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1.  Introduction

Breast cancer patients treated with radiotherapy benefit from reduced rates of local recurrence and overall 
mortality (Darby et al et al 2011, Cutuli et al 2014, EBCTCG (Early Breast Cancer Trialists’ Collaborative Group) 
2014). However, this treatment also engenders inevitable radiation dose to nearby organs at risk. As a result, 
radiotherapy of the breast is associated with increased mortality from cardiovascular disease decades after the 
treatment (Hooning et al 2007, Darby et al 2005). Retrospective studies of dose to the heart have primarily 
focused on the mean heart dose (Darby et  al 2010); time-consuming contouring of cardiac substructures 
precludes obtaining doses to individual parts of the heart on a large scale. However, with variations in the dose 
distribution within the heart as a result of different treatments, there is a gap in studies evaluating the dose 
to cardiac substructures (Gagliardi et al 2010). The left anterior descending coronary artery (LADCA) also 
represents a significant organ at risk, particularly during left sided breast cancer radiotherapy (Correa et al 2007). 
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Abstract
The heart is an important organ at risk during thoracic radiotherapy. Many studies have 
demonstrated a correlation between the mean heart dose and an increase in cardiovascular disease. 
Different treatments result in significant dose variation within the heart and individualised dose 
estimation increasingly requires more attention to delineation of various cardiac structures. 
Automatic segmentation tools are critical for consistent and accurate delineation of organs at risk in 
large, retrospective studies, however the challenge of ensuring a robust method must be addressed.

In a multi-atlas based segmentation framework the uncertainty in delineation can be modelled 
over the surface of the heart. We extend this concept with an iterative atlas selection procedure 
designed to remove inconsistent atlas contours, in turn improving the reliability of the segmentation.

Two independent datasets comprising 15 and 20 planning computed tomography (CT) images 
of Danish and Australian breast cancer patients, respectively, had the whole heart and left anterior 
descending coronary artery (LADCA) delineated. Using a cross-validation strategy, where each 
dataset is used as an atlas set to segment each image in the other, we assess segmentation performance 
qualitatively and quantitatively, using the dice similarity coefficient (DSC), mean surface-to-surface 
distance (MASD) and Hausdorff distance (HD).

After using the iterative atlas selection procedure, every segmentation error was removed. For the 
whole heart, the resulting segmentation achieved a DSC, MASD and HD of 0.937 ± 0.009, 1.66 ± 0.336 
mm, and 13.4 ± 4.54 mm.
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Dose inhomogeneity within the heart is associated with increased risk of late cardiac effects for mediastinal 
radiotherapy (Hahn et al 2017), so the development of accurate and consistent measurements of the dose to 
cardiac substructures is pertinent.

In recent years there have been a number of atlas-based approaches to perform automatic cardiac segmen-
tation in clinical radiotherapy. The utility of these tools stems from the accurate delineation, time-saving, and 
reduced contouring variability (Eldesoky et al 2016, Ciardo et al 2017). For accurate dose estimation, critical for 
large-scale data analysis, automatic cardiac segmentation has been a topic of interest for several years (Loren-
zen and Brink 2012). Recently, Kaderka et al (2018) have tested the geometric and dosimetric accuracy of auto-
matic cardiac segmentation using a commercial system, finding good agreement between manual and automatic 
delineations, and high correlations in dose estimates using these volumes. In moving towards a segmentation 
approach that is able to be utilised consistently across clinics an open-source software solution is required. Zhou 
et al (2017) developed and validated an atlas for automatic segmentation of cardiac substructures, with promis-
ing results demonstrating clinical feasibility. The recent work by Morris et al (2019) uses a combined magnetic 
resonance imaging (MRI) and x-ray computed tomography (CT) cardiac atlas to generate reliable cardiac seg-
mentation. Despite this recent work, a challenge remains: how can segmentation errors be detected, and hope-
fully, removed? 

