
December 2019

EPL, 128 (2019) 58003 www.epljournal.org

doi: 10.1209/0295-5075/128/58003

Aging transition under weighted conjugate coupling

K. Ponrasu
1
, I. Gowthaman

1
V. K. Chandrasekar

1(a) and D. V. Senthilkumar
2(b)

1 Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering,
SASTRA Deemed University - Thanjavur-613 401, Tamil Nadu, India
2 School of Physics, Indian Institute of Science Education and Research - Thiruvananthapuram-695 551, Kerala, India

received 9 September 2019; accepted in final form 20 December 2019
published online 4 February 2020

PACS 89.75.-k – Complex systems
PACS 89.75.Fb – Structures and organization in complex systems
PACS 05.45.Xt – Synchronization; coupled oscillators

Abstract – We investigate the effect of symmetry breaking couplings on the macroscopic dy-
namical behavior of an ensemble of globally coupled active and inactive oscillators. Conjugate
coupling among the ensemble and the weighted coupling within the active and inactive groups
introduces the asymmetry. Large values of the global coupling strength facilitate the onset of
the phenomenon of aging transition, thereby deteriorating the macroscopic oscillatory behavior.
We find that the natural frequency of oscillation favors the onset of the aging transition even
in the presence of a large proportion of the active oscillators because of the broken symmetry.
Further the ratio of the intra-group (weighted) couplings plays a nontrivial role in determining
the dynamical behaviors and their transitions. It is also observed that even a feeble change in
the simple feedback factor in the coupling facilitates the counterintuitive effect of preserving the
macroscopic oscillatory nature of the ensemble, comprising completely inactive oscillators, in the
entire parameter space where the ensemble suffered the aging transition.

Copyright c© EPLA, 2020

Introduction. – The framework of coupled oscillators
serves as an excellent platform to unravel a plethora of
macroscopic dynamical behaviors, including the intrigu-
ing role of their microscopic constituents, such as pattern
formation, clustering, synchronization, quenching of oscil-
lations, chimera states, etc. [1–11], mimicking several real
world phenomena. Further, such a framework facilitates
the rigorous analytical treatment of several macroscopic
phenomena even in the thermodynamic limit [12,13]. De-
terioration of dynamical units at the microscopic level of
a large collection of oscillators severely affects the macro-
scopic properties of the network as a whole. For instance,
a common cause for several neuronal disorders including
Alzheimer’s disease is the failure of neurons in assemblies
despite the fact that billions of neurons are born and die
every day. In relation to this, a phenomenon termed “ag-
ing transition” was reported by Daido and Nakanishi [14]
by increasing the proportion of inactive oscillators in an
ensemble of globally coupled active and inactive oscilla-
tors. Later, this phenomenon was even extended to an
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ensemble of heterogeneous oscillators [15] along with dif-
ferent coupling configurations [16,17].

Recent renewed bursts of activity regarding the aging
transition (AT ) have been dealing with preventing the
onset of the AT by adopting various control mechanisms
to retain the macroscopic properties of the ensemble of
oscillators. In particular, recent publications on the phe-
nomenon of reviving of oscillations [18,19], which essen-
tially refers to the restoration of oscillations of a coupled
network from their stable homogeneous/inhomogeneous
steady states, has seeded the momentum. Specifically, a
simple limiting feedback factor in the standard diffusive
coupling was introduced to sustain the macroscopic behav-
ior thereby preventing the onset of the AT [20], random
errors (uniform and normal) in the distance parameters
were shown to persist the macroscopic dynamical activ-
ity [21], employing auxiliary oscillators was also shown to
prevent the onset of the AT [22], and an asymmetry cou-
pling between the two populations has been introduced
recently to elucidate the enhanced robustness of the col-
lection of active and inactive oscillators [23].

