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One-way street for the energy current: A ubiquitous phenomenon
in boundary-driven quantum spin chains
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Abstract – Focusing on the description of nontrivial properties of the energy transport at quan-
tum scale, we investigate asymmetrical quantum spin chains described by boundary-driven XXZ
and XXX Heisenberg models. We search for symmetries properties of the Lindblad master equa-
tion related to the dynamics of the system in order to establish properties of the steady state.
Under rather general assumptions for the target polarization at the boundaries, we show the oc-
currence of an effect related to (but stronger than) energy rectification, namely, the one-way street
phenomenon, which is the existence of an unique way for the energy flow. Precisely, the energy
current does not change in magnitude and direction as we invert the baths at the boundaries: its
direction is completely determined by the asymmetry in the bulk of the chain. The results follow
independently of the system size and of the transport regime. Our findings show the ubiquitous
occurrence of the one-way street phenomenon for the energy flow in boundary-driven spin systems
and, we believe, they shall be an useful contribution to the area devoted to the investigation and
building of efficient quantum devices used to control and manipulate the energy current.

Copyright c© EPLA, 2020

Introduction. – Understanding the properties of the
energy transport at quantum scale is a problem of consid-
erable theoretical and experimental interest that is taking
increasing attention in recent years.

The emerging field of quantum thermodynamics urges
the detailed theoretical study of the quantum transport
properties, in particular, of the quantum energy currents.
Moreover, the amazing on-going progress in experimental
manipulations of small quantum systems makes the theo-
retical investigation of nonequilibrium features of quan-
tum systems mandatory, in particular, their transport
characteristics, directly related to the understanding of
their behavior out of equilibrium.

Some specific problems of theoretical and experimental
importance appear in this context, for example, the possi-
bility of building quantum thermal rectifiers, i.e., the pos-
sibility of finding systems with a preferential direction for
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the energy flow. The thermal rectifier, or thermal diode,
is a system in which the magnitude of the energy cur-
rent changes as we invert the device between two baths.
Its investigation is motivated by the success of its elec-
tronic analog, the electrical diode, which, together with
transistors and other related nonlinear solid state devices,
were responsible for the amazing development of modern
electronics, with impact in our daily lives. In fact, the in-
terest in energy rectification is an old problem: it appears
already within the study of simpler classical models de-
scribing the heat conduction and many works are devoted
to the theme [1–7].

In short, we stress, the general interest in the investi-
gation of the energy transport is clear, especially in the
quantum scale. In particular, a recurrent problem is the
search of conditions which allow an asymmetric transport,
i.e., a preferential direction for the currents.

In the present work, we investigate the energy current
in boundary-driven quantum spin Heisenberg (XXX ) and
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XXZ chains, the archetypal models of open quantum
systems, and so, a problem with significance to several
areas: nonequilibrium statistical physics, condensed mat-
ter, optics, cold atoms, quantum information, etc. [8]. As
usual, we consider the dynamics given by a Lindblad mas-
ter equation (LME). Under rather general assumptions for
the target polarization at the boundaries, we show the
existence of an intriguing one-way street phenomenon for
the energy current, i.e., in asymmetric chains (e.g., graded
systems) the direction of the energy current is completely
determined by the asymmetry in the bulk of the system,
precisely, the direction of the energy flow does not change
as we invert the baths at the boundaries. It is impor-
tant to recall that, in these boundary-driven quantum
systems, the energy current involves heat and also power
(work), and so no thermodynamic inconsistency is present
here [9–11]. More details are presented ahead. To estab-
lish our results we use symmetries of the density matrix,
of the LME, and show the energy current properties in the
steady state. That is, our strategy is inspired by the work
of Popkov and Livi [12]. Our results are independent of
the system size and of the existence of anomalous, normal
or ballistic transport on the chain.

The existence of this one-way street phenomenon has
been already shown for the simpler case of target σz po-
larization at the edges and another quite specific case [13].
Here, in the present work, we extend the existence of such
phenomenon for rather general cases of boundary spin
polarizations, proving that the phenomenon ubiquitously
holds in boundary-driven quantum spin chains.

