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Abstract
Crowdsourcing is a strategy to categorize data through the contribution of
many individuals. A wide range of theoretical and algorithmic contributions
are based on the model of Dawid and Skene. Recently it was shown in the
work of Ok et al that, in certain regimes, belief propagation is optimal for
data generated from the Dawid—Skene model. This paper is motivated by this
recent progress. We analyze a noisy dense limit of the Dawid—Skene model
that has so long remained open. It is shown that it belongs to a larger class
of low-rank matrix estimation problems for which it is possible to express
the Bayes-optimal performance for large system sizes in a simple closed
form. In the dense limit the mapping to a low-rank matrix estimation problem
provides an approximate message passing algorithm that solves the problem
algorithmically. We identify the regions where the algorithm efficiently
computes the Bayes-optimal estimates. Our analysis further refines the results
of Ok et al about optimality of message passing algorithms by characterizing
regions of parameters where these algorithms do not match the Bayes-optimal
performance. Besides, we study numerically the performance of approximate
message passing, derived in the dense limit, on sparse instances and carry out
experiments on a real world dataset.
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1. Introduction

The development of large-scale crowdsourcing platforms, such as Amazon’s MTurk, has pop-
ularized crowdsourcing as a simple approach to solve various problems that remain difficult
for computers but require little effort for human workers. The overall strategy is simple: the
requester poses a set of tasks that are allocated to several individuals from a pool of workers
(the crowd). The workers answer according to their abilities and their will. Importantly, the
set of answers is typically not unambiguous and post-processing has to be performed in order
to infer the true information (typically labels) from the noisy observations (answers). With the
crowds answers at hand the objective becomes to infer the true labels with as few mistakes
as possible. The outcome of such a strategy strongly depends on the competences of the indi-
viduals; which makes it necessary to infer not only the true labels, but also the competences
of the individuals.

A large fraction of the theoretical work on crowdsourcing focuses on the so-called Dawid—
Skene (DS) model, after the authors of the seminal paper [1]. In the DS model we consider N
workers, each of them of a certain reliability that denotes the probability that a worker gives
the correct answer, represented by 0 < p? < 1 for worker i = 1, ..., N. Further there are M
tasks, each possessing a true label that we denote by UJQ S {:i:l} fortask j=1,...,M. The
worker i is assigned a subset of tasks, denoted as 9i C {I,...,M}, to which it assigns an
answer L; € {1} Vj € di. We denote L; = 0 if j ¢ Oi, i.e. for tasks that were not assigned
to worker i. In the DS model labels provided by worker i for task j are modeled as

P(Ly) = pY§(Ly — 09) + (1 = p)5(Ly + o)) . (1)

Moreover it is assumed that the p?s are drawn independently from some probability distribu-
tion Py

The task allocation design (which tasks gets assigned to which worker) is in general part
of the crowdsourcing problem and various strategies have been described and studied in the
literature. It has been argued that designing the graph of assignments at random has practical
and optimality advantages, among others it enables a sharp theoretical analysis of the prob-
lem, see e.g. [2].

While in general reconstructing the true labels and workers reliabilities from the observed
answers, L;;, is an NP-hard problem, a range of algorithmic approaches has been suggested
in the literature, see e.g. [2—11]. The majority of the existing literature focuses on the regime
where the probability of error per task goes to zero and studies the corresponding convergence
rate under various conditions.

We are instead interested in a noisy high-dimensional regime where, in the limit of large
system size, the probability of error per task stays bounded away from zero, and ranges
between zero and as large as in the case of random guessing. Optimality results includ-
ing exact constants in this regime are mathematically challenging. The authors of [12, 13]
obtained a remarkable theorem stating that in certain regions of parameters in the noisy high-
dimensional regime belief propagation (BP) reconstructs the true labels optimally in the sense
that it minimizes the expected bitwise error. The BP algorithm for crowdsourcing was first
suggested by [14].

The goal of the present paper is to carry out an analysis of the DS model in the noisy high-
dimensional regime. Our theoretical results apply in a scaling where each worker is assigned
randomly a constant fraction of the M tasks and M scales linearly with N. Otherwise we are
in the same setting as [12, 13], i.e. with random worker reliabilities and on random graphs.
From our analysis it is possible to characterize tightly the region of parameters for which BP is
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optimal and for which it is not. We find cases where a first order phase transition appears in the
error of reconstruction of the true labels. As we reveal later, such a first order phase transition
is associated with a region of parameters in which BP does not match the Bayes-optimal per-
formance. Our work can therefore also be seen as a follow-up on [12, 13] providing a refined
analysis of the regions of parameters for which BP is or is not optimal.

1.1. Our contributions

In this paper we study a scaling limit of the DS model where the number of tasks and workers
grow proportionally to each other, and the precision of each worker is poor in such a way that
the limiting probability of error per task is bounded away from zero in the large size limit. We
assume the observed data were generated from the DS model and we assume the parameters
of the model to be known. We then study the performance of the so-called Bayes-optimal esti-
mator that minimizes the expected bitwise error on the labels and the expected mean square
error on the workers reliabilities.

Our main results are based on the realization that in this case the DS model is a special
case of noisy high-dimensional low-rank estimation problems studied recently in [15-21]. We
transfer results from those works to the present setting of the DS model and obtain the follow-
ing contributions:

e We propose the approximate message passing (AMP) algorithm to approximate the
Bayes-optimal estimator in the DS model.

e We provide a sharp (up to constants) characterization of the error achievable by the
Bayes-optimal estimator.

e We analyze where the AMP algorithm achieves the Bayes-optimal error and provide a
detailed phase diagram. This reveals a so-called hard-region where the AMP algorithm
does not achieve the Bayes-optimal performance.

e We show numerically that the results obtained in the dense regime also translate into the
sparse regime of the DS model. In turn this reveals the existence of regions where BP is
sub-optimal.

1.2. Related work

Starting with the seminal paper of Dawid and Skene [1] many of the early works have focused
on expectation-maximization (EM) algorithms and closely related approaches [3-8]. Besides
its popularity for theoretical analysis, the DS model is sometimes too restrictive for practical
applicability and several extensions have been proposed in the literature [8, 22-25]. Other
works are based on spectral algorithmic methods, e.g. [10, 11] and [9] which combines a
spectral method with the EM algorithm. Spectral methods can be advantageous when the
underlying task-worker graph is not random [9, 11].

The authors of [2] were the first to propose a message passing scheme that turned out to
be closely related to the BP algorithm. The derivation of the BP algorithm is based on the
Bayesian analysis of a generative model and was first given in [14]. The authors also revealed
how EM algorithms are related to mean-field methods and how majority voting and the itera-
tive algorithm of [2] are related to BP. These efforts culminated in the works of [12, 13] that
proved optimality of BP under certain assumptions on the parameters of the model. The pre-
sent analysis of the dense DS model is able to determine sharply in what regions of parameters
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AMP matches the Bayes-optimal estimator and when it does not, thus refining the previous
picture in the limit, where AMP and BP are asymptotically equivalent.

We show that the dense DS model belongs to a class of low-rank matrix factorization
problems, as studied in [15, 16] and analyzed recently by statistical physics techniques in [17,
18]. The authors of [17, 18] derived the AMP algorithm for low-rank matrix factorization and
analyzed the Bayes-optimal performance in a closed form. We apply the results derived in
those papers and identify the region of parameters for which the associated AMP algorithm
is suboptimal.

One of the merits of AMP is that its asymptotic performance can be described via the so-
called state evolution, as proven in [19, 20]. The performance of the Bayes-optimal estimator
was also later put on fully rigorous bases in the work of [21] under assumptions that include
the dense DS model as considered in this work.

From a physics point of view the model corresponds to a bipartite planted spin glass model
that is closely related to the Sherrington—Kirkpatrick model [26]. The AMP equations corre-
spond to the Thouless—Anderson—Palmer mean field equations [27] with correct time indices.
Finally, the state evolution equations describe the stationary points of the replica-symmetric
free energy that can be derived by means of the replica method from statistical physics.

1.3. Organization of the paper

In section 2 we first define a dense version of the DS model and outline the Bayesian infer-
ence setting considered in this work as well as the AMP algorithm for the dense DS model.
In the following section 3 we apply the algorithm to a real-world dataset before we move to
the theoretical analysis of the AMP algorithm for synthetic data in section 4. In the latter sec-
tion we also draw a detailed phase diagrams for the dense DS model. Finally, in section 6 we
investigate numerically how the results—valid in the dense regime—transfer into the sparse
regime, as originally considered for BP in [13, 14].

2. Dense version of the Dawid—Skene model

In this section we introduce a dense version of the Dawid—Skene model (dDS) for crowd-
sourcing that is considered in this paper. We chose it in such a way that it can be mapped onto a
low-rank matrix factorization problem studied previously with approximate message passing
(AMP). The considered regime is dense in the sense that each of the N workers is assigned
©(M) questions'.

