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1.  Introduction

Cone-beam computed tomography (CBCT) has been widely used in image-guided radiation therapy for 
prostate patients to improve treatment setup accuracy. In current clinical practice, it is acquired before treatment 
delivery and provides detailed anatomic information in the treatment position. The displacement of anatomic 
landmarks between CBCT images and the treatment planning CT images are then measured to quantitatively 
determine the error in patient setup (Barney et al 2011).

In recent years, adaptive radiation therapy has been shown as a promising strategy to improve clinical out-
comes by accommodating the inter-fraction variations (Yan et al 1997, Kataria et al 2016). In an adaptive radia-
tion therapy workflow, CBCT plays an important role in providing the latest 3D information of patient position 
and anatomy (Oldham et al 2005). More demanding applications of CBCT have been proposed, such as daily 
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Abstract
To develop an automated cone-beam computed tomography (CBCT) multi-organ segmentation 
method for potential CBCT-guided adaptive radiation therapy workflow.

The proposed method combines the deep leaning-based image synthesis method, which generates 
magnetic resonance images (MRIs) with superior soft-tissue contrast from on-board setup CBCT 
images to aid CBCT segmentation, with a deep attention strategy, which focuses on learning 
discriminative features for differentiating organ margins. The whole segmentation method consists 
of 3 major steps. First, a cycle-consistent adversarial network (CycleGAN) was used to estimate a 
synthetic MRI (sMRI) from CBCT images. Second, a deep attention network was trained based on 
sMRI and its corresponding manual contours. Third, the segmented contours for a query patient was 
obtained by feeding the patient’s CBCT images into the trained sMRI estimation and segmentation 
model. In our retrospective study, we included 100 prostate cancer patients, each of whom has CBCT 
acquired with prostate, bladder and rectum contoured by physicians with MRI guidance as ground 
truth. We trained and tested our model with separate datasets among these patients. The resulting 
segmentations were compared with physicians’ manual contours.

The Dice similarity coefficient and mean surface distance indices between our segmented and 
physicians’ manual contours (bladder, prostate, and rectum) were 0.95  ±  0.02, 0.44  ±  0.22 mm, 
0.86  ±  0.06, 0.73  ±  0.37 mm, and 0.91  ±  0.04, 0.72  ±  0.65 mm, respectively.

We have proposed a novel CBCT-only pelvic multi-organ segmentation strategy using CBCT-
based sMRI and validated its accuracy against manual contours. This technique could provide 
accurate organ volume for treatment planning without requiring MR images acquisition, greatly 
facilitating routine clinical workflow.
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estimation of target coverage and organs-at-risk (OARs) sparing for real-time CBCT-based treatment replan-
ning (Yoo and Yin 2006, de la Zerda et al 2007).

These potential uses of CBCT require accurate and fast delineation of targets and OARs. Experienced physi-
cians are able to manually contour multiple organs on CBCT images, but it is impractical in adaptive radiation 
therapy due to time constraints. Alternatively, it has been proposed that contours on planning CT images can be 
propagated to CBCT images by image registration (Xie et al 2008, Thor et al 2011). However, large local variations 
in patient anatomy and image content between CBCT and CT images is common, e.g. changes in bladder/rectum 
filling status in prostate cancer patients (Yang et al 2014a). Such variations cannot be handled by rigid image 
registration, and also not readily by deformable image registration because of the lack of exact correspondence 
of image content between the two image sets (Yang et al 2014b). The suboptimal registration result would lead to 
degraded accuracy of the propagated contours.

Automatic segmentation solely based on CBCT can avoid registration to the planning CT, but very few stud-
ies have been published. The contrast of some organs, such as prostate, is poor on CBCT images, which is further 
degraded by CBCT artifacts caused by scatter contamination (Lei et al 2019b). In this study, we propose a novel 
method to automatically segment multiple organs on pelvic CBCT for prostate cancer patients. We synthesized 
sMRIs from CBCT images to provide superior soft-tissue contrast, and then used a deep attention network to 
automatically capture the significant features to differentiate the multi-organ margins in sMRI. With this sMRI-
aided strategy, we aim to develop an automated and accurate segmentation method benefiting from the high 
soft-tissue contrast of MR images. Our method was evaluated in a retrospective study with 100 patients.

