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Abstract
The complete theoretical description of experimentally observed magnetoexcitons in cuprous
oxide has been achieved by Schweiner et al (2017 Phys. Rev. B 95 035202), using a complete
basis set and taking into account the valence band structure and the cubic symmetry of the solid.
Here, we extend these calculations by investigating numerically the autoionising resonances of
cuprous oxide in electric fields and in parallel electric and magnetic fields oriented in [001]
direction. To this aim we apply the complex-coordinate-rotation method. Complex resonance
energies are computed by solving a non-Hermitian generalised eigenvalue problem, and
absorption spectra are simulated by using relative oscillator strengths. The method allows us to
investigate the influence of different electric and magnetic field strengths on the position, the
lifetime, and the shape of resonances.

Keywords: Rydberg excitons, complex coordinate-rotation, electric and magnetic fields, cuprous
oxide
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1. Introduction

Excitons are quasi particles, which occur in semiconductors
and insulators. If an electron is raised from the valence band
to the conduction band, the remaining positively charged hole
in the valence band interacts with the negatively charged
electron in the conduction band. This electron–hole pair is
called an exciton. Depending on the spatial distance between
electron and hole one distinguishes between Frenkel and
Mott–Wannier excitons [1, 2]. Frenkel excitons are confined
to one lattice atom, whereas Mott–Wannier excitons extend
over many unit cells and can be treated approximately as a
hydrogenlike system.

An ideally suitable crystal for the experimental invest-
igation of Rydberg excitons is cuprous oxide (Cu2O), where

excitons have been observed up to principal quantum number
n= 25 [3, 4]. This has opened the field of research of giant
Rydberg excitons. As a consequence of the non-parabolic
valence band structure of Cu2O, the simple hydrogenlike
model does not describe the exciton spectra very well [5, 6].
This is especially true for excitons in external electric or
magnetic fields. Heckötter et al [7] have investigated the
influence of different (weak) electric fields on the transmis-
sion spectra and have shown that the transmission spectra
depend on the crystal orientation and the light polarisation.
Schweiner et al [8] have calculated the absorption spectra of
magnetoexcitons for various magnetic field strengths by using
a complete basis set and considering the complex valence
band structure. The detailed comparison between the exper-
imental and theoretical spectra shows excellent agreement.
Similar is true for exciton spectra in the Voigt configuration,
where the external magnetic field is perpendicular to the
incident light and a weak effective electric field perpendicular
to the magnetic field is induced by the Magneto-Stark
effect [9].
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The experiments and calculations mentioned above are
restricted to bound states, and the experimentally observed
linewidths are dominated by exciton-phonon interactions
[10, 11]. However, by applying an external electric field, the
potential barrier of the Coulomb potential is lowered. The
electron can tunnel, and former bound states become quasi-
bound or resonance states. They can be described by complex
energies, where the imaginary part is related to the decay rate
and thus the linewidth of the resonance state.

The dissociation of excitons in Cu2O by an electric field
has been investigated by Heckötter et al [12]. It has been
shown that, similar to the Stark effect in atoms, the field
strength for dissociation decreases with increasing principal
quantum number n, but increases, for fixed n, with growing
exciton energy. The experimental results have been compared
with a theoretical computation based on a simplified hydro-
genlike model neglecting spin, spin–orbit, and exchange
interactions.

In the present paper we want to go beyond these calcu-
lations and investigate the unbound resonance states of
excitons in electric fields or combined electric and magnetic
fields by fully including the effects of the valence band. To
this aim we extend the method introduced in [6, 8] for the
computation of exciton spectra using a complete basis set, by
the method of complex coordinate-rotation [13–15], which
transforms the Hermitian Hamiltonian with real eigenvalues
to a non-Hermitian operator with possibly complex eigenva-
lues. The complex coordinate-rotation is a well established
technique for the computation of resonances in atomic phy-
sics, and has already been applied, e.g. to the hydrogen atom
in external fields [16–19]. Here, we will calculate the posi-
tions of excitonic resonances in the complex plane. In part-
icular, we will discuss the appearance and position of
resonance states depending on the electric field strength in
Faraday configuration, where the external field is parallel to
the incident light. Additionally, we will investigate the
behaviour of resonance states in parallel electric and magnetic
fields. We are also able to calculate directly the relative
oscillator strength, e.g. for σ+ and σ−polarised light and to
simulate the corresponding absorption spectra.

