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Holographic description of chiral symmetry breaking in a magnetic
field in 2+1 dimensions with an improved dilaton
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Abstract – We consider a holographic description of the chiral symmetry breaking in an external
magnetic field in (2 + 1)-dimensional gauge theories from the softwall model using an improved
dilaton field profile given by Φ(z) = −kz2 + (k + k1)z2 tanh(k2z

2). We find inverse magnetic
catalysis for B < Bc and magnetic catalysis for B > Bc, where Bc is the pseudocritical magnetic
field. The transition between these two regimes is a crossover and occurs at B = Bc, which depends
on the fermion mass and temperature. We also find spontaneous chiral symmetry breaking (the
chiral condensate σ �= 0) at T = 0 in the chiral limit (mq → 0) and chiral symmetry restoration
for finite temperatures. We observe that changing the k parameter of the dilaton profile only
affects the overall scales of the system such as Bc and σ. For instance, by increasing k one sees
an increase of Bc andσ. This suggests that increasing the parameters k1 and k2 will decrease the
values of Bc and σ.

Copyright c© EPLA, 2020

Introduction. – During recent years a lot of effort has
been made in order to understand the interplay between
a magnetic field and chiral phase transition. It has been
long thought that a magnetic catalysis (MC) should occur
in 2+1 dimensions [1–4], where the magnetic field boosts
the chiral condensate/transition temperature. However,
undeniable lattice evidences for inverse magnetic catalysis
(IMC) behavior (a decrease of the chiral condensate when
the external magnetic field increases) in 3 + 1 dimensions
were presented in [5,6] for eB up to ∼ 3 GeV2.

With the advent of the holographic duality, originally
called AdS/CFT correspondence [7], several attempts
have been made in order to obtain such IMC transition be-
havior from holographic descriptions of QCD, also known
as AdS/QCD models [8–12].

The main goal of this work is to analyze the chiral sym-
metry breaking in the presence of an external magnetic
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field in 2+1 dimensions using the holographic softwall
model with an improved dilaton profile,

Φ(z) = −kz2 + (k + k1)z2 tanh(k2z
2).

Such improvement means an interpolation between the IR
and UV regimes of the dual field theory, which represents
a UV completion with respect to the standard dilaton
Φ(z) = −kz2, as used in [13] to study the chiral phase
transition and spontaneous chiral symmetry breaking in
the presence of an external magnetic field. Many works
have dealt with modified dilaton fields to implement UV
completion in different contexts as discussed for instance
in [14–20].

This modification of the dilaton profile was crucial
to correctly reproduce the spontaneous chiral symmetry
breaking, chiral phase transition and IMC in holographic
QCD in 3+1 dimensions [11,21,22]. Recently, another im-
proved dilaton profile has also been used to describe the
dissociation of heavy mesons in a plasma with magnetic
fields [23].

Here, we describe holographically with an improved
dilaton the behaviour of the chiral condensate under the
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presence of an external magnetic field at T = 0 and also
at finite temperature (T > 0). We find IMC for B < Bc

and MC for B > Bc, where Bc is the pseudocritical mag-
netic field associated with the crossover transition. We
also find spontaneous chiral symmetry breaking at T = 0
in the chiral limit (mq → 0) and chiral symmetry restora-
tion at finite temperature. Since the present model is more
robust than the standard dilaton one can infer that the
improved dilaton profile gives support to the results pre-
sented in [13].

This work is organized as follows: in the next section we
describe the holographic set-up for chiral symmetry break-
ing in the presence of an external magnetic field in 2+1
dimensions. In the third section, we present our numerical
results concerning the behaviour of the chiral condensate
vs. magnetic field and temperature. Finally, in the last
section, we present our last comments and conclusions.

Holographic softwall model with improved dila-
ton: chiral symmetry breaking. – Let us begin this
section with a quick review of the holographic softwall
model (SW). This model successfully breaks the conformal
invariance coming from the AdS/CFT correspondence.
Such conformal invariance is broken by using an expo-
nential factor representing the dilaton field in the action
producing a soft IR cutoff in the dual gauge theory.

The original SW model was proposed in [24] to study
mesonic spectra and produce a linear Regge trajectory.
This model was extended to the case of glueballs in [25].
In ref. [26], based on a dynamical and analytic modified
holographic softwall model, it was shown that the original
SW seems to not work properly for glueballs when com-
pared to lattice data and other approaches in the litera-
ture. For other details see for instance [27] and references
therein.

