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Abstract – We study the interplay of a random off-diagonal (hopping) disorder with the on-site
quasiperiodic potential in a one-dimensional Aubry-André (AA) chain. There is evidence for the
absence of delocalized states, at least for a finite lattice, in presence of a weak disorder, thereby
removing the possibility of a sharp transition from extended to localized regime. This renders
testimony for the presence of a weakly localized phase which we denote as the “critical” phase.
We also evaluate whether the random disorder helps or hinders the quasiperiodic term on either
side of the “duality” point in inducing a complete localization phenomenon via computing a few
relevant quantities, such as the inverse participation ratio (IPR), which estimates the extent of
localization, and an extensive multifractal analysis to assess the nature of the disordered states.
We observe that a weak random disorder corresponding to the strength of the quasiperiodic term
above the critical value (λc = 2) is more efficient in inducing the localization phenomenon as
compared to a large disorder below the critical value. We also find that a large disorder is found
to compete with the quasiperiodic term beyond its critical value in localizing the eigenstates,
while it aids at strengths below the critical value, both of which are intuitively conceivable. Such
a differential behavior of the random off-diagonal disorder and its interplay with the quasiperiodic
potential albeit expected, have not been reported earlier in the literature. With regard to the
multifractal analysis, we ascertain the nature of the critical phase and comment on the fractal
dimension, the critical exponents and occurrence of rare events.

Copyright c© EPLA, 2020

Introduction. – The localization phenomenon, be-
ing the property of states, is one of the fundamental
topics in the transport of the quantum mechanical sys-
tems. After the prediction of the Anderson localiza-
tion of electronic wave function for disordered quantum
systems, the area has gained large attention [1,2]. Par-
ticularly after several observations have been reported
through several experiments for a variety of systems,
such as, light waves [3], electron gases [4], etc., the phe-
nomenon of localization has been elucidated in many
ways [5]. Moreover, a one-dimensional quasiperiodic po-
tential [6–8] serves as a compelling candidate since the
1980s (represented by the well-known Aubry-André (AA)
model [9,10]), which shows the localization transition
similar to random potential in three-dimensional sys-
tems [1,10]. There have been different works available
on this model for decades [11–13], along with general-
ization of the model, such as, exponential short-range
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hopping [11], the next-nearest-neighbor hopping [14,15],
power-law hopping [16], coupled AA chain [17], modulated
hopping [18], in higher dimensions [19].

Later, the developments of ultracold atoms in optical
lattices [20–22] have opened a new doorway to implement
these theories through experiment and motivate one to
go beyond the known. The AA Hamiltonian [10] can
be experimentally achievable with ultracold atoms loaded
in optical lattices [23,24]. It has been noted that the
quasiperiodic potential is mapped by using a bichromatic
potential, which can be obtained from the superposition
of two optical lattices of the form [23–25]

V (x) = s1ER1 sin2(k1x) + s2ER2 sin2(k2x+ φ), (1)

where k1 = 2π/λ1 and k2 = 2π/λ2 (λ1 and λ2 are wave-
lengths of the two optical lattice potentials). The role of
the two lattices is described in the following. The poten-
tial with wavelength λ1 is used to create the tight-binding
primary lattice, which is weakly perturbed by another
lattice potential, namely, the secondary lattice potential
with a wavelength, λ2. The amplitudes of the two lattice
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potentials are s1 and s2 which are expressed in units of
the recoil energies ER1 and ER2 with φ being an arbitrary
phase [25]. The hopping strength and the quasiperiodic
potential of the AA Hamiltonian can independently be
controlled in experiments by tuning s1 and s2, which give
us the idea and opportunity to explore further by intro-
ducing random hopping into the system. While the ran-
dom on-site potential has received significant attention in
the literature, there has not been much emphasis on the
off-diagonal (hopping) disorder and its interplay with the
quasiperiodic potential.

