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Scalar quasinormal modes of nonlinear charged black holes
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Abstract – In this paper, the scalar quasinormal modes of nonlinear charged black hole metrics
in Rastall gravity is investigated. The electromagnetic tensor presented in the background space-
time possesses a power-law form, and the system is assumed to be surrounded by a quintessence
field. By utilizing the recently obtained analytic form of the metric, the quasinormal frequencies
are obtained via the matrix method. The numerical values have been further compared against
those evaluated by using the WKB approximation up to thirteenth order. Also, the finite dif-
ference method is utilized to study the temporal evolution of the scalar perturbations. In terms
of calculations carried out for both massless and massive scalar fields, we discuss the properties
of the resultant quasinormal frequencies, as well as their dependences on the model parameters
describing the background black hole. To be specific, the effect of the electric charge, mass of
the scalar field, and equation of state of the quintessence are examined. Besides, the quasinormal
frequencies associated with an extremal black hole regarding the Nariai limit is explored, where
the obtained results are found to be consistent with theoretical arguments. The black hole metric
is found to be stable against scalar perturbations, in the presence of both linear and nonlinear
electromagnetic fields.

Copyright c© EPLA, 2020

Introduction. – The recent detections of gravitational
wave events reported by LIGO and Virgo Collabora-
tions [1–5] have opened up a new frontier in astronomy
and astrophysics. These observations originated from the
merger of binary systems established one final missing
piece predicted by Einstein’s theory of general relativity.
Moreover, as an emerging branch of observational astron-
omy, the gravitational wave astronomy possesses the po-
tential to provide unprecedented details about black holes
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and neutron stars. Subsequent progress in the near future
might lead us to further intriguing evidence on impor-
tant topics such as the discrimination between different
models of modified gravity, or even experimental attes-
tations regarding black hole perturbation theory. Con-
cerning the gravitational wave signal emitted during the
merger of binary systems, the waveform during the inspi-
ral as well as merger phase can be satisfactorily described
by numerical relativity [6–8]. During the merger phase,
the two inspiraling bodies become so close that the rela-
tivistic effects in strong fields dominate the process. From
a physical viewpoint, apart from numerical simulations,
the nature of the merger waveform is mainly unknown to
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date. Thereafter, a sudden increase of in frequency, known
as “chirp”, takes place and subsequently the oscillations
decay exponentially in time as the system settles down into
a stable state. This last phase is referred to in the litera-
ture as ringdown. Regarding the measurements, however,
the least amount of information has been extracted from
the ringdown phase due to the signal strength as well as
duration. On the theoretical side, however, the process is
understood to be closely related to the quasinormal modes
(QNMs) and its signal-to-noise ratio [9] of the resultant
distorted black hole.

In practice, the specific approach to study the QNMs
depends on the asymptotical behavior of the black hole
metric. For instance, distinct spacetimes, such as asymp-
totically flat, de Sitter, and anti-de Sitter spacetimes,
dictate the boundary conditions of the problem [10] dif-
ferently. Also, various types of initial disturbances can be
assumed which include those of the scalar [11–13], elec-
tromagnetic [14,15], and Dirac fields [12,16,17], in addi-
tion to the gravitational ones [15]. Moreover, aside from
Einstein’s general relativity, QNMs in modified gravity
has also aroused much attention [18–20]. Among existing
theories of modified gravity, the Rastall gravity [21] has
undergone a significant surge in popularity, partly owing
to its applications to cosmology [22–24] and other large-
scale systems [25]. In cosmology, the results of the stan-
dard ΛCDM model can be reasonably reproduced by the
Rastall gravity, for the background as well as linear level
perturbations. Besides, additional effects have been ex-
plored regarding nonlinear corrections [24]. Among oth-
ers, a power-law mass density distribution can be obtained
for the inner region of early-type galaxies in Rastall grav-
ity, which is not feasible in the framework of Einstein
gravity [25].

Rastall’s theory assumes that the covariant divergence
of the energy momentum tensor does not vanish in curved
spacetime. Alternatively, this conjecture can be viewed as
a consequence of the non-minimal coupling between the
curvature and matter. It is worth noting that the latter is
a known feature in modified gravity [26,27]. Moreover,
it can be readily shown that various theories of modi-
fied gravity, such as f(R) and quadratic gravity, can be
reformulated in terms of a generalized form of Rastall
gravity [28,29].

