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Abstract – A collective behavior of resonant synchronization (RS) in an inhomogeneous network
is investigated and its function to retrieve information from encoding networks is proposed based
on the RS mechanism. We use modified Kuramoto phase oscillators to simulate normal neu-
rons in self-oscillation state, and investigate the collective responses of a fully connected neuronal
network to the stimulus signals when the network is in a critical state just below the synchro-
nization threshold. The stimulus driving on one node at resonant frequencies can stimulate the
unsynchronized rotators across the network into collective synchronized states locked to similar
frequencies, and thus recover the memorized locations through the synchronized patterns related to
the predetermined frequency distributions among the oscillators. This model suggests a potential
mechanism to explain how brain stores and retrieves information from resonant synchronization
patterns emerging from an inhomogeneous critical neuronal network stimulated by the resonant
external driving.

Copyright c© EPLA, 2020

Introduction. – The consciousness of human brain
and its memory mechanism are the most fascinating prob-
lems in physics and biology [1–3]. With the help of molec-
ular biology and brain magnetic resonance imaging (MRI),
neurobiologists have identified some physical structures
and collective dynamics of neurons in certain functional re-
gions [4]. The cerebral cortex has proved to be a complex
network of well-connected neurons working in a critical
state which can exhibit synchronized behaviors of neuron
firings induced by certain stimulus sources [5].

As synchronized patterns of neurons are involved in the
cognitive activities, different mathematical models were
proposed to understand the consciousness activities at
different space-time scales [6–8]. However, due to the
complexity of neuronal network, the collective behavior
(whole-brain dynamics) remains unclear and no efficient
analytical analysis is available on these multi-agent sys-
tems. Most dynamical simulations are limited to give
macroscopic properties of steady-state behaviors [9] or
the aberrant dynamics of neural activities [10]. Based on
the synchronized spatiotemporal patterns emerged in the
large-scale brain activities [11], we adopt the Kuramoto
network model [12,13], a typical microscopic model of
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globally coupled nonlinear rotators, to study the collec-
tive dynamics of neutrons working in self-sustained states
when a driving force is introduced. Many similar works
have been done to investigate the perturbation spread-
ing [14] and the pinning control [15] of the network with
continuous harmonic driving. However, our study focuses
on another aspect of driving problem and finds that the
Kuramoto network presents an enhanced synchronization
that can be explored to fulfill information retrieval from
an inhomogeneous critical network by resonant stimula-
tions [16–20]. By studying the synchronization of the
Kuramoto network with Pearson correlation coefficient, we
find that when the coupling strength between Kuramoto
oscillators (KOs) is just below the synchronization thresh-
old, the globally coupled KOs will synchronize even ONE
node of the network which is driven by a resonant external
driving. What we found in this paper probably suggests a
potential mechanism of memory encoding and retrieval in
a well-connected critical network with a resonant driving
scheme.

The resonant synchronization. –

Resonant synchronization in Kuramoto network. Af-
ter Huygens’ first observation of synchronized mo-
tion between two adjacent pendulum clocks in 1673,
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synchronization was proved to be a universal phenomenon
in nature and has been extensively studied in many
fields [21,22]. In recent years, the synchronized behav-
iors of neural activities have received widespread attention
and many physical models are proposed [23–30]. Here, we
adopt the Kuramoto model to study the resonant synchro-
nization effect and apply it to the memorized dynamics of
neuronal network. The Kuramoto model describes glob-
ally coupled phase oscillators which exhibit synchroniza-
tion behaviors when the coupling rate k reaches a critical
value kc [12,31]. In a two-node Kuramoto network, the
dynamical equations are

θ̇1 = ω1 +
k

2
sin(θ2 − θ1) + ξ̂1(t), (1)

θ̇2 = ω2 +
k

2
sin(θ1 − θ2) + ξ̂2(t), (2)

where each oscillator has its own eigenfrequency ω1 or ω2,
and k is their coupling rate. These equations can describe
two neutrons in their limit-cycle states with spiking phase
θi in a noisy background described by noise operator ξ̂i(t).
Then the relative spiking phase between two rotators is

δ̇θ = δω − k sin(δθ) + δξ̂(t), (3)

where δθ = θ2 −θ1, δω = ω2 −ω1 and δξ̂(t) = ξ̂2(t)− ξ̂1(t).
Here, we suppose a common white noise background with
a zero time-average mean-field effect of 〈δξ̂(t)〉 ≈ 0 due to
ξ̂1(t) = ξ̂2(t) = ξ̂(t) with 〈ξ̂(t)ξ̂(t′)〉 = ηδ(t − t′), and we
introduce a weak noise strength η in our simulations.