In this work, we ask a very specific question: which of
the two, namely, the on-site quasiperiodic potential or the
off-diagonal random (hopping) disorder, is more dominant
in inducing complete localization in a one-dimensional
AA model? We provide multiple evidences to support
our claim that the quasiperiodic term plays a more
dominant role in this regard. A weak random (hopping)
disorder above the critical value of the quasiperiodic
potential (namely, the “duality” point [10]) causes a
much larger degree of localization, than what a strong
random disorder does below the critical point. To add
further excitement to the story, we have observed that
beyond the critical point, the weaker disorder seems to
be more efficient in inducing localization as compared to
a stronger disorder. Thus, while below the critical point,
the random disorder aids in the localization phenomena,
beyond the critical disorder, it starts competing with the
quasiperiodic potential. This is one of the main results of
our paper and we deliberate on it in details in the follow-
ing section. Further, we perform an extensive multifractal
analysis [26–33] to ascertain the critical nature of the wave
function and compute the multifractal exponents and
the fractal dimension. We also demonstrate interesting
prospects of occurrence of “rare events”.

We organize our paper in the following way. First,
we shall describe the model Hamiltonian and the results.
Hence we study the localization phenomena of the system
via computing the inverse participation ratio (IPR) and
normalized participation ratio (NPR). Next, we shall per-
form a multifractal analysis to decipher the nature of the
critical phase.

The model and results. – The Hamiltonian denotes
a one-dimensional tight-binding term along with a AA po-
tential, and is written as

H=−
∑

i

ti(|i〉〈i+ 1| + h.c.) + λ
∑

i

cos (2πβi)|i〉〈i|, (2)

where |i〉 is a Wannier state at lattice site i, ti is the
nearest-neighbor random hopping strength and λ is the
disorder strength of the on-site quasiperiodic potential.
Mathematically, an irrational value of β is necessary and
sufficient for a phase transition in the quasiperiodic po-
tential model. So here we choose β = (

√
5 − 1)/2 as

an inverse of the “golden mean” and also a Diophantine
number [10].
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Fig. 1: IPR is shown as a function of 1/L, where L are
taken only from the Fibonacci sequence for (a) λ = 1.5 and
(b) λ = 2.5 with corresponding colours being red, blue and
green for σ = 0, 0.5, 1, respectively.

Now our main aim is to understand a variant of the
AA model, where we introduce a random nearest-neighbor
hopping in the lattice. We define a random distribution
of hopping energies that are picked up from a uniform
rectangular distribution of width σ and in the range from
−t′/2 to t′/2, where t′ = t − 1 (so that t is distributed
uniformly about t = 1). A realistic scenario, such as this,
can be created by changing the (primary) wavelength, λ1
(see footnote 1). It is worthwhile to mention that our
disorder model can be derived from a 2D quantum Hall
system on a lattice (Hofstadter model) with equal and op-
posite position-dependent phases in hopping specifically
along the y-direction. Earlier Liu et al. [34] have consid-
ered tunable phase difference between the on-site and the
hopping terms of the AA model which enables demonstra-
tion of an induced localization transition. While in our
case, a transition from the delocalized to localized phase
is absent, however a transition from a critical phase to a
completely localized can be tuned via the disorder strength
which is discussed below.

In particular, in our work we have considered 3 differ-
ent values of σ ranging from small to moderately large
disorder strengths, namely, σ = 0.1, 0.5, and 1, such that
a large disorder is compatible to other energy scales of
the problem, that is t (= 1) and λ (varied between 1.5
and 2.5). Thus the effect of random hopping disorder and
the competition with the quasiperiodic term will be eval-
uated for σ to be roughly in the interval [0.1λ : λ]. We
have considered 500 different disorder realizations when-
ever we needed configuration-averaged quantities. We
have checked that this number suffices for our purpose
even for the largest disorder, that is σ = 1. The σ = 0
case corresponds to the AA model, for which the results
are known and will be used as a benchmark.

Inverse participation ratio (IPR). – To understand
the localization characteristics, we consider the inverse

1Since the incommensurability parameter, β, is defined by λ1/λ2,
a change in λ1 would necessitate changing λ2 as well.

47005-p2



Interplay of an off-diagonal random disorder and quasiperiodic potential etc.