In developing an open-source multi-atlas based automatic segmentation (MABAS) package that can be dis-
tributed between clinics, we aim for a robust framework that can be applied with no need for local optimisation, 
with the goal of enabling error-free segmentation. The primary source of errors in atlas-based segmentation is 
mis-registration of atlas images to the target image. A potential solution to improve segmentation performance 
is to select only the most suitable atlases, or to remove inaccurately registered atlases before combining the atlas 
labels to generate the final segmentation. There has been substantial effort in such atlas selection techniques, 
with many methods using image similarity between atlas and target images to define the optimal atlas set (Klein 
et al 2008, Aljabar et al 2009, Ou and Doshi 2012, Doshi et al 2016). Studies into atlas selection prior to the 
time-consuming deformable image registration step have the potential to improve segmentation performance 
and efficiency (van Rikxoort et al 2010, Langerak et al 2013). Investigation into iterative methods for selecting 
the best atlases for segmentation generation have been explored in the past (Langerak et al 2010, Antonelli et al 
2019), however these algorithms rely on image similarity to quantify registration accuracy. Since registration 
algorithms use image similarity as a metric to compute deformation fields between atlas and target images, it fol-
lows that reliance on this similarity to quantify performance is problematic.

The aim of this work is to develop a procedure to measure the quality of individual atlases. Our goal is to 
provide a cross platform tool that is usable in all clinics, and is able to robustly collect information from large, 
retrospective datasets. We evaluate the effect of using this tool, in an iterative atlas selection procedure, on seg-
mentation errors and overall accuracy for the heart and LADCA.

2.  Materials and methods

2.1.  Imaging data
Two independent datasets of breast cancer patients treated in Odense, Denmark and Liverpool, Australia were 
retrospectively obtained. In a cross-validation strategy each dataset was segmented using the other as an atlas set.

The Odense dataset consists of 15 patients, with a single observer providing manual delineations of the whole 
heart and LADCA contoured following local guidelines based on recommendations by Feng et al (2011). Imag-
ing was acquired in axial slices, with in-plane resolution of 0.97 mm × 0.97 mm and slice thickness of 3 mm. 
Patients were imaged in the treatment position, laying supine on an inclined breast board and with their arms 
raised. The CT scans were acquired on a Philips Brilliance Big Bore scanner, without the use of contrast enhance-
ment. These data were previously used as input to a commercial system (ABAS, Elekta AB) for segmentation of 
the heart in radiotherapy (Lorenzen et al 2014).

The Liverpool dataset consists of 20 patients, manually contoured by three independent observers, also fol-
lowing the guidelines based on the Feng et al. In addition to the whole heart and LADCA, contouring of the car-
diac chambers, great vessels, cardiac valves and coronary arteries was performed. Manual contours are combined 
into a probabilistic segmentation, as described in Finnegan et al (2019), to enable the propagation of contour 
variability throughout the segmentation pipeline. In order to enable comparisons between manual and auto-
matic delineations, we define the ground truth whole heart volume using a majority vote of the three observers’ 
contours. For the LADCA, where the manual contours may have little to no overlap, we use a simple splining 
procedure to define the location of the LADCa on each axial slice as the area-weighted average position of the 
three contours, and generate a spline between these points that is expanded to a tube of diameter 4 mm, following 
published data on coronary artery diameters (Dodge et al 1992). This tube is then sampled into image space and 
defines the ground truth LADCA delineation. Imaging was acquired in 2 mm axial slices with in-plane resolu-
tion of 0.97 mm × 0.97 mm. Patients were imaged in the supine position on a flat table with arms raised above the 
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head to simulate treatment, and the CT scans were acquired on a Philips Brilliance Big Bore scanner, without the 
use of contrast enhancement.

For both datasets imaging was acquired without breath hold nor cardiac gating techniques, and imaging 
quality is of the clinical standard in radiotherapy.

