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Abstract
We derive universal analytic expressions for the critical temperatures of the superconducting (SC)
and pseudogap (PG) transitions of the high-Tc cuprates as a function of doping. These are in
excellent agreement with the experimental data both for single-layered materials such as LSCO,
Bi2201 and Hg1201 and multi-layered ones, such as Bi2212, Bi2223, Hg1212 and Hg1223.
Optimal doping occurs when the chemical potential vanishes. We show that the SC coupling is
enhanced with the number of layers, N, which allows for an accurate description of Tc in the Bi,
Hg and Tl multi-layered families of cuprates. We also study the pressure dependence of the SC
transition temperatures, obtaining excellent agreement with the experimental data for different
materials and dopings. These results are obtained from an effective Hamiltonian for the itinerant
oxygen holes, which includes both the electric repulsion between them and their magnetic
interactions with the localized copper ions. We show that the former interaction is responsible for
the PG and the latter, for the SC phases, the phase diagram of cuprates resulting from the
competition between both. The Hamiltonian is defined on a bipartite oxygen lattice, which results
from the fact that only the px and py oxygen orbitals alternatively hybridize with the 3d copper
orbitals. From this, we can provide an unified explanation for the -dx y2 2 symmetry of both the SC
and PG order parameters and obtain the Fermi pockets observed in ARPES experiments.
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1. Introduction

Understanding the mechanism of high-Tc superconductivity
in the cuprate materials is, at the same time, one of the most
fascinating and challenging problems in physics. Thirty years
after the experimental discovery of superconductivity in such

materials [1], we still have to face several fundamental phe-
nomenological issues of the high-Tc cuprates, which cannot
be properly accounted for by an underlying theory, despite the
enormous amount of experimental, theoretical and numerical
attempts made in that direction [2–7].

To mention just a few of these issues, let us recall that so
far, the specific analytic expression for the curves representing
the SC transition temperature as a function of doping, namely,
Tc(x), which form the characteristic SC domes in all high-Tc
materials, is not known. Also, a theoretical framework that
could provide an accurate analytical expression for the
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pseudogap transition temperature ( )T x* is also not available.
Furthermore, the detailed theoretical understanding of how the
pressure influences and modifies the phase diagrams of high-Tc
cuprates is still missing.

Concerning multi-layered cuprates, we still do not have
an explanation for the fact that the optimal transition critical
temperature increases as a function of the number of adjacent
CuO2 planes, up to a point and then stabilizes, as one can
observe, for instance, in the, Bi, Hg and Tl families of cup-
rates [8–10].

In this study, we address all the above phenomenological
issues of high-Tc cuprates and provide explanations for each
of them, which are in excellent agreement with the exper-
imental data. From the very outset it becomes clear that the
BCS paradigm does not apply to the superconductivity found
in cuprate materials. According to this paradigm, for two
electrons to form a Cooper pair, their energies must differ by
an amount less than the Debye energy in order for their
mutual interaction, mediated by phonons, to become attrac-
tive (∣ ∣ w- <   D1 2 ). This condition is met in a metal in the
situation when most of the electrons are close to the Fermi
surface (∣ ∣ w- <  F D). This situation, however, can only
occur at very low temperatures, a fact that explains why the
SC transition temperatures are so low in BCS super-
conductors. In the cuprates, the parent compounds are actu-
ally insulators and this fact itself points towards an alternative
mechanism, which does not require such low temperatures.

The observation of the pseudogap phase which is marked
by a suppression of the spectral weight and the absence of a
Fermi Liquid state, except at the very high doping regime,
shows, conversely, that also the normal state of the high-Tc
cuprate materials, above Tc, is far more complex than that in a
conventional superconductor. Finally, the absences of the iso-
tope effect and of the softening of phonon modes have strongly
indicated that these materials cannot be described by the reg-
ular BCS-Theory, at least in what concerns the mechanism that
produces an attractive electron–electron interaction.

The existence of a strongly ordered antiferromagnetic
phase in the parent compounds, which in the case of multi-
layered cuprates may even coexist with the SC phase in
descendent materials, has suggested, from the early days of
high-Tc superconductivity, that an interplay between the
magnetic interactions of the system and the mechanism of
Cooper pair formation should be at the roots of super-
conductivity in cuprates.

The parent compounds are magnetically ordered Charge-
Transfer Insulators, whose insulating nature and magnetic
order are destroyed upon doping, thus suggesting that the
magnetic-order-destroying Metal-Insulator transition that
takes place in these systems before the onset of the SC phase
may have some influence in the SC mechanism.

The Hubbard model [11] is a paradigm in strongly cor-
related electronic systems, especially in what concerns the
mapping of such systems onto magnetic models. Given the
important role that magnetic interactions are believed to play
in high-Tc superconductivity, many theoretical approaches to
the high-Tc SC in cuprates are based on variations or
approximations of the Hubbard model. Among these, the

t−J model [12], in the context of Anderson’s Resonance
Valence Bond (RVB) theory [13, 14], has been extensively
used in the literature, as can be seen in [15]. One should also
mention the so-called Spin Fluctuation Model, proposed by
Monthoux, Balatsky and Pines, in which the SC pairing is
mediated by the so-called paramagnons [16].

It seems clear, anyway, that the main physics in the
high-Tc cuprates occurs in the CuO2 planes, involving the
electrons in the -d3 x y2 2 orbitals of copper ions and 2px and
2py orbitals of oxygen ions. In this context, the Coulomb
interactions among these are agreedly well captured by the so-
called Three Bands Hubbard Model (3BHM) [17, 18], which
describes, besides the different hopping possibilities, the dd,
pp and pd Coulomb repulsive interactions among the
corresponding electrons. This model was intensively studied,
mainly numerically [19–21] and showed that indeed the holes
go into the oxygen orbitals, thus making the doped holes to
represent the itinerant degrees of freedom of the CuO planes.

Given the complexity of the 3BHM, however, simplified
versions thereof were considered. Perhaps the simplest of these
versions is the t−J model [12]. This, however, has been
criticised because, being a one band model, it does not consider
the hopping between oxygen orbitals. Altough it is argued that
the energy separation between states connected by this hopping
is very big, it is, nevertheless, smaller than the one between the
singlet and triplet bound state [22], as pointed out in [23].

A particularly interesting simplified version of the 3BHM
is the Spin–Fermion Model (SFM) [24] which is formulated
in terms of the holes doped into the 2px and 2py orbitals of
oxygen ions and the electrons in the -d3 x y2 2 orbitals of copper
ions, which are localized as a consequence of the strong
Coulomb repulsion, thus forming a Charge Transfer Insulator
[17, 25–27].

The SFM describes, besides the hopping of holes, their
Kondo-like magnetic interaction with the localized spins of
the copper ions,with coupling JK, as well as the anti-
ferromagnetic (AF) super-exchange interaction between the
latter, with coupling JAF, which produces a Néel ground state
on the parent compounds, in the undoped limit. The SFM
does not include the description of the Coulomb repulsion
between the doped holes, which is quite strong. Hence a more
complete model, which descends from the 3BHM would
contain, besides the magnetic interactions of the SFM, the
Coulomb repulsion among the doped holes, which is descri-
bed by a pure Hubbard-like interaction. The resulting model
may be called Spin–Fermion–Hubbard Model (SFHM) [28].

This model, defined on the oxygen lattice of the CuO2

planes of the cuprates will be our starting point for deriving a
Hamiltonian, which can provide an acceptable description of
the SC in cuprates. Indeed the Hamiltonian that we propose as
effectively describing the dynamics of the doped holes in
cuprates is derived from the SFHM by means o two well-
known operations: (a) tracing out the localized copper ion
spins; (b) performing a second order perturbative expansion
in tp/Up, where tp is the hopping parameter and Up the
Hubbard local repulsion parameter of the p-orbital holes.
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The first operation will yield a hole-attractive term with a

coupling parameter =gS
J

J8
K

AF

2

, whereas the second will pro-

duce a hole-repulsive term with a coupling parameter

=gP
t

U

2 p

p

2

, coming, respectively, from the magnetic and Cou-

lomb repulsion terms of the SFHM.
A crucial feature of our model, however, is the obser-

vation that the oxygen lattice breaks down into two inequi-
valent sublattices, for which the px or py oxygen orbitals,
respectively, overlap with the copper 3d orbitals. Cooper pairs
are formed by combining holes belonging to the two different
sublattices, which contain respectively, px and py orbitals.
This naturally leads to a d-wave SC order parameter, which is
favored by the attractive interaction sector, which derives
from the Kondo magnetic interaction between doped holes
and localized spins. The term describing the repulsion
between holes, conversely, favors the onset of a non-van-
ishing d-wave PG order parameter, which results from exciton
(electron-hole pair, each belonging to a different sublattice)
condensation. Our model naturally provides a unified expla-
nation for the d-wave character both of the SC and PG order
parameters, the latter leading to the DDW (d-density wave)
scenario [29–31] proposed to explain the PG phenomena.

The picture that emerges from our study is that the phase
diagram of the cuprates results from the duality [32] between
the formation of Cooper pair and (DDW) exciton con-
densates, both with a d-wave symmetry. The two effective
interaction terms contained in our Hamiltonian can be derived
from the Hubbard–Spin–Fermion model [28], which is the
starting point for the present approach.

The doping mechanism is explicitly taken into account by
the introduction of a constraint relating the fermion number to a
function of the stoichiometric doping parameter. Since the
relation between the stoichiometric chemical potential and the
actual amount of charge doped into the CuO2 planes is
unknown in general, we adjust the value of the parameter
determining the stoichiometric chemical potential, in order to
fit the experimental data. This is the only fitted parameter in our
approach to the cuprates. From it we can derive the values of
the coupling parameters gS and gP. We find a remarkable
agreement between the numerical values obtained for these two
coupling parameters: (a) by expressing them in terms of the
original parameters of the SFHM; and (b) by expressing them
in terms of the adjusted phenomenological chemical potential,
chosen to fit the experimental data for the cuprates. This
strongly indicates the correctness of our model.