20 50 100 144
eigenstate number

0

1

2

3

0.2

0.4

0.6

0.8

20 50 100 144
eigenstate number

0

1

2

3

0.2

0.4

0.6

0.8

20 50 100 144
eigenstate number

0

1

2

3

0.2

0.4

0.6

0.8

20 50 100 144
eigenstate number

0

1

2

3

0.2

0.4

0.6

0.8
(a) (b) (c) (d)

Fig. 2: Surface plots of IPR are shown as a function of λ and the eigenstate number. Here (a) σ = 0 represents the pure AA
model and (b), (c), (d) correspond to disorder values σ = 0.1, 0.5, 1, respectively. The darker shade represents more extended
states, while the light shade represents larger fraction of localized states.
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Fig. 3: 〈IPR〉 and 〈NPR〉 averaged over the eigenstate number as a function of λ are shown. Here we plot σ = 0 for the pure
AA model, in (a) together with three different values of σ = 0.1, 0.5, 1, in (b), (c), (d) where the plot in red corresponds to
〈IPR〉, and blue corresponds to the 〈NPR〉.

participation ratio (IPR) [13,35,36] which is defined by

IPR(n) =
∑

i |ψn
i |4

(
∑

i |ψn
i |2)2 , (3)

where i represents the number of lattice sites and ψn
i is

the eigenstate at site i corresponding to the eigenvalue
index, n. The system becomes completely localized when
IPR reaches its maximum value (IPR = 1), for which the
ψn

i (almost) becomes a delta function, thereby implying
vanishing overlap even among the neighboring sites. In
the opposite limit, that is when IPR = 0, the eigenstates
become extended and we have, |ψn

i | ∼ 1/
√
L, L being the

system dimension.
We now comment on the dependence of our results on

the system dimension, L. To do that we have considered a
Fibonacci sequence of L, namely, L = 144, 233, 377, 610,
etc., in the presence of disorder (see fig. 1) both for λ > λc

and λ < λc (where λc is the “duality” point). It may be
observed that the IPR as a function of 1/L has weak site
dependence for σ = 0 (red curve), while for σ = 0.5 and
1, the plots are flat even when extrapolated to L → ∞,
indicating negligible (or none) size dependencies. Thus
we have performed all our calculations corresponding to
L = 144 for both below (λ = 1.5) and above (λ = 2.5) the
duality point.

In fig. 2 we present surface plots of IPR for all the
eigenvalue indices, n as functions of the strength of the
quasiperiodic potential, λ and eigenstate number for a few
strengths of the random hopping disorder, σ. Inclusion of
a little disorder σ = 0.1 shows an entirely different picture.
A sharp transition from delocalized to localized phases
ceases to exist, and the states become energy-dependent

at the critical point (λc = 2) [30,37] (see fig. 2(b)). This
indicates the presence of an intermediate phase of coex-
isting localized and delocalized states around the criti-
cal transition point. To make this point more lucid, we
explore another quantity, namely, the normalized partici-
pation ratio (NPR), which is defined by [13]

NPR(n) =

[
L

∑
i

|ψn
i |4

]−1

. (4)

NPR shows complete localization for NPRn = 0 value and
complete delocalization for values ∼1.

Finally, we take an average of the IPRn and NPRn over
all the eigenstates of the system and define them as 〈IPR〉
and 〈NPR〉, respectively. In fig. 3 we plot 〈IPR〉 and
〈NPR〉 as a function of λ for different disorder. For the
case of σ = 0 (see fig. 3(a)), there is a sharp transition
from a delocalized to a localized phase at λ = λc, a well-
known result [10] and is indicated by a very narrow region
overlap. While for σ �= 0, the region over which the tran-
sition occurs broadens with disorder. These are indicated
in figs. 3(b)–(d). These regions denote a critical phase
where the states are neither localized, nor extended [13].
We may also conclude that a complete delocalized phase
does not exist for any non-zero σ value corresponding to
a finite lattice.

Next, we shall study the physical properties of the sys-
tem in its critical phase. In fig. 4 we show the plots of
IPR as a function of the eigenstate number for two differ-
ent λ values, namely, λ < λc and λ > λc, corresponding
to different values of random hopping disorder. Corre-
sponding to λ < λc for σ = 0, all the states display
extended behavior, while for the second condition, namely,
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Fig. 4: IPR is shown as a function of the eigenstate number.
Here, we plot in (a) the AA model where λ = 1.5, 2.5, the
corresponding colours are red and blue, respectively. (b) and
(c) correspond to σ = 0.1, 0.5, 1, shown in red, blue and green
for the same values of λ, respectively.