The paper is organised as follows: in section 2 we present
the theory. After the introduction of resonance states and the
complex coordinate-rotation-method in section 2.1 we present
in section 2.2 the Hamiltonian for the yellow excitons in
Cu2O taking into account the non-parabolic valence band
structure and the effects of the external electric and magnetic
fields. In section 2.3 we discuss the setup of the non-Hermitian
generalised eigenvalue problem by using a complete basis set.
Formulas for the calculation of the relative oscillator strength
and the simulation of the absorption spectra are derived in
section 2.4. The results of our calculations are presented in
section 3, and conclusions are drawn in section 4.

2. Theory

For the convenience of the reader we briefly recapitulate the
complex-coordinate-rotation method and the Hamiltonian of

cuprous oxide in external fields. We then discuss the setup of
a non-Hermitian generalised eigenvalue problem for the
computation of the complex resonance energies and the
corresponding eigenstates, and finally present the necessary
equations for the calculation of the oscillator strengths and the
simulation of the absorption spectra.

2.1. Complex coordinate-rotation

Resonances are quasi-bound states with a finite lifetime.
Simple examples are the radioactive decay of unstable
atomic nuclei, an excited atom returning to its ground state,
or a temporally trapped particle in an open potential. In the
case of excitons the potential barrier of the Coulomb
interaction between electron and hole can be lowered by an
external electric field. To describe the temporal decay of
such systems we use non-Hermitian Hamiltonians obtained
with the method of the complex coordinate-rotation
[13–15].

To introduce the formalism we calculate the energy
expectation value of the 1S state of the hydrogen atom,
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with radial function R(r)=2e− r. Since R(r) is an analytic
function we can use Cauchy’s integral theorem and rewrite
the real line integral (1) into a complex one [13],
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with z=re iθ and θ the angle between real and imaginary
part. As long as we integrate from z=0 to¥ the integral (2)
does not depend on the value of θ, because the wave function
R(r) vanishes sufficiently quickly for  ¥r . Thus, the
results of both integrals (1) and (2) are the same, i.e. an
important property of the method is that bound states are
invariant under complex rotation.

To illustrate what happens to the scattering and con-
tinuum states, we substitute r→re iθ and k→ke− iθ in the
result of the radial scattering problem [15],
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The complex rotation implies a change of the energy (with
m=1, ÿ=1),
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which means that these states are now rotated into the lower
half of the complex plane by the angle 2θ.

The most important feature of the complex coordinate-
rotation concerns the resonance states. For appropriately
chosen θ, they appear as new eigenvalues on the lower half of
the complex energy plane. A simple example is the inverted
harmonic oscillator, which has no bound states. The complex
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rotated Hamiltonian is given by [13]
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The inverted harmonic oscillator thus has an infinite number
of resonances with different widths Γn =−2Im En =2n+1.

The results of the complex rotation can be summarised
by the following statements, which are also illustrated in
figure 1: (i) the real-valued bound states are invariant under
the complex rotation. (ii) The energy values of the scattering
respectively continuum states are rotated into the lower half of
the complex plane by 2θ. (iii) For appropriately chosen angles
θ resonances are exposed by the rotation of the continuum
states.

