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Abstract – We study a greedy forager who consumes food throughout a region. If the forager
does not eat any food for S time steps it dies. We assume that the forager moves preferentially
in the direction of greatest smell of food. Each food item in a given direction contributes towards
the total smell of food in that direction, however the smell of any individual food item decays
with its distance from the forager. We study both power-law decay and exponential decay of the
smell with the distance of the food from the forager. For power-law decay, we vary the exponent
α governing this decay, while for exponential decay we vary λ also governing the rate of the decay.
For power-law decay we find, both analytically and through simulations, that for a forager living
in one dimension, there is a critical value of α, namely αc, where for α < αc the forager will
die in finite time, however for α > αc the forager has a nonzero probability to live infinite time.
We calculate analytically the critical value, αc, separating these two behaviors and find that αc

depends on S as αc = 1 + 1/�S/2�. We find analytically that at α = αc the system has an
essential singularity. For exponential decay we find analytically that for all λ, the forager has a
finite probability to live for infinite time. We also study, using simulations, a forager with long-
range decaying smell in two dimensions (2D) and find that for this case the forager always dies
within finite time. However, in 2D we observe indications of an optimal α (and λ) for which the
forager has the longest lifetime.

Copyright c© EPLA, 2020

Introduction. – Animals seeking food or resources
spread out over a region often must move throughout
the region in order to obtain the desired resources. The
question of whether such foraging can be performed in
an optimal manner to maximize the animal’s lifetime or
likelihood of finding food has received significant atten-
tion [1–4]. Many earlier studies argue that to be optimal
such searching should be done stochastically [5–7] and that
random walks or Lévy flights can be used to model this
behavior [8–12]. Several models for a forager’s movement
behavior have been proposed including based on stimuli,
memory, and cues from fellow foragers [4,13–15].

Recent work has suggested a new model where a forager
carries out a random walk, yet the food is explicitly con-
sumed until the forager starves to death [16,17]. In this
model, the forager begins at some point on a lattice with
each site containing food. The forager then moves and
eats the food at the discovered site, leaving no remaining
food there. It continues to move throughout the region
either returning to sites without food or eating food at

new discovered sites. If the forager goes S steps without
eating, it starves to death. Notably, this process leads to
inherent desertification [18,19], as the forager eventually
creates a desert of visited sites among which it moves until
starvation. Later work expanded this to cases where the
food renews after some time [20], where the forager eats
only if it is near starvation [21,22], and where the forager
walks preferentially in the direction of a nearby site with
food (greed) [23,24].

Indeed, this recent extension of the random forager to
include “greed” incorporates the fact that the forager has
knowledge of its surroundings [7,25,26]. However, it only
considers very short-range knowledge of the surroundings.
Here we extend the starving forager models to a forager
with an explicit sense of smell that extends to potentially
longer ranges [27]. We assume that the contribution of an
individual food site to the overall smell in a given direction
decays with its distance d from the forager. While actual
patterns of odor diffusion are turbulent and vary in time
in highly complex ways [28], we simplify to consider two

60003-p1



Hillel Sanhedrai et al.

realistic cases: power-law decay with distance and expo-
nential decay. Power laws have been found to arise in the
context of odor regarding perceptions and concentrations,
in particular in the well-known Steven’s Law [29,30]. Like-
wise, in applied settings, guidelines for setback distances
for odorous agricultural factories, have been set based on
a power-law decay of concentration with distance [31]. At
the same time, both power-law and exponential decay were
found in recent experiments on odor patterns depending
on the type of wind, threshold concentration, and other
conditions [28]. We therefore consider both cases in order
to better understand the possible behavior of our model.
After calculating the total smell (based on either power-
law or exponential decay), we assume that the forager
walks probabilistically in each direction proportional to
the total smell in that direction.

Our model begins with a lattice with sites all contain-
ing food. The forager starts at some site and at each
site it visits, it consumes all the food leaving behind a
site with no remaining food. If the forager goes S time
steps without visiting a site containing food, it starves to
death. The forager is biased to walk in the direction of
food, however as opposed to [23] where only food at the
nearest site was considered, we also consider food at more
distant sites in determining the forager’s preferred trajec-
tory. Thus at each time step the forager calculates the
total “smell”, F , emanating from each possible direction
and weights its likelihood to walk in a particular direction
based on the total smell in that direction. The total smell
is found by calculating the smell from all sites in that di-
rection weighted either by a power law with exponent α
or by an exponential function with decay rate λ. The for-
ager then moves in each direction probabilistically with
likelihood according to the fraction of total smell in that
direction. We are then primarily interested in the quan-
tity T , defining the total number of steps that the forager
survives before starving to death.