After this very brief review, let us start our calculation
within the AdS4/CFT3 version of correspondence. So,
the Einstein-Maxwell theory on AdS4 [28] is represented
by the following action (for more details see [29,30]):

S = − 1
2κ2

4

∫
d4x

√
g

(R − 2Λ − L2FMNF
MN

)
, (1)

where R = −12/L2 is the Ricci scalar, Λ = −3/L2 is the
cosmological constant and FMN is the Maxwell field. For
our purposes, throughout the text we will use the AdS
radius L = 1.

Varying the action (1) with respect to the fields, one
gets:

RMN = 2
(
FP

MFNP − 1
4
gMNF

2
)

− 3gMN , (2)

plus the Bianchi identity ∇MFMN = 0.
In order to solve (2) let us consider the AdS4-

Schwarzschild metric

ds2 = z−2
(
f(z)dτ2 +

dz2

f(z)
+ dx2

1 + dx2
2

)
, (3)

where f(z) is the horizon function. Since this is a charged
black hole it has two horizons, the inner and the outer.
Here, only the outer one, which satisfies f ′(z = zH) < 0,
will be relevant for our analysis. For the Maxwell field,
the ansatz we consider is the following:

F = B dx1 ∧ dx2, (4)

representing a uniform magnetic field in the z-direction,
such that F = dA, where A is the 1-form vector potential

A =
B

2
(x1dx2 − x2dx1), (5)

which is nonzero (A �= 0) at the boundary (z → 0).
Substituting eqs. (3) and (4) in (2), one finds that

the horizon function, which satisfies f(zH) = 0, is given
by [29,30]

f(z) = 1 + B2z3(z − zH) − z3

z3
H

(6)

for the outer horizon. The corresponding temperature is
given by the Hawking formula T = |f ′(z = zH)|/4π. Using
the solution (6) and the condition f ′(z = zH) < 0, we have

T (zH , B) =
1
4π

(
3
zH

−B2z3
H

)
, z4

H <
3
B2 . (7)

The chiral symmetry breaking in the softwall model is
described by the action [21,22]

S=− 1
2κ2

4

∫
d4x

√
g e−Φ(z)Tr

(
DMX†DMX + VX −F 2

MN

)
,

(8)
where X is a complex scalar field dual to the chi-
ral condensate σ ≡ 〈ψ̄ψ〉 in 2 + 1 dimensions, DM is
the covariant derivative, FMN is the field strength and
VX = −2X2 + λX4 is the non-linear interaction neces-
sary to realize the spontaneous symmetry-breaking mech-
anism [21,22,31]. The equations of motion coming from (8)
are given by

DM

[√
g e−Φ(z)gMNDNX

]
− √

ge−Φ(z)∂XVX = 0, (9)

where the dilaton field takes the improved form

Φ(z) = −kz2 + (k + k1)z2 tanh(k2z
2), (10)

which at the UV regime (z → 0) gives Φ(z) = −kz2, while
in the IR limit (z → ∞) we have Φ(z) = k1z

2, with k, k1
and k2 being constants to be fixed later.

Assuming that 〈X(xμ, z)〉 ∝ χ(z) one can write (9)
as [9,11]

χ′′(z)+
(

−2
z

− Φ′(z) +
f ′(z)
f(z)

)
χ′(z)− 1

z2f(z)
∂χV (χ) = 0,

(11)
where prime denotes the derivative with respect to z.

61001-p2



Holographic description of chiral symmetry breaking etc.

ϕ(0.69, 0.18, 0.03)(z)

ϕ(1.00, 0.18, 0.03)(z)

ϕ(0.69, 0.28, 0.03)(z)

ϕ(0.69, 0.18, 0.05) (z)

0 2 4 6 8

-5

0

5

10

15

z

ϕ(z)

Fig. 1: The dilaton profile eq. (10) for some choices of the
parameters k, k1, and k2 for Φ(k, k1, k2)(z). The solid line
represents the choice of parameters used in this work.
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Fig. 2: This figure represents the chiral condensate σ, in units
of σs, against the fermion mass mq, in units of

√
σs. In this fig-

ure one can clearly see spontaneous chiral symmetry breaking
in the chiral limit mq → 0.

