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Strange nonchaos in self-excited singing flames
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Abstract – We report the first experimental evidence of a strange nonchaotic attractor (SNA)
in the natural dynamics of a self-excited laboratory-scale system. In the previous experimental
studies, the birth of a SNA was observed in quasiperiodically forced systems; however, such
evidence of a SNA in an autonomous laboratory system is yet to be reported. We discover the
presence of a SNA between the attractors of quasiperiodicity and chaos through a fractalization
route in a laboratory thermoacoustic system. The observed dynamical transitions from order to
chaos via a SNA is confirmed through various nonlinear characterization methods prescribed for
the detection of a SNA.

Copyright c© EPLA, 2020

Introduction. – Coupled nonlinear systems exhibit
various kinds of dynamical behaviours including peri-
odic, quasiperiodic, and chaotic oscillations [1,2]. Among
these dynamics, one of the commonly observed states in
quasiperiodically driven nonlinear systems is a strange
nonchaos. Although strange nonchaotic attractors (SNAs)
show similarity to chaotic attractors by having a fractal
geometrical structure, SNAs are insensitive to initial con-
ditions unlike the chaotic attractors [3]. Grebogi et al. [4]
were the first to report the possibility of SNAs in a sys-
tem of quasiperiodically forced interval maps. Afterwards,
several numerical studies have demonstrated the existence
of SNAs in quasiperiodically forced systems such as pen-
dulum [5], Duffing oscillator [6], logistic map [7], Henon
map [8], and circular map [9].

The experimental discovery of SNA was reported by
Ditto et al. [10] in a quasiperiodically forced system with a
buckled magnetoelastic ribbon. In subsequent years, there
have been several experimental observations of SNAs in
practical systems [11–15]; however, all these studies pre-
sented the necessity of having quasiperiodic forcing to gen-
erate SNAs. While these previous investigations on SNA
involved external quasiperiodic forcing, Negi et al. [16] the-
oretically showed that quasiperiodic forcing is not essential
for the existence of SNA, and it could happen in naturally
driven systems as well without the need of external forc-
ing. Recently, Lindner et al. [17] showed the observation
of SNAs in the natural system of a pulsating star KIC
5520878 network. However, to the best of our knowledge,

there has not been a single experimental evidence of SNAs
reported in self-driven laboratory systems until now.

Most of the recent studies are focused on identifying the
routes to generate SNAs [3,12,18]. The mechanisms for
the onset of SNAs are usually classified into three types
as: i) Heagy-Hammel route: the SNAs emerges during
the collision of a period doubled torus with its own un-
stable parent [19]. ii) Fractalization route: the truncated
torus gets wrinkled and forms SNAs without any interac-
tion with the parent torus [20]. iii) Type-III intermittency
route: SNAs occur when the torus doubling bifurcation
is controlled by sub-harmonic bifurcations [6]. Another
possibility for the occurrence of SNAs is through crisis-
induced intermittency, where the collision of the wrinkled
torus with the boundary results in sudden widening of the
attractor [13].

In this letter, we report the first experimental evidence
of SNAs in a self-excited laboratory system, in the ab-
sence of external quasiperiodic forcing. We show that
the natural dynamics of a laboratory-scale thermoacous-
tic system [21] displays the presence of SNAs between the
quasiperiodic and chaotic attractors.

In a thermoacoustic system, the presence of a flame
in a confined environment at certain conditions leads to
the generation of a large-amplitude, self-sustained tonal
sound in the air column of the system, originally known
as “singing flame” [22] or more recently as “thermoacous-
tic instability” [23]. The occurrence of such self-excited
oscillations is detrimental to the structural integrity of
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Fig. 1: (a)–(d) The dynamics of acoustic pressure obtained at different xf = 0.172, 0.195, 0.22, and 0.226 for the states of limit
cycle, quasiperiodicity, strange nonchaos, and chaos, respectively. For each state, (i) the phase portrait, (ii) Poincaré section,
and (iii) power spectrum are plotted. A data set with 10000 points (approximately 570 cycles of oscillations) was considered
for obtaining the plots. The number of cycles corresponds to the frequency peak at 569.9 Hz.

practical combustion systems used in propulsion and
power generating units [24,25]. Through the implemen-
tation of various time series analysis techniques based on
the Fourier amplitude spectrum, singular continuous spec-
trum, correlation dimension, and 0-1 test, we confirm the
presence of SNAs in our system.

