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1.  Introduction

Current clinical practice in radiotherapy often still relies on rather crude absorbed dose prediction methods 
because of high computational complexity and time-consuming data handling of more sophisticated methods. 
The standard dose estimation method in current clinical practice mostly relies on the simplest and least precise 
approach by estimating, according to the Medical Internal Radiation Dose Committee (MIRD) protocol (Bolch 
et al 1999), time-integrated activities (TIAs) and dose kernels, which the MIRD protocol calls S-values. While 
the former has been the subject of a recent study (Götz et al 2019), the latter combine mass density information 
deduced from a standard body phantom (Petoussi-Henss et  al 2007) with either continuous dose point 
kernels (DPK) (Pérez et al 2011) or freely scalable discrete dose voxel kernels (DVK) (Pacilio et al 2015). Both 
DPK and DVK methods are subject to substantial uncertainties (Götz et al 2019b) and employ Monte Carlo 
simulations (Papadimitroulas et al 2012) performed on homogeneous soft tissue kernels with a limited number 
of radioisotopes. All these dose estimation procedures still have the drawback of not properly taking into account 
individual mass density and radioactivity distributions. But such personalized information is available from 
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Abstract
Currently methods for predicting absorbed dose after administering a radiopharmaceutical are 
rather crude in daily clinical practice. Most importantly, individual tissue density distributions as well 
as local variations of the concentration of the radiopharmaceutical are commonly neglected. The 
current study proposes machine learning techniques like Green’s function-based empirical mode 
decomposition and deep learning methods on U-net architectures in conjunction with soft tissue 
kernel Monte Carlo (MC) simulations to overcome current limitations in precision and reliability 
of dose estimations for clinical dosimetric applications. We present a hybrid method (DNN-EMD) 
based on deep neural networks (DNN) in combination with empirical mode decomposition (EMD) 
techniques. The algorithm receives x-ray computed tomography (CT) tissue density maps and dose 
maps, estimated according to the MIRD protocol, i.e. employing whole organ S-values and related 
time-integrated activities (TIAs), and from measured SPECT distributions of 177Lu radionuclei, and 
learns to predict individual absorbed dose distributions. In a second step, density maps are replaced 
by their intrinsic modes as deduced from an EMD analysis. The system is trained using individual 
full MC simulation results as reference. Data from a patient cohort of 26 subjects are reported in this 
study. The proposed methods were validated employing a leave-one-out cross-validation technique. 
Deviations of estimated dose from corresponding MC results corroborate a superior performance of 
the newly proposed hybrid DNN-EMD method compared to its related MIRD DVK dose calculation. 
Not only are the mean deviations much smaller with the new method, but also the related variances 
are much reduced. If intrinsic modes of the tissue density maps are input to the algorithm, variances 
become even further reduced though the mean deviations are less affected. The newly proposed 
hybrid DNN-EMD method for individualized radiation dose prediction outperforms the MIRD DVK 
dose calculation method. It is fast enough to be of use in daily clinical practice.

PAPER
2020

RECEIVED  
24 August 2019

REVISED  

29 November 2019

ACCEPTED FOR PUBLICATION  

27 December 2019

PUBLISHED  
4 February 2020

https://doi.org/10.1088/1361-6560/ab65dcPhys. Med. Biol. 65 (2020) 035007 (12pp)

publisher-id
doi
https://orcid.org/0000-0001-8751-3404
https://orcid.org/0000-0001-7440-0224
mailto:theresa.goetz@biologie.uni-regensburg.de
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6560/ab65dc&domain=pdf&date_stamp=2020-02-04
https://doi.org/10.1088/1361-6560/ab65dc


2

Th I Götz et al

modern hybrid imaging technologies such as SPECT/CT or PET/CT (Cal-Gonzalez et al 2018). However, an 
increasing number of therapies with radiopharmaceuticals renders a patient-specific dosimetry of fundamental 
importance (Botta et al 2011, Lou et al 2019).