In this work we solve numerically eq. (11) for zero and
finite temperature using the quartic potential V (χ) =
−χ2 + λχ4, with λ = 1. The boundary conditions used
are: i) at the UV χ(z) = mqz + σz2, and ii) the regular-
ity of χ(z) at the horizon, χ(zH) < ∞ [13]. Since we are
working in 2+1 dimensions all dimensionful parameters
like k, σ,B, T , and the fermion mass mq will be measured
in units of the string tension (

√
σs). So, the tempera-

ture and mass will be measured in units of
√
σs, as for

instance in refs. [32–34]. On the other side, the magnetic
field and the chiral condensate will be measured in units
of the string tension squared (

√
σs)2.

Numerical results. – In this section we present our
results for the chiral symmetry breaking using the holo-
graphic softwall model with an improved dilaton field
given by (10). For our numerical analysis we choose
k = 0.69, k1 = 0.18, and k2 = 0.031, all in units of σs. The
values for these parameters were taken from refs. [21,22]
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Fig. 3: This figure represents the chiral condensate σ against
the magnetic field B, both in units of σs at zero temperature,
and three fermion masses. This figure shows the IMC phase
for B < Bc and the MC phase for B > Bc, where Bc is the
pseudocritical magnetic field pointed out by the colored disks.
The smooth transition between the IMC and MC phases is a
crossover. The values found for Bc/σs are 3.33, 3.93, and 4.09
for mq/

√
σs= 0.1, 0.01, and 0.001, respectively.
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Fig. 4: This figure represents the chiral condensate σ against
the magnetic field B, both in units of σs at T = 0.005, in units
of

√
σs, and three fermion masses. This figure shows the IMC

phase for B < Bc and the MC phase for B > Bc, where Bc

is the pseudocritical magnetic field pointed out by the colored
disks. The smooth transition between the IMC and MC phases
is a crossover. The values found for Bc/σs are 3.65, 6.47, and
6.94 for mq/

√
σs= 0.1, 0.01, and 0.001, respectively.

which deal with this problem in 3+1 dimensions. There
the value of k comes from the mass of the rho meson,
and k1 and k2 were chosen to fit lattice data of the crit-
ical temperature and the chiral condensate. In 2+1 di-
mensions these data are not available. In fig. 1 we plot
the dilaton profile for some values of the parameters k,
k1, and k2. When we increase k we see that the curve
deepens, while for k1 and k2 the opposite happens to-
gether with the dislocation of the minimum to the region of
small z.

In fig. 2 we show the behavior of the chiral condensate
σ, in units of σs, against the fermion mass mq, in
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Fig. 5: This figure represents the chiral condensate σ against
the magnetic field B, both in units of σs at T = 0.1, in units
of

√
σs, and three fermion masses. This figure shows the IMC

phase for B < Bc and the MC phase for B > Bc, where Bc

is the pseudocritical magnetic field pointed out by the colored
disks. The smooth transition between the IMC and MC phases
is a crossover. The values found for Bc/σs are 8.00, 8.34, and
8.26 for mq/

√
σs= 0.1, 0.01, and 0.001, respectively.
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Fig. 6: This figure shows the chiral condensate σ, in units of σs,
vs. the temperature T , in units of

√
σs. Here one can see the

chiral symmetry restoration (σ(T ) = 0) for different values of
the fermion mass without external magnetic field. One can
also see the unexpected result that σ(B = 0) �= 0 for low
temperatures.

units of
√
σs. One can see a finite value of σ in the

chiral limit (mq → 0) which characterizes a spontaneous
chiral symmetry breaking. Note that the value of the
condensate diminishes for increasing fermion mass. This
is in contrast with the perturbative result [1–4]. Note
that our analysis is non-perturbative in nature. This
behavior can also be clearly seen, for instance, in fig. 6,
but it disappears when one increases the temperature or
the value of the magnetic field.

In figs. 3, 4, and 5 we show the behavior of the chiral
condensate σ against the external magnetic field B,
for three different quark masses mq and three different
temperatures T = 0, T = 0.005, and T = 0.1, in units
of

√
σs. In these three pictures, one can see for weak
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Fig. 7: This figure shows the chiral condensate σ, in units of σs,
vs. the temperature T , in units of

√
σs. Here one can see the

chiral symmetry restoration (σ(T ) = 0) for different values of
the fermion mass in the presence of an external magnetic field
B/σs = 1.0. Here one can see the chiral symmetry restoration
(σ(T ) = 0) for different values of the fermion mass.