In this letter, we employ the conjugate coupling among
the globally coupled oscillators comprising active and
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inactive ones, so that the conjugate coupling [24–27] in-
troduces asymmetry by breaking the rotational symmetry
of the globally coupled oscillators with standard diffusive
coupling. Further, we introduce an additional asymme-
try between the active and inactive group of oscillators
by employing weighted coupling so that the two groups of
oscillators interact with different coupling strengths. Our
main aim is to investigate the interplay of the conjugate
coupling and the asymmetry parameter, along with the
natural frequency of the oscillators facilitating the onset
of the AT. We find that the AT occurs even in the pres-
ence of an appreciable number of active oscillators upon
increasing the coupling strength beyond the unit value. In-
creasing the natural frequency of the oscillators decreases
the critical value of the ratio of the inactive oscillators, for
a given coupling strength, at which the AT occurs.

The interplay of the asymmetry parameter, which
weights the influence of one group on the other, plays a
crucial role in determining the onset of the AT. The macro-
scopic oscillatory (homogeneous steady) state is favoured
when the influence of the active (inactive) oscillators is
stronger than that of their counterparts. Further, the
transition from limit-cycle oscillations (LC ) to the stable
homogeneous steady state (HSS ), corresponding to AT,
occurs via an inverse Hopf bifurcation, while the transi-
tion from stable inhomogeneous steady state (IHSS ) to
the AT onsets via a pitch-fork bifurcation. The onset
of IHSS, that is the oscillation death state has already
been reported using the conjugate coupling under dif-
ferent contexts/conditions [24–27]. The transition from
oscillatory to IHSS is favored through a saddle-node bi-
furcation. Hopf and pitch-fork bifurcation curves are de-
duced analytically using the linear stability analysis and
the Routh-Hurwitz criterion. We have also introduced a
limiting factor in the conjugate coupling to unravel its role
in increasing the robustness of the macroscopic oscillatory
nature of the network. We find that even a small decrease
in the value of the limiting factor increases the parameter
space of macroscopic oscillations to a large extent. Below
a critical value the homogeneous steady state constitut-
ing the AT region disappears completely from the entire
parameter space thereby retaining the macroscopic oscil-
lations, and hence increasing their robustness, surprisingly
even in an ensemble comprised only of inactive oscillators.

The model. – We consider the paradigmatic model of
globally coupled Stuart-Landau limit-cycle oscillators with
conjugate coupling, whose governing equation of motion
can be represented as

żj = (λj + iω − |zj |2)zj +
m(1,2)ε

N

N∑

k=1

[(Im(zk)

− αRe(zj)) + i(Re(zk) − αIm(zj))], (1)

where the state variable zj = xj + iyj ∈ C, j = 1, . . . , N ,
xj and yj are the real variables and N is the total number
of oscillators. ω is the natural frequency of the oscillators,

ε is the coupling strength, α is the feedback control pa-
rameter which ranges from 0 ≤ α ≤ 1. When α = 0,
the coupling in (1) is a direct coupling, whereas it is a
standard global diffusive coupling for α = 1. The globally
coupled oscillators consist of active oscillators exhibiting
limit-cycle oscillations for λj = 2 and inactive oscillators
with stable homogeneous steady state for λj = −1. Specif-
ically the value of λ in the Stuart-Landau limit-cycle os-
cillator attributes to the fact that whether the limit-cycle
oscillation emerges through a supercritical (λj > 0) or a
subcritical (λj < 0) Hopf bifurcation. It is to be noted that
the Stuart-Landau oscillator represents the normal form
of the Hopf bifurcation and hence a large class of nonlinear
oscillators near the Hopf bifurcation can be approximated
as the Stuart-Landau limit-cycle oscillator. The oscillators
N1 = j ∈ (1, . . . , N(1− p)) correspond to the active oscil-
lators, while the remaining N2 = j ∈ (N(1−p)+1, . . . , N)
oscillators are inactive, such that N = N1 + N2. p quan-
tifies the ratio of the inactive oscillators. All the N oscil-
lators are active for p = 0, while they are all inactive for
p = 1. The intra-groups of active and inactive oscillators
will have their coupling strengths m1 and m2, respectively.
An asymmetric interaction similar to that in eq. (1) using
the parameters m1 and m2 occurs in wide natural sys-
tems such as prey-predator systems, neural populations,
community structures, hierarchical networks and so on.
However, it predominantly occurs in ecological systems,
for instance the asymmetry interaction corresponds to the
dispersal rate in metapopulations [28]. In the present con-
text, the asymmetry interaction was already shown to aug-
ment the dynamical persistence among the population of
active and inactive oscillators [23].