It is important to emphasize that the existence of asym-
metry in the bulk of the chain is not a guarantee for the
presence of asymmetry in the energy flow. For exam-
ple, for the case of classical chains of harmonic oscillators
with self-consistent inner stochastic reservoirs, an effective
model used to study heat conduction (Fourier’s law holds
in such model [14], a footprint of anharmonicity, since the
law is absent in purely harmonic models [15]), it is rigor-
ously proved that, for any asymmetric chain, there is no
thermal rectification, i.e., there is no asymmetry in the
magnitude of the heat flow as we invert the baths at the
edges [16].

Models and currrents. – Now we introduce the spin
models. We assume, in what follows, � = 1. We take
quantum 1/2 spin chains and we first consider asymmetric
XXZ models with Hamiltonians

H =
N−1∑
i=1

{
α

(
σx

i σx
i+1 + σy

i σy
i+1

)
+ Δi,i+1σ

z
i σz

i+1
}

, (1)

where σβ
i (β = x, y, z) are the Pauli matrices. The

anisotropy parameters Δi,i+1 are assumed to be asym-
metrically distributed, for example, with a graded distri-
bution: Δ1,2 < Δ2,3 < · · · < ΔN−1,N .

As usual, the dynamics of the system is given by
Lindblad master equations (LME) for the density matrix

dρ

dt
= i[ρ, H] + L(ρ), (2)

where the dissipator L(ρ) is local here, and describes the
coupling with the baths. It is given by

L(ρ) = LL(ρ) + LR(ρ), (3)

LL,R(ρ) =
∑
s=±

LsρL†
s − 1

2
{
L†

sLs, ρ
}

,

{·, ·} above describes the anti-commutator. These models
are recurrently studied: see, e.g., ref. [17] and references
therein. For LL, in the simpler case of a XXZ chain with
target σz polarization at the edges, analyzed in ref. [13]
and several other works, we have

L± =
√

γ

2
(1 ± fL)σ±

1 , (4)

where σ±
j are the spin creation and annihilation operators

σ±
j = (σx

j ± iσy
j )/2; and similarly for LR, but with σ±

N and
fR replacing σ±

1 and fL. In the previous expressions, γ
denotes the coupling strength to the spin baths; fL and
fR describe the driving strength, and they are related to
the polarization of extra spin at the boundaries:

fL = 〈σz
0〉, fR = 〈σz

N+1〉.
Ahead, we will investigate in details more general and in-
tricate dissipators.

The expressions for the spin and energy currents can be
obtained from the LME for the dynamics and a continuity
equation, as precisely described in ref. [18]. We have, at
site j, for the magnetization (spin) current

〈Jj〉 = 2α〈σx
j σy

j+1 − σy
j σx

j+1〉 . (5)

If we add in the Hamiltonian (1) a term giving the inter-
action with an external magnetic field,

N∑
j=1

Bjσ
z
j ,

for the energy current we obtain (again, details in ref. [18]),

〈Fj〉 = 〈FXXZ
j 〉 + 〈FB

j 〉, (6)

〈FXXZ
j 〉 = 2α〈α (

σy
j−1σ

z
j σx

j+1 − σx
j−1σ

z
j σy

j+1

)
+Δj−1,j

(
σz

j−1σ
x
j σy

j+1 − σz
j−1σ

y
j σx

j+1
)

+Δj,j+1
(
σx

j−1σ
y
j σz

j+1 − σy
j−1σ

x
j σz

j+1
)〉,

〈FB
j 〉 =

1
2
Bj〈Jj−1 + Jj〉.

We need to make an important remark now. In most of
the studies of XXZ chains, the authors take homogeneous,
symmetric chains. In such a case, considering the energy
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investigation, both direct computation or symmetry ar-
guments lead to 〈FXXZ

j 〉 = 0 [12,18]. Consequently, the
remaining energy flow is proportional to the magnetiza-
tion current, and it vanishes in the absence of an external
magnetic field B = 0. But that is not the scenario for
asymmetric chains. We give a concrete example. In a
previous work [19], the density matrix is analytically com-
puted for a small chain of three spins, and the spin and
energy currents are precisely determined for the case of
target σz polarizations, with fL = f and fR = −f at the
edges. In particular, in the steady state, for 〈F 〉 ≡ 〈Fj〉,
an exact, huge expression is determined for the three sites
chain with α = 1, Δ1,2 = Δ − δ, Δ2,3 = Δ + δ, and
Bj = B. For simplicity and clearness, we write below the
dominant terms considering an expansion in powers of f ,
the driving strength, and of δ, the asymmetry parameter.
We have

〈F 〉 = Bf

(
912

969 + 48Δ2

)

+f2δ

(
32(20224Δ4 + 64256Δ2 − 1083)

(51 + 16Δ2)(323 + 16Δ2)2

)
.

