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1.  Introduction

Quantum entanglement is one of the core resources for quantum 
information processing, such as unconditionally secure trans-
mission of information and high-efficiency quantum compu-
tation [1]. It has also been identified and extensively studied 
in human cognitive processes nowadays [2]. However, entan-
glement is not the only form of nonclassical correlation in a 
given system. It has become clear that some separable mixed 
states also hold nonclassical correlations, which are respon-
sible for the speedup in deterministic quantum computation 
with one pure qubit (DQC1) [3, 4]. Thus, the research of such 
quantum correlations in a given state is one of the imperative 
tasks related to understanding the quantum nature of a state 
and efficient utilization of the state for quantum information 
processing. A great deal of works have been done to investi-
gate the potential applications of these quantum correlations, 
including remote state preparation [5–7], state discrimination 
[8, 9], dense coding [10–13], quantum computation [14, 15], 
and quantum internet [16–18]. To successfully achieve these 

applications in reality, finding ideal quantum materials is an 
essential prerequisite.

Graphene [19], a 2D honeycomb lattice of carbon, is 
regarded as a promising candidate owing to its weak intrinsic 
spin-orbit coupling and completely vanishing hyperfine inter-
action [20]. Thus, it has attracted a rise of interest on various 
quantum properties of graphene, such as spin qubits [21, 22],  
quantum dynamics [23], quantum interference [24, 25], 
quantum ripples [26], quantum refrigerators [27], and non-
linear quantum optical properties [28]. Remarkably, several 
schemes to achieve quantum computing in graphene-based 
systems have been studied and reported [29–32]. One of the 
interesting nanostructures of graphene is called the zigzag 
graphene nanoribbon (ZGNR). It possesses spin-polarized 
edge states, which serve as key elements for graphene-based 
spintronics devices [33, 34]. The edge spins in ZGNRs were 
predicted to couple ferromagnetically along the each edge 
and antiferromagnetically between the opposite edges. And 
the atomically precise ZGNRs have been synthesized through 
surface-assisted polymerization and cyclodehydrogenation of 
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specifically designed precursor monomers [35]. Several works 
have been done to explore quantum effect in ZGNRs, for 
examples, quantum transport [36], quantum spin Hall effect 
[37], and adiabatic quantum pump effect [38, 39]. Based on 
the effective low-energy theory [40], Koop et  al derived an 
effective spin-ladder model for ZGNRs [41], and further 
investigated the quantum phase transitions in ZGNRs [42]. 
Intriguingly, Hagymási et al showed that for ZGNRs besides 
the strong nearest-neighbor entanglement, moderately strong 
entanglement appears between the two edges, and between 
electrons on the same edge [43]. However, electron spins on 
the same edge are ferromagnetically coupled, and whether 
entanglement exists in such edge states or not needs more 
evidence to confirm. Moreover, from the practical standpoint, 
understanding the quantum correlation structure in ZGNRs is 
important for their future applications in quantum information 
processing.

In this paper, we employ the effective spin-ladder model 
to investigate the negativity and geometric quantum discord 
(GQD) in ZGNRs. First, we study the behaviors of quantum 
correlations in all edge spin pairs at T  =  0. Results show that 
negativity only exists in the inter-edge coupled spin pairs, 
and the dominant entanglement always occurs in the pair of 
nearest abreast spins across the ribbon. Compared with nega-
tivity, almost all edge spin pairs could have non-zero GQD. 
Both negativity and GQD strongly depend on the ribbon 
width and relative location between two considered spins. In 
particular, the robustness of entanglement and GQD against 
temperature will be shown. Finally, we focus on multiparticle 
entanglement (ME) shared in such many-body system, where 
the entanglement between one spin and the other two will be 
discussed emphatically.