2.1. Definition of the large size limit of the DS model

Consider a crowd of N workers and a pool of M tasks. Assume that each task j comes with
a true label ZJ]Q € {£1} and that the labels are independent and identically distributed (iid):
Z)JO ~ Py Vj€{l,...,M}. In the DS model (see (1)) the workers are assumed to be char-
acterized by a single scalar parameter p?. Similarly to the tasks we assume the probabili-
ties of the workers to be iid: p? ~ Py Vi€ {1,...,N}. Each worker, i, is assigned a subset
0i C {l1,...,M} of tasks from the pool. This subset is assumed to be drawn at random, such

'We make use of the standard big-theta and big-O notation. We refer to a function as ©(N) if its dominant asymp-
totic growth rate is proportional to N. While O(N) refers to an asymptotic growth rate that is bounded by some
constant times N.
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that its expected size is E[|9i|] = (1 — p)M. Similarly, we denote by 9j C {1,...,N} the
subset of workers that participate in task j. The rest of the paper is set in the high-dimensional
dense regime where M, N — oo, while « = M/N = O(1) and p = ©(1). Later, in section 6,
we will discuss how to extrapolate the results into the sparse regime where each worker is only
assigned to O(1) tasks.

Under the above assumptions, the regime in which the error per task is bounded away from
zero but (possibly) better that random guessing is such that

pl=(1+\v/N6)/2. 2)
The parameter v is an overall scale parameter, while 6 is the rescaled reliability of worker i,
drawn iid from Pgo. The above scaling for the DS model is such that the noisy high-dimen-
sional regime is amenable to closed form analysis in terms of both the Bayes-optimal perfor-
mance and the corresponding message passing algorithm. Generalization to other scalings in
which the resulting error remains strictly between zero and randomly bad is of interest, but is
left for future work.

Workers with §; = 0 give answers that are completely uninformative and will be called
spammers. On the contrary if §; > 1, then the answers are ‘strongly’ (yet only of order 1/v/N)
aligned with the truth and we refer to such workers as hammers. Adversaries that willingly or
unwillingly align against the ground true labels are characterized by 6; < 0. They may also
be considered hammers if §; < —1, because their answers are aligned against the truth, as
opposed to the random alignment of the spammers.

We denote with L;; the label assigned to question j by worker i and assume L;; € {0, +1}. If
question j was not in the set 9j of answered questions we set L;; = 0. We assume that for each
ij the L;; is generated independently of the others. Under the above assumptions the /ikelihood
in the dDS model becomes

1 [v
P(Lj=016: v;) = p,

where we assumed that the fraction of un-answered questions, p, is independent of ij.

2.2. Bayesian estimators

Given the matrix L the aim is to recover the true labels v° and (rescaled) reliabilities 8°2. In
this work we assume a Bayesian inference setting. In Bayesian inference we aim to compute
the estimators, © and 0, that minimize the expected bitwise error (ER) on the labels

2
1 R 1 o —o?
ER, = Ewp | 372 18 #9) | = Eop MZ<’2 ’) “)
; .

J

11 i
=Eop | 577 2 (1= 87)) ®)

J

and the expected mean square error on the reliabilities

2 Here and in the rest of the paper, upper case bold letter indicate matrices and lower case bold letters indicate
column vectors.
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MSEg = Ego|,

% 3 (éi - 0?)2] . ©®)

In order to compute the above objectives explicitly it is necessary to specify the posterior
probability. This requires the specification of the likelihood P(L | 8,v) and the priors Py(6),
P,(v). The first was specified above for the dDS model, while the latter remains unspecified
for now. From Bayes’ theorem we obtain

PO.010) = 5o TT 2o IT Pew) TI Pslen). )

1<i<N 1M 1IN A<M

The estimators that minimize the above objectives are then computed using the posterior as

GUVSE (1) _ / do,0:P (0; | L) ®)

(L) —sign [ douyP (o] L), ©

where P (x; | L), with x; € {{0}i=1,.._~, {v;}j=1,..m} are the marginals of the posterior.

Inferring the reliabilities and labels in the crowdsourcing problem hence reduces to evalu-
ating the marginal expectations of the posterior probability distribution. In general this is a
difficult task. In the next section we show that the dDS model falls into a class of low-rank
matrix estimation problems for which the posterior probability distribution can be evaluated
in the above large size limit [18].

Note that the above estimators may be computed with either the true or a mismatched
model. We therefore distinguish the Bayes-optimal estimators, that assume the true underly-
ing model with which the data was generated, from the mismatched estimators that assume
some model that is not matching the true one. In the theoretical part of this work (i.e. in all
but section 3) we assume that the distributions from which the ground truth, {09} and labels
{Uy} are drawn, Pgo and P respectively, are known, as well as all other parameters. Under
these assumptions we aim to (a) compute efficiently the Bayes-optimal estimators of 9? and
v]‘-), given the answers L;; and (b) to evaluate the large size performance of the AMP algorithm.
Note that in practice when some of the parameters are not known, they could be learned, but
this is not the focus of our paper.

2.83. Equivalence to low-rank matrix estimation

The dDS model is a special case of bipartite low-rank (rank one in the present case) matrix
factorization as formulated in a much more general setting in [18], and whose results were
proven rigorously in [21]. In the rest of this section we follow closely these two papers and
review the results that will be applied to the dDS model.

Denoting by @ € R the vector of rescaled reliabilities for all N workers, and v € R the
vector of labels, we set

Qo7
w

3

(10)
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and re-express (3) as

P (L | wy) = exp (g(Ly, wy))

e(Lywy) = {log (U52) +10g (14 vowy) i Ly = +1 (11)
log (p) if L; = 0.

It is now not difficult to show [18, 28] that it suffices to expand g(L;;, w;;) w.r.t. w;; up to second
order, due to the ©(1/+/N) scaling of w. This allows to re-express the likelihood P(L;; | wy)
as a Gaussian with (inverse) effective noise A

9g(Lyj, wy)
8Wij

2
> =(1=pr. (12)
w;i=0

~1
A7 = Ep(rw;=0) (

In turn this means that the dDS model as introduced before is asymptotically equivalent to a
rank-1 matrix factorization problem under Gaussian white noise.

2.4. Background on algorithmic approaches

One of the basic algorithms used for low-rank estimation are the spectral methods that are
based on the spectral properties of the labeling matrix L, e.g. [9-11]. The spectral methods
bring the advantage that they are typically algorithmically simple, robust and need no speci-
fication of an underlying generative model. On the other hand they are typically not Bayes-
optimal (unless in some limits).

The widely deployed EM algorithm requires a specification of the likelihood function of
the data, L. The EM algorithm then computes the maximum likelihood estimators by alternat-
ing between a maximization step to estimate the reliabilities and an estimation step to compute
the expected labels. Unlike the spectral algorithms it requires the specification of a model and
much effort has been put into improving the model used for crowdsourcing [4-8].

BP also requires the specification of a generative model (as in (7)). Unlike EM, it directly
approximates the Bayes-optimal estimators (9) via message passing. The messages are the
conditional probabilities that live on the edges of the associated graphical model (as outlined
in the appendix). The BP equations are self-consistent equations for these messages that can
be solved iteratively. The main shortcoming of BP is that it requires the computation of a con-
tinuous distribution over the reliabilities for each message.

One possible simplification is obtained by absorbing all 85, into a common factor node
in the graphical model. This is done by integration over 6 and is the strategy followed by
[12—14]. Owing to the binary labels the resulting BP equations can then be solved more effi-
ciently. However, this approach becomes unfeasible in the dense regime because too many
messages need to be computed. Another approach to circumvent these issues, closely related
to both BP and the spectral methods, is the iterative algorithm of [2] that can be interpreted as
a linearization of BP. It can also be interpreted as a spectral method applied to the non-back-
tracking operator [29]. However, such a linearization is only justified in particular regimes and
otherwise results in sub-optimal performance.

AMP bypasses the issues of BP while maintaining the performance: in the dense regime it
is possible to derive a simplification of the BP equations (without requiring an integration over
0) that only requires the computation of ©(N) beliefs. This AMP approach relies on the fact
that the messages are effectively Gaussian as the underlying factor graph is densely connected.
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Algorithm 1. Approximate message passing for crowd sourcing.

Data: S, A, §; /I'S and A according to (14) and (12) respectively.
Result: MMSE estimates © and 0

L A anit . ~old
Initialize: & < 9™ ~ Py(v), 0 0" ~ Py(0); 00+ 1,00 + 1; 90,0 —o:
2

0 « fo(A0.Bo). 09 < % 31 <icn O, fo(Aa. By,):

0 < fo(A0. By), 0 < 37 201 <jcm OB, fo(Av, By )i
end

2.5. Approximate message passing

The approximate message passing (AMP) algorithm for low-rank matrix estimation is a sim-
plification of BP in the limit of dense graphical models. In this limit both, BP and AMP
have the same asymptotic performance. However, AMP is much simpler to implement and
has a favorable scaling w.r.t. the problem size. It is closely related [29, 30] to the Thouless—
Anderson—Palmer equations [27] from the theory of spin glasses. AMP for low-rank matrix
factorization was first derived for special cases in [16, 19] and in its general form in [17, 18].
For the readers convenience, we give a derivation of the equations in the appendix. The
AMP derivation procedure can be summarized as follows. One starts from BP and performs
the following two simplifications. First, the BP messages are replaced by their means and vari-
ances which eradicate the necessity of tracking a whole function for each message. Secondly,
each (mean and variance) message is replaced by its marginal version, reducing the necessary
variables from O(N?) messages to O(N) marginals. The AMP equations compute the estimates
(9) in terms of a set of self-consistent equations. For details we refer the reader to the appendix.
We briefly recall the essential elements necessary to state the AMP algorithm for the dDS
model, the details of which can be found in the appendix. To state the AMP algorithm for
the dDS model it is necessary to specify the denoising functions fy(Ag,By) and f,(Ay, By)
that depend on the priors Py and P, respectively. A and B are estimates for the param-
eters of a Gaussian distribution that are computed self-consistently. The estimate X; (with
xi € {{6:}i=1....~n, {vj}j=1....m}) are then computed as the mean of the prior weighted with this
effective Gaussian. The estimates for their variance are obtained from the derivative w.r.t. B.