From the expression above, we see that the energy current
is nonvanishing even for B = 0, in clear contrast with the
behavior present in symmetrical chains, which are usu-
ally investigated. Again, for B = 0, the value (direction
and magnitude) of the energy current does not change
as we invert the baths, i.e., as we change f by −f (it in-
deed follows, we stress, for the complete expression beyond
O(f2) [19] —the complete current is an even function of
f). That is the one-way street phenomenon, directly com-
puted in ref. [19] and derived by symmetry arguments in
ref. [13].

Note that, here, we propose to show the general occur-
rence of such an effect, i.e., the occurrence of an energy
current whose direction depends only on the asymmetry
of the chain (it does not invert as we invert the baths
at the boundaries of the chain), and such an effect is, say,
stronger than the energy rectification, even the perfect rec-
tification, that means current in one direction and absence
of current as we invert the baths.

Another important remark is convenient here. In some
works with boundary-driven quantum systems, the energy
current is wrongly taken as the heat current. In such a
case, thermodynamic inconsistencies are claimed to oc-
cur, such as a heat flow from the colder to the hotter bath
without other interventions [20]. But, in fact, as clearly
explained in ref. [9], besides heat we also have work in
the boundary driven processes, and so, thermodynamic
consistency is recovered. See also ref. [10] for the related
analysis in these XXZ chains, and ref. [11] for general
considerations (in particular, responding the false incon-
sistency raised in ref. [20]).

Results. – The present work is devoted to extend
the one-way street phenomenon for the energy current
to XXZ and XXX Heisenberg asymmetric chains with

general polarization at the edges. In other words, here,
after a considerable algebraic work, we show that such
“strange” phenomenon is ubiquitous in boundary-driven
asymmetric quantum spin chains.

We proceed by taking the XXZ chain as given by
eqs. (1)–(3). We first consider the case in which one edge
of the chain is target in a given polarization, say, σx, and
the other edge involves a polarization with arbitrary twist-
ing angle in the XY plane. Precisely, now we take the
dissipators as

KL
± =

√
γ(1 ± f)

(
σy

1 ± iσz
1

2

)
,

KR
± =

√
γ(1 ∓ f)

(
cos(θ)σx

N + sin(θ)σy
N ± iσz

N

2

)
.

(7)

The Heisenberg (XXX ) version of such model is investi-
gated in refs. [21–23]. Our strategy here is to exploit the
symmetries in the steady state of the LME in order to
show that, if ρ is a steady state solution, then there exists
a unitary transformation U such that UρU † is a solution
of the steady state LME with inverted baths. Moreover,
for the LME with inverted baths, the energy current in
the absence of external magnetic field B is the same. In
summary, we want to show for the energy current

〈F 〉 = 〈FXXZ 〉 ≡ tr
(
ρFXXZ

j

)
= tr

(
ρU−1FXXZ

j U
)

= tr
(
UρU−1FXXZ

j

)
= 〈FXXZ 〉inv.baths. (8)

We make an important statement here. By using the
approach described in ref. [24], we can prove the unique-
ness for the steady state of all the LME treated in this
present work. Thus, if ρ is the steady distribution of the
initial system, then UρU−1 is the unique steady distribu-
tion of the system with inverted baths. Another impor-
tant remark: for the studies of symmetries in the LME,
our operator U is indeed the tensorial product over all N
sites of 2 × 2 unitary transformations (they are the same
transformation, but each one acts on one site)

U = u ⊗ u ⊗ . . . ⊗ u. (9)

For more details about the desired transformation U ,
we note that in the steady state the LME reads

0 = −i[H, ρ] + L(ρ).

