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Abstract —

In this Letter we compute analytically the effect of conformal symmetry on the

radiative corrections to the amplitude ratios for O(N) A¢* massless scalar field theories in curved

spacetime for probing the two-scale-factor universality hypothesis.

For that we employ three

distinct and independent field-theoretic renormalization group methods. The amplitude ratios
values obtained are identical when computed through the three distinct methods, thus showing
their universal character. Furthermore, they are the same as that obtained in flat spacetime, then

satisfying the two-scale-factor universality hypothesis.

Copyright © EPLA, 2020

Introduction. — Symmetry is one of the most impor-
tant properties to be considered if we want to describe
the behavior of physical systems. For example in the
high-energy physics scenario, the standard model (SM)
of elementary particles and fields which describes three
of the four elementary interactions of nature, namely
electromagnetic, weak and strong interactions, is based
on gauge symmetries [1,2]. The remaining elementary
interaction, which is not part of the SM, i.e., gravita-
tion [3,4] is also a gauge theory. On the other hand, in
the low-energy physics realm the importance of symmetry
considerations is not quite different as well. In fact, the
universal critical scaling behavior based on the scaling
hypothesis [5,6] of systems undergoing a continuous phase
transition is characterized by the determination of a set
of universal critical exponents. These universal critical
exponents do not depend on nonuniversal properties of
the system as the form of the lattice and critical temper-
ature but on universal ones as the dimension d, N and
symmetry of some N-component order parameter and if
the interactions among their constituents are of short-
or long-range type. Obviously the d [7,8] and N [9-11]
parameters are more evident to study as opposed to the
symmetry one [12,13]. Surprisingly, the critical behavior
of many distinct systems as a fluid and a ferromagnet is
characterized by the same set of critical exponents. When
this happens we say that the different systems belong
to the same universality class. The universality class
approached here will be the O(N) one which generalizes
and encompass some particular models, namely the Ising

(N =1), XY (N = 2), Heisenberg (N = 3), self-avoiding
random walk (N = 0), spherical (N — oo) [14] ones. The
critical exponents are not the only universal quantities in
describing the critical behavior of systems undergoing a
phase transition. This role is similarly played by others
universal quantities, although being harder to compute
than the former ones, called amplitude ratios [15]. Then
emerges the concept of two-scale-factor universality [16],
where now there are eleven independent universal ampli-
tude ratios since we have chosen two independent length
scales as the order parameter and conjugate field scales
for example. While the critical exponents are universal
quantities, the amplitudes themselves are not since they
depend on nonuniversal properties of the system. The
universal quantities are, in fact, some ratios involving
some nonuniversal amplitudes, where the nonuniversal
properties, explicitly expressed in the amplitudes them-
selves, cancel out in the middle of computations and thus
turn out the amplitude ratios to be universal quantities.
In this letter we have to investigate the influence of
conformal symmetry on the values of the amplitude ra-
tios for massless O(N) A¢* scalar field theory in curved
spacetime. When we try to renormalize a massless the-
ory in curved spacetime following the conventional pro-
gram, some divergences yet persist [17]. The fixed value
of £ = 1/6 defines the theory as being invariant under
conformal transformations. The amplitude ratios are a
result of the fluctuating properties of a fluctuating scalar
quantum field ¢ whose mean value we can identify to the
order parameter, the magnetization of the system below

40009-p1



H. A. S. Costa and P. R. S. Carvalho

the critical temperature 7, for example. Since the the-
ory involves properties of the system at the low temper-
ature phase, as the magnetization, we have to describe a
theory with spontaneous symmetry breaking since some
amplitude ratios involve a few critical amplitudes com-
puted below the critical temperature. Another feature
shown through the lower temperature phase is that due
to the presence of Goldstone modes, we have that some
amplitudes and thus some amplitude ratios are not de-
fined for every NV but only for Ising-like systems for which
N = 1. These are the cases of both C~ and ¢; ampli-
tudes. The effect of quantum field fluctuations is eval-
uated as coming from the radiative quantum corrections
to the renormalized effective potential with spontaneous
symmetry breaking. If we do not take these loop cor-
rections into account, we are limited to obtaining the
amplitude ratios values associated to the mean field or
Landau approximation [18]. We compute the amplitude
ratios up to one-loop order. The effective potential with
spontaneous symmetry breaking is renormalized in the
normalization conditions method [19], minimal subtrac-
tion scheme [19] and massless Bogoliubov-Parasyuk-Hepp-
Zimmermann (BPHZ) method [20-22], where the external
momenta of Feynman diagrams are held at fixed values
in the first method and arbitrary in the last two ones.
Although the application of a single method in comput-
ing the amplitude ratios is enough, the application of two
other ones, besides being useful as a check of the final re-
sults, must furnish the same amplitude ratios values as
the renormalization group program demands since these
physical quantities are universal. The same task was
approached in a flat spacetime with Lorentz symmetry-
breaking mechanism [23]. We then follow the steps of
ref. [23] taken originally in ref. [24]. In this letter, the
fluctuating quantum field is embedded on a curved space
time and considering its nonminimal interaction with the
curved background of the form £R¢?, where ¢ and R
are the nonminimal interaction coupling constant and the
scalar curvature R = ¢g"“R,,, respectively [25-30]. We
have to expand the free propagator of the theory and to
make our calculations up to linear powers in R and R,,,.
Also up to linear powers in R and R,,, the present au-
thors performed a computation of the critical exponents
in an early work [31]. Now we proceed to obtain the cor-
responding amplitude ratios.