(13)
To state the final equations we further need to define the Fisher score matrix
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where g(L;, wy) is defined in equation (11).

Given these definitions AMP is the iterative scheme that we outline in algorithm 1. Unlike
BP, the AMP equations close directly on marginal quantities. Very much like naive mean field
equations, no message passing is necessary. Instead the equations are directly expressed in
terms of the local fields, Ag, A, and By, B,, acting on the variables and from which the estima-
tors are computed via (13). The major difference as compared to a naive mean field approach
are the second terms that appear in the right hand side for By and B,,. These are the so called
Onsager reaction terms. They correct the naive mean field contribution of the first terms and
add momentum to the equations, which is crucial for the convergence. The Onsager reaction
term corrects for the fact that the equations were closed on the nodes of the graphical model
(see figure A1) directly, instead of the messages, and prohibits a self-interaction of the estima-
tors on the nodes.

The algorithm requires the specification of the priors, P, and Py, as well as the param-
eters A and v. In practice the true priors are typically not known (or they might simply not
exist), but nevertheless the algorithm may be used, if some prior is specified, as is standard in
any case of Bayesian analysis. Once a distribution is specified its remaining parameters can
be learnt®. The algorithm further requires the specification of initial values for 6,7 that we
draw from the prior distribution®. Finally, let us note that the numerical implementation of the
algorithm might profit from an adequate damping scheme in order to enhance convergence on
small instances or when the model assumptions are not satisfied.

The great advantage of the algorithm lays in its low computational complexity, simplic-
ity and in its amenability to an exact analysis for synthetic data (as we shall see later in
section 4).

3. Approximate message passing on real data

Before moving towards the theoretical analysis of the AMP algorithm (algorithm 1) we pres-
ent a concrete application of the algorithm to a real-world dataset. We tested the algorithm on
the bluebird dataset of Welinder et al [8]. The dataset contains labels for M = 108 tasks from
N = 39 workers. This dataset is fully connected, minimizing effects introduced by poorly
designed task-worker-graphs.

We stress that comparisons between BP and existing algorithms were already performed in
[14], where BP was found to be superior. Our main point in this section is that AMP, which is
simpler than BP, gives a comparable performance to BP even on real-world data. We therefore
focus on the comparison between BP and AMP and use the same priors and parameters as in
[14] which also puts AMP in perspective to the other algorithms tested there (approximate
mean field and EM).

Following [14] we also implemented a ‘two-coin’ extension of AMP that assumes that the
true positive and true negative rates are different. We define 6_’; = (83, 1;) with s; the sensitivity
of worker 7 and #; indicating its specificity. We have

3 One approach in the setting of this work, closely related to expectation maximization, is to minimize the ‘Bethe
free energy’ with respect to the parameters that are left open. The Bethe free energy is the objective that the AMP
equations minimize and therefore also a function of all the parameters, appearing in the algorithm. The Bethe free
energy can be found in [18].

“However this choice is not unique and different strategies can be employed in practice. In the numerical experi-
ments we have also tried initializations and observed no visible difference in the fixed point.

9
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Figure 1. The bitwise error on the labels against the number of workers per task, d.
The following different algorithms are compared to AMP on the bluebird dataset: BP,
majority voting and the algorithm proposed by Welinder et al [8]. As explained in the
text, we implemented two different version of AMP and BP: a symmetric one in which
the sensitivity and specificity are equal and an asymmetric version (referred to as ‘2-¢’
in the legend). Finally we also plot results obtained when AMP is run with an early
stopping criterion of 10 iterations, indicated by the ‘early’ suffix. The oracle lower-
bound results from maximizing the posterior probability for known worker reliabilities
(of course we do not have access to the true reliabilities of each worker, but we can
estimate them as the fraction of correctly labeled data points from the knowledge of the
ground truth). For BP and AMP the priors are set to independent Beta(2, 1) distributions
on 6. We averaged over 100 samples for each d.
. (1 + S,’)

. <1 - tl) (1)

As in section 2.3 we cast the above model into a rank-2 matrix factorization problem by setting

P(L,-,:iué,», vj=+1)=(1—p)~
(

N = N =

EEER

1 o 0. Lo
v = (0) if question j is true and 0; = (_ 1) if question j is false. (16)

The only difference is that the former rank-1 matrix w, see (10), now becomes a rank-2 matrix
with @ € R¥*2and v € R¥*2. The equations for a general rank are derived and given in detail
in [18].

In figure 1 we compare AMP with BP, majority voting and the algorithm developed by
Welinder et al in [8]. We also compute the oracle lower bound of [2] for the two versions
of AMP and BP. Note that the latter estimator has full information of the workers reliabili-
ties. To evaluate the oracle one first estimates the probability that worker i provides the cor-

rect response: pf =D

icoi L(Lij = v7)/|0i| and then compute the resulting estimator that

10
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maximizes the posterior probability: denoting the log-ratio r7 = log(p} /(1 — p})) the oracle
estimator can be expressed as 0" = sign(r*TL)’.

The experiments were run with identical beta-priors for BP and AMP for comparability
with the results in [13, 14]. Concerning the prior on v one must specify the bias, 3, of negative
labels. We have implemented different strategies, but found that they all perform essentially
the same. The results reported here are for a bias estimated from the ground truth, but we have
tried different strategies. We found that setting the bias to arbitrary values by hand or setting
it to the true value (estimated from the ground truth) led to comparable results as when it was
learned. In our AMP implementation we initialize ¥ in the estimates obtained by majority vot-
ing and we have set p = d/M and v = N (from which A and S then follow). The BP and AMP
algorithms stop either when the absolute values of the messages/estimators changed less than
10~° from one iteration to the next, or after a maximum of 100 iterations.

Both, BP and AMP perform badly when the original model with s; = #; is used as can be
seen from figure 1 by comparing them to majority voting as a baseline algorithm. Running the
same experiments with the two-coin version improves the results significantly. Indeed BP and
AMP perform essentially as well as the algorithm of [8].

The vanilla implementations of BP and AMP (with s; = t;) are very close in performance.
The difference for the two-coin models tends to be slightly larger, while the general trend
persists. We also observe that it can be beneficial to implement AMP with an early stopping
criterion as depicted in figure 1. Early stopping can be reasonable because the assumptions
made in the derivation are likely to be imprecise, especially for small system sizes.

In summary, AMP performs quite well on real world datasets. The vanilla implementation
yields slightly worse results, as compared to BP. However, when AMP is stopped after few
iterations it reaches much better performance in the rank-1 case. Here we used ten iterations,
to illustrate the effect, but an exact study of the effects are beyond the scope of this paper.
A significant improvement is also obtained in the rank-2 version of AMP: for small d BP
outperforms AMP, but they soon become quasi indistinguishable. Besides its good perfor-
mance it has the great advantage of algorithmic simplicity, better running time complexity
and scalability.

4. State evolution (approximate message passing on synthetic data)

The AMP algorithm depends on the data, L, through S and consequently so do the AMP
estimates for the reliabilities, é, and task labels, 0. Quite remarkably, in the large size limit
N — oo, the performance of the algorithm can be tracked by the so-called state evolution
(SE) equations, which has been proven rigorously for the low-rank estimation in [19, 20]. In
the appendix we provide a detailed derivation of the SE equations for the dDS model. Next
we summarize the outcome of that derivation and outline how to make use of it in practice.
Looking at algorithm 1 one might expect that, under the assumptions made in our model,
the vectors By, B, behave like vectors of iid Gaussian entries, as each of their components
is a sum of many (nearly) independent terms. Similarly, Agy,A,, as a sum of O(N) terms, is
expected to concentrate around its expectation in the limit where M, N — oo. It turns out that

3 For the two-coin model this estimator must be adapted. Denoting = zjf" / z; with
g =10 sf 2 (1= s)00)/2 - (1= Byand 7 =TI, o7 (1= 1) H0)/2 . 3, where
B =3 I(v; = —1)/M, the estimator can be expressed as 0" = sign(log r*).
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this intuition holds (see [19, 20] for rigorous proves) and that one can trace the algorithmic
performance of AMP exactly in the limit where M,N — co.