2.  Materials and methods

Our segmentation method consisted of 2 major steps: (1) sMRI synthesis from CBCT images; and (2) 
segmentation on sMRI. Figures 1–3 outline the schematic flow chart of the proposed method. First, a CycleGAN 
was trained to estimate sMRIs from CBCT images by introducing an inverse transformation, which is able to 
enforce the translation from CBCT to MRI to be one-to-one mapping, as is shown in figure 1. Second, a deep 
attention U-Net (DAUNet) was trained to segment multi organs on sMRIs, as is shown in figure 2. A deep 
attention network was introduced to retrieve the most relevant features to identify organ boundaries. Deep 
supervision was also incorporated into this DAUNet to enhance the features’ discriminative ability. Third, for a 
new patient, the contours were obtained by first feeding the CBCT image into the trained CycleGAN to generate 
the sMRI, and then feeding sMRI to the trained DAUNet to generate the segmentation, as is shown in figure 3.

2.1.  sMRI estimation
The first step of our method is to synthesize MRI from CBCT images using 3D CycleGAN. In this step, we first 
trained a CBCT-to-MRI transformation model using pairs of CBCT and MRI images from the training patient 
dataset. Note that the MRIs were deformably registered with CBCTs for each training patient using commercial 
software. The deformed MR images were used as the learning-based target of the CBCT images for the proposed 
sMRI-aided strategy. Because the two image modalities have fundamentally different properties, training a 
CBCT-to-MRI transformation model is difficult. To cope with this challenge, 3D CycleGAN architecture was 
used to learn this transformation model (Lei et al 2019a), due to its ability to enforce the transformation to mimic 
target data distribution by incorporating an inverse transformation. Patient anatomy can vary significantly 
among individuals. In order to accurately predict each voxel in the anatomic region (bladder, prostate and 
rectum), we introduced several dense blocks to capture multi-scale information (including low-frequency 
structural information and high-frequency textural information) by extracting features from previous and 
following hidden layers (Lei et al 2019a). Each 3D patch was extracted from paired CBCT and MRIs by sliding the 
window with overlap to its neighboring patches (Yang et al 2017). This overlap ensures that a continuous whole-
image output can be obtained and allows for increased training data for the network. The detailed 3D CycleGAN 
architecture is introduced in our previous study (Lei et al 2019a).

2.2.  Deep attention network
The second step of our method is to perform automatic segmentation using DAUNet on the sMRI generated 
from the first step. The DAUNet was trained on the sMRIs from the first step of training patient dataset, with their 
binary masks of corresponding manual prostate, bladder, and rectum contours of ground truth used as learning-
based target. As shown in figure 2, the DAUNet architecture is implemented by introducing additional attention 
gates (AGs) (Mishra et al 2018) and deep supervision (Wang et al 2019a, 2019c, Lei et al 2019c) on a basic U-Net 
architecture (Balagopal et al 2018, Dong et al 2019, Wang et al 2019b). The U-Net architecture consists of an 
encoding path and a decoding path; the two paths were connected by several long skip connections. In our study, 
the long skip connection concatenated the feature maps from the current two decoding deconvolution operators 
and one previous encoding convolution operator by using AGs. Such concatenation with AGs encouraged the 
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Figure 1.  The first row shows the schematic flow of the training of synthetic MRI via CycleGAN. The second shows the generators’ 
and discriminators’ network architectures used in first row.

Figure 2.  The first row shows the schematic flow of the training of synthetic MRI pelvic segmentation via DAUNet. The second 
shows the DAUNet network architectures used in first row. The third row shows the attention gate architecture used in second row.

Phys. Med. Biol. 65 (2020) 035013 (12pp)
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network to identify the most relevant semantic contextual information without a requirement to enlarge the 
receptive field, which is highly beneficial for organ localization (Mishra et al 2018). We also use deep-supervision 
to force the intermediate feature maps to be semantically discriminative at each image scale (Wang et al 2019a, Lei 
et al 2019c). This helps to ensure that AGs, at different scales, have an ability to influence the responses to a large 
range of prostate content.