2.2. Hamiltonian of yellow excitons in external fields

For the calculation of the yellow exciton series in Cu2O we
use the same Hamiltonian as Schweiner et al [6, 8, 20].
Without external fields the Hamiltonian can be written as
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Here, Eg is the gap energy, me is the effective electron mass,
p = (p1, p2, p3) are the momenta, = +a b ab ba, 1

2
{ } ( ) is the

symmetric product, Δ is the spin–orbit coupling constant, I is
the quasispin, Sh is the hole spin, and c.p. denotes cyclic
permutation. The vectors I and Sh contain the components of
the three spin matrices Shj and Ij of the hole spin Sh=1/2
and the quasispin I=1, respectively. The quasispin I is
introduced to describe the degeneracy of the valence band
Bloch functions [21]. The corresponding matrices fulfil the
commutation relations of a spin I=1. The parameters ηj and
the three Luttinger parameters γj are used to describe the
behaviour and the anisotropic effective hole mass in the
vicinity of the Γ point [6]. The electric interaction between
hole and electron is given by the Coulomb potential

p
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with the dielectric constant ò. In [20, 22] additional central
cell corrections were included in the Hamiltonian. Since these
effects are only important for states with principal quantum
numbers n�2 [20], which we do not consider in this paper,
these corrections can be neglected here.

To take external electric and magnetic fields into account
the Hamiltonian(7) must be extended. The electric field is
included by adding the potential

- = -r r r r FV e , 12F e h e h( ) ( ) · ( )

where F is the electric field vector. To describe a constant
magnetic field we use the vector potential with symmetric
gauge, = ´A B r 2( ) . The energy of the spins in the
magnetic field is given by

m k= + + - S I S BH g g g3 2 , 13B B c e s s h[ ( ) ] · ( )

with μB the Bohr magneton, gs the g factor of the hole spin
Sh, gc the g factor of the electron spin Se, and κ the fourth
Luttinger parameter, which has been determined by Schwei-
ner et al [8]. Next we introduce relative and centre of mass
coordinates [23],
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and set the position and momentum of the centre of mass to
zero ( =R 0, =P 0). The complete Hamiltonian of excitons

Figure 1. Effect of the complex coordinate-rotation. The hidden
resonances are exposed by the rotation of the continuum states.
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in external fields with relative coordinates finally reads

= + + + - +
+ + +
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More details of the derivations are given in [6, 8, 22]. The
material parameters for Cu2O used in our calculations are
listed in table 1.

2.3. Non-Hermitian generalised eigenvalue problem

For the computation of eigenvalues of the yellow excitons in
external fields we now express the Hamiltonian(15) as a
matrix by using an appropriate basis set. For the radial part of
the wave functions we use the Coulomb-Sturmian functions
[26]

r r r= r- +U N e L2 2 , 16NL NL
L

N
L2 1( ) ( ) ( ) ( )

where +LN
L2 1 are the associated Laguerre polynomials, the

NNL are normalisation factors, and ρ=r/α, with α being a
free parameter. N is the radial quantum number, which is
related to the principal quantum number n vian=N+L+
1. Note that the Coulomb-Sturmian functions(16) form a
complete basis, however, they are not orthogonal. For the
computation of resonances the complex coordinate-rotation
 qr rei discussed in section 2.1 is equivalent to choosing the

free parameter α as being complex, i.e. a a= qei∣ ∣ .

For the angular part of the basis we use the eigenfunc-
tions of the effective hole spin J=I+Sh, the effective
angular momentum F=L+J, and the electron spin Se. At
the Γ point, J is a good quantum number and distinguishes
between the yellow exciton series (J=1/2) and the green
exciton series (J=3/2). F and Se are coupled to Ft=F+Se
with z component MFt

. The complete basis set is then given by
[6, 8]
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To obtain a finite size basis for the numerical computations
the quantum numbers must be restricted. For each value of the

principal quantum number n=N+L+1 we use [6]
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The excitonic wave functions can be expanded in the basis
(17) as

åYñ = Pñc , 19
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t Ft
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with the coefficients c. Using the Hamiltonian (15) and the
basis set (17) we can now set up the generalised eigenvalue
problem

=Dc McE 20( )

for the resonance energies E and the coefficients c of the
corresponding wave functions (19). The matrix elements of
the matrices D and M are given in the appendices of [6, 8]
with the only difference that α is now a complex parameter
a a= qei∣ ∣ with θ the angle of the complex coordinate-rota-
tion, as explained above. The matrix M in (20) is the overlap
matrix of the basis states (17) and differs from the identity
matrix because, as mentioned, the Coulomb-Sturmian func-
tions (16) are not orthogonal.