As eq. (3) gives a synchronized condition of k ≥ |δω|,
two direct ways are feasible to synchronization: increas-
ing coupling strength k and decreasing frequency devia-
tion δω. Here, we introduce external driving instead to
simulate network synchronization because mental activ-
ities (e.g., imagination or thinking) are always triggered
by successive signals of certain stimulations. Then the full
equations become [14]

θ̇1 = ω1 +
k

2
sin(θ2 − θ1) + Λ sin(Ωt− θ1) + ξ̂(t), (4)

θ̇2 = ω2 +
k

2
sin(θ1 − θ2) + ξ̂(t), (5)

where Λ is the driving strength, Ω the driving frequency
and ξ̂(t) the common background noise. In this case the
dynamics of the relative spiking phase will be

δ̇θ = δω − k sin δθ − Λ sin(Ωt− θ1) + δξ̂(t), (6)

where the noise δξ̂(t) can be neglected for a mean-field
analysis. Obviously, if the driving frequency Ω is far-off
detuned from any KOs, namely Ω � ωi, the contribution
of the driving term on the right-hand side of eq. (6) will
disappear for

∫
sin(Ωt − θ1)dt ≈ 0. Conversely, if Ω is

resonant with rotator 1, that is, Ω ∼ ω1, then eq. (6) goes
to eq. (3) due to Ωt ≈ θ1 for a small k, and kc changes
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Fig. 1: (a) The synchronization degree estimated by a long-
time analysis of C12 varies with respect to the external driving
frequency Ω. The eigenfrequencies of two rotators are ω1 =
0.2, ω2 = 0.21, and the coupling strength k = 0.008. Inset:
the relative phases of two rotators estimated by cos θ1 − cos θ2

sampled at driving frequencies of Ω/ω1 = 0.35 and Ω/ω1 = 1.
(b) Arnold tongue describing the synchronization region esti-
mated by C12. The upper tongue area represents the synchro-
nization without external driving, and the lower one is for the
case by adding the external driving with Λ = 1, Ω = 0.2 and
noise strength of η = 0.01.

a little. While if the driving frequency adjusts to Ω ∼ ω2
and Ωt ∼ θ2, eq. (6) becomes

δ̇θ ≈ δω − (k + Λ) sin δθ, (7)

which clearly gives a new critical coupling rate k′
c ≡

kc − Λ < kc under an in-phase resonant driving for Λ > 0.
Therefore, keeping the coupling rate k below the syn-
chronization threshold kc, i.e., the system is initially in a
nonsynchronous state, the oscillators will synchronize by
adding an external signal with a driving frequency close
to the eigenfrequencies of coupled rotators.

In fig. 1(a) we directly simulate this resonant synchro-
nization behavior through Pearson correlation coefficient
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C12(t) after a long time evolution. We calculate the cor-
relation of C12(t) in a time window of Δt > 1/min(ωi) for
a dynamical measure to estimate the degree of synchro-
nization between rotators 1 and 2. When two KOs are
completely synchronized or anti-synchronized, the coeffi-
cient C will be 1 or −1 [32]. Figure 1(b) clearly shows
that when the driving frequency is tuned near to their
eigenfrequencies, the system achieves an enhanced syn-
chronization with a weaker coupling k < kc. In order to
identify this resonant synchronization effect, the Arnold
tongues of synchronization are calculated in fig. 1(b) with
respect to the coupling rate k and the frequency ratio
ω1/ω2. We can see a clear decrease of critical coupling
of kc for resonant synchronization and an increase of syn-
chronous area by introducing the resonant driving.

Generally, a well-connected local network can be sim-
ulated by a group of N all-to-all coupled Kuramoto os-
cillators (KOs) and each of them can be described by a
complex wave function

ψl(t) = eiθl(t), l = 1, 2, . . . , N. (8)

The phases of the wave functions are governed by

θ̇l = ωl +
k

N

N∑

j=1

sin(θj − θl)+ξ̂(t). (9)

In order to study the collective dynamics of KOs, a collec-
tive wave packet is often introduced

Ψ(t) =
1
N

N∑

j=1

ψj(t) ≡ r(t)eiφ(t), (10)

which is a superposition of all the wave functions ψj , and
r(t) and φ(t) are the amplitude and phase functions of
the wave packet, respectively. Substituting eq. (10) into
eq. (9), we have

θ̇l = ωl + kr sin(φ− θl) + ξ̂(t). (11)

Therefore, we define the relative phases θ′
l = θl − φ and

the group phase of the wave packet satisfies a mean-field
equation

dφ
dt

= ω, (12)

where ω is the group frequency of the wave packet deter-
mined by the average frequency of all the wave components

