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1.  Introduction

The success of modern radiotherapy modality, such as stereotactic body radiation therapy (SBRT) (Onishi 
et al 2011), stereotactic radiosurgery (SRS) (Lutz et al 1988), and adaptive therapy (Mutic and Dempsey 2014), 
critically depends on the accuracy and efficiency of dose calculation (Mackie et al 1985). Coupled with the 
increasing utilization of the time intensive dose optimization techniques such as multi criteria optimization 
(MCO) (Craft et  al 2012), motion-considered or robust optimization (Chu et  al 2005) and trajectory 
optimization (Dong et al 2018), the demand for high performance dose calculation increases continuously. In 
the past few decades, extensive research has been devoted to speed up Monte Carlo calculation (Andreo 1991, 
Rogers et al 1995) by simplifying and approximating electron transport. Others (Failla et al 2010) have taken a 
different route by solving the linear Boltzmann transport equations (LBTE) deterministically, which describes 
statistically the behaviors of radiation particles during transport through medium without considering self-
interaction, providing comparable accuracies to Mote Carlo method with improved calculation speed.

Deep learning (LeCun et al 2015), which extracts unique features and learns representations of data by mul-
tiple levels of abstraction through multiple processing layers such as convolutional layers, has sparked global 
interests in recent years and made major impact on several computational tasks (Xing et al 2018) such as image 
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Abstract
The purpose of this work is to introduce a novel deep learning strategy to obtain highly accurate dose 
plan by transforming from a dose distribution calculated using a low-cost algorithm (or algorithmic 
settings).

25 168 slices of dose distribution are calculated using Eclipse treatment planning system V15.6 
(Varian Medical Systems, Palo Alto, CA) on ten patient CTs whose treatment sites ranging from 
lung, brain, abdomen and pelvis, with a grid size of 1.25  ×  1.25  ×  1.25 mm using both anisotropic 
analytical algorithm (AAA) in 5 mm resolution and Acuros XB algorithm (AXB) in 1.25 mm 
resolution. The AAA dose slices, and the corresponding down sampled CT slices are combined 
to form a tensor with a size of 2  ×  64  ×  64, working as the input to the deep learning-based dose 
calculation network (deep DoseNet), which outputs the calculated Acuros dose with a size of 
256  ×  256. The deep DoseNet (DDN) consists of a feature extraction component and an upscaling 
part. The DDN converges after ~100 epochs with a learning rate of 10−4, using ADAM.

We compared up sampled AAA dose and DDN output with that of AXB. For the evaluation set, the 
average mean-square-error decreased from 4.7  ×  10−4 between AAA and AXB to 7.0  ×  10−5 between 
DDN and AXB, with an average improvement of ~12 times. The average Gamma index passing rate 
at 3mm3% improved from 76% between AAA and AXB to 91% between DDN and AXB. The average 
calculation time is less than 1 ms for a single slice on a NVIDIA DGX workstation.

DDN, trained with a large amount of dosimetric data, can be employed as a general-purpose dose 
calculation acceleration engine across various dose calculation algorithms.
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reconstruction, classifications and recognition (Szegedy et al 2016), disease detection (Fauw et al 2018), segmen-
tation (Ronneberger et al 2015), super-resolution imaging (Dong et al 2016, Liu et al 2018), image style transfer 
(Gatys et al 2016) and Dose prediction (Ma et al 2019a, 2019b). Inspired by the success of super-resolution imag-
ing, here we propose a deep learning strategy, named as DDN, for dose calculation and optimization applications 
(Dong and Xing 2019). The technique is capable of not only up sampling the dose to speed up the calculation, but 
also transforming the dose calculated in one algorithm to another to enhance the accuracy of dose calculation.

2.  Methods

2.1.  Single dose map super resolution
Image super resolution is widely used to enhance the quality of a low resolution image, and its performance 
has improved substantially since the original work by Dong et al (Dong et al 2016), which uses a three-layer 
deep convolutional neural network (SRCNN) to directly learn an end to end mapping between the low and 
high resolution images. Kim et al (2015) increased the layer numbers of the CNN to 20 and used several training 
techniques including gradient clipping and skip connection to further boost the accuracy. Ledig et al (2016) 
proposed to use Resblock (He et al 2016) and GAN (Radford et al 2015) to recover photo realistic textures from 
heavily down sampled images. Below we briefly summarize SRCNN (figure 1) (Dong et al 2016), which is known 
for its simple and effective structure and forms the basis for more advanced networks and our DDN.