The present work aims to investigate the QNMs of a
charged black hole metric in Rastall gravity obtained re-
cently [28]. The background black hole solution in ques-
tion is surrounded by the quintessence field in the presence
of linear or nonlinear electromagnetic fields. The present
letter is organized as follows. In the following section, the
black hole solution is presented. In particular, we discuss
a second type of extremal black hole solution regarding
the Nariai limit where the cosmological horizon coincides
with the event horizon. In the third section, the QNMs for
both massless and massive scalar perturbations are eval-
uated. The calculated quasinormal frequencies as func-
tions of various parameters of the background metric are

investigated. Also, the QNMs of the second type of ex-
tremal black hole are investigated. The results are shown
to be consistent with the analytical arguments. The last
section is devoted to further discussions and concluding
remarks.

Charged black hole solutions for (3 + 1) dimen-
sional spacetimes in Rastall gravity. – In Rastall
gravity, the divergence of energy-momentum tensor does
not vanish in curved spacetime, and in particular, it is
proportional to the gradient of the Ricci scalar:

T ν
μ;ν = λR,μ. (1)

The corresponding field equation reads

Rμν − 1
2
gμνR = κ(Tμν − λgμνR). (2)

The present study considers the black hole solution in
(3 + 1)-dimensional spacetime in the presence of lin-
ear and nonlinear electromagnetic field surrounded by
quintessence fluid. For the static and spherically sym-
metric case, the resultant metric is [28]

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdφ2). (3)

The linear or nonlinear electromagnetic field, described
in terms of the vector potential, assumes the following
ansatz of nonzero temporal component:

Aμ = δt
μAt(r), (4)

with
At(r) = A0 +

Q

2s − 3
(2sr − r)1−

3−1
2s−1 . (5)

The eletromagnetic field is nonlinear, except for s = 1,
where the formulism falls back to the case of linear
Maxwell field and one has A0 = 0. Since Q is identified as
the electric charge of the black hole for s = 1, it is subse-
quently understood as the generalized electric charge for
s �= 1. The energy-momentum tensor of electromagnetic
field is

Ev
μ = −(−ξ)s(F)s−1

(
2sFσμF σv − 1

2
δv
μF

)
, (6)

where Fμν = Aμ;ν − Aν;μ.
For the quintessence field, one assumes the following

barotropic equation of state p = ωqρ. The corresponding
energy-momentum tensor reads

T ∗t
t = T ∗r

r = −ρ(r),

T ∗θ1
θ1

= T ∗θ2
θ2

=
1
2
ρ(r)(3ω + 1). (7)

Therefore, the energy-momentum tensor of the matter
field is summed up to read

Tμν = Eμν + T ∗
μν . (8)
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ρ = Cρr
−

3(−1 + 4κλ) (1 + ωq)
−1 + 3κλ (1 + ωq) +

16Q2(−1 + s)(−1 + 2s)
1+

2
−1 + 2s (r(−1 + 2s))

4s

1 − 2s (−1 + 2s)

2
1 − 2s λ

−3 (1 + ωq) + s (2 + 6ωq)
,

f(r) = 1 − 2M

r
+

Q2r

2
1 − 2s (−1 + 2s)

3 − 2s

1 − 2s

(3 − 2s)s
+

Cρr

1 + 3ωq − 6κλ(1 + ωq)
−1 + 3κλ (1 + ωq) κ (1 − 3κλ (1 + ωq))

2

3(−1 + 4κλ) (−ωq + κλ (1 + ωq))
,

(9)

Q

Q

Q

Q

Q

Q

Q

Q

Q

Fig. 1: The functions f1(r) (left), f2(r) (middle), and f3(r) (right) vs. r evaluated for s = 1, 2, and 3, respectively.