2.2.  Image registration
Automatic segmentation of the whole heart in thoracic CT scans was performed using an in-house multi-
atlas framework (Finnegan et al 2019). This software is open-source and available to download10 The input to 
this system is an atlas set consisting of images from a number of patients contoured by one or more observers, 
which are independently registered to the target image using rigid alignment with subsequent demons-based 
deformable image registration. The resulting deformation fields are used to deform the atlas labels and propagate 
them onto the target image. Rigid image registration was performed using multi-resolution strategy, with three 
stages consisting of down-sampling the target and atlas images by factors of 8, 2, and 1, and smoothing with a 
Gaussian filter with a scale of 4 mm, 2 mm, and 0 mm (no smoothing). The sum of square differences was used 
as a registration metric, with a fixed sampling rate of 0.1, optimised using a limited memory Broyden–Fletcher–
Goldfarb–Shannon algorithm (Fletcher 1987). Deformable registration is performed with a multi-resolution 
symmetric diffeomorphic demons algorithm (Vercauteren et al 2009), with 4 stages consisting of down-sampling 
the target and atlas images by factors of 8, 4, 2, and 1, with smoothing with a Gaussian filter with a scale of 8 mm, 
4 mm, 2 mm and 1 mm. The displacement and update fields are both smoothed using a Guassian filter with a 
scale of 1.5 voxels in each stage.

Throughout this work, we follow standard conventions (Langerak et al 2013) to define an atlas A = (I, L) 
as containing a 3D image, I, and a contour (or label) L for each structure that has been delineated11. An atlas set, 
then, is simply a collection of atlases.

We use a cross-validation strategy in this work, where the Liverpool data is used as an atlas set to delineate 
the Odense data, and vice versa. This means each patient image in the Odense cohort will have 20 atlases, while 
each patient image in the Liverpool cohort will have 15. Previous studies have shown that optimal segmentation 
accuracy is reached when using more than approximately 10 atlases (Aljabar et al 2009, van Rikxoort et al 2010), 
and so we do not expect the difference in the number of atlases used to produce variation in the segmentation 
accuracy between datasets.

2.3.  Iterative atlas selection
The accuracy of atlas-based segmentation depends on the precise registration of each atlas image to the target 
image. For some atlases this registration fails, for example due to large anatomic variation or the failure of 
the underlying optimisation algorithm. As a result, using mis-registered atlases when generating the final 
segmentation can at best introduce noise, and at worst create gross errors in volume definition.

When testing the automatic segmentation framework before the introduction of the iterative atlas selection 
method, as described in this paper, we observed segmentation errors related to mis-registration of the atlas image 
with the target image. Detection of these mis-registrations is difficult based on an image similarity measure as the 
registration algorithm is designed to maximise image similarity, which is the cause of these errors. The aim was 
thus to create an algorithm, independent of the image similarity measures, which could detect incorrect registra-
tions using the information from the registration of the entire atlas set and not just the individual atlas.

Considering variability in the boundary surface of the individual atlas labels used to generate a segmentation, 
we build on the work by Lorenzen et al (2014) by mapping surface-to-surface distances over the heart surface to 
quantify segmentation variability.

The projected difference between two volumes is defined as the distance between the boundary surfaces along 
a ray traced from the centre of mass of the reference volume. This centre of mass is calculated from the consen-
sus segmentation, defined by the region where the propagated contours from all atlases overlap. By tracing a ray 
outwards to each point on the surface, the projected difference can be mapped onto a sphere. Throughout this 
work we use an equal-area Eckert IV projection. The process of generating a map of projected surface difference 
is illustrated in figure 1. The advantage of this measure of uncertainty is that it is possible to make comparisons 
between different patients or different atlas sets, while preserving spatial information.

This mapping of projected distance is used to identify outliers in the registered set of atlases. The common 
grid enables spatially localised modelling of segmentation uncertainty. For a given target image we assess the 
quality of each atlas in the following way:

10 Software is available at https://github.com/rnfinnegan/simpleseg
11 In this context labels can be either binary, where voxels have value 1 if they are within the contour and 0 if not, or probabilistic, 
where a value between 0 and 1 indicates the relative likelihood of each voxel belonging to a structure.
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	1.	�A consensus segmentation is generated, which is defined by the region where the propagated contours 
from all atlases overlap.

