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Abstract
One of the fundamental properties of semiconductors is their ability to support highly 
tunable electric currents in the presence of electric fields or carrier concentration gradients. 
These properties are described by transport coefficients such as electron and hole mobilities. 
Over the last decades, our understanding of carrier mobilities has largely been shaped by 
experimental investigations and empirical models. Recently, advances in electronic structure 
methods for real materials have made it possible to study these properties with predictive 
accuracy and without resorting to empirical parameters. These new developments are 
unlocking exciting new opportunities, from exploring carrier transport in quantum matter 
to in silico designing new semiconductors with tailored transport properties. In this article, 
we review the most recent developments in the area of ab initio calculations of carrier 
mobilities of semiconductors. Our aim is threefold: to make this rapidly-growing research 
area accessible to a broad community of condensed-matter theorists and materials scientists; 
to identify key challenges that need to be addressed in order to increase the predictive 
power of these methods; and to identify new opportunities for increasing the impact of these 
computational methods on the science and technology of advanced materials. The review is 
organized in three parts. In the first part, we offer a brief historical overview of approaches to 
the calculation of carrier mobilities, and we establish the conceptual framework underlying 
modern ab initio approaches. We summarize the Boltzmann theory of carrier transport and 
we discuss its scope of applicability, merits, and limitations in the broader context of many-
body Green’s function approaches. We discuss recent implementations of the Boltzmann 
formalism within the context of density functional theory and many-body perturbation 
theory calculations, placing an emphasis on the key computational challenges and suggested 
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solutions. In the second part of the article, we review applications of these methods to 
materials of current interest, from three-dimensional semiconductors to layered and two-
dimensional materials. In particular, we discuss in detail recent investigations of classic 
materials such as silicon, diamond, gallium arsenide, gallium nitride, gallium oxide, and lead 
halide perovskites as well as low-dimensional semiconductors such as graphene, silicene, 
phosphorene, molybdenum disulfide, and indium selenide. We also review recent efforts 
toward high-throughput calculations of carrier transport. In the last part, we identify important 
classes of materials for which an ab initio study of carrier mobilities is warranted. We discuss 
the extension of the methodology to study topological quantum matter and materials for 
spintronics and we comment on the possibility of incorporating Berry-phase effects and many-
body correlations beyond the standard Boltzmann formalism.

Keywords: carrier mobility, electron–phonon, first-principles, ab initio, 2D materials, 
semiconductors

(Some figures may appear in colour only in the online journal)
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1.  Introduction

The carrier mobility µ quantifies how fast an electron or hole 
can travel in a metal or in a semiconductor when subjected 
to an external electric field E. The average velocity is called 
the drift velocity vd and can be determined, for example, via 
Hall measurements. The change of drift velocity with elec-
tric field defines the charge carrier mobility µ = vd/E. In the 
Drude model of carrier transport, an electron with effective 
mass m* experiences a force eE when subjected to a uniform 
electric field and completely loses its momentum m∗vd in a 
time τ/2, due to scattering from material defects, impurities, 
or lattice vibrations [1, 2]. By equating the force and the rate 
of momentum loss at equilibrium, one obtains eE = m∗vd/τ , 
which leads to the celebrated Drude formula for the electron 
mobility: µ = eτ/m∗. From this simple relation, it is already 
clear that a predictive theory for the calculation of carrier 
mobilities requires accurate calculations of the scattering rate 
1/τ  as well as the carrier effective mass m*.

The mobility plays a central role in semiconductor devices: 
it determines the switching frequency in transistors, the pho-
toconductive gain in photodetectors, and transport properties 
in solar cells and light-emitting devices. Therefore it is not 
surprising that considerable efforts have been devoted to make 
accurate predictions of carrier mobilities ever since the begin-
ning of solid state physics.

The first quantum-mechanical description of electron trans-
port in crystals was provided by Bloch, who discussed how the 
fluctuations of the crystal potential arising from lattice vibra-
tions act as a source of scattering for electrons travelling through 
the solid [3]. Since then, many analytical approaches have been 
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developed to describe the main scattering mechanisms arising 
from the electron–phonon interaction (EPI) [4]. Key mech
anisms include: (i) acoustic-deformation potential scattering 
[5, 6], which links the change of the electronic band structure 
with the macroscopic strain; (ii) optical deformation potential 
scattering, which describes the interaction of long-wavelength 
optical phonons with electrons in nonpolar crystals [7]; (iii) 
piezoelectric scattering, where a lattice distortion is induced by 
a piezoelectric field in a material lacking inversion symmetry 
[8]; and (iv) polar-optical phonon scattering or Fröhlich cou-
pling, whereby long-wavelength longitudinal-optical phonons 
in polar crystals induce macroscopic electric fields [9].

More refined theories of carrier transport started to appear 
in the 1960s and include work on non-equilibrium Green’s 
functions [10, 11], the Kubo formalism [12], the Landauer–
Büttiker formalism [13–15], and the Boltzmann transport 
equation (BTE). Traditionally, the BTE has been employed in 
the context of iterative [16–18], finite-difference techniques 
[19], variational approaches [20–22], or Monte Carlo sam-
pling [23–26]. Most of these previous approaches rely on 
analytical models to describe the scattering due to specific 
manifestations of the EPI, hence their applicability is limited 
to certain classes of materials.

Besides electron–phonon scattering, other important scat-
tering processes can be grouped in two categories: (i) scat-
tering by lattice defects, such as for example impurities in 
semiconductors and (ii) carrier–carrier scattering. Some of 
the historically significant models to investigate these effects 
include the theory of ionized-impurity scattering by Conwell 
et al [27–33], and the theory of electron–electron scattering 
by Matulionis et al [34]. Recent work aimed at recasting these 
earlier models for defect-induced scattering and carrier–car-
rier scattering in the framework of k · p perturbation theory 
[35] and ab initio calculations [36].

Among the scattering mechanisms described above, only the 
scattering theory of charged carriers by phonons has been devel-
oped far enough that predictive calculations are now possible. 
At the heart of the modern theory of electron–phonon scattering 
processes is the calculation of EPIs from first principles. These 
calculations have been fuelled by the development of density 
functional perturbation theory (DFPT) starting in the 1980s [37–
40]. First-principles-based methods to study EPIs have become 
popular in recent years, possibly as a result of the increased 
availability of high-performance computing, new theoretical 
developments, and advanced software implementations [41].

This review focuses on modern ab initio calculations 
of carrier transport in metals and semiconductors, with an 
emphasis on the role of electron–phonon interactions and the 
temperature dependence of transport coefficients.

The manuscript is organized as follows. In section 3 we 
review the ab initio theory of carrier transport. We start 
from a general, many-body quantum mechanical framework 
based on the Kadanoff–Baym formalism in section 2.1 and 
we make the link with the popular BTE approach in sec-
tion 2.2. Common approximations employed for solving the 
BTE are discussed in section  2.3, including the response 
to electric and magnetic fields in section  2.4. Section  2.5 
establishes the relation between the BTE approach and the 

Kubo formula and in section  2.6 we discuss the hierarchy 
of approximations used in calculations of carrier transport 
and the tradeoff between complexity and accuracy. Section 3 
provides an overview of the implementations of the BTE for-
malism in modern electronic structure codes and summarizes 
available software. In section 4 we discuss recent ab initio 
calculations of carrier mobilities, with a focus on bulk semi-
conductors and two-dimensional (2D) materials. In the case 
of bulk semiconductors, we cover work on silicon, diamond, 
gallium arsenide, gallium nitride, gallium oxide, and hybrid 
organic-inorganic halide perovskites (section 4.1). In the 
case of 2D materials, we review recent works on graphene, 
silicene, phosphorene, molybdenum disulfide, and indium 
selenide (section 4.2) as well as recent efforts in the direc-
tion of high-throughput calculations (section 4.3). Finally in 
section 4.4, we gather experimental and theoretical results 
and discuss the predictive accuracy of first-principles mobil-
ity calculations. In section  5 we offer our perspective on 
interesting new directions and opportunities in this field. In 
particular, we discuss spin transport (section 5.1), topologi-
cal materials (section 5.2), the influence of the Berry phase 
on velocities and scattering rates (section 5.3), and transport 
in correlated electron systems (section 5.4). We present our 
conclusions and outlook in section 6. The appendices report 
mathematical details of the derivations provided in section 3.

2.  Ab initio theory of electron transport

2.1.  Quantum theory of mobility

In this section we review the current theoretical description of 
charge transport from a modern, Green’s function-based point 
of view, expressed in a field-theoretic language. The present der-
ivation rests on seminal works by Martin, Schwinger, Kadanoff, 
Baym, Keldysh, Mahan, Datta, Haug, Kita, Stefanucci, van 
Leeuwen, and others [10, 11, 42–53]. Alternative derivations 
within classical or semi-classical frameworks exist and can be 
found for example in [47, 54–57]. Readers not interested in the 
quantum connection can follow these standard derivations and 
are invited to continue reading at section 2.3.

The central quantity in the description of charge trans-
port is the current density J(r, t), which is represented by the 
Schrödinger-picture operator

Ĵ(r) =
ie�
2m

{
ψ̂†(r)

[
∇ψ̂(r)

]
−
[
∇ψ̂†(r)

]
ψ̂(r)

}
,� (1)

where ψ̂(r) denotes the electron field operator, −e the elec-
tron charge, and m the electron mass. We assume that the sys-
tem is in thermodynamic equilibrium at time t0 with a heat 
bath at temperature T. The expectation value of Ĵ(r) at a later 
time t is then given by

J(r, t) =
〈
ĴH(r, t)

〉
=

1
Z

tr
[
e−βĤ(t0)ĴH(r, t)

]
,� (2)

where β−1 = kBT , Ĥ(t) denotes the total Hamiltonian of the 
system, and Z = tr{exp[−βĤ(t0)]} is the canonical partition 
function. In equation (2), the current density operator in the 
Heisenberg picture reads
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ĴH(r, t) = T
[
e

i
�
∫ t

t0
dt′Ĥ(t′)

]
Ĵ(r)T

[
e

−i
�

∫ t
t0

dt′Ĥ(t′)
]

,� (3)

with T (T ) being the (anti-) time-ordering symbol. To com-
pute J(r, t), we make use of the Green’s function formalism. 
To start with, we introduce the lesser Green’s function as

G<(r1, r2; t1, t2) =
i
�

〈
ψ̂†

H(r2, t2)ψ̂H(r1, t1)
〉

,� (4)

in terms of which the expectation value of the current density 
can be written as

J(r, t) =
−e�2

2m
lim
r′→r

(∇′ −∇)G<(r, r′; t, t).� (5)

The Hamiltonian Ĥ(t) appears both in the thermodynamic 
weights and as part of the Heisenberg-picture field operators 
ψ̂H. This makes the use of perturbation theory difficult, since 
the Hamiltonians at two different times in general do not com-
mute. One way to overcome this difficulty is by making use of 
the Keldysh–Schwinger contour formalism. In this formalism, 
the three occurrences of the Hamiltonian in the expression 
for the time-dependent expectation value of an operator are 
merged into one single exponential under a contour-ordering 
symbol TC. This operation leads to the definition of the con-
tour-ordered Green’s function:

G(r1, r2; z1, z2) =
−i
�

1
Z

tr
{
TC

[
e

−i
�

∫
γ

dz Ĥ(z)

×[ψ̂(r1)]z1 [ψ̂
†(r2)]z2

]}
.

�

(6)

The contour-ordering symbol orders the operators inside the 
square brackets according to their place on the contour γ , 
depicted in figure 1. The subscripts z1 and z2 denote the place-
ment of the field operators in the string of operators under 
the contour-ordering symbol. For instance, the lesser Green’s 
function can be recovered by choosing z2 = t2+ and z1 = t1−, 
so that ψ̂†(r2) is placed in front of ψ̂(r1), irrespective of the 
value of the times t1 and t2, since all operators on γ+ are con-
sidered to be later on the contour than operators on γ−. We 
use this notation exclusively for time-independent operators 
as for time-dependent operators, their placement under the 
contour-ordering symbol is already determined by their time 
argument. The strength of the Keldysh–Schwinger formalism 
is that it naturally leads to a convenient perturbative expansion 
of the contour-ordered Green’s function G(r1, r2; z1, z2).

We start from a Hamiltonian Ĥ0 for which we can compute 
the eigenstates (for example the Kohn–Sham Hamiltonian), 
and divide the total Hamiltonian into three pieces:

Ĥ(z) = Ĥ0 + Ĥint + Ĥext(z),� (7)

where Ĥint captures all internal interactions not contained in 
Ĥ0 and Ĥext(z) contains the interaction with external electro
magnetic fields, such as the applied bias voltage in experi-
ments. Note that, under the contour-ordering symbol, all parts 
of the Hamiltonian can be treated as if they mutually com-
muted with each other. We can thus perform a perturbative 
expansion by Taylor-expanding the exponential in powers of 
Ĥint and Ĥext(z). To start with, we write the non-interacting 
one-particle Hamiltonian in the form

Ĥ0 =

∫
d3r ψ̂†(r)h0(r,−i�∇)ψ̂(r),� (8)

where

h0(r,−i�∇) =
−�2∇2

2m
+ V(r).� (9)

Here V(r) is a one-particle potential, such as for example the 
Kohn–Sham potential in density functional theory (DFT) [58, 
59]. We also take the external Hamiltonian to be of the form

Ĥext(z) =
∫

d3r ψ̂†(r)(−e)φext(r, z)ψ̂(r),� (10)

where φext(r, t) denotes an externally applied scalar poten-
tial. For simplicity we here ignore the possibility of a vector 
potential. The part Ĥint is understood to contain all inter-
particle interactions, such as the inter-electron Coulomb 
interaction and the interaction of electrons with lattice 
degrees of freedom in case of a solid. The internal interac-
tion Hamiltonian can also be expressed in terms of ψ̂(r) and 
ψ̂†(r).

The contour-ordered Green’s function from equation  (6) 
can be expanded in a Taylor series in powers of Ĥint and 
Ĥext(z):

G(r1, r2; z1, z2) = G0(r1, r2; z1, z2) +

∞∑
n,m=1

(−i/�)n+m

n!m!

×
∫

γ

dz′1 . . .
∫

γ

dz′n

∫

γ

dz′′1 . . .

∫

γ

dz′′m
1
Z

tr
[
TCe

−i
�

∫
γ

dz [Ĥ0]z

×
[
Ĥint

]
z′1
. . .

[
Ĥint

]
z′n

Ĥext(z′′1 ) . . . Ĥext(z′′m)

×
[
ψ̂(r1)

]
z1

[
ψ̂†(r2)

]
z2

]
.

�

(11)

Here we have defined the non-interacting Green’s function as

G0(r1, r2; z1, z2) =
−i
�

1
Z0

tr
[
TCe

−i
�

∫
γ

dz [Ĥ0]z

×
[
ψ̂(r1)

]
z1

[
ψ̂†(r2)

]
z2

]
,

�

(12)

with Z0 = tr{exp[−βĤ0]}. Expressing Ĥint and Ĥext(z) in 
equation (11) in terms of the field operators leads to terms of 
the form

Figure 1.  The Keldysh–Schwinger contour consists of three pieces: 
γ−, which runs from z  =  t0− to z = ∞−, γ+, from z = ∞+ to 
z  =  t0+ , and γM from z  =  t0 to z = t0 − iβ.
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tr
[
TCe

−i
�

∫
γ

dz [Ĥ0]z [ψ̂(r1)]z1 [ψ̂(r2)]z2 . . .

. . . [ψ̂†(r′1)]z′1 [ψ̂
†(r′2)]z′2 . . .

]
.

�
(13)

These terms can be evaluated using a generalized version of 
Wick’s theorem [52] and written in terms of products of G0. 
The exact perturbation series for G can be analyzed with the 
help of Feynman diagrams, which results in Dyson’s equa-
tion on the contour:

G(1, 2) = G0(1, 2)

+

∫

γ

d3
∫

γ

d4 G0(1, 3)Σ[G](3, 4)G(4, 2).�
(14)

In the equation above, 1 = (r1, z1) and 
∫
γ

d1 =
∫

d3r1
∫
γ

dz1, 
while Σ[G] is the self-energy, which in itself depends on G and 
captures all the effects of interactions.

From Dyson’s equation on the contour, we can derive an 
equation of motion for the lesser Green’s function G<, which 
is needed to compute the current density from equation (5). 
This equation is known as one of the Kadanoff–Baym equa-
tions (KBEs) [10]. In the limit t0 → −∞, it reads:

i�
∂

∂t
G<(r1, r2; t, t)

= [h0(r1,−i�∇1)− h0(r2,+i�∇2)]G<(r1, r2; t, t)

+

∫
d3r3

[
Σδ(r1, r3; t)G<(r3, r2; t, t)

− G<(r1, r3; t, t)Σδ(r3, r2; t)
]

+

∫ t

−∞
dt′

∫
d3r3

[
Σ>(r1, r3; t, t′)G<(r3, r2; t′, t)

+ G<(r1, r3; t, t′)Σ>(r3, r2; t′, t)

− Σ<(r1, r3; t, t′)G>(r3, r2; t′, t)

− G>(r1, r3; t, t′)Σ<(r3, r2; t′, t)
]

.

�

(15)

Here, Σδ(r1, r2; t) is the part of the self-energy that is local in time 
following the notation of Stefanucci and van Leeuwen ([53], 
equation (9.12), p 252), while f>(t1, t2) = f (z1 = t1+, z2 = t2−) 
and f<(t1, t2) = f (z1 = t1−, z2 = t2+) are the greater and 
lesser counterparts of a function f (z1, z2) on the contour. 
The explicit derivation of equation (15) from equation (14) is 
given in appendix A.

The first of the three terms on the right-hand side of this 
equation  describes the unperturbed time-evolution of the 
lesser Green’s function in a static potential V(r). The second 
term involves the local-time self-energy that includes both 
the screened external potential as well as the effects of static 
electron–electron and electron–phonon interactions. This 
includes, for example, the difference between the instantane-
ous Hartree–Fock self-energy and the mean-field potential 
already included in h0 through V(r). Finally, the remaining 
terms, involving various combinations of G<,> and Σ<,>, 
describe the effects of internal dynamical correlations, such 
as particle collisions and scattering as well as their interaction 
with the screened external potential.

2.2.  Boltzmann transport equation

It is currently not possible to determine exact solutions of 
equation (15). However, with a few approximations this equa-
tion can be converted into a computationally accessible prob-
lem that yields quantitatively predictive results.

We approximate the term involving Σδ by neglecting the 
screening of the external potential. This approximation can be 
relaxed by taking into account the response of the electronic 
density to the external field, but the final form of the equa-
tion would not change; therefore we prefer to omit this detail 
for the sake of brevity. We also neglect the difference between 
the internal instantaneous electron self-energy and the mean-
field potential already included in V(r). In this approximation, 
the local-time self-energy reads

Σδ(r1, r2; t) ≈ −eφext(r1, t)δ(3)(r1 − r2),� (16)

whereupon the corresponding part of equation (15) becomes:
∫

d3r3

[
Σδ(r1, r3; t)G<(r3, r2; t, t)

−G<(r1, r3; t, t)Σδ(r3, r2; t)
]

≈ −e [φext(r1, t)− φext(r2, t)]G<(r1, r2; t, t).

�

(17)

As in a typical experiment, we assume the electric field to be 
spatially homogeneous, in which case

φext(r1, t)− φext(r2, t) = −E(t) · (r1 − r2).� (18)

We now consider electrons in a solid and we choose the unper-
turbed Hamiltonian in the position representation as

h0(r,−i�∇) =
−�2∇2

2m
+ Vlat+Hxc(r),� (19)

where Vlat+Hxc(r) is given by the sum of an ionic lattice poten-
tial and the effective mean-field Hartree and exchange and 
correlation potentials generated by the electrons. The eigen-
states of this Hamiltonian,

h0(r,−i�∇)ϕnk(r) = εnkϕnk(r),� (20)

can be labeled by a band index n and a crystal wavevector k.
Next, we express both sides of equation (15) in the basis 

{ϕnk(r)} and implicitly assume that the external field E is 
screened self-consistently by VHxc. For simplicity we adopt 
the commonly used approximation of retaining only the diag-
onal matrix elements of the Green’s function and self-energy 
[60]. This approximation only affects the band indices since 
the Green’s function is diagonal in k for a homogeneous elec-
tric field, which does not break the translational symmetry of 
the lattice. This approximation is expected to be valid in sys-
tems where the interactions contained in Ĥint and the external 
fields in Ĥext do not mix the bands significantly. Now we can 
write the diagonal matrix elements of the lesser and greater 
Green’s function as

∓ i
�

f>,<
nk (t, t′)

=

∫
d3r1

∫
d3r2 ϕ

∗
nk(r1)G>,<(r1, r2; t, t′)ϕnk(r2),

�
(21)
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where the −(+) sign corresponds to the left (right) sym-
bol  >(<). We then take the diagonal elements of the term 
involving the electric field, equation (18). By expressing the 
Bloch wave functions as ϕnk(r) = eik·runk(r), where unk(r) is 
lattice-periodic, we obtain:

∫
d3r1

∫
d3r2 ϕ

∗
nk(r1)eE(t) · (r1 − r2)G<(r1, r2; t, t)

× ϕnk(r2) = −eE(t) · 1
�
∂f<nk
∂k

(t, t).
�

(22)

Finally, we define the diagonal components of the greater and 
lesser self-energy as

∓ i�Γ>,<
nk (t, t′)

=

∫
d3r1

∫
d3r2 ϕ

∗
nk(r1)Σ

>,<(r1, r2; t, t′)ϕnk(r2).
�

(23)

With these definitions and approximations, equation  (15) 
takes on the form

∂f<nk
∂t

(t, t)− eE(t) · 1
�
∂f<nk
∂k

(t, t) = −Γ
(co)
nk (t),� (24)

where the unperturbed time evolution of f<nk  vanishes identi-
cally due to equation (20) and where we have introduced the 
collision rate

Γ
(co)
nk (t) =

∫ t

−∞
dt′

[
Γ>

nk(t, t′) f<nk(t
′, t) + f<nk(t, t′)Γ>

nk(t
′, t)

−Γ<
nk(t, t′) f>nk(t

′, t)− f>nk(t, t′)Γ<
nk(t

′, t)
]
.

�
(25)

Equation (24) is the quantum equivalent of the Boltzmann trans-
port equation in the approximation of neglecting the off-diag-
onal matrix elements of the Green’s function and self-energy.

In the case of direct-current (DC) transport, the electric field 
does not depend on time. As a result, the total Hamiltonian is 
time-independent and any two-time function f (t, t′) depends 
only on the time difference t − t′, f (t, t′) = f (t − t′). In par
ticular, f<nk(t, t) becomes time-independent, and the collision 
integral of equation (25) simplifies to

Γ
(co)
nk =

∫ +∞

−∞
dt′

[
f<nk(t

′)Γ>
nk(−t′)− f>nk(t

′)Γ<
nk(−t′)

]
,� (26)

where we shifted the integration variable t′ by t and let t′ → −t′ 
in the second and fourth terms of equation (25). Finally, we 
can write the Boltzmann equation in the frequency domain by 
introducing the Fourier transform of a function F(t) as

F(ω) =
∫ +∞

−∞
dt eiωtF(t).� (27)

The Boltzmann equation for time-independent electric fields 
then reads

−eE · 1
�
∂fnk

∂k
= −

∫
dω
2π

[
f<nk(ω)Γ

>
nk(ω)

−f>nk(ω)Γ
<
nk(ω)

]
,

�
(28)

where we defined the E-field dependent occupation number as

fnk =

∫
dω
2π

f<nk(ω).� (29)

From the definition of f<nk(t, t′) in equation  (21), it follows 
immediately that fnk = 〈ĉ†nkĉnk〉, where ̂c(†)nk  is the annihilation 
(creation) operator for a Bloch state |nk〉. Therefore fnk  has 
the physical meaning of the (fractional) number of electrons 
in the state |nk〉.

We now specialize equation (28) to the case of scattering 
by lattice vibrations. To this end, the matrix elements Γ>,<

nk (ω) 
of the greater/lesser self-energy are commonly approximated 
as the diagonal matrix elements of the Fan–Migdal self-
energy [41]

Γ>,<
nk (ω) ≈ i

�
∑
m,ν

∫
d3q
ΩBZ

∫
dω′

2π

∣∣gR
mnν(k, q;ω′)

∣∣2

×f>,<
mk+q(ω + ω′)D<,>

qν (ω′),
�

(30)

where D>,<
qν (ω) is the Green’s function of a phonon of branch 

ν  and crystal wavevector q and the summation and integration 
run over all electronic bands m, phonon branches ν , and crys-
tal wavevectors q in the first Brillouin zone, whose volume is 
denoted by ΩBZ . The Fourier-transformed gR

mnν(k, q;ω) is the 
retarded matrix element for absorption of a phonon of branch 
ν  with wavevector q and frequency ω  that scatters an electron 
from state |nk〉 into state |mk + q〉.