ω =
1
N

N∑

j=1

dθj

dt
. (13)

In this case, eq. (11) becomes

θ̇′
l = (ωl − ω) − kr sin θ′

l, (14)

where we neglect the phase noises for a mean-time dynam-
ical analysis. When the phase locking of KOs occurs, the
relative phases must be θ̇′

l ≈ 0 and eq. (14) leads to

sin θ′
l ≈ ωl − ω

kr
, (15)

that is ∣∣∣∣
ωl − ω

kr

∣∣∣∣ ≤ 1. (16)

Therefore, the condition of a synchronized state for KOs
requires that the frequency deviations of the oscillators
meet

−|kr| ≤ ωl − ω ≤ |kr|. (17)

Now, if we introduce an external driving to one of the
oscillators α in the cluster of KOs, the dynamical equation
for the oscillator α will be

θ̇α = ωα + kr sin(φ − θα) + Λ sin(Ωt− θα) + ξ̂(t). (18)

For a resonant driving on oscillator α for Ω ≈ ω, a similar
derivation based on eq. (11) can give the synchronization
condition of the α oscillator to the group as

−|kr + Λ| ≤ ωα − ω ≤ +|kr + Λ|. (19)

Comparing eq. (19) with eq. (17), it is easy to find that
the occurrence of phase locking for a resonant-driven os-
cillator (Λ > 0 for in-phase driving) is more relaxed to the
frequency requirement for cluster synchronization. With
the all-to-all mutual couplings, a robust local driving will
easily transmit throughout a well-connected critical net-
work by resonant activation and all the KOs with similar
frequencies in the group will be dynamically synchronized
with each other. In other words, the synchronization be-
comes easier when a resonant driving is introduced to a
critical network just below synchronization threshold of
KOs, and, consequently, the synchronization will be en-
hanced by a positive feedback of eq. (19), establishing an
enhanced coherent motion under the resonant effect. As
the strength of noise only shifts the critical coupling rate
kc [31], direct simulations prove that the resonant synchro-
nized effects are immutable to noises in a critical network
if the resonant driving is strong enough.

Resonant synchronization and synchronized groups se-
lected by resonant driving. Now, we apply the above
resonant synchronization effect to information retrievals
in our brain’s neural network. The brain neural system
is composed of nearly 86 billion of mutually coupled neu-
rons [33], where dendrites or axons of neurons connect
with each other through synapses to form a high-degree
connected neuronal network [34]. By passing electro-
chemical signals through synapses between neurons, the
neurons can be excited or inhibited which makes the neu-
ron spiking in the cortical system exactly a discontinuous
nonlinear process [35]. The human brain is a complicated
multiscale network [36], and thus impossible to reveal its
functionality by just resolving the structures and the dy-
namics of individual neurons, but should include all the
connected neurons as a whole dynamical system.

As the conventional Kuramoto model excludes the influ-
ence of brain environments and cannot be directly applied
to a neuronal network, we modify the Kuramoto model
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by including the variations of the frequencies and the cou-
pling strengths of KOs to describe a critical dynamics of
neurons [16]. Due to the chemical changes of synapses or
the neurotransmitter diffusion, the coupling strength be-
tween neurons and the neuron spiking frequency (or firing
rate) will change over time under stimuli and the large
time scale variations (long-time memory) are excluded
here. Therefore, the spiking frequencies and the coupling
strengths of neurons are dominated by a constant part
plus a weak sinusoidal modulation. Hence, the modified
Kuramoto model will be

θ̇i = ωi(t) +
1
N

N∑

j=1

kij(t) sin(θj − θi)+ξ̂(t), (20)

where ωi(t) and kij(t) are the time-varying frequencies of
neuron i and the coupling strengths between neurons i and
j, respectively, which are supposed to be governed by the
following simple time-dependent functions:

ωi(t) = ωi + βi sin(2πfit+ ϕi), (21)
kij(t) = kij + μij sin(2πgijt+ ψij), (22)

where the constants ωi and kij are the long-time
eigenfrequencies and coupling strengths to define a basic
critical network. The modulation parameters βi = 0.1ωi,
μij = 0.1kij , fi = 1, gij = 0.3, ϕi = π/2 and ψij = π de-
scribe the amplitudes, frequencies and phase offsets of the
time-varying parts [16]. When the system is near to the
coupling thresholds k < kc, we study the dynamical syn-
chronization between neurons when an external driving
is added to one of KOs. In order to simulate informa-
tion retrieval from memory in a critical brain state that
the neuron firings are continuously activated by succes-
sive stimuli, we introduce an activated driving signal of
sinusoidal mode Λ sin(Ωt − θl), acting on lth KO (an os-
cillator selected in certain regions), then the equation of
the driven oscillator becomes:

θ̇l = ωl(t) +
1
N

N∑

j=1

klj(t) sin(θj − θl) + Λ sin(Ωt− θl).

