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received 3 October 2019; accepted in final form 5 January 2020
published online 4 February 2020

PACS 05.20.-y – Classical statistical mechanics
PACS 05.70.Ln – Nonequilibrium and irreversible thermodynamics
PACS 05.90.+m – Other topics in statistical physics, thermodynamics, and nonlinear dynamical

systems

Abstract – In the field of non-extensive statistical mechanics it is common to focus more attention
on the family of parameter-dependent entropies rather than on those strictly depending only on
the probability in which case there is no need to adjust a specific parameter. In particular,
there exist two non-parametric entropy measures, S±, that resemble the Boltzmann-Gibbs (BG)
entropy, SB , in the thermodynamic limit, whereas a difference between them arises inasmuch as
the statistical system possesses a small number of microstates. The difference, although slight,
accounts for meaningful physical consequences such as effective forces and inner interactions among
constituents. Yet, in this letter we are to report some of the analytical attributes associated to
entropies S± via the formulation introduced by Hanel and Thurner. These two functionals allow
to construct a generalised classification of entropy measures in terms of their defining equivalence
classes, which are determined by a pair of scaling exponents (c, d). As a result, it has been identified
that S± and SB belong to the same asymptotic, equivalence class. The latter is an interesting
fact since it does not occur for non-logarithmic, parameter-dependent entropies. Following this
scheme, we also briefly discuss the features of the Sharma-Mittal, Rényi and Tsallis entropies in
the asymptotic limit.

Copyright c© EPLA, 2020

Introduction. – The concept of entropy is fundamen-
tal in understanding the large-scale behaviour of either
deterministic dynamical statistical systems or complex
systems on account of their intrinsic features. In the or-
thodox statistical mechanics, for example, the Boltzmann-
Gibbs statistics are enough to describe with extraordinary
accuracy weakly interacting systems and even long-range
correlated systems [1] in terms of an additive (extensive)
entropy measure.

In general, however, it is not the same for the case of
complex (highly correlated) systems. Hence, a macroscop-
ical description relying on the basis of BG entropy fails
for the reason that additivity is usually not preserved. To
circumvent this anomaly, one can attend the description
of correlated systems in the light of non-additive (non-
extensive) generalised entropies.

An ample number of generalised entropies has been
reported in the literature, particularly the families of non-
extensive, parameter-dependent entropies have been stud-
ied so widely to describe a variety of complex systems [2,3].

Nonetheless, in this letter we are mainly interested in the
analysis of another family of non-extensive entropies, here
named S± (or p-entropies ±), originally introduced in [4]
under the umbrella of super-statistics. We remark that S±
do not depend on any free parameters (typically selected
in accordance with the problem of interest) but only on
the probability, with the special feature that they could
provide a description for physical systems with a small
number of microstates Ω, whereas they completely resem-
ble BG in the thermodynamical limit, as shown in [5–7].

Furthermore, these distinctive attributes granted to S±
have led us to derive an entropic form in terms of a pair
of scaling exponents (c, d) by applying the formalism in-
troduced in [8]. Our results suggest that a wide family
of entropies, either parameter-dependent or not, including
the family S±, can be generated from this new entropic
form.

Our discussion begins by reviewing the asymptotic
analysis originally introduced in [8] —a formalism that
establishes a classification for a number of generalised
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entropies. Then we study the non-extensive, probability-
dependent entropies S± on which our proposal is based.
In this regard, we introduce a general entropic form that
enables a wide family of entropies to be derivable, such
as S±. After that, to serve as comparison with S± statis-
tics, we discuss further non-extensive entropies such as
those of Sharma-Mittal, Rényi and Tsallis as well as their
properties in the asymptotic limit. Finally, we present our
conclusions.

Asymptotic analysis. – In what follows we consider
generalised entropies and their description in terms of their
asymptotic behaviour with respect to BG entropy. We
present the S± entropies, which will be useful in describing
asymptotically equivalence classes. We also demonstrate
the convexity of S±.