One dimension with power-law decay. – Like ear-
lier studies [16,23,32], we begin with the case of one di-
mension, see fig. 1. This case is more tractable to analytic
solutions and provides intuition for the more ecologically
relevant case of two dimensions.

We assume that the forager begins at the center of a
one-dimensional lattice of length l with periodic boundary
conditions. For power-law decay, we define the total smell
of food in a given direction as

F =
l/2∑
d=1

δd

dα
, (1)

where d is the distance of the forager from the site being
considered, δd is 1 if the site contains food and 0 otherwise,
and α controls the decay with distance. Ideally, we are
interested in the limit of l → ∞, but we will start by
considering a finite l and then take the limit l → ∞.

For one dimension there are two directions of smell, de-
noted as FR to the right and FL to the left. The forager

Fig. 1: Model demonstration in 1D. We show the likelihood of
the forager to walk in a given direction based on the amount
of food in that direction. In one dimension there are two di-
rections with smells FR and FL. The probability to walk right
(left) is then given by p(q) as defined in the figure for power-law
decay.

moves with probability proportional to the smell such that
⎧⎪⎨
⎪⎩

p =
FR

FR + FL
,

q =
FL

FR + FL
,

(2)

where p, q are the probability to walk right or left, respec-
tively (see fig. 1).

We present simulation results for the system described
above in fig. 2(a) for different S and measure the mean
forager lifetime T as a function of α. Until α ≈ 1 the for-
ager has a short lifetime (below ≈100), see fig. 2(b). This
is because, for small α the forager considers unreachable
far away food, causing the forager to essentially carry out
an unbiased random walk as in [16].

In contrast, above some α, αc, which decreases with S,
the forager consumes all (or most) food in the system, i.e.,
T ≈ 10 000 = l (see fig. 2(a)). This is since for sufficiently
large α, once the forager takes one step in either direction,
it will then mainly consider only its immediate neighbors.
The previously visited site will be empty, while the other
site will be filled, thus the forager will move towards the
filled site. This will happen nearly every time step and
the forager will continue moving in the same direction and
eating food at new sites. In the limit α → ∞, our results
approach those of [23] with perfect greed.

Using the intuition gained above, we now consider
l → ∞. For this case, after eating, the forager will be
at the edge of a semi-infinite line of food in one direction.
Therefore the smell in the direction of this line is

F =
∞∑

d=1

1
dα

= ζ(α), (3)

where ζ(α) is the Riemann-Zeta function (RZF).
This mapping to the ζ function allows us to simulate an

infinite system since rather than looping over an infinite
amount of food, we can subtract from ζ(α) those locations
which do not have food. Thus if x0 is the current forager
location and the maximal (minimal) location reached is
xmax (min), then

Fi = ζ(α) −
xmax (min)−x0∑

d=1

1
dα

, (4)
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Fig. 2: Greedy forager with power-law decaying smell in one dimension, eq. (1). (a) Simulation results for the mean lifetime
of the forager, T , as a function of α for several S values for a one-dimensional line of l = 104 sites with periodic boundary
conditions. All points are averaged over 1000 runs. (b) T , the forager lifetime, as a function of S for several fixed α. We
choose α values just above 1 in order to obtain finite values of T . We observe an even-odd alternating pattern. (c) We plot the
probability of the forager to live for an infinite time, p∞. In practice, we carry out 1000 realizations and find the fraction that
approach to T = 107, which is our cutoff for T → ∞.

where i is either R or L. After calculating FR and FL,
we use eq. (2) to obtain the probability to move in each
direction.

In fig. 2(b) we show the forager lifetime, T , as a function
of S for values of α slightly above 1, where the forager
lifetime is finite. The even-odd alternating steps in the
forager lifetime are due to the fact that if a forager has
eaten for several steps in one direction and then takes one
step away from the food, it will also not eat on the next
step since both locations next to it will be empty. Thus,
the forager requires at least 3 steps to return to new food
(one to step away from the food, one to step back to its
original location, and a third step to reach the new food).
This is similarly true for taking n steps away from the food
and therefore only odd S increase the lifetime significantly.

