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Abstract

We derive a thermodynamic uncertainty relation that governs the work yield
and the entropy production of an engine operating with a time-asymmetric
cycle such as the Carnot cycle. The relation shows an intercorrelation between
one engine cycle and its time-reversed cycle, disclosing the role of the time-
asymmetry of an engine cycle. It also illustrates that entropy production and
the arrow of time appear as the central quantities controlling the average and
the fluctuation of work.
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1. Introduction

The efficiency of a macroscopic heat engine acting between two heat baths at different
temperatures, Ty and T¢ (<Tpg), is limited by the second law of thermodynamics and has
a fundamental upper bound called the Carnot efficiency 1 — T¢/Ty. In a mesoscopic scale
where fluctuations are considered, recent studies provide an elaborated proof of the fluctuation
theorem of the following form:

e ZPp(W,X) = Pg(—W,-%), (1)

which is obtained for classical engines [1] and for quantum mechanical engines [2]. Here
W is work performed by the working substance of an engine during one engine cycle. Work
is defined by energy change of the working substance caused by time-dependent control of
an external parameter such as volume in the Carnot cycle. See [3] for the definition of work
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in more detail. The entropy production ¥ is defined by ¥ = AE/Tc + Qc/Tc + Ou/Tu
(ks = 1) where AE represents the difference in internal energy of the working substance at the
beginning and end of the engine cycle, and Qp ¢ is heat absorbed by the heat bath at temper-
ature Ty c. The energy conservation law reads as AE = —W — Qy — Q¢ when energy cost to
bring the working substance into thermal contact with heat baths is negligible. The engine is
assumed to be cyclic in the sense that the probability distribution of the microstate returns to
its initial distribution at the end of the cycle, so that the average value of AE is equal to zero.

Equation (1) relates two probability distribution functions: one is Pr(W, X), the joint prob-
ability of observing W and ¥ in an engine cycle (say, cycle F). The other joint probability,
Pr(W, %), is defined for the reversed operation of engine cycle F. To clarify the meaning of
the term ‘reversed’, we let A(7) to denote the external parameter at time #. Also, let I'y () and
T'c(¢) represent the coupling strengths of the system to a hot and to a cold bath, respectively.
If engine cycle F runs in time interval, 0 < ¢ < 7, in the reverse cycle R not only an external
parameter control but also coupling to heat baths run backward in time, that is, A(T — 7),
(T —1).

Integrating the relation (1) over £ and W yields

e\ = /dezPF(W,E)e—Z =1 )

From now on we use (X), to denote the average of X, which is a function of W and %, taken
with respect to P, (W, X) with o = F,R. The Jensen inequality e~ < (=) together
with equation (2) leads to (X)r > 0. Because (AE)r = 0 for cyclic engine processes, (3)r
amounts to the average entropy produced in one engine cycle, and therefore, (3)r > 0 proves
the second law of thermodynamics for a mesoscopic heat engine. On the other hand, using
energy conservation, AE = —W — Oy — Q¢ the inequality (X)r > 0 for a heat engine
((Qn)r < 0 and (W)p > 0) transforms into

(W)r _Tc
o S Ty

This relation shows that the efficiency of a mesoscopic heat engine cannot exceed the Carnot
efficiency.

In addition to the average work, work fluctuation is relevant, in particular, to quantify how
reliably a heat engine operates [4]. For a time symmetric control of an external parameter, the
thermodynamic uncertainty relation shows the relationship between the relative fluctuation of
work and the average entropy production as follows [5, 6]:

3

(e — 1)var(W) > 2(W)?, )

where (W) and var(W) denote the average and the mean square fluctuation of W defined
accordingly in the studies [5, 6]. We emphasize here that in the derivation of equation (4), the
coupling trajectory I'y ¢(#) is also time-symmetric, although not explicitly mentioned therein.
One might presume that equation (4), perhaps with a minor modification to it, would be still
valid even if an engine cycle is not symmetric in time. However, the Carnot engine disproves
equation (4); in a finite-sized engine that operators according to the Carnot cycle, the average
and the fluctuation of work are finite, whereas the average entropy production vanishes [7].
Therefore, the example of the Carnot cycle presents two points: first, the Carnot cycle is not
time-symmetric, and second, for engines operating in time-asymmetric cycles, a different type
of relationship from the equation must exist.

