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1.  Introduction

A true crystalline state with long-ranged translational order 
cannot exist at any non-zero temperature in two dimensions 
[1]. Low temperature phases with the long-ranged orien-
tational order that accompanies crystallinity are, however, 
stable. Renormalization group approaches suggest that such 
an orientationally ordered phase should first melt, via a con-
tinuous transition, into a phase with quasi-long-ranged ori-
entational order [1–5]. Subsequently, this ‘hexatic’ phase is 
expected to undergo a separate continuous transition into the 
disordered liquid [2–5]. Both orientational and translational 
order are short-ranged in the liquid state, decaying exponen-
tially over length scales of a few inter-particle spacings [6]. 

The remarkable possibility of a two-step continuous melting 
transition driven by the unbinding of topological defects has 
ensured that particle systems in reduced dimensions continue 
to remain a focus of theoretical and experimental attention 
[6–26].

While such two-stage melting [2–5] is now increasingly 
seen in large-scale, well-equilibrated simulations of particles 
interacting through simple power-law or hard-core potentials, 
it is now believed that these two separate transitions need not 
both be continuous. In one scenario, the melting transition 
from crystal to hexatic is proposed to be continuous but the 
subsequent hexatic to isotropic liquid transition to be first-
order [27]. An equilibrium hexatic phase has been seen in a 
number of systems [28–32]. Alternate proposals, involving a 
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Abstract
Quenched disorder affects translational and orientational correlations in two-dimensional 
interacting particle systems. Such disorder always suppresses orientational order in crystalline 
states. Surprisingly, in fluid phases of particles interacting with a power-law repulsive 
interaction, increasing the strength of a quenched Gaussian random pinning potential appears 
to enhance hexatic order locally. We propose that nearby pairs of pinned particles lock in the 
relative orientation of neighbours around them, propagating hexatic orientational order across 
larger distances than in the unpinned fluid. We test this idea using Monte Carlo simulations 
of interacting particles in their fluid phase in two dimensions, where two of the particles are 
constrained to be permanently pinned at a fixed distance from each other. We use Voronoi 
tesselations of instantaneous particle configurations to demonstrate that these pinned particles 
create hexatic neighbourhoods that can extend well beyond the range of their separation. This 
structuring is enhanced when the particle density is increased and is most prominent in the 
vicinity of the liquid-solid transition. Testing these ideas experimentally using experiments on 
2D colloidal systems should be feasible.
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direct, one-step first-order crystal to liquid melting transition, 
have also been discussed [33, 34]. The core energies for topo-
logical defects such as dislocations and disclinations, quanti-
ties that depend on the pair potential between particles, are 
now understood to play a role in deciding the nature of these 
transitions [35–43].

The question of phases and phase transitions in low- 
dimensional systems in the presence of disorder is particularly 
relevant to the interpretation of experimental data. Such 
disorder is typically both quenched and random. The term 
‘quenched’ indicates that the disorder enters through the spec-
ification of additional variables in the Hamiltonian that are 
not dynamical i.e. they do not fluctuate in time. If, in addition, 
these variables are random, they can be simply accounted for 
by specifying a probability distribution that generates them. 
For particles moving on a underlying two-dimensional sub-
strate, the substrate presents an effective one-body potential to 
the particles. A disordered substrate can be modelled as a one-
body potential, generated by a probability distribution with 
vanishing mean and specified two-point correlations, that acts 
on the particles.

Real-space imaging experiments [44], in which the tra-
jectories of colloidal particles can be recorded in time over 
a large field, now enable both equal time and unequal time 
correlations in such systems to be measured to high accuracy. 
Such experiments have renewed interest in measurements that 
were infeasible earlier. These include the accurate charac-
terization of multi-particle correlations in the fluid phase of 
particle systems in a two-dimensional quenched disordered 
background [12]. Experimentally, substrates that present a 
pre-determined pinning potential to the particles can be engi-
neered. A useful representation of a disordered substrate is in 
terms of a random potential landscape governed by Gaussian 
statistics [12, 45]. Such a landscape is fully characterised at 
the level of its two-point correlations. For interacting parti-
cles in this landscape, the measurable quantities of interest 
are usually the lowest-order distribution functions, since these 
can often be compared to theoretical predictions.

