when p ∈ [− 1
d , 1]; 

	(ii)	�NPT and one-copy undistillable when p ∈ [− 1
2 ,− 1

d ); 
	(iii)	�NPT and one-copy distillable when p ∈ [−1,− 1

2 ).
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It is also known the set of LOCC on a bipartite system is a strict subset of that of bipar-
tite separable operations, see the paragraph below [4, equation (84)]. The bipartite separable 
operation (and thus the bipartite LOCC operation) can be written as

Λ(ρ) =
∑

i

(Ai ⊗ Bi)
†ρ(Ai ⊗ Bi)� (4)

for any bipartite state ρ . It follows from lemma 5 that there exists an LOCC operation Λl such 
that Λl(ρ) = ρw( p, d), p ∈ [−1,− 1

d ) for any NPT bipartite state ρ . Since both the sets of 
biseparable states and genuine entangled states are closed under SLOOC equivalence (and 
thus under LOCC operations), we can restrict ourselves into NPT Werner states when consid-
ering NPT bipartite states.

We now consider another m-partite state σB1B2···Bm  supported on the Hilbert space HB1B2···Bm. 
Recall the two common products of HA1A2···An and HB1B2···Bm in quantum information. The first 
product is the tensor product HA1A2···An ⊗HB1B2···Bm. Denote by ρ⊗ σ an (n + m)-partite state 
supported on the space HA1A2···An ⊗HB1B2···Bm. The second tensor product, which we call the 
Kronecker product, is defined as follows. Assume that m � n (We can always achieve this by 
permuting the factors HA1A2···An and HB1B2···Bm). Then:

HA1A2···An ⊗K HB1B2···Bm :=
(
⊗m

i=1 (HAi ⊗HBi)
)
⊗
(
⊗n

i′=m+1 HAi′

)
,� (5)

where the second tensor product is omitted if m  =  n. Denote by ρ⊗K σ a state supported on 
the Hilbert space defined by equation (5). By definition it indicates that ρ⊗K σ is an n-partite 
state of the systems (A1 ⊗ B1), · · · , (Am ⊗ Bm), Am+1, · · · , An.

3.  Characterization of the entanglement of the Kronecker product of two 
states

The separability of ρ⊗ σ is determined by the separabilities of ρ  and σ. However, ρ⊗K σ 
is not necessarily biseparable even if ρ  and σ are both biseparable. Take two pure states |ψ〉 
and |φ〉 for instance. One can show |ψ〉 ⊗K |φ〉 is genuine entangled if and only if (i) both |ψ〉 
and |φ〉 are genuine entangled, or (ii) for each bipartition such that |φ〉 is a product state, |ψ〉 
is entangled in such a bipartition, and vice versa. So it is interesting to know whether ρ⊗K σ 
is genuine entangled or biseparable for given two states ρ  and σ. In the following we will 
characterize the multipartite entanglement of αA1···An ⊗K βB1···Bm for mixed α and β. This case 
is quite different from the case of pure states, because a mixed state has infinite types of lin-
ear combinations from the well-known Wootters decomposition [38]. The following lemma 
shows some sufficient conditions when α⊗K β is genuine entangled from different angles.

Lemma 6. 

	 (i)	�α⊗K β is an n-partite genuine entangled state if α is n-partite genuine entangled.
	(ii)	�Suppose β is an m-partite fully separable state. Then α⊗K β is an n-partite genuine en-

tangled (resp. biseparable, fully separable) state if and only if α is an n-partite genuine 
entangled (resp. biseparable, fully separable) state.

	(iii)	�Suppose ρA1···An is an n-partite state. Then ρ  is n-partite genuine entangled if any basis of 
R(ρ) contains a pure genuine entangled state, i.e. R(ρ) is not spanned by pure bisepara-
ble states.

Y Shen and L Chen﻿J. Phys. A: Math. Theor. 53 (2020) 125302
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Proof. 

	 (i)	�We prove it by contradiction. It suffices to consider the case m  =  n. Suppose 
α⊗K β =

∑
j |ψj〉〈ψj| is biseparable. By definition we have each |ψj〉 is biseparable in the 

cut (AB)Sj |(AB)S̄j
. It follows that the reduced state α is biseparable, which contradicts 

with α is n-partite genuine entangled. Therefore, α⊗K β is an n-partite genuine entan-
gled state.

	(ii)	�We only prove the genuine entangled case. One can similarly prove the biseparable and 
fully separable cases. The ‘if’ part follows from (i). We next prove the ‘only if’ part. 
If α is biseparable, it follows from β is m-partite fully separable that α⊗K β is also 
biseparable. Then we obtain the contradiction. So the ‘only if’ part holds.