Our study begins by considering generalised entropies
of the form

S(P ) =
Ω∑
n

G(pn), (1)

for a set P of probabilities pn. The functional G(p) is
such that the entropic forms defined in that way satisfy
at least the three first Shannon-Khinchin (SK) axioms [9],
to wit: continuity (SK1), maximality (SK2) and expand-
ability (SK3). Inasmuch as the fourth axiom, additivity
(SK4), is uniquely fulfilled by the well-known Boltzmann
entropy functional SB ≡ −

∑Ω
n pn log pn, besides Rényi

entropy, which is also an additive entropy measure, al-
though it is not of the general form (1).

Either weakly interacting or non-interacting statistical
systems are successfully described by Boltzmann entropy.
Only for these systems it is true that additivity and exten-
siveness are both equivalent. This becomes, however, false
in case of correlated statistical systems beyond the equilib-
rium, for which we have that the axiom SK4 is not entirely
satisfied. Nonetheless, as will be shown below there exists
the possibility to establish a natural connection between
correlated and uncorrelated statistical systems by means
of the generalised family of entropies

S+ ≡
Ω∑
n

(1 − ppn
n ) and S− ≡

Ω∑
n

(
p−pn

n − 1
)
. (2)

They were firstly introduced in [4] within the super-
statistics framework [10] for the case of a Γ-distribution
characterising a global fluctuation of temperatures. To be
more precise, these entropies describe systems possessing a
distribution of cells in local equilibrium, over a large time
scale but deviating slightly from the global equilibrium.
Eventually, it was found that the same entropies arise from
a generalisation of the replica trick [7], a technique intro-
duced in spin glasses. Also, in recent studies, their rele-
vance has been discussed for physical systems with a few
number of micro-states [5,6,11]. For example, in molecular
dynamics the entropies S± do render an effective repulsive
interaction between the constituents [6], thus feeling the

presence of tiny inner forces that otherwise, in a large-scale
layout, would be negligible. Furthermore, the quantum
aspects as well as the direct implications in the statistics
for a Bose-Einstein condensate have been explored in [12].
We depart from the physical necessity of exploring micro-
systems and their associated thermodynamics, and our
analysis constitutes an attempt to delineate a route for
that purpose.

The entropies in (2) do satisfy SK1–SK3 for a system
with �400 micro-states, whose constituents experience
certain interaction with each others, see fig. 1. Neverthe-
less, it is interesting to note that in the thermodynamical
limit such correlation becomes negligible and SK4 is sat-
isfied as well. In other words, SB and S± belong to the
same asymptotic equivalence class. To see this, we adopt
the approach given in [8] to introduce the following defi-
nition.

Definition 1. Any generalised entropy satisfying the ax-
ioms SK1–SK3 is thoroughly characterised by a pair of
scaling exponents (c, d) pertaining, respectively, to the
asymptotic laws

lim
Ω→∞

λ
G

(
1

λΩ

)
G

(
1
Ω

) = λ1−c, λ ∈ R, (3)

with 0 < c ≤ 1, and

lim
Ω→∞

G
(

1
Ω1+a

)
G

(
1
Ω

) Ωa(c−1) = (1 + a)d, a ∈ R. (4)

Taking into consideration the laws (3) and (4) it is easy
to verify that entropies SB and S± are characterised by the
same pair (c, d) = (1, 1). In particular, since c = 1 then
to fulfil SK2 it is necessary that d ≥ 0, which is already
satisfied, implying that G is a convex function. For the
classical entropy SB this is a well-known fact and we are
to show that this property is also satisfied by S±. One can
demonstrate the convexity by attending to the condition
tS(p) + (1 − t)S(p′) ≥ S(tp + (1 − t)p′) with 0 ≤ t ≤ 1.
Beginning with S+ we get (1 − t)

∑
p
′p′

n
n − t

∑
ppn

n ≥ δ
such that δ ≥ −

∑
(p′n + t(pn−p′n))(p

′
n+t(pn−p′

n)), since the
inequalities must be fulfilled for every pn and p′n one is
able to note that (1 − t)p′p

′
n

n > tppn
n and δ ≤ 0; therefore

δ ≤ (1− t)p′p
′
n

n − tppn
n ≤ 0, and consequently S+ is convex.