Early attempts to predict radiation dose with neural networks still relied on fully connected networks, which, 
however, tend to overfit data and badly generalize on big data settings (Kalantzis et al 2011). Given the recent suc-
cess of deep convolutional neural networks (CNNs) on image processing (Chen et al 2017, Kearney et al 2018c, 
Park et al 2018) and image segmentation tasks (Jackson et al 2018) employing U-Net or V-Net architectures 
(Ronneberger et al 2015), Kearney et al (2018a), very recently deep learning techniques and deep neural network 
architectures were employed in external radiotherapy dosimetry. Nguyen et al (2017) were the first to employ 
an U-Net architecture in a radiation dose prediction feasibility study. Shortly afterwards (Kearney et al 2018b) 
introduced DoseNet, a 3D convolutional volumetric dose prediction neural network. DoseNet used an U-Net 
architecture amended with residual blocks which reduced network redundancy. It was trained and tested on a 
cohort of 150 prostate cancer patients and the dosimetric quality of its predictions was evaluated on various 
clinically relevant dosimetric parameters. While the current study was under review for publication, an internal 
radiation dose prediction study employing deep learning and convolutional neural networks was published by 
Lee et al (2019). The network received 3D information about radioactivity distribution from positron emission 
tomography (PET) images and 3D tissue density information from x-ray computed tomography (CT) images. 
The CNN was trained to predict 3D dose rate maps, which were evaluated against reference Monte Carlo simula-
tions.

Though the computational complexity and computational load of full whole body MC simulations is pro-
hibitive for daily clinical practice, they still will be used in this study to provide reference data for the development 
of approximate dose estimation methods. The latter should be both reliable and fast enough for clinical use. 
Following, we apply machine learning techniques like Green’s function-based empirical mode decomposition 
(AL-Baddai et al 2016) and deep learning methods on U-net architectures (Ronneberger et al 2015) in conjunc-
tion with soft tissue kernel MC simulations to overcome current limitations in precision and reliability of dose 
estimations for clinical dosimetric applications.

2.  Methods

2.1.  Patient data
For network training, data from 26 patients was available. The patients, which all obtained a 177Lu-PSMA therapy, 
consisted of 3 female and 23 male patients with an average age of 63.8 ± 10 years (Götz et al 2019). For each 
patient, one CT image and SPECT images at four different time points were available.

2.1.1.  SPECT
From every patient four SPECT images were acquired at t = 4, 24, 48, 72 h after administering the 
radiopharmaceutical. At the second time point, i.e. after 24 h, data was recorded in dual mode on a hybrid SPECT/
CT instrument and manually co-registered by a medical expert. The CT image was further used for attenuation 
correction of the SPECT image. Image acquisition followed the standard quantitative 177Lu—protocol as 
described in Sanders et al (2015), hence it is only summarized as follows:

	 •	�SPECT using medium energy collimators, 3◦ angular sampling, td  =  15 min total dwell time
	 •	�Iterative OSCG (see below) reconstruction of the 208 keV photo-peak data with 24 iterations, 1 subset, 

matrix 256 × 256
	 •	�Point-spread-function modeling in reconstruction
	 •	�Triple energy window based scatter correction
	 •	�CT-based attenuation correction
	 •	�No post-reconstruction smoothing.

Image reconstruction was performed with the ordered-subset conjugate-gradient (OSCG) algorithm, which 
outputs data in the same coordinate system as the CT data. The voxel size was (4.79 mm))3 and the reconstructed 
SPECT images were cropped to 823 voxels, removing large portions of the reconstructed volume which 
predominantly contained air.

2.1.2.  X-ray CT
An additional low dose CT has been recorded for SPECT attenuation correction. It covered the same field-of-
view as the SPECT and was acquired and reconstructed using the following parameters:
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	 •	�Slice collimation of 2 × 5 mm, pitch of 1.8, time per rotation of t  =  0.8 s, tube voltage of V = 130 kVp, 
effective tube current of J  =  30 mAs

	 •	�Filtered-back-projection reconstruction with B08s and B41s Kernels, 512 × 512 matrix, 2.5 mm slice 
thickness

	 •	�B08s image was used for attenuation correction of the SPECT data
	 •	�B41s image was used for defining organ and tumor volumes-of-interest (VOIs).

The mass density distribution from each CT image slice was resampled to a density map with voxel size of 
(4.89 mm)3, which matched the spatial resolution of the SPECT images. Photon attenuation coefficients are 
expressed in the usual houndsfield units (HU) and are due to photon—matter interactions. Because of the latter, 
attenuation coefficients are strongly correlated with electron densities, which themselves are correlated to mass 
densities. Thus CT images can be used to derive mass densities, usually by piecewise linear relations with different 
slopes for HU � 0 and HU  >  0. However, a system specific calibration with dedicated phantoms has not been 
done, rather mass density was computed according to