In this study, we prove that the work yield in engine cycle F intercorrelates with the work
yield in the reverse cycle R through the relation,
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Bs[var(W)p + var(W)g] = ((W)r + (W)g)?, (5)

where var(W),—r g is the mean square fluctuation of W with respect to P, (W, %), and By, can
be any of following three functions of (¥)s, (X)r, and A,

By =eh—1 (6)

By =2(e®F —1) @)

B*L[e"fl—lo (2-eY)] ®)
3 = 2 _ CA g >

where B, can be replaced with 2(e<Z>R —1), and we define the arithmetic mean,
(2)s = ((X)r + (£)r)/2, of the entropy production in cycle F' and R. We also prove that B3
is always greater than the other two functions. We can trivially obtain B, from equation (4): in
both equations (4) and (5) with By, = B, every quantity is symmetrized, and the distinction
between cycle F and cycle R becomes pointless. But the other two functions, B, and B3, neces-
sitate separate consideration. In equation (7), A is a quantity between 0 and In 2, defined by the
Jensen—Shannon divergence between two joint probabilities Pr(W, ) and Pr(—W, —X). As
will be discussed in section 4, the quantity A represents the length of time’s arrow and mea-
sures the distinguishability between cycle F realized in the forward time direction and cycle R
realized in the backward time direction.

We organize this paper as follows: in section 2, we present a detailed derivation of equa-
tion (5). In section 3, we discuss what equation (5) conveys in regards to the time-symmetry of
the engine cycle, and in section 4, the physical meaning of equation (5) is explained in terms
of the arrow of time. Summary follows as section 5.

2. Proof of equation (5)

Derivation of equation (5) consists of three steps: we first introduce a trial probability distribu-
tion Py(W,X), parameterized by A. Second, we obtain the bound of the variance of W from
the Cauchy—Schwarz inequality,

var(W)a=w,var(Y)x=w, > [cov(W,Y)[5_y, )

with Y taken as
Y=dlnPy(W,X)/d),

where var(X), is the variance of X with respect to Py (W, X), and 2W; = (W) + (W)g. Third,
we find upper bound of var(Y) —w, and the functions in equations (6)—(8). In addition to this,
the inequalities between the three upper bounds are derived in the last subsection.

2.1. Trial probability distribution

We introduce the trial probability distribution as

A W, — A
Py(W, %) =P,(W,2) | — - Nf (%
AW.E) = PW.E) [ + N () (10)
with A < W, for the positivity of Py(W,X). Here the function f(X) comes into play when A
deviates from Wi, it is defined as
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FE)=2/(1+¢%), (11)
and N is introduced to normalize Py(W, ) as
N7 = (F(2)s. (12)

In equation (10), Py(W, %) = [Pr(W, %) + Pr(W,X)]/2 is the symmetrized probability that
satisfies,

Py(W,X) = e>Py(—W,-X). (13)

This form is equivalent to the fluctuation theorem (1) when the cycle F is indistinguishable
from its reversed cycle R. Note also that P;(W,X) can be seen as the joint probability of
acquiring W and ¥ in a time-symmetric engine cycle C, by defining cycle C as a probabilis-
tic mixture of cycle F and cycle R. There is no distinction between the forward and reverse
operation of cycle C since the engine runs randomly in cycle F or cycle R with probability
1/2 in both operations. In what follows, for ease of writing, we use simplified notations for
the averages

o0
/ AWASX(W, £)Po (W, %) = (X)a, o = 5, \,
—0o0

in the same manner defining (X)rg. At A = W, the trial probability distribution is identical to
the symmetrized distribution:

Pa—w.(W,%) = P(W,%). (14)

We mention, in order, two properties of Py(W,X) important in our derivation. First, the
average of W with respect to Py(W,X)is A:

W, — A

s

Here the average (Wf (X)), vanishes, for f(X)Ps(W, %) = f(—3)P;(—W, —), which can be
proven by the use of equations (13) and (11). Second, the Fisher information of Py(W,X),

defined as
dlnPy\(W,%)7?
I(A>:<[n§§)] > : (16)
A

becomes, when A = W,

(Wix=A+

N(WF(E))s = A (15)

I(W,) = (N —1)/W2. (17
We can show equation (17), inserting equation (10) into equation (16) and setting A = W:
1 N?
W) ==y + WUZ(Z)%- (13)

Further exploiting the identity,

2 Py(W.%) | P(-W,-%
(A(D)) = 2/deE {(1&@))2 + (1(+ez)2)

<f(2)>s = N_l,

where equations (13) and (12) are used, we reach equation (17).
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2.2. Cauchy—Schwarz inequality

Now consider the Cauchy—Schwarz inequality (9). Note that the average of Y defined below
equation (9) vanishes because

dInPy(W,X) d
< D T a dWdEPy(W,X) =0 (19)

for the normalized distribution P,. Therefore, the covariance between W and Y is given by

dlnP,\(W,E)>
A

cov(W,Y) = <W D

J (20)