Hence, we must find U such that

H = UHU †, Linv.baths
(
UρU †) = ULU †. (10)

We obtain similar results with the change U ↔ U † (e.g.,
H = U †HU). I.e., for this first case, we need to present
U unitary such that (discarding the change 1 ↔ N)

UKL,R
± U † = KR,L

∓ .

To find this desired U , or each u, we start from a general
representation for an unitary matrix u

u ≡
(

a b
−eiϕb∗ eiϕa∗

)
,
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where a and b are complex numbers; a∗ is the complex
conjugate; ϕ is real; and |a|2 + |b|2 = 1. Then, we in-
vestigate if it is possible to describe U which inverts the
baths and that satisfies all the previous relations described
above. Of course, we do not present the algebraic manip-
ulations carried out to find the desired U . But the reader
can check a posteriori that the desired relations follow
with the presented U .

For the first case in which the dissipators are given by
KR,L

± , i.e., for the case of one edge of the chain with a
σx polarization, and the other edge with a polarization
in an arbitrary direction in the XY plane, after a tedious
algebraic work we find u as given by

u(1) =
1√
2

(
0 1 + i
−eiθ(1 − i) 0

)
. (11)

For emphasis, we repeat that, with such a matrix, it fol-
lows that U (1)FXXZU (1)† = FXXZ , that is, the energy
current is the same as we invert the baths. As a further
observation, we note that

u(1)σxu(1)† =
(

0 − sin θ − i cos θ
− sin θ + i cos θ 0

)
,

u(1)σyu(1)† =
(

0 cos θ − i sin θ
cos θ + i sin θ 0

)
,

u(1)σzu(1)† = −σz.

Although we have awkward spin transformations, it still
follows that U (1)HU (1)† = H as well.

In the next step, we consider a general case of LME
involving several dissipators: L1, L2, V1, V2, W1, W2 acting
on the first site, and L3, L4, V3, V4, W3, W4 acting on the
site N . Precisely,

L1 = α(σx
1 + iσy

1), L3 = β(σx
N + iσy

N ),

L2 = β(σx
1 − iσy

1 ), L4 = α(σx
N − iσy

N ),

V1 = p(σy
1 + iσz

1), V3 = v(σy
N + iσz

N ),

V2 = q(σy
1 − iσz

1), V4 = u(σy
N − iσz

N ),

W1 = u(σz
1 + iσx

1 ), W3 = q(σz
N + iσx

N ),

W2 = v(σz
1 − iσx

1 ), W4 = p(σz
N − iσx

N ).

(12)

The parameters α, β, p, q, u, v above can be taken as
nonegative real numbers. Note that we have the same
parameters acting both on first and last sites of the spin
chain, but they are linked to different target polarization
operators at each boundary. The operators Lk, Vk, and
Wk, when taken alone, target polarization along the axes
z, x and y, respectively.

Again, the procedure is the same, and we find U (2) such
that U (2)ρU (2)† satisfies the LME with inverted baths and
U (2)FXXZU (2)† = FXXZ , i.e., the one-way street phe-
nomenon holds. We obtain

u(2) =
1√
2

(
0 −1 + i
1 + i 0

)
. (13)

Moreover, we have

u(2)σxu(2)† = −σy, u(2)σyu(2)† = −σx,

u(2)σzu(2)† = −σz.

We turn, now, to the investigation of asymmetric
Heisenberg XXX models, i.e., we extend the asymmetry
distribution also to the x and y coordinates. Precisely, we
consider the Hamiltonian

H =
N−1∑
i=1

αi

(
σx

i σx
i+1 + σy

i σy
i+1 + σz

i σz
i+1

)
, (14)

where αi is assumed to be asymmetrically distributed.
In this case, we need to rewrite the expressions for the

currents. For the spin flow we have

〈Jj〉 = 2αj〈σx
j σy

j+1 − σy
j σx

j+1〉 (15)

and, for the energy current, we obtain

〈FXXZ
j 〉 = 2αi−1αi〈

(
σy

j−1σ
z
j σx

j+1 − σx
j−1σ

z
j σy

j+1

)
+

(
σz

j−1σ
x
j σy

j+1 − σz
j−1σ

y
j σx

j+1
)

+
(
σx

j−1σ
y
j σz

j+1 − σy
j−1σ

x
j σz

j+1
)〉. (16)

In relation to the dissipators of the LME, we start again
with one of the edges of the chain target in a given po-
larization, say σz, and the other edge with an arbitrary
polarization in the plane ZX :

DL
± =

√
γ(1 ± f)

(
σx

1 ± iσy
1

2

)
,

DR± =
√

γ(1 ∓ f)
(

cos(θ)σx
N + sin(θ)σz

N ± iσy
N

2

)
.