Similarly, for S−, we get tp−pn
n + (1 − t)p′−p′

n
n ≥ (t′pn +

(1 − t′)p′n)(−t′pn−(1−t′)p′
n), due to the right-hand member

attains zero at t′ = p′n/(p′n − pn) whereas the left-hand
member at t = −ppn

n /(p′p
′
n

n − ppn
n ), that is t′ > t, hence S−

is convex.

Generalised entropic forms. – Inspired by the pro-
posal introduced by Hanel and Thurner [8], below we are
to provide a general characterisation of the non-extensive
entropies (1) in terms of a generalised bi-parametric en-
tropic form on the basis of S± statistics. The proposal
given by the authors assumes the violation of the ad-
ditivity axiom, finding a wide class of generalised en-
tropies albeit rather based on SB and classified by the
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exponents (c, d). In the present work we depart from en-
tropies S± to encounter also a wide class of entropy mea-
sures.

For that we introduce a definition on account of the
functional generators

γ+(x) ≡ 1 − xx and γ−(x) ≡ x−x − 1. (5)

Finally we give a further discussion on the inherent fea-
tures of S± and their relation to the class (1, 1).

Definition 2. For any pair of scaling exponents (c, d),
there is a factor σ = 1/[1 + (d− 1)c], and a characteristic
function φ(x), such that the functional generators γ±(x)
in (5) define the set of universal entropic forms

G±(x; c, d) ≡ σ (φ(x) − Γ[d + 1, α±(x; c)]er) , (6)

where α±(x; c) = 1 − cW (−γ±(x)), r > 0, Γ[·, ·] is the
incomplete gamma function and W (x) is the product log-
arithm (or Lambert function).

The characteristic function, φ(x), in definition 2 is en-
tirely defined by each entropic form G± and the related
scaling exponents (c, d). For instance, the entropy S+, as
defined by (2), belongs to the class (c, d) = (1, 1), hence
σ = 1 and α = 1−W (xx − 1), we also select r = 1. Then
its corresponding characteristic function is given by

φ+(x) = 2 (1 − xx + exp [W (xx − 1)])

(we have attached a subscript to distinguish it from the
other case), then, by reducing the incomplete gamma func-
tion in (6), one gets G+(x, 1, 1) = 1 − xx, from which the
entropy S+ is immediately recovered. An analogous pro-
cedure takes place for the entropy S−, whose characteristic
function reads

φ−(x) = 2
(
x−x − 1 + exp

[
W

(
1 − x−x

)])
,

again, after simplifying the expression in (6), one obtains
G−(x, 1, 1) = x−x − 1 and the entropy S− is restored.

Certainly definition 2 allows to obtain a wide family of
entropies with different scaling parameters (c, d) generated
by the entropic forms associated to S±. However, as we
are to describe in the remarks below, the classification
given by Hanel and Thurner in [8] can be directly recovered
from (6) as well as the particular cases in (2).

Remark I. In particular, for γ±(x) = −x log x +
O(− 1

n! (x log x)n), then W (−γ±(x)) → log x, and
G±(·) → g(·), where

g(x; c, d) ≡ σ [φ(x) − Γ[d + 1, a(x, c)]er] , (7)

with a(x; c) = 1−c log(x), r > 0, hence corresponding
to the generalised entropic form given in [8].

Remark II. The universal entropic form (6) as for the
equivalence class (c, d) = (1, 1) yields, G±(x; 1, 1) =
±1 ∓ x±x, hence the non-parametric entropies S± =∑Ω

n (±1 ∓ p±pn
n ) are recovered.

Remark III. The entropic form (7) characterised by the
equivalence class (c, d) = (1, 1) yields g(x; 1, 1) =
−x log x, restoring the Boltzmann entropy SB =
−

∑Ω
n pn log pn.

In ref. [8] the authors claim that g as for eq. (7) does
satisfy the asymptotic laws (3), (4). Here we are rather
interested in G± characterised by the specific cases to be
presented below. In fact, as we will show, the generalised
non-extensive entropies S± wholly fulfil the laws (3), (4).

We now point out that non-extensive entropies S± guar-
antee statistics of physical applicability, provided these
measures are stable in the sense of Lesche [13]. The idea
behind is that for a given ε > 0 there exists a δε > 0 such
that for two distributions of probability P and P ′ defined
over the number of states Ω it follows ‖P −P ′‖1 < δε, thus
implying that |S(P ) − S(P ′)| < εS∗(Ω), where S∗ is the
maximum of entropy, hence it is said that S is stable. In
the case of S± the test of stability is formally discussed as
follows.