In practice, equation (30) is usually evaluated under three 
further approximations: (i) the phonon Green’s function is 
written in the Born–Oppenheimer approximation:

D>,<
qν (ω) ≈ −i

�
2π

[
(nqν + 1)δ(ω ∓ ωqν)

+nqνδ(ω ± ωqν)
]
,

�
(31)

with nqν = 1/[exp(�ωqν/kBT)− 1] denoting the Bose–
Einstein distribution evaluated at the adiabatic phonon fre-
quency ωqν ; (ii) the electron–phonon matrix elements are 
approximated as frequency-independent quantities obtained 
from the self-consistent first derivative of the effective poten-
tial Vlat+Hxc(r) [41]:

gmnν(k, q) = 〈mk + q|∂qνVlat+Hxc(r̂)|nk〉,� (32)

where

∂qν =
∑
pκα

√
�

2Mκωqν
eiq·Rp eκαν(q)

∂

∂Rpκα
� (33)

where Rpκα denotes the αth Cartesian component of the equ-
librium position of atom κ of mass Mκ in the p th unit cell 
with origin Rp and eκαν(q) is the αth Cartesian component 
of the vibrational eigenmodes with frequency ωqν  for atom κ; 
and (iii) the frequency dependence of the electronic Green’s 
functions is approximated at the level of the unperturbed 
Hamiltonian:

f>nk(ω) ≈ 2π(1 − fnk)δ(ω − εnk/�),� (34)

f<nk(ω) ≈ 2πfnkδ(ω − εnk/�).� (35)

Here fnk  still depends on the electric field and needs to be 
determined from the Boltzmann equation. Within these three 
approximations, the collision rate reads
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Γ
(co)
nk =

∫
dω
2π

[
f<nk(ω)Γ

>
nk(ω)− f>nk(ω)Γ

<
nk(ω)

]

≈ 2π
�

∑
m,ν

∫
d3q
ΩBZ

|gmnν(k, q)|2

×
[
fnk(1 − fmk+q)δ(∆εnm

k,q + �ωqν)nqν

+fnk(1 − fmk+q)δ(∆εnm
k,q − �ωqν)(nqν + 1)

−(1 − fnk) fmk+qδ(−∆εnm
k,q + �ωqν)nqν

−(1 − fnk) fmk+qδ(−∆εnm
k,q − �ωqν)(nqν + 1)

]
,

�

(36)

where ∆εnm
k,q = εnk − εmk+q. Equation (36) represents the dif-

ference of the rate for an electron in state |nk〉 to scatter out 
of the state (first two terms) and the rate for an electron to 
scatter into the state |nk〉 (last two terms). Both processes can 
be mediated either by phonon absorption (first and third term) 
or phonon emisssion (second and forth term). We note that we 
let q → −q in the terms involving phonon emission to write 
them also in terms of fmk+q instead of fmk−q, making use of 
ωqν = ω−qν and the fact that the matrix elements for phonon 
emission and absorption are related by complex conjugation. 

The four scattering processes included in Γ(co)
nk  are illustrated 

in figure 2.
Equation (28) is solved iteratively to obtain the E-field-

dependent occupancies fnk . Then the experimentally acces-
sible macroscopic average of the current density J(r) can be 
obtained via

JM(E) =
1
V

∫
d3r J(r; E)� (37)

=
−e
Vuc

∑
n

∫
d3k
ΩBZ

vnkfnk(E),� (38)

where we made use of equations (5), (21), and (29) and where 
V  and Vuc denote the crystal and unit cell volume, respec-
tively. In equation  (38) we introduced the diagonal velocity 

matrix elements vnk = 〈nk|p̂/m|nk〉 and explicitly indicated 
the E-field dependence of all quantities for clarity.

In the case of weak electric fields, we can restrict ourselves 
to the linear response of the current density, which defines the 
conductivity tensor:

σαβ =
∂JM,α

∂Eβ

∣∣∣∣
E=0

=
−e
Vuc

∑
n

∫
d3k
ΩBZ

vαnk∂Eβ
fnk.� (39)

Here α,β  run over the three Cartesian directions and we 
introduced the short-hand notation ∂Eβ

fnk = (∂fnk/∂Eβ)|E=0 . 
From equation (28), we can obtain an expression for the lin-
ear response coefficients ∂Eβ

fnk by taking derivatives on both 
sides with respect to the electric field:

−evβ
nk

∂f 0
nk

∂εnk
=

∑
m

∫
d3q
ΩBZ

[
τ−1

mk+q→nk ∂Eβ
fmk+q

−τ−1
nk→mk+q ∂Eβ

fnk
]
,

�

(40)

where we introduced the partial decay rate

τ−1
nk→mk+q =

∑
ν

2π
�

|gmnν(k, q)|2

×
[
(nqν + 1 − f 0

mk+q)δ(∆εnm
k,q − �ωqν)

+(nqν + f 0
mk+q)δ(∆εnm

k,q + �ωqν)
]
,

�

(41)

and its analog τ−1
mk+q→nk with the indices nk and mk + q 

swapped. Here, f 0
nk  denotes the equilibrium occupancies 

in the absence of an electric field, which are given by the 
Fermi–Dirac distribution evaluated at the band energies, 
f 0
nk = 1/{exp[(εnk − µ)/kBT] + 1}, where µ is the chemical 

potential. We also used the fact that, ignoring the Berry curva-
ture [61], the diagonal matrix elements of the velocity opera-
tor are simply given by vα

nk = �−1∂εnk/∂kα.
Equation (40) is known in the literature [60] as the 

Boltzmann transport equation. Its solution yields the lin-
ear response coefficients ∂Eβ

fnk, which are needed in equa-
tion (39) to obtain the conductivity tensor.

The electrical conductivity in equation (39) scales with the 
density of carriers. This is generally not an issue when study-
ing metals, for which temperature, bias voltage, and defects do 
not alter the carrier density near the Fermi energy. However, in 
semiconductors the carrier density can change by many orders 
of magnitude with doping, temperature, and applied voltage. 
In these cases, in order to single out the intrinsic transport 
properties of the material, it is convenient to introduce the 
carrier drift mobility, which is defined as the ratio between 
conductivity and carrier density:

µd
αβ =

∣∣∣∣
σαβ

enc

∣∣∣∣ .� (42)

The charge carrier density entering the electron mobility ten-
sor, nc = nel, is defined as

nel =
1

Vuc

∑
n∈CB

∫
d3k
ΩBZ

[
f 0
nk(µ, T)− f 0

nk(εF, 0)
]

,� (43)

Figure 2.  The four processes included in the collision rate in 
equation (25) derived from the Fan–Migdal self-energy: Scattering 
of an electron out of state |nk〉 via phonon absorption (green, first 
term) and emission (purple, second term) and scattering of an 
electron into state |nk〉 via phonon absorption (brown, third term) 
and emission (orange, fourth term).
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with CB denoting the set of all conduction bands. In the case 
of the hole mobility, nc = nh, the sum is understood to run 
over all valence bands.

2.3.  Approximations to the Boltzmann equation

Besides the BTE given in equation (40), there also exist vari-
ous simplified versions that can reduce the computational 
complexity at the cost of further approximations. In this sec-
tion  we briefly discuss three common approximations, in 
decreasing order of accuracy: (i) the momentum relaxation 
time approximation (MRTA), (ii) the self-energy relaxation 
time approximation (SERTA), and (iii) the lowest-order varia-
tional approximation (LOVA).

The main source of complexity in the BTE comes from 
the dependence of the linear response coefficients ∂Eβ

fnk of 
state |nk〉 on the linear response coefficients of all other states 
|mk + q〉. In the momentum relaxation time approximation 
(MRTA), this obstacle is overcome by using two approx
imations. Firstly, the linear response coefficients ∂Eβ

fnk are 
taken to possess only a component in the direction of the band 
velocity vβ

nk

∂Eβ
fnk

MRTA
≈ evβnk

∂f 0
nk

∂εnk
τ̃nk,� (44)

where τ̃nk is now an unknown scalar quantity to solve for. 
Using equation (44), the identity

∂f 0
nk

∂εnk
= − 1

kBT
f 0
nk(1 − f 0

nk),� (45)

and multiplying with 
∑

α vα
nk  on both sides of equation (40), 

we obtain an equation for τ̃nk:

1 =
∑

m

∫
d3q
ΩBZ

[
τ̃nkτ

−1
nk→mk+q −

vnk · vmk+q

|vnk|2

×
f 0
mk+q(1 − f 0

mk+q)

f 0
nk(1 − f 0

nk)
τ̃mk+qτ

−1
mk+q→nk

]
.

�

(46)

At this point one can make use of the explicit algebraic forms 
of the Fermi–Dirac and Bose–Einstein distribution functions 
and of the decay rates τ−1

nk→mk+q to prove the detailed balance 
condition [62]:

f 0
mk+q(1 − f 0

mk+q)τ
−1
mk+q→nk = f 0

nk(1 − f 0
nk)τ

−1
nk→mk+q.

�
(47)

Secondly, one makes the approximation

τ̃nkτ
−1
nk→mk+q ≈ τ̃mk+qτ

−1
mk+q→nk,� (48)

in equation  (46) and using equation  (47) one obtains an 
explicit expression for τ̃nk:

τ̃−1
nk =

∑
m

∫
d3q
ΩBZ

[
1 − vnk · vmk+q

|vnk|2
]
τ−1

nk→mk+q.� (49)

It partially incorporates the effects of scattering back into the 
state |nk〉 by reducing the rate for scattering out of it by a geo-
metrical factor that involves the scattering angle and favors 

forward scattering. The inverse of equation (49) constitutes an 
effective, state-dependent, total scattering time. By inserting 
τ̃nk from equation  (49) into equation  (44) and subsequently 
using the so-obtained linear response coefficients in equa-
tions  (39) and (42), we obtain the electron drift mobility in 
the MRTA:

µd,MRTA
αβ =

e
nelVuc

∑
n

∫
d3k
ΩBZ

[
− ∂f 0

nk
∂εnk

]
vαnkvβnkτ̃nk.� (50)

The MRTA can be simplified even further if the rate for scat-
tering back into the state |nk〉 is neglected entirely. This cor-
responds to setting the geometric factor in the square bracket 
of equation  (49) to one, so that the effective scattering rate 
becomes equal to the total decay rate

τ−1
nk =

∑
m

∫
d3q
ΩBZ

τ−1
nk→mk+q.

�
(51)

As the total decay rate is also equal to twice the negative 
imaginary part of the retarded electron self-energy, this 
approximation has been referred to as the self-energy relax-
ation time approximation (SERTA) [60]. Similar to the case 
of the MRTA, the linear response coefficients in the SERTA 
are given by

∂Eβ
fnk

SERTA
≈ evβ

nk
∂f 0

nk
∂εnk

τnk
�

(52)

and the drift mobility reads

µd,SERTA
αβ =

e
nelVuc

∑
n

∫
d3k
ΩBZ

[
− ∂f 0

nk
∂εnk

]
vα

nkvβnkτnk.
�

(53)

Lastly, we introduce a further approximation which is 
used for metals [63] and is referred to as the lowest-order 
variational approximation (LOVA), or the Ziman resistiv-
ity formula [54, 64, 65]. In his original derivation, Ziman 
started from the Drude formula for the resistivity of the 
electron gas, and derived an expression for the average 
scattering rate using a variational principle [54]. In order 
to keep the presentation self-contained, here we follow 
the alternative derivation by Grimvall [66], who linked 
the isotropic scattering rate 〈τ−1〉 to an average of the 
state- and momentum-resolved total decay rates τ−1

nk . From 
equation  (53) we see that the conductivity in the SERTA 
involves a weighted integral of velocity matrix elements 
vα

nkvβ
nk  and the decay times τnk, with the weighting factor 

being given by minus the derivative of the Fermi–Dirac 
distribution function. This suggests evaluating the Drude 
formula with a scattering rate 〈τ−1〉 obtained using the 
same weighted average

〈
τ−1〉 =

∑
n

∫ d3k
ΩBZ

[
− ∂f 0

nk
∂εnk

]
τ−1

nk∑
n

∫ d3k
ΩBZ

[
− ∂f 0

nk
∂εnk

] .� (54)

Using equations (51) and (41), we can express the numerator 
as
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∑
n

∫
d3k
ΩBZ

[
− ∂f 0

nk
∂εnk

]
τ−1

nk =

∫
dε

∫
dε′

∫
dω

[
− ∂f (ε)

∂ε

]

×
{[

n(ω) + 1 − f (ε′)
]
δ(ε− ε′ − �ω)

+
[
n(ω) + f (ε′)

]
δ(ε− ε′ + �ω)

}
γ(ε, ε′,ω),

�

(55)

where n(ω) = 1/[exp(�ω/kBT)− 1] denotes the Bose–
Einstein distribution, and f (ε) = 1/{exp[(ε− εF)/kBT] + 1} 
is the Fermi–Dirac distribution, in which we approximated the 
chemical potential µ by the Fermi energy εF. In equation (55) 
we defined the energy-resolved and positive-definite decay 
function

γ(ε, ε′,ω) =
2π
�

∑
mnν

∫
d3k
ΩBZ

∫
d3q
ΩBZ

|gmnν(k, q)|2

×δ(ε− εnk)δ(ε
′ − εmk+q)δ(ω − ωqν).

�

(56)

Since the weight function −∂f (ε)/∂ε appearing in equa-
tion  (55) is peaked at the Fermi energy, equation  (56) only 
needs to be evaluated with ε lying within a narrow window 
around the Fermi energy. In addition, the Dirac delta function 
δ(ε− ε′ − �ω) also forces ε′ to be close to the Fermi level, 
as the phonon energies �ωqν are typically of the same order 
of magnitude as the thermal energy kBT . Allen [67] noted 
that the electron–phonon matrix elements gmnν(k, q) usually 
do not vary much within a narrow window around the Fermi 
level. In this case, γ(ε, ε′,ω) can be approximated by

γ(ω) ≈ γ(ε = εF, ε′ = εF,ω).� (57)

The ε- and ε′-integrals in equation (55) can then be carried out 
analytically with the help of equation (45), yielding

∑
n

∫
d3k
ΩBZ

[
− ∂f 0

nk
∂εnk

]
τ−1

nk

≈ 2kBT
�

∫ ∞

0

dω
ω

[�ω/(2kBT)]2γ(ω)
sinh2[�ω/(2kBT)]

.
�

(58)

The denominator of equation  (54) can be approximated 
by replacing the derivatives of the Fermi–Dirac dis-
tribution as δ-functions centered at the Fermi level: 
−∂f 0

nk/∂εnk ≈ δ(εF − εnk). As a result, the denominator 
of equation  (54) becomes the density of states at the Fermi 
level, DOS(εF). By combining the resulting expression for the 
decay rate 〈τ−1〉 with Drude’s formula, ρ = m∗〈τ−1〉/e2nc, 
one arrives at Ziman’s resistivity formula:

ρ =
4πm∗

e2�
2kBT

nc

∫ ∞

0

dω
ω

[�ω/(2kBT)]2α2
trF(ω)

sinh2[�ω/(2kBT)]
,� (59)

where the transport Eliashberg function [66, 68] α2
trF is 

defined as

α2
trF(ω) =

1
4πDOS(εF)

γ(ω).� (60)

We note that Ziman’s formula is semi-empirical in nature, 
since the density of carriers nc enters as an empirical parameter.

2.4.  Mobility at finite magnetic field

While equation  (28) describes the dynamic equilibrium 
between a driving electrostatic force and a restoring force 
due to carrier scattering, it can also be extended to include a 
finite magnetic field B. This extension requires the following 
replacement

−eE → −e [E + vnk × B]� (61)

inside equation (28). After carrying out the algebra, we obtain 
a result similar to equation (40):

−evβnk
∂f 0

nk
∂εnk

− e (vnk × B) · 1
�

∂

∂k
∂Eβ

fnk =
∑

m

∫
d3q
ΩBZ

×
[
τ−1

mk+q→nk ∂Eβ
fmk+q − τ−1

nk→mk+q ∂Eβ
fnk

]
,

�

(62)

where we assumed that, to first order, the magnetic field alone 
does not perturb f 0

nk  [55, 69]. This assumption seems plau-
sible and has been successfully used in the past [69] but we are 
not aware of a formal proof.

For practical implementations in first-principles software, 
it is useful to re-write equation  (62) and isolate the linear 
response coefficients ∂Eβ

fnk:
[

1 − e
�
τnk(vnk × B) · ∂

∂k

]
∂Eβ

fnk

= evβnk
∂f 0

nk
∂εnk

τnk +
2πτnk

�
∑
mν

∫
d3q
ΩBZ

|gmnν(k, q)|2

×
[
(nqν + 1 − f 0

nk)δ(∆εnm
k,q + �ωqν)

+(nqν + f 0
nk)δ(∆εnm

k,q − �ωqν)
]
∂Eβ

fmk+q,

�

(63)

where τnk is the total decay rate from equations (51) and (41):

τ−1
nk =

2π
�

∑
mν

∫
d3q
ΩBZ

|gmnν(k, q)|2
[
(nqν + 1 − f 0

mk+q)

×δ(∆εnm
k,q − �ωqν) + (nqν + f 0

mk+q)δ(∆εnm
k,q + �ωqν)

]
.

�

(64)

We note that, strictly speaking, electronic Bloch states and 
band structures are no longer well defined in the presence of a 
uniform magnetic field. A rigorous treatment of this problem 
requires the use of ‘magnetic boundary conditions’, which 
impose that the magnetic flux through a unit cell surface be 
an integer multiple of the flux quantum [70, 71]. Furthermore, 
for sufficiently strong magnetic field and low enough temper
ature, it is important to consider the quantization of the elec-
tron orbits into Laudau levels [72]. Equation  (63) does not 
take into account these effects and therefore it is only valid 
for weak magnetic fields that can be treated perturbatively. A 
useful approximate criterion to establish the crossover regime 
between Bloch bands and Landau levels is the ratio between 
the cyclotron frequency ωc = eB/m∗ (with m* denoting the 
effective carrier mass) and the scattering rate τ−1. When the 
scattering rate is much larger than the cyclotron frequency, 
electrons are effectively hindered from remaining in stable 
cyclotron orbits. Using the Drude formula µ = eτ/m∗, the 
crossover criterion ωc ∼ τ−1 can be written as B ∼ 1/µ. This 
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simple expression provides a useful rule of thumb for estimat-
ing the magnetic field at which the effects of Landau quanti
zation become important. For example, in a material with 
a mobility of 1000 cm2 V−1 s−1, a magnetic field of  ∼10  T 
would be required before the electronic density of states con-
denses into Landau levels [57].

An alternative to solving the BTE for weak magnetic 
fields is to consider the exact bilinear response coefficients 
∂Eβ

∂Bγ fnk. Taking derivatives on both sides of equation (63) 
with respect to Bγ at zero field yields an iterative equation for 
the linear response coefficients ∂Eβ

fnk and ∂Eβ
∂Bγ fnk

∂Eβ
∂Bγ fnk = − e

�
τnk

(
vnk ×

∂

∂k

)
γ
∂Eβ

fnk +
2πτnk

�

×
∑
mν

∫
d3q
ΩBZ

|gmnν(k, q)|2
[
(nqν + 1 − f 0

nk)δ(∆εnm
k,q + �ωqν)

+(nqν + f 0
nk)δ(∆εnm

k,q − �ωqν)
]
∂Eβ

∂Bγ
fmk+q.

�
(65)

The Hall conductivity tensor is obtained from the second 
derivatives ∂Eβ

∂Bγ fnk using

σH
αβγ =

∂2JM,α

∂Eβ∂Bγ

∣∣∣∣
E=0
B=0

� (66)

=
−e
Vuc

∑
n

∫
d3k
ΩBZ

vαnk∂Eβ
∂Bγ fnk.� (67)

A schematic setup for a Hall mobility measurement is shown 
in figure 3. Besides the drift and Hall conductivities and their 
mobility analogs, a commonly reported quantity is the dimen-
sionless Hall factor (tensor), which is defined as the ratio 
between the Hall conductivity (or mobility) and the drift con-
ductivity (or mobility):

rH
αβγ =

σH
αβγ

σd
αβ

=
µH
αβγ

µd
αβ

.� (68)

A popular approximation to equation (68) consists of assum-
ing a parabolic and non-degenerate band extremum, following 
[73], p 118 and [74], equation  (3.12). Within this approx
imation, the isotropic and temperature-dependent Hall factor 
is given by [75]

rH =
〈τ 2〉
〈τ〉2 ,� (69)

with

〈τ n〉 =
∫∞

0 τ n(xkBT)x3/2e−xdx∫∞
0 x3/2e−xdx

.� (70)

Here, x = ε/(kBT) and we introduced the distribution func-

tion of the total decay rate, τ(ε) =
∑

n

∫ d3k
ΩBZ

δ(ε− εnk)τnk . 

In addition, the anisotropy present in band structures has been 
described by including a correction factor K [6]:

rH =
〈τ 2〉
〈τ〉2

3K(K + 2)
(2K + 1)2 .� (71)

This always results in a lowering of rH  compared to the fully 
isotropic (K  =  1) case.

2.5.  Kubo formalism

The BTE formalism provides an efficient framework for deal-
ing with time-independent electric fields in a self-consistent 
way. However, the case of time-dependent fields is more con-
veniently dealt with by directly evaluating the linear response 
of the current density instead of solving an equation of motion 
iteratively. This approach has been developed by Kubo [12] 
and the corresponding formula for the linear response of an 
observable is known as the Kubo formula. The Kubo formula 
is especially convenient to study the linear response to time-
dependent external perturbations as found in AC transport.

For time-dependent fields in the linear-response regime, it 
is convenient to adopt a gauge in which the external electric 
field is expressed in terms of a vector potential:

E(t) = − ∂

∂t
A(t),

� (72)
where we treat the electric field as being spatially homoge-
neous. We then take the external Hamiltonian on the Keldysh–
Schwinger contour as

Ĥext(z) = −A(z) ·
∫

d3r Ĵ(r, z)

+
e

2m
A2(z)

∫
d3r �̂(r),

�

(73)

where �̂(r) = (−e)ψ̂†(r)ψ̂(r) is the electronic charge density 
operator and where we have introduced the gauge-invariant 
current density operator:

Ĵ(r, z) =
−e
m

ψ̂†(r)
[
− i�∇ψ̂(r)

]
+

e
m

A(z)�̂(r)� (74)

= Ĵ(p)(r) + Ĵ(d)(r, z)[A].� (75)

Here we have identified the two contributions as the paramagn
etic current density Ĵ(p)(r), corresponding to equation  (1), 
and the diamagnetic current density Ĵ(d)(r, z). The external 
Hamiltonian given in equation (73) can be obtained by apply-
ing the minimal coupling substitution p̂ → p̂ − (−e)A(z) to 
the equilibrium Hamiltonian Ĥeq = Ĥ0 + Ĥint. We note that 
in equation  (74) we chose for convenience not to symme-
trize J(p)(r) in the gradient as was done in equation (1). For 

Figure 3.  Schematic setup for Hall mobility measurement. A 
current is flowing in the  +x direction and a magnetic field is applied 
in the  +z direction. The resulting Lorentz force will accelerate 
electrons in the  −y  direction, resulting in a measurable Hall voltage 
VH.
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a spatially constant vector potential or more generally in the 
Coulomb gauge, corresponding to ∇ · A(r, z) = 0, the two 
forms of J(p)(r) are equivalent.