2.  Definitions of measuring quantum correlations

For spin-1/2 systems, an arbitrary bipartite state ρAB can be 
expressed in Bloch representation,

ρAB =
1
4

Ñ
I ⊗ I +

3∑
i=1

xiσi ⊗ I +
3∑

i=1

yiI ⊗ σi +
3∑

i,j=1

Tijσi ⊗ σj

é
,

� (1)
where xi = tr(ρABσi ⊗ I), yi = tr(ρABσi ⊗ I), Tij = tr(ρABσi⊗  
σj), and σi, i ∈ {x, y, z} are three Pauli matrices. To quantify 
the total quantum correlation in the bipartite state ρAB, Dakić 
et al introduced the GQD, which is defined as [44]

DG(ρAB) ≡ Min
χAB∈Ω0

‖ρAB − χAB‖2,� (2)

where Ω0 denotes the set of all zero-discord states, the min-
imization is taken over all states χAB belonging to Ω0, and 
‖X − Y‖2

= tr(X − Y)2 is the square norm in the Hilbert-
Schmidt space. Compared with quantum discord (QD) intro-
duced by Ollivier et al, GQD is easy to compute and its explicit 
expression for the case of two qubits is given by

DG(ρAB) =
1
4
(‖�x‖2

+ ‖T‖2 − kmax),�
(3)

where kmaxis the largest eigenvalue of matrix K = �x�xT + TTT .
In order to analyze the entanglement, we use the negativity 

as the measurement, which is defined as [45]

N(ρAB) ≡

∥∥∥ρTA
AB

∥∥∥
1
− 1

2
=

∑
i

|µi|,� (4)

where ρTA
AB is the partial transpose of the density matrix ρAB 

with respect to subsystem A, 
∥∥∥ρTA

AB

∥∥∥
1
= tr
»

(ρTA
AB)

†
ρTA

AB is the 

trace norm of ρTA
AB, and µi are the negative eigenvalues of ρTA

AB. 
Note that negativity is a good detector for two-particle entan-
glement and ME, but it is invalid for positive partial transpose 
entangled states.

3. Two-spin entanglement and GQD in ZGNRs

The geometry of ZGNR is shown in figure 1. For ZGNRs, the 
electronic states with nearly zero energy are localized at the 
ribbon edge (so-called edge states), and give rise to a flat band 
extending over one-third of the 1D Brillouin zone within the 
region 2π/3 � |k| � π, as shown in figure 2. The flatness of 

Figure 1.  Lattice geometry of a zigzag graphene nanoribbon with 
W  =  8 zigzag lines across the ribbon. Such system can be mapped 
into an effective spin-ladder model, where the effective spin–spin 
interactions are ferromagnetic (antiferromagnetic) along (across) 
the edges and sketched here for one reference spin ‘3’.
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Figure 2.  The tight-binding-model band structures for ZGNRs 
with (a) W  =  8 and (b) W  =  10, respectively. The red part of the flat 
bands belongs to the edge states within the region 2π/3 � |k| � π.
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the energy distribution of the edge states leads to a high local 
density of states at the Fermi energy. Since the edge states are 
responsible for the edge magnetism, thus the edge states play 
an important role in the magnetic properties of ZGNRs. The 
on-site Coulomb repulsion between electrons splits degen-
erate edge states into spin-polarized bands, opening a band 
gap across the whole flat-band segment [46, 47]. According to 
[41], such magnetic interactions at the edges of ZGNRs can be 
described by the effective spin-ladder model,

Heff = −
∑
i<j,s

JF
ij�σis · �σjs +

∑
ij

JAF
ij �σiU · �σjL,� (5)

where periodic boundary conditions are assumed, �σjs denotes 
the vector of Pauli operator on the j th rung of the ladder at 
one leg s  =  U (L), JF

ij is the ferromagnetic coupling for spins 
located at the same edge, and JAF

ij is the antiferromagnetic cou-
pling between spins at the different edges. Due to the trans-
lational symmetry, these couplings depend on the relative 
distance (r = |i − j|) between spins, i.e. JF

ij = JF(r)/4 and 
JAF

ij = JAF(r)/4 . The method to calculate these coupling coef-
ficients J(A)F(r) is complicated and onerous (for more details 
see [41, 48]). As for leading order terms, the ferromagnetic 
couplings scale proportional to the on-site Coulomb repul-
sion U, and the antiferromagnetic couplings scale with t2/U  , 
where t ≈ 3 eV is the nearest-neighbor hopping amplitude. 
Following the [42], we choose U  =  t throughout this paper. 
Here four different width ZGNRs (W  =  6, 8, 10, and 12) are 
considered, where the effective couplings are given in table 1.