In the Bayes-optimal setting, where the true distributions Pgo and P, are known and
equal to Py and P, respectively, this performance can be effectively expressed in terms of the
two scalar order parameters below, thus reducing the high-dimensional problem to a scalar
problem. The order parameters are the overlap of the AMP estimates with the ground true
parameters:

1 N
t t n0
My= > 06}

1<i<N

1
n[t ~1,.0
v M Z Yo,
1M

(17

where x° indicates the true value of x, and ¢ the iteration step of the AMP equations. The SE
states that these order parameters concentrate and evolve as (see appendix)

t t Mt
fo (AXO,AZ"U‘HL A"W> UO] ,

M, aM M:
MgEgo,Wlﬁ(a R Y ”W) 901

Mzt;‘rl = ]E‘DO,W

(18)

A A A

where W is a standard Gaussian random variable, v° ~ P, 8° ~ Py, the functions f» and fy
are defined in (13), « = M/N and A is the effective noise (12).

Let us call M5E and MSE the fixed points of the SE equations (18). These fixed points are
then associated to the MSE (6) and ER (5) as reached by the AMP algorithm through

ERMP = (1 —RSE) /2, (20)

0

where we introduced the order parameter R, = 1/M ), sign(9}) v;

MSE MSE MSE
RiﬁzEvo,w{sign [fv (A", A“’v"ﬂ/A"W)] vO}. 1)

At the same time, it is straightforward to observe that the SE equations are in fact stationarity
conditions of the so-called replica-symmetric free energy (for short just ‘free energy’ in the

following):
MM, My M M
S(Mo My) = 0= — By [1"”” (5’ s W)

M M M
10ng<aAv,aAveo+ aAvW>]

(22)

- EGO,W

where the functions Zy and Z, are defined in (13) and the rest of the variables are defined
in the same way as in the SE. Hence the fixed points of the SE are critical points of the free
energy.

As conjectured in [18] and proven rigorously in [21] the performance of the Bayes-optimal
estimator (9) can be evaluated in the large size limit from the global minimizer of the free
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energy. Denote by My and M} the global minimizers of the above free energy. The minimum-
mean-squared-error (MMSE) and the minimum-error-rate (MER) are simply

MMSE = Ey(6%) — M}, (23)

1
MER, = 5(1 —R}), (24)

where R} is obtained from My via (21).

We summarize: the performance of the AMP algorithm can be measured in terms of the
scalar order parameters M}, and M., Their evolution is tracked by the SE equations and there-
fore the SE characterizes the AMP algorithm. The final performance of the AMP algorithm
(t = o0) is thus given by the fixed points of the SE initialized correspondingly (see below).
The fixed points of the SE correspond to the stationary points of the free energy (22). At the
same time, the optimal estimators (in the Bayesian sense as outlined in section 2.2) correspond
to the global minimizer of the free energy. We conclude that if the SE converges to the fixed
point that globally minimizes the free energy AMP is optimal (in the Bayesian sense outlined
in the beginning of this paper).

4.1. Bayes-optimal error and sub-optimality of message passing algorithms

Whether or not the SE reaches the global minimizer M}, M; depends on the shape of the free
energy and the initialization of the SE equations at t = 0. In particular, the phases in which
AMP does not match the Bayes-optimal estimator can be characterized in terms of the critical
points of the free energy and whether or not the SE (18) converges to the global minimum
of the free energy (22). The way we check this in practice is that we initialize the SE in two
different ways:

e Uninformative initialization, where M!=0 = (E,(v))? + 0, and M5 = (E¢(0))> + .
Where § is some small perturbation. This setting corresponds to an infinitesimal align-
ment of the algorithm towards the direction of the signal. The error achieved by the AMP
algorithm is then given by iteration of (18) from this uninformative initialization.

e Informative initialization, where M= = E,(v?) + &, and M50 = E(6°) + ¢ so that
the initial mean-squared-errors are zero. This is not possible within the algorithm without
the knowledge of the ground truth and it is purely used for the purpose of the analysis.
If the iteration of the SE equations (18) from this informative initialization leads to a
different fixed point than from the uninformative initialization, then the free energies of
the two fixed points need to be compared and the smaller one corresponds to the Bayes-
optimal performance [21]. This procedure is sufficient provided there are no other fixed
points. If there are, the free energy of all of them needs to be compared.

Zero-mean priors and the trivial fixed point

To start analyzing the behaviour of the studied DS model, we first consider that both the priors
Py and P, have zero mean. In that case Mffo = M;,ZO = 0 is a fixed point of the SE. We refer
to My = M, = 0 as the trivial fixed point. The equations (18) can be expanded around this
fixed point. In first order one obtains

MYy = 5 (B [07])° M, (25)

T A

13



J. Phys. A: Math. Theor. 53 (2020) 124001 C Schmidt and L Zdeborova

1 2
M = X (E, [0%])" Mj, (26)
implying that the uninformative fixed point is numerically stable for
A? > o (E, [0%]) 2 (Eg [6%]) ? and unstable otherwise. We define the critical effective noise,

A, therefore as
Ac = a-Ey [0°] E, [0*] . (27)

For A < A, the uninformative initialization becomes numerically unstable. The algorithmic
consequence of A, is that while for A < A, the AMP algorithm reaches positive overlap with
the ground truth, for A > A, the AMP algorithm does not reach a correlation with the ground
truth. The threshold A, correspond to a second order phase transition in the behavior of the
AMP algorithm, meaning that the overlap reached by the algorithm is non-analytic and con-
tinuous at A.. This is in analogy to the critical temperature in ferromagnetic systems, below
which aligned configurations can form.

At this point it is appropriate to point out that the symmetry in the priors leads to an invari-
ance of the estimators w.r.t. a simultaneous sign-flip of 8 — —0 and v — —v. In that sense,
our analysis only yields the possible achievable error up to this invariance. L.e. it is possible
to detect the sets of tasks that belong to the same group (v; = +1 versus v; = —1), but it is
per se impossible to tell to which of the two groups a particular task belongs. In practice one
would require an infinitesimally small amount of supervision in order to break this invariance.

In the case where both the priors, Py and P,, have zero mean, we can divide the region of
parameters into the three phases outlined below. The same p
hase structure appears in many other inference problems; for a review we refer the reader to
[29]. The three different phases are defined as follows:

e Easy phase: The fixed point of the SE (18) (initialized in the uninformative way) cor-
responds to the global minimum of the free energy (22), and at the same time this fixed
point is associated with a positive overlap with the ground-truth configuration. AMP
matches the Bayes-optimal performance in the large size limit.

e Hard phase: In this phase two or more minima of the free energy (22) coexist; at least one
local minimum of small overlap and a global minimum of larger overlap. The outcome
of iterating the SE equations now depends on the initialization: while the informative
initialization yields a fixed point with large overlap, the uninformative initialization leads
to a fixed point of low overlap. This is precisely the region of parameters where the AMP
algorithm do not reach the information-theoretically optimal performance and AMP is
sub-optimal. We note that the fixed points reached by AMP in the hard phase can either
have zero overlap with the ground truth, or can have positive (but not optimal) overlap
with the ground truth.

e Impossible phase: When the global minimum of (22) is associated to the trivial, non-
informative, fixed point corresponding to zero overlap, we talk about a phase of impossible
inference. Algorithmically this region is indeed similar to the easy phase in the sense that
AMP is Bayes-optimal.

If at least one of the priors has non-zero mean, then the distinction of an impossible phase
is not meaningful and one would only have an easy and a hard phase, the later is defined by
asymptotic sub-optimality of the AMP algorithm.

Let us further define the following three thresholds that are associated with the existence of
a hard phase. The hard phase is always linked to the presence of a first order phase transition,
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Figure 2. Exemplary exit charts and free energies for the state evolution equations in
the (a) EASY (b) HARD and (c) impossible phases (A € {0.019,0.028,0.03}
respectively). The upper panel shows an exit chart for the SE equations and the lower
depicts the free energy. The red dots in the lower plots mark the minima of the free

energy. The straight line in the upper panels mark the identity mapping Mt! = M, and
the other solid line the SE mapping M"! = G (£ T (£M)).

i.e. a discontinuity in the asymptotic value of the overlap reached by the Bayes-optimal
estimator.

e The algorithmic threshold Aalg is the largest value of effective noise, A, below which the
AMP algorithm asymptotically always matches the Bayes-optimal performance.

e The spinodal threshold, Ag,, is the smallest values of effective noise above which
the informative initialization converges to a different fixed point than the (perturbed)
uninformative initialization. This threshold does not have any particularly interesting
algorithmic consequences.

e The information theoretic transition, Ay, < Arr < Agp, is where the value of the free
energy of the uninformative fixed point crosses with the free energy of the informative
fixed point. The algorithmic consequences of this threshold is that at Ay the overlap
between the ground truth and the Bayes-optimal estimator has a discontinuity. The per-
formance of the Bayes-optimal estimator abruptly improves at Arr.

A first order phase transition takes place when the free energy has two competing minima
that co-exist. Such a situation can be found in figure 2(b). Referring to the figure, this happens
when the value of the left minimum of the free energy becomes lower than the one on the
right. Since the Bayes-optimal error corresponds to the order parameter, M;;, with lower free
energy, a sudden discontinuous change in M, takes place when the free energy of the two min-
ima cross and the left one becomes the Bayes-optimal one instead of the right one. As opposed
to a second-order phase transition, where the Bayes-optimal error varies continuously.