Experimental details. – The experiments were per-
formed on a laboratory-scale ducted laminar premixed
flame combustor. More details on the description of the
experimental setup, data acquisition, and measurement
uncertainties can be found in Kabiraj et al. [21]. The com-
bustor comprises a transparent borosilicate glass duct of
inner diameter 5.67 cm and length 80 cm. The glass duct
is closed at the bottom end and open at the top end. It
consists of a burner tube of length 80 cm, inner diameter
1.6 cm, and thickness 0.15 cm, which is used to supply the
premixed air and fuel (Liquefied Petroleum Gas) mixture
required for combustion. A circular copper block of 1.8 cm
height, with seven 0.2 cm size through holes, is fixed over
the burner tube to stabilize the conical flames in the com-
bustor. The equivalence ratio is fixed at 0.48 throughout
the study. The combustion mixture is ignited from the top
of the burner tube using a butane torch until all flames are
stabilized on the copper block.

The location of these flames with respect to the open
end of the glass duct (Lf ) is varied as a control parameter

in this study. We normalize Lf with the length of the
duct (L) as xf = Lf/L, where L = 80 cm. The dynamics
of the combustor for a given change in xf is acquired in
terms of acoustic pressure measurements, performed us-
ing a pressure transducer (PCB 103B02 of sensitivity =
223.4 mV/kPa and uncertainty = ±0.14 Pa) located 5 cm
from the bottom of the glass duct. The data are acquired
using an analog to digital conversion card (NI-6143, 16-
bit, resolution = 0.15 mV, voltage range = ±5 V). The
data were acquired for 30 s at the sampling frequency of
10 kHz. The frequency resolution of the amplitude spec-
trum is 0.03 Hz.

Results and discussion. – Primarily, to understand
the dynamical transitions of the considered system and to
distinguish each dynamical behavior, we plot the recon-
structed phase portrait (figs. 1(a)–(d)(i)) of the acoustic
pressure signal (p′) using a delay embedding theorem pro-
posed by Takes [26]. The time delayed vectors are con-
structed as follows:

P (t) = [p′(t), p′(t + τ), p′(t + 2τ), . . . , p′(t + (m − 1)τ)],

where t = 1, . . . , [N − (m − 1)τ ], τ is the optimum time
delay obtained from the average mutual information and
m is the embedding dimension obtained from the method
of the false nearest neighbor [27]. Figures 1(a)–(d)(ii)
show the Poincaré sections corresponding to the phase
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portraits shown in figs. 1(a)–(d)(i). We use here a method
based on the first return map to plot the Poincaré section
of the p′ signal [26]. In this method, we calculate the local
positive maxima of every oscillation cycle in the pressure
signal and plot the local maxima (pi) of one oscillation
cycle with respect to the local maxima (pi+1) of the next
oscillation cycle as a Poincaré section. We also plot the
power spectrums of each p′ signal in figs. 1(a)–(d)(iii).
With the variation xf , we show that the system be-
haviour exhibits a transition from limit cycle oscillations
to chaotic oscillations via quasiperiodicity and SNAs (see
figs. 1(a)–(d), respectively). When xf is at = 0.172, we
notice the occurrence of a limit cycle attractor (fig. 1(a)).
During this state, the system dynamics evolves on a single
periodic orbit in the phase portrait (fig. 1a(i)) and shows
an isolated point in the Poincaré section (fig. 1(a)(ii)).
Further, the presence of a single dominant frequency
peak at f1 = 569.9 Hz in the power spectrum affirms the
presence of a limit cycle attractor (see fig. 1(a)(iii)).

For xf = 0.195, we notice the existence of quasiperi-
odic oscillations as a consequence of the interplay be-
tween incommensurate frequencies f1 = 569.9 Hz and
f2 = 370.5 Hz, and the peaks at their linear combina-
tions in the power spectrum (see fig. 1(b)(iii)). The re-
constructed phase space of a quasiperiodic attractor shows
a 2-torus structure and a closed loop of points in the
Poincaré section (figs. 1(b)(i) and (b)(ii), respectively).