Let A±(p; t) be defined by

A±(P ; t) =
Ω∑
n

(
pn − e−t

±
)
θ
(
pn − e−t

±
)
, (8)

where θ(x) is the Heaviside theta function and the
stretched exponential functions e± are such that
log±(ex

±) = e
log±(x)
± = x, with log±(x) = (±1 ∓ x±x)/x.

Since the inequality |xθ(x) − yθ(y)| ≤ |x − y| holds, it
follows from (8) that |A±(P ; t)−A±(P ′; t)| ≤ ‖P − P ′‖1.
In addition, the entropies S± are now expressed in terms
of (8) as

S±(P ) = φ +

∞∫
0

dt [1 − A±(P ; t)], (9)

hence we have

|S±(P ) − S±(P ′)| =

∣∣∣∣∣∣
∞∫
0

dt[A±(P ; t) − A±(P ′; t)]

∣∣∣∣∣∣

≤
a±+log± Ω∫

0

dt |A±(P ; t) − A±(P ′; t)|

+

∞∫
a±+log± Ω

dt |A±(P ; t) − A±(P ′; t)| ,

(10)

where a± ≥ − log± Ω. In particular, if a± ≥ 0 we can
easily compute the integral in the first term, whereas the
integral in the second term can be performed by using
(1 − e

−P+log± Ω
± ) ≤ A±(P ; t) < 1, then we obtain

|S±(P ) − S±(P ′)| ≤ ‖P−P ′‖1(a±+log± Ω)+e
−a±
± R±(Ω),

(11)
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Table 1: Generalised entropies of the form (1). All these are particular cases of (6) as for definition 2. Note that S±(P ) and
SB(P ) are asymptotically equivalent, they correspond to the class (c, d) = (1, 1).

Entropy c d

p-entropy − S−(P ) =
∑Ω

n (p−pn
n − 1) 1 1

p-entropy + S+(P ) =
∑Ω

n (1 − ppn
n ) 1 1

W-exponential Se(P ) = 1−
PΩ

n exp[rW (ppn
n −1)]

r−1 0 < r < 1 0

Boltzmann SB(P ) = −
∑Ω

n pn log pn 1 1

Tsallis Sq(P ) = 1−
PΩ

n pq
n

q−1 0 < q < 1 0

Kaniadakis Sκ(P ) = −
∑Ω

n pn
pκ

n−p−κ
n

2κ 0 ≤ 1 − κ < 1 0

where R±(Ω) are the residual functions from the integra-
tion of e−t

± w.r.t. t such that R±(∞) ∼ 1. Moreover,
given that a± ≥ 0, the right-hand side becomes minimum
at a± = − log± ‖P −P ′‖1, where ‖P −P‖1 < 1, therefore
from (11) one gets

|S±(P ) − S±(P ′)|
log± Ω

≤ δ

(
1 +

R±(Ω)
log± Ω

)
− δ log± δ. (12)

This follows from the fact that −x log± x is a non-negative,
continuous function in the interval [0, 1/e±], as a conse-
quence ‖P − P ′‖1 < δ < 1/e± and one can conclude that
there is an appropriate δε for every ε such that the right-
hand side in (12) is a continuous function approaching 0
as δ → 0. In this regard, the values of a given observable
represented on the basis of S± statistics should change
gently if the state in consideration becomes different to a
small amount.

On account of the stability criterion as well as those ar-
guments of super-statistics we suggest that any reasonable
generalisation to (6) depending on p log p should nearly co-
incide with the features already considered in S±.

Furthermore, definition 2 guarantees that a number of
entropies can be derived from (6) based on the generators
γ±. In table 1 some of the entropies that are derivable
directly from (5) and (6) are portrayed. Among these
entropies, the W -exponential entropy is a particular result
of this study. To some extent, it can be interpreted as a
generalisation of the Tsallis entropy [14], which we discuss
in the next section.