As detailed in appendix B, we use the Keldysh–Schwinger 
contour formalism to obtain the expectation value of the cur
rent density at time t. We then define the conductivity tensor 
in the time domain as the functional derivative of the macro-
scopic current density with respect to electric field:

σαβ(t, t′) =
1
V

∫
d3r

δJα(r, t)
δEβ(t′)

∣∣∣∣
E=0

.� (76)

Using the chain rule

δ

δEβ(t′)
=

∑
γ

∫ +∞

−∞
dt′′

δAγ(t′′)
δEβ(t′)

δ

δAγ(t′′)
� (77)

=

∫ +∞

−∞
dt′′

∫
dω
2π

1
iω

eiω(t′−t′′) δ

δAβ(t′′)
,� (78)

we can write the time-domain conductivity as

σαβ(t, t′) =
∫

dω
2π

e
imω

δαβeiω(t′−t) 1
V

∫
d3r �0(r, t)

+

∫
dω
2π

1
�ω

∫ +∞

−∞
dt′′ eiω(t′−t′′)

× 1
V

∫
d3r

∫
d3r′ J (p),R

α,β (r, r′; t, t′′).
�

(79)

Here J (p),R
α,β  is the retarded component of the paramagnetic 

current-current correlation function, defined explicitly in 
appendix B, while �0(r, t) denotes the equilibrium charge den-
sity. Note that all expectation values and correlation functions 
in the expression above are defined with respect to the time-
independent Hamiltonian Ĥeq and hence can only depend on 
time differences or, in the case of one-time functions, are time-
independent. We can then define the Fourier transform of the 
real-time conductivity tensor,

σαβ(ω) =

∫ +∞

−∞
d(t − t′)eiω(t−t′)σαβ(t, t′),� (80)

which is commonly referred to as the optical conductivity. 
Defining the Fourier transform of the retarded paramagnetic 
current-current correlation function in the same way, the opti-
cal conductivity tensor takes on the compact form:

σαβ(ω) = i
e2

mω
δαβnel

+
1
�ω

1
V

∫
d3r

∫
d3r′J (p),R

α,β (r, r′;ω).
�

(81)

In practice, the current-current correlation function is sel-
dom evaluated exactly. Instead, it is common to work in the 
independent-particle approximation (IPA). In this approx
imation, the conductivity tensor reads

σIPA
αβ (ω) = i

e2

mω
δαβnel + i

e2

Vuc

∑
mn

∫
d3k
ΩBZ

vα
mnkvβ

nmk

×
∫

dω′
∫

dω′′ f (�ω′′)− f (�ω′)

�ω
Ank(ω

′)Amk(ω
′′)

ω + ω′′ − ω′ + iη
,

�

(82)

where Ank is the electronic spectral function of state |nk〉. The 
spectral function can be written in terms of the unperturbed 
eigenvalues of Ĥ0, εnk, and the retarded electron self-energy 
ΣR

nk(ω) as

Ank(ω) =
�
π

−Im[ΣR
nk(ω)]

{�ω − εnk − Re[ΣR
nk(ω)]}2 + {Im[ΣR

nk(ω)]}2 ,
�

(83)

where we used the fact that Ank(ω) = − �
π Im

[
GR

nk(ω)
]
 

and expressed the retarded electron Green’s function using 
Dyson’s equation. The derivation of equation (82) is given in 
appendix C. The AC conductivity can be obtained by taking 
the real part of σIPA

αβ (ω).
For completeness, we remark that in the limit ω → 0, the 

Kubo formula simplifies to

ReσIPA
αβ (ω → 0) =

πe2

Vuc

∑
mn

∫
d3k
ΩBZ

Re
[
vα

mnkvβ
nmk

]

×
∫

dω′
[
− ∂f

∂ε
(�ω′)

]
Ank(ω

′)Amk(ω
′),

�

(84)

where we made use of the fact that the ω → 0 limit of 
the term involving Im[vαmnkvβnmk] vanishes identically. 
This expression has a similar algebraic structure as equa-
tion (53) for the mobility in the SERTA of the Boltzmann  
formalism. We note that the effects of carrier scatter-
ing enter in the Kubo formalism through the spectral  
function.

Compared to the BTE, the Kubo formula has the advantage 
that it allows the incorporation of higher-order electronic cor-
relation effects on the electronic structure through the spectral 
function. In addition, it also presents a simple way to calculate 
the AC conductivity. On the downside, since the spectral func-
tion is almost invariably evaluated non-selfconsistently, it is 
difficult to achieve the same accuracy as in the iterative BTE 
method for DC transport.

Finally, we note that a link between equation (84) and the 
conductivity equivalent of equation  (53) can be established 
by neglecting the real part of the self-energy in equation (83) 
and evaluating the imaginary part at ω = εnk/�. Using 
−2ImΣR(εnk/�) = �τ−1

nk , the spectral function in this approx
imation becomes

Ank(ω) ≈
1
π

τ−1
nk /2

(ω − εnk/�)2 + (τ−1
nk /2)2

.� (85)

If we further neglect the off-diagonal velocity matrix elements 
in equation (84), the conductivity tensor reads
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σIPA−DC
αβ =

πe2

Vuc

∑
n

∫
d3k
ΩBZ

vα
nkvβ

nk

×
∫

dω′
[
− ∂f

∂ε
(�ω′)

]
A2

nk(ω
′).

�

(86)

Lastly, we make the approximation

∂f
∂ε

(�ω′)A2
nk(ω

′) ≈ ∂f
∂ε

(εnk)A2
nk(ω

′),� (87)

which is justified when the total decay rate is much smaller 
than the thermal energy kBT . This approximation is reason-
able for tetrahedral semiconductors at room temperature, 
where the quasiparticle approximation is valid, but it breaks 
down for correlated narrow-gap semiconductors [76]. Within 
the approximation of equation  (87), the frequency integral 
involving the spectral function can be carried out analytically, 
yielding

∫
dωA2

nk(ω) =
τnk

π
.� (88)

In this case, equation (84) reduces to the conductivity in the 
SERTA of the Boltzmann formalism, equation (53).

2.6.  Summary of available theoretical approaches

In this section, we provide a concise overview of the theor
etical approaches described so far. A graphical summary 
is presented in figure  4. The central ingredient in calcul
ations of charge transport is the current density, which can 
be obtained from the lesser one-electron Green’s function 
G<, equation  (4). The Green’s function obeys one of the 
Kadanoff–Baym equations  of motion, equation  (15), which 
are equivalent to Dyson’s equation on the Keldysh–Schwinger 
contour. The KBE for G< can be written in the basis of Bloch 
states of a reference Hamiltonian for a crystalline solid. If we 
retain only the diagonal matrix elements, it takes the form of 
the Boltzmann transport equation for a homogeneous, time-
dependent electric field [BTE (AC)], equation (24). From this 
point, we can further simplify the formalism by considering 
time-independent fields (DC transport) and retaining only 
one-phonon scattering processes in the collision term, using 
frequency-independent electron–phonon coupling matrix ele-
ments and adiabatic phonons. Similarly, the Green’s func-
tions in the collision term can be approximated using the 
non-interacting, single-particle Hamiltonian. Using these 
approximations, we arrive at the steady-state version of the 
Boltzmann transport equation (BTE), equations (28) and (36). 
To obtain the conductivity and the mobility tensor, we con-
sider weak fields and linearize the BTE, equation (40).

From the BTE one can then identify a hierarchy of three 
further approximations, namely the momentum relaxation-
time approximation, the self-energy relaxation time approx
imation, and the lowest-order variational approximation. In 
the MRTA, equations (49) and (50), the change of the occu-
pation number fnk  with electric field is taken to only have a 
component in the direction of the band velocity vnk, with its 
magnitude being proportional to an effective scattering time 

τ̃nk. The latter is further taken to be independent of the elec-
tron wavevector in the collision rate. Starting from the MRTA, 
one can make the further approximation of considering only 
scattering processes out of the state |nk〉, while neglecting 
the scattering into this state. This approximation leads to the 
self-energy relaxation time approximation, equations  (51)–
(53), and it is equivalent to a non-iterative solution of the 
BTE. The central quantity in the SERTA is the total decay 
rate τ−1

nk , which can be obtained from the imaginary part of 
the retarded electron self-energy. As a further simplification 

Figure 4.  Overview of the key theoretical equations and 
approximations presented in this review. KBE: the Kadanoff–Baym 
equation of motion for the lesser Green’s function. BTE (AC): the 
Boltzmann transport equation for time-dependent electric fields. 
BTE: the Boltzmann transport equation for time-independent 
electric fields, with only electron-one-phonon scattering 
processes considered in the collision rate. Linearized BTE: the 
Boltzmann transport equation for the linear response coefficients 
∂Eβ

fnk. MRTA: the momentum relaxation time approximation 
to the linearized BTE. SERTA: the self-energy relaxation time 
approximation to the linearized BTE. LOVA: the lowest-order 
variational approximation to the linearized BTE. Kubo: the Kubo 
formula for the exact linear response of the lesser Green’s function 
to a time-dependent electric field. Kubo (IPA): the Kubo formula 
in the independent-particle approximation. Kubo (DC): the Kubo 
formula in the IPA without off-diagonal Bloch state matrix elements 
in the DC transport limit.
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one can consider the lowest-order variational approximation, 
which leads to the Ziman resistivity formula, equation (59). In 
the LOVA, one considers metals, the state- and momentum-
resolved decay rates τ−1

nk  are approximated by their weighted 
average in a small window around the Fermi energy, and the 
scattering function γ(ε, ε′,ω) is simplified by considering 
only electrons at the Fermi level.

A different approach to the transport problem is obtained 
by considering the Kubo formula, equation  (81). While in 
deriving the linearized BTE one first approximates the equa-
tion of motion for G< and then linearizes in the electric field, 
in the derivation of the Kubo formula one directly considers 
the linear response of G< in perturbation theory. This proce-
dure directly yields the AC conductivity. In practice the Kubo 
formula is employed within the independent-particle approx
imation [Kubo (IPA)], equation (82). A further approximation 
consists of neglecting the off-diagonal matrix elements of the 
velocity operator and of the spectral function. In the case of 

time-independent electric fields this leads to the SERTA of the 
Boltzmann formalism [Kubo (DC)], equation (84). Therefore 
there is a clear connection between the BTE and the Kubo 
approach under well-defined approximations. The relation 
between the Kadanoff–Baym approach, the Boltzmann for-
malism and its various approximations, and the Kubo formal-
ism is schematically illustrated in figure 4.

3.  Implementation in modern electronic structure 
codes

While transport properties have been studied with analytical 
approaches for decades, first-principles-based calculations 
have made their appearance much more recently due to the 
numerical complexity involved and the lack of adequate soft-
ware infrastructure. Even though these calculations are not 
very streamlined and still require large high-performance 

Table 1.  Various methods for the calculation of carrier mobility, ranging from non-equilibrium Green’s function DFT-NEGF, Kubo, and the 
Boltzmann transport equation (BTE). BTE calculations in various flavors are possible: self-energy relaxation time approximation (SERTA), 
constant self-energy relaxation time approximation (cSERTA), and BTE with analytical models for the relaxation time. The DFT-NEGF 
usually relies on linear combinations of atomic orbitals (LCAO), molecular orbitals (MO), or atomic orbitals (AO) computed with DFT or 
tight-binding (TB) methods. GPL denotes the GNU general public license, SAL stands for the Smeagol academic license, COM stands for 
commercial license, and PRI denotes a private code not available to the community.

Method Approximation Software License
Size  
(# atoms) Notes

DFT-NEGF Local GF TRANSIESTA [77] GPL 3000 LCAO (DFT or TB)
ATK [78] COM 2000 Localized basis set, supercell
GIPAW [79] GPL 500 AO
SMEAGOL [80] SAL 100 LCAO with DFT, supercell
ADF/BAND [81] COM 100 AO
AITRANSS [82] COM 100 MO with no k-points
DFTB [83] GPL 10 000 TB
OMEN [84] COM 10 000 Dissipative transport (TB)

Kubo Linear response KGEC [85] GPL 100 Kubo–Greenwood with PW
ABINIT [86] GPL 100 Kubo–Greenwood with PW
no name [87] PRI 1000 Kubo–Greenwood with TB

BTE Linear response EPW [88] GPL 50 PW and Wannier interpolation
no name [62] PRI 5 PW and linear interpolation
no name [89] PRI 5 PW and linear interpolation

BTE-SERTA No ‘in’-scattering ATK [90] COM 100 AO in 1D nanowires
ABINIT [91] GPL 10 PW and Fourier interpolation
BOLTZTRAP2 [92] GPL 10 Smoothed Fourier interpolation
PERTURBO [93] PRI 10 Atomic orbital interpolation
no name [94] PRI 5 PW without interpolation

BTE-cSERTA Constant scattering BOLTZTRAP [95] GPL 100 Smoothed Fourier interpolation
BOLTZWANN [96] GPL 100 Wannier interpolation of bands

BTE-models Model scattering Rode iteration [16] PRI 1000 Model EP interaction
variational [20] PRI 1000 Model EP interaction
Monte Carlo [23] PRI 1000 Model EP interaction
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computing (HPC) facilities to be performed, various computer 
codes to perform these calculations have appeared in the past 
fifteen years. A non-exhaustive list is given in table 1.

Existing codes can broadly be grouped into three catego-
ries: (i) non-equilibrium Green’s function (NEGF) methods 
coupled with DFT or tight-binding methods, to describe bal-
listic transport between leads and atomic wires, molecules, 
or surfaces [77, 79, 80, 82, 97–104]; (ii) codes that solve 
the linearized BTE relying on ab initio band structures and 
velocities and employ empirical relaxation times [95, 96]; 
and (iii) implementations in which the linearized BTE is 
solved from first principles, without empirical parameters  
[62, 88, 89, 93, 94, 105].

In the first category, we find software dedicated to ballistic 
transport, where typically a molecule is placed in-between two 
semi-infinite metal leads (e.g. a C60 molecule placed between 
two semi-infinite copper leads), which is modeled ab initio or 
using tight-binding methods. Although in principle one would 
like to solve for the fully interacting non-equilibrium Green’s 
function, this has not been achieved yet; instead one usually 
works in the ballistic regime, wherein the scattering of carri-
ers in the conduction region between the leads is neglected. 
NEGF calculations are based on the same formalism pre-
sented in section 2.1; the calculations rely on DFT to compute 
the electronic structure and the unperturbed Hamiltonian and 
the Schwinger–Keldysh formalism to obtain the non-equi-
librium density matrix (DFT-NEGF). Within this approach, 
various basis sets have been employed to describe the Green’s 
function, ranging from density-functional-based tight-binding 
[102] to numerical atomic orbitals, which feature an efficient 
linear scaling [77, 80, 99, 106]; Gaussian orbitals [82, 100], 
pseudoatomic orbitals (PAOs) [104], real-space-optimized 

orbitals [98, 103], linearized augmented plane waves (LAPW) 
[101], projector-augmented plane waves (PAW) [79], and lin-
ear combinations of atomic orbitals (LCAO) [97]. Some of 
these codes can also be used to model multi-lead junctions. 
Recent codes can easily cope with over 10 000 orbitals for 
DFT-NEGF calculations, and over 1000 000 orbitals for tight-
binding NEGF-type calculations, which makes it possible to 
study nanoscale systems such as flakes of two-dimensional 
materials and molecular junctions. For example, figure  5 
shows the structure of a molecular junction for a calculation 
involving clusters of up to 16 molecules and approximately 
3000 atoms. In the linear-response limit (Kubo formula), it is 
possible to compute the conductivity of metals and a few codes 
have been developed for this purpose [85, 86]. Furthermore, 
codes have been developed to tackle large models of 2D mat
erials, including defects, using the tight-binding, real-space, 
O(N) Kubo–Greenwood method with parameters derived 
from ab initio calculations [87, 108, 109].

In particular the TRANSIESTA [77] code features hybrid 
parallelization using the Message Passing Interface (MPI) 
and OpenMP threading and can handle devices with one or 
multiple electrodes with individual chemical potentials and 
electronic temperatures. Transport calculations can be per-
formed with corrections to the Hamiltonian arising from 
electron–phonon coupling [110], spin–orbit coupling (SOC), 
and electronic correlation. The ATK [78] code can perform 
large-scale calculations with up to 2000 atoms using a single 
special thermal displacement of the atomic positions to obtain 
the Landauer–Büttiker conductance using a method inspired 
by [111]. The SMEAGOL [106, 112] software is MPI paral-
lelized, can deal with spin-polarized systems including non-
collinear spins, and is capable of performing calculations on 
both extended systems and molecules on systems with up to 
100 atoms. The GIPAW [79] code employs NEGFs where the 
electronic structure is described with DFT using the projector 
augmented wave method (PAW) for the ionic cores and an 
atomic orbital (AO) basis set for the valence electrons. The 
code efficiency relies on using contour integration for the 
Green’s function and parallelization over k-points and real 
space. The ADF/BAND [81] code relies on a combination of 
NEGFs with a DFT description of the bulk contacts with the 
ability to break periodicity in one to three dimensions. Once 
placed between the electrodes, there is no control over the 
electronic structure of the molecule and the Green’s functions 
are solved during a self-consistent transport calculation [113]. 
This is in contrast to codes like Gaussian [114], ADF [115], 
FHI-aims [116], or TURBOMOLE [117], in which the leads 
are treated as being finite and described within the quantum 
chemistry calculation. The AITRANSS [82] software acts 
as a post-processing tool to TURBOMOLE [117] and avoids 
a calculation in k-space, operating with a finite-sized clus-
ter in vacuum, can compute the magnetoresistance and spin-
polarized, STM-based transport, and can include the effects 
of electronic correlation on the level of the DFT  +  U method. 
The DFTB [83] and OMEN [84] transport codes rely on a tight-
binding (TB) parametrization and as such have the advantage 
of being able to treat thousands of atoms. Finally the KGEC 

Figure 5.  Structural model employed in first-principles calculations 
of charge transport in 1,2,-bis(2-phenylethynyl)benzene bonded 
to Au electrodes. Different anchoring groups including pyridine, 
thiolate, and isocyanide have been studied. Reproduced from [107]. 
CC BY 3.0.
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[85] and ABINIT [86] software suites allow solving the lin-
ear-response Kubo–Greenwood formula using a plane-wave 
basis.

In the second category, the solution to the linearized BTE 
can be computed with Rode’s iterative approach [16–19], 
variational principles [20–22], or by Monte-Carlo sampling 
[23–25], where the electron–phonon interaction is modeled 
using various semiempirical models (BTE-models in table 1). 
Clearly the use of simplified models to describe the electron–
phonon coupling reduces the range of applicability of the 
methods; typical simplifications include the study of a single 
phonon branch (Debye or Einstein models), of a single para-
bolic band, and the neglect of anisotropy. For materials where 
those approximations hold, earlier methods are very afford-
able and have found widespread application in the 1970s and 
1980s; several models are still successfully being used nowa-
days [118]. To go beyond isotropic materials with multiple 
and non-parabolic electron bands, various methods based on 
the efficient calculation of DFT band structures have been 
developed, including the use of Fourier interpolation of the 
bands as in the BOLTZTRAP [95] code or the use of maxi-
mally localized Wannier functions (MLWF) to interpolate the 
eigenstates and velocities as done in the BOLTZWANN [96, 
119] software. In all cases, the codes rely on constant scat-
tering rates (BTE-cSERTA). The key challenge when solv-
ing the BTE is that the momentum integral over k converges 
extremely slowly due to the sharpness of the Fermi–Dirac 
distribution [96]. For this reason, these codes rely on efficient 
interpolation techniques [95, 96] to evaluate the eigenvalues 
and carrier velocities obtained from first principles on ultra-
dense grids, for example using grids of 200 × 200 × 200 
k-points or denser.

In the third category we find codes where also the electron–
phonon matrix elements and scattering rates are evaluated ab 
initio using DFPT. The main challenge when computing ab 
initio electron–phonon scattering rates is the requirement of 
ultra-dense momentum grids close to the band edges [60]. 
Furthermore, the problem is exacerbated by the fact that 
transport properties require at the same time ultra-dense grids 
for the phonon momenta (q-points) as well as the electron 
momenta (k-points). In the case of bulk three-dimensional 
crystals, this requirement leads to a challenging O(N6) scal-
ing of the computational workload, if N is the number of grid 
points in the Brillouin zone along a reciprocal lattice vector. 
Various approaches have been attempted for tackling this task, 
including the direct evaluation of electron–phonon matrix 
elements using DFPT [94], the linear interpolation of the ab 
initio scattering rates [62, 89], the use of local orbital imple-
mentations as in PERTURBO [93] or ATK [105], the use of 
smoothened Fourier interpolation, which is the approach cho-
sen by the BOLTZTRAP2 [92] code, Fourier interpolation of 
the perturbed potential as done in ABINIT [91], and the use 
of MLWFs as in EPW [88, 120].

The interpolation method based on MLWFs is the most fre-
quently used and is computationally affordable. In this method 
the electron–phonon matrix elements on dense momentum 
grids can be obtained from [120]:

gmnν(k, q) =
∑
pp′κ

√
�

2Mκωqν
ei(k·Rp+q·Rp′ )

×
∑

m′n′α

eκαν(q)Umm′k+qgm′n′κα(Rp, Rp′)U
†
n′nk,

�
(89)

where Unmk is a unitary transformation matrix that converts 
the periodic part of the electronic wave function into real-
space Wannier functions that are maximally localized [121]. 
The gmnκα(Rp, Rp′) are the real-space Wannier electron–pho-
non matrix elements, which decay rapidly in real space as a 
function of |Rp| and |Rp′ |. This property enables the efficient 
interpolation of the matrix elements to arbitrary points of the 
Brillouin zone using equation (89).

In the case of polar materials, the interaction of electrons 
with longitudinal optical modes is long-ranged. As a con-
sequence, the electron–phonon matrix elements gmnν(k, q) 
diverge as 1/|q| for |q| → 0 [9, 122]. The correct treatment 
of this divergence when performing Wannier interpolation has 
recently been proposed [123, 124] and consists of splitting the 
electron–phonon matrix elements into a short- (S) and a long-
range (L) contribution [123]

gmnν(k, q) = gS
mnν(k, q) + gL

mnν(k, q),� (90)

where

gLmnν(k, q) = i
∑
κ

√
�

2Mκωqν

∑
G�=−q

× (q + G)Z∗
κeκ,ν(q)

(q + G)ε∞(q + G)

〈
mk + q

∣∣ei(q+G)·r∣∣nk
〉
.

�

(91)

Here, Z∗
κ is the Born effective charge tensor, eκ,ν(q) is the 

vibrational eigendisplacement vector, and ε∞ is the macro-
scopic high-frequency dielectric constant tensor, evaluated at 
clamped ions. The overlap matrices in equation  (91) can be 
computed in the approximation of small q + G [123] as

〈
mk + q

∣∣ei(q+G)·r∣∣nk
〉
=

[
Uk+q+GU†

k
]

mn,� (92)

where the periodic gauge |nk〉  =  |nk + G〉 is implied. The 
Wannier rotation matrices Unmk can be obtained at arbitrary 
k-points and q-points through the interpolation of the elec-
tronic Hamiltonian [119]. One can therefore accurately inter-
polate electron–phonon matrix elements using the following 
four-step procedure: (i) the matrix elements gmnν(k, q) are 
computed on a coarse grid using DFPT; (ii) the long-range 
part gL

mnν(k, q) is subtracted to obtain the short-range comp
onent gS

mnν(k, q); (iii) the standard Wannier electron–phonon 
interpolation of [120] is applied to the short-range component 
only; and (iv) the long-range component is added back to the 
interpolated short-range part for each arbitrary k-point and 
q-point.

In addition, we also would like to comment on the scal-
ability of modern ab initio codes. In figure 6, we present some 
examples of the typical scaling behavior of ab initio soft-
ware. Good performance can be expected up to ≈1000 cores, 
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which paves the way for an efficient usage of next-generation, 
exascale high performance computers.

Most codes today rely on the self-energy relaxation time 
approximation (table 1, BTE-SERTA) due to the simplicity 
of its implementation. Indeed, within this approximation, the 
scattering rate is directly related to the imaginary part of the 
retarded electron–phonon (Fan–Migdal) self-energy and can 
therefore be computed easily. However, this approximation 
is not reliable in materials with strong band structure aniso
tropy and in polar materials [125, 126]. In order to go beyond 
SERTA, it is possible to solve the BTE iteratively, with a small 
computational overhead. For example, in simple semiconduc-
tors it takes approximately 20 iterations to reach convergence 
[127].

The calculation of the electron mobility in GaAs is rep-
resentative of the computational requirements in terms of 
Brillouin zone sampling and of the importance of iterative 
solutions. In this case, converged calculations required grids 
as dense as 400 × 400 × 400 k-points and the iterative BTE 
solution yielded mobility values approximately 50% higher 
than in the SERTA [126]. Moreover, significantly denser 
grids are needed to obtain converged mobility results at 
lower temperatures and this may explain why many authors 
present calculation results at relatively high temperatures. 
Low temperatures pose a challenge because the product of 
Fermi–Dirac occupations and the electronic density of states 
is peaked close to the band edges and the width of the peaks 
decreases with decreasing temperature. Adaptive broadening 
strategies such as proposed by Li [62] can be used to address 
this challenge by using a smaller Gaussian broadening at 
lower temperatures and closer to the band edges. We also 
note that at very low temperature, the mobility is no longer 
limited by phonon-induced scattering and other mechanisms 
need to be taken into account [57]. Finally, the importance of 
including spin–orbit coupling (SOC) was recently highlighted 
even for materials like silicon, where the spin–orbit splitting 
is small [60, 126].