		 In order to form a reference volume to which each atlas contour can be compared, a consensus 
segmentation is generated. This is defined by the region where the propagated contours from all atlases 
overlap. This consensus segmentation is a minimal volume, and is not an appropriate delineation of the 
heart itself.

	2.	�The projected difference from the consensus segmentation to each atlas contour is computed, and the 
values are mapped onto a common spherical grid using bilinear interpolation. This projection is designed 
for convex surfaces, where each ray from the centre of mass intersects the boundary surface of a volume 
once. In situations where an atlas has been mis-registered, it is possible that this condition is not met, and 
in this situation the interpolation procedure retains the most distant point of intersection to ensure errors 
are detected.

		 At each point on the spherical grid, r = (θ,φ) (where θ and φ are the polar and azimuthal angles, 
respectively), we define the projected difference from each atlas contour (denoted by subscript i) to the 
reference surface as xi(r).

	3.	�By quantifying the relative variation of each atlas, outliers can be identified and removed. This procedure, 
illustrated in figure 2, proceeds as follows:

	(a)	� In order to measure the spatially localised uncertainty the median absolute deviation was calculated. 
For each surface point on the sphere shown in figure 1, we calculate the median consensus-to-label 
distance, x̃(r), and the median absolute deviation in this distance, MAD(r) = median (|xi(r)− x̃(r)|). 
This is illustrated in figure 3.

	(b)	� To compare the variation of each atlas contour, we calculate a scaled distance over the surface which 
accounts for the spatially localised uncertainty:

x̂(r) =
x(r)− x̃(r)

MAD(r)
.� (1)

	(c)	� The distribution of scaled distances, f (x̂), is used to compute a single figure of merit indicative of the 
variation of the atlas contour over the entire surface.

		 The expected distribution of scaled distance was determined using an independent dataset (Lorenzen et al 
2013), where 9 observers delineated the whole heart in 15 CT images. The averaged distribution of the 
scaled distances for manual contours was found to be approximately normal.

		 To quantify the deviation from the expected delineation variability, the measured distribution is 
compared to the non-linear least squares Gaussian curve fit to the distribution, ffit(x̂). We define the 
figure of merit, Q, as:

Q =

∫ ∞

−∞
|f (x̂)− ffit(x̂)| · (x̂)2 dx̂� (2)

Figure 1.  Left: surface differences between two delineations of the heart volume are projected onto a sphere using radial rays from 
the centre of the volume. Right: the Eckert IV projection, used to map values surface differences measured on the surface of the heart 
to a sphere.
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		 where the weighting factor of (x̂)2 penalises variations from the idealised normal distribution that 
occur at larger absolute values of x̂, which correlate with more extreme deviations from typical surface 
distances.

	4.	�For each atlas contour, Q increases with larger deviations from typical surface-to-surface distances. We 
hypothesise that this value can be used as a indication of the performance of the individual atlas labels 
to segment the image, and consequently remove any atlases for which the corresponding value of Q is an 
outlier, defined as greater than 1.5 interquartile range above the 75th percentile (thus outside the whiskers 
in a standard boxplot).

	End	� Iterate steps 1–5 until there are no outliers identified, and return the remaining atlases for subsequent 
processing.

This iterative atlas selection allows for the detection of atlas contours which are subject to registration error, 
an issue we identified as substantially contributing to errors in segmentation (Finnegan et al 2019). Importantly, 
this procedure has no dependence on any manual delineations, and takes into account spatially-dependent seg-
mentation uncertainty as measured independently for each patient.