By changing the flame location to xf = 0.22, we find
that the stable 2-torus attractor observed for quasiperi-
odic oscillations (fig. 1(b)(i)) wrinkles and fractalizes
(fig. 1(c)(i)), we identify the resulting attractor as a SNA
in subsequent analysis (description of figs. 2–4). This frac-
talization of the attractor can be seen from the Poincaré
sections of these attractors, where a closed loop struc-
ture of the quasiperiodic attractor (fig. 1(b)(ii)) breaks
down into a wrinkled torus structure of SNA (fig. 1c(ii)).
As the SNA emerges from a quasiperiodic attractor and
is followed by chaos, the appearance of a SNA conforms
to the fractalization route [20] in the system dynamics.
The dynamical mechanism behind this route involves the
destabilization and fractalization of the orbits on the torus
without colliding with its parent unstable torus during the
transition to the SNA (compare figs. 1(b)(i) and c(i)). In
addition, the power spectrum in fig. 1(c)(iii) for the SNA
depicts the presence of several peaks at irrational frequen-
cies with respect to the frequency peak f1, as compared
to the case of the quasiperiodic oscillations.

For xf = 0.226, the acoustic pressure exhibits aperiodic
fluctuations, which occur when the unstable periodic or-
bits on the SNAs get more destabilized and wrinkled to
form a chaotic attractor, as seen from fig. 1(d)(i). The
Poincaré section of this state shows a scatter of points on
its surface (fig. 1(d)(ii)) and the power spectrum indicates
a broadband behaviour (fig. 1(d)(iii)), confirming the
presence of chaotic dynamics in the signal.

In the subsequent portion of the paper, we use various
tools to qualitatively and quantitatively characterize the
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Fig. 2: Singular continuous spectrum analysis of pressure signal
obtained at xf = 0.22. (a) The logarithmic plot of |X(α, N)|2
against N shows the power law scaling, and (b) the fractal path
in the complex plane of X confirms the presence of SNAs. α
corresponds to the dominant frequency observed at 569.9 Hz in
fig. 1(c)(iii).
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Fig. 3: Variation of correlation dimension (d) with embedding
dimension (m) for the states limit cycle (LCO), quasiperiod-
icity (QP), strange nonchaos (SNA), and chaos, as shown in
fig. 1.

dynamics of different dynamical states and also reaffirm
the existence of SNAs in our system.

Singular continuous spectrum. – In general, a dy-
namical system can manifest two types of power spectrum,
namely, continuous and discrete spectrum [28]. The dis-
crete spectrum corresponds to the occurrence of oscilla-
tions at specific frequencies, similarly to what is observed
for the periodic or quasiperiodic oscillations.

In contrast, the broadband nature of the power spec-
trum observed for the case of chaotic oscillations points
towards the presence of continuous spectrum. For a spe-
cial case like SNA, the spectrum exhibits a combination of
both continuous and discrete components, known as singu-
lar continuous spectrum [28–31]. The singular continuous
spectrum is defined based on the Fourier transform of a
signal xk as

X(α, N) =
N∑

k=1

(xk) exp(2πikα), (1)

where α corresponds to the frequency and N indicates
time. Since X(α, N) is a complex variable, the plot be-
tween Re(X) and Im(X) helps us understand different
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Fig. 4: A 0-1 test performed to distinguish the dynamics of
(a) quasiperiodicity at xf = 0.172, (b) strange nonchaos at
xf = 0.22, and (c) chaos at xf = 0.226. (i) The plot between
the translation variables p(n) and q(n), (ii) the behaviour of
mean square displacement M(n) with n, and (iii) the variation
of the growth rate K for these dynamical states are shown.