At present, for simple tetrahedral semiconductors, ab ini-
tio mobility calculations typically agree with experiments to 
within 20%, but the agreement worsens for narrow-gap semi-
conductors as a result of the poor description of the effective 
masses in DFT. Transport calculations based on accurate band 
structures obtained from many-body GW perturbation theory 
have recently been demonstrated [60], but in order to go for-
ward, it will be important to also include many-body correc-
tions to the electron–phonon matrix elements [128–132].

4.  Recent ab initio calculations of carrier mobilities

4.1.  Bulk materials

In this section, we review some of the key efforts toward 
developing predictive methods for calculating carrier trans-
port properties of bulk materials. We discuss two nonpolar 
semiconductors, namely silicon and diamond, and four polar 
semiconductors, namely GaAs, GaN, Ga2O3, and halide 
perovskites. These compounds find application in semi-
conductor research and technology, including electronics, 
optoelectronics, lighting, and energy research. Ball-stick rep-
resentations of these compounds are shown in figure 7(a)–(f).

4.1.1.  Silicon.  Under ambient conditions, silicon crystallizes 
in the diamond structure. Bulk silicon has an indirect bandgap 
of 1.12 eV, with a valence band top composed of a degener-
ate heavy and light hole band and a band splitting of 8 meV 
due to spin–orbit interaction. The conduction band minima 
are located 0.85 2π/a away from the Brillouin zone center, 
along the Γ-X directions leading to six elongated electron 
pockets [56]. The electronic band structure of silicon is shown 
in figure 8(a).

In the 1950s, Smith measured the piezoresistance of 
n-doped silicon, i.e. the dependence of resistivity on strain, 
and relied on early band structure calculations to understand 
the deformation of the six conduction band valleys under 

Figure 6.  (a)–(c) Performance of TRANSIESTA using a pristine graphene cell (24 atoms wide) using (a) equilibrium Green’s function 
(EGF) and (b) non-equilibrium Green’s function (NEGF) calculations. The block-tri-diagonal (BTD) inversion method outperforms the 
linear algebra package (LAPACK) and multifrontal massively parallel sparse direct solver (MUMPS) implementations. (c) Threading 
performance running on a single node on various hardware configurations for a system with 830 orbitals. (d) Strong scaling of the 
interpolation part of EPW for CsPbI3 on Intel Xeon Platinum 8160 CPU@2.10 GHz. The parallelization is done over k-points using the 
MPI. The absolute time for the calculation was 29 700 s on 240 cores and 1311 s on 15 360 cores. Adapted from [77], Copyright (2017), 
with permission from Elsevier.
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strain [133]. In the 1960s, empirical models were developed 
to rationalize experimental observations whereby the car-
rier velocity increases with field strength and the mobility 
decreases with doping [134]. The prevalent semi-empirical 
model to account for impurity scattering and the reduction 
of the mobility with carrier concentration is due to Brooks 
and Herring [28, 32]. This model relies on a static, single-
site description of carrier-impurity interaction and on the Born 
approximation [135]. According to this model the hole mobil-
ity is given by:

µ =
27/2ε2

s (kBT)3/2

100π3/2e3
√

m∗
d niG(b)

.� (93)

Here, G(b) = ln(b + 1)− b/(b + 1), b = 24πm∗
dεs(kBT)2/ 

(106e2h2n′), n′ = nh(2 − nh/ni), m∗
d = 0.55m0 is the density-

of-state effective mass for holes [136], nh and ni are the hole 
densities and the density of ionized impurities, respectively, and 
εs = 11.9ε0 is the static dielectric constant of silicon. The exten-
sion of this model to describe the anisotropic electron effective 
masses of silicon was developed by Long and Norton [31, 32, 137].

Figure 7.  Ball-stick representations of the semiconductors reviewed in this work: (a) silicon, (b) diamond, (c) GaAs, (d) wurtzite GaN,  
(e) β-Ga2O3, (f) CH3NH3PbI3, (g) graphene, (h) silicene, (i) phosphorene, (j) MoS2, and (k) InSe.

Figure 8.  Electronic band structure of (a) silicon, (b) diamond, (c) GaAs, (d) wurtzite GaN, (e) β-Ga2O3, and (f) the low-temperature 
orthorhombic phase of CH3NH3PbI3. The calculated band structures are obtained from DFT and include spin–orbit coupling. The energy 
axis are aligned with the band edges, and the experimental bandgaps are indicated in the shaded areas.
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Subsequently, refined analytical models that include the 
screening of the Coulomb potential of impurities by charge 
carriers, electron–hole scattering, and clustering of impuri-
ties were developed for device simulations [138]. After it was 
reported that strained silicon on a (1 0 0) Si1−xGex substrate 
could significantly increase the carrier mobility [139, 140], 
Nayak and Chun employed k · p perturbation theory to cal-
culate the low-field hole mobility of strained (1 0 0) Si1−xGex 
and they obtained a 2.4-6-fold increase for x  =  0.1–0.2. These 
findings were later confirmed by Fischetti et al [141]. These 
authors attributed the mobility improvement to the increased 
energy splitting between the occupied light-hole band and 
the empty heavy-hole band, which results in a much smaller 
effective mass [142]. In 1995 Schenk calculated the mobility 
of silicon under both low and high electric fields [143]. In his 
work the BTE was solved by relying on Kohler’s variational 
method [144], which was also subsequently implemented in 
the device simulator DESSISISE [145]. Recently, Lu et al [146] 
computed the defect-limited carrier mobility of silicon ab ini-
tio using a combination of primitive and supercell approaches.

First-principles calculations of the mobility started appear-
ing in the late 2000s. In 2007 Dziekan et al [147] studied the 
mobility enhancement of strained silicon by combining first-
principles band structures, the ab initio deformation poten-
tial method [148], and the BTE-SERTA. The following year, 
Murphy-Armando and Fahy performed similar calculations 
for a SiGe alloy [149], while Yu et al showed that the SERTA 
is a good approximation for the electron mobility but not for 
the hole mobility under strain, due to the large strain-induced 
suppression of scattering [150].

A complete first-principles calculation of the electron mobil-
ity of silicon was reported by Restrepo et al in 2009 [94]. They 
relied on DFPT to compute the electron–phonon matrix elements 
and solved the BTE within the SERTA. They reported a pho-
non-limited room-temperature mobility of 1970 cm2 V−1 s−1.  
In 2013, Rhyner and Luisier [151] compared on an equal foot-
ing the low-field mobility of bulk silicon using the BTE and 
the NEGF method within a full-band, nearest-neighbor tight-
binding model [84]. Using the BTE, they obtained an electron 
and a hole mobility at room temperature of 1080 cm2 V−1 s−1 
and 400 cm2 V−1 s−1, respectively. These values underestimate 
the measured mobilities of 1350-1450 cm2 V−1 s−1 [32, 152–
154] and 445-510 cm2 V−1 s−1 [152–155], respectively. On the 
other hand, the NEGF calculations of Rhyner and Luisier [151] 
yielded room-temperature mobilities of 1550 cm2 V−1 s−1 and 
640 cm2 V−1 s−1 for electrons and holes, respectively, which 
overestimate the experimental data. In their work, the discrep-
ancy between BTE and experiment was attributed to the limita-
tions of Fermi’s golden rule in the calculation of the scattering 
rates. However, as we discuss below, it is more likely that 
the tight-binding parameterization and the relatively coarse 
momentum grid (403 points) employed in this work might be 
at the origin of the discrepancy.

In 2015 Li [62] reported a complete ab initio calculation of 
the BTE electron mobility of silicon, including an extensive 
convergence study of the scattering rates. He relied on a linear 
interpolation of the DFPT electron–phonon matrix elements 

from a 16 × 16 × 16 k-/q-point grid to 96 × 96 × 96-point fine 
grids. Li [62] obtained a room-temperature electron mobility 
of 1860 cm2 V−1 s−1 and found that the iterative Boltzmann 
solution yields similar results as the SERTA. This finding was 
rationalized by noting that, in silicon, forward and backward 
carrier scattering balance each other, so that the collision int
egral in the BTE due to incoming electrons [first term in the 
square bracket of equation (40)] is strongly suppressed; this is 
precisely the term which is neglected in the SERTA. Shortly 
after, Fiorentini and Bonini [127] also reported calculations 
on silicon; in this case the authors interpolated the electron–
phonon matrix element using MLWFs [120], which allowed 
them to use ultra-dense 110 × 110 × 110-point fine grids. 
Fiorentini and Bonini [127] also developed an efficient con-
jugate gradient algorithm to solve the BTE, and obtained an 
electron mobility of 1750 cm2 V−1 s−1.

In 2018 Ma et al [126] and Poncé et al [60] studied the elec-
tron and hole mobility of silicon using MLWFs. Both teams 
found that it is important to include SOC in the calculation 
of the hole mobility, since the split-off hole is removed from 
the valence band top and the available scattering channels 
are reduced; on the other hand it was found that the electron 
mobility is largely unaffected by SOC effects. Furthermore, 
Poncé et  al [60] showed that numerical convergence of the 
Brillouin-zone integrals could be achieved using as little as 
105 grid points when using quasi-random Sobol grids [156]. 
In this work the authors also quantified the effect on the calcu-
lated mobility of many-body quasiparticle corrections (5%), 
many-body corrections to the DFPT electron–phonon matrix 
elements (14%), and phonon interaction-induced renormali-
zation of the band gap (5%) [60]. The most accurate mobility 
values reported in this work at room temperature are 1366 cm2 
V−1 s−1 and 658 cm2 V−1 s−1 for electrons and holes, respec-
tively, and the temperature dependence of the mobility was 
found to be in good agreement with experiments, see figure 9. 
Finally, these ab initio calculations [60, 157] revealed that 
acoustic-phonon scattering in silicon is much more important 
than previously thought [158].

Figure 9.  Comparison between calculated and measured intrinsic 
electron and hole mobilities of silicon as a function of temperature. 
The intrinsic material was modeled using carrier concentrations 
below 1015 cm−3. The blue line is for holes and the orange line is 
for electrons. Experiments are from [159] (�), [160] (♦), [152] ( ), 
[154] (°), and [31] (�). Adapted figure with permission from [60], 
Copyright (2018) by the American Physical Society. 
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4.1.2.  Diamond.  Diamond is a superhard material with a 
wide indirect bandgap of 5.55 eV (figure 8(b)), high thermal 
conductivity, high breakdown field, and high carrier mobility 
[161, 162]. Despite the importance of diamond, there are still 
significant uncertainties about its carrier mobility and depend
ence on doping, temperature, and magnetic field. For example, 
measured room-temperature hole mobilities range from 2000 
to 3800 cm2 V−1 s−1, and electron mobilities range from 1800 
to 4500 cm2 V−1 s−1 [163–168]; the highest reported electron 
mobilities [164] have not been confirmed [167].

There are only a few theoretical investigations of the car-
rier mobility in diamond. In 2010, Pernot et al [169] studied 
p -doped diamond by considering four scattering mechanisms 
in a semi-empirical model: neutral and ionized-impurity scat-
tering, and acoustic and nonpolar optical phonon scattering. 
They computed the intrinsic hole mobility and found a value 
of 1830 cm2 V−1 s−1, significantly larger than that of any 
group-IV semiconductor. One of the reasons why diamond 
should outperform other semiconductors at room temperature 
and above is the high energy of its optical phonons, 165 meV. 
Indeed, in the case of silicon, the mobility is partially limited 
by optical-phonon scattering at room temperature, whereas 
this mechanism becomes important only at significantly 
higher temperatures in the case of diamond.

In 2012, Restrepo and Windl [170] studied for the first time 
the electronic spin relaxation rate of diamond from first prin-
ciples [171, 172]. Their study is discussed in more detail in 
section  5.1 on spintronics, but it should be mentioned here 
that they obtained a very low electron mobility of 130 cm2 
V−1 s−1 at room temperature. This work marks the first ab 
initio calculation of the intrinsic mobility of diamond. Shortly 
after, Löfås et al [173] studied hole transport in diamond using 

the BTE-cSERTA and included SOC using the BolzTrap 
code [95]. They found that acoustic-phonon scattering is the 
dominant scattering mechanism at room temperature. More 
recently, Macheda and Bonini [69] solved the ab initio BTE 
including the effect of a finite magnetic field using equa-
tion  (62), and determined the drift mobility, Hall mobility, 
and Hall factor. As shown in figure 10, they obtained a room-
temperature hole mobility of 2500 cm2 V−1 s−1 and a Hall 
factor rH = 0.81, using a dense 100 × 100 × 100 k-/q-point 
mesh interpolated using EPW [88]. This calculation does not 
include SOC. Therefore slightly lower hole mobilities are 
expected upon inclusion of SOC.

4.1.3.  Gallium arsenide.  In the 1960s Ehrenreich [21] was 
among the first authors to theoretically investigate the trans-
port properties of GaAs. He found that a combination of 
ionized-impurity and polar optical-phonon scattering gives 
qualitative agreement between theory and experiment for 
high-purity GaAs. Later Wolfe et al [177] refined the model 
by adding the effect of piezoacoustic scattering, acoustic-
deformation potential scattering, and neutral-impurity scatter-
ing. He obtained a mobility of 240 000 cm2 V−1 s−1 at 77 K, in 
good agreement with experiments.

In the case of GaAs, the usual approximation that the drift 
mobility and the Hall mobility are similar does not hold. 
There is still considerable uncertainty in measurements of the 
Hall factor rH , which has been found to range between 0.8 
and 4 [178–182]. Neumann and Van Nam [183] theoretically 
investigated the drift and Hall mobilities in GaAs and found 
that the Hall factor should be in the range rH = 1.1–2.5. They 
also observed that the Brooks–Herring formula [184] is inad-
equate for describing ionized-impurity scattering in p -doped 
GaAs. They postulated that this shortcoming may be due to 
the existence of two degenerate bands, so that interband scat-
tering should also be taken into account.

In 1994, Scholz [185] studied the hole mobility of GaAs 
by approximating the Fermi–Dirac distribution with the 
Maxwell–Boltzmann distribution and obtained a room-
temperature mobility of 400 cm2 V−1 s−1. In contrast to ear-
lier studies [179], he unambiguously determined that polar 
LO-phonon scattering was the dominant mechanism for low-
field mobility. More recently Arabshahi [186] studied the 
electron Hall mobility, using the BTE and considering various 
models to describe each scattering mechanism. He obtained a 
mobility of 8300 cm2 V−1 s−1 at room temperature and con-
cluded that the mobility was limited by longitudinal optical-
phonon scattering at high temperature, while neutral-impurity 
scattering dominates at low temperature.

In 2016, Zhou and Bernardi [187] studied for the first time 
the mobility of GaAs within the SERTA. They relied on the 
recently proposed method to analytically obtain the long-
range electron–phonon matrix elements of the LO modes 
[123, 124] using equation (90). They computed the short- and 
long-range part of the matrix elements separately, in order 
to achieve a much denser sampling of the analytic part, for 
example, using Brillouin-zone grids of 600 × 600 × 600 
points. Using this procedure they succeeded in obtaining the 

Figure 10.  Temperature dependence of the hole drift mobility 
of p -doped diamond with a hole density of 1015cm−3 (red solid 
line). Experiments are from [163] (�), [174] (�) and [165] (�). 
Inset: The corresponding Hall factor as a function of temperature; 
experimental data are from [175] (�) and [176] (�). Adapted figure 
with permission from [69], Copyright (2018) by the American 
Physical Society. 
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electron mobility of GaAs between 200 K and 500 K from 
first principles. They obtained a room-temperature mobility of  
8900 cm2 V−1 s−1, in good agreement with the experimental 
value of 7200-9000 cm2 V−1 s−1 [16, 178, 182, 188–194]. 
Based on the good agreement with experiment, they con-
cluded that the SERTA should be a reasonable approximation 
in the case of GaAs. However, one year later, Liu et al [125] 
used a similar approach in combination with GW band struc-
tures [195], 6003 k-points and 1003 q-points, and the itera-
tive BTE. They obtained a mobility of 7050 cm2 V−1 s−1  
in the SERTA and a mobility of 8340 cm2 V−1 s−1 using the 
iterative BTE. Therefore the SERTA underestimates the more 
accurate BTE result by approximately 20%. Liu et al [125] 
also computed the mobility using earlier semi-empirical mod-
els and obtained a value of 4930 cm2 V−1 s−1. The underesti-
mation of the mobility in the semi-empirical calculation was 
attributed to (i) the lack of non-parabolicity of the conduc-
tion band and (ii) the lack of intervalley scattering. These 
authors also emphasized the importance of piezoacoustic and 
acoustic-deformation potential scattering, which account for 
a 15% reduction of the mobility at 300 K. They also showed 
that intervalley scattering plays an important role. These find-
ings explain why a model based solely on deformation poten-
tial scattering or Fröhlich scattering is not accurate enough 
for GaAs, as both mechanisms are almost equally important. 
Altogether, these recent investigations [125, 187] highlight 
the necessity of using parameter-free ab initio calculations for 
achieving an accurate description of carrier transport in GaAs.

Recently, Ma et al [126] clarified the differences between 
the calculated electron mobilities of [187] and [125] and com-
puted the hole mobility including SOC using the EPW code 
[88], see figure  11. By using the same lattice constant and 
pseudopotentials, they reproduced the SERTA result of Zhou 
and Bernardi [187]. When using the same pseudopotentials 
and GW band structure as in Liu et al [125], they obtained a 
smaller SERTA result but a similar BTE mobility. By analyzing 

the scattering rates, Ma et al [126] concluded that the mobility 
is very sensitive to the effective mass and the Γ-L energy gap 
and suggested that the discrepancy between the two previous 
studies is to be ascribed to the different band structures, as 
opposed to the electron–phonon matrix elements. They con-
firmed the findings of Liu et al [125] that the iterative solu-
tion of the BTE yields larger mobilities than SERTA, but they 
found that the difference is even larger than previously thought 
(40% versus 18%), as is shown in figure 11. Moreover, Ma 
et  al [126] obtained a hole mobility of 459 cm2 V−1 s−1 at 
room temperature within the BTE, which is about 30% larger 
than the SERTA result. Their results are in good agreement 
with experimental values, ranging from 188 cm2 V−1 s−1 to 
460 cm2 V−1 s−1 [182, 192, 194, 196–198]. As in the case of 
silicon, the hole mobility was found to be strongly affected 
by SOC: neglecting SOC underestimates the calculated (BTE) 
hole mobility of GaAs by as much as 50%. Recently, Lee et al 
[199] found that the two phonons contribution to the mobility 
of GaAs was significant, calling for further study.

4.1.4.  Gallium nitride.  The first calculation of the carrier 
mobility of GaN was performed by Ilegems and Montgomery 
in 1973 [201], taking into account the nonparabolicity of the 
conduction band as well as deformation potential scattering, 
piezoacoustic scattering, and polar optical-phonon scattering.

More recently, Mnatsakanov et al [202] developed a simple 
analytical model based on experimental results to accurately 
describe low-field carrier mobilities in a wide temperature and 
doping range:

µ(N, T) = µmax(T0)
B(N)

[
T/T0

]β

1 + B(N)
[
T/T0

]β+α
,� (94)

where

B(N) =
µmin + µmax

[
Ng/N

]γ
µmax − µmin ,� (95)

with T0  =  300 K, Ng = 2(3) × 1017 cm−3, γ   =  1(2), α  =  2(5) 
for electrons (holes), and β  =  0.7 for electrons (not given for 
holes due to a lack of experimental data). The model of equa-
tion (94) works well below room temperature and at low fields. 
Farahmand et al [203] subsequently developed a model based 
on Monte Carlo results that also includes high-field mobility, 
but could not reproduce experimental data accurately.

In 2005, Schwierz [204] proposed an improved model 
which included recently published mobility data. This model 
was shown to describe the temperature dependence of both the 
low- and high-field mobility above room temperature more 
accurately. Shortly after, Arabshahi [186] obtained an electron 
mobility in GaN of 1300 cm2 V−1 s−1 at room temperature by 
solving the BTE iteratively, using models to describe ionized-
impurity as well as acoustic-, piezoelectric-, and polar optical-
phonon scattering.

Recently, Jhalani et al [205] computed the electron–phonon 
scattering rates of GaN from first principles using EPW [88]. 
They also computed the time-resolved hot carrier relaxation 
[206] by solving the time-dependent BTE. They found a large 

Figure 11.  Calculated intrinsic electron and hole mobilities of 
GaAs at room temperature, plotted as a function of the number of 
iterations performed in the solution of the BTE. The first iteration 
corresponds to the SERTA result, the asymptotic value is the BTE 
mobility. Adapted figure with permission from [126], Copyright 
(2018) by the American Physical Society.
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asymmetry between the hot electron and hot hole dynamics, 
with the holes relaxing to the band edge in  ∼80 fs, while the 
electron cooling required longer times of  ∼200 fs.

The first ab initio calculation of the mobility of wurtzite 
GaN was reported by Poncé et  al in 2019 [200, 207]. This 
calculation included SOC and GW quasiparticle corrections 
obtained from the Yambo code [208]. The DFPT matrix ele-
ments were computed with Quantum ESPRESSO [209] and 
interpolated using EPW [88] on dense grids of 100 × 100 × 100 
k- and q-points. Using the BTE, they calculated room-temper
ature electron and hole drift mobilities of 905 cm2 V−1 s−1  
and 44 cm2 V−1 s−1, respectively. They also found that 
the SERTA strongly underestimates these values, yielding  
457 cm2 V−1 s−1 and 18 cm2 V−1 s−1 for electrons and holes, 
respectively. To compare with Hall mobility experiments, 
Poncé et al [200, 207] computed the Hall factor using the iso-
tropic approximation of equation  (69) and determined Hall 
mobilities of 1030 cm2 V−1 s−1 and 50 cm2 V−1 s−1 for electrons 
and holes, respectively. These values are in reasonable agree-
ment with recent measurements yielding 1265 cm2 V−1 s−1  
[210] and 31 cm2 V−1 s−1 [211], respectively. The origin of 
the low hole mobility in GaN (as compared to the electron 
mobility) was ascribed to a combination of heavy carrier 
effective masses and a high density of final electronic states 
available for hole scattering via low-energy acoustic phonons. 
In fact, it was found that acoustic-phonon scattering accounts 
for approximately 80% of the total scattering rates for both 
electrons and holes, while the remaining contribution stems 
from long-wavelength polar longitudinal-optical phonons. 
Poncé et al [200] also predicted that the hole mobility of GaN 
could be increased by reversing the sign of the crystal field 
splitting [212, 213], so as to lift the split-off hole states above 
the light and heavy holes, as shown in figures 12(a)–(d). This 

reversal of crystal-field splitting might be achieved by apply-
ing a biaxial tensile strain or a uniaxial compressive strain, as 
shown in figures 12(e)–(f).

4.1.5.  Gallium oxide.  The monoclinic β-phase of gallium 
oxide (β-Ga2O3) has been identified as a promising alterna-
tive to GaN and SiC for power electronics, due to its wide 
bandgap and high breakdown field [214]. However, since 
β-Ga2O3 has a 10-atom primitive cell and a 20-atom conven-
tional cell, calculations of transport properties in this material 
are more challenging than for tetrahedral semiconductors. 
Two important questions related to the electron mobility of 
β-Ga2O3 have been resolved only recently. The first one is 
linked to the shape of the conduction band: Ueda et al [215] 
measured a strong anisotropy of the conduction-band effec-
tive mass. However, since then many experiments and theor
etical studies have shown that the conduction band is nearly 
isotropic [216–221]. The second question concerns the rela-
tive importance of nonpolar optical-phonon, polar optical-
phonon, and ionized-impurity scattering at room temperature. 
In 2016, Parisini and Fornari [222] performed a detailed 
theoretical analysis of the drift and Hall mobilities. Based on 
empirical fitting of experimental data, they concluded that the 
dominant scattering mechanism in β-Ga2O3 is due to nonpolar  
optical phonons and reported a large deformation potential of 
4 × 109 eV cm−1.

Later in 2016, Ghosh and Singisetti [223] performed the 
first ab initio calculation of the electron–phonon coupling 
and transport properties of β-Ga2O3. In their procedure the 
authors obtained the electron–phonon matrix elements on a 
dense 40 × 40 × 40-point Brillouin zone grid via Wannier 
interpolation [88] and then employed Rode’s method [18] to 
iteratively solve the BTE including impurity scattering in the 

Figure 12.  Crystal field engineering of the band structure and mobility of GaN. (a), (b) Change in the GW quasiparticle band structure 
of GaN upon biaxial dilation and compression, respectively. The energy levels are aligned to the conduction and valence band edges. (c) 
Electron wavefunction at the valence band maximum at Γ for the undistorted wurtzite GaN structure as well as for 2% biaxial dilation and 
2% biaxial compression, respectively. (d) Crystal field splitting ∆cf  versus strain and (e) corresponding hole Hall mobility at 300 K. (f) 
Predicted temperature-dependent hole mobility in wurtzite GaN as a function of biaxial strain. Adapted figure with permission from [200], 
Copyright (2019) by the American Physical Society.
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relaxation time approximation. They obtained a room-temper
ature mobility of 115 cm2 V−1 s−1 at a carrier concentration of 
1017 cm−3 and a temperature dependence in good agreement 
with experiment (see figure 13). Unlike in [222], Ghosh and 
Singisetti [223] identified a longitudinal-optical phonon mode 
with energy around 21 meV as the dominant mechanism in 
the mobility of β-Ga2O3. Shortly after Ma et al [224], Kang 
et al [225], and Mengle and Kioupakis [226] confirmed this 
finding.