ρ(HU) =

{
0.0011 · HU + 1 forHU � 0

0.0007 · HU + 1 forHU > 0
� (1)

whereby mass density ρ  is expressed in CGS units g/cm3. The four SPECT images were integrated over time 
voxelwise to obtain the corresponding activity maps (see figure 1) as is described in detail in Götz et al (2019, 
2019b). In the latter study, a particle filter (PF) has been applied for de-noising the time-activity-curves (TACs) 
of the patient cohort. The TACs were obtained from fully-quantitative, serial SPECT(/CT) data, acquired at 
4 h, 24 h, 48 h, 72 h p.i. The model used in the PF was a mono-exponential decay and its free parameters were 
determined based on objective criteria. The time-integrated activities (TIA), computed after Bayesian filtering 
with a PF, were compared to the results of a mono-exponential fit to individual voxel TACs (simple fit) in several 
volumes of interest (kidneys, spleen, tumours). Additionally, an organ-averaged TIA was derived from whole-
organ mean TACs resulting from mean activation time series and subsequent curve-fitting. This organ-averaged 
TIA was also compared to the whole-organ TIAs obtained from summation of the voxel-wise TIAs from both, 
the PF-approach and the simple fit approach (Götz et al 2019).

2.2.  Monte Carlo simulations
To provide proper reference data, the activity map and the corresponding mass density map were input to the 
software package GAMOS to perform a full whole-body Monte Carlo (MC) simulation yielding the related 
spatial distribution of absorbed energy dose, henceforth called dose map. In figure 2, the energy dose distribution 
corresponding to figure 1 is displayed exemplarily.

Thus, for generating reference data, in this study a full MC simulation of radiation transport was carried out 
for every patient. For this, the GEANT4-based GAMOS 5.0.0 toolkit was used (Arce et al 2014). The procedure is 
briefly described in the following:

	 •	�A voxelized geometry was generated based on pre-defined tissue classes and mass-density of each voxel. The 
size of the latter was 4.8 × 4.8 × 4.8 mm3.

	 •	�The decay modes of 177Lu and emitted gamma and beta energy spectra were defined according to Arce et al 
(2014).

Figure 1.  On the left side a density map in g/cm3, corresponding to one slice of the 3D CT image, is displayed, and on the right side 
the corresponding activity map in Bq is shown for a prostate cancer patient.

Phys. Med. Biol. 65 (2020) 035007 (12pp)
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	 •	�The relative spatial distribution of radioactive decays, i. e., the number of nuclear disintegrations per voxel 
divided by the total number of disintegrations, was taken from the activity distribution as deduced from 
SPECT images.

	 •	�Deposited energy was scored per voxel in units of Gray per decay.

2.3.  MIRD DVK-based dose calculation
To follow the MIRD protocol, DVKs have to be estimated via MC simulations of defined kernels with fixed size, 
defined homogeneous tissue density and given radioisotope. In this study the DVK comprised 93 voxels (size 
(4.8 mm)3) which consisted of soft tissue (ρm = 1043 kg m−3) and had a 177Lu-isotope placed in the center voxel. 
Thus the isotope was placed with equal probability anywhere in the center voxel of a 9 × 9 × 9 cube of voxels 
consisting of a specific tissue-type. For every patient, in total 109 nuclear disintegrations of 177Lu—isotopes were 
simulated using GAMOS on a high-performance cluster equipped with 176 nodes. This number of radioactive 
decays assured a confidence level γ  higher than 99% per voxel, where γ = 100% · (1 − α) and α measures the 
relative statistical uncertainty. Via a MC simulation, the energy dose per 177Lu-decay was calculated for each voxel 
of the kernel. The resulting DVK was convolved with the activity map to obtain the dose map. This method yields 
reasonable dose estimates for soft tissue, but, unfortunately, it suffers from large density differences in bone and 
lung tissue relative to soft tissue. Tissue classes and related density ranges have been determined as described in 
Schneider et al (2000) and Götz et al (2019a). Both, the dose maps resulting from a full-body MC simulation and 
this MIRD DVK dose calculation are illustrated for the slice of figures 1 in 2.

2.4.  A hybrid DNN-EMD method
This study proposes to replace the computationally expensive MC simulations by a deep neural network (DNN) 
trained with the data set described above. A modified U-net architecture (Ronneberger et al 2015) was employed 
with both a density map M(rT), as deduced from x-ray CT images, and an activity map Ã(rS), as deduced from 
SPECT images, as inputs and a corresponding dose map D(rT) as output. Here rT , rS denote voxel locations in 
the target (T) regions and the source (S) regions, respectively. More specifically, for the current study, we replace 
the activity map Ã by its related dose map D̃ as estimated with the standard MIRD protocol. We also compare 
this new method to a further variant, where we replace the density map M(rT) by its intrinsic spatial modes 
(IMs) extracted via a Green’s function based bi-dimensional ensemble empirical mode decomposition (GiT-
BEEMD). All predicted dose maps are finally compared to reference MC dose distributions. The comparison is 
confined to the following organs: kidneys, spleen and all tracer-positive metastases.