dynamical features exhibited by the signal. For regu-
lar (periodic and quasiperiodic) signals as the spectrum
is discrete, the power |X(α, N)|2 is proportional to N2

and a path on the [Re(X), Im(X)]-plane displays a persis-
tent and bounded behaviour [28]. If the path in the com-
plex plane is random (Brownian walk), then the power
of the signal |X(α, N)|2 is directly proportional to N ,
denoting the continuous spectral components observed
for chaotic signals. For the singular continuous spec-
trum, the power |X(α, N)|2 is proportional to Nβ and
the value of β lies between 1 and 2 [28]. For the state
of acoustic pressure fluctuations observed at xf = 0.22
(fig. 1(c)), we notice the value of β = 1.53 such that
1 < β < 2 (fig. 2(a)) and the trajectory path on the
[Re(X), Im(X)]-plane displays a self-similar fractal struc-
ture (fig. 2(b) and figs. 1 and 2 of the Supplementary
Material Supplementarymaterial.pdf (SM). Thus, we
confirm the presence of SNA in the pressure oscillations
observed at this xf . The singular continuous spectrum
analysis for quasiperiodic and chaotic oscillations is pro-
vided in fig. 3 of the SM.

Correlation dimension. – In order to differentiate
the regular and the strange behaviour of attractors demon-
strated in fig. 1, we estimate the correlation dimension for
each dynamical state, as shown in fig. 3. We follow the
algorithm of Grassberger and Procacia [32,33] to calculate

the correlation dimension. In this method, we first need to
reconstruct the experimental signal in its embedded phase
space as discussed in the previous section. The correlation
dimension d of an attractor is then obtained as follows:

d = lim
r→0

ln C(ε)
ln ε

, (2)

where ε is the distance threshold used to count the nearest
neighbors of any state point on the attractor and C(ε) is
the correlation sum which is identified using the following
relation:

C(ε) = lim
N→∞

1
N

N∑

i,j=1

Θ(ε − ||xi − xj ||), (3)

where Θ is the Heaviside function. If the distance ε is
positive, then Θ(ε) = 1; else Θ(ε) = 0. xi and xj are the
state vectors. The value of C(ε) is dependent on the value
of ε and obeys the power-law for a certain range of ε such
that, C(ε) = εd (details are available in the SM).

The correlation dimension attains an integer value for
regular attractor (periodic and quasiperiodic), whereas it
shows a non-integer value for the strange attractor (chaos
and SNA). For the limit cycle attractor, the value of d is
near 1, whereas for the quasiperiodic attractor, d takes a
value near 2 [34]. In order to confirm the dynamical be-
haviour of signals shown in fig. 1, we plot the correlation
dimension (d) as a function of the embedding dimension
(m) [32–34] in fig. 3. The value of d at which its variation
with m saturates is considered as the correlation dimen-
sion of the particular attractor. We observe that for limit
cycle oscillation (LCO), the correlation dimension satu-
rates near 1.01 ± 0. On the other hand, for the quasiperi-
odic oscillations, the value of d saturates near 2.19± 0.02,
which is close to the value of 2 predicted theoretically for
this attractor [34]. For SNA and chaos, the value of d is
observed to be 1.66 ± 0.02 and 3.19 ± 0.06, respectively.
These non-integer values of d further confirm the strange
geometry of these attractors.

0-1 test. – Furthermore, the usual practice to dis-
tinguish the aforementioned dynamical states is to cal-
culate the maximum Lyapunov exponent of the signal,
whose value is positive for a chaotic signal and negative
for SNA [35]. However, as most of the experimental data
contain intrinsic noise, the computation of the maximum
Lyapunov exponent gets challenging. Hence, confirming
the chaos or SNA in the system dynamics using Lyapunov
exponent becomes unfeasible [2]. Therefore, in order to
distinguish the dynamics of SNA from chaos, we make use
of the 0-1 test [36], as suggested by Gopal et al. [37].

The first step in implementing the 0-1 test is to compute
the translation variables, denoted as p(n) and q(n), from
the input time series φ(j) such that [36]

p(n) =
n∑

j=1

φ(j) cos(jc)
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and

q(n) =
n∑

j=1

φ(j) sin(jc). (4)

Here, n = 1, 2, . . . , N . The value of the constant c can
be chosen in the interval (π/5, 4π/5). The behaviour of
these two new variables helps in distinguishing different
dynamical states in the system. For regular dynamics (pe-
riodic or quasiperiodic), the behaviour of these variables
is bounded, while it is unbounded or drifting for chaotic
dynamics. The motion of translation variables depends
on the value of n, which is much less than N and often
chosen as n = N/10 [36]. The behaviour of the trajectory
in the [p(n), q(n)]-plane for increasing n can be calculated
through the mean square displacement D(n) as follows:

D(n) =
1
N

n∑

j=1

([p(j + n) − p(j)]2 + [q(j + n) − q(j)]2).