2.4.  Segmentation generation
Prior to iterative atlas selection, there is a set of contours from each of the registered atlases. After this process we 
have a reduced set of contours, where outlier atlases have been removed. These remaining atlases are combined 

Figure 2.  The iterative atlas selection process begins with the initial set of propagated atlas labels, which are used to generate a model 
of the scaled distance from the consensus segmentation to each label (top row). Next, for each atlas the overall variation is quantified, 
using the proposed figure of merit, Q. A histogram of these Q-values is shown for a consistent atlas (middle, left) and inconsistent 
atlas (middle, right), where red regions correspond to regions of larger deviation. These Q-values are aggregated over the remaining 
atlas set, outliers are identified and removed (middle row). This entire procedure is then repeated until there are no outliers detected, 
resulting in a subset of atlases that are kept for generating the final segmentation, as well as a subset of atlases that are removed 
(bottom row). 
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using a locally weighted voting regime based on the inverse squared difference in image intensity (Išgum et al 
2009). This method generates a probabilistic label map, where each voxel is assigned a value from 0 to 1 indicating 
the relative likelihood it belongs to the heart. To generate a binary segmentation from the resulting probabilistic 
label maps we use a single, fixed threshold for each atlas set. This threshold was calculated using a published 
optimisation procedure (Finnegan et al 2019) designed to minimise differences between manual and automatic 
volumes without a priori delineations. For the Odense atlas set and Liverpool atlas set the optimal threshold was 
determined to be 0.32 and 0.45, respectively.

In general, atlas based methods are not suitable for generating delineations of small structures such as the 
LADCA due to a lack of overlap in propagated atlas delineations. To overcome this shortcoming we have devel-
oped a simple vessel splining regime. On each axial slice of the target image we compute the centres of mass of the 
atlas LADCA labels; these points are used to define a connected spline, which is expanded by a predefined radius 
to generate a tube. This tube is voxelised into image space to produce the final LADCA segmentation. For this 
work we used a fixed radius of 4 mm, following published data on coronary artery diameters (Dodge et al 1992) 
and prior cardiac contouring guidelines for radiotherapy (Duane et al 2017).

The result is an automatic segmentation of the heart and LADCA on each target image.

2.5.  Evaluation of segmentation performance
Comparison of manual and automatic delineations was performed using the dice similarity coefficient (DSC), 
the mean absolute surface-to-surface distance (MASD) and the Hausdorff distance (HD, the largest surface-
to-surface distance). We compare the manual delineation to the automatic segmentations generated both 
before and after applying the iterative atlas selection procedure, to assess the impact on segmentation accuracy. 
To assess the potential statistically significant improvement in these metrics the Wilcoxon signed-rank test is 
used. A qualitative visual comparison between the boundary surface of the automatic segmentation and manual 
delineation is used to assess the overall quality and check for segmentation errors.

For the Liverpool dataset we use a majority voting regime to generate a gold-standard manual contour from 
the three observers in order to make comparisons to the automatic segmentations. Only the whole heart and 
LADCA are evaluated, as they were delineated in both datasets.

3.  Results

Geometric measures of the segmentation performance are illustrated in figure 4. These quantitative metrics 
are averaged over all 35 patients and presented in table 1. Considering inter-observer contouring variation, the 
automatic segmentation of the whole heart and LADCA was performed accurately. For the whole heart the 
iterative atlas selection algorithm improved this accuracy, however segmentation accuracy was not improved for 
the LADCA.

There were several patients for which segmentation errors were observed, most of which were observed in 
the Liverpool data (with the Odense data serving as an atlas). These segmentation errors are attributable to mis-
registration of the heart volume into the tissues at the inferior border of the heart, however after applying the 
iterative atlas removal procedure all of these observed errors were removed (figure 5).

The number of atlases remaining after applying iterative removal varies significantly between patients; the 
fraction of atlases remaining to the total number in the atlas set is 0.42 ± 0.18 (mean ± standard deviation). This 
suggests that, on average, approximately half of the initial atlases are removed using this procedure.