For the infinite l case we can expect that for sufficiently
large α the forager will survive for infinite time (in prac-
tice, we set some cutoff time). In fig. 2(c), we plot the
likelihood, p∞ that the forager will have a lifetime above
the cutoff vs. α for different values of S. Defining p∞ as
the order parameter, we observe a critical value of α, αc,
for which the forager lives an infinite lifetime. As we will
demonstrate below, the reason for this phase transition
is that for sufficiently large α, after the forager consumes
food in one direction for several time steps, it will be faced
with a desert in one direction and an infinite line of food
in the other direction. Therefore, if α is large, the for-
ager will have very high (and increasing) probability to
continue moving towards the food and consuming all the
available food. We note that it is somewhat surprising
that αc changes with S as typically critical exponents are
independent of the values of microscopic parameters [33].

Theoretical calculation of αc. Having observed that
the forager could live for T → ∞ steps, we aim to cal-
culate the lowest value of α, αc, that this occurs. We
define αc such that for α > αc the probability to live
forever (T → ∞) is p∞ > 0 and the average number of
distinct sites visited (food consumed), is 〈N〉 → ∞, while
for α < αc, p∞ = 0. If a forager lives forever, it will do so
by almost always moving in the same direction, creating

a desert of length D between itself and food on the other
side of the desert. After a large number of steps where
the forager remains alive it will reach a point where D is
very large. The behavior in this limit will determine if the
forager can live forever.

To derive p∞ we will calculate the likelihood φ of the
forager to survive until its next meal given that it just
ate. We note that φ depends on D and that each time
the forager eats a meal, the size of the desert will increase
by 1, D → D + 1. We can now recognize that p∞, the
probability of the forager to live forever, is

p∞ =
∞∏

D=1

φD, (5)

where φD represents the value of φ for a given D.
Equation (5) essentially explains that the likelihood for
the forager to live for an infinite time is the product of
its likelihood to reach its next meal every time. Next, we
calculate the values of φD. Without loss of generality, we
assume that the forager has so far moved to the left and
thus after its most recent meal, the desert of size D is to
its right. Between meals, the forager will wander and its
distance x from the next meal, just past the edge of the
desert, will vary. To calculate φD, we must first deter-
mine the likelihood of the forager to move either towards
or away from the edge of the desert. As in fig. 1 we de-
note as pD(x) the probability to move right (further into
the desert) given that the desert is of size D and that the
forager is at distance x from the desert’s edge. Likewise,
qD(x) is the likelihood to move left or towards the edge of
the desert of size D.

In the limit of large D, we approximate pD(x) =
FR/(FR + FL) ≈ FR/FL since the forager is far from the
food at the opposite end of the desert (right side) and
FR � FL. For a given value of x, FL will be the same for
any value of D. Thus, all that remains to find pD(x), is
to determine

FR =
∞∑

n=D−x

1
nα

. (6)
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This sum can be approximated by the integral

FR ≈
∫ ∞

D−x

n−αdn =
(D − x)1−α

α − 1
.

To leading order this implies the scaling FR ∼ D1−α

and so
pD(x) ∼ FR/FL ∼ D1−α. (7)

This scaling relationship is important for the re-
mainder of the derivation and so we verify it for
x = 1 in fig. A.1 of the supplementary material
Supplementarymaterial.pdf (SM).

We now return to φD and its complement 1 − φD.
We consider “paths of starvation” i.e., those paths along
which the forager will fail to consume its next meal and
die. These paths must end at x > 0 and thus they include
only paths with equal or more steps to the right than to
the left. This means that at least k = 	S/2
 steps must
be to the right where 	·
 is the nearest integer above the
number. Since pD(x) � 1, we only consider the leading
term which consists of paths with the minimum number
of steps to the right. Using eq. (7), we can write