Given a low-resolution image X, SRCNN shown in figure 1 first upscales the image with cubic interpolation 
and uses it as the input G(X). SRCNN has three parts: feature extraction, nonlinear mapping and reconstruc-
tion. Feature extraction uses 9  ×  9 convolution to generate 64 feature maps from the low-resolution image. The 
second part maps those 64 feature maps nonlinearly to 32 high-resolution patch representations with 1  ×  1 con-
volution. The last part combines the 32 patch representations with 5  ×  5 convolution to produce the final high-
resolution image F(X). The mean square error (MSE) is employed as the loss function where i represents pixel i:

Loss =
n∑

i=1

‖F (xi)− G(xi)‖2

and trained the network with 24 800 sub-images which are decomposed from 91 images, achieving the state-of-
the-art results when compared with conventional methods (Dong et al 2016).

2.2.  Analytical anisotropic algorithm (AAA) versus Acuros XB (AXB)
Eclipse treatment planning system V15.6 (Varian Medical Systems, Palo Alto, CA) is used for the dose calculations. 
The system provides two main dose calculation algorithms: (i) the analytical anisotropic algorithm (AAA) is an 
analytical calculation algorithm based on the pencil beam convolution superposition technique; and (ii) the 
grid based the Acuros XB (AXB), which solves the LBTE deterministically. AXB agrees the Monte Carlo method 
within 2% in low density lung, while the AAA shows a difference of 12% (Failla et al 2010). In bone and bone-
tissue interface regions, dosimetric inaccuracy as large as 6.4% in AAA calculations has been reported, whereas 
AXB algorithm markedly improved the situation (Han et al 2011). In reality, however, AXB is five time slower 
than AAA for a single field calculation (Failla et al 2010). We use low resolution AAA and high resolution AXB 
as input and output for supervised training of the proposed DDN model and to showcase the capabilities of 
DDN. The premise of the DDN is to take advantage of the useful features of both algorithms and provide an 
computationally efficient and dosimetrically accurate technique for treatment planning.

Figure 1.  SRCNN structure.
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2.3.  Deep DoseNet (DDN)
2.3.1.  Data preparation
Ten patient CT image datasets of different disease sites, including brain, thorax (lung and sternum), abdomen 
(liver and para-aortic) and pelvis, are selected for this study. For each patient, 100 beam dose distributions are 
computed with different beam iso-center location, field size and gantry angles. Specifically, we set the Y1, Y2, 
X1, and X2 jaw positions randomly and the beam size from 2 cm to 20 cm, with the iso center of the beam being 
placed at different locations in different anatomies within the patient body. For each beam configuration, two 
dose distributions are calculated with the monitor units MUs) fixed to 100 by for a TrueBeam™ LINAC with 
10  ×  flattening filter free (10FFF) photon beam: one with a grid size of 1.25  ×  1.25  ×  1.25 mm using the AXB 
algorithm with dose to medium, and the other with a grid size of 5  ×  5  ×  5 mm using the AAA algorithm. To 
mitigate potential complication caused by the difference in the coordinates of dose calculation and CT images, 
we linearly interpolated the AAA (AXB) dose matrix to the CT coordinates at 1.25 (5)  ×  1.25 (5) mm grid size. In 
this way the dose matrix and the CT matrix match each other voxel to voxel.

On slices close to the beam edge where the dose gradient is high, the AAA dose might be zero, while the 
AXB dose is still not vanishing due to the resolution difference in the two calculations. The dose mapping is 
focused on transverse planes with a max AAA plane dose not less than 10% of the max AAA volume dose. In 
total, we obtained 25 168 CT, AAA and AXB slices with matching coordinates, that is, ~2500 matched slices 
per patient. The 64  ×  64 AAA dose slices (5  ×  5 mm) combining with the corresponding 256  ×  256 CT slices 
(1.25  ×  1.25 mm) serve as the input to the DDN (figure 2). The output of the DN model is the inferred AXB dose 
with a size of 256  ×  256 (1.25  ×  1.25 mm). The CT is linearly scaled from (−1000 HU, 3500 HU) to (0, 1). The 
AAA beam dose is normalized to the max dose. And the AXB beam dose is linear scaled to keep the max dose ratio 
between the AAA and AXB the same.

2.3.2.  DDN structure
Our DDN (figure 3) model adapts from RESNET, DENSENET (Wang et al 2018) and SRCNN. It has a horizontal 
hourglass shape and can be roughly split into three parts: downscale, feature extraction, and upscale. In the 
beginning, the 256  ×  256 CT slice is linear interpolated to 64  ×  64 and combined with the AAA slice of the 
same resolution. 64 7  ×  7 convolution filters take the combined AAA and CT as input and feed the output to 
four residuals in the residual dense blocks (RRDB) (Wang et al 2018). The RRDB block is very good at ensuring 
the input can flow freely to the output in very deep network structures. A RRDB block possesses three parts, each 
has five 64 3  ×  3 filters where the output from each filter is sent to each of the following 3  ×  3 filters as additional 
input. The original input is also sent directly to the final stage to be summed up with an output scaled by β  =  0.2 
(Wang et al 2018). That is, the final output of the RRDB is a summation of the original input and the final output 
scaled by β. In the upscaling part, the images are firstly resized to 64  ×  64 with linear interpolation and combined 
with a 64  ×  64 CT slice. This then passes through three consecutive 256 3  ×  3 convolution filters (256  ×  3, 
3  ×  3). The output is resized to 256  ×  256 and combined with a CT slice in the original resolution (1.25 mm). 
It is followed by convolution filters with a size of (16  ×  3, 3  ×  3). The images go through a final single 3  ×  3 
convolution layer and exit as a single slice with a resolution of 256  ×  256, which is then added with the linearly 
interpolated 256  ×  256 AAA. This sum is our final output. We use leaky ReLu activation for all convolution layers 
except the last layer with ReLu activation, which forces all values in the output to be positive.