In a disordered fluid, the local time-averaged density ρ(r) is 
itself inhomogeneous in any single realization of the disorder. 
Translational invariance is restored on disorder averaging [11, 
12, 46], yielding the uniform density of the liquid, i.e.

ρ� = [〈ρ(r)〉] ,� (1)

where the brackets [·] denote a disorder averaging over the 
probability distribution from which individual disorder con-
figurations are generated and 〈·〉 denotes, as usual, the thermal 
average.

Similarly, while the conventional two-point correlation 
function

g(r, r′) =
1
ρ2

0
[〈ρ(r)ρ(r′)〉]� (2)

is a function of both locations r and r′ prior to disorder aver-

aging, the disorder-averaged quantity g(1)
r (r) defined as [10, 

11, 46]

g(1)
r (r) =

1
ρ2

0
[〈ρ(r)ρ(0)〉]− δ(r)

ρ0
,� (3)

is a function of the magnitude of the radial separation of the 
two points only.

Another interesting correlation function can be defined in 
a disordered system. This is the disorder-averaged correla-
tion of the time-averaged densities. Such a density correlation 

function, g(2)
r (r), is defined as

g(2)
r (r) =

1
ρ2

0
[〈ρ(r)〉〈ρ(0)〉] .� (4)

This is qualitatively different from g(1)
r (r). It is best thought of 

as an analogue of the Edwards–Anderson correlation function 
defined and studied for disordered spin systems.

Some years ago, we showed that Monte Carlo simulations 
and liquid state theory approaches could be used to calculate 
g(1)

r (r) and g(2)
r (r) for model two-dimensional particle sys-

tems in a quenched disordered background [10, 11]. More 
recently, we have investigated versions of these correlation 
functions that describe the persistence of orientational order 
in the fluid [46]. The appropriate disorder-averaged orienta-
tional correlation functions are defined using the local hexatic 
order parameter,

ψ j
6 =

1
nj

nj∑
k=1

exp(i6θjk),� (5)

where nj  counts the number of nearest neighbours of particle 
j . The quantity θjk is the angle between the vector from par-
ticle j  to its nearest neighbour k and the unit vector defining 
the reference x-axis. The associated orientational correlation 
function is [46]

g(1)
θ (r) = [〈ψ6(�r)ψ∗

6 (0)〉] ,� (6)

where ψ6(�r) =
∑N

i=1 δ(�r −�ri)ψ
i
6.

The analog of g(2)
r (r) for orientational correlations is 

defined [46] via

g(2)
θ (r) = [〈ψ6(�r)〉〈ψ∗

6 (0)〉] .� (7)

For simplicity we will refer to correlations that are simply the 
disorder-averaged correlation functions in the pure system 
as ‘diagonal’ correlation functions, whereas the Edwards–
Anderson [47] correlation functions, non-trivial in the dis
ordered fluid, will be referred to as ‘off-diagonal’ correlation 
functions. These reflect the way such correlations are defined 
using replica methods [10].

From these earlier studies, we concluded the following 
[46]: we found that off-diagonal orientational correlations 
increased with the strength of quenched disorder in the range 
of densities where the pure system was a liquid. For the higher 

densities appropriate to a crystal, g(2)
θ (r) decreased with dis

order at large r. This suggested that quenched disorder might 
enhance orientational correlations in a liquid while destroying 

it in a crystal. We obtained a re-entrant behavior, where g(2)
θ (r) 
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at large r first increased and then decreased as the disorder 
strength was increased.