For training the modified U-net, the 3D SPECT/CT imaging data was partitioned into packs of 5 adjacent 
slices each. This seemed appropriate in view of the short range of electrons emitted from 177Lu in condensed 
matter, which is less than 3 mm. The slices were further resampled to a size of (nx = 80)× (ny = 80) voxels. 
Thus there will be two 3D input arrays of size (nx = 80)× (ny = 80)× (nz = 5) and one 2D output of size 
(nx = 80)× (ny = 80). All input arrays were normalized to the respective maximal value of the entire data set. 
In figure 3, the architecture of the modified U-net is illustrated. The encoding paths consist of five blocks, which 
comprise of the following sequence of operations that were repeated twice: a convolution operation with m dif-
ferent convolution kernels (henceforth called filters), each of size kx × ky  or kx × ky × kz , followed by a batch 
normalization and a leaky rectified linear unit (ReLU) activation. The convolution kernel was sliding over the 
input array with a stride of one, while zero padding was applied to preserve the size of the array. The resulting 
feature map was down-sampled employing a max-pooling kernel of size ( px = 2)× ( py = 2) to each slice while 

Figure 2.  On the left side one slice of the dose map calculated via a whole body MC simulation is illustrated, and on the right side the 
dose distribution determined with the MIRD standard protocol is shown. The colorbar is in Gy.

Phys. Med. Biol. 65 (2020) 035007 (12pp)
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skipping the two outermost slices along the z-direction until only the central slice remained. Filter size k × k  and 
number of filters m were varied in steps of two, i.e. k = 5, 7, 9 and m = 4, 6, 8. As loss function, the mean squared 
reconstruction error of the entire dose map was used according to

LwSE =
1

Nvoxel

∑
r∈Ω

(
D(r)− D̂(r)

)2

� (2)

where Nvoxel denotes the number of voxels in the dose map at the output of the net. Also D(r) denotes the dose 
map as obtained from a whole body MC simulation, while D̂(r) denotes the corresponding dose map as obtained 
from the hybrid NNET.

Parameter evaluation was performed as follows: First from the 3D x-ray CT images of all 26 patients, packs of 
5 adjacent density map slices were extracted, thus yielding a total of 5 · 1385 slices. This dataset was divided into 
a training and validation dataset encompassing 5 · 1035 density map slices and a hold-out dataset corresponding 
to 5 · 350 density map slices from the remaining 6 patients used for testing. Note that each input dataset, for 
instance each density map, or their equivalent IMs, or activity map, encompassed 5 adjacent slices always. The 
training set contained 5 · 779 density map slices from 16 patients and the validation dataset amounted to 256 
density map slices from the remaining 4 patients. The latter was used repeatedly during training to track the 
generalizability of the learning process and to avoid overfitting. Training was terminated whenever the training 
error did not change for the last 10 epochs within a margin of ε � 10−5 or the validation loss started to increase. 
Finally the hold-out dataset was used to estimate the prediction accuracy and get an estimate of the variance of 
the parameter estimation. For better statistics 10 bootstrap samples were drawn from the training and validation 
datasets resulting in a total of 7790 density maps for training and 2560 datasets for validation, respectively. The 
resulting MSE of the test dataset was compared for different parameter configurations. Finally, the resulting best 
parameter configuration was chosen to perform a leave-one-out cross-validation (LOOCV) with all 26 patients. 
This helped to estimate, in a clinical context, the accuracy with which whole organ doses could be estimated with 
the newly proposed method.

Based on the idea that an EMD provides intrinsic modes (IMs) which reflect characteristic spatial-frequency 
scales and related textures of the given density and activity maps, the U-net was modified by replacing the den-
sity maps M(r) by their corresponding sets of IMs resulting from a slicewise Greens-function-in-tension-based 
bidimensional ensemble empirical mode decomposition (GiT-BEEMD) analysis (AL-Baddai et al 2016). Details 
of the algorithm are given in the appendix and a thorough discussion of the impact of different parameters is 
given in AL-Baddai et al (2016). Finally, a principal component analysis (PCA) has been applied to reduce the 
dimensionality of the IMs. The IMs obtained from decomposing the density map slice in figure 1 are illustrated 
in figure 4. The idea behind using a GiT-EEMD and the related IMs is the following: CNNs generate feature maps 
which are composed of textures on characteristic spatial scales. But this is what an EMD also achieves with its 
related IMs. Hence it might be profitable to present partial density maps, which only contain characteristic tex-
tures instead of complete density maps with all possible textures. This might ease the learning process and help to 
reduce the variance of the output data arrays.