1 − φD ∼ pk
DqS−k

D ∼ D(1−α)k, (8)

where pk
D represents k steps to the right and qS−k

D rep-
resents S − k steps to the left. Knowing the scaling of
φD, we can now evaluate p∞ using eq. (5). We esti-
mate p∞ by converting the product in eq. (5) to a sum of
logarithms as

ln p∞ =
∞∑

D=1

ln φD

≈
D0−1∑
D=1

ln φD +
∞∑

D=D0

ln(1 − AD(1−α)k),

where A is a constant prefactor, D0 is a large arbitrary
value of D such that eq. (7) is true, and for D ≥ D0 we
have from eq. (8) that AD(1−α)k � 1. Thus,

ln p∞ ≈ −B − A
∞∑

D=D0

D(1−α)k, (9)

with B =
∑D0−1

D=1 ln φD being another constant factor.
The result in eq. (9) depends on if the sum diverges to neg-
ative infinity. If the RHS of eq. (9) diverges then when ex-
ponentiating we will find that p∞ = 0, whereas if the sum
remains a finite negative number, then p∞ > 0. Which
case occurs will depend on the value of (1−α)k such that

ln p∞ =

⎧⎨
⎩

−∞, (α − 1)k ≤ 1,

−C(α), (α − 1)k > 1,

where C(α) is some finite value resulting from the infinite
sum. Finally, we can obtain

p∞ =

⎧⎪⎨
⎪⎩

0, α ≤ 1 +
1
k

,

e−C(α), α > 1 +
1
k

.
(10)

Fig. 3: Critical value of αc for power-law decay of smell. The-
ory and simulations of αc as a function of S. The simulations
suggest values of αc slightly larger than those calculated by the
theory, yet this is likely due to the finite number of realizations,
r = 104, for each point and the likelihood of a single realiza-
tion to reach T → ∞ may be less than this value near αc. In
the inset, we show that increasing the number of realizations
(to 108) leads to a decrease in the calculated value of αc, closer
to the analytic result of eq. (11).

Thus, we find p∞ > 0 for

α > αc = 1 +
1

	S/2
 . (11)

We show our analytic result compared to simulations in
fig. 3. We note that in the limiting case S = 1 then αc = 2,
and for S large αc → 1. The slight discrepancy between
the theory and simulations is observed because the mea-
sured αc only represents an upper bound for the true value
of αc. This is since we only considered a finite number
of realizations. For example in the case of 104 realiza-
tions, we examine if in any one realization the forager’s
lifetime reaches the cutoff (T = 107) and if so we assume
p∞ < 10−4 = 1/104. However, we cannot actually mea-
sure p∞ → 0. At the same time, we do find that increasing
the number of realizations leads to a lower upper bound.
Second, another reason for the deviation is that in eq. (8),
we only considered the leading term. For the infinite limit,
this will be correct, however given that in the simulations
we could only measure finite p∞ > 0, the later terms will
affect our determination of αc and lead us to obtain higher
values than would be found in the infinite case.

As α → α+
c , it can be found that C(α) ∼ 1

α−αc
, since

approximating the sum in eq. (9) as an integral gives
C(α) ≈ −B − A

∫ ∞
D0

x(1−α)kdx ∼ AD
(α−αc)k
0 /((αc − α)k).

Thus we can obtain the scaling relationship near critical-
ity, where p∞ → 0, as

p∞ ∼ exp
(

− b

α − αc

)
, (12)

where b is some positive constant. This implies that p∞
undergoes a continuous transition at αc (see fig. A.2 in the
SM), and that at αc there is an essential singularity. In
the appendix, we show that there is also a transition in T
as the same value of αc.
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One dimension with exponential smell decay. –
We next consider the scenario in which the smell decays
with the distance exponentially as e−λd where λ deter-
mines the rate of decay. For this case, eq. (1) becomes

F =
l/2∑
d=1

exp(−λd). (13)

In this case the average lifetime diverges for any positive
value of λ. We can see this by first noting that eq. (5)
remains true, whereas eq. (7) must be modified for the
exponential case. We note

FR ≈
∫ ∞

D−x

e−λndn =
e−λ(D−x)

λ
,

which implies that the correctly modified form of eq. (7)
is

pD(x) ∼ FR/FL ∼ e−λD. (14)

Equation (8) will then become

1 − φD ∼ pk
DqS−k

D ∼ e−λkD. (15)

and eq. (9) is

ln p∞ ≈ −B − A
∞∑

D=D0

e−λkD. (16)

The RHS of eq. (16) is finite for any positive λ. There-
fore when isolating to obtain p∞ by exponentiating both
sides of the equation, we find that p∞ > 0 for all λ > 0.
Likewise, this implies that 〈N〉 and T will be infinite for
λ > 0. Thus, in one dimension, exponential decay of smell
with distance leads to an infinite expected lifetime for all
cases, unlike power-law decay where the expected lifetime
may be finite or infinite depending on α.