We attributed this to a ‘lock-in’ mechanism aligning local 
orientational correlations along the axes joining well-pinned 
particles, possibly also aided by the presence nearby of a 
metastable or even stable hexatic phase [46]. Our simulations 
showed that the local neighbourhood of individual particles, 
defined in terms of the mean number of particles surrounding 
a central particle, seemed to vary relatively weakly with dis
order within the fluid phase. This supported our broad picture 
of the importance of an alignment of local orientational cor-
relations along the axes joining well-pinned particles. These 
arguments also indicated why such off-diagonal orientational 
correlations might increase with the strength of quenched 
disorder in the fluid phase. However, our earlier work [46], 
while conjecturing this as an explanation for our results, did 
not explore this specific possibility further.

This paper tests this idea in the following way. We can 
characterize the neighbourhood of any fixed particle through 
Voronoi tesselations [48] of instantaneous configurations of 
all particles, including those neighbouring the fixed particle. 
Such tesselations provide a ideal way of analysing the instan-
taneous configurations of particles in terms of the orientations 
of the neighbouring shells of particles. By superimposing 
a large number of Voronoi tesselations we can investigate 
whether orientational order about well-pinned particles might 
lead to a fixed configuration of the cage of other particles 
about them, even though the overall system is, on average, 
fluid-like.

We find here that the influence of a pair of particles pene-
trates to several neighbour shells about them, structuring hex-
atic order out to such scales. We conclude that the presence of 
pairs of well-pinned particles that are not too far away from 
each other structure their orientational neighbourhood and 
that the effect of such pinned pairs persists out to much larger 
scales. We suggest that this provides a plausible explanation 

for the anomalous behavior of g(2)
θ (r), at short to intermediate 

scales, as a function of increasing disorder.
This paper is organized as follows. In the next section (sec-

tion 2) we summarize the correlation functions studied in 
this work, describing in detail the model system used for this 
study. Section 3 presents our results. Last, in section 4 we out-
line our conclusions.

2.  Model and method

We largely follow the simulation procedures indicated in our 
previous paper [46]. We summarize them here for complete-
ness. Our model potential energy [11, 46] is given by,

Hint = ε
∑
i<j

(
σ0

rij

)12

+
∑

i

Vd(ri).� (8)

The first term represents the interactions between pairs of par-
ticles. We implement a cutoff for this interaction, setting it to 
zero if the particles are separated by a distance larger than a 

cutoff of rc = 2.5σ0. We scale all lengths in terms of σ0 = 1. 
The energy scale is set by taking ε = 1.

The second term represents the quenched disorder poten-
tial Vd(r). We generate this random potential following a 
method described by Chudnovsky and Dickman [45]. This 
one-body potential has zero mean and exponentially decaying 
short-range correlations in space, given by [45],

CV(r) =
[
〈V(x)V(y)〉|x−y|=r

]
/σ2 = exp(−r/ξ).� (9)

The variance of the Gaussian distribution σ2 defines the dis
order strength which we set to σ2 = 0.55. We choose ξ = 0.12, 
so that the disorder is effectively uncorrelated across an inter-
particle spacing.

Our averaging procedures are as described in [11, 12]. We 
use periodic boundary conditions across a rectangular box of 
dimensions Lx, Ly . The number of particles Np  is chosen so as 
to allow for the formation of a perfect triangular lattice within 
the box. Our particle densities are thus ρ0 = Np/(Lx × Ly).

We perform metropolis Monte Carlo (MC) temperature 
quench-and-hold simulations in two dimensions. We set the 
temperature T  =  1, driving the transition from liquid to solid 
by changing the density. The number of particles for the simu-
lations presented here are Np   =  1020. We exclude an initial 
105 MCS in all cases to ensure equilibration. We then average 
over t′ = 104 configurations, each separated by 102 MCS. In 
cases where we are required to average over disorder we use 
20 realizations. For the pure case, we average over 2 × 105 
such independent configurations. Our MC simulations at 
T  =  1 obtain a freezing density ρ0 ∼ 0.986, in good agree-
ment with results from earlier work [49].