Stability analysis: Hopf and pitch-fork bifurca-
tion curves. – The two groups of active (A) and inactive
(I) oscillators collapse to a single group of inactive oscil-
lators, resulting in a global homogeneous steady state, at
the critical value of the fraction of the inactive oscillators
pc, at which the AT occurs. Since A = Ar + iAim and
I = Ir + iIim, where Ar, Aim, Ir and Iim are the real vari-
ables, the evolution equation in terms of their real vari-
ables can be represented as

Ȧr = aAr − Aimω − ArA
2
im − A3

r + m1ε[(1 − p)Aim

+ pIim − αAr], (2a)
Ȧim = aAim + Arω − AimA2

r − A3
im + m1ε[(1 − p)Ar

+ pIr − αAim],
İr = bIr − Iimω − IrI

2
im − I3

r + m2ε[(1 − p)Aim

+ pIim − αIr], (2b)
İim = bIim + Irω − IimIr

2 − I3
im + m2ε[(1 − p)Ar

+ pIr − αIim],

where a = 2 and b = −1. One can obtain the critical
value of p by the linear stability analysis of the above
equations at the origin (A, I) = (0, 0). The characteristic
equation deduced from the Jacobian of the above system
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of equations can be represented as

λ4 + c1λ
3 + c2λ

2 + c3λ
1 + c4λ

0 = 0, (3)

where the coefficients ci can be deduced as

c1 = 2b − 2a + 2εm1α + 2εm2α,

c2 = a2 + b2 − ε2m2
1 + 2ε2m2

1p − 2ε2m1m2p − ε2m2
1p

2

+ 2ε2m1m2p
2 − ε2m2

2p
2 + 2bε(2m1 + m2)α

+ ε2m2
1α

2 + 4ε2m1m2α
2 + ε2m2

2α
2

− 2a(2b + ε(m1 + 2m2)α) + 2ω2,

c3 = 2(b2εm1α + a2(b + εm2α) − a(b2 + 2bε(m1 + m2)α

+ ε2m2(m2(α2 − p2) + m1(p2 + 2α2 − p)) + ω2)

+ b(ε2m1(m1(2p − 1 − p2 + α2)

+ m2(p2 − p + 2α2))+ω2)+εα(ε2m1m2(m2(α2 − p)
+ m1(p − 1 + α2)) + (m1 + m3)ω2)),

c4 = ε4m2
1m

2
2α

4 − ε4m2
1m

2
2α

2 − ε2m2
1ω

2 + 2ε2m2
1pω2

− 2ε2m1m2pω2 − ε2m2
1p

2ω2 + 2ε2m1m2p
2ω2

− ε2m2
2p

2ω2 + ε2m2
1α

2ω2 + ε2m2
2α

2ω2 + ω4

+ b2(ε2m2
1(2p − 1 − p2 + α2) + ω2) + 2bεm2α

(ε2m2
1(p − 1 + α2) + ω2) + a2(b2 + 2bεm2α

+ ε2m2
2(α

2 − p2) + ω2) − 2aεm1(b2α

+ bεm2(p2 − p + 2α2) + α(ε2m2
2(α

2 − p) + ω2)).