2.3.3.  Training calculation
The performance of the DDN model is evaluated extensively. For an evaluation patient, we used the datasets of 
the rest 9 as the training data and compare the model output with the known dose distribution (i.e. the ground 
truth) of the patient quantitatively. The evaluation data were unseen during the model training process, thus the 
trained DDN model is not influenced by the evaluation data. Altogether, 10 DDN models were obtained. At the 
start of a model training process, we reinitialized the model parameters with He norm (He et al 2015). The same 
training parameters were employed. MSE between the pixels of the training data set was used as the loss function. 
The optimization uses ADAM (Le et al 2011) algorithm with a learning rate of 10−4 and takes ~100 Epochs 
of training with a batch of 8. The learning rate of 10−4 is selected to ensure fast converging while keeping the 
gradient explosion from happening. The computation was done on a Nvidia DGX system. We use the framework 
of TensorFlow 1.12 (Abadi et al 2015). Each epoch takes ~20 min.

3.  Results

Figure 4 shows the loss values of the training sets (black dashed curves) and the validation sets (colored curves) 
as a function epoch. It is seen that the training error starts to converge around the 100th epoch and reaches a 
minimum average loss value of 2.6  ×  10−5, compared with an average loss at 4.7  ×  10−4 before the training. The 
value of loss function for the evaluation set shows a large variation among patients with different treatment sites, 
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Figure 2.  Examples of training data for DDN. (a) AAA dose map with a resolution of 5 mm and a size of 64  ×  64. (b) Corresponding 
CT images with a resolution of 1.25 mm and a size of 256  ×  256. The images are truncated from the original 512  ×  512 images to 
save computing memories and speed up calculation. (c) The corresponding AXB dose map with a resolution of 1.25 mm and a size 
of 512  ×  512. The size of the (a) is a quarter of the (b) and (c).

Figure 3.  DDN Structure. The top picture shows the DDN structure which starts from the downsampled CT and AAA dose, then 
continues with 64 7  ×  7 filters, 4 RRDB blocks represented by red blocks, followed by two stage upsampling and final output. The 
bottom picture shows the detailed the RRDB block.

Figure 4.  Training and evaluation curves for DDN.

Phys. Med. Biol. 65 (2020) 035010 (8pp)
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with the worst evaluation loss occurring for the brain case at 1.5  ×  10−4 and the best evaluation loss occurring 
for one of the thoracic case at 4.0  ×  10−4. As shown in the box plot of figure 5(a)), the average evaluation loss is 
4.5  ×  10−4 for linearly upsampled AAA and 5.2  ×  10−4 for DDN. The average improvement of evaluation loss is 
~12 times when all cases are considered.

We linearly interpolated the AAA dose distribution of 5 mm pixel size to 1.25 mm resolution. For each of the 
10 models, the up-sampled dose distribution was compared with the AXB calculation with 1.25 mm resolution 
using 2D Gamma analysis for each slice. The same was performed for the DDN-derived dose distribution. We 
found that the average Gamma index passing rate at 3mm3% improved from 76% between the upsampled AAA 
and AXB to 91% between the DDN and AXB, from 66% to 86% at 2mm2%, and from 40% to 70% at 1mm1%. 
For the brain case, the 3mm3% passing rate improved from 69.9% to 89.0%, and for the pelvis case, 77.7% to 
91.9%. The average calculation time of DDN was less than 1 milliseconds for a single slice. Figure 6(a) shows the 
boxplot summarizing the above statements and figure 6(b) shows the violin plot of the gamma passing rate for 
the three different gamma indices.

It is also intriguing that, as can be seen from figure 7, the DDN inference yields sharper beam edges as 
compared with that of AAA. The results are more consistent with the AXB calculations. Moreover, the DDN also 
reconciles the tissue density heterogeneities along the beam path and adjusts the dose accordingly. In general, a 
better agreement between the AXB and DDN calculations in the low-density lung regions and in the high-den-
sity bones is clearly demonstrated in figure 7.