Quantum dynamical effects are brought up by functional
integrating out the fermion degrees of freedom. This allows
the obtainment of the grand-canonical potential Ω(Δ0, M0,
μ0) in terms of the superconducting order parameter, Δ0, the
pseudogap order parameter M0, the chemical potential μ0 and
the temperature. This includes the full quantum fluctuations of
the holes’ degrees of freedom. Then, minimizing the effective
potential, which corresponds, to Ω, we are able to verify that
the occurrence of nonzero Δ0 and M0 are, in general,
mutually exclusive, thereby indicating a competition between
the PG and SC phases. The only exception would occur for
the case when gS=gP.

By taking the limits D  00 and M 00 , respectively,
we capture the threshold for the SC and PG transition and
thereby arrive at analytic expressions for the critical SC and PG
temperatures as a function of doping, namely Tc(x) and ( )T x* .
These reproduce the familiar SC domes, as well as the PG lines
found in the cuprates and is in excellent agreement with the
experimental data, both for single-layered materials such as
LSCO, Bi2201 and Hg1201 and for multi-layered ones, such as
Bi2212, Bi2223, Hg1212 and Hg1223. Our results indicate that
the optimal amount of stoichiometric doping, x0, which leads to
the maximal Tc occurs when the chemical potential vanishes:
μ0(x0)=0, Tc(x)�Tc(x0). We find that, similarly to the BCS
result, the optimal temperature, apart from a natural scale (which
is the Debye energy in the case of BCS superconductors)
contains a function of the coupling parameter gS, which is non-
analytical at g 0S and tends to 1 for  ¥gS . The first fact
indicates that our approach is completely non-perturbative.

The increase of the optimal temperature as we increase
the number of adjacent planes in the primitive unit cell of
multi-layered cuprates, can be simply understood within our
approach, as we show that the effective coupling parameter gS
is enhanced by the number, N, of such planes: g NgS S.

We finally study the effects of an applied external pres-
sure on the SC transition temperature Tc(x) as well as on the
PG transition temperature ( )T x* and show that pressure
would strongly affect the former, however would not produce
any effects on the latter. We obtain analytical expressions for
Tc(x, P), both for fixed values of doping and for fixed values
of the pressure, in the latter case, describing the SC dome for
different values of the pressure, always in excellent agreement
with the experimental data.

The article is organized as follows. In section 1, we
introduce the subject; in section 2, we derive the Hamiltonian
of the model; in section 3, we describe the doping process and
the formation of the Fermi surface; in section 4, we obtain the
effective potential and the general expressions for Tc(x) and

( )T x ;* in section 5, we apply the results to describe the phase
diagram of several cuprate materials; in section 6, we study the
effects of the number of layers on Tc(x) and in section 7 we
describe the effects of pressure on Tc(x). Concluding remarks
are presented on section 8. Three appendices are also included.

2. The effective Hamiltonian

2.1. The oxygen sublattices

An outstanding feature of all high-Tc cuprates is the presence of
one or more CuO2 planes, intercepting the primitive unit cell of
such compounds. The CuO2 planes have a lattice structure in
which Cu++ ions occupy the sites and oxygen ions the links of
a square lattice, with a lattice parameter a=3.8Å. The copper
ions are in a 3d9 electronic configuration, which results in one
spin 1/2 per site. Such system of copper ions is a Charge
Transfer Insulator, hence, from this point of view, it forms an
array of localized spins interacting with the nearest-neighbors
through the super-exchange mechanism. This structure is ulti-
mately responsible for the antiferromagnetic properties
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observed in the high-Tc cuprates. From the point of view of the
oxygen ions, however, the picture is different. Indeed, the
oxygen ions are themselves, placed on the sites of a square
lattice, with a lattice parameter Å¢ = =a a2 2 1.9 2
which possesses two sublattices, containing, respectively, px
and py oxygen orbitals, which overlap with the Cu

++ d-orbitals
(see figures 1, 2, 3), thereby forming bridges that will allow not
only hole hopping along the whole oxygen lattice, but also the
formation of Cooper pairs as well as excitons along these
bridges. As we shall see, this fact naturally explains why both
the SC and PG gaps have a d-wave symmetry.

An attentive analysis of the cuprates must consider the
fact that the Cu++ ions, which have four oxygen nearest
neighbors, hybridize in different ways with the two of them
placed along the x and y directions, thereby creating two
inequivalent oxygen sublattices. Indeed, notice that each
oxygen ion possesses both one px and one py orbitals, how-
ever, only one of them alternately hybridizes with the copper
3d orbitals, hence forming oxygen sublattices, which have,
respectively, either px or py orbitals hybridized with the
copper ions. It follows that both the hopping and the inter-
action of the corresponding oxygen holes (see figures 1–3),
thereby assisted by the Cu++ ions, must involve the two
different px and py oxygen sublattices.

Our convention concerning the coordinate frame orien-
tation is such that the x and y axes coincide with the Cu–Cu
ion directions and also with the primitive vectors of the two
sublattices forming the bipartite oxygen lattice. In a square
lattice, the reciprocal lattice primitive vectors are proportional
to the original ones, hence our kx and ky directions are
respectively parallel to the original x and y directions [33, 34].

In figures 1 and 2, = ¼id , 1, , 4i are the vectors
connecting every oxygen ion with its four nearest neighbors

of the complementary sublattice and ˆ ˆ= =a aX x Y y, are the
primitive vectors of the copper lattice and also of each of the
oxygen sublattices, all of them with a lattice parameter a.
Notice that the four vectors = ¼id , 1, , 4i are given by

[ ] [ ]

[ ] [ ] ( )

= - = +

= - + = - -

d X Y d X Y

d X Y d X Y

1

2
;

1

2
1

2
;

1

2
. 1

1 2

3 4

In figure 4 we represent the hybridization of the p and d
orbitals in the CuO2 planes. First notice that only one of the
two oxygen p-orbitals contained in the plane hybridizes with
the copper d-orbitals. This creates a bipartite oxygen lattice, a
fact that has profound consequences on the superconducting
and pseudogap order parameters, as we shall see. Notice the
x–y antisymmetry under a 90° rotation, produced by the signs
of the overlapping orbitals. This has, as a consequence, the
manifestation of a d-wave symmetry, both in the SC and PG
order parameters.

Figure 1. The CuO2 lattice. Big dark circles are Cu ions. Small dark
and white circles are O ions. Notice that these form a bipartite lattice
whose primitive vectors, X and Y are shown. These point along the
x, y directions, which are aligned with the Cu–Cu ions direction,
according to our convention. We also show the = ¼id , 1, ,4i ,
vectors connecting the O ions of a given sublattice to their
counterparts in the complementary sublattice

Figure 2. The CuO2 lattice: a 45° rotation view. We also represent, in
the bottom, the px and py oxygen orbitals that alternately hybridize
with the copper 3d orbitals. The displayed vectors are described in
figure 1.

Figure 3. The bipartite oxygen crystal structure, showing two
sublattices of oxygen ions, formed, respectively, by px (red) and py
(white) orbitals that overlap the Cu++ d-orbital. Black dots are the
Cu++ ions.
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2.2. The Spin–Fermion–Hubbard Hamiltonian

Our starting point is the following Hamiltonian that includes,
besides the antiferromagnetic super-exchange interaction
between neighbor localized copper ions, the magnetic inter-
action involving the localized and itinerant magnetic dipole
moments in the planes, as well as the local Coulomb repulsion
among doped holes:

( )= + + +H H H H H , 2SFH U AF K0

where H0 is the kinetic hopping term for the itinerant holes in
oxygen ions, describing hops between different sublattices A
and B. HAF describes the antiferromagnetic interaction among
the localized copper magnetic moments, whereas HK is a
Kondo-like magnetic interaction between the itinerant magnetic
dipole moments of oxygen, corresponding to holes in sub-
lattices A and B and the localized magnetic moments of copper.
HU is the local Coulomb repulsion between doped holes.

In order to express the different Hamiltonian terms
described above, we now introduce the hole creation opera-
tors for each of the two sublattices, namely, ( )†y s RA and

( )†y +s R dB i where R are the sites of the A sublattice and
=id , 1 ... 4i the vectors connecting each site of the A sub-

lattice to the four nearest neighbors of R, belonging to the B
sublattice. s =  , represent the holes’ two spin orienta-
tions. Let us also represent by SI the localized spin operator of
the copper ion placed on site I of the square lattice formed by
the copper ions in the CuO2 planes. Each copper localized
spin has four nearest neighbor hole sites, two of them in
sublattice A and other two in sublattice B. In terms of these
operators, we can express the four terms of the Hamiltonian
above as follows:

( ) ( )

·

· [ ( ) ( )] ( )

†åå

å å

å

å å

y y=- + +

= +

=

= + +

s
s s

 
+

 

á ñ

+ Î

 

H t

H U n n U n n

H J

H J

R R d

S S

S R R d

hc

. 3

p A B i

U p
A A

p
B B

AF AF
IJ

I J

K K
I I

I A B

R d

R R d

R R d

0
,

, ,

,

i

In the above expression

( ) ( ) ( )

( ) ( ) ( ) ( )

†

†





y s y

y s y

=

+ = + +

a ab b

a ab b





R R R

R d R d R d

1

2
1

2
4

A A A

B B B

are the spin operators for the holes in sublattices A, B; tp is the
nearest neighbor oxygen-lattice hopping parameter, JAF is the
AF coupling between nearest neighbors of the copper ion
lattice and JK is the Kondo magnetic coupling between the
itinerant oxygen holes and the localized copper ions. Up is the
local Coulomb repulsion for the holes in oxygen orbitals. In
terms of the original Three Bands Hubbard model parameters,
we have [17, 18]

⎡
⎣⎢

⎤
⎦⎥( )

( )=
D +

+
D +

J
t

U U U

4 1 2

2
5AF

pd

E pd d E p

4

2

and

⎡
⎣⎢

⎤
⎦⎥ ( )=

D
+

- D
J t

U

1 1
. 6K pd

E d E

2

For LSCO, the 3BHM parameters are [35]: =U 8.5eV,d

=U 5.5 eVp , = =U t0.897 eV, 0.91 eVpd p , =t 1.48 eV,pd

D = - =  2.75 eVE p d , which imply =J 1.17 eVK and
=J 0.43 eVAF .
Since Ud>ΔE, we see that the energy split between the

two Hubbard bands is larger than the energy separation
between the d and p orbitals, thus characterizing the undoped
system as a Charge Transfer Insulator, with a gap ΔE [25–27].