2.3.  Database
In this retrospective study, we reviewed 100 patients with prostate malignancies treated with external beam 
radiation therapy in our clinic. All of the 100 patients underwent standard treatment planning workflow, i.e. 
CT simulation and at least one set of CBCT images acquired during treatment. The CBCT images were acquired 
using the Varian On-Board Imager CBCT system, with imaging spacing of 0.908 mm  ×  0.908 mm  ×  2.0 mm. 
We divided the 100 patients into two 50-patient groups. Among the first 50-patient group, the corresponding 
MR images used for fusion with planning CBCT images for prostate delineation were also retrieved for sMRI 
training. The MR images of all patients were acquired using a Siemens standard T2-weighted MRI scanner with 
3D T2-SPACE sequence and 1.0  ×  1.0  ×  2.0 mm3 voxel size (TR/TE: 1000/123 ms, flip angle: 95°). The training 
MR and CBCT images were deformably registered using commercial software, Velocity AI 3.2.1 (Varian Medical 
Systems, Palo Alto, CA). Institutional review board approval was obtained; no informed consent was required for 
this HIPAA-compliant retrospective analysis.

In our study, patients with MRI scans have manual contours delineated by physicians first. Such MRI was 
then registered with CBCT images using deformable registration, with the contours on MRI also propagated on 
CBCT images. The physicians then refined the propagated contours based on CBCT images to reduce error from 
registration. Such contours delineated on MRI and refined on CBCT were considered as ground truth contours 
and learning-based target in our study. For the deformable registration step, it should be noted that it is only 
performed on training dataset to match the CBCT and MR images. As long as the model is trained, deformable 
registration is no longer involved in segmenting a new patient. The new patient does not have MR images, and his 
sMRI predicted by our model shares same anatomy with his CBCT.

2.4.  Reliability evaluation of the segmentation algorithm
The automatic segmentation results were compared with the gold standard of physicians’ manual contours. Dice 
similarity coefficient (DSC), sensitivity, specificity, Hausdorff distance (HD), mean surface distance (MSD), 
the residual mean square distance (RMSD), the center of mass distance (CMD), and volume difference (VD) 
were used to evaluate the accuracy of our segmentation method. The DSC, precision and recall scores are used 
to quantify volume similarity between two contours. The HD, MSD and RMSD metrics are used to quantify 
boundary similarity between two surfaces. The CMD metric is used to measure the distance between the center 
of segmented and manual contour, which is especially important for prostate contour because it determines the 
isocenter setup. The VD metric is used to measure the absolute volume difference between the segmented and 
manual contour, which dose volume histogram calculation depends on. More accurate segmentation results are 
associated with lower HD, MSD and RMSD scores and higher DSC, precision and recall scores.

Five-fold cross-validation method was used to evaluate the proposed segmentation algorithm among the 
first 50-patient group, because it gives the proposed model the opportunity to train on multiple train-test splits. 
This method split up data into five sub-groups. One of the sub-groups (10 patients’ data) was used as the test 
set and the rest (40 patients’ data) were used as the training set for both CBCT-to-sMRI transformation model 
(CycleGAN) and segmentation model. The models were trained on the training set and scored on the test set. 
Then the process was repeated until each unique sub-group had been used as the test set.

In addition, a hold-out method was used to evaluate the proposed segmentation algorithm how well it per-
forms on unseen data. We used the first 50-patient group as the training set for both CBCT-to-sMRI transforma-
tion model (CycleGAN) and segmentation model, and used the second 50-patient group for testing. The second 
50-patient group is not involved in any training steps.

Figure 3.  The schematic workflow of segmenting of a new arrival patient’s CBCT image.

Phys. Med. Biol. 65 (2020) 035013 (12pp)
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By using both of the two validations, each of 100 patient data was exactly tested once. We used the numerical 
metrics of these patients to evaluate the proposed method’s performance. To illustrate the significant improve-
ment of sMRI-aided strategy, a paired two-tailed t-test was used between the results of the other comparison 
methods.