)
The last equality is obtained, using equation (15). Also because (Y), = 0, the variance of ¥ is
identical to the Fisher information (16), namely,

(Wix=1

var(Y)=w, = I(W,) = (N = 1)/W}. 1)
Inserting equations (20) and (21) into equation (9), we obtain

var(W)a=w, = W; /(N - 1). (22)
Finally using 2var(W)=w, = var(W)p + var(W)g and 2W; = (W) + (W), we arrive at

(W)r + (W)r)
2N—1)
which indicates that the fluctuation of work is bounded from below by the sum, (W)g + (W),

and also by the factor N. The remaining problem is to find N and, in particular, its relation with
entropy production (X)r and the Jensen—Shannon divergence A.

var(W)g + var(W)g > (23)

2.3. Bound of N

We now attain a few inequalities that N satisfies and obtain 5, and Bs. Recall that equa-
tion (12) determines N as

1 1

N = S + 5

For nonnegative (f(X))r.r, using {f(2))r = (f(X))& because of the fluctuation relation (1),
we can rewrite equation (12) as

N = 2L + 49

Here ¢ can any arbitrary constants, but the particular choices of ¢ enable us to relate the upper
bound of N with the average entropy production and the arrow of time, as will be shown below.

(i) Obtaining B,: for ¢ = 0, using Jensen’s inequality, In(f(X))r > (Inf(X))r, we obtain,
from equation (24),

—InN =In{f(2))r = (Inf(2))r = —()r. (25)
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The last inequality comes from considering
(Inf(2)r = —(X)r + (In(”f(2))r = —(Z) . (26)
Therefore, N satisfies N < e<E>F, which combined with equation (23) proves that

2(el)r — 1)[var(W)r + var(W)a] = ((Whr + (W)e)*.

This relation shows that By, in equation (5) is B, = 2(e<E>F — 1) as given in equation (7).
Choosing ¢ = 2 replaces (X)r with (X)g only.

(i1) Obtaining Bs: from equation (24) for ¢ = 1, we can reexpress N in terms of absolute value
of entropy |Z| as

2(f(5))s — (F(Z))s = 2(f(2))s — (f2(Z))s
= (f(2)f(=2))s
= (W (Z))s 27)

with the function fy(x) = f(x)f(—x). On the other hand, the Jensen—Shannon divergence A
is defined by

A= SKLIPHOIIM(E)] + SKLIPR(~)M(¢)] (28)

with § = W, X and 2M (&) = 2M(W, %) = Pp(W,X) + Pr(—W, —X), and in terms of %,
it is written as

= (fa(12]))s (29)
with the function f4(x) defined by

130 = S0 W) + 37 (—0) (). (30)

Since f4(x) i 1s a monotomcally increasing function for x > 0, we can define the inverse
function f; ' satisfying f; ' o fa(x) = x. Then the composite function fy o f; ' becomes
a convex function (the graph of fy o fA_1 is presented in figure 1(a)), and the Jensen’s
inequality gives

Y= (fvofi "AUZD))s = fvofi ' (A). 31)

From this, we obtain another lower bound of N~! less than fy o fA_l (A) but written in
more manageable form

N> 2-¢

1 —log(2 —ef)’ (32)

The comparison between these two bounds is illustrated in figure 1(a). Combining this
with equation (23), the inequality

2
2—et

¢! — 1 —log(2 — e")] [var(W)r + var(W)g] = (W)r + (W))?
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is proven as desired.

2.4. Inequalities between By, Bo, and Bs

Here, we prove that Bs is less than or equal to B; and B,. To demonstrate the inequality
between BB and Bs, we express the symmetrized entropy in terms of | X|

(S), = 2SS+ 5 (F (D),

33
= (40D, oy
with a monotonic increasing function fi(x) = x[f(x) — f(—x)]/2 of x > 0, where the sec-
ond equality comes from equation (13). Considering a monotonic increasing functions b;(x)
defined by

bi(x)=¢"—1 (34)
for x > 0 and b3(x) defined by
2 X X
bi(x) = T [¢F—1—1In(2 —e)] (33)
for 0 < x < In2, the Jensen—Shannon divergence A satisfies
A= (faofs (F(ZD)), Shof (D)) < b3 obi((D)y). (36)