Note that both matrices D and M in (20) are complex
symmetric but non-Hermitian matrices. The generalised
eigenvalue problem (20) can be solved numerically by
application of the QZ algorithm, which is implemented in the
LAPACK routine ZGGEV [27]. To achieve convergence of
the eigenvalues and eigenvectors the maximum value for n
and the value Fmax for the setup (18) of the basis must be
chosen sufficiently large. The LAPACK routine does not
provide normalised eigenvectors. For the computation of
oscillator strengths in the next section 2.4 the wave functions
(19) must be normalised according to

dáY Yñ =M , 21i j ij∣ ∣ ( )

which is achieved with a modified Gram–Schmidt process.

2.4. Oscillator strengths

With the eigenvalues and eigenvectors obtained by numerical
diagonalisation of the generalised eigenvalue problem(20)
we are able to calculate the oscillator strengths for dipole
transitions. Note that the crystal ground state depends on
Bloch functions, which are not explicitly known, and there-
fore only relative oscillator strengths can be computed [22].
For circularly polarised light in Faraday configuration the
relative oscillator strength is given by [8]
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¶
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Table 1. Material parameters of Cu2O used in the calculations.

Energy gap Eg=2.172 08 eV [7]
Effective electron mass me=0.99m0 [24]
Effective hole mass mh=0.58m0 [24]
Dielectric constant ò=7.5 [25]
Spin–orbit coupling Δ=0.131 eV [5]
Valence band parameter γ1=1.76 [5]

γ2=0.7532 [5]
γ3=−0.3668 [5]
κ=−0.5 [8]

η1=−0.020 [5]
η2=−0.0037 [5]
η3=−0.0337 [5]

g factor of the electron spin gc=2.1 [8]
g factor of the hole spin gs≈2 [8]
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for an electric and/or magnetic field in [001] direction. We
use the abbreviation ñF M,t F Dt∣ to denote the states
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where the coupling scheme differs from the one given in
section 2.3. The spins couple in the following way [8]:

+ =  + + =S S S I S L F , 28te h ( ) ( )

with the total spin S, the quasispin I, the angular momentum
L, the total angular momentum Ft and its projection on the
quantisation axis MFt

. With the relative oscillator strength we
can furthermore calculate the spectrum. Rescigno and McKoy
[28] have shown that the photoabsorption cross section in
atomic physics, using the complex coordinate-rotation, can be
written as

ås pa
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where α is the fine-structure constant, E0 the energy of the
ground state Y0, and Ej the complex energy of the resonance
state Ψj. For excitonic spectra we replace the squared dipole
matrix elements qáY Y ñD j0

2∣ ∣ ( ) in (29) with the relative oscil-
lator strengths frel given in (22). The excitonic absorption
spectrum then reads

åp
= -

-
f E

f

E E

1
Im 30
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j

j
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( )

with Ej the complex energies of the resonances. Note that the
squared dipole matrix elements qáY Y ñD j0

2∣ ∣ ( ) in (29) and the
relative oscillator strength frel in (22) are real-valued for
bound states but can become complex for resonances,
because, after complex coordinate-rotation, bra vectors are
not the complex conjugate of the ket vectors (see [13–15]), as
in Hermitian quantum mechanics. The complex phases of frel
lead to deviations of resonance shapes from a Lorentzian
profile in (30).

3. Results and discussion

In this section we present the results of our calculations for
excitons of cuprous oxide in external fields. We investigate
the resonances in the complex energy plane and the
corresponding absorption spectra obtained with circularly
polarised light for excitons, first in electric fields, and then in
parallel electric and magnetic fields. We restrict the pre-
sentation of results to resonances and ignore the bound states,
which would appear as delta peaks in the absorption spectra.

The linewidths of resonances in our calculations are solely
caused by the external electric field, i.e. we do not consider
exciton-phonon interactions [10, 11].

