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Abstract — The present value of the Universe’s acceleration is deduced using the uncertainty
principle of Heisenberg and the vacuum fluctuations that cause the appearance of a particle-
antiparticle pair close to cosmic or Hubble horizon. Moreover using the generalized uncertainty
principle the first correction to the present value of the Universe’s acceleration is provided.
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Introduction. — In this letter we present a simple de-
duction of the present value of the Universe’s acceleration.
The derivation is obtained using the vacuum fluctuations
that produce an Unruh effect in the cosmic horizon and
the Heisenberg uncertainty principle. In fact these vac-
uum fluctuations produce observable macroscopic conse-
quences, see for instance [1,2].

First we recall that the slow expansion of the Universe
is in any direction from the observer. In such a way the
observer sees all the objects go far away from his/her po-
sition. In this image someone can think that the observer
is at the center of the expansion but this vision is valid
for any observer at any point of the Universe. In order to
find the exact value of the Universe’s acceleration we set
our sights in a very distant object that moves away from
us with the acceleration that we try to determine. For
not far away objects the local movements can perturb the
Universe’s acceleration that we see for all the receding ob-
jects far enough. Of course these far away objects are very
close to the cosmic horizon or Hubble horizon, the horizon
defining the boundary between particles that are moving
slower and faster than the speed of light with respect to
the observer. It is clear that all the objects outside this
horizon have not causal connection with the observer.

Once the object is fixed, this object determines a direc-
tion in the space and now we apply the relativity principle
of the movement and we can think that the object is at
rest and the observer is with an acceleration in the oppo-
site direction. Thinking in this way the observer is not
in an inertial frame. As it really is since the observer is
submerged in an expanding universe. On the contrary the
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observer is in a uniformly accelerated frame in the flat
space-time and by a detector placed in this frame the ob-
server can measure what is named an Unruh temperature
by the Unruh effect. In fact any observer in our Universe
in accelerated expansion is affected by this acceleration.
We can recall that the Unruh effect is due to the quan-
tum fluctuations near the Rindler event horizon. In this
work we consider that this Rindler event horizon is in fact
the cosmic or Hubble horizon and from here we deduce
the present value of the Universe’s acceleration using the
uncertainty principle. The deduction does not depend on
the fixed object neither on the direction in the space.

The Unruh effect revisited. — The Fulling-Davies-
Unruh effect [3-5], predicts that an accelerating observer
will observe blackbody radiation while an inertial observer
would observe none. A detector subjected to a uniform
acceleration in a flat spacetime has a response as if the
detector were put in a thermal bath with a temperature
given by

T ha (1)

o 2’/TC]<ZB7

where a is the acceleration of the detector, see also [6].
In fact if the observer is accelerated to its right a Rindler
event horizon appear to its left.

The explanation of the Unruh radiation is due to
the vacuum fluctuations that cause the appearance of a
particle-antiparticle pair close to the Rindler event hori-
zon. Ome particle crosses the Rindler event horizon while
the other is perceived by the observer. The Rindler event
horizon is at distance ¢?/a from the observer in any di-
rection to its left (see fig. 1). In [7] the exact expressions
of the Hawking effect [8] and Unruh effect [5] are derived
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Fig. 1: The Rindler chart plotted on a Minkowski diagram.
The bisectors are the Rindler horizons at a distance ¢*/a away
and the worldline of a body in hyperbolic motion having con-
stant proper acceleration a.

from the uncertainty principle. In previous works some
other heuristic derivations were presented, however only
approximations of the exact values were obtained, see for
instance [9,10]. Moreover in [11] the expression for vac-
uum energy was deduced through the uncertainty of the
energy of the universe.

We first recall here the deduction of the Unruh tem-
perature from the principle of uncertainty applied to the
photon that has crossed the Rindler event horizon. We re-
call that the Unruh temperature associated to the Rindler
event horizon is always associated to an observer which is
in a non-inertial frame with certain acceleration a. Fol-
lowing [7] the uncertainty in the position Az of the par-
ticle that crosses the Rindler event horizon is given by
Az = mrgr, where rg is the Rindler radius of the Rindler
event horizon that coincides with the distance from the
horizon to the observer rg = ¢2/a. Therefore we obtain

(2)

Now we consider the momentum-position form of the
Heisenberg principle

I
ApAx ~ 3 (3)
From (3) and (2) we have
ha
Ap~ —. 4
P = o )

Since the energy of the photon is given by E = pc, we
have that the uncertainty in the energy is AE = cAp and

AFE ~ E.
2me

(5)

Interpreting the energy fluctuation in terms of a classi-
cal thermal bath we have AF = kAT, where kg is the

Boltzmann constant and eq. (5) becomes

AT ~ ha ,
QWCkB

(6)

which coincides with eq. (1) and is the expression given
by Unruh in [5]. If there is not acceleration we have not a
Rindler event horizon and eq. (6) is not valid.