3.  Results

3.1.  Contribution of deep attention
To demonstrate the efficacy of deep attention, we compared the results of our proposed DAUNet algorithm 
against the algorithm without using deep attention, i.e. deeply supervised U-Net (DSUNet). These two 
algorithms were both trained on sMRIs. Figure 4 shows 3D scatter plots of the first three principal components 
of patch samples in the feature maps extracted from the last convolution layer of three deconvolution operators. 
To demonstrate the ability of AGs on differentiating tissues around organ margins, we randomly selected 1000 
samples from the posterior margin of prostate, the anterior margin of rectum, and the region between prostate 
and rectum, as shown in the subfigure (a4). We selected the samples due to their location in the organ margin, 
proximity to an adjacent organ, and the resulting difficulty in accurate differentiation and identification. The 
scatter plots of a DSUNet in the subfigures (b1)–(b4) illustrates an overlap between the samples from the 
bladder, the region between bladder and rectum, and the rectum regions; thus these two regions cannot be easily 
separated. Whereas with DAUNet, as shown in the subfigures (c1)–(c4), the samples can be easily separated, 
demonstrating the significant enhanced discerning capability with the addition of a deep attention strategy. 
We also compared the numerical results of DAUNet with those of DSUNet on sMRI data in tables 1–3. As is 
shown, DAUNet achieved better performance than DSUNet. Table 1 shows the numerical comparison for five-
fold cross-validation experiments. Table 2 shows the numerical comparison for hold-out validation experiment. 
Table 3 shows the numerical results of all used 100 patients data.

3.2.  Efficacy of sMRI-aided strategy
Figure 5 shows axial views of the CBCT image, sMRI and deformed prostate manual contours at axial level for a 
patient. To better illustrate the contrast enhancement of sMRI-aided strategy, figure 5(c) compare the profiles of 
the dashed red line for CBCT image (a), sMRIs (b) and manual contours (displayed overlaid on the CBCT image). 
The dash line passed through the bladder (cyan), prostate (orange), and rectum (yellow) manual contours. To 
make the boundary clear, we set 0 as the voxels without organs, and 1.0 as the voxels within the organs. Thus, the 
boundary of the prostate is the jump discontinuity on the plot profile. To provide a meaningful comparison, we 

use a x−min(X)
max(X)−min(X)  normalization to scale voxel intensities on the dash line to [0, 1], where x denotes a voxel’s 

intensity on dash line, X denotes the all voxels’ intensity appeared on dash line. As is shown in subfigure (c), the 
middle jump of yellow dashed line depicts the region of prostate manual contour. It is shown that the sMRI’s plot 
profile (red line) in that region has three significant peaks, and two of them are correlated to the manual prostate 
contour’s boundary. However, from CBCT’s plot profile (green line), the peaks of prostate boundary are not very 
significant from other peaks within the prostate region. In addition, this situation occurs in first and third jumps 
of yellow dashed line, i.e. the region of bladder and rectum. As is shown in this subfigure, sMRI provides superior 
bladder and prostate contrast to CBCT image.

Figure 6 compares the segmentation results with and without using the sMRI-aided strategy. In the first row, 
the segmented contour on sMRI (a3) is quite close to the manual contours, while the segmentation results on 
CBCT show different size and shape for bladder and prostate from manual contours. In the second row, the 
segmented prostate contour of both CBCT (b2) and sMRI (b3) images are different from the manual prostate 
contour. The segmentation error of sMRI (b3) may be caused by the synthesis error caused by CycleGAN during 
synthesis process. Even so, the segmented prostate contour of sMRI (b3) is closer to manual contour as compared 
to the segmented prostate contour of CBCT (b2).

To evaluate the influence of sMRI-aided strategy on the segmentation, we compared the results obtained 
with the proposed DAUNet tested separately on CBCT and sMRIs. The numerical comparison between DAUNet 
using CBCT (DAUNet CBCT) and DAUNet using sMRI (DAUNet sMRI) for five-fold cross-validation is shown 
in table 1. The numerical comparison for hold-out validation is shown in table 2. In addition, the performance 
of proposed method on two validations has no significant difference in large amount of metrics. We show the 
numerical results of all 100 patients in table 3. As shown in these tables, compared CBCT segmentation, our 
sMRI-aided segmentation demonstrates superior performances on all metrics.

Phys. Med. Biol. 65 (2020) 035013 (12pp)
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4.  Discussion

We proposed a new pelvic multi-organ segmentation method which incorporates both a sMRI-aided strategy 
and a deep attention strategy into a U-Net architecture for automatic multi-organ segmentation of CBCT 

Figure 4.  An illustrative example of the benefit of our DAUNet compared with DSUNet without using AGs, (a1) shows the original 
CBCT image in transverse plane. (a2) Shows corresponding manual contours, (a3) shows the generated sMRI, (a4) shows the 
sample patches’ central positions drawn from sMRI, where the samples belonging to the bladder are highlighted by green circles, 
and the samples belonging to the rectum are highlighted by red asterisks, and the samples between bladder and rectum regions are 
highlighted by blue circles. (b1)–(b4) Show the scatter plots of the first 3 principal components of corresponding patch samples 
in feature maps extracted by using a DSUNet, respectively. (c1)–(c4) Show the scatter plots of first 3 principal components of 
corresponding patch samples in the feature maps extracted by DAUNet, respectively.