3.1. Electric fields in [001] direction

In figures 2 and 3 we present the results for excitons in an
electric field oriented along the [001] axis with field strengths
F=7200 Vm−1 and F=9000 Vm−1, respectively. The
lower parts of the figures show the positions of resonances in
the complex energy plane obtained as complex eigenvalues of
the non-Hermitian generalised eigenvalue problem(20). For
the computations we used the basis(17) with principal
quantum numbers up to n=30 and Fmax=15 resulting in a
total set of 5303 basis functions. For the complex coordinate-
rotation we used rotation angles in the region 0.1<θ<0.3.
The colours of the resonance positions encode the absolute
values of the relative oscillator strengths frel for excitations
with circularly polarised light given by (22). The upper parts
of figures 2 and 3 show the absorption spectra f (E) obtained

Figure 2. Lower part: positions of resonances in the complex energy
plane for excitons in cuprous oxide in an electric field with field
strength F=7200 V m−1 in [001] direction. The colours of the
symbols encode the absolute values of the relative oscillator
strengths frel for excitations with σ±polarised light. Upper part: the
corresponding absorption spectra for excitations with σ+ and
σ−polarised light coincide.

Figure 3. Same as figure 2 but for F=9000 V m−1.
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using (30). Note that the absorption spectra for σ+ and
σ−polarised light coincide as expected.

The spectrum at F=7200 Vm−1, in figure 2, exhibits
resonances with quite different linewidths. Long-lived reso-
nances appear as thin peaks in the absorption spectra. In
general, broader peaks belong to resonances with higher
principal quantum numbers n or, within a given n-manifold,
to resonances with lower energy [12]. The resonances shown
in the figure belong to principal quantum numbers between
n=8 and n=15. Note that, for the chosen electric field
strength, the different n-manifolds already strongly overlap. If
we increase the electric field strength to F=9000 Vm−1,
new long-lived resonance states appear (see figure 3) and the
lifetimes of the resonances with higher real energy part
decrease. If we compare the positions in both plots, we
recognise that more resonances appear deeper in the lower
half of the complex energy plane. Undoubtedly, the reason for
this is the electric field which lowers the potential barrier of
the Coulomb potential and therefore increases the tunnel
probability. Figure 4 shows the absorption spectra for dif-
ferent electric field strengths from F=3400 Vm−1 to
F=21600 Vm−1. The single spectra f (E) are plotted with an
offset, therefore no units of f are given. For the computations
we have used the same basis set as described above. The
figure shows the evolution of the spectra in dependence on the
electric field strength. All spectra are restricted to the range
where resonances appear. At lower energies only bound states
would appear and at higher ones the spectra would show
unconverged states due to the finite basis. We first notice the
fan-like spreading of the absorption spectra. That means for
F=3600 Vm−1 we found resonances between 2.170 56 eV
and 2.172 16 eV and for F=21600 Vm−1 we found reso-
nances between 2.1684 and 2.173 24 eV. This behaviour
derives from the Stark effect which splits the energy levels
and moves the positions of the resonances along the real axis.
Additionally, the decrease of the potential barrier moves the
resonances deeper into the lower half of the complex plane.
Therefore we observe mostly resonances with short lifetime

(broad peaks) for field strengths F>14400 Vm−1. New
lines always appear as sharp peaks (long-lived resonances) on
the left hand side of the absorption spectra. For higher field
strengths the number of exposed resonances decreases
because the maximum value of θ is too small. In principle, we
could increase θ to uncover these states, however, in that case
the basis set must be increased, which leads to higher com-
putation times.

In [12] it has been shown that the field strength for the
dissociation of excitons in Cu2O decreases with increasing
principal quantum number n, but increases, for fixed n, with
growing exciton energy, in agreement with similar results for
the Stark effect in atoms. We expect a similar behaviour in
our spectra, however, this can not easily be observed because
we are in an energy and field strength region, where states
with different n strongly overlap. In particular, we have not
yet been able to assign any (approximate) quantum numbers
to the resonances shown in figure 4. To do so, e.g. the
evolution of resonance spectra in figure 4 must be followed
on a much denser grid of field strengths down to the field-free
spectrum. As the computation of each spectrum is numeri-
cally very expensive this is currently beyond our numerical
capabilities.