However, solving the fourth-order characteristic equa-
tion to deduce the critical curves, across which the bifur-
cation occurs, from the eigenvalue analysis is a difficult
task. Nevertheless, one can arrive at the Hopf and pitch-
fork bifurcation points/curves using the coefficients of the
characteristic equation following the Routh-Hurwitz sta-
bility criterion [29]. All the other conditions are satisfied
automatically for the chosen parameters except for

f(ε, α,m1,m2, p) = c1c2c3 − (c2
3 + c2

1c4) > 0, (4)

and c4 > 0. One can deduce the critical value of the
fraction of inactive oscillators corresponding to the AT,
onsets via the Hopf bifurcation, by solving the function
f(ε, α,m1,m2, pHB) = 0, which results in the Hopf bifur-
cation curve. Upon equating c4 = 0, one can deduce the
pitch-fork bifurcation curve as

pPB =
1
S

[
ε2m2

1(b
2 + ω2) + ε2m1m2(ab − ω2)

]

+ αε3(bm1m2 + am1m
2
2) −

√
Δ, (5)

where

Δ = G1 + G2,

G1 = ε4m2
1[b

2m1 + aεm2
2α + bm2(a + εm1α)

+ (m1 − m2)ω2]2,
G2 = (b2 + 2bεm2α + ε2m2

2α
2 + ω2)(a2 + 2aεm1α

+ k2m2
1(α

2 − 1) + ω2)S,

S = ε2[b2m2
1 + 2abm1m2 + a2m2

2 + (m1 − m2)2ω2].

Dynamical transitions. – In order to discuss the
dynamical transitions more elaborately, we numerically
solve the above system of eqs. (1) using the Runge-Kutta
fourth-order integration scheme with a step size of 0.01.
Particularly, we estimate the normalized order param-
eter R ≡ |Z(p)|/|Z(0)| of the coupled systems, where
Z = 1

N

∑N
j=1 zj . We have fixed the number of oscilla-

tors in the ensemble as N = 500 throughout the paper.
The normalized order parameter R as a function of the
ratio of inactive oscillators p is depicted in fig. 1 for three
different coupling strengths. The natural frequencies of
the oscillators are fixed as ω = 1.0 and 2.0 in fig. 1(a)
and 1(b), respectively, while the asymmetry parameters
corresponding to the weighted coupling (intra-group cou-
pling strength) are chosen as m1 = m2 = 1. It is evident
from fig. 1(a) that the oscillators in the ensemble gradually
reach the HSS in proportion to the number of inactive os-
cillators p, as indicated by the declining value of the order
parameter, and eventually all the oscillators destined to
the HSS at p = 1 for ε = 1. Thus the macroscopic oscilla-
tory nature of the ensemble is lost completely by choice,
only when all the oscillators constituting the ensemble are
chosen to be inactive, to get entrained to the stable HSS
for the unit value of the coupling strength. In contrast,
the ensemble of globally coupled oscillators display the AT
even at finite proportion of the inactive oscillators p less
than unity for large values of ε. For instance, the AT oc-
curs at p = 0.78 and 0.77 for ε = 3 and 5 (see fig. 1(a)),
respectively, where there exists an appreciable number of
active oscillators in the ensemble.

Further, the effect of increasing the natural frequency
of oscillators to ω = 2 can be appreciated from fig. 1(b).
For ε = 1, the ensemble undergoes a synchronization tran-
sition to HSS when all the oscillators in the ensemble are
inactive. On the other hand, it is interesting to witness
that the ensemble suffers the AT even at very low values
of p upon increasing the natural frequency of the oscilla-
tors in the ensemble. For instance, the AT occurs even at
p = 0.45 and 0.64 for ε = 3 and 5, respectively, for ω = 2
(see fig. 1(b)). These results elucidate that the AT occurs
even at low values of the critical ratio of the inactive oscil-
lators pc despite the presence of a large proportion of the
active oscillators, for a given coupling strength, upon in-
creasing the frequency of the oscillators. It is to be noted
that the frequency-dependent AT occurs due to the con-
jugate coupling, which breaks the rotational symmetry of
the globally coupled oscillators in contrast to the existing
reports on the AT. Further, it is also clear that the AT
occurs at low values of p upon increasing the coupling
strength for a fixed frequency of the oscillators.