Figure 3.  Net architecture with two three dimensional inputs and a two dimensional output. Note that the input channels 
correspond to either a set of five slices from a 3D CT density map or their corresponding IMs or a set of five slices from a SPECT/PET 
activity map or the corresponding set of slices from their MIRD—derived dose map.

Phys. Med. Biol. 65 (2020) 035007 (12pp)
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3.  Results

The U-net was trained in two different ways. First, density maps and MIRD-based dose maps were used as inputs 
to the network and all weights have been trained accordingly. Second, density IMs replaced the density maps, 
either individually or in specified combinations. The following table 1 provides an overview of the computational 

load of each method.

3.1.  Density maps and MIRD-based dose maps as input
First, one of the input channels provided density maps. During training, the MSE loss function was minimized, 
and after every epoch, the validation loss was recorded for different network configurations. After training 
has finished, the test loss was calculated for 350 datasets taken from all 6 test patients and a grand average was 
computed. The resulting re-scaled losses and their standard deviations are collected in table 2. Note that all input 
arrays to the hybrid NNET have been normalized by the proper maximal entry in each array. Re-scaling the 
computed losses has then been achieved by employing an average number of radioactive decays for the estimation 

of the related dose values.
The testing loss L = 1.0 · 10−2 Gy2 = (1.0 · 10−1)2 Gy2 achieved lowest values for a configuration with 

eight filters and a filter size of 7 × 7 pixels. The differences between most estimates are not statistically significant 
according to a Wilcoxon sign rank test, only two estimations are significantly different, with a p-value of p   <  0.05, 
from the selected configuration with smallest test loss. These losses are marked with a star in the table. The miss-
ing statistical significance of most of these values comes because of the small number of patients in the cohort. 
Still this minimal loss configuration was used for all subsequent calculations.

The following table 3 collects grand averages of the dose values predicted by the different estimation methods 
discussed. Thereby ‘organwise’ indicates that dose values were first averaged across an organ and then the grand 
average across the patient cohort has been computed. In case of a ‘voxelwise’ estimation, an average of every 

voxel dose value across the patient cohort has been determined before dose values were averaged across an organ.

3.2.  IMs and MIRD-based dose maps as inputs
Second, the density maps were replace either by one of their IMs or by certain combinations of them, as extracted 
individually from all patients. Again, the optimal network configuration, as deduced above, was used here. The 
combination of three IMs achieved lowest training (0.7 · 10−2 Gy2) and validation (0.9 · 10−2 Gy2) losses, which 
with respect to the resulting standard deviations were even superior to the one obtained with the density map as 
input. Therefore this configuration was used to evaluate the network as described in the following section.

Figure 4.  The six intrinsic modes of a slice of the mass density map of a prostate cancer patient.

Phys. Med. Biol. 65 (2020) 035007 (12pp)
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3.3.  Network validation
In order to quantify exactly how well organ doses can be estimated with this method, a leave-one-out cross-
validation (LOOCV) was carried out as an alternative to the parameter estimation including training, validation 
and testing as described above.

The dataset comprised 26 patients. Depending on the target volume-of-interest (VOI), between 27 and 96 
adjacent image slices were considered. A leave-one-out cross-validation strategy was employed to follow the gen-
eralization ability of the modified U-net. For all patients, the difference of the mean dose within the VOIs pre-
dicted either with the modified U-net or the MIRD method, employing a soft tissue kernel, was determined with 
respect to a full whole-body MC simulation.

The grand averages of the percentage errors of the mean doses, predicted for several target organs, are sum-
marized in table 4 and illustrated with corresponding boxplots in figure 5. Related dose voxel histograms (DVH) 
are presented in figure 6. Finally per tissue-type average percentage deviations ∆D(%) between dosimetry based 
on full MC simulations and on NNET/EMD are presented in table 5.