The density operator for the system (5) in equilibrium with 
a thermal reservoir is given by

ρ =
1
Z
exp(−βHeff),� (6)

where β = 1/kBT  , kB is Boltzmann’s constant, T is the absolute 
temperature, and Z = tr exp(−βHeff) is the partition function. 
Then, the reduced density operator for two spins at sites i and j , is 
obtained by tracing all but two considered spins,

ρij = trN−2(ρ).� (7)

Due to the translation invariance and U(1) invariance 
([H,

∑N
n=1 σ

z
n] = 0) of the Hamiltonian (5), the density 

matrix for state ρij  must have the form

ρij =
1
4

Ä
I ⊗ I + g1σ

x
i ⊗ σx

j + g2σ
y
i ⊗ σy

j + g3σ
z
i ⊗ σz

j

ä
,

� (8)

with g1 = tr
Ä
σx

i σ
x
j ρ
ä
, g2 = tr

Ä
σy

i σ
y
j ρ
ä
, and g3 = tr

Ä
σz

iσ
z
j ρ
ä
. 

Note that

g1 = g2 = g3 = g(i, j),� (9)

owing to the isotropy of exchange interactions, and 
g(i, j) = g(|i − j|) = g(r) because of the translational sym-
metry along the ribbon. After straightforward calculations, we 
obtain

DG(ρij) =
g(r)2

2
,� (10)

N(ρij) =

ß
− [1 + 3g(r)]/4, (−1 < g(r) < −1/3)
0, (−1/3 � g(r) < 1) ,� (11)

which depend on the relative location between two considered 
spins. Thus, we only need to fix one edge site as the reference 
point in the following discussions, and quantum correlations 
relative to the other reference sites are self-evident. For con-
venience, here we choose the site ‘3’ as the reference point.

We first focus on the pairwise entanglement and GQD 
in different width ZGNRs at zero temperature, as shown in 
figure 3. We can see that there is no entanglement between any 
two spins at the same edge, and entanglement always occurs in 
inter-edge coupled spin pairs (see figure 3(a)), where the dom-
inant entanglement always occurs in the pair of nearest abreast 
spins across the ribbon. Interestingly, negativity for state ρ33′ 
always decreases with the increasing ribbon width, while for 

Table 1.  Values of spin coupling coefficients in the effective spin-
ladder model for ZGNRs with U  =  t and W  =  6, 8, 10, and 12, 
respectively. The data are from [48].

r  (W = 6) JF(r)/t  JAF(r)/t 

0 0.09 702 854
1 –0.04 589 570 0.06 249 864
2 –0.00 545 912 0.01 750 839

r  (W = 10) JF(r)/t  JAF(r)/t 

0 0.01 964 170
1 –0.04 539 141 0.01 558 524
2 –0.00 474 753 0.00 798 144

r  (W = 8) JF(r)/t  JAF(r)/t 

0 0.04 034 668
1 –0.04 549 982 0.02 958 178
2 –0.00 494 775 0.01 207 769

r  (W = 12) JF(r)/t  JAF(r)/t 

0 0.01 238 082
1 –0.04 537 878 0.01 034 815
2 –0.00 466 976 0.00 614 887
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Figure 3.  (a) Negativity and (b) GQD as a function of the edge site 
m in ZGNRs with U  =  t, for W  =  6, 8, 10, and 12, respectively. The 
inset shows GQD for states ρ31 andρ32.
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state ρ31′ or ρ3,5′ negativity just displays the opposite behavior. 
Compared with negativity, all the edge spin pairs considered 
here hold non-zero GQD (see figure 3(b)). And GQD for intra-
edge coupled spin pairs increases with the increasing ribbon 
width, due to the reduction of antiferromagnetic suppression 
on the long range ferromagnetic order of system.