Now, we will unravel the influence of the asymmetry
parameters (intra-group coupling strengths) m1 and m2

on the phenomenon of the AT . The order parameter as a
function p is depicted in fig. 2 for three different coupling
strengths. First, we fix the intra-group coupling strength
of the active oscillators as m1 = 1 and vary that of the
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Fig. 1: The normalized order parameter R as a function of the
ratio of the inactive oscillators p. (a) ω = 1.0 and (b) ω = 2.0.
The other parameters are a = 2.0, b = −1.0, α = 1.0, and
m1 = m2 = 1.0.
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Fig. 2: The normalized order parameter R as a function
of the ratio of the inactive oscillators p for ω = 1.0.
(a) m1 = 1, m2 = 2, (b) m1 = 1, m2 = 3, (c) m1 = 2, m2 = 1,
and (d) m1 = 3, m2 = 1. The other parameters are the same
as in fig. 1.

inactive oscillators as m2 = 2 and 3 in figs. 2(a) and 2(b),
respectively. Since the oscillators are globally coupled, the
influence of the active (inactive) group will be stronger
than that of the inactive (active) group for larger values
of m2 (m1). Hence, the ensemble of active and inactive
oscillators exhibit the AT at increasingly higher values
of p for decreasing values of the coupling strength ε for
m2 = 2 (see fig. 2(a)). The AT occurs at further larger
values of p for the corresponding ε for further increase in
m2 as depicted in fig. 2(b) for m2 = 3 as the influence of
the active oscillators become much stronger than that of
the inactive oscillators. By fixing the intra-group coupling
strength of the inactive oscillators as m2 = 1, now we will
investigate the influence of m1. The AT of the globally
coupled Stuart-Landau oscillators is shown in figs. 2(c)
and 2(d), respectively, for m1 = 2 and 3. As the influence
of the inactive oscillators on the active oscillators becomes
stronger for increasing values of m1, the AT occurs even
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Fig. 3: Two-parameter phase diagrams in the (ε, p) space
for the natural frequency of the oscillators (a) ω = 1, and
(b) ω = 2. The other parameters are the same as in fig. 1.
HSS corresponds to the aging transition, IHSS to the oscilla-
tion death state and LC refers to the limit-cycle oscillations.
HB, PB and SN correspond to the Hopf, pitch-fork and saddle-
node bifurcations, respectively.
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Fig. 4: Two-parameter space as a function of the proportion
of inactive oscillators p and the natural frequency ω. Lines
connected by different symbols correspond to the pitch-fork
bifurcation curve demarcating the homogeneous (AT ) and in-
homogeneous steady states for different values of the coupling
strength.

for low values of p as a function of m1 and ε despite the
presence of a large proportion of the active oscillators.

The global dynamical transition as a function of ε and
p is depicted as two-parameter phase diagrams in fig. 3
for two different frequency of oscillations corresponding to
fig. 1. The other parameters are also the same as in fig. 1.
Comparing figs. 3(a) and 3(b), the spread of the AT region
increases to a large extent for ω = 2 (see fig. 3(b)). There
lies a minimum value of ε above which the AT occurs
as a function of p. However, all the oscillators will be
inactive, corresponding to the synchronized HSS, in the
entire range of ε for p = 1. It is to be noted that the
pitch-fork bifurcation curve in fig. 3(b), across which AT
onsets, emerges nearly from p = 0 and ε = 2.3. As the
coupling strength is increased, the critical values of ε and p
corresponding to the pitch-fork bifurcation curve increase
and then saturate as a function of ε elucidating that for
low values of ε AT occurs earlier than for high values of
ε. It is also evident from fig. 4 as a function of p and ω
for different ε. It is to be noted that for lower values of ω
(for ω < 1.3) AT occurs for higher values of ε, whereas for
ω ≥ 1.3 AT occurs for lower values of ε first and then at
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text for details.
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Fig. 6: Two-parameter plot in the (ε, p) space for ω = 1.
(a) m1 = 1, m2 = 2, (b) m1 = 1, m2 = 3, (c) m1 = 2, m2 = 1,
and (d) m1 = 3, m2 = 1. The other parameters are the same
as in fig. 1.