	(iii)	�We prove it by contradiction. Suppose ρA1···An is biseparable. Then one can write 
ρ =

∑s
j=1 |ψj〉〈ψj|, where each |ψj〉 is biseparable. Then the maximal linearly independent 

system of {|ψ1〉, · · · , |ψs〉} is a basis of the range of ρ . However, this basis contains no 
pure genuine entangled state, so we obtain a contradiction. Therefore, ρ  is an n-partite 
genuine entangled state.

		 This completes the proof.� □ 

The above results partially reveal the separability of α⊗K β. In the following section we 
initiate from the Kronecker product and develop a different product. It is indicated that this 
novel product could be used to construct GME states of more parties.

4.  Construct an (n + 2)-partite genuine entangled state from two (n + 1)- 
partite states

In this section we show how to construct an (n + 2)-partite genuine entangled state from two 
(n + 1)-partite states by involving the tensor product and the Kronecker product. To be spe-
cific, suppose αAC1,1C1,2···C1,n  and βBC2,1C2,2···C2,n are two (n + 1)-partite states supported on the 
Hilbert spaces HAC1,1C1,2···C1,n  and HBC2,1C2,2···C2,n respectively. By definition α⊗K β is also an 
(n + 1)-partite state of systems (AB) and Cj ’s, where Cj := (C1,jC2,j), 1 � j � n. To construct 
an (n + 2)-partite state we shall apply the Kronecker product on the spaces HC1,1C1,2···C1,n  and 
HC2,1C2,2···C2,n  only as follows.

HAC1,1C1,2···C1,n ⊗Kc HBC2,1C2,2···C2,n := HA ⊗HB ⊗
(
HC1,1C1,2···C1,n ⊗K HC2,1C2,2···C2,n

)
.

� (6)
Denote by α⊗Kc β  a state supported on the space HAC1,1C1,2···C1,n ⊗Kc HBC2,1C2,2···C2,n. By defini-
tion α⊗Kc β  is an (n + 2)-partite state of systems A, B, and Cj ’s, 1 � j � n.

If α⊗Kc β  is an (n + 2)-partite genuine entangled state for two (n + 1)-partite genuine 
entangled states α and β, it provides a systematical method to construct GME states of more 
parties. We mainly investigate the following conjecture in this section. Conjecture 7 is the 
main problem in this paper. We present two main results theorems 8 and 11 on conjecture 7 
(i) and (ii) respectively.

Conjecture 7. 

	 (i)	�Suppose αAC1,1C1,2···C1,n  is an (n + 1)−partite genuine entangled state, and βBC2,1C2,2···C2,n 
can be taken as a bipartite entangled state of systems B and (C2,1C2,2 · · ·C2,n). Then 
α⊗Kc β  is an (n + 2)-partite genuine entangled state of systems A, B, C1, C2, · · ·Cn, 
where Cj := (C1jC2j), 1 � j � n.

Y Shen and L Chen﻿J. Phys. A: Math. Theor. 53 (2020) 125302
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	(ii)	�If αAC1 ,βBC2 are both bipartite entangled states, then αAC1 ⊗Kc βBC2 is a tripartite genuine 
entangled state of systems A, B and (C1C2).

conjecture 7 (ii) is a special case of (i). We first consider the generic one. Inspired by lemma 
6 (iii) we try to attack it from the range of α.

Theorem 8. 

	 (i)	�Conjecture 7 (i) holds if R(α) is not spanned by pure biseparable states.
	(ii)	�Conjecture 7 (ii) holds if either R(αAC1) or R(βBC2) is not spanned by pure biseparable 

states.

Proof. 

	 (i)	�It follows from lemma 6 (iii) that α is necessarily an (n + 1)−partite genuine entangled 
state. We prove the assertion by contradiction. Suppose α⊗Kc β  is not (n + 2)-partite 
genuine entangled, and thus it is biseparable. By definition we write

α⊗Kc β = σ +
∑

j

|bj〉〈bj|B ⊗ |βj〉〈βj|AC1C2···Cn ,� (7)

		 where σ is the sum of other sums with respect to all the bipartitions except the biparti-
tion B|AC1C2 · · ·Cn. Hence, the reduced state σAC1,1C1,2···C1,n is biseparable. Denote by 
(βj)AC1,1C1,2···C1,n the reduced density operator of |βj〉〈βj|AC1C2···Cn. So

α = σAC1,1C1,2···C1,n +
∑

j

(βj)AC1,1C1,2···C1,n .� (8)

		 Since R(αAC1,1C1,2···C1,n) is not spanned by pure biseparable states, there is a bipartite pure 
state |x〉 on the space HAC1,1C1,2···C1,n  orthogonal to σAC11C12···C1n in (8), and not orthogonal to 
the second sum. Using (7) we have

βBC2,1C2,2···C2,n ∝ 〈x|(α⊗ β)|x〉 =
∑

j

|bj〉〈bj|B ⊗ 〈x|βj〉〈βj|x〉.� (9)

		 It is a contradiction with the fact that β is a bipartite entangled state of systems B and 
(C21, C22, · · ·C2n). Therefore, α⊗Kc β  is an (n + 2)-partite genuine entangled state.