4.  Discussion

The current study proposed a hybrid method based on a deep U-Net architecture in combination with an 
empirical mode decomposition to efficiently estimate radiation dose within an internal radiation therapy. The 
U-Net possessed two 3D input channels and one 2D output channel. Through the input channels it either received 
density maps and rough estimates of activity maps, as obtained from a MIRD-based protocol, or the density 
maps were replaced by one of their intrinsic modes. SPECT/CT data from 26 patients was available for training, 
validation and testing the proposed model. Model parameters resulted from minimizing a mean squared error 
loss function, whereby the error measured the deviation of the estimated dose from the corresponding reference 
dose resulting from individual whole-body Monte Carlo simulations.

EMD is a data-driven method for decomposing spatial density distributions into underlying intrinsic tex-
tures with characteristic spatial frequency bands. Usually only few intrinsic modes are extracted, of which the 
highest spatial frequency mode often mainly contains noise contributions and the lowest spatial frequency 

Table 1.  Computational time of the different methods. For the MC simulations a compute cluster with 260 kernels was used. The other 
methods were calculated on a PC with 8 CPUs.

MC NNET EMD MIRD

Computational time per patient ca.6 h 1.3 s 1.9 h 1.1 s

Table 2.  Testing losses are given in units of 10−2 Gy2 for different hyperparameter settings. FS denotes filter size and NF gives the number 
of filters used. The stars mark a significant difference between one configuration and the best one (p   <  0.05).

FS\NF 4 8 16

(5 × 5 × 5) 1.4 ± 1.3 1.5 ± 1.2 2.9 ± 3.5 ∗
(7 × 7 × 5) 3.6 ± 2.3 1.0 ± 1.2 1.4 ± 2.1

(9 × 9 × 5) 1.5 ± 2.2 2.0 ± 2.7 ∗ 3.4 ± 2.0

Table 3.  Absolute dose values as predicted by the different methods. The values represent averages over the patient cohort. Values in 
parentheses represent minimal and maximal observed dose values, respectively.

Organwise dose value

Organ Monte Carlo (Gy) NNET/EMD (Gy) MIRD-based (Gy)

Left kidney 4.5 ± 02.3(1.2–08.5) 4.3 ± 02.1(1.2–08.0) 5.3 ± 02.6(1.5–09.7)

Right kidney 4.8 ± 03.2(0.3–13.3) 4.6 ± 03.0(0.3–13.0) 5.7 ± 03.8(0.3–16.3)

Spleen 3.1 ± 03.6(0.1–13.8) 2.9 ± 03.2(0.1–12.3) 3.7 ± 04.1(0.1–15.9)

Tumor 12.9 ± 12.7(0.9–48.4) 12.3 ± 12.2(0.9–47.1) 15.7 ± 15.8(1.2–60.4)

Voxelwise dose value

Organ Monte Carlo (Gy) NNET/EMD (Gy) MIRD-based (Gy)

Left kidney 4.3 ± 02.9(0.5–032.9) 4.1 ± 02.6(0.5–029.7) 5.2 ± 03.2(0.6–028.0)

Right kidney 4.7 ± 03.6(0.1–036.2) 4.5 ± 03.4(0.1–032.5) 5.6 ± 04.2(0.2–043.4)

Spleen 3.0 ± 04.2(0.1–043.0) 2.7 ± 03.8(0.1–037.2) 3.6 ± 04.7(0.1–038.7)

Tumor 14.4 ± 15.1(0.0–169.5) 13.8 ± 14.5(0.4–159.5) 17.6 ± 18.5(0.3–207.2)

Phys. Med. Biol. 65 (2020) 035007 (12pp)
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modes reflect some general background contribution or any trend in the data. Hence only few modes extract 
informative textures characteristic for the problem at hand. Presenting only this relevant information instead of 
all the many irrelevant and distracting details at multiple spatial frequency scales should help to reduce the vari-
ance in the data and ease the learning process during training the network.

Because of the small patient cohort, the results presented above can only offer a proof of principle. Still they 
demonstrate that the network is indeed able to learn an accurate dose estimate. With more data, corresponding 
estimates could be significantly improved, of course. The reasons for the small number of patients are that neu-
roendocrine tumors are very rare and a PSMA-Lu therapy is not yet approved in Germany and has only recently 
been introduced into clinical routine.

The predicted doses, obtained with the modified U-net, are superior to those achieved with the MIRD-based 
method. In fact, the resulting percentage error is in the range of the statistical error of the MC simulation. Next 
we compare the LOOCV dose prediction errors obtained either with the modified U-net or the hybrid U-net/

Table 4.  Organ-specific percentage errors of mean dose values, averaged over the entire patient cohort.