Figure 5.  Visual results of generated sMRI. (a) shows the original CBCT image at axial level, the display window of CBCT image was 
set to [−160, 240] HU. The manual contours of bladder (cyan), prostate (orange) and rectum (yellow) were displayed overlaid on 
the CBCT image. (b) Shows the generated sMRI. (c) Shows the normalized plot profile of CBCT, sMRI, and manual contour of the 
red dashed line in (a), respectively.

Phys. Med. Biol. 65 (2020) 035013 (12pp)
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images. The proposed method makes use of the superior soft-tissue contrast of sMRI, bypasses MR acquisition 
and has the potential to generate accurate and consistent pelvic multi-organ segments using CBCT images alone.

This paper is the first study of automatic multi-organ segmentation for pelvic CBCT images using deep learn-
ing-based method. Compared to deformable registration-based methods, our method achieves higher accuracy. 
Thor et al reported the average DSC (range) was 0.80 (0.65–0.87) for prostate, 0.77 (0.63–0.87) for rectum and 
0.73 (0.34–0.91) for bladder among 36 patient datasets when propagating the corresponding contours from 
planning CT to CBCT with Demons deformable registration algorithm (Thor et al 2011). Similar results can also 
be found in other deformable registration-based studies (Thörnqvist et al 2010, Rubeaux et al 2013, Gardner et al 
2015, Woerner et al 2017), and our method demonstrates 6%, 14%, and 22% higher DSC for prostate, rectum 
and bladder, respectively.

The results of the proposed method can be further examined by comparing it to inter-observer variation of 
manual contouring on CBCT. Gardner et al reported an average DSC of 0.872 and HD of 5.22 mm of prostate 
contours among five radiation oncologists on ten patients’ dataset when compared to the consensus contour 
(Gardner et al 2015, 2019). Choi et al showed that the mean center of mass distances from averaged prostate 
contour was 1.73 mm among three observers contouring on ten patients (Choi et al 2011). White et al reported 
the mean standard deviation of prostate volume among five observers on five patients was 8.93 cc with a large 
range (3.98–19.00 cc) (White et al 2009). Our results are similar or better when compared to the above findings, 
indicating manual contouring is prone to errors from significant inter-observer variation. The method proposed 
here can provide an observer-independent segmentation method to improve reproducibility and efficiency with 
comparable accuracy.

There are several limitations in the implementation of this study. As we stated in 2.3, the prostate and organ 
contours in this study were delineated on MR first, and then propagated to CBCT with proper refinement. The 
refinement aims to correct obvious error from registration when keeping the majority of contours. Thus, such 
contour for prostate would mostly avoid including periprostatic region. However, we noticed that during this 
process, it may introduce registration errors which cannot be fully corrected by the refinement, and the error in 
refinement which may inevitably include some of the periprostatic region since the poor contrast on CBCT. The 
registration error may affect the performance in sMRI stage by poorly matched MRI-CBCT training dataset. 
Thus, in order to reduce the errors, we review each deformable registration very carefully to make sure that all 
MRI-CBCT registration in our training database matched very well. Secondly, the refinement was done by one 
physician, which may have been affected by the physician’s contouring style. A potential solution is to include 

Figure 6.  Comparison of the proposed method on sMRI data and CBCT data. (a1) and (b1) Show the CBCT images of two patients, 
with manual contour of bladder (cyan), prostate (orange) and rectum (yellow) overlaid on the CBCT images. (a2) and (b2) Show 
the CBCT images of two patients, with the segmented contour of DAUNet trained on CBCT data overlaid on CBCT images. (a3) and 
(b3) Show the sMRI images with segmented contours of DAUNet trained on sMRI data. The display window of all CBCT images was 
set to [−160, 240] HU.

Phys. Med. Biol. 65 (2020) 035013 (12pp)
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Table 1.  Numerical comparison of DAUNet trained and tested on sMRI (DSUNet sMRI), DAUNet trained and tested on CBCT (DSUNet CBCT), and DSUNet trained and tested on sMRI (DSUNet sMRI) for five-fold cross-validation.