2.3. The effective Hamiltonian for the itinerant holes

In order to obtain an effective Hamiltonian for the itinerant
degrees of freedom, we are going to perform two distinct
familiar operations on the Hamiltonian (3). We first trace out the
localized degrees of freedom, represented by the copper spins
SI. For this, we follow the usual procedure (see appendix A;
also [32, 33] for instance) which employs spin coherent states,
in order to express the partition function as a functional integral
over a classic unit vector field N, which replaces the localized
spin operator S 2I in HAF and HK. Then, after separating the
antiferromagnetic fluctuations from the ferromagnetic ones, we
integrate over the latter. The second operation consists in per-
forming a second order t Up p perturbative expansion in

+H HU0 for the energy eigenvalues. Subsequently, we deter-
mine an effective hamiltonian such that, in its presence, the first-
order corrections to the energy eigenvalues coincide with the
previous second order result for such eigenvalues.

For tracing out the localized spins we start from the
partition function, given by

( )[ ]= y
b y-Z eTr Tr , 7H

S
S ,

I
SFH I

and, after performing the trace over SI (actually over the
ferromagnetic fluctuations of S ;I see appendix A), we obtain

( )[ [ ] [ ] [ ]= s y
b y y y- + +Z Z eTr , 8NL M

H H HU0 1

Figure 4. The hybridization of p and d orbitals of the oxygen and
copper ions. Notice the asymmetry between the x and ydirections,
revealed by the phase sign in the overlap of the p and d orbitals.
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where sZNL M is the partition function of the Nonlinear Sigma
Model (NLσM), which describes the magnetic properties of
the Cu++ localized magnetic dipole moments. In such a
description, these become proportional to the NLσ field n.
The magnetic part of the phase diagram of high-Tc cuprates
can be derived from the sNL M [36].

In the process of tracing out the localized spins, we
generate a new term, namely H1[ψ], which is given by

[ ] [ ] ( )åy = - + H
J

J8
, 9K

AF ij
A i B j1

2

, ,
2

where the sites i and j belong, respectively, to the A and B
oxygen sublattices.

Inserting (4) into (9), we obtain, up to a constant (see
appendix B)

[ ] [ ] ( )y = - S - XH
J

J8
, 10K

AF
1

2

1

where

( )

† † † †

† † † †

y y y y y y y y

y y y y y y y y

S= +

X = + =
       

        + - - + 11n n n n .

A B B A A B B A

A A B B A A B B
A B A B

1

We now turn to the perturbative expansion in H0, which
is performed in appendix C. The result is the replacement of
HU for an additional effective interaction term for the itinerant
holes, given by

[ ] [ ] ( )y = - P - XH
t

U

2
, 12

p

p
2

2

2

where

( )† † † †y y y y y y y yP = +        13A B B A A B B A

and

( )

† † † †y y y y y y y yX = + =        + + - -n n n n .

14
A A B B A A B B

A B A B
2

The first order perturbative corrections to the energy eigen-
values in the presence of H2[ψ], coincide with the second
order ones obtained from H0+HU.

The total effective Hamiltonian for the itinerant holes,
therefore, will be

[ ]
[ ] ( ) ( )

[ ( ) ( )

( ) ( )]
[ ( ) ( ) ( ) ( )]

[ ( ) ( )

( ) ( )]

[ ( ) ( ) ( ) ( )]
( )

†

† †

† †

†

†

† †

å

å

å

y

y y y

y y

y y

y y y y

y y

y y

y y y y

= + +

=- + +

- +

+ +

´ + + +
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+ +

´ + + +

s s

 

 

   

 

 

   

H H H H

H t

g

g

R R d

R R d

R d R

R d R R R d

R R d

R R d

R d R R d R

hc

.

15

eff

eff A B i

S A B i

B i A

B i A A B i

P A B i

A B i

B i A B i A

R d

R d

R d

0 1 2

,

,

,

i

i

i

In the above expression, gS, is the hole-attractive interaction
coupling parameter and gP, the hole-repulsive one. According

to (10) and (12), we have

( )= =g
J

J
g

t

U8

2
. 16S

K

AF
P

p

p

2 2

Using the values of the magnetic coupling parameters
valid for LSCO, provided in section 2.2, we have:
JK=1.17 eV and JAF=0.43 eV. From this, we obtain

( )=
J

J8
0.397 93 eV. 17K

AF

2

This corresponds, with excellent accuracy, to the value
obtained below from experimental data for the LSCO cuprate:

( )=g 0.394 06 eV. 18S

Also, using = =t U0.91 eV, 5.50 eVp p , [35] we get

( )=
t

U

2
0.301 13 eV. 19

p

P

2

This corresponds, also with excellent accuracy, to the value
obtained below from experimental data for the LSCO cuprate:

( )=g 0.305 47 eV. 20P

These remarkable agreements are a strong indication that we
are correctly modeling the high-Tc cuprates.

2.4. Hubbard–Stratonovitch fields. The SC and PG order
parameters

The Hamiltonian above can be written, up to a constant, in
trilinear form, in terms of the Hubbard–Stratonovitch fields Φ
and χ, namely

( ) ( )

( )[ ( ) ( )

( ) ( )]

( )[ ( ) ( )

( ) ( )]

( ) ( )

( ) ( ) ( )

†

† †

† †

†

†

†

†

åå

å

å

å

å

y y

y y

y y

c y y

y y

c c

=- + +

+ F +

+ + +

+ +

+ + +

+ F + F +

+ + +

s
s s

 

 

 

 

Î

H t

g

g

R R d

d R R d

R d R

d R R d

R R d

R d R d

R d R d

hc

hc

hc

1

1
. 21

eff p A B i

i A B i

B i A

i A B i

A B i

S
i i

P
i i

R d

R d

R d

R d

R d R

,
, ,

,

,

,

,

i

i

i

i

i

Varying with respect to Φ and χ, we obtain, respectively,

( ) [ ] ( )† † † † †y y y yF = +   gR d, 22i S A B B A

and

( ) [ ] ( )† † †c y y y y= +   gR d, 23i P A B A B
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†F is a Cooper pair creation operator, whereas †c is an
exciton creation operator. The vacuum expectation value of
these operators, namely, D = áFñk , is a SC order parameter,
while c= á ñMk is the PG order parameter. Cooper pair, as
well as exciton formation occurs, respectively, for holes–
holes or electron-holes, belonging to different sublattices.

It follows from the perturbation theory structure (see for
instance [37]) that

∣ ∣ ∣ ∣† †å åy y y yá ñ = -á ñ
s

s s
s

s s0 0 0 0 .A B B A

Hence we conclude that cº á ñM is a pure imaginary num-
ber: = -M M* .

In momentum space, we have the corresponding
Hamiltonian

( )[ ( ) ( ) ]

( )[ ( ) ( ) ( ) ( )]

( )[ ( ) ( )]

( ) ( )

( ) ( )
( )

†

† † † †

†

†

†

å

å

å

å

å

y y

y y y y

c y y

c c

= +

+ F - + -

+
+ +

+ F F

+

s
s s

s s

   

H

g

g

k k k

k k k k k

k k k

k k

k k

hc

hc

hc

1

1
,

24

eff A B

A B B A

A B

S

P

k

k

k

k

k

,

where ( ) k is the usual tight-binding energy, given by

( ) ( )·å= -
= ¼

 t ek . 25
i

ik d

1, ,4

i

2.5. The d-wave character of the order parameters

We want to derive an expression for the effective potential,
which is a function of the ground-state expectation values: Δ,
M. For this purpose, we use the four-component Nambu
fermion field

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )†

†

y
y

y

y

Y =









, 26a

A a

B a

A a

B a

, ,

, ,

, ,

, ,

and replace the scalar fields with their ground-state expecta-
tion values. We then may rewrite the hamiltonian in matrix
form:

∣ ( )∣ ∣ ( )∣

( ) ( ) ( ) ( )†

å å

å

= D +

+ Y Y

H
g g

M

k k k

k k
1 1

. 27

eff
S P

a a

k k

k

2 2

The index a indicates to which of the parallel CuO2

planes the electrons and holes belong and runs from 1 to N,
where N=1, 2, 3..., according to the number of planes the
specific material possesses. In this approach, we shall neglect
interplane interactions.

In the above expression

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )=

+ D
+ D

D - -
D - -









M
M

M
M

0 0
0 0

0 0
0 0

. 28*
* *

*

The energy eigenvalues are, then given by

( ) ( ) ∣ ( )∣ ∣ ( )∣ ( )=  + + DE Mk k k k . 292 2 2

Let us show here how the anisotropy in the hybridization
of the oxygen p-orbitals and the copper d-orbitals leads to the
d-wave character of both the SC and PG order parameters.

Firstly, notice that it follows from (24) that

( ) ( ) [ · ]

( ) ( ) [ · ] ( )

å

å

D = D

=
=

=

i

M M i

k d k d

k d k d

exp

exp . 30
i

i i

i
i i

1 ,.., 4

1 ,.., 4

Then, notice that Δ and M in (28), effectively act as
hopping parameters for the fermion field, similarly to the
dimerization field in the Su–Schriefer–Heeger model for
polyacetylene [33, 38]. In that case, dimerization produces a
nonzero ground-state expectation value of that field, which
generates a gap for the electrons. In the case of the cuprates,
the occurrence of nonzero values for Δ and M, respectively,
produce a SC gap and the pseudogap.

Now, observe that, because of the xy-anisotropy pro-
duced by the sign of the copper–oxygen orbital hybridization,
as we can see in figure 4, we must have

( ) ( ) ( )D = -D º Dd d 2 311,3 2,4 0

and

( ) ( ) ( )= - ºM M Md d 2. 321,3 2,4 0

It follows from (30) that

( ) [ ]

( )

( ) ( ) ( ) ( )

D =
D

+ - -- -
+ + - -

e e e ek
2

33

i a i a i a i a0
kx ky kx ky kx ky kx ky

2 2 2 2

hence

( ) [ ] ( )D = D -+ -k a k ak cos cos , 340

where

=


k
k k

2
.

x y
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Following precisely the same steps, as we did for Δ, we
may show that

( ) [ ] ( )= -+ -M M k a k ak cos cos . 350

Also, from (25), we arrive at

( ) [ ] ( )= - ++ - t k a k ak 2 cos cos , 36

Using these expressions in (29), we conclude that the
above eigenvalues vanish at the four points ( ) =k k,x y

( )p p=  K 2, 2 . Also we see that both the SC and PG
oder parameters have lines of nodes along the X and Y
directions, namely, along the directions where the copper ions
are located. This characterizes the d-wave nature of these
parameters [34].