Organwise dose deviation

Organ NNET/EMD—MC (%) MIRD-based—MC (%)

Left kidney −3.7 ± 4.4(−12.2–2.1) −7.3 ± 13.9(−42.4–10.2)

Right kidney −3.8 ± 4.3(−12.2–2.2) −8.5 ± 16.2(−44.8–15.1)

Spleen −3.7 ± 4.7(−12.4–4.6) −7.3 ± 16.6(−41.1–21.0)

Tumor −4.6 ± 4.8(−12.8–3.4) −7.3 ± 16.5(−40.9–20.8)

Voxelwise dose deviation

Organ NNET/EMD—MC (%) MIRD-based—MC (%)

Left kidney −2.4 ± 16.3(−71.0–230.2) 24.1 ± 17.1(−49.8–658.3)

Right kidney −2.6 ± 14.9(−70.9–299.1) 23.8 ± 14.4(−49.8–658.3)

Spleen −2.7 ± 15.3(−84.8–341.9) 24.4 ± 18.3(−62.1–129.8)

Tumor 56.3 ± 38.9(−95.8–568.9) 87.4 ± 54.2(−65.3–756.3)

Figure 5.  Top row: on the left side, the mean dose deviation of the hybrid U-net (NNET/EMD) prediction from the related MC 
simulation result is shown. On the right side, the equivalent deviation from the MIRD-based method is given. Bottom row: on the left 
side, the deviation of the hybrid U-net prediction from the related MC simulation result is shown again, however on a different scale. 
On the right side, the deviation of the modified U-net prediction from the full MC simulation result is illustrated.

Phys. Med. Biol. 65 (2020) 035007 (12pp)
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Figure 6.  The graph illustrates organ-specific DVHs,a s resulting from the three dose estimation methods discussed. Top row: on the 
left side, the DVHs obtained with all methods from the right kidney is shown. On the right side, the corresponding DVHs for the left 
kidney is shown. Bottom row: on the left side, the DVH resulting from the spleen is shown. On the right side, the DVH pertaining to a 
tumor is illustrated.

Figure 7.  Left: the predicted mean dose resulting from the NNET, Middle: the mean dose distribution predicted by the NNET/EMD 
and Right: the corresponding result from a MC simulation.

Table 5.  Per tissue-type average percentage deviations between dosimetry based on full MC simulations and on NNET/EMD. The 
numbers indicate relative deviations averaged over the population of 26 patients ± one standard-deviation.

∆D % Min Max

Air 0.9 ± 2.3 −1.8 10.3

Lung 2.3 ± 2.0 −0.8 10.0

Adipose (fat) 1.2 ± 2.6 −3.1 7.2

Breast −0.3 ± 2.8 −5.6 7.6

Soft tissue −1.7 ± 3.4 −8.1 8.7

Liver −2.7 ± 4.1 −12.2 9.5

Muscle −2.4 ± 4.2 −13.6 10.5

Bone compact −1.0 ± 5.1 −13.0 16.4

Bone cortical 1.7 ± 5.4 −3.6 25.0

Phys. Med. Biol. 65 (2020) 035007 (12pp)
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EMD relative to the full-body MC dose prediction. The mean predicted dose values are close to each other, but 
the range of fluctuations around the mean is larger for the modified U-net than for the hybrid U-net/EMD pre-
processing. In figure 7, the mean absorbed dose resulting from either the hybrid U-net/EMD or a full MC simula-
tion is illustrated. The dose distributions are nearly identical, even quantitatively.

5.  Conclusion

The goal of this study was to improve upon the clinically most often used MIRD-based dose estimations during 
a radionuclide therapy in nuclear medicine. Our main contribution is a hybrid U-net/EMD architecture, used 
to predict dose maps from given mass density distributions and activity maps. We compare the predicted 
doses for several organs with those resulting from the MIRD DVK dose calculation with soft tissue DVK and 
with those computed with a full-body MC simulation, taken as reference. The results obtained with the new 
hybrid U-net/EMD are by far superior to the MIRD protocol with soft tissue DVK as it is applied routinely in 
hospitals. Results obtained with GiT-BEEMD preprocessing indicate an accuracy of the predicted dose similar 
to the one achieved without preprocessing, but with much less variance. Obviously, the preprocessing removes 
distracting or redundant information from the input channels. Thus the new technique achieves a precision 
close to what results from MC dose estimations with little variance in the predicted doses. It improves MIRD-
based dose estimation methods considerably and would be easy to apply in daily clinical practice if a model could 
be trained on a large enough data sample. The latter would need to be rich enough to encompass a large diversity 
of individual pharmacokinetics and anatomies. In addition transfer learning could be envoked to fine-tune the 
model to serve a patient—specific radionuclide therapy. In summary, the study represents a proof of concept 
corroborating that deep learning strategies based on U-Net architectures, and enriched with EMD techniques, 
can learn to predict absorbed energy dose with voxel spatial resolution and a precision close to MC estimates, but 
with less computational effort.