We summarize: when A < Ay, one is in the easy regime where AMP achieves Bayes-
optimal performance. For Ay, <A < Ayr one is in the hard regime where AMP exhibits
a gap to the Bayes-optimal performance. It is conjectured that no polynomial time algorithm
succeeds in this region [29]. For A > Arr AMP is once again Bayes-optimal, either reaching
zero or positive overlap with the ground truth. In the regime Aip < A < Ay, the free energy
has still has a second minimum with positive overlap, but it can only be reached by initial-
izing AMP in some informative initial state. The discontinuity in the Bayes-optimal overlap
happens at Arr. Note that while in some models, such as the stochastic block model [17], one
finds A. = A, in general and in the present model A # Ay, Note also that we do not refer
to an algorithmic threshold if no hard region is present, because in that case AMP is always
Bayes-optimal, with the mere distinction that for A < A, the achieved error is better than that
of random guessing whereas above it is not.
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Figure 3. (a) left panel: the phase diagram for a Rademacher—Bernoulli prior on 6 with
A = 1/2 and no bias in the distribution of the labels (8 = 1/2). When the fraction of
spammers is very large (small p) a hard phase appears where the AMP algorithm is
not able to reach the information-theoretically optimal performance. (a) right panel:
cut of the phase diagram corresponding to p = 0.02, i.e. only 2% of non-spammers.
We plot the MSE (top) and the difference in the free energy (bottom) of the two fixed
points as a function of A. Note that in this case we still have A. > Ay, but both are
very close and not distinguishable in the figure. In the hard region (orange) the AMP
algorithm reaches MSE = 1 for A > A, and MSE < 1 but not optimal in the tiny
region of Ay, < A < A., while the Bayes-optimal estimator reaches smaller MSE.
(b) Phase diagrams with all parameters set to the same values, but « different. When o
grows (shrinks) inference becomes easier (harder) and the hard region grows (shrinks).
The tricritical point for o = 1/4 is located around u =~ 0.048 whereas for a = 4 it is
around p ~ 0.077.

4.2. An example

In order to illustrate the concepts, we provide a brief example that summarizes the key-points
of this section graphically in figure 2.

Let us anticipate the model considered in section 5 with a simple parameter setting, such
that the labels are &1 with equal probability and Py = (1 — p)6(0) 4+ u[6(6 — 1) + 5(6 + 1)].
The SE equations (18) can be brought into the following form

M =G (iT (XML)) , (28)
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with
1
G(X) = EEW [tanh(x + \/;CW) — tanh(_x + ﬁw)]
T(x) 1% Sinh(x+ \/.EW) Sinh(—x+ \/;CW)
R T T1= .
2 e /2 + cosh(x + \/xW)) T”ex/z + cosh(—x + /xW)

(29)
We depict in figure 2 the resulting exit charts and free energies for three exemplary values of
A € {0.019,0.028,0.03} that are respectively in the easy, hard and impossible phase.

5. Phase diagrams for the dense David—Skene model

A key property of the results we described so far is that the asymptotic behavior of the AMP
algorithm and of the Bayes-optimal estimator depend only on the priors P, Py and the effec-
tive noise A = 1/[(1 — p)v]. In what follows, concrete priors will be considered. Since the
model assumes that the ground truth task labels are iid and binary, we have

P,(0)=(1-B)5@0—1)+B5(v+1). (30)

With the parameter 5 € [0, 1] accounting for a bias in the dataset.
We start by considering worker reliabilities, 6;, that were drawn from a skewed Rademacher—
Bernoulli (RB) prior

Po(6) = (1 — 1) 6(6) + pu[(1 = N)3(0 — 1)+ A5(0 + 1)] . G31)

Besides its simplicity the phase diagram for this case comprises the essential features. Tuning
w1 from zero to one interpolates between an uninformative crowd of mere spammers and an
informative crowd. The fraction of adversaries is controlled by A. In physics terms the workers
with § = —1 are spins that are coupled to the questions by an anti-ferromagnetic interaction,
whereas the workers with § = 1 are ferromagnetically coupled. Consequently also the adver-
saries enhance our ability to recover the correct labels, if they can be identified, as they align
anti-parallel to the truth.

The RB prior is the dense version of what is sometimes referred to as the ‘spammer-ham-
mer’ model in the literature [2]: workers are either spammers that provide random answers or
hammers that align very strongly with (or opposed to) the truth. Here the situation is slightly
different as we assume a very weak alignment of ©(1/v/N), see (3). Sending v — oo and thus
A — 0 approximates the hammers. The limit v — N will be considered in section 6.

5.1. The case of symmetric priors

If A\ =1/2 and 8 = 1/2 both the priors, P, and Py, have zero mean and the SE equations in
(18) have a trivial fixed point at M, = My = 0. Expansion around this uninformative fixed
point yields
LW 1 [ 2 3
M = ay ‘ML — « A2 [A + AZ} -(M))"+0o((ML)”). (32)

The linear term gives the stability criterion of the trivial fixed point that we had already derived
in (27)

Ac=+a-p. (33)
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In figure 3 we present the phase diagram for several values of & = M/N. We plot the sta-
bility threshold, A, as well as the three phase transitions associated with the existence of the
hard phase, as explained in section 4.1. We mark the phases where inference is algorithmically
easy, hard and impossible.

We find that if there are not too many spammers in the crowd, then there are only two
phases: the easy phase in which AMP achieves Bayes-optimal performance and positive
overlap with the ground truth and the impossible phase where it does not. The easy phase
is separated from the impossible phase by a second order phase transition at A = A.. In
the impossible phase AMP achieves Bayes-optimal performance, but the resulting estimators
have zero overlap with the ground truth and inference is therefore asymptotically impossible.
In this region where the hard phase is absent (33) provides the right criterion to locate the
phase transition from the easy to the impossible phase.

If, however, there are too many spammers in the crowd, a hard region opens up in which
AMP has a gap w.r.t. the Bayes-optimal performance. As explained in section 4.1, the hard
phase is characterized by the coexistence of more than one minimum of the free energy and
the fact that the one achieved by the SE equations from an uninformative initialization does
not coincide with the lowest (Bayes-optimal) one.

The information theoretic transition line (Arr) is the line where the lowest minimum of the
free energy (i.e. the Bayes-optimal one) gets associated to a discontinuously different overlap.
The free energy continues to possess multiple minima up until the spinodal transition line
(Agp). For the choice of priors made here the free energy only has two minima, one is achieved
by the uninformative initialization of the SE equations and the other by the informative ini-
tialization (see figure A1). Thus, in order to reveal the information theoretic transition line we
can compare the free energies of the uninformative and informative fixed points achieved by
the SE equations. We do so in the right panel of figure 3(a). We plot the difference between
the free energy of the uninformative and informative fixed point. As can be seen in the lower
panel, the two free energies cross at some point and the uninformative fixed point starts to
have lower free energy and becomes Bayes-optimal. In the upper panel we plot the achieved
error by the SE equations from the different initializations. We see that the information theo-
retic transition does not show up in this plot and one can only see the spinodal transition. The
lower end of the hard phase is separated from the easy phase by the algorithmic transition.
As indicated in the upper right panel of figure 3(a) this is the point of largest effective noise,
below which the uninformative fixed point of the SE always leads to the Bayes-optimal error.

5.2. The impact of o

Recall that « is the ratio of tasks to workers in our model. Increasing the number of workers
decreases o which shrinks the hard region as we show in figure 3(b). In the other direction, i.e.
when the total number of workers decreases and thus o grows, we show that the hard phase
grows further.

By virtue of the /v /N scaling of the signal, see (3), we have two competing mechanisms
when N is increased: on the one hand the signal becomes weaker, on the other hand we obtain
more answers per question. Equation (33) tells us that we should expect inference to become
easier when « increases. Indeed, if we fix A and consider how the performance varies with
o it follows from the SE that, in order to achieve higher overlap, it is necessary to increase
the fraction of questions distributed to each worker, i.e. by increasing «. This improves the
estimation of €, which in turn improves the estimate of v. We depict this by plotting the error
against « for two different values in figure 4.
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Figure 4. The behaviour of the error versus « for the RB prior (31) with A = 1/2 and
bias is setto § = 1/2.
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Figure 5. Influence of bias in the distribution of labels and worker reliabilities on the
performance. Here we plot the resulting error (20) for « = 1 and p = 0.02 as reached
from the uninformative (bold) and informative (dashed) initialization. For bias in the
labels (3 # 0.5) or in the workers abilities (A # 0.5) the trivial fixed point (error equal
to one) is replaced by another fixed point with slightly lower error. The hard phase in
these examples appears at larger noise and shrinks or might disappear as in the bottom
right panel.

5.83. Biased labels and worker reliabilities

If A £ 1/2 or B # 1/2 the trivial fixed point M, = My = 0 does no longer exist. We illustrate
in figure 5 how this changes the phase diagram and the achievable error. For the case a = 1
and . = 0.02 we plot the error reached by the SE from the informative and the uninformative
initialization.