Further generalised entropies, such as the Anteneodo-
Plastino measure [15], can also be classified following the
innovative scheme in [16], which constitutes a generalisa-
tion to the approach in [8]. We noted that considering
higher-order exponents in accordance with [16], will lead
to the same results as for BG entropy and S± (see also the
Supplementary Material Supplementarymaterial.pdf).
Yet our construction based on the generators γ± does not
generalise [8] with regard to other possible asymptotic ex-
ponents, but with respect to the proposed entropic forms
—allowing to derive a number of entropies, including S±
(see also table 1).

Aside from S±, the functional generators (5) do consti-
tute a basis for further entropy measures such as the linear
combination S0 ≡ 1

2 (S+ +S−) = 1
2

∑Ω
n (p−pn

n −ppn
n ). Like-

wise, it can be proved that S0 tends asymptotically to the
class (c, d) = (1, 1), a result to be expected since both
S+ and S− belong to this class as stated by remark II.
Alternatively, this very fact can be directly seen from
the series expansion S0 = −

∑Ω
n

∑∞
k

1
k! (pn log pn)k =∑Ω

n

∑∞
k

1
k!s

k(pn) for n odd. Then, by summing over k,
one sees that S0 converges to

∑Ω
n sinh s(pn). Notice that

the requirements for thermodynamical stability are cov-
ered term by term in the series, to say sk−1(pn) > sk(pn)
provided p ∈ [0, 1], thus resembling BG in the limit
Ω → ∞ (remark III).

However, unlike entropy SB , the non-extensive S± are
suitable to describe a system of few particles beyond the
equilibrium [6]. Whether this correlation is weak or strong
is a matter to be explored elsewhere. At this moment we
would like to focus our attention on examining a micro-
canonical configuration (E, V,N) for which the functionals
S± attain their maximum at pn = 1/Ω for every n, pro-
vided SK2 is satisfied. In the light of this, we get

S± = ±Ω ∓ Ω1∓1/Ω,

taking a series expansion, there yields

S± =
∞∑

n=1

(∓1)n+1 logn Ω
n!Ωn−1

,

the first term in the series corresponds to BG, nonetheless
note that the contribution due to the remaining terms
tends to be negligible as Ω grows since logn Ω < Ωn−1,
for n > 1; hence the quotient logn Ω/Ωn−1 ∼ 0 for Ω �
1. Furthermore, since SB = log Ω as for an equipartition
configuration, we get

S± =
∞∑

n=1

(∓1)n+1 Sn
B

n! exp[(n − 1)SB ]
, (13)

thus enabling to relate BG to the non-extensive entropies
S±. This fact has conducted us to the graphs shown
in fig. 1 where, as can be seen, the entropies S± would
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Fig. 1: Entropies S± as a function of SB for a uniform
distribution.

take into account subtle differences for a statistical sys-
tem composed of few micro-states. For instance, below
400 (log 400 ≈ 6) the differences between S± and SB ap-
proaches 0.75%.

A simple toy model. To serve as an example, we now
present a model of diffusion derived from entropies S±. A
deeper discussion than the one presented below is planned
to be published elsewhere.

We are to obtain a pair of differential equations that re-
flect anomalous diffusion, namely the case due to S+ (S−)
describes super-diffusion (sub-diffusion). These equations
are of the form

∂tp± = D∇2F±[p±], p± = p±(x, t), (14)

where D is the diffusion coefficient, p± are the distribu-
tions of probability in each case and F±[p±] are the effec-
tive densities of probability defined as [17]

F±[p±] = −β

∫ p±

0

dxx∂xΛ±(x), (15)

with Λ±(x) the correspondent generalised logarithms.
To proceed, we first optimise the functional of the form

Φ = G±(x) − αx − βUf±(x), (16)

here α and β are Lagrange multipliers associated with
the normalisation condition and conservation of energy U .
The entropic forms G±, in our case, are given by eq. (6),
and the respective weight functions are f±(x) = xx±1.
Differentiating (16) w.r.t. x, equating to zero and solving
for U , we can identify the generalised logarithm Λ(x) ≡ U .
For example, in the case of S+ one gets

Λ+(x) =
1 − x−x + log x

1 + x + x log x
, (17)

similarly for S−. At this point, we are in the position
to compute the effective density related to Λ+(x) via
formula (15). Taking a series expansion, we get

F+[p+] = p+ +
p2
+

4
+

p3
+

27
+

p4
+

128
+ · · · , (18)

please note that, after the effective density has been sub-
stituted into (14), the first term in the series corresponds
to the usual diffusion equation —which in turn would be
obtained if BG entropy characterised eq. (14). Whereas
the presence of nonlinear terms can be due to the appear-
ance of effective, repulsive forces [6], with a non-negligible
participation for systems of high probabilities, that is for
those systems with few microstates.