3. The doping process

3.1. The mechanism of doping

The process of doping plays a central role in the physics of
high-Tc cuprates. In this work, we will consider only hole
doping, in which electrons are progressively removed from
the oxygen px and py orbitals, thereby creating holes in
such orbitals. The oxygen ions are themselves, placed on
the sites of a square lattice, with a lattice parameter

Å¢ = =a a2 2 1.9 2 which possesses two sublattices,
containing, respectively, px and py oxygen orbitals, which
overlap with the Cu++ d-orbitals (see figure 3), thereby
forming bridges that will allow not only hole hopping along
the whole oxygen lattice, but also the formation of Cooper
pairs as well as excitons along these bridges. As we shall see,
this fact naturally explains why both the SC and PG gaps have
a d-wave symmetry.

In the case of the pure parent compounds the oxygen ions
are doubly charged, namely: --O . Such ions are in a 2p6

configuration and the px and py orbitals contain two electrons
each. The valence band which corresponds to the above
described oxygen structure contains two electrons per site
and, therefore, is completely filled. The electron density is

=Ne A

2 , where = ¢A a 2. As doping is introduced, through
some stoichiometric process, parametrized by x, one of the
two electrons, either from the px or the py oxygen sublattices
is pulled out of the plane, thereby creating a hole in such
orbital. Expressing the average hole density per site in the
oxygen lattice as =N yh A

2 , where [ ]Îy 0, 1 , it follows that

the average electron density becomes ( )= -N y1e A

2 . Now,
one must consider that the relation between the stoichiometric
doping parameter, x and the average number of holes per site
in the oxygen lattice of the CuO2 planes, associated to the y-
parameter, is not universally known, in general; usually
exhibiting different forms for each of the cuprate materials
[8–10]. Consequently, we have the hole density parameter, y,
given by some non-universal function of the doping para-
meter: y=f (x). We typically do not know the function f (x).
In order to circumvent this obstacle, we will describe the
doping process through a constraint relating the fermion
number directly to the stoichiometric doping parameter x,

rather then to the density of holes in the oxygen lattice, which
is parametrized by y.

Indeed, we write

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )†å ål y y -s s

= =

Nd x , 37
a

N

C A B
C a C a

1 ,
, , , ,

where d(x) is a function of the stoichiometric doping para-
meter, to be determined, and N is the number of CuO2planes.
For consistency we must have ( ) =d 0 2, such that

( ) /=N A0 2e , where = ¢A a 2 is the unit cell area of the
oxygen lattice: ( ) Å=A 2 1.9 2 2.

The constraint is enforced by integrating over the
Lagrange multiplier field λ, whose vacuum expectation value
is the chemical potential: l má ñ = . It follows from (37) that
this must be proportional to d(x). The proportionality constant
between μ and d(x) will be determined by fitting the exper-
imental data

As we increase the doping parameter x, the number of
holes in the oxygen lattice will somehow increase as well,
eventually reaching an amount where the critical SC temp-
erature reaches a maximum. We call x0 the value of the
doping parameter for which this happens. As we will see, the
chemical potential vanishes precisely at the optimal doping
x=x0.

3.2. The Fermi surface formation

The Fermi surface can be defined as the manifold for which
the eigenvalues of m- H vanish. Here μ=μ(x) is the
chemical potential of the holes and ( )=  x is the hole
number operator.

We have

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )m

m
m

m
m

- =

- + D
+ - D

D - -
D - -









 

M

M

M

M

0

0

0

0

. 38
*

* *

*

The corresponding eigenvalues of m-  , are

( ) ( ( ) ∣ ( )∣ ) ∣ ( )∣ ( )m=  +  + D Mk k k k . 392 2 2 2

The Fermi surface, consequently, is defined by ( ) = k 0.
This leads to a second degree equation whose solution is

( ) ( ) ∣ ( )∣ ∣ ( )∣ ( )m = +  Dx M ik k k . 402 2

Notice that the above expression becomes complex
wherever a nonzero SC gap exists, reflecting the fact that no
Fermi surface exists in the presence of a SC gap.

We now consider the following regimes:
(a) >T T*
In this case M=Δ=0 and

( ) ( ) ( ) ( )m = = ++ -x v k a k ak cos cos . 41eff
2 2 2 2

The corresponding Fermi surfaces are displayed in
figure 5, for different values of the doping parameter.

(b) < <T T T .c *
In this region, we have Δ=0 and ¹M 0. Then by

making an expansion of ( ) k and ( )M k , around the points K,
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where the energy eigenvalues are zero, and in terms of the
variables =


k

k k

2

x y , we obtain

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
( )

( ) ( )
[ ]

( ) ( )





= +

= +

p

m m

m

p

m

+
-

+

+
-

D

k k

k k

1

1 42

a

x

v

x

v v

x

v

a

x

v

2

2

2

2

2

2

2

2

2

2

eff M

eff M

2

2

2

2 2

2

2

2

2

which are four ellipses centered at ( )( ) =  p
+ -k k, , 0

a2
and

( )( ) =  p
+ -k k, 0,

a2
, with semi-axes given, respectively by

( )m x

v2 eff
and ( )m x

v2 M
. The corresponding Fermi Surfaces are dis-

played on figure 6.
Equivalently, the ellipses will be centered at ( ) =k k,x y

( ) p p,
a a2 2
These are the Fermi surfaces for the doped holes in the

pseudogap region. Notice that the Fermi surface disappears
whenever the chemical potential of the holes, μ(x), vanishes.
This occurs at zero stoichiometric doping parameter x, since it
turns out that μ(x) ∝ x. For nonzero x, the Fermi surface starts
to show the pockets centered at the K points.

This is precisely what is observed in ARPES experiments
[39], thus putting our model in a solid experimental basis. Notice
that all the pseudogap phenomenology, which is explained by
the d-wave gap [29] including the time-reversal, translation and
rotation symmetries spontaneous breakdown, as well as the
Nernst effect [31] are accounted for by our model as well.

As we have shown, the specific Hamiltonian interaction
we use here, can be derived from a Spin–Fermion–Hubbard
system, which describes the multiple magnetic interactions of a
system of localized and itinerant spins, as well as the Coulomb

repulsion between the itinerant degrees of freedom [32, 33]. A
similar Hamiltonian is described in [40]. Our elliptic constant
energy curves would coincide with the ones obtained from an
asymmetric kinetic Dirac lagrangean [41], whereas the
corresponding curves obtained from an usual Dirac lagrangean
would correspond to circles. All of these must be in the same
universality class, therefore leading to the same phase diagram.

4. The SC and PG transition temperatures:
derivation

4.1. Fermion Integration

We shall now integrate over the fermions, taking into account the
doping constraint term, in order to obtain an effective potential in
terms of the SC and PG order parameters and the chemical
potential. The effective potential, despite being a function of the
ground-state expectation values, actually takes into account fully
quantized fluctuation effects [33], being therefore a very useful
tool for investigating the phase diagram of the system.

We can express the grand-canonical potential in terms of
the effective potential as

[ ] [ ] ( )òm mW D = DM d xV M, , , , , 43eff
2

where

⎪

⎪⎧⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

( )

{ [ ]}

∣ ∣ ∣ ∣ ( )

[ [ ] ] }

†

†

ò ò ò

b m

t m

m

- W D

= Y Y
D

+ +

+ Y ¶ + D - Y

b

t 

44

M

D D d x d
g

M

g
N d x

i M

exp , ,

exp

, ,

S P

2

0

2 2

where m-  is given by (38).

Figure 5. Fermi surfaces for different levels of doping, at >T T*
where M=Δ=0.

Figure 6. Fermi surfaces for different levels of doping at
< <T T Tc * where Δ=0 and ¹M 0.
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Performing the quadratic functional integral over the
fermion fields, after including the constraint term, we obtain
the effective potential density [ ]mDV M, ,eff , namely

( )
[ ] ∣ ∣ ∣ ∣ ( )

[ [ ] ]

m m

m

D =
D

+ +

+ ¶ + D -t 

45
V M A

g

M

g
N d x

NT i M

, ,

Trln , .

eff
S P

2 2

Using the eigenvalues ( ) k , given in (39), we can write

[ ] ∣ ∣ ∣ ∣ ( )

{ ( ( ) ∣ ( )∣ ) ∣ ( )∣ }

( )òå å

m m

p

w m

D =
D

+ +

-

+ + + + D
=-¥

¥

=



V M A
g

M

g
N d x

NTA
d k

M lk k k

, ,

4

ln .

46

eff
S P

n l

n

2 2

1

2

2

2 2 2 2 2

Minimizing the effective potential with respect to the
three variables, we find the following three equations:

⎡
⎣⎢

⎤
⎦⎥( )

( )
( )

a
m

h
D - D + =

T
F M

Ng

g
2

2
, , 0 47S

c
k k k

⎡
⎣⎢

⎤
⎦⎥( )

( )
( )

a
m

h
- D + =M

T
F M

Ng

g
2

2
, , 0 48P

c
k k k

and

( ) ( ) ( )m
a

m= Dd x
T

F M
4

, , 49k k

where ( )mDF M, ,k k is a function, which, in the regime
where ∣ ∣ ∣ ∣D ~ ~M0, 0 00 is given by

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )∣

∣ ∣ (∣ ∣ ( )

∣ ∣ (∣ ∣ ( )
( )

∣ ∣ ∣ ∣m

m

m

D =

+
D + +

+
D + -

D ~ ~F M

M x

T

M x

T

, , ln 2

1

2
lncosh

2

1

2
lncosh

2
50

M0 0 0 0, 0

0
2

0 0
2

0
2

0 0
2

0 0

and

( ) ( )h
a

=
-

=
L

Ng
Ng g

Ng
g; . 51c

c

Notice that ( )h g is a monotonically increasing function that
saturates at infinity, namely

( ) ⟶ ( )h
¥

g 1. 52
g

In the expressions above, ( )/a p= v a2 eff
2, and v ta2eff

is the characteristic velocity and Λ is a characteristic energy
scale, which appears [42] in connection to the characteristic
length of the system. A natural choice for the latter is the
coherence length ξ, which essentially measures the range of
the pairing interaction (or the Cooper pair size). In cuprates
we have Åx x 100 , whereas in conventional super-
conductors ξ�ξ0 ; 500Å. The energy cutoff is then

/ p xL v2 eff 0. It determines the energy scale below which

we may consider Cooper pairs as quasiparticles, hence it must
be of the order of Tc.