Ma et al [224] used k · p perturbation theory to estimate 
an upper bound of 200 cm2 V−1 s−1 for the room-temper
ature electron mobility of β-Ga2O3 at carrier densities below  
1018 cm−3. They also showed that, despite having an effec-
tive mass similar to GaN, the electron mobility of β-Ga2O3 is 
almost an order of magnitude smaller due to strong Fröhlich 
interactions. Kang et al [225] used a Vogl model in conjunc-
tion with Fermi’s golden rule to obtain an electron mobility of 
155 cm2 V−1 s−1 at room temperature at a carrier concentra-
tion of 1017 cm−3. Interestingly, they extracted the deformation 
potential for nonpolar optical phonons from their first-princi-
ples calculations, and obtained a value of 3 × 108 eV cm−1,  
one order of magnitude smaller than Parisini and Fornari 
[222]. Mengle and Kioupakis [226] assigned the mobility 
bottleneck to a polar optical mode around 29 meV, in agree-
ment with the result obtained by Ghosh and Singisetti [223]. 
These calculations agree well with the highest measured 
room-temperature mobility in bulk β-Ga2O3, 180 cm2 V−1 s−1 
[227]. First-principles calculations of hole mobilities are yet 
to be reported.

4.1.6.  Methylammonium lead triiodide perovskites.  Organic-
inorganic lead halide perovskites [235, 236] attracted consid-
erable attention as promising new materials for photovoltaics 
and lighting technology [237, 238]. The prototypical com-
pound of this family, methylammonium lead triiodide 
CH3NH3PbI3 or MAPbI3 (MA  =  CH3NH3), exhibits three 

stable phases: orthorhombic Pnma (T  <  165  K), tetragonal 
I4/mcm (165 K  <  T  <  327 K), and cubic Pm3̄m (T  >  327 K). 
The electronic band structure of the low-temperature ortho-
rhombic phase is shown in figure 8(f).

The first theoretical study of the conductivity and carrier 
mobility of hybride perovskites was done by Motta et al [239]. 
These authors employed the BoltzTrap code [95] and found a 
room-temperature hole mobility of MAPbBr3 ranging from 5 
to 12 cm2 V−1 s−1 and an electron mobility ranging from 2.5 to 
10 cm2 V−1 s−1 for temperatures spanning the three structural 
phases. In these calculations, SOC was not taken into account 
and the carrier relaxation time was taken to be a constant value 
of 1 ps from experiments [240]. Motta et al [239] considered 
two possible orientations of the MA cations in the tetragonal 
phase and found that the Pb states in the conduction band were 
strongly affected, yielding a strong dependence of the electron 
mobility on the orientation of the cations.

Shorty thereafter, Zhao et al [241] as well as Lee et al [242] 
investigated intrinsic and extrinsic charge transport in MAPbI3. 
In the intrinsic case, they only considered the coupling to 
acoustic phonons and obtained a very large deformation poten-
tial (5 eV), comparable to that of graphene. As a result, they 
obtained an intrinsic mobility of a few thousand cm2 V−1 s−1.  
By introducing extrinsic effects through charge impurity 
scattering using the Brooks–Herring formula, they obtained 
electron and hole mobilities of 101 and 72 cm2 V−1 s−1,  
respectively.

At the same time, Filippetti et al [243] showed that polar 
optical phonons represent the dominant mobility-limit-
ing scattering mechanism at room temperature. Using the 
Boltztrap code [95] and the Fröhlich model to evaluate the 
polar scattering rates, they obtained carrier mobilities of 60 
and 40 cm2 V−1 s−1 for electrons and holes in MAPbI3, respec-
tively. Shortly after, these findinges were confirmed by Frost 
[118], who obtained electron and hole mobilities of 133 and 
94 cm2 V−1 s−1, respectively, using the more refined Hellwarth 
model [244].

In 2018, Schlipf et  al [245] studied the scattering rates 
and electron lifetimes in the low-temperature orthorhombic 
phase of MAPbI3 from first principles. They found that the 
electron–phonon coupling was dominated by three groups 
of longitudinal-optical modes, clustering at energies around 
4.3 meV, 14.4 meV, and 21 meV, as shown in figure 14(a). 
These three groups of modes correspond to the Pb–I–Pb bend-
ing, Pb–I stretching, and libration-translation of the CH3NH3 
cation, respectively. These findings are supported by photo-
luminescence measurements by Fu et al [246], who observed 
three phonon replicas in the low-temperature photolumines-
cence spectra of the closely-related compound CH(NH2)2PbI3 
nanocrystals, red-shifted by 3–4 meV, 10–12 meV, and  
14–16 meV with respect to the zero-phonon peak.

More recently, Poncé et al [234] reported the first ab ini-
tio study of the intrinsic mobility of MAPbI3. They com-
puted a phonon-limited average electron and hole mobility of  
80 cm2 V−1 s−1 at room temperature. These authors also 
obtained a temperature dependence in good agreement 
with the experimental values determined from pump-probe 

Figure 13.  Calculated electron mobility (triangles) of β-Ga2O3 
compared to the experimental data from [222] (disks). The error 
bars are determined by assuming 10% accuracy in the dielectric 
constant and short-range matrix elements. Adapted from [223], with 
the permission of AIP Publishing. 
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spectroscopy [247], as shown in figure  14(b). The same 
figure  also shows that the temperature-dependence of the 
mobility is relatively complex, with power laws changing 
from T−2.26 at low temperature to T−0.92 above room temper
ature; these changes reflect the relative contributions of the 
three important groups of phonons at different temperatures. 

Further work will be required to include anharmonic effects 
in the study of carrier mobilities in hybrid perovskites [248].

Finally, we note that the mobility of other bulk semiconduc-
tors including SrTiO3 [249, 250], naphthalene [251], 3C-SiC 
[252], and SnSe [253] were computed from first principles.

4.2. Two-dimensional materials

Two-dimensional (2D) materials [254, 255] were discovered 
to possess a wide range of unique properties not found in their 
bulk counterparts, for example the existence of Dirac fermions 
in graphene [256] and a strong spin-valley coupling in mono
layer molybdenum disulfide (MoS2) [257]. Owning to their 
extraordinary mechanical strength and flexibility [258, 259],  
2D materials attracted considerable attention for potential 
applications in the next generation of flexible and energy-
efficient electronic and optoelectronic devices [260, 261]. 
However, in order to be competitive with silicon for con-
ventional applications, the carrier mobility of 2D materials 
needs to be sufficiently high and should be comparable at 
least to that of commercially available silicon-based devices, 
∼500 cm2 V−1 s−1 [262]. So far, the main candidate materials 
proposed for 2D electronic or optoelectronic applications 
include graphene, silicene, phosphorene, MoS2, and InSe. In 
this section, we present an overview of the key ab initio stud-
ies that have contributed to improving our understanding of 
the intrinsic carrier mobility and charge transport properties 
of these 2D materials.

4.2.1.  Graphene.  Graphene is a single layer of sp2-bonded 
carbon atoms arranged in a honeycomb lattice, as shown in 
figure 7(g). The p z valence and conduction bands touch each 
other at the six corners (K and K′) of the hexagonal first Bril-
louin zone, with a linear energy-momentum dispersion around 
the Fermi level [256]. Graphene is therefore a semimetal with 
zero bandgap.

The transport properties of graphene have been studied 
extensively [263]. However, early theoretical studies of the 
intrinsic carrier transport of graphene were mainly based 
on simplified assumptions about the electron–phonon inter-
action in this system, such as the use of deformation poten-
tial models [264]. Despite such simplifications, the smooth 
crossover from the high-temperature ρ(T) ∼ T  to the low-
temperature ρ(T) ∼ T4 dependence were predicted [264] and 
subsequently verified experimentally [265]. Later theoretical 
works addressed the detailed carrier scattering mechanisms 
in graphene using partial or fully ab initio approaches [105, 
266–269]. Thanks to these studies [265, 270], we now have a 
detailed understanding of the temperature and doping depend
ence of the resistivity of graphene and of the key processes 
that limit its carrier mobility.

Hwang and Das Sarma [264] presented the first calculation 
of the intrinsic phonon-limited carrier mobility of graphene 
as a function of temperature and carrier density, using the 
BTE and the acoustic-deformation potential approximation. 
A room-temperature mobility exceeding 105 cm2 V−1 s−1 was 

Figure 14.  (a) Spectral decomposition of the contribution of all 
phonons with energy �ω to the electron scattering rate τ−1

nk  in 
MAPbI3. The height of the peaks indicates the contribution of 
each phonon and the dashed line indicates the cumulative integral 
of the differential scattering rate. Acoustic scattering is negligible 
in MAPbI3, while the dominant contributions are from vibrations 
corresponding to LO phonons at 4.3 meV, 14.4 meV, and 21 meV. 
(b) Average electron and hole phonon-limited mobilities calculated 
from the ab initio many-body Boltzmann equation for MAPbI3 
in the Pnma structure (circles and solid, orange lines between 0–
350 K) and CsPbI3 in the Pm3m structure, at the lattice parameter 
of MAPbI3, between 250–500 K. The experimental data are from 
[228] (circles, optical pump-THz probe) and [229] (triangles, ultra-
broadband THz photoconductivity) taken on thin films, whereas 
the filled red symbols are taken on single crystals and are from 
[230] (pentagon, space-charge-limited current), [231] (square, time 
of flight), [232] (diamond, dark current-voltage), and [233] (star, 
time of flight). The vertical bars indicate the boundaries of the 
orthorhombic, tetragonal, and cubic phases of MAPbI3, while the 
gray numbers indicate the exponent for the temperature dependence 
of the three phases. Adapted with permission from [234]. Copyright 
(2019) American Chemical Society.
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predicted for carrier densities below 1012 cm−2. In Hwang 
and Das Sarma’s work [264], only scattering from longitu-
dinal acoustic (LA) phonons was considered. The complex 
dependence of the EPI matrix elements on the electron and 
phonon wavevectors was condensed into a single effective 
deformation potential and used as a fitting parameter. This 
work was important for its prediction of the temperature and 
density dependence of the intrinsic resistivity, which was sub-
sequently verified experimentally [265].

Shishir and Ferry [271] later calculated the intrinsic mobil-
ity of graphene by solving the linearized BTE using Rode’s 
iterative method [18]. In addition to considering carrier scat-
tering by acoustic phonons using the model of Hwang and 
Das Sarma [264], these authors also included carrier scatter-
ing arising from the optical phonons at the K and K′ points, 
which is responsible for the intervalley scattering between the 
two valleys K and K′ in the conduction band of graphene. The 
carrier scattering rates from both acoustic and optical phon-
ons were treated using deformation potential models. The 
deformation potential parameters were obtained by fitting the 
calculated mobility curve to the experimental mobility data 
by Chen et al [270]. The largest carrier mobility obtained by 
Shishir and Ferry exceeded 4 × 105 cm2 V−1 s−1.

Borysenko et al [266] performed the first ab initio study 
of the intrinsic carrier mobility of graphene that treated the 
electron–phonon coupling strength using parameter-free DFT 
and DFPT calculations. They were able to obtain the carrier 
scattering rate due to different phonon modes using Fermi’s 
golden rule. In contrast to earlier models of carrier scatter-
ing based on acoustic deformation potentials, Borysenko et al 
[266] found that all in-plane phonons play an important role in 
carrier scattering at room temperature and thus need to be con-
sidered simultaneously. They further calculated the intrinsic 
resistivity using full-band Monte Carlo simulations [23]. The 
calculations yielded a low-field carrier mobility of approxi-
mately 5 × 106 cm2 V−1 s−1 at 50 K and a room-temperature 
mobility approaching 106 cm2 V−1 s−1.

Kaasbjerg et al [267, 272] later calculated the EPI matrix 
elements for acoustic phonons in graphene, using first-prin-
ciples calculations and the finite-displacement method. By 
analyzing the EPI matrix elements using the group theor
etical analysis of Mañes [273], these authors derived ana-
lytical forms for the acoustic EPI in the long-wavelength 
limit, for both the LA and TA phonons. The associated 
model parameters were obtained by fitting to first-principles 
results. They calculated the intrinsic acoustic phonon-lim-
ited mobility of graphene as a function of temperature and 
carrier density using the BTE approach of Hwang and Das 
Sarma [264, 274]. They considered temperatures of up to 
200 K, as this is the range where their assumption of acous-
tic phonon-dominated intravelley carrier scattering is con-
sidered to be valid. Indeed, the aforementioned calculations 
by Borysenko et al [266] indicated that both optical phon-
ons and intervalley scattering by the TA and LA phonons 
start to dominate the carrier scattering rate at temperatures 
above 200 K. Kaasbjerg et al [272] found that in the temper
ature range considered, carrier relaxation is dominated by 

TA phonons, in contrast to the assumption in Hwang and 
Das Sarma’s pioneering work [264], where coupling to LA 
phonons was considered to be the principal carrier relaxation 
mechanism. They further demonstrated that the inclusion 
of the complete electron-acoustic phonon matrix elements 
has qualitative effects on the scaling of the resistivity with 
temperature in the low-temperature regime, as in this range 
the backscattering of carriers at the Fermi surface is frozen 
out. Kaasbjerg et  al [272] found that the EPI causes the 
temperature dependence of the mobility to become stronger 
than the µ ∼ T−4  scaling law even when carrier screening is 
not considered [275].

Park et al [268] subsequently calculated the intrinsic resis-
tivity of graphene as a function of temperature and carrier den-
sity using DFT, DFPT, and the BTE approach. In their work, 
the intrinsic resistivity of graphene was computed using the 
LOVA due to Allen [64]. This approximation was discussed 
in section  2.3 and the resistivity is given by equation  (59). 
The electron–phonon matrix elements gmnν(k, q) entering 
equation (56) were obtained at the level of DFPT and inter-
polated using EPW [120]. They also focused on the intrinsic 
resistivity of n-doped graphene and analyzed the contribution 
of different phonon branches to the resistivity. They found that 
for temperatures below 200 K, the resistivity is dominated by 

Figure 15.  (a), (c) Calculated intrinsic electrical resistivity of n-
doped graphene as a function of temperature, for different carrier 
densities. The calculations were performed using analytical 
models for the electron–phonon interaction and Allen’s variational 
solution [64] to the Boltzmann transport equation. Effects of the 
electron–electron interaction, such as the renormalization of the 
carrier velocity and the electron–phonon matrix elements, were 
incorporated into the analytical models. (b), (d) The measured 
temperature dependence of the resistivity of graphene at the same 
carrier densities and for temperatures up to 250 K [265]. Reprinted 
with permission from [268]. Copyright (2014) American Chemical 
Society.
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scattering with acoustic phonons [267], with the contribution 
from TA phonons being 2.5 times higher than that of LA pho-
nons. When the temperature is above 200 K, the contribution 
from high-energy optical phonons from the zone boundary 
increases significantly and becomes the dominant mechanism. 
Accordingly, the slope of the calculated resistivity curve 
exhibits a significant increase around 200 K, as shown in fig-
ure 15. Park et al [268] further developed an effective tight-
binding model of the EPI in graphene. The model parameters 
entering the EPI were obtained by calculating the derivative 
of the nearest-neighbor hopping parameter with respect to the 
bond length using DFT. Accounting for the renormalization of 
the carrier velocity and phonon frequencies, they studied the 
intrinsic resistivity of graphene within the GW quasiparticle 
approximation [276], as shown in figure  15. The effects of 
electron–electron interactions were found to be more impor-
tant for optical zone-boundary phonons. As a result, the rela-
tive contribution of the latter to the resistivity is significantly 
increased, accounting for around 50% of the total resistivity 
even at room temperature. Still, the calculated theoretical 
resistivity values were 35% lower than the experimentally 
data.

The same authors subsequently refined their calculation by 
considering the EPI at the GW level for both acoustic and opti-
cal phonons and calculated the resistivity through a complete 
numerical solution of the BTE instead of using Allen’s vari-
ational solution. Specifically, they analyzed analytical expres-
sions for the electron–phonon matrix elements [273] and their 
corrections at the GW level [277, 278].

Based on their analysis, these authors concluded that the 
contribution of acoustic phonons to the resistivity mainly 
comes from the so-called gauge field [279], which is equiva-
lent to a fictitious strain field that shifts the Dirac point in the 
first Brillouin zone without changing its energy. The gauge 
field contribution was found to be essentially independent of 
doping and screening. However, the contribution from the 
acoustic deformation potential, which is equivalent to a ficti-
tious scalar potential that shifts the energy of the Dirac point 
without changing its position in the first Brillouin zone, was 
negligible and strongly screened. Overall, the contribution of 
acoustic phonons to the resistivity was found to be independ-
ent of doping and the dielectric environment, in agreement 
with experimental observations.

By comparing the resistivity from the complete numer
ical solution of the BTE with their previous calculation [268], 
the authors found that the use of the LOVA overestimated the 
resistivity of graphene, in particular at high temperature. When 
compared to the experimental results in the low-temperature 
regime by Chen et al [270] and Efetov et al [265], they found 
that their calculations underestimated the experimental resis-
tivity by 30%. This can be corrected if the acoustic gauge field 
parameter, computed at the GW level, is increased by 15%. 
In the high-temperature regime, the strong EPI involving the 
intervalley TO phonons accounts for the strong increase of the 
resistivity at around 270 K. However, the underestimation of 

the high-temperature resistivity by first-principles calculations 
is even more significant at low doping. This discrepancy had 
previously been attributed to remote phonon scattering from 
the substrate in experimental measurements [265, 270]. At 
variance with this interpretation, the authors argued that the 
disagreement could also be explained by the doping-depend-
ent renormalization of the EPI. However, the required renor-
malization is much stronger than what was estimated at the 
GW level [278].

Subsequent studies of carrier transport in graphene focused 
on the development of first-principles numerical schemes that 
solve the BTE without resorting to semi-analytical treatments 
of the EPI. Along this line, Restrepo et al. [280] calculated the 
carrier mobility of graphene by solving the BTE in the SERTA 
and obtained an intrinsic room-temperature mobility of 2 × 
105 cm2 V−1 s−1. Gunst et al [105] calculated the phonon-lim-
ited mobility of n-doped graphene by numerically solving the 
BTE using the MRTA. The EPI was computed using a finite-
differences supercell method and exhibited a strong depend
ence on carrier density. For carrier densities close to typical 
values in experimental measurements (∼1013 cm−2), the cal-
culated mobility values ranged from 105 to 106 cm2 V−1 s−1.  
These values are consistent with the results obtained in earlier 
works [264, 266].

It is noteworthy that Restrepo et al [280] also developed 
a quantum-mechanical and parameter-free approach to calcu-
late the mobility of graphene as a function of impurity con-
centration. Specifically, the Coulomb scattering rate arising 
from impurities or defects was expressed as

1
τnk

= ndAuc
2π
�

∑
m

∫
d2q
ΩBZ

|Tmn(k, q)|2

×
(

1 − vnk · vmk+q

|vnk||vmk+q|

)
δ(εnk − εmk+q),

�

(96)

where nd is the defect area density, Auc and ΩBZ  are the areas 
of the crystalline unit cell and of the first Brillouin zone, 
respectively, εnk and εmk+q are the band energies, and vnk and 
vmk+q denote the corresponding band velocities. The scat-
tering matrix Tmn(k, q) was treated within the Born approx
imation as Tmn(k, q) = 〈mk + q|∂V̂|nk〉, where ∂V̂  is the 
self-consistent scattering potential that accounts for the differ-
ence between the potential of an unperturbed system and the 
potential of the system in the presence of defects and impuri-
ties. Restrepo et al [280] found that the impurity-limited gra-
phene mobility at a defect density of 1012 cm−2 ranges from 
950 cm2 V−1 s−1 for Au adatoms to 34 300 cm2 V−1 s−1 for 
hydrogen adatoms. The large difference in mobility originates 
from the different magnitude of the scattering potentials for 
the different adatoms.

Finally, a recent study by Gunst et  al [281] showed that 
the high carrier mobility in graphene is due in part to its pla-
nar mirror symmetry, which forbids single-phonon scatter-
ing involving the highly occupied out-of-plane acoustic (ZA) 
phonon branch. They further demonstrated that a breaking of 
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the horizontal mirror plane symmetry, for example with an 
electrostatic gate, would lead to the activation of the electron-
one-ZA-phonon scattering channel and to a reduction of the 
mobility by at least a factor three.

4.2.2.  Silicene.  Silicene is the silicon-based analog of gra-
phene. Unlike graphene, it exhibits a buckled structure [282], 
as shown in figure  7(h). The buckled geometry of silicene 
originates from the weaker π-bonds as compared to graphene, 
resulting in a larger bond length. Therefore, the p z orbitals 
have decreased overlap, which renders the planar sp2 hybrid-
ization less energetically favorable [283]. Despite the buck-
ling, the electronic band structure of silicene still shares many 
similarities with that of graphene. In particular, when SOC 
is not included, silicene is also a zero-gap semimetal with a 
Dirac-like electronic dispersion around the Fermi level [284], 
as shown in figure 16(a). One of the most appealing aspects 
of silicene is that, being made of silicon, it should be compat-
ible with existing silicon electronics. However, silicene is not 
stable in isolation and requires a supporting substrate. It has 
been demonstrated experimentally that silicene can be grown 
on a number of different substrates using a bottom-up epitaxy 

method [285–288]. A single-layer silicene transistor with a 
mobility of 100 cm2 V−1 s−1 has been fabricated by Tao et al 
[289].

Only a few ab initio studies of the intrinsic transport prop-
erties of silicene exist in the literature. Shao et al [290] cal-
culated the intrinsic carrier mobility of silicene based on the 
deformation potential approximation. In their calculation, the 
deformation potential was determined by calculating the shift 
of the Fermi level as a function of the lattice constant. This 
approach effectively assumes isotropic and intravalley scatter-
ing by LA phonons only. Carrier scattering from intervalley 
momentum transfer and from other phonon modes were not 
considered, resulting in a large electron and hole mobility, on 
the order of 2 × 105 cm2 V−1 s−1.

Subsequently, Li et al [291] calculated the EPI in silicene 
for all phonon branches using DFPT and employed full-band 
Monte Carlo simulations [23] to calculate the electric-field 
dependence of the carrier drift velocity, from which the intrin-
sic carrier mobility was extracted. While the coupling of elec-
trons to optical phonons was indeed found to be relatively 
weak in silicene, Li et al [291] observed that carrier scattering 
from TA phonons is an order of magnitude higher than from 
LA phonons. More importantly, these authors found that the 
dominant contribution to carrier scattering comes from the 
ZA phonons, namely the flexural modes (figure 16(c)). In gra-
phene and other 2D materials with in-plane mirror symmetry, 
only the in-plane phonons can couple to the charge carriers 
to first order in the atomic displacements [273]. In silicene, 
however, the in-plane mirror symmetry is broken and the 
ZA phonons can couple to the charge carriers already at first 
order in perturbation theory. Li et al [291] attributed the large 
carrier scattering rate from ZA phonons to the large values 
of the calculated EPI and the small phonon energy near the 
Brillouin zone center. They found the intrinsic carrier mobil-
ity of silicene to be around 1200 cm2 V−1 s−1 for free-standing 
silicene. When the ZA-phonon contribution was not included, 
the carrier mobility tripled to 3900 cm2 V−1 s−1. They argued 
that since the ZA phonons play the dominant role in the EPI 
of silicene, suppressing the ZA phonons by controlling the 
interaction between silicene and the substrate will be crucial 
for improving the transport characteristics of silicene-based 
electronic devices.