There are, however, additional physical consequences
portrayed by statistics based on S±, a detailed perspective
on the subject is offered in [5,7,11,12].

Further entropic forms. – For a self-contained dis-
cussion, we are now to review some generalised entropies
possessing a composed form S = F (

∑
n G(pn)). In this

family we find, for example, the Sharma-Mittal [18] and
Rényi [19] entropies. However, Tsallis entropy [14], which
belongs to the family (1), can be recovered from them un-
der specific assumptions. Considering all these entropies,
in what follows we are to compute their leading behaviour
for a microcanonical configuration as well as their scaling
properties in the asymptotic limit.

We begin with the Sharma-Mittal entropy, which is non-
extensive, this reads

Sq,r ≡ 1
r − 1

[
1 −

(∑
pq

n

) 1−r
1−q

]
, q, r ∈ R, (19)

we note that Boltzmann and Tsallis entropies are recov-
ered in the limits (q, r) → 1 and r → q, respectively.

Although entropy (19) is not of the form (1), we are still
entitled to classify Sq,r by applying directly the asymptotic
laws (3) and (4) to the form S = (1−G

1−r
1−q )/(r− 1), with

G =
∑

n pq
n. A straightforward calculation let us assert

that (19) belongs to the class (c, d) = (r,∞). Noting in
particular that due to d = ∞, then Sq,r will only satisfy
SK1–SK3 for 0 < r < 1, yet in general Sq,r fails to be
thermodynamical stable.

An interesting result is obtained by expanding Sq,r in
powers of r

− log G

q − 1
− (r − 1) log2 G

2(q − 1)2
− (r − 1)2 log3 G

6(q − 1)3
+ O

(
(r − 1)3

)
,

limiting our attention to the special case r → 1, one ob-
tains the Rényi entropy

Sα ≡ − log
∑Ω

n pα
n

α − 1
, (20)

where α is the parameter associated with the degree of
convexity, which shall be carefully selected for in accor-
dance with [8] values out from 0 < α ≤ 1 could compro-
mise the axioms SK2-SK3. Yet, in some applications [20]
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values α > 1 address to specific purposes. This entropy
is additive and belongs to the class (1, 1), one can verify
it by a direct application of (3) and (4), or alternatively
by maximising Sα subject to the normalisation constraint∑

pn = 1, hence obtaining SB ≡ Sα = log Ω. In other
words Sα belongs to the class (1,1) as well.

Another interesting fact becomes visible by expanding
the Rényi entropy as

Sr = − log
∑

pr
n

r − 1
= −

∑
pr

n − 1
r − 1

+
(
∑

pr
n − 1)2

2(r − 1)
+ · · ·

≈
r→q

∑
pq

n − 1
1 − q

≡ Sq, (21)

thus obtaining the Tsallis entropy iff |
∑

pq
n − 1| � 1.

There is a further correspondence: A maximisation of
Tsallis or Rényi entropy, subject to the same constraints
but having redefined the Lagrange multipliers, leads to
coincident probability distributions.

The Tsallis entropy belongs to the equivalence class
(c, d) = (q, 0). Similar to the case of Rényi, it would be
desired that 0 < q ≤ 1 in order to avoid violations to SK2-
SK3 [8]. There are, however, physical systems concerning
turbulences that exhibit non-BG distributions, which are
successfully described by q’s far away from unity [21].

As can be seen, unlike S±, it is clear that entropy mea-
sure Sq does not fulfil SK4 asymptotically and hence it
cannot resemble BG in the thermodynamical limit.