First (top left panel), we consider the unbiased case with 8 = 1/2, but A # 1/2 as already
plotted in figure 3. In the bottom-left panel we consider the case where A changes. Due to
the present symmetry it suffices to restrict the attention to A > 1/2. When more hammers
than adversaries are present, i.e. for A > 1/2 the trivial fixed point at M, = 0 disappears and
instead another fixed point with low but positive overlap (i.e. error smaller than 1/2) appears.
The hard phase shrinks as shown in the bottom-left panel of figure 5.

If the dataset is biased, i.e. § # 1/2, the change is quantitatively more dramatic, but phe-
nomenologically very similar, see top-right panel in figure 5. Upon slight change in S the hard
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phase shrinks considerably. For a large range of values of 8 and A the hard phase entirely
disappears as in the bottom-right panel in figure 5.

Not surprisingly, adding skew in the priors shrinks the hard region and has thus a similar
effect as increasing the number of workers (decreasing «). The effect on the second order
transition is even more dramatic: since the trivial fixed point disappears when any kind of
skew is present in the priors, the second order transition (i.e. the transition at A.) disappears.
We depict this in a figure in the appendix.

Next we comment on the dependence w.r.t. A for small A, i.e. in the easy phase. Note that
once A # 1/2 the prior has non-zero mean and the impossible phase is absent. Therefore it is
also no longer sensible to distinguish the two phases. We find that the smaller A, the smaller
is the dependence on A. This is depicted in a figure in the appendix (for the case in which
B =1/2 and p = 1/2) and can also be observed in figure 5 that shows little change in the
error to the left of the hard phase. For A — 0 all curves culminate and it is possible to show
(derivation provided in the appendix) from an expansion of the SE equations that, independent
of A, they all approach zero error as

I
ER, =¥ e

&-ilogmk (34)
Indeed 1/ A is the dominant quantity and plays the role of a signal-to-noise ratio. Apparently,
in the zero-noise limit, A plays no role. It is sensible that both the adversaries as well as the
hammers carry the same information, but why this behavior only shows in the limit A — 0 is
not clear to us.

Finally, another interesting limit that can be deduced from the SE equations is when p — 0.
It was previously observed that the error of majority voting and other inference algorithms
seems to coincide when the number of spammers becomes overwhelming (and for A signifi-
cantly small) [2]. An expansion of the SE equations in this limit (see the appendix) shows
that this is indeed the case and the errors, achieved by AMP and majority voting, coincide for
B =1/2and A > 1/2 (and p = 0 for simplicity):

D) 1
ER, 2%~ — [ Zun— 2| (35)
2 s 2

5.4. Dealing with other priors

The derivation of section 2 applies to any prior as long as § = O(1). Indeed, many features
persist if we replace (31) by

Po(0) = (1 — 1)0(0) + () . (36)

Where ¢(6) is some appropriate distribution (we have considered ¢(6) being a beta distribu-
tion or a Gaussian). For instance (32) still holds when ¢(0) is a standard Gaussian and as for
the RB prior a first order transition is triggered by very noisy 6, i.e. only very few hammers
and mostly spammers in the crowd.

One might also replace the delta distribution by some other sparsity inducing distribution.
A case for which the corresponding integrals are tractable analytically is that of a mixture of
two Gaussians, centered around 6, (fg) with variance o7 (03).

Po(0) = (1 — p) N (6;0;,07) + uN(0; 0k, 0%) - (37)
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Under this choice and with 5 = 1/2 in (30) the SE equations (18) can again be expressed as
MY =G (£ T (4M:)) with

1
G(x) = EEW {tanh(x + v/xW) — tanh(—x + xW)}
3
= — I4q02 ) 2 O.+qo?or
|:(€R + Hf;a,z? UZW) + I,LL# (1130?_) ( lt»qqaL,z? + l+£¢110,22 W) ' €Xp (_%Q(W))

1—p [ 1+qo; 1
I+ TM 1+qo‘§ exp (7§Q(W))

1 + g0k q i A 2
W) = w Or — 06 - W,
o(w) 1+q<7,% * 1+qa,%(R )

2

T(q) = p-Ew

where Ey indicates the average over the standard Gaussian measure on W as before. Varying
the means (0, fg) and variances (0‘%, 0123) then allows to interpolate between different scenarios.

6. Relevance of the results in the sparse regime

Our analysis of the dDS model is based on the ground that the underlying graphical model (the
bipartite question-worker-graph) is a densely connected random graph: each task-node con-
nects to ©(N) worker-nodes and reversely each worker-node is to ©(M) task-nodes. A sense
of sparsity was introduced in our model by allowing that some of the tasks remain unanswered
(see the likelihood (3)). Our analysis assumes that the number of questions answered by each
worker is extensive, i.e. | — p = ©(1). Existing mathematical literature on low-rank matrix
estimation shows that the formulas we derived for the Bayes-optimal performance, hold true
even when the degrees in the graph grow with N slower than linearly, i.e. when (1 — p)N
diverges with N — oo [31, 32]. The regime where the above asymptotic results do not hold
anymore is when 1 — p = O(1/N), which we refer to as the sparse regime.

In the dense limit, the central limit theorem allows to reduce BP to AMP. However, this is
no longer true in the sparse limit, where the messages are not sufficiently independent, which
causes the arguments to break down and consequently also the equations can no longer be
reduced to two scalar order parameters, thus rendering BP a much harder algorithm to analyze
in the sparse regime. In this section we investigate numerically how the behavior of the sparse
DS model deviates from the predictions drawn for the dDS model.

In the sparse regime every worker is connected to d randomly chosen tasks, where d = O(1).
Unless the quality of each answer is very high, the effective noise A = [(1 — p)v]~!is over-
whelming and inference impossible, unless v = ©(N). Therefore we will consider the follow-
ing ‘mapping’

with n € [0, 1] being a constant. Consequently, in the sparse regime we are dealing with high
quality workers as compared to the dense regime. This brings us close to the setting of previ-
ous literature on the DS model [2, 12-14].

6.1. Approximate message passing on sparse graphs

We study numerically how the AMP algorithm behaves when the average degree of the nodes
is small. In the following we will set M = N and draw the bipartite worker-task graph at
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Figure 6. (a) Numerical results for AMP in the dense regime for N = M = 10%, averaged
over 20 samples. (b) The relative distance of the AMP results to the SE prediction of
the error when the average degree d and signal-to-noise ratio v are varied such that A
remains fixed. We also compare to the BP algorithm that is asymptotically exact in the
sparse regime. We see that the SE gives an accurate description, already for d around
30 — 50. Although AMP is suboptimal for low degrees d and BP still asymptotically
optimal, we see that AMP and BP give comparable results down to average degrees

around 10.
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Figure 7. The effect of variation of either d or v (i.e. n) on the performance of AMP.
(a) AMP results for fixed v. We also compared to the BP results that have the same
prior and matching signal-to-noise ratio. (b) AMP results for fixed d. The fact that the
error found in the experiments for large A is slightly below the SE is due to finite size
effects. Increasing the average degree pushes the results closer to the SE prediction. The
experiments were carried out with N = 10° and are averaged over 100 samples.

random, such that the average degree of the task-nodes equals the average degree, d, of the
worker-nodes.
Figure 6(a) depicts results that are obtained by running AMP in the dense regime where
d = O(N) in order to have a reference (here 10* nodes were used). Except from finite size
effects close to the phase transition the SE prediction agrees with the empirical results as
expected. For figure 6(b) we fixed different values of A, by adjusting n so that A = «/(nd),
and plotted the relative deviation from the SE when the degree d is varied. We also show the
results obtained with the BP algorithm of [14] that are obtained by matching the prior and
signal-to-noise ratio. In the limit of large N the BP results are exact even for finite d. We find
as expected that when d is increased, the AMP performance approaches the prediction of the
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associated dense model and so does BP. While for very small d BP slightly outperforms AMP,
the difference is not very significant (up to fluctuations).

We further quantify the difference in performance of BP and AMP in the sparse regime in
figure 7. This time v (i.e. n) is fixed and d (and hence A) varies. We compare AMP with its
BP equivalent and find that BP always outperforms AMP, but again only slightly. The general
trend is as expected: in the sparse regime BP is optimal and no other algorithm can outperform
it. However, it is remarkable how quickly AMP becomes comparable to BP. In particular the
two become very close for small error, while for larger error the gap between them tends to
be larger around the transition. This behavior persists also when A # 1/2, as can be examined
for instance in figure 8. In figure 7(b) we fix d and vary v (i.e. n), such that A varies in the
same range as in figure 7(a). We cannot explore the full range of A because we must restrict
n < 1. We see again that AMP quickly approaches its asymptotic performance when the graph
becomes more and more connected.

The results clearly suggest that (for finite size systems) AMP can indeed be run even on
moderately sparse instances. Compared to BP it is algorithmically less complex and more
memory efficient, as fewer messages need to be stored. Further, the SE prediction seems to
remain a good qualitative approximation to the algorithmic performance®. It suggests that the
phenomenology found in the dense limit should be rather generic and also appear in sparse
systems. In the following section it is shown that this is the case.