On average, it takes ~5 h to calculate the 1.25 mm resolution AXB dose for 100 radiation therapy beams on 
our clinical 7 xenon servers with 6–8 cores each. The same calculations using AAA algorithm takes about 3 min 
when a pixel size of 5 mm is selected. The proposed DDN method presents orders of magnitude improvement 
in computational efficiency with only limited (and controllable) compromise in the accuracy of resultant dose 
distribution. Indeed, the DDN super-resolution calculation for the same 100 beams would take only several sec-
onds. The longer AXB calculation time is partly due to the inefficiency of the AXB algorithm to calculate the field 
dose rather than the plan dose. The plan dose calculation treats multiple fields in a plan as a whole and it is not 
possible to get the dose contribution from each field separately, while the field dose option calculates each field 
in a plan independently. Ideally, we should compare with the performance of the AXB algorithm on a GPU, how-
ever, we do not have access to one of the GPU systems. There are published data showing a speed up of 4.4 times 
for a GPU AXB implementation, which can have memory problems for field areas of 300 cm2 or below 0.15 cm 
grid resolution (Aland et al 2019).

4.  Discussions

The problem of single image super resolution is generally ill posed (Yang et al 2010), with multiple solutions 
for the low-resolution image. Thus, the approach cannot be directly applied to dose super resolution. 
Effective incorporation of CT information into the DDN helps to alleviate the problem and facilitate the dose 
transformation calculation. In DDN, the CT image and low-resolution dose distribution are fed into the neural 
network simultaneously. Note that the CT information is reintroduced at each layer of the network, forcing the 
network to learn from CT when forming feature maps. The examples shown in figure 7 suggest that the DDN 
picks up the missing density information from the CT images. Generally, a high-performance image super 
resolution network structure would work better for the DDN with inclusion of the CT information.

We noticed that the evaluation losses for brain and pelvis cases are slightly worse than other sites, presum-
ably due to less abundant training datasets with similar anatomies. By including more training data with more 

Figure 5.  (a) Box plots for the average evaluation loss for 10 patients between AAA and DDN when compared with AXB. (b) Average 
improvement of evaluation loss for 10 patients.

Phys. Med. Biol. 65 (2020) 035010 (8pp)
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anatomical scenarios included, the performance of DDN is expected to improve. As shown in figure 8, the evalu-
ation loss for a lung case improves steadily as more patients are included in the training dataset.

Our study here is focused on beams with an energy of 10FFF. Compared to lower energy beams, larger dis-
crepancy has been reported between the doses calculated by AAA and AXB (Huang et al 2015). In reality, it 
is required to train a separate model for each energy. However, the procedure presented in the above is quite 

Figure 6.  Gamma passing rate of the AAA and DDN methods as compared with that of the AXB at 1%1mm, 2%2mm, and 3%3mm. 
DDN method achieves markedly improved results.

Figure 7.  Three typical dose distributions in the validation study obtained using the DDN. For visualization/comparison, the AAA 
dose overlaid on CT, AAA and AXB doses are also displayed.

Phys. Med. Biol. 65 (2020) 035010 (8pp)
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broad and generally applicable to any other beam energy or even other modality such as proton therapy and 
brachytherapy. A study of using super resolution dose approach for proton therapy is still in progress and will be 
reported in the future.

While the speed of current dose calculation algorithms is improving steadily over the years, the develop-
ment seems to be outpaced by the increasing demands for higher spatial resolution for SBRT/SRS and treat-
ment of small lesions such as oligomets and for the emerging plan optimization techniques such as MCO and 
robust optimization. Our study has clearly shown that significant acceleration of dose calculation is achievable 
by up-sampling the dose with deep learning techniques. The data-driven DDN provides an efficient tool for 
obtaining accurate dose distribution with high spatial resolution without paying the widely recognized overhead 
associated with the high-performance dose computing. Finally, we note that the DDN is not yet a full-fledged 
dose calculation engine. Future directions of improvement might include inferring from 3D CT and AAA data 
directly, expanding the training dataset to include more CTs, including more beams with different energies and 
machines, and replacing AAA dose with a simple ray tracing to further speed up the total dose calculation.

5.  Conclusion

We have proposed a novel deep learning strategy to obtain highly accurate dose plan by transforming from a 
dose distribution calculated using a low-cost algorithm or algorithmic setting. Although the feasibility of the 
approach is demonstrated by using AAA and AXB, the method is quite general and can easily be applied to other 
algorithms, such as Monte Carlo based calculations. It is important to emphasize that the speed of the DDN does 
not depend on the algorithm it mimics, only the resolution. This makes it an ideal acceleration add-on for any 
dose calculation engine to speed up the treatment planning process. Dose super resolution represents a fertile 
area of research and development in medical physics to harness the enormous potential of deep learning.
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