We have

⎛
⎝⎜

⎞
⎠⎟ ( )a

p
x

=
L

=
L

g
a2

. 53c
0

2

We see that since ¹g gS P it is impossible to satisfy (47)
and (48) simultaneously with both D ¹ 00 and ¹M 00 , so
we must have either D ¹ 00 and =M 00 or Δ0=0 and

¹M 00 . The first is the SC phase, while the second is the PG
phase.

For a fixed value of the doping parameter x, we have a
gapless phase for >T T*, the pseudogap phase, for

< <T T Tc * whereas the superconducting phase sets in at
T=Tc. As it turns out, the function ( )mD

a
F M, ,T2 is

monotonically decreasing, such that, for >T T*, we have
( ) ( ) ( )mD < <

a
h h

F M, ,T Ng

g

Ng

g

2
0 0

P

c

s

c
, thus implying, according

to (47) and (48) that necessarily Δ0,M0=0. As we lower the
temperature, we eventually reach =T T*, which char-
acterizes the situation in which ( ) ( )a mD = h

F M, ,
Ng

g0 0
P

c
,

hence, according to (48), we can have ¹M 00 for T T*. As
we keep lowering the temperature, we eventually reach the
situation where ( )mD -

a
F M, 0,T2

0 grows enough to satisfy

( ) ( )mD =
a

h
F M, ,T Ng

g

2
0 0

S

c
, which, according to (47), implies

we can have D ¹ 00 .
For T Tc, hence, we could have either D ¹ 00 or
¹M 00 , however, as it turns out, the first condition is the

energetically most favorable.

4.2. The superconducting order parameter

Let us consider firstly the case D ¹ 00 and M0=0.
Then (47) and (49) imply

( ) ( )
( )

( )m
h

=x d x
g

Ng2
, 54c

S
0

where gc=α/Λ.
In order to find the critical temperature Tc(x), we impose

on (47) the condition Δ0=0 and M0=0, which expresses
the fact that the system is in one of the points belonging to the
critical curve which separates the SC and PG phases. Indeed,
from (47), we obtain

( )
( ( ))

( )

( )

m
=

D =

ah

D 
T x

F M x
lim

, 0,
. 55c

g N

g

0

2

0 0 0

S

c

0

From this and (50), we see that, for Δ0=0 and M0=0, the
critical SC temperature, Tc(x) satisfies

⎡⎣ ⎤⎦
( ) ( )

( )

( )
( )

=
+

ah

m
T x

ln 2 lncosh
. 56c

g N

g

x

T x

2

2

S

c

c

0
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It follows that the upper bound of Tc(x) occurs at a point
x=x0, where μ0(x0)=0 and ( )=T T xcmax 0 . Optimal doping
occurs when the chemical potential vanishes. According to
(54), this implies ( ) =d x 00 . The simplest parametrization,
for the case N=1, satisfying this and ( ) =d 0 2 is

( ) ( )/= -d x x x x2 0 0, such that

( )( ) ( )m g= -g x x2 , 57S0 0

with

( )
( )

( )g
h

=g
g

x g2
. 58S

c

S0

The two equations above provide the link between the che-
mical potential and the stoichiometric doping parameter x.
The parameter γ will be determined by fitting the exper-
imental data. Actually it will be the only parameter we fit.

Combining (57) with (55) we can express the optimal
temperature as

( ) ( )h=
L

T Ng
2 ln 2

. 59Smax

This should be compared with the corresponding BCS result,
namely (see [33], for instance)

( )( )
g
p

w= -T e
2

, 60c BCS D; gBCSN EF
1

where γ is the exponential of the Euler’s constant C;0.577
and ωD is the Debye frequency, a cutoff on the mediating
phonon frequency, gBCS is the BCS coupling parameter and
N(EF), the density of states at the Fermi level.

We can see that both our expression for the optimal Tc in
cuprates and the corresponding BCS result have a product of
three similar factors: a universal numerical factor ( 1

2 ln 2
in our

case), a cutoff energy (Λ in our case) and a function of the
coupling parameter (η(NgS) in our case).

We see that our Tmax depends linearly on the inverse
coupling whereas in conventional SC, there is an exponential
dependence. The two functions, however, interestingly, are
monotonically increasing functions of the coupling parameter
that saturate at one as the coupling increases.

The linear dependence on the inverse coupling has been
extensively studied before [33, 42]. Notice that the function

( )h x is non-analytical in x, therefore indicating that our result
is non-perturbative in the coupling parameter gS, similarly to
the BCS theory.

By using the experimental values of Tmax for the many
different compounds studied here, we find Λ ; 0.018 eV.
This is compatible with values of hveff and ξ0, found in pre-
vious studies [28].

Inside the SC phase, we have M0=0. Inserting this
condition in (55), we can derive an expression for the SC gap
as a function of the temperature and doping, which is valid for
T Tc (note that both μ0 and Tc depend on x)

⎛

⎝
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⎞

⎠
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{ } ( )

m mD +
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T T
cosh

2
cosh

2
exp 2 ln 2 . 61

c

2 0
2

0
2

2 0 1Tc
T

Observe that ∣ ( )∣D =T x, 0c0 and, since cosh is
a monotonically increasing function, we must have
∣ ( )∣D < ¹T T x, 0c0 for T<Tc.

The SC gap at T=0 is given by

∣ ( )∣ [ ( )] ( ) ( )mD = = -T x T x x0, 2 ln 2 , 62c0
2

0
2

from which we obtain the following ratio between the optimal
SC critical temperature and the zero temperature gap at the
optimal doping (x=x0):

∣ ( )∣ ( )D =
=

T x

T

0,
2 ln 2. 630 0

max

This is an universal ratio, which apparently applies to all
cuprates.

4.3. The pseudogap order parameter

We consider now the case where Δ0=0 and ¹M 00 . In
order to find the critical temperature ( )T x* , we take (48) in the
limit M 00 , which leads to

( )
( ˜ ( ))

( )

( )

m
=

D =

ah


T x

F M x
lim

0, ,
. 64
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P

c

0

*

Now (49) yields the following expression for the che-
mical potential

˜ ˜ ( )( ˜ ) ( )m g= -Ng x x2 . 65P0 0

Observe that, because ¹M 00 in the PG phase, the chemical
potential ˜ ( )m x0 , no longer vanishes at the optimal doping x0.

Inside the PG phase, we have Δ0=0. Inserting this
condition in (48), we can derive an expression for determin-
ing the PG gap as a function of the temperature and doping,
which is valid for T T*
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4.4. The critical SC temperature: Tc(x)

The critical curve delimiting the boundary of the SC phase is
obtained from (56), however, we must be careful when taking
the limit

⎧⎨⎩
⎡
⎣⎢
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1

2
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2

1

2
lncosh

2
. 67

c

M c

c

max 0

0 0

0 0
1

0

Indeed, considering that μ0(x) has different signs for
- >x x 00 and - <x x 00 , we arrive at different equations

for Tc(x) in the underdoped, x<x0 and overdoped, x>x0
regions.
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By putting in evidence the first exponential from the
hyperbolic cosine, we obtain

⎡⎣ ⎤⎦{ }( )
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where
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Now, for x<x0, we have ( )m g= - >x x2 00 0 and, con-
sequently
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For x>x0, however, μ0<0, and we have
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and Tc(x) is given by
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From the above expressions for Tc(x), we may determine
the two quantum critical points, xSC, where the SC dome starts
at T=0 Taking the limit T 0c in (70) and (72), we find

( )
g g

= - = +- +x x
T

x x
T

ln 2;
2

ln 2. 73SC SC0
max

0
max

We see that the SC dome is, in general asymmetric with
respect to the optimal doping, a feature that is corroborated by
many experimental data. LSCO is, apparently the only
exception [8–10] and for it, we have

( )
( )

( )
∣ ( ) ∣

( )

∣ ( ) ∣
( )

=
+ + -m - mT x

T

e

ln 2

ln 2 1
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both in the underdoped (x<x0) and overdoped (x>x0) regions.
For LSCO, the quantum critical points xSC are symmetric

about x0, namely

( )
g

= x x
T

ln 2. 75SC 0
max

4.5. The critical PG temperature: T �ðx Þ

We are now going to obtain the critical line delimiting the PG
phase, namely ( )T x* . For this purpose, we start from (64) and

taking the limit M 00 , obtain
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Observe, however, that now we are on the solution of (48),
instead of (47), hence we must replace gS with gP and,
accordingly, η and γ with h̃ and g̃ , which satisfy, for the case
N=1,

˜ ˜ ˜ ( )g h g h=x x . 770 0

From (76), we see that x̃0 is the point where the function
( ) T x 0* . We therefore have ˜ = +x xSC0 , where the latter is

given by (73).

5. The SC and PG transition temperatures:
applications

5.1. Determination of parameters

We present a summary of the relevant parameters for each of
the compounds considered in this study in table 1.

For determining the values of the relevant parameters for
each family group (Bismuth family, Mercury family, LSCO)
we proceed through the following steps:

(a) For a set of compounds consisting of N materials, all
belonging to the same family, each of them possessing
m=1,K,N CuO2 planes, we must determine firstly the N
parameters: ( )h mg , for m=1,K,N. For this purpose, notice
that from (51) considered at the values: m=2,K,N, we
have N−1 linear equations relating the η(mg)ʼs, namely

( ) ( ) ( )h h=
-

+mg
m

m m
g

1 1
1 . 78

Notice that, in order to obtain the above equation, we must
assume the coupling parameters, either g=gS (or g=gP,
below) in η(Ng) are the same for all compounds which are
members of the same family. We then combine the N−1
linear equations (78), with
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=
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2
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2

1
, 79max
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thus obtaining a set of N linear equations relating the N
parameters η(mg), for m=1,K,N. This would allow us to
determine the η(mg) parameters for any N, m=1, K, N.