(23)

Figure 2 simulates a globally coupled network with a
number of N = 12 KOs starting from random initial
phases and demonstrates a clear phase bunching after
adding an external driving signal. When the driving is
added to any one oscillator of the network, the oscilla-
tors whose eigenfrequencies ωi are close to the driving
frequency Ω will synchronize their motions to a synchro-
nization state and then the phase bunching appears. The
solid circles shown in fig. 2(b) demonstrate a synchronized
KO cluster, moving around together with a group angular
velocity ω under the external resonant driving.

In order to show the details of the resonant synchro-
nization, we consider N = 6 KOs and analyze the syn-
chronization dynamics of these coupled KOs. In this small

(a) (b)

Fig. 2: Phase distributions of θi for N = 12 KOs shown on a
unit circle (a) without and (b) with the external driving after a
same period of evolution. The dashed circles denote the initial
phase distributions of KOs and the solid ones are the phase
distributions after t = 2000. The frequencies ωi of the KOs
are randomly sampled between the interval of [0.9, 1.1], the
driving parameters are Λ = 1, Ω = 1 and the coupling rate
kij = 1 < kc.

network, we initially set the eigenfrequencies of oscillators
1, 3, 5 randomly around 1.0, and 2, 4, 6 around 2.0 with
small deviations (see the parameters in fig. 3). Here, the
eigenfrequencies set in advance stand for the stored infor-
mation in the neurons which is characterized by its firing
eigenfrequency ωi. When an external signal with a driv-
ing frequency of Ω = ω1 is added to one node of the KO
network (see the bottom left inset of fig. 3), the oscillators
1, 3 and 5 synchronize into a group with enhanced mutual
Pearson correlation coefficients shown in fig. 3 (see the res-
onant peaks of curves C13, C15 and C35). If the driving
frequency changes to Ω = 2ω1 (see the bottom right inset
of fig. 3), the KOs of 2, 4 and 6 are synchronized instead
(see the resonant peaks of curves C24, C26 and C46) due
to the resonant properties of the synchronization selected
by external stimuli of different driving frequencies.

The pattern retrieved from the memorized lattice net-
work by resonant synchronization. Now, we will show
how to use the resonant synchronization to recover stored
images in a well-connected network of KOs. In order to
reveal its mechanism, we investigate the synchronized be-
haviors of neurons in a regular neuronal network induced
by external driving sources based on the above-modified
Kuramoto model equation (20). We use a globally cou-
pled neural network of 20 × 20 KO lattice to simulate the
well-connected neurons in a local area of cerebral cortex
in our brain. Here, the eigenfrequencies are used to en-
code the information in the neural network. We set the
eigenfrequencies of the coded KOs in advance by a Gaus-
sian distribution with the same mean value ω0 to con-
struct an image of “5” through a spatial configuration in
the lattice network, and the eigenfrequencies of the other
uncoded KOs are assigned randomly. When the lattice
network is subjected to an external stimulus with a driv-
ing frequency of Ω, the neurons with eigenfrequencies near
to Ω are activated and then synchronized together by the
continuous resonant driving. All the KOs with enhanced
Cij recover a synchronized pattern of “5” emerging in the
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Fig. 3: The resonant synchronization of N = 6 KOs estimated
by Cij vs. the driving frequency Ω. The eigenfrequencies of
the oscillators are ω1 = 0.94, ω3 = 1, ω5 = 1.06, ω2 = 1.97,
ω4 = 2, ω6 = 2.03, respectively. The coupling, driving and
noise strengths are kij = 0.36, Λ = 1 and η = 0.01, respec-
tively. Two different driving frequencies are Ω/ω1 = 1 and
Ω/ω1 = 2. Insets: the networks of 6 KOs driven by external
signals with frequencies of Ω1 (left) and Ω2 (right), the syn-
chronized KOs are connected by the solid lines.

network as shown in fig. 4. The images in the left column,
fig. 4(a), (c), are displayed by the mutual synchronous
matrix of Cij without adding stimulus signals, while the
images in the right column, fig. 4(b), (d), are Cij under the
stimulus of Ω = ω0 = 1. When we add the driving signal
to the network, the active pattern appears so that KOs
with the similar stored eigenfrequencies are activated and
synchronized together by the resonant driving (right col-
umn). If there is no input signal, all KOs oscillate weakly
with their own eigenfrequencies and the dynamics of the
whole network is in a random state. In this case, the net-
work are not synchronized and no synchronized pattern
will be produced (left column). We can numerically verify
that this retrieval process is robust to noise because the
network is in a critical state just below the synchronization
threshold (kc = 1.42 for a free KO model) and the criti-
cal dynamics is sensitive to the driving signals. Therefore,
by direct simulations, we find a sychronized pattern emer-
gence in a frequency coding network if a resonant external
stimulus is introduced.