Two dimensions. – We will now consider the more
ecologically relevant case of two dimensions. There are
now 4 possible directions (on a square lattice) that the for-
ager can move. We assume that food located at distance
(Δx, Δy) from the forager contributes (for power-law de-
cay of smell) 1√

(Δx2+Δy2)
α ( Δx√

Δx2+Δy2
, Δy√

Δx2+Δy2
) to the

smell. We sum all of the smells in the positive and nega-
tive directions of x and y and stochastically choose one of
the 4 proportionally to their smell (see fig. 4).

Results. We begin with the case of power-law decaying
smell. To gain more intuition into the effect of smell, we
convert to polar coordinates where the distance from an
individual food item is (r cos θ, r sin θ), with r =

√
x2 + y2

and θ = tan−1( y
x ). We can then approximate the total up-

per smell, u, with the integral
∫ π

0

∫ ∞
r0

1/rα sin θ r dr dθ =
2

∫ ∞
r0

r1−αdr. This integral diverges for α ≤ 2 and the
same will be true for the lower, left, and right directions.
Thus, for α ≤ 2 our model converges to the model of the
uniformly random walker forager [16] since there is infi-
nite smell in all directions. As for the one-dimensional

Fig. 4: Model demonstration in 2D. In 2D there are four pos-
sible directions, FL,R,U,D, and d =

√
Δx2 + Δy2. The proba-

bility, pi, to walk in each direction is proportional to its smell.

case, here too when α → ∞ the forager will behave like
the completely greedy forager smelling only the nearest
neighbors [23].

Unfortunately, our useful idea in one dimension where
we recognized that the entire tail of the smell is ζ(α) will
not work in two dimensions since the forager need not walk
in an orderly manner, but rather can “snake” throughout
a region. Therefore analytic results are difficult for 2D
and in our simulations we simulate a finite-size system
of size l × l with periodic boundaries. Previous work on
percolation and other systems have shown that periodic
boundary conditions generally lead a system to converge
to the infinite limit at smaller system sizes than using non-
periodic boundaries [33]. In our case, we expect this to be
true as well since for periodic boundaries, the forager can
reach food on the other side of the boundary, which is more
similar to the situation if the system extended forever.

We begin by examining the finite-size effects on the
lifetime of the forager for fixed S and α near α = 2.
For l → ∞, we expect that for α ≤ 2, the forager
lifetime should be constant and equal to the random
case [16]. Since the simulations are heavy, we set a max-
imum distance up to which we will consider the impact
of food, whereas food at greater distances will be ignored.
Figure 5(a) shows that for α = 1.9 < 2, the forager life-
time decreases significantly as this maximal smell range
increases. This can be understood by recognizing that the
far away food must be considered in order for the sum
to approach ∞ in all directions. We choose 250 as our
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Fig. 5: Plots for a forager with power-law decaying long-range
smell in two dimensions. (a) We show that varying the maxi-
mum smell range significantly affects the forager’s lifetime and
thus one must carry out larger computations to assess the finite
size issues. For smell range ≤ 1000 the system size is 103 ×103,
while for 2000 it is 2 ·103 ×2 ·103. In (b) we show the mean life-
time of the forager, T , as a function of S for a two-dimensional
space of 103 ×103 sites with periodic boundary conditions. All
points are averaged over 100 realizations.

Fig. 6: Plots for a forager with long-range exponentially de-
caying smell in two dimensions. (a) For the exponential case,
the maximal smell range quickly converges when we set 100
as the maximal smell range. In (b) we show the mean life-
time of the forager, T , as a function of S for exponential
decay in two dimensions. All points are averaged over 100
realizations.

linear-size limit, since it balances between being reason-
ably computationally feasible and giving results that are
sufficiently close to those expected for the infinite limit.

In fig. 5(b) we plot the forager lifetime as a function of
α for different values of S. We observe that from α = 0
until α ≈ 2 the forager lifetime is constant, as expected.
This is since the smell in each direction is diverging and
thus the forager moves randomly. As α further increases,
we see that the forager lifetime increases and reaches a
peak before dropping to a constant value for large α. This
constant value for large α is the limit of total greed in [23].
There, it was found that near the limit of total greed
in 2 dimensions, the forager lifetime actually decreases
as the forager becomes more greedy because the forager
forms deserts and becomes “trapped” inside them. These
traps play a similar role here with intermediate α opti-
mally avoiding them.