Figure 4 shows the thermal entanglement for different width 
ZGNRs. We can see that the thermal entanglement (TE) for 
the narrow ribbons is robust in against the temperature influ-
ence, and nearly keeps a constant even at room temperature, 
as shown in figures 4(a) and (b). For wide ribbons, TE visibly 
decreases with the increasing temperature (see figures  4(c) 
and (d)). These results could be understood by comparing the 
spin coupling strength with thermal fluctuations. When the 
temperature is low, the thermal fluctuations are trivial and the 
spin exchange couplings dominate system’s physical proper-
ties. While the temperature rises to a high value, behaviors 
of the system are then governed by thermal fluctuations. 
To determine the dominant magnetic order of system, the 
total spin coupling energy EW

tot = EFM + EAF  is calculated 
according to the Hamiltonian (5) and table 1. The results show 
that E6

tot  =  0.5787 eV, E8
tot  =  0.0854 eV, E10

tot  =  −0.1256 eV, 
and E12

tot  =  −0.2052 eV for W  =  6, 8, 10, and 12, respectively. 
E6

tot > E8
tot  >  0 indicates that the system mainly displays the 

antiferromagnetic order, which is responsible for the robust-
ness of TE in the narrow ribbons. For W  =  10 and 12 ZGNRs, 
the ferromagnetic order plays a central role, and TE becomes 
sensitive to the increasing temperature. For example, when 
W  =  12 the antiferromagnetic coupling between two nearest-
neighbor spins is JAF ≈ 0.1t/4 ≈ 100 K � kB, which suggests 

that if T  >  100 K the thermal fluctuations will significantly 
influence TE.

Similar to TE, GQD for antiferromagnetically coupled spin 
pairs also declines with the increasing temperature, and the 
decay rate is related to the ribbon width. In this circumstance, 
GQD for W  =  6 and 8 ZGNRs shows a wide plateau at room 
temperature (see figures 5(a) and (b)), due to the protection 
of the strong antiferromagnetic inter-edge couplings against 
the thermal noise effect. When the ribbon width increases, 
the thermal fluctuations rise to center stage, and thus the pla-
teau tends to shrink for the high temperature, as shown in fig-
ures  5(c) and (d). Interestingly, GQD for ferromagnetically 
coupled spin pairs always shows a wide plateau even at higher 
temperature. So, we predict that the pairwise GQD for sepa-
rable states in ZGNRs is more robust in against the thermal 
fluctuations than that for entangled states.

4.  ME in ZGNRs

To get further insight into the distribution of entanglement 
in ZGNRs, we discuss the properties of ME. Here we focus 
on the type of bipartite entanglement between one edge spin 
and the other two located at the opposite edge, with respect 
to all possible bipartitions. The reduced density operator for 
three spins can be expressed in terms of three-point correla-
tion functions, i.e.

ρijk =
1
8

∑
µ,ν,λ

〈
σµ

i σ
ν
j σ

λ
k

〉 (
σµ

i ⊗ σν
j ⊗ σλ

k

)
,�

(12)
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Figure 4.  Negativity for different states ρ33′, ρ34′, andρ35′, as a function of temperature T in ZGNRs with (a) W  = 6, (b) W  = 8, (c) W  = 10, 
and (d) W  = 12, respectively.
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where 
〈
σµ

i σ
ν
j σ

λ
k

〉
= tr

(
σµ

i σ
ν
j σ

λ
k ρ

)
, and μ, ν, λ  =  0, x, y , z 

(σ0 = I). By numerical calculation, the bipartite entanglement 
between one spin and the two at the opposite edge is obtained 
in terms of equation (4), as shown in figure 6. We can see that 
ME shared between three spins decays fast when temperature 

surpasses a certain value, and the decay rate increases with 
the increasing ribbon width. Compared with two-spin entan-
glement in figure  4, ME shared between the corresponding 
three spins is more robust. By meticulously comparing fig-
ures 6(a)–(f), we find that at low temperature ME persists a 
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10, and (d) W  = 12, respectively.
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plateau, which is shrunken as the ribbon becomes wider. For 
states ρ3|4′5′, ρ3|2′5′, and ρ3|1′5′, the plateau steps up with the 
increasing ribbon width when T  <  80 K, as shown in fig-
ures 6(a), (c) and (d). While for states ρ3|3′5′ and ρ3|3′4′, ME 
just displays the opposite behaviors (see figures 6(b) and (e)). 
Interestingly, for the narrow ribbon, ME exhibits a wide pla-
teau even above room temperature, whereas the plateau of ME 
for state ρ3|2′4′ with W  =  8 rises to the top at low temperature 
(see figure 6(f)), which is different from the other states. As 
can be seen in figures 6(a) and (c), ME for states ρ3|4′5′ and 
ρ3|2′5′ almost presents the same behavior, but the meticulous 
comparison shows that the relation N(ρ3|2′5′) � N(ρ3|4′5′) 
is always true for the ZGNR samples considered here, and 
figure 7 further confirms this result.