Considering that memory is a very complex process with
a large number of randomly arranged neurons in a noisy
background, the dynamics of neurons in human brain may
not as simple as that we considered above, but this sim-
plified model can still provide us with a possible idea of
memory searching mechanism in the brain. In order to
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Fig. 4: Synchronization pattern retrievals from Cij with-
out external driving ((a), (c)) and with resonant driving
((b), (d)). The frequencies of the memorized KOs are assigned
by Gaussian distributions with mean value of ω0 = 1 and the
deviations of 0.1/3 (the upper frame) and 0.04/3 (the lower
frame), the frequencies of other KOs are set randomly from
the interval [0, 2]. The resonant driving strength Λ = 1 and
the coupling rate kij = 1.36. The other parameters are the
same as in fig. 3.

simulate different intensities of unavoidable memory de-
viations in the network, we encode KOs’ eigenfrequencies
with Gaussian distributions of different deviations. The
direct simulations find that the resonant synchronous pat-
terns of Cij are recovered in different resolutions by the
same intensity of resonant driving. A large deviation will
lead to a low resolution picture of synchronized pattern as
shown in fig. 4(b), while a small deviation of stored eigen-
frequencies recovers a higher resolution pattern shown in
fig. 4(d). This phenomenon is very similar to our mem-
ory in that a larger error will decrease the accuracy of
memory and fail an effective information recall. Therefore,
the memory needs to be trained by decreasing the devia-
tions of information (eigenfrequency) stored in the neuron
molecules. Furthermore, if the neural network is stimu-
lated by different types of stimulus, different synchronized
patterns corresponding to different resonant frequencies
will be retrieved. Therefore, different information can be
stored in the neurons characterized by different frequency
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channels and the storage capacity of information in a net-
work is determined by the frequency discrimination of the
network. If the stimuli frequencies are similar, mixing pic-
tures of different resonant patterns will be simultaneously
retrieved from the network, which corresponds to another
important characteristic of our brain to enable imagina-
tions of similar objects in our mind.

Summary. – In this article, the resonant synchroniza-
tion of a well-connected network based on a modified
Kuramoto model is investigated. Although the model
to simulate memory is very rough, it seems to provide
an alternative way to reveal the mechanism of informa-
tion searching in the human brain. Physically, the stim-
uli from our sensory organs will construct inhomogeneous
neuronal networks in our brain with different dynamical
characteristics of neurons (maybe due to different molec-
ular structures formed by different stimulus dynamics),
whose responsive properties we identify here are their fir-
ing frequencies of electrical pulsing. Different frequencies
represent different kinds of information stored in the neu-
ronal network. We simulate the dynamical correlations
in critical KO networks and found synchronized patterns
of KOs with similar eigenfrequencies emerged in inhomo-
geneous KO networks by resonant driving. This result
shows that there exists an enhancement of synchronized
motion across the network induced by the resonant driving
even to ONE node of the network, just like memory recall
of our brain to get all the resonant (similar) information
by a certain stimulus. However, the sensitivity and ro-
bustness of this effect should be strictly supported by two
properties of the network: high connectivity and critical-
ity. Only in a well-connected critical network, the KOs
(nodes) whose frequencies coincide with the driving fre-
quency can be activated from a random background and
then synchronized together. For other types of network,
the amplitude of the node driving will decrease exponen-
tially with the distance [14] and the resonant synchro-
nization of pulsing cannot be activated across the whole
network.

As there are many different types of memories in our
brain, the light, the sound or the pressure ones, etc., there-
fore the frequency encoding is only one possible way to
store information in our brain network. However, our
study suggests that the other information can also be
selected and extracted by different electric stimuli from
different sources with different resonant channels, and all
the irrelevant information (off-resonant signals) cannot be
activated by the driving signal, and, consequently, will
be suppressed by a positive feedback of resonant synchro-
nized behavior of activated ones. The results indicate that
the resonant synchronization of retrieving information in a
critical network is an efficient information searching mech-
anism and, basically, as it is a fundamental and universal
phenomenon in physics, which can hopefully be applied to
many other fields for resonant information retrieval in the
critical networks.
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