6.2. First order phase transition in belief propagation

We have already established in section 4.1 that the dDS model can exhibit both second and
first order phase transitions. The first order transitions are more interesting algorithmically
as they are associated with the presence of an algorithmically hard region where the corre-
sponding message passing algorithm is sub-optimal. We recall that the first order transition
is characterized by the co-existence of multiple minima of the free energy. In this region
of co-existing minima, the AMP algorithm is sub-optimal up until the information theoretic
transition point. Below this point (i.e. for A < Ayr) the fixed point reached by the SE, and
therefore the estimates of the AMP algorithm, do not coincide with the Bayes-optimal mini-
mum (i.e. the lowest) of the free energy. It is conjectured that no polynomial time algorithm
exists that is more efficient then AMP [29].

In the previous section, we have established that even on sparse graphs BP and AMP behave
very similar. On the one hand, the authors of [12, 13] established that BP is optimal in the
sparse regime for sufficiently large signal-to-noise ratio. On the other hands, we have shown
that a hard region, in which AMP is sub-optimal, exists in the dense regime. It hence remains
to be tested whether we can observe a first order phase transition also in the sparse regime
of the DS model? This question is answered in figure 8: it depicts numerical results obtained
for BP with a Bernoulli-prior on @ (A = 0 in (31)) with very sparse signals (¢ = 0.01). In the
same figure we also plot the AMP performance (in the same sparse regime) as well as the
asymptotic prediction of the SE in the dense case (with the mapping (38)). Indeed, a clear first
order transition appears which is associated with a region of parameters for which BP conv-
erges to different fixed points from the informative and from the uninformative initialization.
This establishes the sub-optimality of BP by virtue of the dependency on the initialization.

©Note however the interesting deviations for small A that seem to deviate from (34) towards the expected
exp(—p/A) optimal error scaling in the sparse regime [2].
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Figure 8. Numerical results obtained for the BP algorithm of [12, 14]. The experiments
were carried out on graphs of size N = M = 10%, and are reported as a function of the
inverse average degree of the worker nodes d. A region of coexistence associated to a first
order phase transition opens up and an informative initialization leads to another fixed
point than the uninformative one. This makes BP sub-optimal in the part of this region,
where the free energy of the fixed point reached from the uninformative initialization
is higher than the one of the fixed point reached from the informative initialization. We
found in our experiments that the first order transition appears more pronounced the
larger the system size, suggesting that the phenomenon persists asymptotically.

7. Conclusion

In this paper the dense limit of the Dawid—Skene model for crowdsourcing was considered. It
was shown that in this regime the Dawid—Skene model can be mapped onto a larger class of
low-rank matrix factorization problems. This leads to an approximate message passing algo-
rithm for crowdsourcing and a closed-form asymptotic analysis of its performance in terms of
the so-called state evolution equations.

Although we did not provide proves in the present paper, the results can be considered
rigorous. They fall into the class of problems considered in the works of [20, 21, 33] on
the low-rank matrix factorization problem from which the proves can be deduced. While the
theory only holds rigorously for the dense limit of the Dawid—Skene model, we have carried
out numerical experiments that establish that the asymptotic analysis provides a good qualita-
tive prediction even in the sparse regime. Further we have shown that approximate message
passing still performs well and provides a comparable algorithm to belief propagation, with
favorable time complexity and simplicity.

When the crowd consists mainly of spammers with only few workers that provide useful
information, we found that a first order transition appears in the Bayes-optimal performance.
Algorithmically this first order transition translates into the presence of a hard phase in which
the AMP algorithm is sub-optimal. As a proof of concept we showed numerically that this
feature persists even in the sparse regime where the rigor of our analysis breaks down. In the
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numerical experiments we also found instances of first order transitions in the belief propaga-
tion algorithm of [14]. This shows that there are regimes in the Dawid—Skene model where
belief propagation is not optimal. This complements recent results on [12, 13] about regimes
of optimality of belief propagation.

We also carried out experiments on real-world data and showed that AMP performs com-
parable to other state-of-the-art algorithms. The experiments on the real-world dataset also
show that having a model that described data accurately is more important than the precise
algorithm that is used to do do inference on the model.
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Appendix

A.1. Approximate message passing

In this appendix, for the convenience of the reader, we re-derive the AMP equations for the
dDS model that were first derived in [18].

A.1.1. From belief propagation to relaxed belief propagation. Starting point to derive the
AMP equations are the belief propagation equations for the graphical model in figure A1l

~ 1
i (V) = 5 / d0; ni—y(6:)P(Ly | 6:,0))

1 -
niy;(0;) = ﬁpe(@) H ki (0;)
0 kedi\j

. 1
Rik—i(0;) = ZE kaqik(vk)P(Lik | 0;,0x)
A

1 -
misie(0) = g Pox) T inn(o0).- (A1)
v 1€Dk\i

One sees that, in the most general form written above, these equations are quite involved:
(a) the variables #; are in general continuous, which requires the computation of an integral
to obtain 71;_,;(v;) and (b) one deals with ©(NM) messages in the dense setting. However,
the fully connected nature of the factor graph under the dense regime, together with the iid
assumptions we have made, permit a simplification by application of the central limit theorem
that leads to the relaxed BP equations that re-parametrizes each message in term of its mean
and variance
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Figure A1. Factor graph representation of the dense Dawid—Skene model. Both the
reliabilities and labels are associated to the circular variable nodes (left and right
respectively). The pair-wise interactions between them (represented by the black
factor nodes) corresponding to the collected answers, L;;, that make the two side of the
graphical model interact. The gray factor nodes are priors that act on the variable nodes.
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Figure A2. Exemplary plot of the impact of variation of X in the skewed Rademacher—
Bernoulli prior Pg(0) = (1 — p)0(6) + p[(1 — A)d(0 — 1) + A6(6 + 1)]. The prior on
the labels is such that they are £1 with equal probability. From top to bottom we vary
A €{0.5,0.55,...,1.0}. As soon as A # 0.5 the second order transition disappears and
asymptotically (A — o0) all the curves approach an error of 1/2 at different rates.
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Uksik = / dogmyi(vr) vk

O, ksik = /dvkmkﬁik(vk) Ut — Uik - (A2)
Owing to the 1 /v/N scaling we may expand P(L;; | 6;,v;)in (A.1) up to second order. Denoting
8g(L,~, W) w=0
S;= —2L—=| A3
i e (A.3)
—o\ 2 _
dg(Lyw) "\, PelLyw)|"
Ri‘ = _— _ s A4
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[ R,]le 3
eslivi) = 80 | | 4§y + TJ +O(N72)
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The messages (A.1) can now be written in a simplified Gaussian form

1 1
ni(0;) = P Py (0;) exp (Be,mij 0; — 2A9 i 92)
0
1 1 ,
Mk (Ok) = ZEo Py(vr) exp | By k—ik O — EAU, k—ik Uk | (A.6)

where the new variables Ay, A, and By, B, follow the equations

t § :
BG,iaij \/> Slkvk%zk

k=1,k#j
| XM
b.i-ij = N Z [Szk(vk—nk)z — Rix ((f];c—n'k)z + T i)
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0 k—ik = 737 Z [Slk Hlalk — Ry ((efﬁlk)z + Ule,lalk)} : (A7)
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The equations now close on the means and variances of the messages (A.2):

l*}l‘] =fo (Ae i—sij BfQ,i*)ij)
t _ af@ ( t ; )

09, i—ij = OB \A0.imip Po.imij
1
(AN (Av k—it> BY, k—nk)
ofe
+1 0 (gt ¢
O, k—ik = OB (Av kit Bo, kazk) > (A.8)

where we have introduced the input functions (with x indicating either 6 or v)

— lAx2+Bx
fx (A, B) A B) /de x. (A9)
Equations (A.8) together with (A.9) are the relaxed BP (rBP) equations.

A.12. From relaxed belief propagation to approximate message passing. The rBP equa-
tions are a direct consequence of the central limit theorem. Each message is a random variable
and since the ©(N) incoming messages are only weakly correlated they result in an effective
Gaussian field, acting on each variable node. This field is additionally weighted with the prior
on each of the sides. The outgoing messages also only weakly depend on the target node:

M
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The marginals can now be expressed in terms of the messages

1
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Similarly of, ; = 0f , ,;; + O(1/N) and 0}, , = o}, _,; + O(1/N). This process is sometimes
referred to as “TAPification’. We finally obtain a set of equations that is independent of the
messages and only depends on the marginals, by plugging (A.11) back into (A.10):

- \/* Zslkvk ( Zstk v k> éf_l

Ay, = % Z [Sik( i)> — Rix ((@2)2 +0h0)]

k=1
0 _f9 (A9 i 9l)

0
Jt@,i 3]2 (Ae i BtG,i)

vk—fzslkel ( Zslk091>

1< A .
A= 2 [ShB) = Ru (01 + 0,
=1
o =1 (4] 40 B
A.12
). (A.12)

These are the AMP equations. The additional terms that appear in By and B, after TAPification
are Onsager reaction terms that correct the mean field contribution from the first sum. The
equations found in section 2.5 are a further simplification of these equations under the assump-
tion that (a) the model matched the one with which the data was generated and (b) that the

terms in the brackets of the equations for the By, B, are self-averaging. The terms Sl-zj and R;;
can then be replaced by their averages

AT = Ep(ryfwy=0) [S7]
R = Ep(wyjw=0) Ry} = 0.