By substituting the above pieces into the field equa-
tion (2), the resultant metric, eq. (3), is found to be [28]

see eq. (9) above

where Cρ, M are constants of integration. Physically, M
is associated with the mass of black hole. For ωq = −1, the
metric, dictated by eq. (9), describes the asymptotically
de Sitter spacetimes when Cρ < 0 and the anti-de Sitter
spacetime for Cρ > 0. In the remaining of the paper, we
consider Cρ < 0 and choose ωq = −1, Cρκ = −1, λκ = 1,
and M = 1/2 for the numerical calculations. In this case,
it is straightforward to show that eq. (9) simplifies to

f(r) = 1 − 1
r
− r2

9
+

Q2r
2

1−2s (−1 + 2s)
3−2s
1−2s

(3 − 2s)s
. (10)

An extremal black hole is a black hole with the maximal
possible amount of charge with a given mass and angular
momentum. For the present metric, one can demonstrate
that there are two types of extremal black hole solutions
that are physically distinct. As discussed below, they cor-
respond to the ones with linear and nonlinear electromag-
netic fields, respectively. For s = 1, which corresponds to
the case of the linear electromagnetic field, eq. (10) implies
there is an inner horizon which sits inside the black hole
event horizon. If one increases the charge of the black
hole for a given mass, the inner and the event horizons
gradually approach each other. At the moment when the
inner horizon coincides with the event horizon, the charge
reaches a critical value, which will be denoted as Q1. To
further increase the value of the charge is physically pro-
hibited by the cosmic censorship hypothesis. This is the
usual scenario for an extremal black hole, as indicated in
the left plot of fig. 1. On the other hand, for s > 1, which
corresponds to the case of the nonlinear electromagnetic

field, the situation is quite different. One can readily show
that there is an event horizon and a cosmological horizon,
according to eq. (10). Again, as the charge increases, the
two horizons approach each other. When the event hori-
zon comes very close to the cosmological one, a second
type of extremal black hole is formed, which is known as
the Nariai limit [30]. For the observer which is sandwiched
between the event horizon and cosmological horizons, as
the two horizons approach each other, it is not difficult to
show that the proper distance between them is well de-
fined and finite. In fact, the metric on the causal patch
between the two horizons can be approximately described
as a patch of the Nariai solution. However, the metric
becomes unphysical as the charge further increases and
exceeds the critical value. We denote the corresponding
critical charge as Qs. Two examples of the second type of
extremal black hole solution are shown in the middle and
right plots of fig. 1.

The quasinormal modes for massless and massive
scalar perturbations. – The radial part of the Klein-
Gordon equation for scalar field can be derived by using
the method of separation of variables. By substituting
Φ = φ(r)

r Y (θ, ϕ)e−iωt, one finds

d2φ

dr2
∗

+ [ω2 − V (r)]φ = 0, (11)

where r∗ =
∫

dr
f(r) is the so-called tortoise coordinate and

the effective potential V (r) is given by

V (r) = f(r)
(

rf ′(r) + �(� + 1) + r2m2

r2

)
. (12)

As the effective potential vanishes on the event and cos-
mological horizons f(rh) = f(rc) = 0, the boundary con-
ditions of the wave function φ are dictated by the fact that
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Fig. 2: The quasinormal frequencies evaluated for linear as well as nonlinear electromagnetic fields with s = 1, 2 and 3, different
charges Q, and quintessence fluild equation of state ωq. The calculations are carried out by using the matrix method for both
massless and massive scalar perturbations.

the waves are asymptotically ingoing on the event horizon,
while outgoing on the cosmological horizon.

In what follows, we study the quasinormal modes by
using the matrix method [31,32] and the more venera-
ble WKB [33–35] approximation. By expanding the func-
tion f near the event and cosmological horizons by Taylor
series, the boundary conditions of the radial equation,
when substituting the definition of the tortoise coordiante,
assume the following form [32]:

φ(rh) ∼ e−iωr∗ ∼ (r − rh)−
iω

f′(rh) ,

φ(rc) ∼ eiωr∗ ∼ (r − rc)
iω

f′(rc) .
(13)

We then introduce the coordinate transformation x =
r−rh

rc−rh
, and rewrite the wave function of the scalar field as

φ = (1 − x)
iω

f′(rc) x
− iω

f′(rh) R(x). To simplify the boundary
conditions, we further define σ(x) = (1 − x)xR(x). The
resulting master equation regarding σ(x) is a second-order
ordinary differential equation which possesses the desired
boundary conditions

σ(0) = σ(1) = 0. (14)

According to the matrix method, the derivatives are
rewritten in terms of the function values at the grids,
so that the second-order differential equations and their
boundary conditions can be transformed into a matrix
equation. Subsequently, the quasinormal frequencies can
be obtained by solving a nonlinear algebraic equation.