λ > λc all the states are localized (see fig. 4(a)) [10].
Thus by introducing random hopping disorder correspond-
ing to λ < λc, the localization phenomena become more
prominent (see fig. 4(b)). A weak disorder implies a rel-
atively larger number of extended states, which, however
decreases with the strength of disorder. Further, a higher
number of states accumulate at the edges (see fig. 4(b)).
Also it shows that the degree of localization is larger to-
wards the center (IPR values are relatively smaller at the

edges). In the other case, λ > λc, we see a very different
picture, as demonstrated in fig. 4(c). At lower values of
randomness, the localization phenomenon is more promi-
nent, which subsides by a small amount as the randomness
increases. In addition, unlike the previous case (λ < λc),
the localization starts setting in at the edges, as opposed
to the center (note that the IPR has large values at the
edges and low values at the center). Thus it seems that
weaker values of randomness are more effective in induc-
ing localization phenomena corresponding to a strength of
the quasiperiodic potential greater than its critical value
demarcating the localized to extended phase transition.

This is somewhat expected because of the following rea-
son. In the delocalized regime (λ < 2), all the states are
extended. Random scattering (due to hopping disorder)
introduces backscattering which leads to the localization.
The localization will become stronger with larger disorder.
While in the localized regime (λ just larger than λc), an
intrinsic incommensurability (that exists due to the inter-
play of the AA potential and period of the lattice) pro-
duces backscattering which gives the localized states in
this regime in the original AA model. Inducing a random
hopping on top of that, the phenomenon of backscattering
and the scattering due to random hopping amplitudes im-
pede a constructive interference, which finally results in a
lesser degree of localization. The above scenario becomes
more discernible at larger values of disorder. However, for
large values of λ (well beyond λ = 2), complete localiza-
tion prevails.

To put things in perspective, we also plot a histogram
of the IPR values for the same scenario as in fig. 5 to
understand the behavior on either side of the duality point
(λc = 2) more precisely. For the case of λ < λc, the
distribution of IPR has a monotonic variation with the
disorder strength, that is, it grows larger with increasing
disorder. While for λ > λc the distribution, albeit having
larger values, shows non-monotonicity with regard to the
disorder strength. It can be seen that a small σ, namely,
σ = 0.1 (shown by red color) shows larger values of IPR
(implying the presence of more localized states) than that
for σ = 1 (shown by green colour). Thus we may conclude
that the random off-diagonal disorder competes with the
quasiperiodic potential above duality, while it is aided by
for λ < λc.

Finally we show a phase diagram in fig. 6 where the
IPR is plotted in the λ-σ plane. At small values of σ
and λ, delocalized phases are observed (shown via darker
shades), while, at larger disorder, the presence and extent
of the critical phase are shown via a reddish shade. Fi-
nally the regime shown by yellow shade corresponds to a
completely localized phase which occurs for large values
of λ irrespective of the value of disorder. It may be ob-
served that the boundary of the critical phase (not a sharp
one though) bends downward, that is, towards lower val-
ues of λ as σ is made larger which supports our preced-
ing discussion. Thus a transition from a weakly localized
phase to a critical phase and that from a critical to a
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(a)

(b)

Fig. 5: Here we plot histogram of IPR, where in (a) λ = 1.5 and
σ = 0.1, 0.5, 1, and in (b) λ = 2.5 and σ = 0.1, 0.5, 1, with the
corresponding colours being red, blue and green, respectively.

Fig. 6: Here we plot IPR as a function of λ and σ. The black
shade corresponds to delocalized phase (IPR values ≤0.05), the
reddish shade corresponds to critical phase (IPR in the range
0.1–0.3) and the yellow shade corresponds to localized phase
(IPR values ≥ 0.3).

localized phase can be achieved via tuning the strength of
disorder.

Multifractal analysis. – It is important to study the
critical phase of the model with disorder, especially since
the physical characteristics of these states are intermedi-
ate to have completely localized and completely extended
features. The spatial density distribution of such states

has a multifractal nature which can be denoted by the
generalized IPR corresponding to the q-th moment of the
wave function having a form [13,33]

Pq =
∫

|ψ(x)|2qdx. (5)

At criticality, the average of Pq shows an anomalous scal-
ing with the system size, L which is given by [13]

〈Pq〉 ∼ L−τq , (6)

where τq emphasizes the critical behavior of the wave func-
tion. It is also conventional to introduce the fractal di-
mension, Dq and relate it to τq via τq = Dq(q − 1). For
a one-dimensional system, Dq = 1 for the extended states
and Dq = 0 for the localized states, while for the critical
states, Dq is a non-trivial function of q, which is an indi-
cation of the multifractal behavior of the wave function.
Thus, for q = 2 (IPR), the average moment 〈Pq〉 scales
as 1

L (since τq = 1) for the extended states, remains in-
dependent of the system size for localized states, while it
acquires a value in the interval [0 : 1] for the critical states.