The entire segmentation framework is computationally efficient: pre-processing, registration, iterative 
atlas selection, label fusion and binary segmentation processing takes around 6 minutes per patient running 
on a 10-node cluster, with the deformable image registration step constituting the majority of this. Since the 
MABAS process requires registration of each atlas image to the patient image this results in 20 and 15 independ-
ent deformable registration tasks for the Liverpool and Odense atlas sets, respectively.

4.  Discussion

This work represents a beneficial addition to atlas-based segmentation techniques. The proposed iterative atlas 
selection procedure is able to remove segmentation errors and produce accurate and consistent segmentations of 
the whole heart. This procedure is efficient, robust and simple, and can be easily incorporated into existing atlas-
based segmentation frameworks.

The results of this study have several clinically relevant implications. Firstly, the ability to detect and correct 
segmentation errors is crucial in the analysis of large, retrospective datasets, where not only is it unfeasible for 
manual review and editing of each segmentation, but this may introduce additional observer bias. The independ
ence of our iterative atlas selection procedure on manual contours is beneficial in situations where there are no 
existing contours, but also when contouring follows different guidelines or local protocols. It is known that inter-
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observer contouring variability contributes to differences in dose estimates of the heart (Li et al 2009, Feng et al 
2011, Cui et al 2015), and LADCA (Lorenzen et al 2013). While this variability can be reduced for prospective 
patients, for example by following contouring guidelines (Wennstig et al 2017), using existing manual delinea-
tions in retrospective data may increase the uncertainty of dose estimates.

Significant inter-patient variation in the heart dose, even for similar treatments, makes dose prediction dif-
ficult (Taylor et al 2015). Small differences in delineations of the heart and larger substructures have minimal 
impact on the dosimetric parameters, supporting the case for utilising automatic segmentation techniques 
in radiotherapy (Luo et al 2018), and highlighting the importance of detecting large segmentation errors in a 
minority of patients. In turn this accurate dose prediction enables analysis of the risk of radiation-induced car-
diotoxicity for thoracic radiotherapy patients, which up until now has been limited at least in part due to the 
difficulties in providing accurate and consistent delineation of the heart and in particular cardiac substructures. 
In large, retrospective studies and data mining projects involving automated segmentation it is necessary to have 
consistent and error-free delineations, a challenge we aim to address with this method.

Furthermore, while it is clear that dose to the heart is associated with increased mortality from cardiovascular 
disease 10–20 years after treatment (Darby et al 2005, Hooning et al 2007), studies are needed to evaluate the dose 
to particular cardiac substructures to better understand the mechanisms behind this effect (Stam et al 2017). 
Ensuring the atlases used to generate segmentations are of as high quality as possible will enable precise substruc-
ture dosimetry.

The accuracy of the automatic segmentation for the whole heart was excellent, particularly considering the 
expected inter-observer contouring variability. We found that the segmentation of the Liverpool dataset images 
was in general slightly less precise and more prone to errors than that of the Odense dataset. This could be as a 

Figure 3.  Generating the patient-specific model of segmentation variability: the surface maps of the surface-to-surface distance 
between each propagated atlas label and the consensus segmentation are combined to generated a map of the median and median 
absolute deviation (MAD) in surface distance.
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result of using a smaller atlas set, since only 15 atlases were available when segmenting the 20 Liverpool atlases. 
Additionally, the Odense imaging had lower image resolution, which may reduce the accuracy of the deformable 
image registration and hence decrease segmentation accuracy. In using the automatic segmentation framework 
we intentionally performed no optimisation of any processes in order to better simulate a situation where there 
are no manual contours available for comparison. Analysis of the geometric accuracy of the whole heart segmen-
tation highlights the importance of using multiple metrics, as measures based only on volumetric overlap (such 
as the DSC) are insensitive to segmentation errors that do not significantly change the overlapping volume of 
delineations, such as that shown in figure 5. For this reason, the improvement in segmentation accuracy is not 
clear when only considering the DSC, however surface-based metrics, such as the MASD and particularly the 
HD, are more sensitive to such errors, and indicate a marked improvement in segmentation accuracy.