higher values. Further, it is also evident from the figure
that a large frequency of oscillation favors the onset of
aging transition even in the absence of inactive oscillators.
Three different bifurcations responsible for the dynamical
transitions observed in fig. 3 are depicted in fig. 5.

One-parameter bifurcation diagrams of both active and
inactive group of oscillators obtained using the software
XPPAUT [30] are depicted in fig. 5. Solid (dashed) lines
correspond to stable IHSS of active (inactive) oscillators.
HSS (AT ) is indicated by the dotted line. Lines con-
nected by open (filled) circles correspond to the dynamics
of active (inactive) limit-cycle oscillators. SN, HB and
PB represent saddle-node, Hopf and pitch-fork bifurca-
tions. There is transition from LC to HSS (AT ) via a
Hopf bifurcation as a function of ε as depicted in fig. 5(a)
for p = 0.8. The transition from the IHSS state to the
HSS occurs via a pitch-fork bifurcation as a function of p
(see fig. 5(b) for ε = 5). A saddle-node bifurcation medi-
ates the transition from LC to IHSS as a function of ε as
shown in fig. 5(c) for p = 0.3. The Hopf and pitch-fork

bifurcation curves, represented by solid and dashed lines,
respectively, in fig. 3 delineating the boundaries between
different dynamical states are the analytical bifurcation
curves, whereas the saddle-node bifurcation curve, rep-
resented by a dash-dotted line, was obtained from the
XPPAUT.

The two-parameter phase diagram in the (ε, p) space
corresponding to dynamical transitions in fig. 2 is depicted
in fig. 6. Since the influence of the active oscillators is
stronger for larger values of m2 for a fixed m1, the spread
of the HSS (AT region) decreases as a function of p and
ε from figs. 3(a) to 6(b) via fig. 6(a) for increasing values
of m2. Similarly to fig. 3, there is an AT from oscillatory
state via a Hopf bifurcation. Further, there is a transition
from IHSS to HSS via a pitch-fork bifurcation and the
transition from oscillatory to OD state is mediated by a
saddle-node bifurcation. Figures 6(c) and 6(d) are plotted
for m1 = 2 and 3, respectively, for a fixed m2 = 1. It
is evident that the spread of the AT region increases for
increasing m1 as the influence of the inactive oscillators
is stronger than that of the active oscillators. Further,
all the oscillators are in the stable synchronized HSS for
p = 1 irrespective of the value of ε,m1,m2 and ω.

The two-parameter phase diagram as a function of the
coupling strength ε and the frequency of oscillation ω is
shown in fig. 7 for p = 0.8. Essentially, the dynamical tran-
sitions occur through the three bifurcations, as in figs. 3
and 6, which are depicted in fig. 7(a) for m1 = m2 = 1.
The spread of the AT increases both as a function of the
natural frequency of oscillators and the coupling strength
ε. Upon increasing the coupling strength of inactive oscil-
lators to m2 = 2, the spread of the AT region decreases
both as a function of ω and ε, as illustrated in fig. 7(b),
as the influence of the active oscillators will be stronger
than that of the inactive group of oscillators. In contrast,
the spread of the AT region increases upon increasing the
coupling strength of the active oscillators to m1 = 2 (see
fig. 7(c)) as the influence of inactive oscillators is much
stronger than that of the active oscillators in the en-
semble of globally coupled Stuart-Landau oscillators with
conjugate coupling. Further, the spread of the HSS in the
two-parameter (ε, ω) space for different combinations of
m1 and m2 is depicted in fig. 8 for p = 0.8. The dynamical
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other parameters are the same as in fig. 1.
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and (d) m1 = 3, m2 = 2. The other parameters are the same
as in fig. 1.