In section 6, below, we argue that equation (79) will be
experimentally accurate up to ratios of ( )

( )
=
=

T N

T N

3

1
max

max
, hence it can

be safely used for N=2.
(b) For the Bi and Hg families, first find ( )h =n 1 ,

( )h =n 2 and η(n=3) by using
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where the last two equations derive from (79), assuming that
the coupling parameters gS are the same for all compounds of
the same family.

From the three equations above, using the experimental
values of ( )=T n 2max and ( )=T n 1max , we determine
η(n=1)=0.230 77, η(n=2)=0.615 38, η(n=3)=
0.743 58 for the Bi family and η(n=1)=0.615 77, η

(n=2)= 0.807 88, η(n=3)=0.871 92 for the Hg family;
(c) Now use

( ) ( ) ( )h
= LT n

n

2 ln 2
81max

to determine Λ. We find for all the materials of the Bi and Hg
families: L = 0.018 eV.

(d) for LSCO, use the value of Λ found above and (59) to
obtain η=0.238 46;

(e) Obtain the ratio gS/gc from

( )
( )

h
=

-
Ng

g N

1

1
; 82S

c

(f) = a
L

gc is determined by inserting in (53) the value of
the characteristic energy scale Λ=0.018 eV, which was
determined above and of the corresponding characteristic
length scale x a100 , which is known experimentally. We
find gc=0.30 eV.

(g) From e and f, determine gS;
(h) Adjust only γ for the curves Tc(x) and only g̃ for the

curves ( )T x* to fit the experimental data; then, from (77)
find ˜( )h =N 1 ;

(i) Use (78) to determine ˜( )h n from ˜( )h =n 1 ;
(j) Determine gP from

˜( )
( )

h
=

-
Ng

g N

1

1
; 83P

c

and from gc, found in item d.
A summary of the results found by following the steps

described above is shown in table 1.

5.2. The SC critical temperatures

We now apply the previous results to several high-Tc cup-
rates, namely, the one-layered, LSCO, Bi2201 and Hg1201,
the two-layered Bi2212 and Hg1212 and the three-layered
Bi2223 and Hg1223. We use MAPLE in order to obtain the

Table 1. The parameters used for obtaining the Tc(x) curves. Only γ has been adjusted. The last column displays the value obtained for the
coupling parameter gS.

N Tmax (eV) x0 γ (eV) η gS (eV)

Bi2201 1 0.003 0 0.29 0.012 0.230 77 0.390 00
Bi2212 2 0.008 0 0.245 0.041 0.615 38 0.390 00
Bi2223 3 0.009 3 0.212 0.049 0.743 58 0.390 00
Hg1201 1 0.008 35 0.25 0.031 0.615 77 0.781 8
Hg1212 2 0.011 1 0.24 0.044 0.807 88 0.781 8
Hg1223 3 0.011 5 0.214 0.054 0.871 92 0.781 8
LSCO 1 0.003 1 0.16 0.020 0.238 70 0.394 06

Figure 7. Solution of equations (70) and (72) for the SC dome of
Bi2201. Experimental data from [43, 44].

Figure 8. Solution of equations (70) and (72) for the SC dome of
Bi2212. Experimental data from [45, 46].
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curves Tc(x) and ( )T x* , satisfying (70), (72) that are present in
figures 7–12.

For obtaining Tc(x), we enter the experimental values of
Tmax and x0 and adjust only one parameter, namely γ, for the
curve Tc(x) to fit the experimental data.

5.3. The PG critical temperatures

We now present the results for the curves Tc(x) and ( )T x* ,
satisfying (70), (72) and (76), for the same materials con-
sidered above. They are present on figures 13–18.

In order to fit the curve ( )T x* to the experimental data,
again we adjust only one parameter, namely g̃ , given by

˜
˜ ˜

( )g
h

=
g

x2
. 84c

0

The parameter x̃0 in (84) coincides with +xSC , since it is the
point where ( )T x* vanishes in (76).

We summarize in table 2 the parameters related to the
curves ( )T x* :

On the last column, we list the ratio
g

g
S

P
, given by (82).

Figure 9. Solution of equations (70) and (72) for the SC dome of
Bi2223. Experimental data from [45, 46].

Figure 10. Solution of equations (70) and (72) for the SC dome of
Hg1201. Experimental data from [45, 46].

Figure 11. Solution of equations (70) and (72) for the SC dome of
Hg1212. Experimental data from [45, 46].

Figure 12. Solution of equations (70) and (72) for the SC dome of
Hg1223. Experimental data from [45, 46].
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5.4. LSCO

As we stated above, LSCO is apparently the only high-Tc
cuprate, for which the curve Tc(x) forms a dome, which
is symmetric about x0. Then, we must use now (74)
for determining the SC critical temperature. The result for the
SC dome is in figure 19 and for the PG line is in figure 20.

It is instructive to compare our result with the empirical
curve, known since a long time [8, 9, 52], obtained by fitting

Figure 13. Solution of equations (70) and (72) for the SC dome of
Bi2201, together with the solution of (76) for the pseudogap
temperature ( )T x* . Experimental data for Tc(x) from [47–50] and for

( )T x* from [45].

Figure 14. Solution of equations (70) and (72) for the SC dome of
Bi2212, together with the solution of (76) for the pseudogap
temperature ( )T x* . Experimental data for Tc(x) and for ( )T x* both
from [45, 46].

Figure 15. Solution of equations (70) and (72) for the SC dome of
Bi2223, together with the solution of (76) for the pseudogap
temperature ( )T x* . Experimental data for Tc(x) and for ( )T x* both
from [45, 46].

Figure 16. Solution of equations (70) and (72) for the SC dome of
Hg1201, together with the solution of (76) for the pseudogap
temperature ( )T x* . Experimental data for Tc(x) and for ( )T x* both
from [45, 46].

Table 2. Relevant parameters for different cuprates. It was assumed
the couplings gS and gP are the same for all members of a family.

g̃ x̃0 h̃ (eV) gS/gP

Bi2201 0.132 0 0.376 0.016 18 1.28
Bi2212 0.270 8 0.32 0.508 09 1.28
Bi2223 0.110 0 0.25 0.672 05 1.28
Hg1201 0.186 0 0.343 0.074 80 2.50
Hg1212 0.089 0 0.29 0.537 40 2.50
Hg1223 0.220 0 0.247 0.691 59 2.50
LSCO 0.180 0 0.267 0.015 65 1.29
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the data for the LSCO dome, by the following parabola

( ) [ ( ) ]= - -T x T x x1 82.616 .c max 0
2

In figure 21 we superimpose it with our solution of (74).

5.5. Universal electronic phase diagram

The existence of a universality in the phase diagram of hole-
doped cuprates has been reported in [9]. This universality

consists in the observation that, many hole-doped compounds
have the same overall shaped phase diagram when expressed
in terms of the variables t º T Tc c max and =p x x0. We can
simply explain this result by using our expressions for Tc(x)
and Tmax. Indeed, from
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Figure 17. Solution of equations (70) and (72) for the SC dome of
Hg1212, together with the solution of (76) for the pseudogap
temperature ( )T x* . Experimental data for Tc(x) and for ( )T x* both
from [45, 46].

Figure 18. Solution of equations (70) and (72) for the SC dome of
Hg1223, together with the solution of (76) for the pseudogap
temperature ( )T x* . Experimental data for Tc(x) and for ( )T x* both
from [45, 46].

Figure 19. Solution of equation (74) for the SC dome of LSCO.
Experimental data from [47–50].

Figure 20. Solution of equation (74) for the SC dome of LSCO,
together with the solution of (76) for the pseudogap temperature

( )T x* . Experimental data for Tc(x) from [47–50] and for ( )T x*
from [51].
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where the dimensionless factor ζ, given by

( )z
g

=
x

T
, 860

max

which is ultimately experimentally determined, is the single
parameter that governs the phase diagram.

Using the parameters in table 1, we obtain the values of ζ
for different compounds (see table 3).

In figure 22 we show the phase diagrams for several
compounds, including basically all the data of [9]. These are
essentially constrained between the values of ζä
[0.951,1.256].

The universality on the domes’ shapes, when expressed
in terms of τ(p) is a strong evidence that our equations (70)
and (72) indeed correctly descibe the doping dependence of
Tc in hole-doped cuprates.

6. Increasing of Tmax with the number of layers

It is an evident experimental fact that the optimal transition
temperature becomes higher as one increases the number of
CuO2 planes per primitive unit cell. Bi2201 and Hg1201, for
instance, are single-layered materials, which have multi-
layered relatives with a higher optimal temperature.

The mercury family, for instance, consists of
[45, 46, 53, 54]: Hg1201 (single-layered) ( =T 97 Kmax ),
Hg1212 (double-layered) ( =T 125 Kmax ), Hg1223 (triple-
layered) ( =T 134 Kmax ), Hg1234 (four-layered) =Tmax

127 K) and Hg1245 (five-layered)( =T 120 Kmax ). It shows
an increase of the optimal temperatures as the number of
adjacent layers is increased from N=1 to N=3. Then for

=N T4, 5, max stabilizes at a temperature approximately
corresponding to N=2 (see table 6).

The same happens for the thallium family, for which
[8, 9, 55], Tl2201 (single-layered) ( =T 89 Kmax ), Tl2212
(double-layered) ( =T 119 Kmax ), Tl2223 (triple-layered)
( =T 128 Kmax ), Tl2234 (four-layered)( =T 119 Kmax )(see
table 5).

For the bismuth family, accordingly, we have
[8, 9, 56, 57, 58] Bi2201 (single-layered) (Tmax=34 K),
Bi2212 (double-layered) (Tmax=92 K), Bi2223 (triple-
layered) (Tmax=108 K) (see table 4).

From (59), we see that, for all members of a family, we
may express the optimal temperature of a multi-layered
cuprate with N adjacent CuO2 planes in terms of the
corresponding temperature of the single-layered one, as

( )
( )
( )

( ) ( )
h
h

=T N
Ng

g
T 1 . 87S

S
max max

Observing that η(N) is a monotonically increasing function of
N, the obvious effect of increasing the number of adjacent
planes is to increase Tmax. This follows directly from the
enhancement of the coupling parameter, namely: g Ng.