For the LADCA, the use of the iterative atlas selection tool did not significantly change the accuracy of the seg-
mentations. Automatic delineations of the LADCA were generated with a vessel splining procedure, which meas-
ures the position of the centre of mass of the LADCA label from each atlas on each slice and connects them with 
a tube of fixed radius. We expect reasonable registration accuracy along most of the left anterior interventricular 
sulcus due the sharp boundary between the heart and lung tissue, and thus do not necessarily expect the removal 
of atlases to change the LADCA definition. Moreover, as the accuracy of our automatic method is limited to the 
inter-observer contouring variation of the LADCA, we can consider these delineations to be approaching the 
limit of what is achievable in clinical, non-contrast CT imaging.

The novel measure of the consistency of an individual atlas, the Q value, is an attempt to encapsulate the vari-
ation in the boundary surface of an atlas label relative to the remaining atlas set. In generating the model of sur-
face variability we chose to use the median and MAD as measures of typical distance and variation, respectively, 
as these are generally more robust and resilient to outliers than the mean and standard deviation. When mapping 
surface distances onto a common grid we chose to use a spherical map projection. In addition to convenient 
visualisation, this also makes it possible to compare between patients, for example to build a population average 
of surface segmentation variability. This could serve as a useful tool for evaluating the consistency of contouring, 

Figure 4.  The effect of the iterative atlas selection procedure is illustrated by comparing the manual delineations to the automatic 
segmentations generated both before and after the procedure is applied. The dice similarity coefficient (DSC), mean absolute 
surface-to-surface distance (MASD) and Hausdorff distance (HD) are used to assess changes in segmentation performance. The 
results for the Odense data (using the Liverpool data as an atlas set) and Liverpool data (using the Odense data as an atlas set) are 
plotted separately. Top row: whole heart segmentation, bottom row: left anterior descending coronary artery segmentation.

Table 1.  Evaluation of automatic segmentation performance for the whole heart and left anterior descending coronary artery (LADCA). 
Values presented are mean ± standard deviation over all 35 patients in both the Liverpool and Odense datasets.

Whole heart LADCA

Before After Inter-obs.a Before After Inter-obs.a

DSC 0.934 ± 0.011 0.937 ± 0.009b 0.939 ± 0.011 0.086 ± 0.069 0.076 ± 0.068 0.172 ± 0.086

MASD (mm) 1.96 ± 0.567 1.66 ± 0.336b 1.59 ± 0.356 6.71 ± 2.69 6.63 ± 2.28 4.34 ± 1.30

HD (mm) 18.7 ± 10.3 13.4 ± 4.54b 14.9 ± 3.21 23.6 ± 6.91 23.6 ± 6.61 24.3 ± 5.49

a The inter-observer variation is calculated using pairwise comparisons of the three sets of contours on images in the Liverpool dataset.
b Statistical significant improvement in the metric, given as p   <  0.05 using a one-sided Wilcoxon signed-rank test.
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for example in clinical trial quality assurance where analysis of contouring differences is difficult (Jameson et al 
2010, Vinod et al 2016).

In the iterative atlas selection procedure, the calculation of the scaled distance effectively removes the effect 
of the consensus volume as a reference. Although the reference volume is thus not required for this calculation, 
it is useful for several reasons. Firstly, computing the surface variation relative to a consistent surface provides a 
measure of the physical distance between contours, and so the surface variation between different patients can be 
directly compared. Secondly, this provides additional flexibility in adapting this framework, for example by scal-
ing the surface variation, where the physical distance to a reference surface is more independent of the structure 
size and thus more appropriate to use. Lastly, and most importantly, we are currently in the process of extend-
ing this procedure so that it can be used on structures of any shape. For non-convex structures, the projection 
onto a common grid is replaced with measuring the distance between each atlas contour and a reference surface 
directly, and following a similar iterative selection process from there. This differs from the current procedure in 
that distance evaluation would occur on the reference surface, rather than the atlas surface, and because of this 
the surface variation is not evaluated at every point on each atlas surface, meaning it is possible that errors in 
atlas contours may be missed. For this reason we have used the more robust method as presented, which requires 
interpolation onto a common grid.