	(ii)	�Since conjecture 7 (ii) is the tripartite case of (i), one can show assertion (ii) holds directly 
from assertion (i).

		 This completes the proof.� □ 

There are several classes of states whose ranges are not spanned by pure biseparable states. 
For instance, a pure entangled state, a PPT entangled state constructed from a UPB, and an 
antisymmetric state. From theorem 8 it suffices to consider conjecture 7 (i) when R(α) is 
spanned by pure biseparable states. In particular, we next investigate conjecture 7 (ii) when 
R(αAC1) is spanned by pure biseparable states. For a bipartite entangled state αAC1 whose 
range is spanned by pure biseparable states, if rank(α) � 3 one can project α to a two-qubit 
entangled state of rank at most three. So if rank(α) � 3 it suffices to take α as a two-qubit 
entangled state of rank at most three.

Lemma 9.  Suppose ρ  is a bipartite entangled state of rank three, and its range is spanned 
by pure biseparable states. Then ρ  can be projected to a two-qubit entangled state of rank at 
most three.

Y Shen and L Chen﻿J. Phys. A: Math. Theor. 53 (2020) 125302
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Proof.  First, suppose ρ  is a bipartite state on the Hilbert space HA ⊗HB ∼= C2 ⊗ C2. Since ρ  
is a rank-three entangled state, the claim holds already. Then we consider the case when one of 
HA and HB is three dimensional. Up to the permuting of systems A and B, we can assume that 
HA ∼= C3, and R(ρ) = span{|1, b1〉, |2, b2〉, |3, b3〉}, where |bi〉 ∈ C3. It follows that

ρ = (|1, b1〉+ x2|2, b2〉+ x3|3, b3〉)(〈1, b1|+ x∗2〈2, b2|+ x∗3〈3, b3|)
+ (y2|2, b2〉+ y3|3, b3〉)(y∗2〈2, b2|+ y∗3〈3, b3|)

+ |z3|2 |3, b3〉〈3, b3|.

�

(10)

We first consider the case when |b1〉 and |b2〉 are linearly independent. We claim one can pro-
ject ρ  to a qubit-qutrit state using some projector by the following three cases.

	 (i)	�If x2 �= 0, one can project ρ  to an entangled qubit-qutrit state using the hermitian pro-
jector to the subspace orthogonal to |3〉.

	(ii)	�If x2  =  0 and y3 �= 0, it follows from ρ  is a bipartite entangled state of rank three that 
y2 �= 0. Further we have the following subcases:

	(ii.a)	�If |b2〉 and |b3〉 are linear dependent, it follows from ρ  is entangled that x3 �= 0 and 
|b1〉 and |b3〉 are linearly independent. Then one can project ρ  to an entangled qubit-
qutrit state using the hermitian projector to the subspace orthogonal to |2〉.

	(ii.b)	�If |b2〉 and |b3〉 are linear independent, then one can project ρ  to an entangled qubit-
qutrit state using the hermitian projector to the subspace orthogonal to |1〉.

	(iii)	�If x2  =  0 and y 3  =  0, it follows from ρ  is an entangled state of rank three that x3y2 �= 0, 
and |b1〉 and |b3〉 are linearly independent. Then one can project ρ  to a qubit-qutrit state 
using the hermitian projector to the subspace orthogonal to |2〉.

Therefore, one can further project it to an entangled two-qubit state. Similarly, if |b1〉 and |b3〉 
are linearly independent, one can first project ρ  to an entangled qubit-qutrit state using some 
projector, and further project it to an entangled two-qubit state.

Otherwise, it implies x2|b2〉 ∝ |b1〉 and x3|b3〉 ∝ |b1〉. It follows that ρ  is separable which 
is a contradiction.

This completes the proof.� □ 

Lemma 9 indeed follows from the fact that bipartite entangled states of rank three are one-
distillable [39], i.e. there exist rank-two projectors P and Q such that (P ⊗ Q)†ρ(P ⊗ Q) is a 
two-qubit entangled state. Further by SLOCC equivalence defined by definition 3 we show the 
SLOCC equivalent spaces of R(ρ) as follows, where ρ  is a two-qubit state.