Normalization conditions method. — The following
critical amplitudes [23]:
critical isochore, T" > T,., H = 0,

At
E=&t70, x=01t"", Co=—1t"%
g
critical isochore, T' < T,., H = 0,
— v —— A” —a 8
§:§Ot , x=0C"t ’Ya Cs=—1"7, M:B(it) )
o

critical isotherm, T'=T,, H # 0,
§=&IHIT, x=ClH|T™,
Cs = AC|H| @ H=DM?’
critical point, T' = Tc, H =0,
X(p) = Dp"™%;

are obtained through the renormalized effective potential
with spontaneous symmetry breaking, equation of state
and the longitudinal and transverse correlation functions,
respectively [23],
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+(N+1) Q(Nﬂ) + (t +g*M2/6)>O(SP]
M? KUSP - U(L(N—l))ﬂ } (4)

where M = (¢), g and t are the renormalized magne-
tization (as a mean value of the renormalized field), di-
mensionless coupling constant and composite field cou-
pling constant. The dimensionless and dimensionful cou-
pling constants are related through A = g¢gx/2, where
K is some arbitrary momentum scale. The quantity g*
is the dimensionless coupling constant evaluated at its
nontrivial fixed point value. The nontrivial fixed point
is computed from the nontrivial solution of the equation
B(g*) = 0 [19], where ((g) is the [-function giving the
flow of the renormalized dimensionless coupling constant
flowing from some arbitrary value to the renormalized one
when the renormalized theory is attained. This nontrivial
fixed point is responsible for the computation of the loop
quantum corrections to the amplitude ratios beyond the
Landau approximation. The renormalized massless free

propagator Go(q) = is given by
1 (1/3=&R 2R,.q"q¢"
G = — - =t 5
oD = (42)2 @ o

where we have to set £ — £(d) at the middle of Feynman
diagrams calculations to get rid the infrared divergences
that yet would persist in the theory if we would maintain
¢ arbitrary and £(d) = [(d — 2)/4(d — 1)] at arbitrary di-
mensions less than four [32-36], where d = 4 —e. The

subscript “SP” in the “fish” diagram >O(S p means that
this diagram is to be evaluated in the so-called symmetry
point, where the external momenta P are held at fixed
values according to P; - Pj = (k?/4)(46;; — 1), implying
that (P; + Pj)? = P? = k? for i # j [19]. The nontrivial
fixed point can be computed after we have evaluated the
B-function displayed just below

Blg) = —eg
IEAIEY PO T R R,P'P 1.
6 2 62 32 g
3N +14 ,

*TQ ) (6)
where we have used the following evaluated Feynman
diagrams:

1 1 R R,PrpPv
>O( =14+ e -
sP e( +26+6u2€ 32 e), (7)
>® 1 3 R R, P'PY
SP — 22<1+ +32 TE)(S)

We emphasize that in the present method, the g-function
depends on the nonuniversal curved spacetime parameters
R and R, as well as the corresponding nontrivial fixed

point

«  Ge
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Thus, following the notation of ref. 23] we obtain the crit-
ical amplitudes
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where the remaining evaluated Feynman diagrams needed 1 1
to obtain the critical amplitudes aforementioned are the / dz ul 1;2:45) ESVERNE (35)
ones shown in eq. (7) and in the following ones: 0 x(llg)PQ + l‘(t*‘gT)*‘(:?—x)(HgT)

* A2 * 172 LR L (N— (PQ):
Q(l)itJrgMﬂ[l%ln(tJr—géw )e}, (23) LN

€ /ldx[ 22(1 —x)? N (36)
0 o

1-2)P? | a(t+L 22y (1—a) 1+ L2

(N—1) = 2 2
t+ g*M?/6 1 *M?
MG L SME (24) o _
€ 2 6 where P" is dimensionless and unitary such that P* =
kP*# [37]. Thus as for the S-function and nontrivial fixed
)O( 1 11 ) : . )
m=-[1- 56 — 5.ng(P ) point, the amplitudes themselves depend on the nonuni-
€ versal curved spacetime parameters R and R,,,. But now,
R R, PHPpV if we apply the expressions above for the amplitudes, we
+6—/ﬂ€LR’1(P2) - ‘%TGLRW,I(PQ) ) (25)  have the cancelling of the curved spacetime parameters R
and R,, in the amplitude ratios computation and obtain
1 1 1 9 that the curved spacetime amplitude ratios are identical
N1:—1——€——€LN 1(P)
(N=1) = ¢ 2 g HIN=Y to their flat spacetime counterparts [15]. These results

show that the amplitude ratios values are insensible to
the conformal symmetry thus maintaining the two-scale-
factor universality hypothesis validity intact. In fact, as
(26) the symmetry under consideration is one present in the