In evaluating whether an atlas should be removed we introduce the only free parameter in the procedure: the 
threshold for atlas removal. If this threshold is too low the process could remove atlases of reasonable quality. The 
use of larger atlas sets has been shown to improve segmentation accuracy generally (Aljabar et al 2009), as well 
as specifically for whole heart segmentation in CT imaging (Zhuang et al 2015), with measures of segmentation 
accuracy reaching a maximum when approximately 10 atlases are used and a plateau in quality with the use of 
additional atlases. The removal of too many atlases may reduce segmentation accuracy. Conversely, a threshold 
set too high could potentially introduce atlases subject to mis-registration with the target image and produce 
errors in the final segmentation. The optimal threshold will also vary with the desired application: in the context 
of unsupervised segmentation of large, variable datasets the removal of all errors at the cost of a potential reduc-
tion in overall accuracy is preferred. The given threshold, derived from the standard definition of an outlier (1.5 
inter-quartile ranges above the 75th percentile), was able to correct segmentation errors in the data used in this 
study with no overall reduction in measures of segmentation accuracy; future work could address the effect of 
different thresholds.

This study used cross-validation with independent datasets to examine the effect of differences in patient set-
up, image acquisition parameters and on the accuracy of automatic segmentation and iterative atlas selection. A 
limitation of our presented iterative atlas selection procedure is that the unique mapping of points of the heart 
surface relies on a convex shape. For more complicated structures this condition will not hold, however, a simple 
solution would be to calculate the scaled distance on the surface of the consensus segmentation, rather than pro-
jecting this distance onto a grid. Imaging data used in this study was collected without gating techniques, which 

Figure 5.  The effect of the iterative atlas selection is illustrated using an example from the Liverpool dataset. Left: the automatic 
segmentation is subject to an error introduced by mis-registered atlases. Right: after iterative atlas selection is applied these mis-
registered atlases are removed, resulting in a significant improvement in segmentation performance. Surface renderings of the 
automatic segmentations of the whole heart and LADCA are shown in blue, with manual delineations shown in red.
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leads to blurring of the images and hence the delineations can be thought of as a time-averaged volume. The dose 
that would be calculated for these volumes would thus also be a time-averaged estimation, without taking into 
account anatomical motion. While we expect this effect to be small it may affect the accuracy of dose measure-
ments using both automatic segmentations and manual contours.

Atlas-based cardiac segmentation has been used in the context of cardiac imaging (Išgum et al 2009, Zhuang 
et al 2010, Bai et al 2014), where the motivation for accurate segmentation stems from characterising cardiac 
function or disease. The presented iterative atlas selection procedure is independent of the imaging modality, and 
is therefore suitable to be included in existing atlas-based segmentation frameworks designed for cardiac imag-
ing.

5.  Conclusion

This work serves as a promising step for the accurate and precise cardiac segmentation in retrospective datasets. 
Future studies to ensure the dosimetric consistency of automatic segmentations are necessary, and using a multi-
observer dataset (Lorenzen et al 2014) we plan to validate our framework considering the variability in dose 
as a result of contouring differences. Further investigation to assess the impact of the iterative atlas selection 
procedure on the segmentation accuracy of cardiac substructures is desirable for situations where accurate 
substructure delineation is critical.

The iterative atlas selection algorithm leverages the a priori power of atlases, and with optimised segmenta-
tion thresholds, underpins accurate, consistent and robust automatic segmentation of the heart. The independ
ence of imaging modality makes this approach useful in radiotherapy, cardiac imaging, and potentially for 
segmentation of many other anatomical structures. We intend to apply our framework in the analysis of large, 
retrospective breast cancer studies, where precise dose estimation is necessary to understand the effect of radia-
tion on the heart at a more detailed level.
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