transitions along with the nature of bifurcations are sim-
ilar to fig. 7 except for the difference in the spread of the
dynamical states. For m1 = 1 and m2 = 3, the influence
of the active oscillators is stronger than that of the inac-
tive oscillators and hence spread of the AT region is rather
low in the (ε, ω) space in fig. 8(a), whereas the spread of
the AT region is large for larger values of m1 as can be
seen in fig. 8(b) for m1 = 3 and m2 = 1, in which case
the influence of the inactive oscillators is stronger. Fig-
ures 8(c) and 8(d) are plotted for (m1 = 2,m2 = 3) and
(m1 = 3,m2 = 2), respectively, which indeed corroborates
the influence of active and inactive oscillators in line with
the above results.

The critical curves (Hopf and pitch-fork bifurcation
curves) enclosing the AT (shaded) region for different val-
ues of the feedback factor are shown in fig. 9. The spread
of the AT region in the (ε, ω) space is depicted in fig. 9(a)
for m1 = m2 = 1 for three different α. It is evident
from the figure that the spread of the AT region decreases
upon decreasing the feedback parameter and finally be-
low a critical value the AT region disappears completely
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thereby resulting only in the macroscopic oscillatory state
in the entire parameter space. Similar results are also ob-
served in fig. 9(b) and fig. 9(c) for (m1 = 1,m2 = 2) and
(m1 = 2,m2 = 1), respectively.

Now, the spread of the AT region enclosed by the pitch-
fork bifurcation curve in the (p, α) space for different val-
ues of the coupling strength is shown in fig. 10. The top
row in fig. 10 is plotted for ω = 1, while the bottom row is
depicted for ω = 2. Figures 10(a) and 10(d) are depicted
for m1 = m2 = 1. It is evident from these figures that
the spread of the AT decreases upon decreasing values
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of the feedback parameter α and below a critical value,
it surprisingly disappears even for p = 1. Astoundingly,
even the entire group of inactive oscillators starts oscillat-
ing below a critical value of α. Further, the spread of the
AT region is depicted in figs. 10(b) and 10(e) for m1 = 1
and m1 = 2, while in figs. 10(c) and 10(f) for m1 = 2 and
m1 = 1. All these figures confirm that below a critical
value of the feedback parameter α the AT region disap-
pears thereby reviving the oscillations back in the same
parameter space where the ensemble of globally coupled
identical Stuart-Landau oscillators underwent the stable
HSS (AT ).

Conclusions. – We have considered globally coupled
active and inactive oscillators with weighted coupling to
investigate the aging transition. To the best of our knowl-
edge, it is the first report on the AT employing symmetry
breaking conjugate coupling. For lower values of ω, AT
occurs as a function of ε, however for higher ω, AT occurs
at lower values of ε first and then at higher ε. Further, it is
also evident that a large frequency of oscillation favors the
onset of aging transition even in the absence of inactive
oscillators. Increasing ω and ε is found to facilitate the on-
set of the aging transition even at low values of p, where
there exists a large proportion of active oscillators. Fur-
ther, we have also shown that increasing the intra-group
coupling strength of active (inactive) oscillators enhances
the spread of the aging transition (oscillatory) region as
their counterparts will have stronger influence over the
other. In particular, we have extensively investigated the
effect of asymmetric interaction among the active and in-
active oscillators. Further, we have also confirmed that
our results are robust in a large range of λ for active and
inactive populations and ω. Astoundingly, even a feeble
decrease in the limiting factor α in the coupling retrieves
the macroscopic oscillatory nature of the network even for
p = 1, thereby enhancing the robustness of the macro-
scopic dynamical behavior.
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