It should be noted that in the calculations of Li et al [291], 
the ZA phonons were regularized to have a frequency versus 
momentum dispersion relation which is linear in q near the 
zone center. The reduction of the carrier mobility is even more 
severe when the actual q2 dispersion of the ZA phonons is 
taken into account, as pointed out by Gunst et al [105]. The 
latter authors calculated the carrier mobility of silicene using 
the full-band MRTA for the BTE, where the EPI matrix ele-
ments entering the calculation of the carrier relaxation time 
were obtained using a DFT-based supercell method. Gunst 
et  al [105] found that the carrier scattering rate originating 
from the ZA mode is two to three orders of magnitude higher 
than that of the remaining modes. In fact, if no long-wave-
length cutoff is enforced, the carrier scattering rate arising 
from the ZA phonons diverges, leading to a vanishing mobility 

Figure 16.  The electron (a) and phonon (b) band structures of 
monolayer silicene, as obtained from the generalized gradient 
approximation to DFT, from [291]. (c), (d) Electron scattering 
rates in silicene via emission (c) and absorption (d) of phonons 
at room temperature, calculated using ab initio electron–phonon 
matrix elements and Fermi’s golden rule. In the calculations of the 
scattering rate, the electron wavevector is assumed to be along the 
K-Γ line. Adapted figure with permission from [291], Copyright 
(2013) by the American Physical Society.
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in silicene. The divergent contribution of the ZA phonons to 
carrier scattering was shown by Fischetti et al [292] to be a 
general feature of ideal, freestanding, and infinite 2D crys-
tals lacking horizontal mirror symmetry and results from the 
divergence of the thermal population of long-wavelength ZA 
phonons, in the same spirit as the Mermin–Wagner theorem 
[293]. They also showed that the effect of ZA phonons on a 
2D crystal lacking horizontal mirror symmetry is particularly 
severe when the material also exhibits a Dirac-like electron 
dispersion at the symmetry point K, owing to an increased 
strength of electron-ZA phonon coupling originating from the 
band degeneracy at K.

In the hypothetical scenario where the coupling to the ZA 
phonons could be suppressed completely, Gunst et  al [105] 
found that the mobility of silicene at 300 K and a carrier density 
of 3 × 1012 cm−2 should be approximately 2100 cm2 V−1 s−1  
when intervalley carrier scattering between the K and K′ val-
leys is not considered. Including intervalley scattering can 
decrease the carrier mobility by as much as an order of magni-
tude, bringing the calculated value of the carrier mobility close 
to the experimental value of Tao et  al (∼100 cm2 V−1 s−1)  
[289].

4.2.3.  Phosphorene.  Phosphorene is the name given to a sin-
gle layer of black phosphorus (figure 7(i)). Phosphorene has 
a puckered structure that endows the system with anisotropic 
mechanical, electronic, optical, and transport properties [294], 
and has a band gap in the range 0.3–1.8 eV [295]. Exper
imentally, the carrier mobility of multilayer black phosphorus 
was found to be anisotropic and thickness-dependent [296–300],  
with the general trend being that the mobility sharply 
decreases with decreasing thickness [296, 299]. The high-
est measured room-temperature mobility for hole carriers 
in multilayer phosphorene of thickness  ∼10 nm is around  
1000 cm2 V−1 s−1 [296], which is close to the bulk mobility 
value [301, 302]. Measurements of carrier mobilities in the 
monolayer limit are scarce. Only Cao et al [299] reported room-
temperature hole mobilities of 1, 80, and 1200 cm2 V−1 s−1  
for monolayer, bilayer, and trilayer phosphorene, respectively.

On the theoretical side, there have been several studies 
aimed at calculating the intrinsic carrier mobility of mono
layer and few-layer phosphorene [89, 303–308]. However, 
the calculated mobility values exhibit significant variations 
among different groups. Qiao et al [303] carried out the first 
calculations of the phonon-limited carrier mobility in phos-
phorene multilayers using the so-called Takagi formula [309, 
310]:

µi =
e�3Ci

kBTm∗
i m∗

d D2
i

,
�

(97)

where i refers to the transport direction, m∗
i  is the carrier effec-

tive mass in the corresponding direction, and m∗
d =

√
m∗

x m∗
y  

is the density-of-state effective mass for an anisotropic elec-
tronic band. The 2D elastic modulus along the transport direc-
tion Ci is calculated using ∆u = 1

2 Ciε
2
ii, where ∆u is the 

change of the total energy per in-plane area of the 2D crystal 

in response to the elastic strain εii. The deformation potential 
constant Di in equation (97) is defined as

Di = a0,i
∆Ec,v

∆ai
,� (98)

where ∆Ec,v is the energy shift of the band edges under the 
relative change of lattice constant ∆ai/a0,i along the transport 
direction i. The underlying assumptions in the Takagi formula 
are [308, 310]: (i) if subbands are formed in multilayers, it is 
assumed that the charge carriers only occupy the lowest or 
highest subband for electrons or holes, respectively; (ii) the 
carrier relaxation is dominated by intravalley acoustic-phonon 
scattering from only one in-plane mode; and (iii) the EPI 
involving the acoustic mode is isotropic and the matrix ele-
ments gmnν(k, q) only depend linearly on the magnitude of q. 
Any directional dependence of the EPI is ignored.

Using the Takagi formula, Qiao et al [303] calculated the 
electron and hole mobilities of phosphorene of up to five lay-
ers, along both the armchair and zigzag directions. They found 
that the mobilities of both electron and hole carriers are aniso
tropic and layer dependent. The calculated mobility values were 
high, on the order of hundreds to thousands of cm2 V−1 s−1.  
In multilayer systems, the mobilities of the hole carriers are in 
general several times larger than those of the electron carriers; 
furthermore, both electrons and holes were found to be more 
mobile along the armchair direction. However, in monolayer 
phosphorene, the trends of the electron–hole asymmetry and 
directional anisotropy are reversed. The electron mobility of 
monolayer phosphorene was found to be 1100–1400 cm2 V−1 s−1  
and 80 cm2 V−1 s−1 along the armchair and zigzag directions, 
respectively, whereas for the hole carriers, the mobility val-
ues along the armchair and zigzag directions were found to be 
640–700 and 10 000-26 000 cm2 V−1 s−1, respectively. Qiao 
et  al [303] attributed the exceptionally large hole mobility 
along the zigzag direction to the extremely small deformation 
potential along this direction. The conclusion in the study of 
Qiao et al [303] that transport is hole-dominated and aniso-
tropic was subsequently confirmed experimentally in multi-
layer systems [62, 298].

Rudenko et al [305] developed a more sophisticated the-
ory of carrier scattering by acoustic phonons in anisotropic 
2D systems, starting from the deformation potential method. 
Unlike the above-mentioned Takagi formula, in which only 
a single deformation potential parameter and elastic constant 
appear, they constructed electron–phonon scattering matrices 
of monolayer phosphorene that incorporate the complete elas-
tic and deformation potential tensors. The scattering matrices 
proposed by Rudenko et al [305] therefore exhibit a sophis-
ticated dependence on both the direction and the magnitude 
of the scattering wavevector q. The elastic constants and the 
deformation potentials corresponding to both in- and out-
of-plane deformations were determined from first-principles 
calculations. They applied their theory to calculate the direc-
tion-dependent carrier mobility of monolayer phosphorene 
as a function of both temperature and carrier density. The 
calculated intrinsic carrier mobility was found to be higher 
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along the armchair direction, and dominated by in-plane pho-
non scattering for carrier densities above 1013 cm−2. At room 
temperature and a carrier density of 1013 cm−2, the electron 
and hole mobilities along the armchair direction were deter-
mined to be  ∼700 and  ∼250 cm2 V−1 s−1, respectively.

Trushkov et  al [306] calculated the phonon-limited car-
rier mobility of monolayer phosphorene using a tight-binding 
treatment of the EPI. They obtained the electronic band struc-
ture using a nearest-neighbour tight-binding model and the 
phonon spectrum using a valence force model fitted to GW 
and DFT calculations, respectively. The EPI was treated using 
the Su–Shrieffer–Heeger Hamiltonian [311] with distance-
dependent hopping parameters. Due to the electron–hole sym-
metry in their model, the calculated electron and hole mobilities 
were identical. The authors found the room-temperature 
mobilities of monolayer phosphorene to be 625 cm2 V−1 s−1  
and 82 cm2 V−1 s−1 along the armchair and zigzag directions, 
respectively. In the above investigations [303, 305, 306], the 
EPI was described using the deformation-potential model. 
The complex dependence of the EPI on the electron wavevec-
tor k and phonon wavevector q was either neglected or treated 
approximately. As a result of these approximations, these 
studies generally found substantially higher carrier mobilities 
than in first-principles calculations.

Liao et  al [304] performed an ab initio investigation of 
the EPI in monolayer black phosphorus using DFPT. In their 
study, the EPI on dense electron and phonon momentum grids 
was interpolated from DFPT calculations on coarse grids 
using Wannier interpolation [120]. They calculated the carrier 
relaxation time and the intrinsic mobility using the BTE within 
the MRTA. The authors compared their calculated carrier 
scattering rates with those obtained via deformation potential 
calculations. They found that for an anisotropic system such 
as phosphorene, the carrier scattering rates obtained using the 
deformation potential approximation of Qiao et al [303] can be 
orders of magnitude smaller than the ab initio results. Indeed, 
the carrier scattering rates along the direction with small 
deformation potential was significantly underestimated. This 
could explain why the extraordinarily large hole mobility of 
26 000 cm2 V−1 s−1 along the zigzag direction of phosphorene 
was not reproduced by subsequent calculations that took into 
account the coupled EPI along different transport directions. 
Liao et al [304] also found that optical phonons, not included 
in earlier deformation potential models, contribute non-
negligibly to carrier scattering. The phonon-limited carrier 
mobility calculated by Liao et al [304] is  ∼170 cm2 V−1 s−1  
for both electron and hole carriers along the armchair direc-
tion, whereas the calculated carrier mobilities along the zig-
zag direction are around 50 cm2 V−1 s−1 and 35 cm2 V−1 s−1  
for electron and hole carriers, respectively.

Jin et al [307] later calculated the intrinsic electron and hole 
mobilities of both monolayer and bilayer phosphorene, using 
a full-band Monte Carlo method for the solution of the BTE 
[23]. Their study confirmed earlier findings that the aniso
tropic crystal structure of phosphorene imparts anisotropic 
transport properties via the anisotropic band structure and scat-
tering rates. They found that, in monolayer phosphorene, the 

hole mobility in the armchair direction is approximately five 
times higher than in the zigzag direction at room temperature  
(460 versus 90 cm2 V−1 s−1). Transport in bilayer phosphorene, 
on the other hand, exhibits a more modest anisotropy with 
substantially higher mobilities (1610 and 760 cm2 V−1 s−1,  
respectively).

As can be seen from the above, the numerical values of 
the intrinsic mobilities of phosphorene calculated by differ-
ent research groups using different approaches exhibit con-
siderable variations. This prompted Gaddemane et  al [308] 
to critically review the physical models employed in earlier 
studies. These authors showed that the assumption of isotropic 
EPI, the use of deformation potentials instead of electron–
phonon matrix elements, and the neglect of the dependence 
of the electron–phonon matrix elements on the electron 
wavevector k are the main sources of discrepancy among 
earlier works. The importance of anisotropic EPI was dem-
onstrated by carrying out calculations of the acoustic-phonon-
limited electron mobility of monolayer phosphorene using the 
Kubo–Greenwood method. The inclusion of angle-dependent 
deformation potentials in the Kubo–Greenwood calculations 
resulted in low electron mobility values of  ∼25 cm2 V−1 s−1 
and 5 cm2 V−1 s−1 along the armchair and zigzag directions, 
respectively. They also employed a full-band Monte Carlo 
method [23] to numerically solve the BTE and obtained the 
carrier mobilities of monolayer and bilayer phosphorene. 
For their Monte Carlo calculations, the authors calculated 
the carrier scattering rates using ab initio EPI, obtained 
both from finite differences and from DFPT, which led to 
very similar results for the computed carrier mobilities. As 
in their Kubo–Greenwood calculations, Gaddemane et  al 
[308] obtained rather low carrier mobilities, not exceeding  
25 cm2 V−1 s−1 for electrons and holes in both mono- and 
bilayer phosphorene. In contrast to the measurements by Cao 
[299] and the ab initio calculations by Jin et  al [307], the 
bilayer mobilities obtained by Gaddemane et  al [308] were 
almost identical or even smaller than in the monolayer. This 
effect was ascribed to the presence of low-energy interlayer 
optical phonons. Despite the similar methodology adopted 
by Jin et al [307] and Gaddemane et al [308], the origin of 
the large mobility difference between the two studies remains 
unclear at the time of writing.

Finally, we mention the recent work by Sohier et al [89], 
in which the authors carried out ab initio BTE calculations 
of the carrier mobilities of monolayer phosphorene at a high 
carrier density of n  =  5 × 1013 cm−13. Since a high carrier 
density was considered, the authors took into account the 
doping effects on the EPI by employing DFPT for gated 2D 
materials [312]. This method is capable of self-consistently 
including the static screening effects from the charge carri-
ers on the electron–phonon matrix elements within a linear 
response approach. The authors obtained room-temperature 
hole mobilities of 586 and 44 cm2 V−1 s−1 along the armchair 
and zigzag directions, respectively. The electron mobilities 
along the armchair and zigzag directions were found to be 
302 and 35 cm2 V−1 s−1, respectively. However, as the authors 
noted in their work, caution is required when comparing their 
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results to earlier works that focused on the intrinsic carrier 
mobility in the low-density limit, as the effects of doping on 
carrier mobility becomes non-trivial at high carrier density.

4.2.4.  Molybdenum disulfide.  Molybdenum disulfide 
(MoS2) is a representative example of layered transition metal 
dichalcogenides that can be exfoliated or grown in mono
layers. The atomistic structure of monolayer MoS2 is shown 
in figure 7(j). Soon after experimental techniques for isolating 
2D crystals had been developed, the carrier mobility of mono
layer MoS2 was measured [254]. However, the reported room-
temperature mobility was in the range of 0.5–3 cm2 V−1 s−1,  
much smaller than the early studies of the bulk carrier mobil-
ity of 100–260 cm2 V−1 s−1 [313]. Interest in MoS2 for elec-
tronic and optoelectronic device applications grew rapidly 
after the experimental discovery that MoS2 becomes a direct-
bandgap semiconductor in its monolayer form [314, 315]. 
Efforts to enhance the carrier mobility of 2D MoS2 ensued 
and the report by Radisavljevic et al [316] that room-temper
ature mobilities as large as 200 cm2 V−1 s−1 can be achieved 
by depositing a high-κ top-gate dielectric in a double-gated 
device drew considerable attention. However, this mobil-
ity value was subsequently questioned on the grounds that 
the methodology employed to extract the field-effect mobil-
ity from the experimental current-voltage data could result 
in a significant overestimation of the mobility for devices 
in a double-gate geometry [316]. Subsequent Hall mobility 
measurements for single-layer MoS2 devices yielded room-
temperature values in the range of 15–60 cm2 V−1 s−1 [317]. 
Cui et al [318] later carried out multi-terminal transport mea-
surements of the Hall mobility of 1–6-layer MoS2 in a van der 
Waals heterostructure, obtaining a room-temperature mobility 
between 40–120 cm2 V−1 s−1, with the mobility of monolayer 
MoS2 located near the lower end of the range. More recently, 
Yu et  al [319] reported the realization of room-temperature 
phonon-limited carrier transport in monolayer MoS2 devices, 
by combining improvements in sample and interface qual-
ity from chemical treatment with the suppression of charged 
impurity scattering through dielectric and carrier screen-
ing [320]. The highest room-temperature mobility of mono
layer MoS2 devices measured by the authors was around  
150 cm2 V−1 s−1.

On the theoretical side, there have been significant efforts 
to determine the intrinsic carrier mobility of monolayer MoS2. 
Kaasbjerg et al [272] carried out the first study of the intrin-
sic phonon-limited electron mobility of n-doped monolayer 
MoS2, using a combined first-principles and semi-analytical 
formalism. The BTE was solved by using an iterative scheme, 
in which the scattering rate integral was calculated by sum-
ming the quasi-elastic scattering from acoustic phonons and 
the inelastic scattering from optical phonons. Both the acous-
tic- and the optical-phonon scattering amplitudes were deter-
mined from deformation potentials, which were obtained by 
fitting first-principles electron–phonon matrix elements. An 
analytical formula for the Fröhlich interaction in 2D was also 
derived and its contribution to the phonon collision integral 
was evaluated numerically. Kaasbjerg et al [272] considered 

carrier scattering both within and between the two main val-
leys (K and K′) of monolayer MoS2. They calculated a room-
temperature mobility value of 410 cm2 V−1 s−1, which was 
found to depend only weakly on the carrier density. They 
concluded that the room-temperature mobility was largely 
dominated by optical-deformation potential scattering from 
intravalley, homopolar phonons, intervalley LO phonons, 
and by intravalley, long-wavelength polar LO phonons via 
Fröhlich interactions.

Subsequently, Li et al [291] combined DFPT calculations 
of the EPI and full-band Monte Carlo simulations to obtain 
a room-temperature mobility of 130 cm2 V−1 s−1 for mono
layer MoS2. In contrast to the work of Kaasbjerg et al [272], 
they found that the LA phonons provide the largest carrier 
scattering rates (see figure  17), which the authors attributed 
to the strong intervalley scattering from the K/K′ valleys to 
the Q valleys (another set of satellite valleys along the path 
Γ-K). Subsequently, Restrepo et  al [280] solved the BTE 
using the SERTA where the momentum-resolved carrier 
relaxation time was calculated using first-principles electron–
phonon matrix elements and obtained a room-temperature 
mobility of 225 cm2 V−1 s−1. Zhang et  al [321] used defor-
mation potential theory to calculate the LA-phonon-limited 
electron mobility of MoS2 and obtained a mobility value of  

Figure 17.  The electron (a) and phonon (b) band structure of 
monolayer MoS2 obtained from the local density approximation to 
DFT. (c), (d) Scattering rates of K valley electrons in monolayer 
MoS2 via emission (c) and absorption (d) of phonons at room 
temperature, based on ab initio electron–phonon matrix elements 
and Fermi’s golden rule. In the calculations of the scattering 
rate, the electron wavevector is assumed to be along the K-Γ line. 
Adapted figure with permission from [291], Copyright (2013) by 
the American Physical Society.
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340 cm2 V−1 s−1. Li [62] carried out first-principles calculations 
of the intrinsic charge transport properties of monolayer MoS2 
by iteratively solving the linearized BTE on dense electron and 
phonon momentum grids and by employing a linear interpola-
tion of the electron–phonon matrix elements calculated with 
DFPT. A room-temperature mobility of 150 cm2 V−1 s−1 was 
obtained. Gunst et  al [105] also carried out first-principles 
calculations of the mobility of monolayer MoS2 by solving the 
BTE using the MRTA. The calculated room-temperature intra-
valley mobility was around 400 cm2 V−1 s−1 at a carrier density 
of 3 × 1012 cm−2. We note that in all these studies, Fröhlich 
interactions were neglected on the basis that their influence on 
carrier scattering in MoS2 is small, although Kaasbjerg et al 
[272] had already demonstrated that Fröhlich interactions also 
substantially contribute to the carrier scattering rate at room 
temperature. More recently, Sohier et al [89] applied their first-
principles approach for computing the transport properties of 
2D materials to doped MoS2, where the effects of dimensional-
ity and doping effects on the electron–phonon matrix elements 
were accounted for within DFPT. They obtained a room-
temperature carrier mobility of 144 cm2 V−1 s−1 for n-doped 
MoS2 at a carrier density of 5 × 1013 cm−2.

It is worth noting that the intrinsic mobility of monolayer 
MoS2 obtained by Kaasbjerg et al (410 cm2 V−1 s−1) [272] is 
substantially higher than some of the later ab initio studies 
[62, 291], which obtained values around 130–150 cm2 V−1 s−1.  
Indeed, in the original study of Kaasbjerg et  al [272], the 
carrier scattering rates were calculated using deformation 
potentials fitted to ab initio scattering rates. For the calcul
ation of ab initio scattering rates, the electron–phonon matrix 
elements were assumed to be independent of the wavevector 
k of the charge carriers and to only depend on the phonon 
wavevector q and branch index ν . For the charge carriers in 
the two conduction band valleys at K and K′, the electron–
phonon matrix elements gmnν(k, q) at a generic wavevector 
k were considered to be the same as those for charge carriers 
at the minimum of the corresponding valley. It is not yet clear 
what is the effect of these approximations on the calculated 
mobility. Piezoelectric scattering, which is present in mono
layer MoS2 due to the absence of inversion symmetry, was 
not taken into account in the study of Kaasbjerg et al [272] 
and also not in most later works. However, the authors sub-
sequently considered the effect of piezoelectric interactions 
on the carrier mobility of monolayer MoS2, which resulted in 
a revised room-temperature mobility of 320 cm2 V−1 s−1 at a 
carrier density of 1011 cm−2 [322].

In addition to these differences, another important source of 
discrepancy may come from the different treatments of inter-
valley carrier scattering between the K and Q valleys [89, 291].  
In the study of Kaasberjerg et al [322], since the Q valleys are 
∼0.2 eV above the K valleys, intervalley scattering from the 
conduction band edge at the K valleys into the Q valleys was 
not considered. However, in the DFT calculations by Li et al 
[291], the separation between the K and Q valleys was much 
smaller (70 meV) and consequently intervalley carrier scat-
tering between these valleys substantially contributed to the 
overall carrier scattering rate. When the scattering between 

the K and Q valleys was not included, the carrier mobility 
obtained by Li et  al [291] increased from 130 cm2 V−1 s−1 
to 320 cm2 V−1 s−1, which is closer to the value reported by 
Kaasbjerg et al (410 cm2 V−1 s−1) [272]. It should be pointed 
out that it is difficult to accurately determine the energy sep-
aration between the K and Q valleys within the framework 
of DFT and that the energy separation reported in other later 
studies [62, 89] was more in line with the original work of 
Kaasberjerg et  al [272]. At any rate, the results by Li et  al 
[291] highlight the importance of a precise description of 
intervalley scattering for an accurate determination of the car-
rier mobility of transition metal dichalcogenides, a point that 
was also emphasized in the study of Sohier et al [89].

Recently, Kaasbjerg et al [323] studied the effects of atomic 
vacancies on the carrier mobility in disordered monolayer 
MoS2. They highlighted a strong screening-induced density 
and temperature dependence of the mobility in 2D TMDs 
hosting charged vacancies. In addition, Guo et al [324] used 
the BTE to compute the hole mobility of MoS2 monolayer and 
obtained a value of 26 cm2 V−1 s−1 at room temperature.

4.2.5.  Indium selenide.  From an application point of view, 
the four 2D materials discussed so far each have their own 

Figure 18.  Temperature dependence of the in-plane hole (a) and 
electron mobility (b) of monolayer, bilayer, and bulk InSe, using 
the ab initio Boltzmann transport equation. The insets show the 
calculated room-temperature mobility versus the reciprocal number 
of layers, 1/N, for N  =  1, 2, and ∞. Adapted with permission from  
[332]. Copyright (2019) American Chemical Society.
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advantages and disadvantages. Graphene has extremely high 
carrier mobility even at room temperature [325], yet its zero 
bandgap results in transistors with a very small on-off current 
ratio. Strategies to open up a bandgap in graphene, such as by 
patterning graphene into nanoribbons [326, 327] or by hydro-
genation [328], result in a reduced carrier mobility. Silicene 
is considered to be more compatible with silicon-based elec-
tronics than other 2D materials. However, silicene is typically 
synthesized on metal substrates under ultra-high vacuum 
conditions [285–288]. Since a post-synthesis transfer to a 
different substrate is needed for device fabrication and since 
silicene is unstable in air [289], device fabrication and pro-
cessing is challenging. Phosphorene multilayers possess high 
carrier mobility, but their electronic transport properties are 
anisotropic [298] and their stability under ambient conditions 
is poor [329, 330]. Recently, 2D indium selenide (InSe) has 
emerged as a promising alternative for 2D nanoeletronics, as 
the experimentally measured electron mobility of multilayer 
InSe of up to 1000 cm2 V−1 s−1 is comparable to that of phos-
phorene, while its thermodynamical stability is even higher 
[331]. The atomistic structure of monolayer InSe is shown in 
figure 7(k).

Li et  al [332] recently investigated the intrinsic carrier 
mobility of monolayer, bilayer, and bulk InSe using the ab 
initio BTE. The electron–phonon matrix elements were cal-
culated via DFPT and interpolated onto very dense electron 
and phonon momentum grids using Wannier interpolation [88, 
120, 333, 334]. The BTE was solved in the SERTA [60]. As 
InSe is a polar semiconductor, the coupling of charge carriers 
to the long-wavelength polar LO phonons was found to be 
rather strong in InSe. For 2D InSe, the long-range Fröhlich 
interaction needs to be handled with care as the periodic 
boundary conditions typically employed in plane-wave ab ini-
tio calculations can induce spurious Fröhlich interactions with 
neighboring image cells [335, 336].