Lemma 10.  Suppose ρ  is a two-qubit entangled state whose range is spanned by pure bi-
separable states. Then

	 (i)	�R(ρ) = span{|0 0〉, |1 1〉} under SLOCC equivalence if ρ  has rank two.
	(ii)	�R(ρ) is either span{|0 0〉, |1 1〉, (|0〉+ |1〉)(|0〉+ |1〉)}, or span{|0 0〉, |0 1〉, |1 0〉} under 

SLOCC equivalence if ρ  has rank three.

Proof. 

	 (i)	�Suppose R(ρ) = span{|a1, b1〉, |a2, b2〉}. Since ρ  is rank two, it implies that |a1〉 and |a2〉 are 
linearly independent, and |b1〉 and |b2〉 are linearly independent. So we can find two invertible 
matrices X and Y such that X|a1〉 = |0〉, X|a2〉 = |1〉, and Y|b1〉 = |0〉, Y|b2〉 = |0〉. 
By definition 3 R(ρ) is SLOCC equivalent to span{|0 0〉, |1 1〉}.
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	(ii)	�Suppose R(ρ) = span{|a1, b1〉, |a2, b2〉, |a3, b3〉}. First if |a1〉, |a2〉, |a3〉 are pairwisely 
linearly independent, and |b1〉, |b2〉, |b3〉 are pairwisely linearly independent, we can find 
an invertible X1 such that X1|a1〉 ∝ |0〉, X1|a2〉 ∝ |1〉, and X1|a3〉 = |0〉+ |1〉. One can 
find another invertible Y1 such that Y1|b1〉 ∝ |0〉, Y1|b2〉 ∝ |1〉, and Y1|b3〉 = |0〉+ |1〉. 
By definition 3 R(ρ) is SLOCC equivalent to span{|0 0〉, |1 1〉, (|0〉+ |1〉)(|0〉+ |1〉)} 
in this case. Second if |a1〉, |a2〉 are linearly dependent, and |b1〉, |b2〉 are linearly inde-
pendent, it implies |a3〉 are linearly independent with |a1〉 and |a2〉. One can similarly find 
X2, Y2 such that X2|a1〉 = |0〉, X2|a2〉 = |0〉, X2|a3〉 = |1〉, and Y2|b1〉 = |x〉, Y2|b2〉 = |y〉, 
Y2|b3〉 = |0〉, where |x〉 and |y〉 are linearly independent. So span{|x〉, |y〉} = span{|0〉, |1〉}. 
By definition 3 R(ρ) is SLOCC equivalent to span{|0 0〉, |0 1〉, |1 0〉} in this case.� □ 

By the above results we investigate the case when the two bipartite states α and β both 
have rank two.

Theorem 11.  Conjecture 7 (ii) holds if α and β both have rank two.

Proof.  Using theorem 8 (ii), we may assume that the ranges of α,β  are both spanned by  
pure biseparable states. From lemma 10 (i) we may further assume α = (|0 0〉+ 
|1 1〉)(〈0 0|+ 〈1 1|) + x1|0 0〉〈0 0| and β = (|0 0〉+ |1 1〉)(〈0 0|+ 〈1 1|) + x2|0 0〉〈0 0|, where 
x1, x2 > 0. Then we have

ρ = α⊗Kc β

= (|0 0 0〉+ |0 1 1〉+ |1 0 2〉+ |1 1 3〉)(〈0 0 0|+ 〈0 1 1|+ 〈1 0 2|+ 〈1 1 3|)
+ x2(|0 0 0〉+ |1 0 2〉)(〈0 0 0|+ 〈1 0 2|) + x1(|0 0 0〉+ |0 1 1〉)(〈0 0 0|+ 〈0 1 1|) + x1x2|0 0 0〉〈0 0 0|.

� (11)

Let P = I2 ⊗ I2 ⊗ (|0〉〈0|+ |3〉〈3|), and σ = PρP†. It implies that if ρ  is biseparable, so is σ. 
We have

σ = (|0 0 0〉+ |1 1 3〉)(〈0 0 0|+ 〈1 1 3|) + (x1 + x2 + x1x2)|0 0 0〉〈0 0 0|.
� (12)

One can show σ is a tripartite genuine entangled state. From (12) we have the range of σ is 
spanned by |0 0 0〉 and |1 1 3〉 which are the exact two pure biseparable states in R(σ). Howev-
er, σ cannot be the convex linear combination of |0 0 0〉〈0 0 0| and |1 1 3〉〈1 1 3|, so σ is genuine 
entangled. Therefore, ρ  is genuine entangled.� □ 

If α has full rank, R(α) is necessarily spanned by pure biseparable states. In the following 
we consider both α and β are full-rank states. We show that to prove conjecture 7 holds for all 
α and β is equivalent to prove conjecture 7 holds for all γ  and δ of full rank.