The WKB approximation [36] is a well-known semi-
analytic method for solving linear differential equa-
tions. Besides the application for the time-independent
Schrödinger equation, the method can also be employed
for the master equation of black hole perturbation theory.

Recently, the WKB method has been extended to 13th
order [35]. We proceed to evaluate the quasinormal fre-
quencies by using both the WKB and matrix method.
Also, we investigate how the numerical results behave by
studying their dependence on the order of the expansion
for both approaches. It is found that both approaches
give reasonably good precision. To be specific, the ma-
trix method is found to give convergent results when the
grid number is bigger than seven. The numerical results
are compared against those by employing the WKB ap-
proximation up to the thirteenth order, and satisfactory
consistency is observed.

We first evaluate the quasinormal frequencies for mass-
less scalar perturbations. This is done by taking m = 0
in the above equations. In fig. 2, we present the resulting
quasinormal frequencies for black holes with linear and
nonlinear electromagnetic fields for different charges and
equations of state of the quintessence fluid. Accordingly,
the real and imaginary parts of the frequencies are shown
as a function of ωq, with different values of s and Q. Since
ωq = −1 is mostly consistent with the observed accelarat-
ing Universe [37], the calculations are carried out in the
vicinity of this value. It is found that the quasinormal fre-
quency decreases with increasing ωq. The parameter ωq

describes the stiffness of the equation of state. Therefore,
the above results imply that for a given amount of ini-
tial perturbation, a stiffer quintessence fluid is harder to
be dragged along as the oscillation period becomes larger
while the disturbance decays away more slowly. Also, the
observed dependence of quasinormal frequency on ωq is
mostly found to be linear. In a few cases, the linearity
becomes less strict as the charge approaches that of the
extremal value Qs. On the other hand, the results indi-
cate that in the case of the linear electromagnetic field for

50006-p4



Scalar QNM of charged black holes in Rastall gravity

Q

Q

Q

Q

Q

Q

Q

Q

Q

Fig. 3: The calculated temporal evolution of massless scalar perturbation for linear and nonlinear eletromagnetic fields and
charges.

Q

V
m

Fig. 4: The effective potential evaluated for different masses of
the scalar field.

given ωq, as the charge approaches that of the extremal
black hole, the real part of the quasinormal frequency in-
creases monotonically, while the the imaginary part in-
creases and then decreases. On the contrary, in the cases
of nonlinear electromagnetic fields, both the temporal os-
cillation frequency and decay rate decrease as the black
hole charge increases toward the corresponding extremal
value. Moreover, regarding a given percent variation of Q,
the corresponding change of the quasinormal frequencies
is more significant in the cases of the nonlinear electro-
magnetic field.

Next, we use the finite difference method to explore the
temporal evolution of scalar perturbations. The results are
shown in fig. 3. One observes that the dependence of the
quasinormal frequencies on the charge Q is consistent with
those obtained by using semi-analytic method obtained
above.

To investigate the quasinormal modes of massive scalar
perturbations, we first show in fig. 4 the effective potential
evaluted for different masses of the scalar field. The cal-
culations are carried out by using the parameters s = 1,
ωq = −1, and Q = 1

2Q1. Owing to eq. (12), the potential
vanishes at the horizons which are entirely determined by
the function f . As the mass of the scalar field increases,
the maximum of the effective potential slightly increases,
together with the corresponding location r where the max-
imum is attained. However, in general, the effective poten-
tial is not much affected by the mass. The corresponding

quasinormal frequencies are presented in fig. 5. For given
s, ωq, and Q, both the real and imaginary parts of the
quasinormal frequency increase with increasing mass.