In fig. 6 we present results for exponential decay in two
dimensions. Now the smell will be given by e−λd(Δx

d , Δy
d ),

where d =
√

Δx2 + Δy2. We first assess how using a max-
imum smell range affects our results and we find that in
contrast to the power-law case of fig. 5(a), for the expo-
nential case the result converges for a smaller value of the
smell range (fig. 6(a)). We thus choose 100 as our cutoff
for the smell range for the exponential results. For the
case of large λ our results converge to those of the per-
fectly greedy forager, whereas for small λ we obtain the
results of a random walking forager. Similar to what was
found for power-law decay, for exponential decay we also
find a peak in the forager lifetime with a particular value
of λ that appears to depend on S. Here too, this peak is
related to the creation of “traps” if λ is too small.

Discussion. – We have studied a forager that walks
preferentially according to the smell of food in a given
direction. For power-law decay of smell in one dimension,
above a certain critical αc, the forager can live for infinite
time and almost always walks in the same direction. The
value of αc decreases with the time, S, that the forager
can live without food. However, for exponential decay of
smell with distance, for all values of λ > 0, there is a
finite likelihood for the forager to live forever. In the two-
dimensional case, we find optimal values of both α and
λ for which the forager lifetime is maximal. Overall, our
results provide intuition on how long-range smell affects
the lifetime of a forager. Further work could compare
these results to experimental measurements, which also
might lead to additional extensions to the model such as
exploring cases where originally only some sites contain
food (possibly in unequal amounts) and incorporating the
fact that food often appears in “patches” [26]. Likewise,
multiple foragers living in the region could be considered
with all of them depleting food sources [15].
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Olson K. A. and López C., Phys. Rev. Lett., 110 (2013)
248106.

[16] Bénichou O. and Redner S., Phys. Rev. Lett., 113
(2014) 238101.

[17] Bénichou O., Chupeau M. and Redner S., J. Phys. A:
Math. Theor., 49 (2016) 394003.

[18] Reynolds J. F., Smith D. M. S., Lambin E. F.,

Turner B., Mortimore M., Batterbury S. P.,

Downing T. E., Dowlatabadi H., Fernández R. J.,

Herrick J. E. et al., Science, 316 (2007) 847.
[19] Weissmann H. and Shnerb N. M., EPL, 106 (2014)

28004.
[20] Chupeau M., Bénichou O. and Redner S., Phys.

Rev. E, 93 (2016) 032403.
[21] Rager C., Bhat U., Bénichou O. and Redner S.,

J. Stat. Mech.: Theory Exp., 2018 (2018) 073501.

[22] Bénichou O., Bhat U., Krapivsky P. and Redner S.,
Phys. Rev. E, 97 (2018) 022110.

[23] Bhat U., Redner S. and Bénichou O., Phys. Rev. E,
95 (2017) 062119.

[24] Bhat U., Redner S. and Bénichou O., J. Stat. Mech.:
Theory Exp., 2017 (2017) 073213.

[25] Fletcher R. J., Maxwell C. W., Andrews J. E. and
Helmey-Hartman W. L., Landsc. Ecol., 28 (2013) 57.

[26] Nevitt G. A., Losekoot M. and Weimerskirch H.,
Proc. Natl. Acad. Sci. U.S.A., 105 (2008) 4576.

[27] Fagan W. F., Gurarie E., Bewick S., Howard A.,

Cantrell R. S. and Cosner C., Am. Nat., 189 (2017)
474.

[28] Celani A., Villermaux E. and Vergassola M., Phys.
Rev. X, 4 (2014) 041015.

[29] Stevens S. S., Am. Sci., 48 (1960) 226.
[30] McGinley C. M., Mahin T. D. and Pope R. J., Proc.

Water Environ. Fed., 2000 (2000) 937.
[31] Lim T. T., Heber A. J., Ni J.-Q., Grant R. and

Sutton A. L., Proc. Water Environ. Fed., 2000 (2000)
773.

[32] Fagan W. F., Hoffman T., Dahiya D., Gurarie E.,

Cantrell R. S. and Cosner C., Theor. Ecol., 12
(2019) 1.

[33] Stauffer D. and Aharony A., Introduction
To Percolation Theory (Taylor & Francis) 1994,
http://books.google.co.il/books?id=v66plleij5QC.

60003-p7