Lemma 12.  Suppose α,β  are two entangled states in conjecture 7 (i). Then

	 (i)	�Conjecture 7 (i) holds if (α+ γ)⊗Kc β is a GME state for an arbitrary separable state 
γAC1,1···C1,n; 

	(ii)	�Conjecture 7 (i) holds if and only if γAC1,1···C1,n ⊗Kc δBC2,1···C2,n is a GME state for all γ, δ 
of full rank, where γ  is a GME state and δ is a bipartite entangled state of systems B and 
(C2,1 · · ·C2,n).

Proof. 

	 (i)	�We prove the assertion by contradiction. Suppose α⊗Kc β  is a biseparable state. Since 
γ  is separable, γ ⊗Kc β is also a biseparable state. Since the set of biseparable states is 
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convex, (α+ γ)⊗Kc β is a biseparable state. It contradicts with the condition. So (i) 
holds.

	(ii)	�The ‘only if’ part is trivial. We next prove the ‘if’ part. We can choose small enough 
x  >  0 such that α+ xI and β + xI  are still entangled. They evidently have full rank. The 
assumption shows that (α+ xI)⊗Kc (β + xI) is a GME state. Then assertion (i) shows 
that α⊗ (β + xI) is a GME state. Using assertion (i) again, we have α⊗Kc β  is a GME 
state.

This completes the proof.� □ 

The converse of lemma 12 (i) is wrong. That is, if α is a bipartite entangled state such that 
α⊗Kc β  is a tripartite genuine entangled state, then the tripartite state (α+ γ)⊗Kc β may be 
biseparable. For example, we can choose γ = xI  with large enough x  >  0 such that α+ γ  is 
separable. Then (α+ γ)⊗Kc β is biseparable.

It is known that the Werner states ρw(d, p) in equation (3) are of full rank if and only if 
p �= ±1, and it follows from the fact above definition 4 that each NPT bipartite state can be 
converted to an NPT Werner state using LOCC. We next consider conjecture 7 (ii) for bipar-
tite NPT states αAC1 and βBC2. So α is LOCC equivalent to ρw(d1, p1)AC1, and β is LOCC 
equivalent to ρw(d2, p2)BC2. Lemma 12 (i) can be used to further reduce the parameters of 
ρw(d1, p1)AC1 ⊗Kc ρw(d2, p2)BC2.

Lemma 13.  Suppose αAC1 is an NPT state supported on the Hilbert space 
H1 ⊗H1 ∼= Cd1 ⊗ Cd1, and βBC2 is an NPT state supported on the Hilbert space 
H2 ⊗H2 ∼= Cd2 ⊗ Cd2. Then

	 (i)	�α⊗Kc β  is a tripartite genuine entangled state for any d1, d2 and any α,β  if and only if for any 
d there is a neighborhood [h, 0), and for all ε ∈ [h, 0), ρw(d, ε− 1

d )AC1 ⊗Kc ρw(d, ε− 1
d )BC2  

is a tripartite genuine entangled state.
	(ii)	�Let p1, p2 ∈ [−1,−1/2). Then ρw(d1, p1)AC1 ⊗Kc ρw(d2, p2)BC2 is a tripartite genuine en-

tangled state for any d1, d2 � 2 and for any p1, p2 ∈ [−1,−1/2) if and only if there is a 
neighborhood [h, 0), and for all ε ∈ [h, 0), ρw(2, ε− 1/2)AC1 ⊗Kc ρw(2, ε− 1/2)BC2 is a 
tripartite genuine entangled state.

Proof. 

	 (i)	�It follows from lemma 12 (ii) that α⊗Kc β  is genuine entangled for any d1, d2 and 
any α,β  if and only if γ ⊗Kc δ  is genuine entangled for any d and any bipartite NPT 
states γ, δ ∈ B(Cd ⊗ Cd). It follows from lemma 5 that ρw( p, d) is NPT if and only 
if p ∈ [−1,−1/d). So the ‘only if’ part holds. We next prove the ‘if’ part. Assume 
d = max{d1, d2} = d1. We first prove such a claim that γ ⊗Kc δ  is genuine entangled 
for all γ, δ if ρw(d, p1)AC1 ⊗Kc ρw(d, p2)BC2 is genuine entangled for all pj ∈ [−1,−1/d). 
Suppose there exist γ, δ such that γAC1 ⊗Kc δBC2  is a tripartite biseparable state. We can 
find a separable operation Λ defined by equation (4) on the space HA ⊗HC1 such that 
Λ(γ) = ρw(d, p1) for some p1 ∈ [−1,−1/d). By the same reason we can find a separable 
operation Λ′  on the space HB ⊗HC2 such that Λ′(δ) = ρw(d, p2) for some p2 ∈ [−1,−1/d). 
Hence