It is reasonable to admit that the coupling parameter gS is
the same for all members of the same multi-layered family. In
this case, ( )h NgS can be expressed in terms of η(gS)
using (78).

We present a summary of the values of η(NgS), as well as
the predicted values of ( )T Nmax , according to our model and
the corresponding experimental values in tables 4–6, respec-
tively, for the bismuth, thalium and mercury families of
cuprates.

Figure 21. The empirical parabolic fit for the SC dome of LSCO,
dotted line, superimposed with our solution for equation (76), solid
line. Experimental data from [47–50, 45].

Table 3. ζ values for the families studied through this section.

ζ

Bi2201 1.16
Bi2212 1.256
Bi2223 1.117
Hg1201 0.928
Hg1212 0.951
Hg1223 1.005
LSCO 1.032

Figure 22. Universal Phase Diagram for all compounds studied
together with the data on [9].
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The values of η(NgS) correspond to our theoretical
expression (78), whereas those in the column Tthmax (K) are
obtained from (87) and should be compared to the exper-
imental values [8, 9, 53, 54, 56, 57], appearing on the last
column.

We see that our theoretical values for the optimal
temperature of the multi-layered members of the Bi and Hg
families, are in good agree agreement with the experimental
values for N=2. Then, for N=3, the agreement is within
approximately 1%, whereas for N>3, there is no agreement.
The discrepancy, which starts to show at N=4 and increases
for larger Nʼs can be ascribed to another effect that evidently
must be taken into account as we increase the number of
planes. This is the distance of such planes to the charge
absorbing atoms doped into the system, which becomes
progressively larger as the number of planes increases, that is
illustrated on figure23. Indeed, for N=1 we have the two
‘charge reservoir’ regions adjacent to the unique CuO2 plane.
For N=2 still each of the two planes is adjacent to a charge
reservoir. Then, for N=3 one of the planes is no longer
adjacent to any charge reservoir, while for N=4 and N=5
the innermost planes are located far away from the charge
reservoirs. It happens that while the outer planes are optimally
doped the inner planes are poorly doped and, consequently,
remain, to a large extent, underdoped [59]. The number of
active CuO2 planes, namely, the ones that are adjacent to a

charge reservoir, in this case, is equivalent to the one we have
for N=2, hence the temperature stabilizes at values similar
to the ones we had for N=2.

7. Effects of an applied external pressure

7.1. Preliminary considerations

Under the effect of a change in pressure, given by
D = -P P P0 a linear segment with original length L0 would
shrink to L, such that

( )k
-

= - D
L L

L
P, 88L

0

0

where κL is the linear modulus of compressibility. For an
infinitesimal change of pressure, dP, L(P) would satisfy the
linear differential equation

( )k= -
L

dL

dP

1
, 89L

which is solved by

( ) ( )= k-L P L e . 90P
0 L

Table 4. The theoretical prediction of the optimal temperature as a
function of the number of planes N and the experimental values from
[8–10, 55] for the Hg family.

N ( )h NgS T th
max (K) Texpmax (K)

Hg1201 1 0.615 77 (96.8) 96.8
Hg1212 2 0.807 88 126.99 127
Hg1223 3 0.871 92 137.07 138
Hg1234 4 0.903 94 142.10 127
Hg1245 5 0.923 15 145.12 120

Table 5. The theoretical prediction of the optimal temperature as a
function of the number of planes N and the experimental values from
[8–10] for the Tl family.

N ( )h NgS T th
max (K) Texpmax (K)

Tl2201 1 0.597 31 (89) 89
Tl2212 2 0.798 65 118.99 119
Tl2223 3 0.865 76 128.99 128
Tl2234 4 0.899 32 133.99 119

Table 6. The theoretical prediction of the optimal temperature as a
function of the number of planes N and the experimental values from
[8–10] for the Bi family.

N ( )h NgS T th
max (K) Texpmax (K)

Bi2201 1 0.230 77 (34.8) 34.8
Bi2212 2 0.615 38 92.79 92.8
Bi2223 3 0.743 58 112.13 107.9
Bi2234 4 0.807 69 121.80 110

Figure 23. The N CuO2 planes (we show the cases where
= ¼N 1, , 4) are squeezed between the charge reservoirs (white

rectangles). For N 3, there will be -N 2 planes (white) without
direct contact with these and therefore will be poorly doped.
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We would like to know how the SC critical temperatures
are modified under the action of an external pressure. The
crucial step for that comes from the connection we made
between the coupling parameter gS of our effective model for
the cuprates, and the magnetic exchange couplings of the
model from which we started. Indeed, recent studies [60] have
investigated how the magnetic coupling exchange integrals J
in the cuprates behave, under a change of pressure. From
these, and from their connection with the g-couplings we can
find how the gS-parameter-dependent quantities behave as we
change the external pressure.

It has been shown, in particular, that under a pressure
variation ΔP, the magnetic exchange coupling parameters
behave as follows [60]:

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )k- = -

-
J P J P

L L

L
, 910 1

0

0

where κ1 is a constant.
Using (88), therefore, we can write

( ) ( ) ( )k k- = DJ P J P P, 92L0 1

from which we can define a modulus of compressibility for J
(P), namely,

( ) ( ) ( )k
-

= D
J P J P

J
P, 93J

0

0

where k = >k k 0J J
L1

0
.

For an infinitesimal variation of pressure, this can be
written, similarly to (89), as

( ) ( )k=
J

dJ P

dP

1
. 94J

Solving this equation for J(P), we obtain

( ) ( ) ( )= kJ P J e0 . 95PJ

The above expressions hold for AF couplings, when
J>0. The exponential dependence of J on the pressure is
intuitive as the exchange couplings involve the overlap
between exponentially decaying wave-functions.

Assuming the muduli of compressibility, κJʼs, for the
different magnetic couplings, JAF, JK, are approximately the
same and considering (19), we come to the conclusion, that
the SC coupling parameter gS grows exponentially with the
pressure, with an effective modulus of compressibility, κg,
which must be determined:

( ) ( )= kg P g e . 96S S
Pg

Notice that =gP
t

U

2 p

p

2

does not depend on the pressure.

This happens because Up has twice as much overlap integrals
as tp and therefore has a pressure dependence which goes as
the square of that of tp. Hence we conclude that the pseudogap
phenomena would not be influenced by the application of an
external pressure.

In what follows we use our model and the above results
for the pressure dependence of the coupling parameter to

analyze the effect of pressure in the SC transition tempera-
tures of cuprates. We first consider Tmax as it only involves
the change of η with pressure. Then we analyze how Tc(x, P)
changes as a function of pressure, for a fixed value of doping,
as well as how the SC dome is modified for a fixed value of
the pressure.

7.2. Variation of Tmax with the external pressure

From (59), we see that the optimal SC transition temperature
depends on pressure through the function η(NgS(p)). Then,
inserting (96) into (51), we obtain the curves for Tmax(P),
respectively, for Hg1212 and Hg1223, after adjusting the

Figure 25. Optimal temperature of Hg1223 as a function of pressure,
according to our theoretical prediction. Experimental data from [61].

Figure 24. Optimal temperature of Hg1212 as a function of pressure,
according to our theoretical prediction. Experimental data from [61].
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parameter κg to the single value k = -GPag
1

17
1 for both

compounds. The results are in figures 24 and 25.
The fact that a single adjustment for kg works for both

compounds indicates that the overlaps occurring in the
exchange integrals do not change very much with the inclu-
sion of more planes.

In figure 26, we compare the results for Hg1212 and
Hg1223 and the prediction for Hg1201. We see that Tmax(P)
saturates at a maximum value given by L

2 ln 2
. This occurs

because the optimal temperature depends on the coupling
through the function η(NgS) which itself saturates at 1 as the
coupling increases.

7.3. Variation of Tc(x) with the external pressure

In order to obtain the SC phase diagrams Tc×x for different
values of the pressure (figures 27 and 28 and ), we take Tc(x)
and adjust the value of the parameters γ and x0, for P in the
range 2–12 GPa. The resulting values are displayed in
figures 29, 30.

The experimental data of the two previous figures were
obtained from [61], using our equations (70) and (72), instead
of a parabola for obtaining the different doping values
corresponding to each value of Tc following the same pro-
cedure as in [61].

We see a general trend in the figures above: x0 decreases,
γ increases and the phase diagram becomes narrower for
increasing values of pressure.

Observe that γ and x0 have an almost linear dependence
on pressure, at least for the range of pressures considered.
Using these values, we can obtain the pressure dependence of
Tc(x, P) for a fixed value of doping.

For a fixed value of x there is in general no monotonic
increase of Tc as a function of pressure as it happens with
Tmax. This occurs because ( )-x x P0 will change sign,
depending on the value of x.

Figure 26. Optimal temperature calculated from our model for the
mercury family for one, two and three planes and comparison with
data from [61].

Figure 27. Phase diagram of Hg1212 as a function of pressure.
Experimental data from [61]. Solid line is our theoretical prediction.

Figure 28. Phase diagram of Hg1223 as a function of pressure.
Experimental data from [61]. Solid line is our theoretical prediction.
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To illustrate the different types behavior we select three
situations at atmospheric pressure: one in the underdoped
regime, x<x0(P=0), one at the optimal doping,
x=x0(P=0) and finally, one in the overdoped regime
x>x0(P=0).

In figure 31 we present the results for an underdoped
Hg1223, in figure 32, for the optimal doped Hg1212 and in
figure 33 we plot Tc for the slightly overdoped material
Hg1212 x=0.247.

Our theory for the pressure dependence of the temperature
in high-Tc cuprates, which relies heavily on the connection of
the SC coupling with the magnetic exchange couplings, has an
excellent agreement with the experimental data. This adds more
evidence for the correctness of our results.

Before concluding, we would like to mention recent
experimental work that observes a re-entrance in Bi2212,
exhibiting increasing Tc for a range of pressures much
beyond the ones considered here, where a breakdown of the
Fermi surface occurs [63]. Despite the interest, this result is
ouside the scope of our study.

8. Concluding remarks

We report here the obtainment of analytical expressions for
( ) ( )T x T x,c * and Tc(x, P), for several high-Tc cuprate com-

pounds, which show an excellent agreement with the exper-
imental data. Our starting point is a Spin–Fermion–Hubbard
(SFH) Model, describing the magnetic interactions among the
localized spins of the copper ions, and the (Kondo) magnetic
interactions between the localized and itinerant degrees of
freedom (holes in oxygen p-orbitals). The model also
describes the local Coulomb repulsion between the doped
holes.