The rest of the SK axioms are satisfied by Sq as long as
0 < q < 1. The maximum of this entropy when subject to
the constraint

∑
pn = 1 is reached at pn = 1/Ω for all n.

As a consequence, for an (E, V,N) configuration we have

Sq =
Ω1−q − 1

1 − q
=

exp[(1 − q)SB ] − 1
1 − q

, (22)

where Sq has been expressed as a function of the
Boltzmann entropy SB . Besides, one can be aware
that (22) is bounded by the number Ω of states, which
means that [1 + (1 − q)Sq]

1
1−q is an integer as for a

microcanonical ensemble. Using this notation clearly
limq→1 Sq = SB, yet, it is indeed that for small numbers
ε = |q − 1| meaningful deflections of SB may arise as seen
from the expansion

Sq =
∞∑

n=0

(−1)n (q − 1)n

(n + 1)!
Sn+1

B . (23)

To end this section, let us point out that even for enough
small values ε such as q is near the unity, Sq will differ
from SB as the number Ω of states grows, which can be
observed in fig. 2. This is in a way opposite to S± as
illustrated in fig. 1 where, for Ω � 400 and far beyond,
these entropies coincide asymptotically with SB ; result
that would be expected for a large number of microstates
in the case of equilibrium or even for a slightly deviation
from it. However, one must recall that S± and Sq are
constructed based on non-equilibrium assumptions [4,10],

Fig. 2: Tsallis entropy, Sq(SB), maximised for a microcanonical
ensemble.

being these proposals essentially different from SB in cer-
tain Ω regions. In fact, one could engineer to have Sq near
to BG statistics, albeit to achieve that there is a compro-
mise between ε and how large SB can be. Even for q close
to unity, the leading contribution to Sq is given by BG
statistics only with a suitable interplay between ε = |q−1|
and SB , namely Sq−SB = −

∑
n,i

(q−1)n

(n+1)! pi ln pn+1
i . Hence

it is required that
∑

i pi ln pn+1
i → εk−n, where k > 0. Yet,

this is an artificial way of transitioning to the BG statis-
tics limit since it is not possible that such process holds
practically.

Conclusions. – Having surveyed the asymptotic anal-
ysis proposed in [8] we introduced a generalised entropic
form in view of the generators (5) and, as a consequence,
in terms of the fundamental entropies S±. As is shown,
these entropies belong to the same asymptotic class as
BG, which means that they do share the same properties
in the thermodynamical limit, whereas for a small number
of micro-states S± behave in a non-additive way.

It follows that on the basis of entropies S± it is pos-
sible to construct a generalised classification of entropy
measures. This family will lead to either extensive or
non-extensive statistics. As discussed, Tsallis entropy be-
longs to the generalised entropic forms contained in (7)
and therefore in (6). Nonetheless, this entropy does not
resembles BG according to the laws (3) and (4) in the
thermodynamical limit as seen from the scaling exponents
or, alternatively, by studying the leading contributions as
for a microcanonical configuration pointed out in eq. (23)
(see also fig. 2).

Other possible generalisations to BG excluded from (6)
have been analysed. Such is the case of Sharma-Mittal
entropy, having, as particular cases, Boltzmann, Tsallis

60004-p6



Generalised asymptotic classes for additive and non-additive entropies

and Rényi entropies. In particular, it is worth noting that
both Boltzmann and Rényi measures are additive and as
a result belong to the class (1, 1). Nevertheless, Rényi
entropy is not of the form (1). To circumvent this pecu-
liarity, an approximation to Tsallis entropy can be carried
out, keeping in mind that in such limit, Rényi’s additive
property would be not be preserved anymore. This is an
interesting example where it is clear that Tsallis and Rényi
entropies may share certain attributes although not nec-
essarily furnishing the same picture.
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[12] Obregón O., López J. L. and Ortega-Cruz M., En-

tropy, 20 (2018) 773.
[13] Lesche B., J. Stat. Phys., 27 (1982) 419.
[14] Tsallis C., J. Stat. Phys., 52 (1988) 479.
[15] Anteneodo C. and Plastino A. R., J. Phys. A: Math.

Gen., 32 (1999) 1089.
[16] Korbel J., Hanel R. and Thurner S., New J. Phys.,

20 (2108) 093007.
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