Here, we use the Jensen’s inequality with the fact that the composite function f3 o £~ (x) is
concave and satisfies f3 o f;!(x) < b3 ' 0 by (x) for all x > 0 (the illustration of the function
by LS byand fy o fs_1 is presented in figure 1(b)). Since b3 is a monotonic increasing function

for 0 < x < In2, we finally get
Bs = b3(A) < bi((X);) = B (37)
To derive the inequality between 15, and B3, we obtain an upper bound of A as:
A< 1n<efA(Z)>s — 1n<efA(E)(1 +e75)/2)r
=InEe" @0 +e )2+ (1 - D)
= In{fexpa (5))r 8
where the fluctuation relation equation (1) is used in the first line and the second line comes
from equation (2). The function fu,pa(x) = e4® (1 +e7*)/2 4+ (1 —e™) is a monotonic

increasing function less than 2, and (fexpa(X))F is always greater than or equal to 1 since
A > 0. If we define monotonic increasing functions fi, (x) and by(x) as

_ [In(x) ifl<x
fln(x)_{x—l ifx < 1 (39)

b2 (x) =

{2(6" —1) if0<x
(40)

2x ifx<0

and extend the domain of the function b3(x) to x < In 2 by setting b3(x) = 4x for x < 0, we get
following from Jensen’s inequality,
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Figure 1. The illustrations of functions used in derivation. (a). The graphs of
y =fvofy '(x) (red solid line) and y = (2 — &) /(1 — log(2 — €")) (greed dotted line).
The function fy o f; ' (x)is convex and greater thanorequalto (2 — e*) /(1 — log(2 — e*))
in the range of x € [0,log?2]. (b). The graphs of y = f4 o f~'(x) (red solid line) and
y = by ' o by (x) (greed dotted line). The function f4 o £;"!(x) is concave and less than
or equal to b;l o by(x) for x > 0. (c). The graphs of y = bz_l 0 b3 0 fin © fexpa(x) (red
solid line) and y = x (greed dotted line). The function b, Yobsyo Sin © fexpa(x) is less
than or equal to x for all x.

by ' (B3) < by ' 0 b3 o fin ({fexpa(D))r)
< <b2_1 o b3 Oﬁn ofCXpA(E)>F3 (41)

since the composite function by To b3 o fin(x) is convex for x < In2. In figure 1(c), we can
see that by Yo b3 0 fin 0 fexp A4(X) is always less than or equal to x, so equation (41) gives
by ' (B3) < (X)r. Since by(x) is a monotonic increasing function, we finally get

By < b2((X)F) = Ba. (42)

3. Implications of equation (5)

Here, we discuss the implication of equation (5) with equations (6) and (7). When cycle F
is identical with cycle R, the relation (5) with By = B; is reduced into equation (4) because
(WYp = (W)g, var(W)p = var(W)g, and (X); = (X)r = (X)g. An engine cycle having the
identical reverse cycle is only realizable if the engine protocol satisfies time-symmetric prop-
erty as A(1) = A(T — t) and 'y () = T'y.c(T — t). Suppose time-symmetric cycles that hap-
pen to produce positive work average, (W)r > 0, as exemplified in [8] and [9]. Such engine
cycles are less effectual: on one hand, their reverse cycles cannot furnish us with a refrigerator
because Pr(W, %) = Pgr(W, %) and hence, (W) is also positive. On the other hand, accord-
ing to the relation, they are allowed to yield a finite work average without entropy production,
only when paying the cost of infinite work fluctuations.

In sharp contrast, the Carnot cycle are time- asymmetric because of 'y (T — t) # Ty (1)
(see figure 2), and they act as a refrigerator when running the cycles backward in time. For
this case, equation (5) with By, = BB, shows an intimate relation between the work yield of a
heat engine and that of a refrigerator. Especially for the Carnot cycle, we have (X); = 0 which
leads (W)p = (W)

From equation (5) with Bs, = 3,, we can see that the entropy production in one engine
cycle (say (X)r) restricts not the average work (W) resulting from cycle F but rather the sum
of (W)r and (W)g. Provided that the work fluctuation is not infinitely large, the inequality

8
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Figure 2. Schematics of the control parameter A(f) and the thermal connectivity
T'g.c(#) during two periods of the Carnot cycle. Here one can regard A(¢) as the volume
of gas as a working substance. The Carnot cycle consists of four processes: isothermal
compression (0 <1 <t,) at T¢, adiabatic compression (f, <t < f), isothermal
expansion (7, < t < t.) at Ty, and adiabatic expansion (7. < ¢ < T'). For simplicity, we
present A(7) as the linear ramp. Although each process is a quasi-static process and
takes a long time, the trajectories of I'c g(#) are clearly not time-symmetric.