In figure  7, we numerically compared the difference 
between ME and the corresponding two-spin entanglement. 
According to the discussions in section 3, the spin A at one 
edge is separately entangled with spins B and C at the oppo-
site edge, with the nonzero negativities NAB and NAC, but 
there exist no entanglement between B and C (NBC  =  0) in 
ZGNR samples. By careful comparison, we found that ME 
shared between A and block B–C (NA|BC) is always bigger 
than NAB and NAC. While combining NAB with NAC, the sum 
(NAB   +NAC) is always larger than NA|BC. As can be seen in 

figure  7(a), the gap ∆(ρA|BC)  =  NAB  +  NAC  −  NA|BC for the 
narrow ZGNR is nearly a constant even above room temper
ature. For wide ZGNRs, ∆(ρA|BC) decays visibly with the 
increasing temperature, and its decay rate tends to increase 
with the increasing ribbon width (see figures  7(b)–(d)). 
Moreover, for these ZGNR samples the gap approximately sat-
isfies the following descending order: ∆(ρ3|3′4′)  >  ∆(ρ3|2′4′)   
>  ∆(ρ3|3′5′)  >  ∆(ρ3|4′5′)  >  ∆(ρ3|2′5′)  >  ∆(ρ3|1′5′).

5.  Conclusion and outlook

In summary, we explored the properties of the pairwise 
quantum correlations in ZGNRs, i.e. negativity and GQD. 
The results show that there is no entanglement between any 
two spins at the same edge, but it is allowed to exist in anti-
ferromagnetically coupled spin pairs. Moreover, the entangle-
ment for nearest inter-edge coupled spin pairs is always bigger 
than any other cases. Compared with entanglement, almost all 
edge spin pairs can hold non-zero GQD. And GQD for intra-
edge coupled spin pairs increases with the increasing ribbon 
width. Considering the thermal effect, entanglement and GQD 
always declines with the increasing temperature. Interestingly, 
GQD for ferromagnetically coupled spin pairs shows a wide 
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W  = 8, (c) W  = 10, and (d) W  = 12, respectively.

J. Phys.: Condens. Matter 32 (2020) 185601



X-D Tan and Q-H Mao﻿

7

plateau even at high temperature, which are related to com-
petition between the spin coupling interactions and thermal 
fluctuations. Further, we meticulously compared the two-
spin entanglement with the corresponding ME. The results 
show that ME (NA|BC) between the spin A at one edge and 
spin block B–C at the opposite edge is bigger than the corre
sponding two-spin entanglement NAB and NAC (NBC  =  0), 
but NA|BC  <  NAB  +  NAC in ZGNRs. In addition, ME is more 
robust than two-spin entanglement in against the temperature.

All the results here are concluded from the pristine ZGNRs. 
However, the real samples of ZGNRs always contain vacancy 
defects or impurities. It was shown that vacancy defects [49–54]  
or impurities [55–58] can induce local magnetic moments in 
graphene and graphene ribbons. Such local magnetic moments 
have significant influences on the physical properties of gra-
phene. Based on the first principles calculations, Huang et al 
demonstrated that the spin polarization will be suppressed 
with the increasing concentration of vacancy defects or impu-
rities at the edges of ZGNRs [59]. So, we can predict that 
quantum correlations probably decrease to zero when the 
concentration of edge vacancy defects or impurities exceeds a 
critical value. It was also found that the edge states in ZGNRs 
are susceptible to strain [60], bending [61], corrugation [62], 
electric field [63], and the location of the vacancies [54] or 
substitutional dopants [56–58] relative to the ribbon edges. As 
the charge carrier density can be controlled experimentally by 
gate voltage, thus Fermi level in ZGNR could be shifted under 
the electric field, which will lead to spin suppression due to 
the reduction and removal of edge states at the Fermi energy. 
Therefore, these factors must have important influences on the 
quantum correlations in ZGNRs. We will systemically investi-
gate these issues in future work.
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