B=20,mq=0.1

B=20,mq=0.01

B=20,mq=0.001

0.0 0.5 1.0 1.5 2.0 2.5
Tx100.0

0.5

1.0

1.5

2.0

2.5

3.0
σx10

Fig. 8: This figure shows the chiral condensate σ, in units of σs,
vs. the temperature T , in units of

√
σs. Here one can see the

chiral symmetry restoration (σ(T ) = 0) for different values of
the fermion mass in the presence of an external magnetic field
B/σs = 20. Here one can see the chiral symmetry restoration
(σ(T ) = 0) for different values of the fermion mass.

magnetic fields (B < Bc) a behavior known as IMC,
where Bc is the pseudocritical field (indicated by colored
disks). For strong fields (B > Bc) one finds MC. These
pictures also show that the transition between these two
regimes is a crossover.

In figs. 6, 7 and 8 we show the behavior of the chiral
condensate σ against the temperature T , for three differ-
ent quark masses mq and three different magnetic fields
B = 0, B = 1.0, and B = 20, in units of the string
tension squared σs. In these three pictures, one can see
that the chiral condensate decreases as the temperature
increases. This behavior is consistent with chiral symme-
try restoration. In particular, in fig. 6, for B = 0 we
have a nonzero chiral condensate (σ(B = 0) �= 0) for low
temperatures. Such behavior does not appear either in
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Fig. 9: This figure shows the critical temperature, Tc, in units
of

√
σs, against the magnetic field, B, in units of σs, in the

IMC phase, for different values of the fermion mass.
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Fig. 10: This figure shows the critical temperature, Tc, in units
of

√
σs, against the magnetic field, B, in units of σs, in the MC

phase, for different values of the fermion mass.

perturbative results in 2+1 dimensions [1–4] or in lattice
QCD in 3+1 dimensions [5,6].

In figs. 9 and 10 we show the behavior of the crit-
ical temperature Tc, in units of

√
σs against the mag-

netic field B, in units of σs, for three different fermion
masses mq. Figure 9 represents the behavior of the criti-
cal temperature Tc for weak magnetic fields in the range
0.1 ≤ B/σs ≤ 1.5. On the other hand, fig. 10 represents
the behavior of the critical temperature Tc for strong mag-
netic fields in the range 15 ≤ B/σs ≤ 60.

Conclusions. – In this work we studied the holo-
graphic description of chiral symmetry breaking in the
presence of an external magnetic field in 2+1 dimensions
using the softwall model with an improved dilaton pro-
file, given by eq. (10). This profile interpolates two dif-
ferent behaviors in UV and IR: for z → 0 (UV) one has
Φ(z) = −kz2, on the other hand, for z → ∞ (IR) one has
Φ(z) = k1z

2. Furthermore, this dilaton profile has been
designed to conform with the confinement criteria in the
IR which establishes that it should go as k1z

2 (positive)
as z → ∞ [35–37].

From this study we obtained spontaneous chiral symme-
try breaking in the chiral limit (mq → 0) as can be seen
in fig. 2. From the chiral condensate as a function of the
external magnetic field we have shown the IMC/MC tran-
sition, which is a crossover, separated by a pseudocritical
magnetic field Bc, as can be seen in figs. 3, 4, and 5.

From figs. 6, 7, and 8, which represent the behaviour
of the chiral condensate against temperature, one can see
the restoration of the chiral symmetry.

The critical temperature as a function of the external
magnetic field, also pointing out IMC and MC, was pre-
sented in figs. 9 and 10, respectively.

The results presented in this work give support to the
ones found previously in [13] with a negative quadratic
dilaton in 2+1 dimensions. This suggests the robustness
of the softwall model with the improved dilaton to describe
the chiral symmetry breaking and chiral phase transition
since it works in 3+1 dimensions [11,21,22], as well as in
2+1 dimensions as discussed here.

We have also shown in fig. 1 the dilaton profile used
in this work with different values for the parameters k, k1
and k2. One sees that increasing k will deepen the mini-
mum of the dilaton profile. This implies that the overall
scales also increase. In particular this increases the val-
ues of Bc and σ. This suggests that increasing k1 and k2
will diminish the overall scales implying a decrease of Bc

and σ.
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