(5) with By, = B, for (X)r = 0 indicates that (W)r = —(W)g. Because of (W)p # (W) for
time-asymmetric engine cycles, (W) can be non-zero even when entropy production van-
ishes ((X)r = 0).

On the other hand, we write equation (5) with By, = B; as

Byvar(W)r = ((W)r + (W)g)*/(1+1) (43)

with 1 = var(W)g/var(W)r and may view the left-hand side of equation (43) as the uncer-
tainty of engine cycle F, which is probably the reason that equations of such form are called
the thermodynamic uncertainty relation. Notice here that B, can be written as

By = 2(e (=0 _ 1y,

thanks to (e*2> r = 1, as mentioned in equation (2), and that it contains the fluctuation of ¥
around its average (X)r. The relation (43) shows that the uncertainty of cycle F can have a
minimum bound either when (W)p + (W)g vanishes or when 7 goes to infinite faster than
(W)r + (W)g. The former happens in the Carnot cycle. What kind of engine cycles accom-
plishes the latter condition remains as a question, while thermodynamic rules known so far do
not exclude the possibility of such engine cycles.

4. Arrow of time

Although the external parameter control and the coupling strength of cycle F and the cycle R
are the time-reversal of each other, the statistics of W and X obtained in cycle F is not identi-
cal to that measured in the reversed time direction in cycle R. This fundamental asymmetry is
often called the thermodynamic arrow of time. The Jensen—Shannon divergence A, defined in
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equation (28), is often called the length of time’s arrow because it is a standard measure of this
asymmetry [10]. The value of A lies between 0 and In 2. When Pp(W,X) = Pr(—W, %),
meaning that the statistics of W and X obtained in cycle F is indistinguishable from that of —W
and —X obtained in the cycle R, A reaches its minimum value 0. On the other hand, A
approaches In2 when Pr(W, X) has negligible overlap with Pgr(—W, —X), or in other words
when the statistics of W and X obtained in running cycle F is perfectly distinguishable from
that of —W and —X obtained in the reversed cycle R.

Equation (5) with Bs allows a lower bound of A to be determined by measuring work in the
forward and reversed engine cycle. The value of A approaches to In2 when ((W)r + (W)g)?
is much greater than var(W)g + var(W)g, which is consistent with the fact that the two prob-
abilities Pr(W, X)) and Pgr(—W, —X) are completely distinguishable in this limit. On the other
hand, equation (37) shows that A is bounded from above by a monotonic increasing function
of (X); or (X)r. Consequently, from equations (37), (42) and (5) with B3, we can determine
the range of A as

b1 ( (W)r + (W)r)?
3\ var(W) g 4 var(W)g

) <ALh ' (Biora) (44)

with By, B,, and b3 defined in equations (6)—(7) and equation (35). In the case of Carnot cycle,
(X)s = (X)r = By = B, = 0, which leads A = 0.

Here, we discuss the physical meaning of the relation (5) with By, = By or B; in terms
of time’s arrow. The ratio between ((W)g + (W)g)? and varg(W) + varg(W) measures how
the work measured in cycle F is distinguishable from that measured from the time-reversal
of cycle R. If this ratio is finite, the length of time’s arrow A is finite by relation (5) with
Bs; = Bs. Since the finite length of the time’s arrow indicates that there is a dissipation in
cycle F and R as equations (37) and (42) show, the entropy production and the symmetrized
entropy production should also be positive.

To sum up, equation (5) shows that entropy production is always positive if cycle F and
the time-reversal of cycle R can be distinguished by measuring work. In the case of time-
symmetric engine, they can always be distinguished by the sign of the average work if the
average work yield is non-negligible compared to its fluctuation. In contrast, in the Carnot
engine, even if the harvested work is statistically significant, cycle F cannot be distinguished
from the time-reversal of cycle R.

5. Summary

We have derived relation (5) that dictates work, entropy production, and the arrow of time,
and a detailed proof have been presented based on the fluctuation theorem (1). Work yield in
engine cycle F correlates with work yield in cycle R, the reverse of cycle F, and they enter into
relation (5) only through the sums. We have discussed a few aspects that equation (5) explains.
A time-symmetric engine cycle can yield a finite work average only when accompanied either
by a finite entropy production or by infinite work fluctuations. For time-asymmetric engine
cycles such as the Carnot cycle, such restriction disappears; they can deliver a finite work-
average in the absence of entropy production. The concept of time’s arrow provides a physical
understanding of equation (5). The Carnot cycle is, indeed, a very special time-asymmetric
engine cycle. It has the minimum length of the arrow of time quantified by equation (28) and
the minimum of the uncertainty defined in equation (43).

10
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