(Λ⊗ Λ′)(γ ⊗Kc δ) = ρw(d, p1)⊗Kc ρw(d, p2)� (13)

		 is still a tripartite biseparable state, which contradicts with ρw(d, p1)⊗Kc ρw(d, p2) is 
genuine entangled for any pj ∈ [−1,−1/d). Second we will show ρw(d, p1)⊗Kc ρw(d, p2) 
is genuine entangled for any pj ∈ [−1,−1/d) if there is a neighborhood [h, 0), and for all 
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ε ∈ [h, 0), ρw(d, ε− 1
d )⊗Kc ρw(d, ε− 1

d ) is genuine entangled. For any p1 ∈ [−1,−1/d), 
there exist xp1 � 0 and ε < 0, such that

Id ⊗ Id + p1

d−1∑
i,j=0

|i, j〉〈j, i|+ xp1 Id ⊗ Id

= (1 + xp1)
(
Id ⊗ Id +

p1

1 + xp1

d−1∑
i,j=0

|i, j〉〈j, i|
)

= (1 + xp1)
(
Id ⊗ Id + (ε− 1

d
)

d−1∑
i,j=0

|i, j〉〈j, i|
)
.

� (14)

		 It follows from lemma 12 (i) that ∀p1 ∈ [−1,−1/d), ρw(d, p1)⊗Kc ρw(d, p2) is genuine 
entangled if there is a neighborhood [h, 0), and for all ε ∈ [h, 0), ρw(d, ε− 1

d )⊗Kc ρw(d, p2) 
is genuine entangled. Using the claim again and respectively switching system A, B and 
C1, C2, we have ρw(d, p1)⊗Kc ρw(d, p2) is genuine entangled for any pj ∈ [−1,−1/d) 
if there is a neighborhood [h, 0), and for all ε ∈ [h, 0), ρw(d, ε− 1

d )⊗Kc ρw(d, ε− 1
d ) is 

genuine entangled. So the assertion (i) holds.
	(ii)	�The ‘only if’ part holds. We prove the ‘if’ part. It follows from lemma 5 

(iii) that both ρw(d1, p1)AC1 and ρw(d2, p2)BC2 are one-copy distillable if 
p1, p2 ∈ [−1,−1/2). By the definition of one-copy distillable states both ρw(d1, p1)AC1 
and ρw(d2, p2)BC2 can be projected to two-qubit NPT Werner states, i.e. ρw(2, p1)AC1 and 
ρw(2, p2)BC2 for pj ∈ [−1,−1/2). Following the proof of assertion (i) one can similarly 
show that ∀pj ∈ [−1,−1/2), ρw(2, p1)AC1 ⊗Kc ρw(2, p2)BC2 is genuine entangled if there 
is a neighborhood [h, 0), and for all ε ∈ [h, 0), ρw(2, ε− 1

2 )AC1 ⊗Kc ρw(2, ε− 1
2 )BC2  is 

genuine entangled. So the ‘if’ part holds. Hence the assertion (ii) holds.

This completes the proof.� □ 

Unfortunately one can verify ρw(2, ε− 1
2 )AC1 ⊗Kc ρw(2, ε− 1

2 )BC2  is a PPT mix-
ture when ε ∈ [−0.2, 0) from table  A1. Therefore it is intractable to determine whether 
ρw(2, ε− 1

2 )AC1 ⊗Kc ρw(2, ε− 1
2 )BC2  is genuine entangled for all ε ∈ [h, 0) for a given 

neighborhood.
To extend conjecture 7, we finally consider a more general construction. We try to construct 

a (k + l + n)-partite genuine entangled state from a (k + n)-partite δ, and an (l + n)-partite 
state γ . The following lemma shows such construction is feasible when δ is a (k + n)-partite 
pure genuine entangled state.

Lemma 14.  Suppose δA1A2···AkC1,1C1,2···C1,n is a (k + n)-partite pure genuine entangled state, and 
γB1B2···BlC2,1C2,2...C2,n is an (l + n)-partite state. Let Cj := (C1,jC2,j), 1 � j � n. Then δ ⊗Kc γ  
is a (k + l + n)-partite genuine entangled state of systems A1, · · · , Ak, B1, · · · , Bl, C1, · · · , Cn 
if and only if γ  is an (l + 1)-partite genuine entangled state of systems B1, · · · , Bl, and 
(C2,1 · · ·C2,n).