In order to resolve convergence issues of D(n), a modi-
fied mean square displacement is used [36,38], which is
obtained as follows:

M(n) = D(n) − Vosc(c, n),

where Vosc(c, n) = 1
N

∑n
j=1 φ(j) (1−cos(jc))

(1−cos(c)) . For a chaotic
signal, the value of M(n) will linearly increase with n,
whereas for a regular signal, it remains nearly con-
stant [36,38]. Further, the asymptotic growth rate of such
mean displacements is calculated through a linear regres-
sion, which is given by the following equation:

K = lim
n→∞

log M(n)
log n

. (5)

The value of K lies between 0 and 1 [39]. If the dynamics
are chaotic, K takes a value close to 1, and for a regu-
lar signal, it approaches 0. In order to distinguish the
dynamics of SNA from regular and chaotic oscillations,
Gopal et al. [37] suggested that the choice of c should be
the Golden mean ratio, i.e., c = (

√
5 + 1)/2. For SNAs,

the value of K lies between 0 and 1.
In figs. 4(a)-(c), we plot the translation variable p(n)

vs. q(n) for the dynamics of quasiperiodic, SNA, and
chaotic oscillations, respectively. The trajectory in the
(p, q)-plane appears to be bounded along a circle, in-
dicative of quasiperiodic dynamics (fig. 4(a)) in the pres-
sure signal obtained at xf = 0.172. Furthermore, the
mean displacement M(n) exhibits fluctuations around
some constant value (fig. 4(a)(ii)) and the growth rate
shows a value near zero (fig. 4(a)(iii)), confirming the
quasiperiodic dynamics [37] of the pressure oscillation ob-
served during this state. On the other hand, for the
chaotic signal (fig. 4(c)(i)), the trajectory in the (p, q)-
plane shows a random-walk (or Brownian) type behaviour.
The variation of M(n) with n displays an increasing
trend (fig. 4c(ii)) with a growth value (K) near unity

(fig. 4c(iii)), further affirming the presence of chaotic oscil-
lations in the pressure signal obtained at xf = 0.226. Since
SNA consists of properties of both regular and chaotic
dynamics, we notice the presence of bounded trajectory
with a minimal Brownian structure [37] in the (p, q)-plane
(fig. 4b(i)). The presence of SNAs can also be confirmed
from the plot of variation of M(n) with n, where the mean
of this plot does not increase monotonically but shows an
oscillatory behaviour with n, along with the value of K
lying between 0 and 1 [36,38]. Thus, using the 0-1 test,
we distinguish the features of SNA from quasiperiodic and
chaotic dynamics in our system.

Conclusions. – We report the first experimental
evidence of SNAs in the natural dynamics of a laboratory-
system which is not quasiperiodically forced. This obser-
vation is in contrast with the usual experimental studies
on SNAs that requires quasiperiodic forcing for the birth
of SNAs. We witness the existence of SNAs between the
states of quasiperiodic and chaotic dynamics in a lam-
inar thermoacoustic system when the flame location in
the combustor is varied as the control parameter. The
presence of a SNAs is confirmed through methods such
as singular-continuous spectrum, correlation dimension,
and 0-1 test. The birth of SNAs is shown to happen via
fractalization route. The experimental evidence of SNAs
would be a benchmark for models that are developed to
capture the quasi-periodicity route to chaos observed in
experiments.

In general, as the observation of SNAs occurs only in a
narrow interval of control parameter between quasiperi-
odicity and chaos, the detection of such attractors
through experiments is difficult. The presence of SNA
in the system dynamics has been projected to have wide
applications including secure communication, ease of syn-
chronization, and computation process [3]. However, the
implementation of SNAs in real-time applications is still
a topic of investigation. The experimental realization of
SNAs in self-excited dynamics of a laboratory system is
a first step in realizing the possibility of such dynamics
in practical systems without any forcing. We believe that
the existence of SNAs is more ubiquitous in self-excited
systems than previously thought.
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