Where the last equality is a consequence of the normalization of the conditional probability:
JdLP(L |w) =1 = [dLd,.P(L | w) = 0. For the dDS model we have

Sy = Lj\/v

R; :L,-ij/—Lizju =0.

(A.13)

(A.14)

In the Bayes optimal setting, where P.(x) = Po(x) (for x € {6,v}) and P(L; | w;) =
Po(Lij | wj), we have
ATt =(1-p)v
R=0.

And finally we obtain the AMP equations, as outlined in the main text.
A.2. State evolution

(A.15)

The AMP equations depend explicitly on the realization of the data (for the crowdsourcing
these are the labels Ly). These enter through S;; and possibly Rj;. Therefore the Bj,, B;, and
Atg i A j are random variables in the equations (A.12). Let us consider equations (A. 10) in

29



J. Phys. A: Math. Theor. 53 (2020) 124001 C Schmidt and L Zdeborova

order to derive their distributions. Recalling that the different messages, incoming to one node
are independent by BP assumption we can apply the CLT to the sums on the r.h.s. of the equa-
tions for By, ;, By, ;in (A.10). The mentioned independence holds only approximately because
the underlying graph is not a tree, but on account of the O(1/+/N) scaling this suffices in the
N — oo limit. Thus we have

Bla,i ~N (EBte,i» E(Bto,i)2 - (EBlo,i)z)
B, ~ N (EB, ,, E(B, ;)> — (EB,)*) .

v,j?

(A.16)

Further more, by the law of large numbers, the r.h.s. of the equation for Aj ; and Aj, ;in (A.10)
can be replaced by their averages to obtain

t N—o00 t
Ay — 0.i (AL7)
t N—oo t :
Ay — EAy .

It remains to compute the first two moments of By, ;, By, ; and the first moment of Aj ;, A ;.
We introduce the following order parameters that will turn up naturally during the computation
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We start by consideration of the first moment of By ;
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Expansion w.r.t. w9, leads to
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which can be further simplified because the first order term vanishes

+0(+)

Si 0 ik »
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/dLikPO (Lx | 0) Sk =0 (A.21)
and therefore

E[By] = %Méf)? +0(1/VN), (A22)
where

- dlog Po(Li | w)\°
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which will be equal to A~! from (12) in the Bayes optimal case.
In the Bayes optimal setting, where all the distributions and parameters are known, this
follows from

0
/dLikP(Lik lw)=1= /dLik%P(Lik |w) =0, (A.24)
because
EP(L | w)] = P(Ly | 0)2 log P(Lix | W) (A.25)
Ow ik w=0 — ik w g ik w=0 .
and thus
/ dLxP(Li | 0)Si = / dLiP(Ly | 0)log P(Ly | 0). (A26)

If we are not in the Bayes optimal setting, then this still holds, as long as Sy has mean o(1/ VN ),
which will be the case in the example of crowdsourcing. Finally, replacing

O = 04+ O(1/VN)

yields the result.
The second moment can be computed straight forwardly. To leading order one finds

1
E[(B),)?] = +0)+0(~). ,
[(B5.] = 3%+ O(3) (A.27)
An analogue computation can be carried out to obtain
! 1 1,0 1
E [Bv,j] = ZMuvj + O(W) s (A.28)
and
E Bt 271 1 3 O 1
[(B,,)*) = 32 + O()- (A.29)

After the introduction of

. dlog Po(L,; 2 9log Po(L;
R:EP()(L'WU:O) l( o8 0( kW)) + o8 0( k|W)

ow ow? (A.30)

similar arguments lead to an expression for the averages of A}, AL in terms of order parameters:

. 1
E [4),] = 30— k(@) + ) + 0(—)

T3

1 )
B[A] = 1% — R(Q)+ %) +0( =) (A31)

The estimators 6! and 0} are functions of the random variables Bj, ; and By, ; respectively,
which distribution is now known in terms of the order parameters. Therefore we do now also
know the distributions of 6; and 0}
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where W is a standard normal distributed random variable. The equations can now be closed
on the order parameters (A.18) as summarized in the following equations
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These equations track the evolution of the AMP equations (A.12).

In the Bayes optimal setting A = A and R = R. Further more, the set of order parameters
can be reduced because M. = Q' and ¥\ = E[(x°)?] — @, where x stands for either 6 or v.
The above equations simplify to

a M} aMZ’, 0 aMi 0
f9< NN e

1 t t
fo (Aif’ %vo + \/K"W) v"] : (A.34)

which are the equations found in the main body of the paper. For the reader, interested in a
rigorous treatment, we refer to [19, 20].
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A.3. Derivation of (34)

The starting point are the SE equations (18), that we recall here for convenience

i = (M)
I (A35)
My = T(Ms)
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We will be assuming for simplicity that there is no bias in the labels, i.e. 5 = 1/2 in (30), and
a generic skewed RB prior

Po(0)=(1—p)6(0) + p[(1=X)0@—1)+A5(0+1)], (A.36)

which leads to

G(x) = %EW [tanh(x + /xW) — tanh(—x + V/xW)]
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%Hex/Z + (1 _ )\)efor\/}W + AeX— VAW

We are interested in the A — O limit which can be deduced from the above equations via an
asymptotic expansion that is valid as long as the order parameters stay well away from zero
(which can be deduced self-consistently below). The strategy is therefore as follows: we first
derive the asymptotic behavior of G(x) and T(x), which in turn leads to a simplified fixed-
point equation for

1 o
M, =G <AT (AMU>> (A.38)
that can be solved for M, which finally leads to the resulting error via (21). For (30) with

B = 1/2 we have RSE = R, (M), with
v A

Ry(x) = erf< ;) : (A.39)

and erf(x) denoting the error function.
The x — oo behavior of T(x) is dominated by the value of x and the /xW-terms can be
neglected similarly as the exponentials with negative x-arguments, such that

eX ex
T(x) =% p|(1—N)? + A A.40
o V e e T e | A0
Re-writing leads to
X o0 1 - —X
T(x) =% p(1 -2 Mue 5. (A41)
Similarly, one finds
G(x) =31 —2e7%. (A.42)
The fixed point equation can be simplified in this limit
1 o
M, =G| <T (ZMU) (A.43)
——
=My 2Hp
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220 e 2% (A44)
It remains to express the ER. Since (see (20))
1 M
ER, = 5 (1 - Ro(F))

and with M} = p in leading order and (A.39) we have

_1 | K
ER, = Eerfc ( 2A> , (A.45)

where erfc(x) is the complementary error function. Another asymptotic expansion of the error
function then leads to the desired result:

1 1 A—0 1 B
ERU - Eerfc ( 2A> — ﬁﬂ.e 28, (A46)

The interesting fact that the error is independent of A can also be seem from the visualization
in the following figure A2.

A.4. Derivation of (35)

As in the previous derivation, the starting point are the SE equations (A.37), however this time
we perform an expansion for small y, i.e. for few valuable workers in the crowd. We find that

T(x) “=9 12((1 — 2))? cosh(x) + sinh(x)) + O(13) . (AA4T)

Since T(x) = O(u?) and A is a i independent parameter we expand G(x) for small x in order
to resolve the fixed point equation (A.38). Such an expansion leads to

G(x) = x+ 0(:2). (A.48)

We can expect (and will find self-consistently) that M, is small in the limit we are interested
in. Thus we expand (A.47) for small x:

n—0
T(x) =8 12 (1 —20)% +x). (A.49)
Employing the latter two equations in the fixed point equation (A.38) leads to
2
1
M, = a%Mv + K/f(l — 2)\)2 ,
which can be resolved to yield the fixed point to leading order in p

M, 2(1—2))2. (A.50)

Consequently, from (A.33), we have My = T(4M,) = p*(1 — 2X)* + O(u*) and using once
again (A.45) we obtain

1 1
ER, = 3 ll —erf (\/;Ml — 2)\|>] . (A.51)
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For small 4 this is equal in leading order to

pn—0 1 2
ER, "= 2 — —ull = 2). (A.52)

where we have used that erf(x) = 2//7(x — x*/3 + O(x)).

This should be compared with the error resulting from majority voting. We assume p = 0
for simplicity. In order to derive the error obtained by majority voting under our model one
can consider the sum

N
SN = ZH(LU = 'Uj),
i=1

with

1 with probability p

I(Lj =v;) = {o with probability 1 — p

and (see section 2.1)

p=;<1+\/zu(1—zx)>.

Majority voting succeeds when

N
Sy = 5] +1
2
or in other words, when the normalized sum (introducing o> = Np(1 — p)) follows
Sy — N, —3VUNp(1 —2) 1

VNo NS — g -ov)) YN

Deploying the de Moivre—Laplace theorem, we can estimate
Sy —N °
lim Pr (—ﬁ,u(l —2)\) < SN VEP < oo) :/ Dx. (A.53)
N—o0 No? —ou(1=2))

With Dx indicating the standard normal measure. The right hand side can be rewritten in terms
of the error function as

oo o)

and consequently we have

ERMY = % {1 —erf (\/Z,u(l — 2/\))] ) (A.54)

Comparing to (A.51) and recalling that for p =0 = A~! = v we see that the two errors
coincide asymptotically, for N — oo, u — 0, 8 = 1/2 and A > 1/2. This is the result claimed
in (35).
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