Our effective interaction among the doped holes contains
two basic terms, defined on a bipartite oxygen latice: one of
them is hole attractive while the other is hole repulsive. These
terms are derived, respectively, from the SFH model: (a) by
tracing out the localized degrees of freedom associated to the
localized spins of the copper ions (see appendix A) and; (b)
making a second order perturbation expansion in the hopping
term in the Hubbard sector of the model (see appendix C).
Such interaction terms respectively favor the formation of
Cooper pairs and excitons, and the condensation of each
would lead to the SC and PG phases of the high-Tc cuprates.
Each term respectively contains a coupling parameter gS or

Figure 29. Dependence of x0 on pressure for Hg1212 and Hg1223.

Figure 30. Dependence of γ on pressure for Hg1212 and Hg1223.

Figure 31. Tc as a function of pressure for the x=0.135 compound.
The data were taken from [61].

Figure 32. Temperature ( )=T x xc 0 of Hg1212 as a function of
pressure. Experimental data from [62].
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gP, which, on one hand, can be expressed in terms of the
parameters of the original Three Bands Hubbard Model and,
on the other hand can be determined from the fit to the
experimental data of the cuprates phase diagram. Remark-
ably, the values obtained by the two methods coincide.

By integrating over the fermions and minimizing the
resulting effective action, we derive implicit equations, both
for the SC transition temperature Tc(x) and for the PG
transition temperature ( )T x* , as a function of doping. The
solution of such equations is, then compared with the
experimental data for different compounds, showing an
excellent agreement, after the adjustment of a single para-
meter, which directly relates the chemical potential to the
stoichiometric doping parameter x. The description of the
chemical potential, directly made in terms of the stoichio-
metric doping parameter x, was a key factor for the success of
our approach to the cuprates, since it has allowed to relate
model calculated quantities, such as Tc(x) and ( )T x* with
experimental data which are expressed exclusively in terms
of x.

The increase of Tmax with the number of adjacent planes
in multi-layered cuprates can be understood as a consequence
of the enhancement of the SC coupling g NgS S produced
by the presence of these planes. As N increases, however, the
inner planes progressively recede from the charge reservoirs,
an effect that counteracts the enhancement of the coupling
parameter, thus leading to a stabilization (or even decrease) of
Tmax as we increase N.

Based on our results one can devise a way to increase Tc
in cuprates: this would be achieved by effectively doping the
innermost planes in multilayered cuprates. For that purpose,
one should design materials with a unit cell containing as
many layers as possible but with charge reservoirs inter-
calating no more than two layers. This would neutralize the
above effect, thereby increasing Tc.

We finally employ our results in order to analyze the
effects of an applied pressure on Tc(x), again, obtaining
excellent agreement with experiments for Tmax(P) and for
Tc(x, P), both for fixed x and fixed P. Based on our model we
are also able to predict that the PG transition temperature will
not be affected by the application of an external pressure.

Our results open new avenues for the investigation of the
physical properties of high-Tc cuprates, with outstanding
possibilities. Among these, employing our model for: the
description of resistivity above Tc; the description of charge
ordering phases; the determination of the specific heat;
the investigation of the detailed nature of the strange-metal
phase at >T T ;* the study of the Fermi liquid phase in the far
overdoped region.

The study reported here consists in a concrete step for-
ward in the attempt to understand high-Tc superconductivity.
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Appendix. A

Let us perform here the trace over the localized copper spin
magnetic moments in the full partition function, which is
given by (7). This trace only runs over the localized degrees
of freedom, SI and can be expressed as

( )[ [ ] [ ]b y- +eTr , 97H H
S

S S ,
I

AF I K I

where HAF and HK are given by (3). By tracing only over the
localized spin degrees of freedom SI , we are able to obtain a
contribution for effective interaction Hamiltonian of the
doped holes, namely H1[ψ], which is defined from the relation

( )[ ] [ [ ] [ ]µb y b y- - +e eTr . 98H H H
S

S S ,
I

AF I K I1

In order to evaluate the trace above, we shall use the
coherent spin states ∣ ñN , (see, for instance [33]) defined by the
property

∣ ∣ ∣ ∣ ( )ò p
á ñ =

W
ñá =s

d
N S N N N N;

4
1, 99

S2

where s=1/2 is the spin quantum number, N is a unit
classical vector and the integration is made over the whole
solid angle.

Figure 33. Tc as a function of pressure for the x=0.247 compound.
The data were taken from [61].
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In terms of this, we can express the partial trace over SI in
(98) as a functional integral over N (see, for instance [33]):

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭( ) ( ) [
( )

[ [ ] [ ]

ò ò t t
t

t= á ñ -

b y

b

- +e

D d
d

d
H sN N N N

Tr

exp .

100

H H
S

S S ,

0

I
AF I K I

Here

[ ] [ ] [ ] ( )y= +H s H s H sN N N, . 101AF K

We now separate N in antiferromagnetic and ferromag-
netic components, denoted, respectively, by n and L, such
that ∣ ∣ =n 12 and · =L n 0. We write, in site I, in terms of
the lattice parameter a

( ) ( ) ( )= - + +a O aN n L1 102I
I

I I
2 4

in such a way that ∣ ∣ ∣ ∣= =N n 12 2 .
We can express the trace in (98), in the continuum limit,

as a double functional integral on n and L [33]:

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭

(∣ ∣ )

[ ·

∣ ∣ ] ·
( )

[ ] ò

ò ò

d

t

t

= -

´  

+ + - ´
¶
¶

b y

b

-



e D D

d r d J s

J s a J is

n L n

n n

L L n
n

1

exp
1

2

4 ,

103

H

AF i i

AF K

2

2

0

2

2 2 2

int

where

= +  A B

is given by (4).
We now integrate out the ferromagnetic fluctuations by

performing the quadratic functional integral on L. This will
produce the square of the last term between brackets, which
contains three terms: the 2nd term squared, which provides a
kinetic term for n [33], the crossed term, which vanishes [32]
and the 1st term squared that yields a ψ-dependent interaction
term. This consists basically of an effective AF magnetic
interaction among the itinerant doped holes

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥
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[ · ]} ( )

[ ] ò
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+
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b
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-
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d r d
c

J

J a

n n

n n n n

1

exp
2

1

8
, 104

d H

s
i i

K

AF

2

2

0 2

2

2

int
0

where r =s
J

4
AF is the spin stiffness and =c J aAF is the spin-

waves velocity.
Using the fact that the continuum limit involves the

òå «a d rk
2 2 , we conclude that
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d H H H

NL M
K

AF
A B

S
S S

R R d

,

0 ,

2
2

I
AF I K I0

1

where sZNL M is the partition function of the Nonlinear Sigma
Model (see, for instance [33]).

From the last term in (105) we see that, indeed

[ ] [ ]åy = - +
+

 H
J

J8
.K

AF
A B

R R d
1

2

,

2

as we find in (9).

Appendix. B

In this appendix, we demonstrate how to obtain HSC[ψ], out
of (9).

Using the Pauli matrices, we can express the three
components of the holes’ spin as

[ ] ( )† †å y y y y= +
=

   S
1

2
106X

C A B
C C C C

,

[ ] ( )† †å y y y y= -
=

   S i
1

2
107Y

C A B
C C C C

,

[ ] ( )† †å y y y y= -
=

   S
1

2
. 108Z

C A B
C C C C

,

Inserting these expressions in (9), and defining

( )

† †

† †

y y y y

y y y y

= =

= =

++   --  

+-   -+  

n n

n n

;

; , 109

C
C C

C
C C

C
C C

C
C C

for C=A, B, we can write Hint as

{[ ]
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[ ] }
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å=- + + +
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+
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2

,
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Then, considering that we can rewrite (12) as

( )

S = +

P = +

X = +

X = +

+- -+ -+ +-

+- +- -+ -+
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++ ++ -- --

n n n n

n n n n
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n n n n 111

A B A B

A B A B

A B A B
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1
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and using (110), we establish (15), up to a constant.

Appendix C

In this appendix, we perform a perturbation expansion in
t Up p, in +H HU0 , given by

[ ( ) ( )

( ) ( ) ]
( )

†

†

å

å å

y y

y y

=- +

+ + +

= +

s s

s s

 
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p A B i

B i A

U p
A A

p
B B

R d

R R d

0
, i
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by taking H0 as a perturbation and HU as the unperturbed
Hamiltonian.

We are going to determine the ground state energy E0, up
to second order, as the series:

( )( ) ( ) ( )= + +E E E E , 1130 0
0

0
1

0
2

where ( )E0
0 is the unperturbed ground state energy and ( )E0

1

are, respectively, the first and second order corrections. We
will then find an effective hamiltonian H2 such that such that

= á ñE H0 2 , namely, the first order correction to H2 is given
by (113).

The unperturbed ground state ∣ ñ0 (ground state of HU),
depicted in figure C1, satisfies

∣ ∣ ∣ ∣ ( )( )ñ = ñ = á ñ =H E H0 0 0 0 0 0 1140 0
0

0

thus implying that ( ) ( )= =E E 00
0

0
1 .

The second order correction is given by

∣ ∣ ∣ ∣ ( )( )
( ) ( )å=

á ñá ñ
-¹

E
H n n H

E E

0 0
. 115

n n
0

2

0

0 0

0
0 0

From figure C2, we see that ∣ ñ1 , such that

∣ ∣ñ = ñH U1 1p0

is the only excited state contributing to (115), hence

∣ ∣ ( )( ) = - á ñE
U

H H
1

0 0 . 116
p

0
2

0 0

Inserting the expression of H0, taken from (113), we see that
only the two crossed terms contribute and

∣ [ ]∣ ( )( ) y= = á ñE E H0 0 , 1170 0
2

2

where H2[ψ] is given by

[ ] [ ( ) ( )][ ( ) ( )]

( )

† †y y y y y= - + +s s s sH
t

U
R R d R d R

2
.

118

p

p
A B i B i A2

2

Equivalently, using (111), we can write

[ ] [ ] ( )y = - P - XH
t

U

2
. 119

p

p
2

2

2

We therefore establish (12)–(14).
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