R R, P*P"
+—€LR,(N—1)(P2) - ALgT
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space where the quantum field is embedded and not in its
internal one, the curved spacetime amplitude ratios values
must be the same as those of flat sapetime ones. Just a
change in the internal symmetry of the field could modify
the amplitude ratios values.

Minimal subtraction scheme. — This present
method is much more general and elegant than the ear-
lier one [19], since in the normalization conditions method,
the external momenta are fixed at some value, namely the
symmetry point while in the present one they are kept at
general arbitrary values. In the present method we con-
sider only the divergent part of the diagrams and not both
divergent and finite ones as in the earlier method. Thus,

for example, instead of considering the >O(Sp diagram
in egs. (1)—(4) we have to consider the [>O(S] one where

[U] is that of eq. (51) and | ]s means that the only part
of the diagram we have to consider is its singular and one
so on for the remaining diagrams. Thus, in this method,
we obtain amplitudes which are different from that ob-
tained through the earlier method. Their values in this
method are given by

N 4
+ _ !/
At =5 1+<—4_N+AN>€, (37)
N 4—N
A" =1 — In2+ A 38
+(41\7 a(N 8y 0T N)“ (38)
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1/2
p_JN+8| 32 9N +42 / (43)
N € N+8  (N+8)2° ’
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5522_1/2 1_ﬁ<§ +1n2>€], (45)
T € 3 1
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where the nontrivial fixed point is obtained through the
corresponding (-function

N+8, 3N+14 ,
- 9

B(g) = —eg + 5 Y B ,

(50)

computed from the evaluated Feynman diagrams (51),
(52) just displayed below

1 11 R
>O(=— 1——e— —eJ(P?) + —eJg(P?
; 5€ 2eJ( )+6u2€JR( )
R, P*PY
—*L?)TEJRW(PQ) , (51)
><Q—L =ty + Ly
T2 ¢ € 32 R
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—o— p? 2
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where
! z(1—x)
P?) =
TP = [ et (59)
1 2 2
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Jr,, (P?) = / dx(i)? (54)
0 [x(1 — z)P?]

The nontrivial fixed point is given by

«  be (9N +42)
g _7(N+8){1+6[7(N+8)2]}' (55)

As this method is more general and elegant, the R and
R, terms dependent on the curved spacetime cancel out
already in the amplitude ratios, S-function and nontriv-
ial fixed point computation, such that the corresponding
curved spacetime quantities themselves are the same as
that of flat spacetime. Thus, the resulting curved space-
time amplitude ratios are automatically the same as their
flat spacetime counterparts.

Massless BPHZ method. — The massless BPHZ
method [20-22] is different from the two earlier ones.
While in the two former ones the divergences of the theory
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are absorbed by a procedure starting from the bare theory,
in the former one the divergences are absorbed starting
from the renormalized theory by introducing counterterms
diagrams. Then only the divergent part of the resulting
diagrams are to be considered and the operator which rep-
resents this operation is given by IC( ) [23] and acts in
the corresponding diagrams. Thus, although the present
method is distinct from that of earlier section, at least
at the loop level considered here, they lead to the same
results. Now we have to present our conclusions.

Conclusions and perspectives. — In this letter we
have probed the effect of conformal symmetry on the
curved spacetime amplitude ratios for massless O(N) A¢*
scalar field theories in curved spacetime. By applying
three distinct and independent field-theoretic renormaliza-
tion group methods, the amplitude ratios have been evalu-
ated in the normalization conditions, minimal subtraction
scheme and massless BPHZ methods, respectively, where
the external momenta of Feynman diagrams have been
held at fixed values in the former method and at arbitrary
values in the later ones. We have found, at least at the loop
level considered, identical curved spacetime amplitude ra-
tios values when obtained through the three methods. We
emphasize the importance of employing more than one
method for computing the amplitude ratios since we can
check the final results when obtained through that meth-
ods. Furthermore, the curved spacetime amplitude ratios
obtained were the same as their flat spacetime counter-
parts. This fact has confirmed the two-scale-factor uni-
versality hypothesis validity since the symmetry probed
here has been one defined in the spacetime where the field
is embedded and not in its internal one. We believe that
the influence of conformal symmetry on the critical prop-
erties of systems undergoing continuous phase transitions
can be analogously probed in future works through the
evaluation of finite-size scaling effects, corrections to scal-
ing, etc.
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