The authors calculated the intrinsic electron and hole 
mobility of monolayer, bilayer, and bulk InSe as a function 
temperature using the BTE (figure 18). The calculated electron 
mobilities were found to be 120, 220, and 1060 cm2 V−1 s−1,  
respectively, in good agreement with available transport 
measurement data [331, 337–339]. In comparison, the hole 
mobility was found to be much smaller �20 cm2 V−1 s−1. Li 
et  al [332] analyzed the electron scattering mechanisms in 
detail and found that the Fröhlich interaction dominated; on 
the other hand, hole scattering was dominated by Fröhlich 
interaction only in the bulk case. They also found that the sig-
nificant layer dependence of the carrier mobility of InSe can 
neither be explained in terms of the layer dependence of the 
carrier effective mass nor in terms of the layer dependence 
of the electron–phonon matrix elements. Instead, they found 
that the thickness dependence originates from a decrease of 
the electronic density of states when InSe layers are stacked 
together, which reduces the phase space for carrier scatter-
ing. The significant layer-dependent density of states in InSe 
results from the strong interlayer electronic coupling, which 
leads to a hybridization of band-edge states when wavefunc-
tions of different layers come into contact. The intrinsic 

electron mobility of InSe monolayer and their various contrib
utions was also investigated in details by Shi et al [340].

Li et al [332] also generalized the dimensionality depend
ence of the carrier mobility of InSe to other 2D materials by 
developing a simple tight-binding model. Using this model, 
they found that the carrier mobility of 2D materials is rather 
sensitive to the interlayer electronic coupling strength. In 
particular, they proposed that for 2D semiconductors with 
non-negligible interlayer electronic coupling, there exists 
an intrinsic layer thickness below which the carrier mobil-
ity increases with the number of layers and above which the 
mobility gradually reaches the bulk value. As interlayer inter-
action is ubiquitous in layered materials, they suggested that 
van der Waals epitaxy could be employed to engineer the car-
rier mobility of 2D materials.

4.3.  High-throughput calculations of carrier mobilities

In recent years, the development of automatic workflows for 
ab initio calculations, combined with the increasing accessi-
bility of supercomputing resources, has brought about a new 
paradigm of materials discovery through high-throughput 
(HT) computation [341]. HT computations are designed for 
calculating a target property for a large set of materials with 
minimal user intervention. There are multiple initiatives aim-
ing to build large databases of materials properties through 
HT computations. Well-known examples of such databases 
include the Materials Project [342], the AFLOW repository 
[343], the Materials Cloud [344], the Open Quantum database 
[345], and the Harvard Clean Energy Project [346]. At pres-
ent, these databases have covered a wide range of materials 
properties including energetics, thermodynamics, electronic 
band structures [347], elastic and piezoelectric tensors [348, 
349], and phonon spectra [350]. It is natural to expect that 
HT databases will be expanded to include electronic transport 
properties in the near future.

From a practical standpoint, the implementation of ab ini-
tio calculations of carrier mobilities in an HT framework is 
presently hampered by the heavy computational workload 
associated with the evaluation of all possible electron–phonon 
scattering processes for charge carriers in solids. Wannier 
interpolation of electron–phonon matrix elements [120] has 
been rather successful in reducing the computational cost of 
mobility calculations, yet the automatic generation of Wannier 
functions [351, 352], as needed in HT calculations, is still at 
an early stage.

Meanwhile, there have already been a few studies reporting 
HT calculations of electronic transport properties using sim-
plified models of carrier scattering. Ricci et al [353] generated 
a large dataset of transport properties for around 48 000 mat
erials, based on DFT band structures and Boltzmann trans-
port calculations within the c-SERTA. In these calculations, 
the authors assumed that the carrier lifetime τ  is a constant, 
empirical quantity, independent of carrier energy and transport 
direction. This is clearly a strong approximation, as also noted 
by the authors. Nevertheless, this approximation allowed the 
authors to focus only on the effects of the electronic band 
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structure on the charge transport properties. They calculated 
the ratio between the electrical conductivity σ and the relaxa-
tion time τ  for a wide range of materials, temperatures, and 
carrier densities. To obtain the actual conductivity and carrier 
mobility, one would need to supply the empirical relaxation 
time τ  for each individual material, which could be obtained 
by fitting the calculation data to the experimentally measured 
conductivities. In this sense, the conductivity database of 
Ricci et al [353] is semi-empirical.

In 2018, Samsonidze and Kozinsky [354] introduced 
the electron–phonon averaged (EPA) approximation where 
the complex momentum-space integration of the electron–
phonon scattering rate of equation  (64) is approximated by 
an integration over energies. This approach is reminiscent of 
the LOVA approximation presented in section 2.3. Using the 
EPA, they screened 28 elements of the half-Heusler family 
of compounds and computed their thermoelectric properties, 
including their electrical conductivity.

For 2D materials, there have been significant efforts in the 
community aimed at identifying all possible stable mono
layer materials that can be isolated from bulk compounds 
[360–364]. Notable large databases of 2D materials result-
ing from these efforts include the Computational 2D mat
erials Database (C2DB) by Haastrup et  al [361, 365] and 
the 2D structures and layered materials database hosted on 
the Materials Cloud [344, 363]. Sohier et  al [89] recently 
developed a rigorous approach for HT computations of the 
charge transport properties of 2D materials based on an ab 

initio description of the EPI. As mentioned earlier, Wannier 
interpolation of electron–phonon matrix elements has been an 
essential technique for reducing the computational cost of ab 
initio mobility calculations. We note that Cheng et al [366] 
used the EPW software to compute the mobility of 15 single-
element 2D semiconductors and found a very high intrinsic 
hole mobility of 1330 cm2 V−1 s−1 in monolayer antimony. 
However, the development of Wannier interpolation in an HT 
framework has not yet been achieved. Furthermore, for 2D 
materials, Wannier interpolation may not be critical since the 
sampling of the Brillouin zone is limited to two dimensions. 
Therefore, by exploiting symmetry and identifying the pock-
ets of electronic states relevant for carrier transport, a simple 
linear interpolation of the EPI and other relevant quantities 
could be sufficient to achieve numerical convergence. Sohier 
et al [89] calculated the carrier mobility based on DFT elec-
tronic band structures and the BTE approach. They also took 
into account the effects of dimensionality and charge doping 
on the EPI using the recently developed DFPT framework for 
gated 2D materials [312].

Sohier et  al [89] applied their automatic framework to 
the calculation of carrier mobilities of six well-studied 2D 
materials (n-doped MoS2 , WS2 , WSe2, arsenene, and pris-
tine and p -doped phosphorene) at high doping levels (∼1013 
cm−2), obtaining mobility values similar to earlier ab initio 
works. This approach is promising for 2D materials, but it 
would be computationally more challenging for bulk systems. 
Therefore, further developments in automatic interpolation 

Figure 19.  Range of measured electron (e) and hole (h) mobilities at room temperature (shaded region), and calculated values (blue dots). 
The results highlighted in orange can be considered to be the most accurate calculations reported so far. Materials are sorted with the 
mobility decreasing towards the right hand side: electron mobility of GaAs, theory [16, 125, 126, 186, 187, 189, 189] and experiments 
[188, 189, 193]; hole mobility of diamond, theory [69, 169] and experiments [165, 167, 168, 174, 175, 355]; electron mobility of silicon, 
theory [60, 62, 84, 84, 94, 126, 127] and experiments [32, 152–154]; electron mobility of w-GaN, theory [186, 200] and experiments 
[201, 210, 356, 357]; hole mobility of silicon, theory [60, 84, 84, 126] and experiments [152–155]; hole mobility of GaAs, theory [126, 
185] and experiments [182, 192–194, 196–198]; electron mobility of β-Ga2O3, theory [223–225] and experiments [221, 227]; electron 
mobility of MAPbI3, theory [234] and experiments [228–233, 358]; hole mobility of MAPbI3, theory [234] and experiments [228–233, 
358]; hole mobility of w-GaN, theory [200] and experiments [211, 359]; hole mobility of phosphorene, theory [89, 303–305, 307, 308] 
and experiments [299]; electron mobility of phosphorene, theory [89, 303–306, 308]; electron mobility of silicene, theory [105, 291] and 
experiments [289]; electron mobility of MoS2, theory [62, 89, 105, 272, 280, 291, 321] and experiments [316–318, 320]; electron mobility 
of InSe, theory [332] and experiments [332].
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techniques are still needed in order to realize efficient HT ab 
initio mobility calculations for a wide range of materials.

4.4.  Predictive accuracy

Figure 19 provides a summary of calculated as well as measured 
intrinsic mobilities at room temperature of all the compounds 
reviewed here. In section  4.1.3, we showed that GaAs has 
the largest electron mobility among bulk, three-dimensional 
semiconductors reviewed in this study, with experimental val-
ues ranging from 3300 to 9000 cm2 V−1 s−1 [188, 189, 193] 
and calculations ranging from 7900 to 12 000 cm2 V−1 s−1  
[16, 125, 126, 186, 187, 189, 189]. The mobility of diamond 
has mostly been measured in boron-doped samples and room-
temperature values range from 1450 to 3700 cm2 V−1 s−1 
[165, 167, 168, 174, 175, 355]. In this case the calculations 
yielded 1830 cm2 V−1 s−1 [169] and 2500 cm2 V−1 s−1 [69]. 
We could not find reports of electron mobility in n-type dia-
mond. The lowest mobility among the three-dimensional bulk 
semiconductors considered here is for holes in wurtzite GaN, 
with a measured value of approximately 30 cm2 V−1 s−1 [211, 
359] and calculations yielding 50 cm2 V−1 s−1 [200].

In the case of 2D materials there are fewer experimental 
data to compare with, as discussed in section 4.2. Apart from 
graphene, whose large mobility is off the scale of figure 19, 
MoS2 is the 2D semiconductor which has most intensely been 
investigated in experiments. The measured mobility of MoS2 
ranges from 40 to 200 cm2 V−1 s−1 [316–318, 320], while the 
calculations span the 130 to 410 cm2 V−1 s−1 range [62, 89, 
105, 272, 280, 291, 321]. For this and other 2D materials, it 
appears that calculations tend to lie above the experimental 
ranges, as shown in figure 19. This trend could be a conse-
quence of the fact that scattering mechanisms other than EPI 
are not included in the calculations or that the field is still 
relatively young and the gap between experiment and theory 
will gradually close as we move forward.

Overall we find the calculated mobilities from the ab initio 
solution to the BTE to be in close agreement with experiment. 
Typically calculated values are close to the upper end of the 
range of experimental data, although in some cases (such as 
the hole mobility of silicon, GaN, and MAPbI3) the calcul
ations overestimate the measurements. One obvious reason 
for this overestimation is that only the scattering of electrons 
by phonons is included in the theory. Additional scattering 
mechanisms, such as defect and ionized-impurity scattering, 
can further lead to a reduction of the mobility. In addition, 
we note that the EPI matrix elements computed within DFPT 
are usually underestimated due to the band gap problem [129, 
130]. Therefore, everything else being kept the same, one 
would expect a reduced mobility from using EPI matrix ele-
ments evaluated with hybrid functionals or GW calculations. 
However, many-body corrections to the electronic band struc-
ture might counterbalance this effect, hence it is difficult to 
predict the magnitude and sign of the changes to the mobility 
caused by many-body corrections to local or semilocal DFT 
functionals.

As expected, the hole mobility is smaller than the electron 
mobility. Indeed, conduction-band electrons tend to be more 
mobile than valence band electrons due to the latter being typ-
ically more strongly bound. This is usually connected with the 
fact that the valence band wavefunctions have a bonding char-
acter, while the conduction-band ones have an anti-bonding 
character, which also leads to lower electron effective masses 
than hole effective masses [353, 367].

From this review it emerges that an accurate description 
of EPI is critical to correctly interpret experimental data. 
Simplified models based on constant scattering rates or mod-
els that include only portions of the EPI like acoustic-defor-
mation potential, optical-deformation potential, piezoelectric 
scattering, or Fröhlich phonon scattering are certainly useful 
to rationalize trends, but they can lead to quantitatively (and 
seldom qualitatively) incorrect predictions, as emphasized 
recently [157]. As a guideline, in table 2 we provide an esti-
mate of the typical uncertainties in current calculations of 
mobility, in order of magnitude. The entire theory detailed in 
section 3 relies on an unbiased, ab initio description of the EPI 
and should be preferred over empirical models when address-
ing quantitatively predictive mobility calculations.

5.  New directions and opportunities

5.1.  Spin transport

Understanding spin equilibration and spin transport has a 
direct impact on the developement of many devices, ranging 
from spin field-effect transistors [368], spin filters [369], and 
spin diodes [370] to spin qubits [371]. The SOC is a destruc-
tive force for spin coherence but can also lead to interesting 
phenomena like the spin Hall effect [372] or weak antilocaliza-
tion [373]. In materials lacking inversion symmetry, the bands 
can undergo a Rashba splitting, with the spin orientation of 
the electrons in the split bands rotating in opposite directions 

Table 2.  Estimated impact of various approximations made when 
computing the mobility including the self-energy relaxation time 
approximation (SERTA) or the constant self-energy relaxation 
time approximation (cSERTA) to the Boltzmann transport 
equation (BTE) and the approximation of the electron–phonon 
coupling (EPC) at the density functional theory (DFT) level rather 
than the many-body perturbation theory (MBPT) one.

Approximation Impact (%)

DFT bands instead of MBPT bands 1–20 [60, 125]
Neglecting spin–orbit coupling 1–50 [60, 126]
BTE-SERTA instead of self-consistent 
BTE

10–50 [126, 200]

DFT EPC instead of MBPT EPC 10–50 [130, 132]
Approximation of parabolic and iso-
tropic bands

1–100 [118]

BTE-cSERTA instead of self-consistent 
BTE

10–1000 [239, 354]

Brillouin zone sampling 10–1000 [170]
Reduced set of phonons 10–10 000 [267, 308]
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around the band extrema [374]. In the case of materials with 
a strong Rashba splitting, the electrons can experience spin-
momentum locking, which can prevent electron–phonon 
backscattering [375]. This suppression has been reported in 
scanning-tunneling-microscopy experiments [376] and gate-
controlled spin-valley locking of resident carriers was mea-
sured in monolayer WSe2 using time-resolved mesurements 
of the Kerr rotation [377]. This field of study has been coined 
spin-orbitronics and is a specialized branch of spin transport.

Spin decoherence mainly results from the Elliott–Yafet 
(EY) and Dyakonov–Perel (DP) spin relaxation mechanisms 
[172]. The EY mechanism is based on the fact that a periodic 
lattice-induced SOC is modified by phonons and can directly 
couple to the spin-up and spin-down states of the electrons. 
The associated spin relaxation rate τs due to phonon scattering 
can be estimated by integrating the spin-flip Eliashberg func-
tion defined as

α2
s F(ω) =

1
DOS2(εF)

∑
mnν

∫
d3q
ΩBZ

∫
d3k
ΩBZ

|gm↑n↓ν(k, q)|2

×δ(ω − ωqν)δ(εF − εm↑k+q)δ(εF − εn↓k),
�

(99)

where gm↑n↓ν(k, q) denotes the spin-resolved electron–pho-
non matrix element and DOS(εF) is the density of states at 
the Fermi level εF [171]. In the case of the DP mechanism, 
if one considers degenerate electrons with an isotropic band-
structure, the spin relaxation rate of conduction band electrons 
with energy ε is given by [378]

1
τDP = γτ(ε)α2 ε3

�2Eg
.� (100)

Here, γ  is a constant that depends on the type of phonon 
involved, α is the SOC strength, τ  the energy-dependent elec-
tron–phonon relaxation rate, and Eg the band gap energy. In 
both cases, the spin coherence time will be long if the SOC 
is small and the band gap is large. However, in the case of 
the EY mechanism, the spin coherence time will be long if 
the electron–phonon coupling is small, whereas for the DP 
mechanism, the faster the momentum relaxation, the slower 
the spin dephasing. This is due to the fact that the EY effect 
happens during the collision with a scattering center while the 
DP effect takes place in-between collisions (see figure 20).

An additional benefit of implementing the spin-resolved 
electron–phonon matrix elements gm↑n↓ν(k, q) in a public 
first-principles code will be to enable an evaluation of equa-
tion  (40) including the spin degree of freedom, which will 

allow the computation of transport properties with spin. 
Indeed, some decay channels can become forbidden due to 
the orientation of the spins and this is expected to significantly 
increase the mobility.

In terms of existing first-principles works on spin deco-
herence, relatively few exist up to now. Restrepo and Windl 
[170] studied the spin relaxation time of silicon, graphite, and 
diamond in 2012 using the Quantum ESPRESSO software 
suite [209], considering only the EY-dominated temperature 
regime; they found a relaxation time of about 5 ns for graphite 
and silicon and a much longer relaxation time of 180 ns for 
diamond. In 2014, Kang and Choi [379, 380] computed the 
temperature dependence of the electron-spin relaxation rate 
due to piezoelectric phonon scattering in GaAs and found a 
good agreement with experiment. Recently, Park et al [381] 
studied the spin relaxation time due to the EY mechanism in 
silicon and diamond. They computed an intrinsic spin relaxa-
tion time of 2.3 µs and 4.9 ns at room temperature in diamond 
and silicon, respectively.

5.2.  Carrier mobility in topological materials

Topological insulators (TIs) attracted considerable attention 
owing to the many new opportunities offered by the topologi-
cal nature of their electronic wavefunctions and band struc-
tures [382–384]. These materials are gapped in the bulk, 
hence bulk electrons cannot conduct electricity; however, the 
surfaces of 3D TIs or the edges of 2D TIs support gapless 
conducting states that are protected by time-reversal symme-
try (TRS) [385–391]. The surface/edge states of TIs are spin-
nondegenerate and exhibit spin-momentum locking, so that 
unless the TRS is broken, elastic backscattering of electrons is 
not allowed. Due to this symmetry protection, the surface or 
edge states of TIs are highly conducting channels for charge 
and spin transport. At low temperature, the absence of back-
scattering of electrons in the edge states of 2D TIs leads to a 
spin-polarized quantum conductance G  =  2e2/h [392, 393]. If 
transport in the ballistic regime can be maintained at device 
operation temperature, spin-polarized currents with very little 
dissipation can be generated on the surfaces of 3D TIs and at 
the edges of 2D TIs, which has potential implications for spin-
tronics applications. Furthermore, the surface states of 3D TIs 
exhibit many exotic quantum mechanical properties originat-
ing from the helically spin-polarized Dirac fermions, which 
could be used to enable fault-tolerant quantum computing 
[394]. A wide range of both 3D and 2D TIs have so far been 
theoretically proposed and experimentally realized [384].

In terms of charge transport in TIs, it should be emphasized 
that, while single-particle elastic backscattering by perturba-
tions that preserve TRS is forbidden, inelastic scattering via 
electron–electron interaction [385, 395] and EPI [396] is still 
possible. These mechanisms give rise to a finite conductiv-
ity and a temperature-dependent deviation from the quantized 
conductance [385, 395]. For the 2D surface states of 3D TIs, 
in addition to the aforementioned inelastic scattering pro-
cesses, elastic scattering at an angle less than π is also pos-
sible. Furthermore, backscattering from TRS-breaking defects 
such as magnetic impurities is not symmetry-protected. If the 

Figure 20.  Schematic representation of the Elliott–Yafet and 
Dyakonov–Perel spin relaxation mechanisms. The yellow dots 
denote an electron before and after scattering from a scattering 
center (red dot).
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size of a TI sample is small enough such that the wavefunc-
tions on opposite surfaces or edges overlap, inter-edge (in 2D) 
or inter-surface (in 3D) scattering can occur. All these intrinsic 
and extrinsic scattering sources will limit the conductivity and 
mobility of the surface and edge states at finite temperature. 
Indeed, experiments on Bi2Se3 demonstrated that topological 
protection does not always result in high mobilities [397–399].

Due to the spin-momentum locking of the surface/edge 
states in TIs, a finite electron mean free path corresponds to an 
equal and finite spin diffusion length [400]. Hence, the com-
putation of the carrier lifetime and mobility is not only rele-
vant for potential electronics applications that exploit the high 
conductivity of surface/edge states, but also for spintronics 
applications that exploit the spin degrees of freedom of charge 
carriers, as discussed in section 5.1. Future developments of 
first-principles methods for computing the carrier mobility 
and transport properties of TI surface/edge states will need 
to treat the effects of EPI, electron–electron interactions, and 
impurity/defect scattering by considering the charge and spin 
degree of freedom on an equal footing. Formalisms that go 
beyond the BTE may also prove necessary in order to capture 
the quantum coherence effects of the Dirac fermions in the 
ballistic transport regime [401–403]. The availability of such 
first-principles transport approaches would enable the quanti-
tative study of coupled charge and spin transport in realistic TI 
systems, which will be useful for the development of practical 
spintronics and other applications.

In addition to the study of surface and edge states, it should 
be emphasized that the bulk transport properties of TIs are 
interesting and important in their own right. This is because 
the contribution from bulk states to the conductance is almost 
always present at finite temperature, as most TIs are small 
bandgap semiconductors with thermally populated charge 
carriers, and the unintentional doping from defects and impu-
rities is difficult to avoid. A better understanding of bulk trans-
port would help disentangle the contributions from bulk and 
surface states to the overall charge transport of TIs. What is 
perhaps even more interesting, is that most TI materials con-
tain heavy elements and exhibit strong SOC, which results in 
band inversion and highly non-parabolic bulk band disper-
sions. The manifestation of such band structures and strong 
SOC effects on the bulk carrier dynamics is an intriguing topic 
that has only started to be explored from first principles [404]. 
In this respect, it is worth mentioning that many TIs, such 
as bismuth antimony (Bi1−xSbx), bismuth telluride (Bi2Te3), 
antimony telluride (Sb2Te3), and bismuth selenide (Bi2Se3) 
[405–408] are also excellent thermoelectric materials [409]. 
It is anticipated that a deeper understanding of bulk carrier 
transport in TIs could also lead to new insights that will enable 
the design of better thermoelectrics, in addition to electronics 
and spintronics applications.

5.3.  Berry phases in carrier transport

For a quantum system described by a Hamiltonian Ĥ(R), where 
R  is a set of parameters that parameterize the Hamiltonian, 

the adiabatic evolution of an eigenstates |n(R)〉 along a loop 
C in parameter space will acquire a gauge-invariant, geomet-
ric phase factor exp[iγn(C)], in addition to a dynamical phase 
factor [61, 410]. This geometric phase γn(C) is known as the 
Berry phase. The Berry phase can be written as a loop integral 
in parameter space [61]:

γn(C) =
∮

C
dR · An(R),� (101)

where An(R) is a vector-valued function called the Berry con-
nection or the Berry vector potential

An(R) = i〈n(R)| ∂

∂R
|n(R)〉.� (102)

From the Berry vector potential, the Berry curvature can be 
defined. In a 3D parameter space, the curvature is given by

Ωn(R) =
∂

∂R
×An(R).� (103)

Based on Stokes’ theorem, the Berry phase can be written in 
terms of the surface integral of the Berry curvature:

γn(C) =
∫

S
dS ·Ωn(R).� (104)

For electrons in crystalline solids, the cell-periodic part of the 
Bloch states |nk〉, |unk〉 = e−ik·r|nk〉, are the eigenstates of the 
Bloch Hamiltonian Ĥk = e−ik·rĤeik·r, where Ĥ  is a single-
particle Hamiltonian that is crystal periodic. The Berry con-
nection of band n is then given by

An(k) = i〈unk|
∂

∂k
|unk〉.� (105)

Based on equation  (103), the Berry curvature Ωnk is then 
given by

Ωnk = i
〈
∂unk

∂k

∣∣∣∣×
∣∣∣∣
∂unk

∂k

〉
,� (106)

where we used the fact that the curl of a gradient vanishes 
identically. The Berry curvature can also be written as a sum-
mation over the eigenstates [61, 257], which is more conve-
nient for numerical calculations:

Ωnk = i�2
∑
m�=n

vnmk × vmnk

(εnk − εmk)2 ,� (107)

where εnk denotes the band energy and vmnk = 〈mk|p̂/m|nk〉 
are the matrix elements of the canonical velocity operator.

The Berry phase has a wide range of effects on the elec-
tronic properties of materials [61]. In particular, the Berry 
curvature behaves like an effective magnetic field in momen-
tum space and can directly influence the electron dynamics. 
A salient example in carrier transport is that the Berry cur-
vature introduces an anomalous velocity term [61] into the 
equations of motion of the Bloch electrons [411]. This term is 
responsible for the anomalous Hall effect [412], which refers 
to the appearance of a large spontaneous Hall current in a 
ferromagnet when an external electric field is applied. First-
principles calculations of the DC anomalous Hall conductivity 
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in ferromagnets based on the Berry curvature formalism have 
been carried out by various authors [413–416].