Proof.  The ‘only if’ part follows from the definition of genuine entangled states. We 
prove the ‘if’ part. We first assume δ = |ψ〉〈ψ|, where |ψ〉 is a genuine entangled state of 
systems A1, A2, · · · , Ak, C1,1, C1,2, · · · , C1,n. Since γ  is a mixed state, it has infinite decom-
positions. We further assume that γ =

∑
j |φj〉〈φj| is an arbitrary decomposition, and then 
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δ ⊗Kc γ =
∑

j |ψ,φj〉〈ψ,φj|, where |ψ,φj〉 = |ψ〉 ⊗Kc |φj〉 for any j . Since γ  is an (l + 1)- 
partite genuine entangled state, it follows from lemma 6 (i) that δ ⊗Kc γ  is also an (l + 1)-par-
tite genuine entangled state of systems B1, · · · , Bl, and (A1 · · ·AkC1 · · ·Cn). Without loss 
of generality, we can assume |ψ,φ1〉 is an (l + 1)-partite genuine entangled state of systems 
B1, · · · , Bl, and (A1 · · ·AkC1 · · ·Cn). Moreover, since |ψ〉 is a (k + n)-partite genuine entan-
gled state, it follows from lemma 6 (i) that |ψ,φ1〉 is a (k + n)-partite genuine entangled state 
of systems A1, · · · , Ak, and (B1 · · ·BlC1), · · · , Cn, and |ψ,φ1〉 is also a (k + n)-partite genu-
ine entangled state of systems A1, · · · , (AkB1 · · ·Bl), and C1, · · · , Cn. Therefore, |ψ,φ1〉 is a 
(k + l + n)-partite genuine entangled state. Hence, by definition, δ ⊗Kc γ  is a (k + l + n)- 
partite genuine entangled state. So the ‘if’ parts holds.

This completes the proof.� □ 

The determination of GME states is one of the central problems in quantum information 
theory, and the construction of GME states is very useful in experiment. We propose a novel 
construction by regrouping two GME states and conjecture the generated state is still genu-
ine entangled in conjecture 7. We have partially proven the conjecture in theorems 8 and 11. 
Our results present nontrivial criteria for a class of GME states and could shed a new light 
on the determination of GME states. Moreover, such criteria enable us to construct GME 
states by using GME states one can easily determine. So it would provide a more efficient 
method to prepare GME states in experiment. For example, one can more easily produce 
three-qubit pure states in experiment, and thus two-qubit entangled mixed states by ignoring a 
system. So by producing two two-qubit entangled states, one may generate a tripartite state in 
B(C2 ⊗ C2 ⊗ C4), and determine its genuine entanglement by our results on regrouping the 
third parties from the two prepared two-qubit entangled states.

5.  Conclusion

In this paper, we have proposed another product of two states based on the Kronecker prod-
uct, denoted by α⊗Kc β . We ask whether two GME states α and β can guarantee the prod-
uct α⊗Kc β  is still a GME state, which has been formulated by conjecture 7. We mainly 
investigate conjecture 7, and have derived some partial results to support this conjecture. The 
motivation of our work is to present a method to systematically construct GME states of more 
parties. For example, theorem 8 supports that it is feasible to construct an (n + 2)-partite 
genuine entangled state from two (n + 1)-partite genuine entangled states using the proposed 
product α⊗Kc β . Due to the close connection between α⊗Kc β  and α⊗K β, we also have 
characterized the multipartite entanglement of α⊗K β as by-products. We have derived some 
sufficient conditions to guarantee α⊗K β is a GME state by lemma 6.

There is a direct open problem from this paper. That is to keep studying conjecture 7 for 
more general cases. We believe it is true and carry out some steps forward proving conjec-
ture 7 with lemmas 12–14. However, it would also be very interesting if a counterexample 
really exists, because it shows the physical difference between bipartite and tripartite genuine 
entanglements.
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Appendix. The detection of genuine entanglement for lemma 13

In this section we further investigate lemma 13. It is known that the set of PPT mixtures is 
a very good approximation to the set of biseparable states, and the set of PPT mixtures can 
be fully characterized with the method of SDP [23]. In the following we will verify whether 
ρw(2, ε− 1/2)AC1 ⊗Kc ρw(2, ε− 1/2)BC2 is a tripartite genuine entangled state for ε < 0.

If ρ  is not a PPT mixture then there exists a fully decomposable witness W that detects ρ  
[23]. To find a fully decomposable witness for a given state, the convex optimization tech-
nique SDP is essential. Given a multipartite state ρ , the search is given by

minTr(Wρ)� (A.1)

such that Tr(W) = 1 and for all M:

W = PM + QTM
M , QM � 0, Pm � 0.� (A.2)

If the minimum in equation (A.1) is negative, ρ  is not a PPT mixture, and thus is a GME state. 
For more details, one can refer to [23]. In this paper we use the Matlab code called PPTMixer 
[40] to detect the genuine entanglement from the perspective of PPT mixture, and the optim
ization of the SDP equation (A.1) can be solved by using the Matlab parser YALMIP with the 
solvers SEDUMI or SDPT3.