(17)

Again, after considerable algebraic manipulations, we
find the transformation U (3) that inverts the baths and
shows the one-way street phenomenon for the energy cur-
rent. We have

u(3) =
i√
2

( √
1 − cos θ

√
1 + cos θ√

1 + cos θ −√
1 − cos θ

)
. (18)

It is interesting to note the intricate transformation for
the spin variables here,

u(3)σxu(3)† =
(

sin θ cos θ
cos θ − sin θ

)
,

u(3)σyu(3)† = −σy,

u(3)σzu(3)† =
( − cos θ sin θ

sin θ cos θ

)
.

Anyway, as said, we still have U (3)HU (3)† = H, and
U (3)FU (3)† = F .

Finally, we consider the case of several dissipators,
which, alone, target polarization along the axes x, y and z.
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We take

L1 = α(σx
1 + iσy

1 ), L3 = v(σx
N + iσy

N ),

L2 = β(σx
1 − iσy

1 ), L4 = u(σx
N − iσy

N ),

V1 = p(σy
1 + iσz

1), V3 = q(σy
N + iσz

N ),

V2 = q(σy
1 − iσz

1), V4 = p(σy
N − iσz

N ),

W1 = u(σz
1 + iσx

1 ), W3 = β(σz
N + iσx

N ),

W2 = v(σz
1 − iσx

1 ), W4 = α(σz
N − iσx

N )

(19)

(note that they involve a combination different from the
previous one in the XXZ case). Again, the parame-
ters α, β, p, q, u, v above can be taken as nonegative real
numbers.

The desired matrix changing the baths is now found as

u(4) =
1√
2

(
i −1
1 −i

)
. (20)

For the spin transformations we get

u(4)σxu(4)† = −σx, u(4)σyu(4)† = −σz

u(4)σzu(4)† = −σy.

Once more, we have U (4)HU (4)† = H, and
U (4)FU (4)† = F .

Conclusion. – It is worth recalling that asymmetric
systems, as considered in this work, are not only theo-
retical proposals. For example, there is a proliferation of
graded materials in nature, i.e., inhomogeneous systems
whose structure changes gradually in space, and they can
be also manufactured. There is a great interest for such
materials in many areas: optics, mechanical engineering,
material science, etc. [25]. Moreover, a simple example of
graded thermal rectifier has been already built: a carbon
and boron nitride nanotube, inhomogeneously coated with
heavy molecules [26].

We believe that we shall see experimental realizations
of such asymmetrical XXZ and Heisenberg (XXX ) mod-
els soon. We recall that the possibility to engineer XXZ
quantum spin Hamiltonians with different values for the
inner parameters α and Δ has been already shown [27,28].
Moreover, Heisenberg (XXX ) and XXZ models appear re-
lated to recent experimental works with Rydberg atoms in
optical traps [29,30].

To conclude, we show here that an interesting effect re-
lated to (but stronger than) rectification is of ubiquitous
occurrence in boundary-driven quantum spin systems,
the archetypal models of quantum spin nonequilibrium
physics. A further comment is pertinent to stress the gen-
eralization of our results. Now we show the one-way street
phenomenon for a XXZ chain in which one edge of the
chain is target in a given polarization, say, the x-direction,
and the other edge involves a polarization with arbitrary
twisting angle (described as θ and taking any value) in the
XY plane. We also show the phenomenon for arbitrary

choices of six operators, i.e., pairs of three kinds of op-
erators that, when taken alone, target polarization along
the axes x, y and z (one pair targets along x, the other y,
etc.). That is why we repeatedly say that we are consid-
ering general polarizations. Our findings are not resumed
as new examples of specific polarization involving quite
specific angles or some specific axis. Similar results have
been shown for the Heisenberg system.

We are confident that such results will stimulate more
theoretical and experimental research on the theme of
quantum transport.
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