Method DSC Sensitivity Specificity HD (mm) MSD (mm) RMSD (mm) CMD (mm) VD (cc)

Bladder DSUNet sMRI 0.93  ±  0.04 0.95  ±  0.032 0.91  ±  0.07 5.91  ±  4.90 0.52  ±  0.29 0.85  ±  0.62 1.25  ±  1.00 9.17  ±  6.30

DAUNet CBCT 0.91  ±  0.06 0.96  ±  0.048 0.87  ±  0.08 12.79  ±  14.82 0.67  ±  0.33 1.07  ±  0.64 1.4  ±  1.49 16.57  ±  18.61

DAUNet sMRI 0.94  ±  0.02 0.94  ±  0.04 0.96  ±  0.02 4.58  ±  3.94 0.48  ±  0.23 0.83  ±  0.63 0.93  ±  0.74 6.92  ±  5.71

P-value DAUNet sMRI 

versus DSUNet sMRI

0.174 0.022 0.003 0.021 0.591 0.922 0.014 0.195

P-value DAUNet sMRI 

versus DAUNet CBCT

0.004 0.002 <0.001 <0.001 0.002 0.019 0.005 0.007

Prostate DSUNet sMRI 0.83  ±  0.045 0.83  ±  0.091 0.86  ±  0.091 6.42  ±  2.46 0.91  ±  0.26 1.28  ±  0.34 2.48  ±  1.11 6.39  ±  7.29

DAUNet CBCT 0.80  ±  0.05 0.80  ±  0.10 0.81  ±  0.08 6.82  ±  3.088 1.06  ±  0.29 1.48  ±  0.48 3.22  ±  1.30 5.65  ±  6.80

DAUNet sMRI 0.86  ±  0.04 0.86  ±  0.06 0.87  ±  0.09 5.36  ±  2.46 0.76  ±  0.26 1.14  ±  0.36 1.98  ±  1.14 3.22  ±  2.55

P-value DAUNet sMRI 

versus DSUNet sMRI

0.002 0.541 0.074 0.065 0.017 0.091 0.147 0.049

P-value DAUNet sMRI 

versus DAUNet CBCT

<0.001 0.010 0.043 0.034 <0.001 0.006 <0.001 0.103

Rectum DSUNet sMRI 0.86  ±  0.042 0.85  ±  0.07 0.89  ±  0.07 9.96  ±  5.52 1.32  ±  2.27 2.63  ±  5.17 4.83  ±  4.99 7.14  ±  9.95

DAUNet CBCT 0.83  ±  0.055 0.81  ±  0.098 0.87  ±  0.07 15.51  ±  22.13 1.40  ±  1.06 3.07  ±  3.21 5.28  ±  5.88 9.60  ±  8.96

DAUNet sMRI 0.92  ±  0.03 0.91  ±  0.02 0.93  ±  0.02 5.20  ±  1.61 0.62  ±  0.15 1.24  ±  1.01 1.94  ±  1.29 3.70  ±  4.18

P-value DAUNet sMRI 

versus DSUNet sMRI

<0.001 0.002 0.042 <0.001 0.128 0.161 0.007 0.065

P-value DAUNet sMRI 

versus DAUNet CBCT

<0.001 <0.001 0.007 0.031 <0.001 0.004 0.009 0.001

P
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consensus contours by multiple observers on the refinement of contours to reduce the observer bias on segmen-
tation training dataset.

In addition, the sMRI quality may affect the segmentation accuracy. On the one hand, the CBCT image qual-
ity is often affected by the physical imaging characteristics, namely a large scatter-to-primary ratio leading to 

Table 2.  Numerical comparison of DSUNet sMRI, DSUNet CBCT, and DSUNet sMRI for hold-out validation.