The Unruh effect at the cosmological horizon. —
In this section and following the same procedure we com-
pute the Unruh temperature at the cosmological horizon.
Hence we consider the situation described in the intro-
duction. In this case the uncertainty in the position Az is
given by Ax = mryg, where rgg is the Hubble radius of
the Hubble sphere or cosmic horizon. For distances close
to the radius rgpg of the Hubble sphere, objects recede
close to the speed of light and according to the Hubble
law, we have rys = ¢/Hy, where Hy is the present value
of the Hubble constant today. We recall the Hubble con-
stant is a constant only in space, but not in time. The
radius rg of the Hubble sphere may increase or decrease
over various time intervals. Consequently from (3) we have

__h
P = 2WTHS,

(7)

and the uncertainty in the energy is

AFE ~ ch .
2WTHS

(8)

Now we consider the slow accelerate expansion of the Uni-
verse which implies that the cosmic horizon is in fact
a Rindler event horizon (following the relativity prin-
ciple mentioned in the introduction in any direction)
and this Rindler event horizon has the Unruh associated
temperature,

AT ~ ch _ hHy '
QWTHskB QFkB

(9)

Now in order to deduce the present value of the Universe’s
acceleration we can compare eq. (6) with eq. (9) and we
obtain the value of the acceleration

apg = cHy ~107%m/s?, (10)
in agreement with the observations, see [12] and references
therein. In fact the same result can be obtained by requir-
ing that the radius of the Hubble horizon r g will be equal
to the distance from the observer to the Rindler horizon
R, which implies ¢/Hy = ¢?/a and we get eq. (10).

Generalized uncertainty principle. — In the last
decades several works have studied the possibility of a
generalization of the Heisenberg uncertainty principle in
order to take into account the gravitation. In ordinary
quantum level gravity can be neglected if we compare it
with the other fundamental forces. However at large scales
like the cosmic scales the gravity has a fundamental role.
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In consequence the gravity must also affect the formula-
tion of the Heisenberg’s principle and several proposals
have been made, see for instance [13].

In this section we consider a generalized uncertainty
principle (GUP) that corresponds to a deformation of the
fundamental commutator obtained by adding a quadratic
term in the momentum, that is

2
148 <£)
mpc

with 3 a dimensionless parameters and where m,, is the
Planck mass given by m, = Ep/02 ~ 108 kg, where the
Planck energy e, satisfies €,f, = hc/2 and the Planck
length ¢, = \/Gh/c3, see for instance [13]. This inequality
for symmetric states with (p) = 0 is equivalent to the

commutator
b 2
143 (_> ] |
myC

From the uncertainty relation (11) we can arrive at the
first correction in the parameter § of the present value of
the Universe’s acceleration. In order to do that we divide
expression (11) by Ap and we get

ApAx > g ’ (11)

e (12)

A:EwE {iJrﬂ (13)

Ap
2 | Ap ’

mf,c2
We now take into account that the Hubble horizon is in

fact a Rindler horizon with respect to an observer, conse-
quently we have

2 h| ¢
_Ng[—+6

AFE
a AE ’

— 14
= (14)

where we have substitute Ap = AE/c. Next we take into
account that the Unruh energy is thermalised so we have
AFE = kAT and substituting into (14) we obtain

met B[ e
a 2kBAT

(15)

Isolating the acceleration and substituting AT by its first
approximation AT = hHy/(2rkg) we have

wc?

urel fi2Ho
Ho + 647rm12)53

a ~

(16)

Next we divide by mc? and multiply by cHy and we get
CH()

an~ ——————575 -
R H2
1 + ﬁ47r2m;‘;c4

(17)

Finally the term h2H02/(47r2m12,c4) can be written as

kBAT?/(m2ct) = AE?/(m2ct) = m?/m2 and it is rea-

sonable to assume that it is very small for any fundamental

particle with m < m,. Therefore we can expand in this
term (17) and we obtain

(2H? 2
a ~ cHy (1—ﬁ P 0) = cHy (1—5%), (18)

m2c2 m2cd

and this is the first correction to the present value of the
Universe’s acceleration that can be checked by the new
astronomical data. We recall that the Planck length £p is
the length around which the quantum fluctuations become
essential, see [14-16]. A heuristic derivation of the Planck
length is also given in [9].

Conclusion. — The derivations of the present value of
the Universe’s acceleration is obtained based on the vac-
uum fluctuations and the Heisenberg uncertainty princi-
ple. Although we have made the approximation assuming
a half spherical Rindler horizon, the expressions derived
is in agreement with the astronomical data. In the last
section we find, using the generalized uncertainty prin-
ciple, taking into account gravity, the first correction in
the parameter ( to the present value of the Universe’s
acceleration.
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