Appendix

For the convenience of the reader, a short summary of the GiT-BEEMD is presented.
Empirical mode decomposition (EMD) (Huang et al 1998, Zeiler et al 2011) tries to locally extract from any 

multi-variate signal simple oscillatory components, called intrinsic modes (IM). In case of two-dimensional 
intensity distributions such as images, the data sets need to be centered beforehand. The resulting spatial oscil-
lations can be seen as characteristic textures of the given intensity distribution. IMs are obtained from the signal 
through a process called sifting, which results in pure oscillations x(t) = a(t) exp(iφ(t)) ∈ C with zero-mean 
but spatially and/or temporally varying amplitude and frequency. Furthermore, IMs are ordered according to 
their (spatial)-frequency content, where k = dφ(r, t)/dr and ω(t) = dφ(r, t)/dt . Contrary to wavelet analysis, 
EMD is a data driven algorithm that decomposes the signal without prior knowledge.

The decomposition of a 2D data array starts by vectorizing it into a row vector xm ∈ RN. All data arrays are 
then collected into a data matrix XM×N. First, EMD is applied to each column X∗n ≡ xn of the M × N —dimen-
sional data matrix X, where M denotes the number of data arrays and N gives the dimension of the data vectors, 
i.e. the number of elements of every input data array. The EMD decomposition of the nth column of X and the 
subsequent decomposition of the mth row of the resulting component matrices yields

X∗,n =

J∑
j=1

C( j)
∗,n and C( j)

m,∗ =

K∑
k=1

H( j,k)
m,∗ .� (A.1)

Applying the comparable minimal scale principle (CMSP) (Wu et al 2009), i.e. summing up all component 
matrices H( j,k), which represent a similar spatial scale, generates intrinsic modes:

S(k′) =

K∑
k=1

H(k,k′) +

J∑
j=k+1

H(k′ ,j).� (A.2)

Finally, we thus obtain an expansion of the data matrix into its underlying intrinsic modes

X =

K∑
k′=1

S(k′).� (A.3)

A noise—assisted version is obtained by adding and subtracting white noise ε with zero mean and variance 
σ = 0.04 to the data. Averaging the related noisy IMs helps in avoiding mode mixing, favors denoising the data 
and results in the final intrinsic modes.

The extracted IMs are highly dependent on the sifting process. The latter is carried out in this study with 
the help of Green’s functions under tension (AL-Baddai et al 2016). Local extrema of the 2D intensity distribu-
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tion are located employing an eight-connected neighbors approach yielding corresponding maxima and minim 
maps. Extrema are obtained whenever D(m, n) = xmmxnn − (x2

mn) > 0, whereby the signs of xmm, xnn determine 
whether the point is a maximum or a minimum. These extrema are interpolated smoothly with Green’s func-
tions φ (xu, xv) to obtain upper and lower envelope surfaces. Points at these envelope surfaces can be expressed as 
a weighted sum of Green’s functions according to

s(xu) =
V∑

v=1

wv · φ (xu, xv) .� (A.4)

Green’s functions obey the following equation, evaluated at V = MxN data constraints

V∑
v=1

wv

[
D∆2

op − T∆op

]
φ (xu, xv) =

V∑
v=1

wvδ (xu − xv)� (A.5)

yielding the following Green’s function

φ (xu, xv) = log ( p · |xu, xv|) + K0 ( p · |xu, xv|)� (A.6)

whereby K0(...) denotes a modified Bessel-function of second kind and order zero, D denotes the flexural surface 
rigidity, T the surface tension and p   =  T/D.

The sifting process thus follows two steps:

	Step 1	� Weights w  are estimated from

Gw = s� (A.7)

where G denotes the matrix of Green’s functions.
	Step 2	� The envelope surface is interpolated at unknown points s(xu) according to

s(xu) = wTΦ� (A.8)

where Φ = [Φ(xu, x1), . . . ,Φ(xu, xV)]
T .
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