Before we do the numerical tests we formulate the expression of ρw(2, p1)AC1 ⊗Kc ρw(2, p2)BC2 
first. We write ρw(2, p1)AC1 ⊗Kc ρw(2, p2)BC2 in the spectral decomposition as follows.

σABC := ρw(2, p1)AC1 ⊗Kc ρw(2, p2)BC2 =

16∑
j=1

|ψj〉〈ψj|,� (A.3)

where

|ψ1〉 =
√

(1 + p1)(1 + p2)|0 0 0〉, |ψ2〉 =
√

(1 + p1)(1 + p2)|0 1 1〉,

|ψ3〉 =
√
(1 + p1)(1 + p2)|1 0 2〉, |ψ4〉 =

√
(1 + p1)(1 + p2)|1 1 3〉,

|ψ5〉 =
√

(1 + p1)(1 − p2)

2
(|0 1 0〉 − |0 0 1〉), |ψ6〉 =

√
(1 + p1)(1 + p2)

2
(|0 1 0〉+ |0 0 1〉),

|ψ7〉 =
√

(1 + p1)(1 − p2)

2
(|1 1 2〉 − |1 0 3〉), |ψ8〉 =

√
(1 + p1)(1 + p2)

2
(|1 1 2〉+ |1 0 3〉),

|ψ9〉 =
√

(1 − p1)(1 + p2)

2
(|1 0 0〉 − |0 0 2〉), |ψ10〉 =

√
(1 + p1)(1 + p2)

2
(|1 0 0〉+ |0 0 2〉),

|ψ11〉 =
√

(1 − p1)(1 + p2)

2
(|1 1 1〉 − |0 1 3〉), |ψ12〉 =

√
(1 + p1)(1 + p2)

2
(|1 1 1〉+ |0 1 3〉),

|ψ13〉 =
√

(1 − p1)(1 − p2)

4
(|1 1 0〉 − |1 0 1〉 − |0 1 2〉+ |0 0 3〉),

|ψ14〉 =
√

(1 − p1)(1 + p2)

4
(|1 1 0〉+ |1 0 1〉 − |0 1 2〉 − |0 0 3〉),

|ψ15〉 =
√

(1 + p1)(1 − p2)

4
(|1 1 0〉 − |1 0 1〉+ |0 1 2〉 − |0 0 3〉),

|ψ16〉 =
√

(1 + p1)(1 + p2)

4
(|1 1 0〉+ |1 0 1〉+ |0 1 2〉+ |0 0 3〉).

� (A.4)
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Table A1.  Detection of genuine entanglement for σABC .

minb          p 2a

p 1a −1.000 −0.900 −0.800 −0.700 −0.650 −0.600 −0.550 −0.510 −0.501

−1.000 −0.1250 −0.0909 −0.0625 −0.0385 −0.0278 −0.0179 −0.0086 −0.0017 −0.0002
−0.900 −0.0909 −0.0630 −0.0398 −0.0201 −0.0114 −0.0032 0.0043 0.0075 0.0076

−0.800 −0.0625 −0.0398 −0.0208 −0.0048 0.0023 0.0089 0.0129 0.0137 0.0139

−0.700 −0.0385 −0.0201 −0.0048 0.0081 0.0139 0.0165 0.0179 0.0190 0.0192

−0.660 −0.0299 −0.0131 −0.0009 0.0128 0.0164 0.0181 0.0197 0.0209 0.0211

−0.620 −0.0217 −0.0064 0.0063 0.0159 0.0178 0.0197 0.0214 0.0226 0.0229

−0.580 −0.0141 −0.0002 0.0114 0.0171 0.0192 0.0211 0.0229 0.0243 0.0246

−0.540 −0.0068 0.0058 0.0131 0.0182 0.0204 0.0225 0.0244 0.0259 0.0262

−0.505 −0.0008 0.0075 0.0138 0.0191 0.0215 0.0237 0.0257 0.0272 0.0276

a p 1 and p 2 are the two parameters in equation (A.3).
b min is the optimization result of equation (A.1) and correct to four decimal places.
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Finally we show our numerical results in table  A1. If the value of min is negative, it 
implies σABC  with corresponding p1 and p2 is a GME state. Otherwise, it implies σABC  is a 
PPT mixture. From table A1 one can verify σABC  is tripartite genuine entangled states when 
p1, p2 → −1+. However, when p1, p2 → 0− we cannot detect the genuine entanglement of 
σABC  since it is a tripartite PPT mixture. It is essential for lemma 13 to determine whether 
σABC  is genuine entangled for all ε ∈ [h, 0) for a given neighborhood. So this is still an open 
problem for the future study.
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