Last but not least, in fig. 6, we study the calculated
QNMs as the charge approaches that of the extremal black
hole. From the figure, one observes that the quasinormal
frequencies behave differently in linear and nonlinear elec-
tromagnetic fields. In particular, in the case of the nonlin-
ear electromagnetic field, both the real and imaginary of
the quasinormal frequency are found to approach zero at
the limit of the extremal black hole. The above numerical
results can be understood analytically as follows. As the
charge increases to approach the extremal value, the co-
ordinates of the event and cosmological horizons coincide.
Now, the general solution of the master equation must sat-
isfy the boundary conditions that it is an asymptotically
ingoing wave at event horizon rh and an outgoing wave at
cosmological horizon rc. As rc → rh, one may study the
limit of the quasinormal frequency. However, it is not dif-
ficult to observe in order that the frequency to satisfy both
conditions, it must trivially vanish. This is in agreement
with what have been obtained numerically in fig. 6.

Concluding remarks. – In this work, we investigate
the QNMs scalar perturbation of a charged black hole
metric proposed recently in Rastall gravity. Indeed, the
presence of the quintessence field is a vital factor, as it
is one of the significant candidates for dark energy. Rel-
evant topics have already aroused much attention in the
literature. The static spherically symmetric black hole so-
lution surrounding by the quintessence in Einstein’s grav-
ity was first investigated by Kiselev [38]. Subsequently,
the related QNMs for scalar, electromagnetic, spinor, and
gravitational perturbations were explored by many au-
thors [39–43]. These works were further extended to the
case of Rastall gravity [44,45]. Regarding the charged
black hole, the QNMs of the Reissner-Nordstrom black
hole in the presence of quintessence were first investi-
gated in Einstein gravity [46,47]. In this context, the
present work extends the study of QNMs to a more gen-
eral case with linear and nonlinear electromagnetic fields
in Rastall gravity. To be specific, the black hole solution in
question is surrounded by a quintessence fluid in the pres-
ence of linear or nonlinear Maxwell field. The quasinormal
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Fig. 5: The calculated quasinormal frequencies for quantum numbers n = 0 and � = 1 of massive scalar perturbations. The
calculations are carried out for different masses of the scalar field, ranging from 0 to 0.5 with an interval of 0.1. The latter
correspond to the scatter points of the same group, represented by the same symbols, which are located from left to right in
the plot.

Q Q

Q Q

⏐
IM

 (ω
)⏐

⏐
IM

 (ω
)⏐

Re
 (ω

)
Re

 (ω
)

Fig. 6: Massless scalar quasinormal frequencies as a function of the ratio of the charge to that of the corresponding extremal
black hole. The upper row presents the results in the case of the linear electromagnetic field with s = 1. The bottom row gives
those for nonlinear electromagnetic field with s = 2.

frequencies are then evaluated semi-analytically by em-
ploying the matrix method and the WKB approximation.
The results obtained by the two methods are consistent
with each other, as the results are found to be stable re-
garding different orders or interpolation points. Also, the
finite difference method is utilized to study the temporal
evolution of small scalar perturbations. In the case of lin-
ear Maxwell field, as the charge increases, the oscillation
period becomes smaller while the corresponding magni-
tude decays faster. Conversely, for the case of nonlinear
Maxwell field, the obtained QNMs follow an exactly op-
posite trend. Besides, it is observed that as the mass of
the scalar field increases, the oscillation frequency becomes
more substantial, and the magnitude decays more slowly.
In addition, we studied the QNMs of the extremal black
hole associtated with the Nariai limit, where the event

horizon collides with the cosmological one. Our numeri-
cal calculations show that the quasinormal frequency ap-
proaches zero at this limit, which is consistent with the
analytic arguments. For the present black hole metric,
the impact of the quintessence fluid is meaningful regard-
ing its role as an essential candidate for the dark en-
ergy. From our calculation results, one concludes that
both the real and imaginary parts of the quasinormal
frequency increase with increasing ωq. Our calculations
with different metric parameters indicate that the black
hole spacetime is likely stable against scalar perturba-
tions. Although the gravitational wave detection, at its
present stage, is not yet sufficiently robust to furnish sat-
isfactory signal-to-noise ratio measurements for the ring-
down phase. The study of QNMs in Rastall gravity, as
well as other modified gravity, may hopefully contribute
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to the ongoing endeavor in gravitational-wave physics and
astronomy.
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