Method DSC Sensitivity Specificity HD (mm) MSD (mm)

RMSD 

(mm) CMD (mm) VD (cc)

Bladder DSUNet 

sMRI

0.92  ±  0.05 0.95  ±  0.04 0.89  ±  0.08 6.99  ±  5.60 0.49  ±  0.26 0.77  ±  0.42 1.34  ±  1.53 8.11  ±  8.16

DAUNet 

CBCT

0.88  ±  0.07 0.89  ±  0.09 0.88  ±  0.09 9.84  ±  10.38 0.82  ±  0.54 1.29  ±  0.86 2.72  ±  2.76 11.94  ±  14.30

DAUNet 

sMRI

0.95  ±  0.03 0.96  ±  0.02 0.93  ±  0.04 4.79  ±  5.83 0.40  ±  0.20 0.78  ±  0.76 0.86  ±  0.63 4.41  ±  4.45

P-value 

DAUNet 

sMRI 

versus 

DSUNet 

sMRI

0.004 <0.001 0.005 0.138 0.105 0.974 0.008 0.005

P-value 

DAUNet 

sMRI 

versus 

DAUNet 

CBCT

<0.001 0.001 0.015 0.048 <0.001 0.023 <0.001 0.005

Prostate DSUNet 

sMRI

0.84  ±  0.09 0.87  ±  0.11 0.82  ±  0.10 4.55  ±  2.36 0.68  ±  0.39 0.96  ±  0.50 2.04  ±  2.03 1.87  ±  1.67

DAUNet 

CBCT

0.84  ±  0.11 0.82  ±  0.10 0.85  ±  0.14 4.84  ±  3.26 0.78  ±  0.57 1.12  ±  0.78 1.95  ±  2.23 2.31  ±  1.84

DAUNet 

sMRI

0.87  ±  0.08 0.86  ±  0.10 0.86  ±  0.08 4.27  ±  2.19 0.69  ±  0.45 1.02  ±  0.69 1.93  ±  1.94 2.10  ±  1.71

P-value 

DAUNet 

sMRI 

versus 

DSUNet 

sMRI

0.015 0.392 0.015 0.411 0.961 0.059 0.072 0.587

P-value 

DAUNet 

sMRI 

versus 

DAUNet 

CBCT

<0.001 <0.001 0.076 0.014 <0.001 0.040 0.009 0.569

Rectum DSUNet 

sMRI

0.88  ±  0.063 0.90  ±  0.06 0.87  ±  0.07 7.29  ±  4.47 0.73  ±  0.57 1.45  ±  1.53 2.61  ±  2.85 3.49  ±  4.20

DAUNet 

CBCT

0.83  ±  0.09 0.86  ±  0.11 0.81  ±  0.09 10.76  ±  14.62 0.99  ±  0.56 1.56  ±  1.15 2.56  ±  2.38 7.04  ±  7.92

DAUNet 

sMRI

0.90  ±  0.05 0.92  ±  0.06 0.88  ±  0.07 5.72  ±  4.25 0.81  ±  0.90 2.00  ±  3.18 2.02  ±  2.32 4.16  ±  3.58

P-value 

DAUNet 

sMRI 

versus 

DSUNet 

sMRI

0.004 <0.001 0.018 0.003 0.194 0.194 0.003 0.171

P-value 

DAUNet 

sMRI 

versus 

DAUNet 

CBCT

<0.001 <0.001 0.002 <0.001 0.003 0.486 0.003 <0.001
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Table 3.  Numerical comparison of DSUNet sMRI, DSUNet CBCT, and DSUNet sMRI on 100 patients.

Method DSC Sensitivity Specificity HD (mm) MSD (mm)
RMSD 
(mm) CMD (mm) VD (cc)

Bladder DSUNet 
sMRI

0.93  ±  0.05 0.96  ±  0.03 0.91  ±  0.07 6.45  ±  5.24 0.51  ±  0.27 0.81  ±  0.52 1.29  ±  1.28 8.642  ±  7.23

DAUNet 
CBCT

0.90  ±  0.06 0.93  ±  0.08 0.88  ±  0.08 11.31  ±  12.75 0.74  ±  0.44 1.18  ±  0.76 2.08  ±  2.29 14.26  ±  16.59

DAUNet 
sMRI

0.95  ±  0.02 0.95  ±  0.04 0.95  ±  0.03 4.69  ±  4.92 0.44  ±  0.22 0.80  ±  0.69 0.90  ±  0.68 6.55  ±  6.68

P-value 
DAUNet 
sMRI 
versus 
DSUNet 
sMRI

0.003 0.180 <0.001 0.049 0.154 0.960 0.023 0.096

P-value 
DAUNet 
sMRI 
versus 
DAUNet 
CBCT

<0.001 0.169 <0.001 0.002 <0.001 0.009 <0.001 <0.001

Prostate DSUNet 
sMRI

0.84  ±  0.07 0.85  ±  0.10 0.84  ±  0.096 5.48  ±  2.57 0.80  ±  0.35 1.12  ±  0.47 2.26  ±  1.63 4.13  ±  5.71