3.2. Parallel electric and magnetic fields

Now we investigate the influence of an additional magnetic
field parallel to the electric field. Both fields are in [001]
direction. Figure 5 shows the positions of the resonances in
the complex energy plane and the absorption spectrum for
F=7200 Vm−1, B=0.5 T and σ−polarised light. For the
same field strength but with σ+ polarised light, figure 6 shows
the absorption spectrum and the positions of resonances in the
complex energy plane. As discussed above, both spectra
consist of long-lived resonances, thin peaks, and short-lived
ones, broad peaks, but if we compare the spectra of σ−and
σ+ polarised light (see figure 6) they differ from each other.
This is due to the magnetic field and the symmetry of the
valence band. In [8] it is shown that different excitons are
excited by σ−and σ+ polarised light with a magnetic field in

Figure 4. Evolution of resonance spectra for σ±polarised light as a
function of the electric field. The electric field strength increases
from F=3600 V m−1 (bottom) to F=21600 V m−1 (top), and is
orientated in the [001] direction.

Figure 5. Position and resonance spectra for an electric field
F=7200 V m−1 and magnetic field B=0.5 T. Both fields are in
[001] direction and the light is σ−polarised.
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[001] direction. With σ+ polarised light excitons with a large
amount of angular momentum L=1, Ft=2, MFt

=−1 and
with σ−polarised light excitons with a large amount of angular
momentum L=1, Ft=2, MFt

=+1 (see equations (23) and
(24)) are strongly excited. These states are non-degenerate in a
magnetic field or in parallel magnetic and electric fields. We
note that, as for the Stark spectra discussed above, we are not
able to assign any quantum numbers to individual resonances.

4. Conclusion and outlook

Schweiner et al [6, 8] have developed a method for the
numerically exact computation of yellow excitons in cuprous
oxide by using a complete basis set. We have extended and
augmented this technique by application of the complex-
coordinate-rotation method, which, as a novel result, allows
for the computation of unbound excitonic resonance states.
We have used the method to calculate the positions of reso-
nances in the complex energy plane, and thus the decay rates,
for excitons in external electric fields and in parallel electric
and magnetic fields. Furthermore, we have simulated the
absorption spectra for excitations with circularly polarised
light, and have shown that the spectra obtained with σ+ and
σ−polarised light coincide for excitons in an electric field but
significantly differ for excitons in combined electric and
magnetic fields.

The computation of magnetoexcitons including the
effects of the valence band have allowed for detailed line-by-
line comparisons between experimental and theoretical
spectra [8]. A detailed comparison of our theoretical excitonic
resonances with experimental absorption spectra [12] will be
an interesting future task and will clarify the validity or
limitations of the hydrogenlike model, with its refinements.

An interesting property of the complex generalised
eigenvalue problem(20) is that for certain values of the
electric and magnetic field strengths the resonance energies
and also the corresponding eigenstates can become degen-
erate. This situation is not possible in Hermitian quantum
mechanics, and is called an exceptional point [29–31]. Such
points have been found in computations for the hydrogen

atom in combined electric and magnetic fields, however, at
very high and thus experimentally not accessible field
strengths [18, 19, 32]. With the method introduced in this
paper it will be possible to search for exceptional points in the
spectra of cuprous oxide and in regions of the field strengths,
which can easily be realised in experiments. Cuprous oxide
could therefore be an excellent candidate for the first exper-
imental observation of an exceptional point in a Rydberg
system.

Nikitine [33] has investigated experimentally the green
exciton series in Cu2O and, recently, Krüger and Scheel [34]
have focused on the interseries transitions, e.g. between yel-
low and green excitons. In this context, a better understanding
of the green exciton series is desirable. Since the green series
is located inside of the yellow continuum [35–37], and the
different series couple, the green exciton states are actually
resonances. The complex coordinate-rotation method used in
this paper thus is also an appropriate tool for the future
investigation of these resonance states.
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