In the following we plot τq as a function of the mo-
ment index, q corresponding to both λ < λc and λ > λc

(figs. 7(a) and (b)) which are also shown for different disor-
der strengths. At all values of σ, τq increases till a certain
value of q (q = 8) thereby signaling a critical nature, and
beyond which it saturates, thereby showing localization ef-
fects. However the values of τq are much larger for λ < λc

compared to those for λ > λc. This implies a large criti-
cality of the states for λ < λc and is thus more discernible
than those for λ > λc. Further the plots corresponding
to different random disorder strengths are further apart
for λ < λc, while they show bunching together for λ > λc,
which is most noticeable for q = 2 (this feature is also clear
from the IPR studied earlier in fig. 4(c), which shows re-
verse trends as explained earlier).

Further, we plot the fractal dimension (see figs. 7(c)
and (d)), Dq, which as a function of q shows intermedi-
ate values between zero and one for all values of disorder.
They further show a decay for larger q along with sup-
pressed values for λ > λc compared to that of λ < λc, the
consequences of which are similar to what has been stated
above. This is expected for a distribution demonstrating
multifractal behavior [13].

A deeper analysis of the fractal singularities can further
be done by noting that the average distribution function
can also be written as [31,33,38]

〈Pq〉 = Ld〈|ψ2q|〉 ∼
∫

dαL−qα+f(α), (7)

where α = − ln(|ψ2|)/ ln(L) and the other symbols have
the usual meaning. The integral can be evaluated using a
saddle point method (valid in the thermodynamic limit)
which would yield eq. (6) [33]. τq is related to the singu-
larity spectrum, f(α) via the Legendre transformation,

τq = αf ′(α) − f(α), (8)
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Fig. 7: Here in (a), (b) τq is shown as a function of q for λ = 1.5
and 2.5, respectively, and in (c), (d) Dq is shown as a function
of q again for λ = 1.5 and 2.5 . All the plots are shown for three
disorder values, namely, σ = 0.1, 0.5, 1, with corresponding
colours being red, blue and green, respectively.
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Fig. 8: Here we plot f(α) as a function of α where (a) corre-
sponds to λ = 1.5 and (b) corresponds to λ = 2.5. Both the
plots include disorder values σ = 0.1, 0.5, 1, with correspond-
ing colours being red, blue and green, respectively.

where f ′(α) = df(α)
dα and α = dτq

dq . Thus f(α) is the frac-
tal dimension of the number of sites whose squared wave
function satisfies |ψ2| ∼ L−α. Corresponding to states
being extended, f(α) is a sharply peaked function about
a particular value of α. However, the scenario changes
in the presence of localized states, where f(α) acquires a
broad distribution, with regions, where it becomes nega-
tive. The above is related to an interesting phenomenon
described in the following. To ascertain the presence of
“rare events” (values of the wave function amplitudes oc-
curring rarely in a system) [33] in the spectrum, f(α) is
plotted (see fig. 8) as a function of α for both λ < λc

and λ > λc. The values of α for which f(α) is negative
indicate the presence of rare events which are much more
prominent for λ < λc than that for λ > λc. Thus it seems
that large values of the quasiperiodic potential suppresses
the rare events. More work is required to evaluate the role
of disorder in the occurrence of rare events.

Conclusion. – In this work, we have studied the in-
terplay of nearest-neighbor random hopping disorder with
the quasiperiodic potential in a one-dimensional Aubry-
André (AA) chain. We have observed that the disorder
seems to be more effective in inducing localization effects
below the “duality” point (λc = 2) than above it. Also,
in the critical phase, the extended and localized states are
mixed in a way that a complete delocalized phase (or a
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complete localized phase) is absent. Thus in a way, ran-
dom disorder and the quasiperiodic potential help each
other below the critical value, while for values above this,
they compete with each other. We have also done a de-
tailed multifractal analysis of the eigenstates in the critical
phase, where we have studied the fractal dimension and
the critical exponent for λ values above and below λc.
Suppression of rare events for λ > λc seems to be an im-
portant consequence of our random disorder model.
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