DAUNet 
CBCT

0.82  ±  0.09 0.81  ±  0.10 0.84  ±  0.11 5.83  ±  3.30 0.9  ±  0.47 1.30  ±  0.66 2.58  ±  1.92 3.98  ±  5.21

DAUNet 
sMRI

0.86  ±  0.06 0.86  ±  0.08 0.87  ±  0.085 4.82  ±  2.37 0.73  ±  0.37 1.08  ±  0.55 1.954  ±  1.58 3.32  ±  5.54

P-value 
DAUNet 
sMRI 
versus 
DSUNet 
sMRI

<0.001 0.268 0.120 0.043 0.126 0.584 0.179 0.317

P-value 
DAUNet 
sMRI 
versus 
DAUNet 
CBCT

<0.001 <0.001 0.084 0.010 <0.001 0.009 0.031 0.403

Rectum DSUNet 

sMRI

0.88  ±  0.05 0.88  ±  0.07 0.88  ±  0.08 8.62  ±  5.15 1.03  ±  1.66 2.04  ±  3.82 3.72  ±  4.18 5.31  ±  7.78

DAUNet 

CBCT

0.83  ±  0.07 0.84  ±  0.11 0.84  ±  0.08 13.14  ±  18.71 1.19  ±  0.87 2.31  ±  2.51 3.92  ±  4.65 8.32  ±  8.47

DAUNet 

sMRI

0.91  ±  0.04 0.92  ±  0.04 0.90  ±  0.05 5.46  ±  3.19 0.71  ±  0.65 1.62  ±  2.36 1.98  ±  1.86 3.93  ±  3.86

P-value 

DAUNet 

sMRI 

versus 

DSUNet 

sMRI

<0.001 <0.001 0.014 <0.001 0.192 0.434 0.002 0.155

P-value 

DAUNet 

sMRI 

versus 

DAUNet 

CBCT

<0.001 <0.001 <0.001 0.006 0.001 0.130 0.005 <0.001
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image artifacts such as streaking, shading, cupping, and reduced image contrast, which will inherently influ-
ence sMRI quality and thus accuracy of the segmentation. Applying deep learning-based CBCT image quality 
enhancement to first improve the CBCT image quality will be our future work. On the other hand, the sMRI 
synthesis error may also introduce the segmentation error, to improve the accuracy of the sMRI synthesis model 
and define a more specific loss function for CBCT-to-MRI supervision will be our future work.

The computation complexity of proposed method is higher than U-Net algorithms due to the use of another 
CycleGAN-based sMRI generation model. The learning rate for Adam optimizer was set to 2  ×  10−4, and the 
model was trained and tested on 2 NVIDIA Tesla V100 with 32 GB of memory for each GPU. A batch size of 20. 
12 GB CPU memory and 58 GB GPU memory was used for each batch optimization. The training was stopped 
after 100 000 iterations. Model training takes approximately 30 h. For testing, sMRI patches were generated by 
feeding CBCT patches into the trained CycleGAN model. Pixel values were averaged when overlapping exists. 
The sMRI estimation for one patient takes about 1–2 min. Tensorflow was used to implement both CycleGAN 
and DAUNet network architecture. During segmentation, binary cross entropy was used as loss function, and the 
learning rate for Adam optimizer was set to 1  ×  10−3. The training was stopped after 180 epochs. For each epoch, 
the batch size was set to 20. The training of DAUNet model takes about 1.7 h.

In this study, we demonstrated the feasibility of our method with 100 clinical patient cases. A comprehen-
sive evaluation with a larger cohort of patients with diverse disease characteristic and image quality would be 
involved in the future. This study validated the proposed method by quantifying the shape similarity of contours, 
while small differences from ground truth were observed. Its potential clinical impact due to such differences 
in dose estimation and treatment replanning is not yet fully understood. Thus, a further investigation in clini-
cal outcomes of the proposed method in adaptive radiation therapy would be of great interest and is needed for 
eventual adoption in general clinical use.

5.  Conclusions

In summary, we developed an accurate pelvic multi-organ segmentation strategy on CBCT images with CBCT-
based sMRIs. This technique could provide real-time accurate target and organ contours for adaptive radiation 
therapy, which would greatly facilitate clinical workflow.
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