Aside from the anomalous Hall conductivity, it should be 
noted that most existing transport calculations that neglect 
the anomalous velocity term were in reasonable agreement 
with experiment. This should not be surprising, because for 
crystals that possess both time-reversal symmetry and spatial 
inversion symmetry, the Berry curvature vanishes throughout 
the Brillouin zone [61]. Moreover for crystals that possess 
only time-reversal symmetry, the integral of the Berry curva-
ture over the Brillouin zone vanishes. However, if the time-
reversal symmetry is broken by magnetic ordering or if the 
spatial inversion symmetry is absent in the crystal structure 
or broken by external perturbations, the Berry phase effect 
becomes important. One example is the case of biased bilayer 
graphene, in which a non-trivial Berry phase arises from the 
pseudospin and yields a Zeeman splitting of the energy bands 
[417]. The recent rise of the field of valleytronics [418, 419] 
originates from the observation that certain transition-metal 
dichalcogenides lack inversion symmetry in their monolayer 
form and possess inequivalent valleys in their electronic struc-
ture, with the associated Berry curvatures of equal magnitude 
but opposite sign. Such a valley-dependent Berry curvature can 
be combined with valley-selective carrier pumping [420–422]  
to realize devices that use the valley degree of freedom to 
encode and process information. Self-consistent, first-prin-
ciples calculations of charge and spin transport in materials 
for valleytronics that take into account both the Berry phase 
effect and various intra- and intervalley carrier scattering 
mechanisms present both an opportunity and a challenge for 
transport simulations.

In addition to modifying the carrier velocity, the Berry 
phase has profound effects on the scattering and lifetime of 
charge carriers. Indeed, it has been shown that for charge 
carriers, a Berry phase change of π under the rotation of the 
electron wavefunction in k-space leads to the absence of 
backscattering [423]. This effect contributes to the large car-
rier mobility of graphene and carbon nanotubes. As ab initio 
calculations can provide abundant and detailed information on 
the Berry curvature associated with the electronic structure 
and microscopic carrier scattering events, more insights can 
be gained from the study of the correlation between the Berry 
phase and the carrier mobility. This also suggests that in the 
future, the Berry phase of materials might be engineered to 
optimize charge and spin transport.

5.4. Transport in correlated electron systems

Correlated electron systems are typically transition metal-
based compounds with partially filled d and f  shells, where 
electrons occupy orbitals with narrow spatial extension. 
Electrons in these spatially confined orbitals experience strong 
Coulomb repulsion and their behavior cannot be described 
accurately using a mean-field theory of independent particles. 
The complex competition between the charge, spin, and orbital 
degrees of freedom in correlated electron systems gives rise to 
a multitude of exotic phenomena and transport properties, such 

as high-temperature superconductivity [424], metal-insulator 
transitions (MITs) [425, 426], and colossal magnetoresistance 
[427, 428]. These properties make correlated-electron mat
erials promising candidates for applications in new generations 
of electronics and spintronics. A growing effort is focused on 
exploring novel device applications of correlated oxide mat
erials that exhibit MITs under external fields [429, 430]. Field-
effect transistors based on an electrostatic doping-induced MIT 
in correlated materials such as SrTiO3 [431], KTaO3 [432], 
La2CuO4 [433], and VO2 [434, 435] have been explored exper
imentally. These kinds of Mott field-effect transistors exploit 
the sudden change of the free carrier density across the MIT, 
which changes the channel conductance by orders of magni-
tude. This could lead to devices with lower power consump-
tion and higher switching frequency than silicon-based devices 
[430]. The measured carrier mobilities of correlated-electron 
materials, however, are typically small (less than 10 cm2 V−1 s−1  
at room temperature), consistent with the localized nature of 
the d and f  orbitals and the associated narrow bands and heavy 
effective masses.

Understanding and predicting the transport properties of 
correlated systems from first principles constitutes an out-
standing challenge for materials modeling. While much pro-
gress has been made in the development of first-principles 
methods for computing the mobility of charge carriers in 
materials that do not exhibit strong electronic correlation, 
these methods are mostly based on DFT and DFPT with a 
semi-local description of exchange and correlation. However, 
DFT fails for strongly correlated systems such as Mott insula-
tors [425, 426], due to its tendency to delocalize electrons. To 
better account for the onsite Coulomb interaction in correlated 
insulators, the DFT  +  U method [436] is usually employed, 
which combines semi-local DFT with a Hubbard U correction 
for the onsite Coulomb interaction. The DFT  +  U method is 
computationally efficient and has been successful in describ-
ing the insulating ground states and the long-range magnetic 
order of many correlated insulators. It is expected that com-
bining DFT  +  U with ab initio transport methods will lead to 
insights on the transport properties of certain classes of cor-
related-electron systems. Indeed, a growing amount of stud-
ies indicate that the inclusion of electronic correlation effects 
within the DFT  +  U framework corrects the underestimation 
of the EPI in correlated-electron systems in semi-local DFT 
[41, 437–439], resulting in better agreement with experiments.

In addition to the DFT  +  U method, two other approaches 
have been successful in improving the description of the 
electronic structure of correlated systems: hybrid functionals  
[440, 441] and the GW method [276]. Hybrid functionals incor-
porate a fraction of the exact exchange energy from Hartree–
Fock theory into the semi-local DFT exchange-correlation 
energy, while the GW method treats nonlocal and dynamical 
electron–electron correlations within many-body perturbation 
theory. Both approaches lead to a more accurate determination 
of the electronic band gap and the improved description of the 
screening properties enables more accurate calculations of the 
EPI [41]. Existing applications of hybrid functionals and the 
GW method to calculate electron–phonon-related properties 
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have so far mainly focused on a more accurate description of 
the superconducting transition temperature in correlated sys-
tems [129, 132, 442]. It is however expected that the same 
methods could also improve the accuracy of carrier mobility 
calculations in correlated-electron systems.

The computational efficiency of the DFT  +  U method has 
made it a popular choice for first-principles calculations of 
correlated materials. However DFT  +  U represents a static 
approximation to electronic correlation in solids and as a 
result it is not capable of describing correlated metallic states 
as well as the dynamic transfer of spectral weight across the 
MIT. These challenges have been addressed with the develop-
ment of dynamical mean field theory (DMFT) [443, 444]. In 
essence, DMFT maps a lattice problem of interacting elec-
trons onto a self-consistent single-site model in which a single 
impurity atom interacts with a reservoir of noninteracting elec-
trons that represent the rest of the crystal. Electrons may hop 
in and out of the impurity site via the hybridization between 
electrons of the atoms and the bath. This mapping becomes 
exact in the limit of a high number of spatial dimensions or 
coordination number of the lattice. DMFT has been combined 
with band structure methods [445] such as DFT within the 
local density approximation (LDA), leading to the so-called 
LDA+DMFT scheme [446]. The LDA+DMFT method has 
been rather successful for understanding the electronic struc-
ture and phase evolution of many correlated-electron mat
erials, such as doped Mott insulators [447], heavy-fermion 
systems [448], and iron-based superconductors [449, 450]. 
Developing ab initio transport approaches based on DMFT 
could lead to significant advances in the accuracy of first-prin-
ciples calculations of carrier mobilities in strongly correlated 
electron systems. Finally, we also mention the constrained 
density functional perturbation theory (cDFPT) approach, in 
which a combination of DFT and model calculations are used 
to compute the EPC in strongly correlated materials [451].

6.  Summary and outlook

In this manuscript we presented a summary of the current 
state-of-the-art theoretical description of electronic transport 
in solids as well as an overview of the computational stud-
ies of several semiconductors and future challenges for first-
principles calculations.

On the theory side, we first derived the Boltzmann transport 
equation from a non-equilibrium Green’s function formalism. 
Then we discussed some common approximations to the lin-
earized Boltzmann transport equation, namely the momentum 
relaxation time approximation, the self-energy relaxation time 
approximation, and the lowest-order variational approximation. 
In each case we made an effort to identify the key approx
imations involved. For completeness we provided a brief dis-
cussion of the Kubo formalism as an alternative approach. In 
figure 4 we made an attempt to establish the relations between 
the various approximations in use in the literature and where 
they stand in terms of accuracy and computational cost.

On the front of computational methods, we provided a 
brief overview of the existing implementations in table 1. We 

then summarized existing computational studies on the trans-
port properties of several three-dimensional and two-dimen-
sional semiconductors. In particular, we reviewed works on 
silicon, diamond, GaAs, GaN, β-Ga2O3, MAPbI3, graphene, 
silicene, phosphorene, MoS2, and InSe. In all cases, we iden-
tified the integration over all possible phonon momenta in 
the Boltzmann transport equation  as the key challenge for 
obtaining accurate results and we highlighted the importance 
of using very fine wavevector grids in the Brillouin zone, as 
provided for example by Wannier interpolation. A comparison 
of the most recent calculations of carrier mobility with experi-
ments revealed that current ab initio methods are fairly pre-
dictive and that the computed mobilities typically lie near 
the upper end of the experimental range in many cases. In 
the case of bulk three-dimensional materials the agreement 
between theory and experiments is impressive, while for 2D 
materials some discrepancies remain. It is expected that by 
upgrading the computational methodology from standard den-
sity function theory to higher-level approaches such as hybrid 
functionals, GW, and dynamical mean field theory and by 
improving at the same time band structures, phonon disper-
sions, and electron–phonon matrix elements, the gap between 
theory and experiment will close in the near future.

Finally, we discussed a few possible avenues for future 
research in the field of first-principles calculation of elec-
tronic transport. One of the most promising areas is the field 
of quantum materials, in particular topological insulators, and 
the related field of spintronics. These calculations will require 
an accurate description of band topology, Berry curvature, 
and electron–phonon interactions in the presence of spin–
orbit coupling. While these aspects have not been explored in 
great detail until now, they do not pose particular challenges 
from a computational standpoint. Another interesting class of 
systems which will require further theoretical and computa-
tional developments is provided by strongly correlated sys-
tems. Here, the accurate description of the electronic structure 
and of electron–phonon interactions remain challenging, but 
much progress is being made in this area. Therefore we expect 
exciting new developments soon. As many-body techniques 
become more widely used in electronic-structure calculations, 
we can expect that in the near future we will be able to explore 
transport properties from a many-body perspective, for exam-
ple starting from the Kadanoff–Baym approach summarized 
in section 2.1.

Overall, these seem to be exciting times for computational 
research on the transport properties of advanced materials and 
we hope that this review will provide a useful reference frame 
for future work in this area.
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Appendix A.  Equation of motion for the lesser 
Green’s function

Here we provide more details about how to obtain equa-
tion  (15) from Dyson’s equation  on the contour, equa-
tion  (14). From the definitions of the Green’s function on 
the contour equation  (6), the contour ordering symbol, and 
the ordering of the three parts of the contour, it follows that 
we can identify seven unique types of Green’s functions, 
depending on which part of the contour the two arguments z1 
and z2 are located on:

G>(r1, r2; t1, t2) = G(r1, r2; z1 = t1+, z2 = t2−),� (A.1)

G<(r1, r2; t1, t2) = G(r1, r2; z1 = t1−, z2 = t2+),� (A.2)

GT(r1, r2; t1, t2) = G(r1, r2; z1 = t1−, z2 = t2−),� (A.3)

GT(r1, r2; t1, t2) = G(r1, r2; z1 = t1+, z2 = t2+),� (A.4)

G�(r1, r2; τ , t) = G(r1, r2; z1 = t0 − iτ , z2 = t),� (A.5)

G�(r1, r2; t, τ) = G(r1, r2; z1 = t, z2 = t0 − iτ),� (A.6)

GM(r1, r2; τ1, τ2) = G(r1, r2; z1 = t0 − iτ1, z2 = t0 − iτ2),� (A.7)

where t1+(−) denotes the time t1 on the contour branch γ+(−) 
from figure 1. We take the limit t0 → −∞, which corresponds 
to the approximation that the system has thermalized with 
the surrounding heat bath in the distant past and that there is 
no correlation between processes during the thermalization 
and at times we are interested in. Mathematically, it can be 
shown using the Riemann–Lebesgue lemma that in this limit 
G�,� → 0. This leads to the function GM becoming decoupled 
from the other Green’s functions. The remaining four functions 
can be written explicitly in terms of the electron field operators:

G>(r1, r2; t1, t2) =
−i
�

〈
ψ̂H(r1, t1)ψ̂

†
H(r2, t2)

〉
,� (A.8)

G<(r1, r2; t1, t2) =
i
�

〈
ψ̂†

H(r2, t2)ψ̂H(r1, t1)
〉

,� (A.9)

GT(r1, r2; t1, t2) =θ(t1 − t2)G>(r1, r2; t1, t2)

+θ(t2 − t1)G<(r1, r2; t1, t2),
�

(A.10)

GT(r1, r2; t1, t2) =θ(t1 − t2)G<(r1, r2; t1, t2)

+θ(t2 − t1)G>(r1, r2; t1, t2),
�

(A.11)

where θ(t) denotes the Heaviside step function, and G< dif-
fers by a sign from G> due to the anti-commuting nature 
of the electron field operators. The four functions above are 

commonly referred to as the greater, lesser, time-ordered, 
and anti-time-ordered Green’s functions. It is convenient to 
replace the latter two functions by the two linear combinations

GR(r1, r2; t1, t2) =GT(r1, r2; t1, t2)

− G<(r1, r2; t1, t2),
�

(A.12)

GA(r1, r2; t1, t2) =G<(r1, r2; t1, t2)

− GT(r1, r2; t1, t2),
�

(A.13)

called the retarded and advanced Green’s function, respec-
tively. They can also equivalently be written as

GR(r1, r2; t1, t2) =θ(t1 − t2)
[
G>(r1, r2; t1, t2)

− G<(r1, r2; t1, t2)
]
,

�
(A.14)

GA(r1, r2; t1, t2) =θ(t2 − t1)
[
G<(r1, r2; t1, t2)

− G>(r1, r2; t1, t2)
]
.

�
(A.15)

With these definitions, we can write down Dyson’s equa-
tion for z1 = t1,− and z2 = t2,+. Using the Langreth rules [53, 
452], we find:

G<(1, 2) = G<
0 (1, 2)

+

∫
d3

∫
d3r4

[
G<

0 (1, 3)Σδ(r3, r4; t3)GA(r4, r2; t3, t2)

+ GR
0 (1, 3)Σδ(r3, r4; t3)G<(r4, r2; t3, t2)

]

+

∫
d3

∫
d4
[
G<

0 (1, 3)ΣA(3, 4)GA(4, 2)

+ GR
0 (1, 3)Σ<(3, 4)GA(4, 2)

+ GR
0 (1, 3)ΣR(3, 4)G<(4, 2)

]
,

�

(A.16)

where the definitions of the different component functions of 
Σ follow those for G, and we allowed for the possibility of a 
time-diagonal self-energy Σδ(r1, r2; t). The latter arises, for 
example, from the leading-order coupling to a time-dependent 
external field or from the Hartree electron self-energy. We also 

use the notation 1 = (r1, t1) and 
∫

d1 =
∫ +∞
−∞ dt1

∫
d3r1. Note 

that in the case of the unperturbed Green’s function G0, as 
defined in equation  (12), the thermal and quantum average 
〈. . .〉 is evaluated with the exactly diagonalizable weight oper-
ator exp(−Ĥ0/kBT)/Z0; furthermore, the field operators in 
G<,>

0  are in the interaction picture, ψ̂I(r, t) = e
i
� Ĥ0tψ̂(r)e

−i
� Ĥ0t, 

instead of the Heisenberg picture.
In order to simplify equation (A.16) and arrive at an equa-

tion of motion for G<, we introduce the inverse of the non-
interacting Green’s function

G−1
0 (1, 2) = δ(1, 2)

[
i�

∂

∂t2
− h0(r2,−i�∇2)

]
,� (A.17)

where h0 was defined in equation (9). We can then make use 
of the fact that

∫
d2 G−1

0 (1, 2)G>,<
0 (2, 3) = 0,� (A.18)

Rep. Prog. Phys. 83 (2020) 036501



Review

39

∫
d2 G−1

0 (1, 2)GR,A
0 (2, 3) = δ(1, 3),� (A.19)

which follows directly from the definitions of Ĥ0 and h0, from 
∂θ(t − t′)/∂t = δ(t − t′), and from the anti-commutation 
relations for the electronic field operators:

{
ψ̂(r1), ψ̂(r2)

}
=

{
ψ̂†(r1), ψ̂†(r2)

}
= 0,� (A.20)

{
ψ̂(r1), ψ̂†(r2)

}
= δ(3)(r1 − r2).� (A.21)

The latter also hold at equal times in the interaction and 
Heisenberg pictures.

We now multiply both sides of equation (A.16) from the left 
with G−1

0  from equation (A.17), make use of equations (A.18) 
and (A.19), and integrate over (r1, t1). After relabeling  
some space-time coordinates we find that equation  (A.16) 
becomes:
∫

d3 G−1
0 (1, 3)G<(3, 2) =

∫
d3r3Σ

δ(r1, r3; t1)G<(r3, r2; t1, t2)

+

∫
d3

[
Σ<(1, 3)GA(3, 2) + ΣR(1, 3)G<(3, 2)

]
.

�

(A.22)

We note that equation (A.16) also holds if G0 and G are inter-
changed in the terms involving the self-energy on the right-
hand side. We can obtain a similar equation to equation (A.22) 
by applying G−1

0  from the right to this interchanged version of 
equation (A.16) and obtain:
∫

d3G<(1, 3)G−1
0 (3, 2) =

∫
d3r3G<(r1, r3; t1, t2)Σδ(r3, r2; t2)

+

∫
d3

[
G<(1, 3)ΣA(3, 2) + GR(1, 3)Σ<(3, 2)

]
.

�

(A.23)

Finally, we subtract equation (A.23) from (A.22) and evalu-
ate the resulting equation  at equal times t1 = t2 = t , since 
only the time-diagonal G< is needed to calculate the current 
density, equation (5). Using the definitions of G−1

0 , GR,A, and 
ΣR,A, and the multi-dimensional chain rule for the derivative 
∂/∂t then yields the Kadanoff–Baym equation of motion for 
G<, equation (15).

Appendix B.  Current–current correlation function 
on the Keldysh–Schwinger contour

Within the Keldysh–Schwinger contour formalism, we 
calculate the linear response of the current density to an 
external electric field by expanding the exponential factor 

exp[−i/�
∫
γ

dz Ĥ(z)] in powers of the external Hamiltonian. 
To linear order in Ĥext(z), the expectation value of the current 
density reads

J(r, z) =
1
Z

tr
{
TCe−

i
�
∫
γ

dz′ Ĥ(z′)Ĵ(r, z)
}

�
〈
Ĵ(r, z)

〉
eq −

i
�

∫

γ

dz′
{〈

Ĵ(r, z)Ĥext(z′)
〉

eq

�

(B.1)

−
〈
Ĵ(r, z)

〉
eq

〈
Ĥext(z′)

〉
eq

}
,� (B.2)

where we introduced the short-hand notation

〈
Ô1(z1)Ô2(z2)

〉
eq =

1
Zeq

tr
{
TCe−

i
�
∫
γ

dz [Ĥeq]z Ô1(z1)Ô2(z2)
}

,
�

(B.3)

and identified the partition function without external fields as 
Zeq = tr{exp[−Ĥeq/kBT]}. Note that the third term in equa-
tion (B.2) arises from an expansion of the partition function Z. 
This can be accomplished by writing it in the form

Z = tr
{

e−βĤ(t0)
}
= tr

{
TCe

−i
�

∫
γM

dz Ĥ(z)
}

,� (B.4)

= tr
{
TCe

−i
�

∫
γ

dzĤ(z)
}

,� (B.5)

where we made use of the fact that, in the absence of any other 
operators, the exponentials involving the integrals along γ− 
and γ+ cancel each other. Retaining only terms linear in the 
vector potential A(z), the expectation value of the total current 
density in the Cartesian direction α on the contour reads

Jα(r, z) =
〈
[Ĵ(p)(r)]z

〉
eq +

〈
Ĵ(d)(r, z)

〉
eq

+
i
�
∑
β

∫

γ

dz′ Aβ(z′)
∫

d3r′ J (p)
α,β(r, r′; z, z′),

�
(B.6)

where

J (p)
α,β(r, r′; z, z′) =

〈
[Ĵ(p)

α (r)]z[Ĵ
(p)
β (r′)]z′

〉
eq

−
〈
[Ĵ(p)

α (r)]z
〉

eq

〈
[Ĵ(p)

β (r′)]z′
〉

eq,
�

(B.7)

is the connected part of the current-current correlation func-
tion. To get an expression for the expectation value of the cur
rent density at time t, we evaluate equation (B.6) at z  =  t− or 
z  =  t+ , and obtain in both cases

Jα(r, t) = J(p)
0,α(r, t) +

e
m

Aα(t)�0(r, t)

+
i
�
∑
β

∫ +∞

−∞
dt′ Aβ(t′)J (p),R

α,β (r, r′; t, t′).
�

(B.8)

Here, we identified the expectation values of the current den-
sity and the charge density in the absence of external fields 
and furthermore identified the retarded component of the cur
rent-current correlation function as

J (p),R
α,β (r, r′; t, t′) = J (p)

α,β(r, r′; z = t−, z′ = t′−)

−J (p)
α,β(r, r′; z = t−, z′ = t′+),

�
(B.9)
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in analogy to the definition for the electronic Green’s function 
provided in appendix A.

Appendix C.  Kubo formula in the independent-par-
ticle approximation

The correlation function on the contour, equation (B.7), can 
be written in terms of the electron field operators as

J (p)
α,β(r, r′; z, z′) =− e2�2

m2 lim
r̃→r

r̃′→r′

∂

∂rα

∂

∂r′β{〈
[ψ̂†(r̃)]z[ψ̂(r)]z[ψ̂†(r̃′)]z′ [ψ̂(r′)]z′

〉
eq

−
〈
[ψ̂†(r̃)]z[ψ̂(r)]z

〉
eq

〈
[ψ̂†(r̃′)]z′ [ψ̂(r′)]z′

〉
eq

}
.

�

(C.1)

In the independent-particle approximation (IPA), the two-par-
ticle correlation function in the second line of equation (C.1) 
is approximated by the sum of two products of two one-parti-
cle correlation functions each, corresponding to the two pos-
sible pairwise pairings of the field operators. One of the two 
products is canceled by the term in the third line, so that the 
independent-particle version of the current-current correlation 
function reads

J (p)
α,β(r, r′; z, z′)

IPA
≈ −e2�4

m2

[ ∂

∂rα
G(r, r′; z, z′)

]

×
[ ∂

∂r′β
G(r′, r; z′, z)

]
,

�

(C.2)

where we accounted for an extra minus sign arising from the 
anti-commuting nature of the field operators. Here, the one-
particle Green’s function is understood to be defined with 
respect to the Hamiltonian Ĥeq. We expand the one-particle 
Green’s function in the basis of known eigenstates of Ĥ0, and 
retain only the diagonal terms:

G(r, r′; z, z′) ≈
∑

n

∫
d3k
ΩBZ

ϕnk(r)ϕ∗
nk(r

′)Gnk(z, z′).� (C.3)

This yields the following compact expression for the spatially 
integrated current-current correlation function in the IPA:

1
V

∫
d3r

∫
d3r′J (p)

α,β(r, r′; z, z′) ≈ e2�2

Vuc

×
∑
mn

∫
d3k
ΩBZ

vαmnkvβnmkGnk(z, z′)Gmk(z′, z),
�

(C.4)

where we identified the previously defined velocity matrix 
elements vα

mnk. We can then obtain the retarded part of the cur
rent-current correlation function in terms of the components 
of the one-particle Green’s functions defined in appendix A:

1
V

∫
d3r

∫
d3r′J (p)

α,β(r, r′; t, t′) ≈ e2�2

Vuc

∑
mn

∫
d3k
ΩBZ

vα
mnk

×vβnmk[G
R
nk(t, t′)G<

mk(t
′, t) + G<

nk(t, t′)GA
mk(t

′, t)].
�

(C.5)

Lastly, we use the spectral representation of the retarded, 
advanced, and lesser one-particle Green’s functions [52],

G<
nk(t, t′) =

i
�

∫
dωAnk(ω) f (�ω)e−iω(t−t′)� (C.6)

GR,A
nk (t, t′) =

1
�

∫
dω
2π

∫
dω′ Ank(ω

′)

ω − ω′ ± iη
e−iω(t−t′),� (C.7)

where η = 0+ denotes a positive infinitesimal, and Ank(ω) � 0 
is the electronic spectral function, to arrive at equation (82).
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