We define nearest neighbours in the first shell using a cutoff 

criterion. The location of the first minimum in g(1)
r (r) is taken 

as the cutoff distance for counting a particle as a nearest neigh-
bour. We define the nearest neighbours in the second shell 
using a similar cutoff criterion, where we identify particles 
present at distances between the location of the first minima 

in g(1)
r (r) to the location of the second minima in g(1)

r (r) as 
belonging to a second neighbour shell. A similar definition, 
involving particles at a distance between the location of the 

second minima to the location of the third minima in g(1)
r (r) 

are counted as belonging to the third neighbour shell.
For the pure system, to examine structuring around pinned 

particles, we study the orientational neighbourhood of two 
pinned particles, placed at a fixed distance from one another. 
We also study the orientational neighbourhood of a single 
pinned particle, to check that our simulations reproduce the 
expected lack of any persistent structuring about it. To do this, 
we perform Voronoi tesselations across an ensemble of par-
ticle configurations in equilibrium. We use these to construct 
distribution functions of orientational order centred around 
the pinned particles [48].

Voronoi tesselations divide a plane into regions that are 
closest to each of a given set of points, in this case the instan-
taneous locations of particles. For a perfect triangular lat-
tice, all Voronoi cells are hexagons, indicative of the six-fold 
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symmetry of the triangular lattice. For a perfectly fluid phase, 
one expects that while a single snapshot will provide a parti-
tion of the space into a unique set of polygons describing the 
instantaneous orientational neighbourhood of each particle, 
averaging over a large number of snapshots should remove 
all traces of such structure. In contrast, if the neighbourhood 
of a particle retains some memory of its orientational struc-
ture across the timescales of the simulation or experiment, 
traces of local ordering should persist even after averaging. 
To perform this averaging, we divide the simulation box into 
small square sub-boxes of width dx  =  dy  =  0.1, counting the 
vertices of the tesselation within each box. We repeat this pro-
cedure for 2 × 105 independent configurations to obtain the 
averaged Voronoi tessellations by summing over vertex densi-
ties across such boxes.

We monitor θjk, the angle between the particle j  to its 
nearest neighbour k and the unit vector defining the reference 
x-axis, obtaining normalized probability distributions P(θ) for 
the single pin and two pins with a separation r = a, . . . , 5a, 
across the densities ρ = 0.8, 0.9, 0.95.

3.  Results and discussion

3.1.  Orientational and translational correlations in a  
disordered fluid

We begin by reproducing our central results for the diagonal 

and off-diagonal correlations g(1)
r (r), g(2)

r (r), g(1)
θ (r) and 

g(2)
θ (r) as defined in section  1 and computed as discussed 

in section  2. Our results for these correlation functions are 
presented in figure  1. We present results for three particle 
densities ρ0 = 0.8, 0.9 and 0.95 in the fluid regime, and for 
a disorder strength σ2 = 0.55. We restrict ourselves to these 
density values because our interest here is in orientational 
structuring in the correlated fluid phase, where we can be 

assured that we are measuring structure and correlations in 
thermal equilibrium. Thus we deliberately exclude from our 
analysis the disordered solid phase as well as a potential thin 
sliver of hexatic phase that might be present in close prox-
imity to the freezing transition.

The diagonal correlation function for densities, g(1)
r (r) 

closely resembles that in the pure system, as shown in 
figure  1(a). It is only weakly affected by the disorder. The 

off-diagonal translational correlation g(2)
r (r), shown in 

figure 1(b), decays rapidly to unity. Its oscillations are ampli-
fied at increasing density and the peak at r  =  0 enhanced.

The envelope of the diagonal correlation function for ori-

entations, g(1)
θ (r), shown in figure 1(c) decays exponentially 

to zero. This is as found in the liquid phase of the pure system. 
The off-diagonal orientational correlations, monitored 

through g(2)
θ (r) and shown in figure 1(d), are small and close 

to zero for density ρ0 = 0.8. This correlation function appears 
to fluctuate asymptotically around a numerically small yet 
non-zero value for the larger densities ρ0 = 0.9 and ρ0 = 0.95 
as shown. These results recapitulate observations in [46]. This 
suggests that hexatic order is promoted by quenched disorder, 
since such a correlation function should rightfully have van-
ished in the pure fluid phase. Numerically, given our choice 
of N, we are restricted to maximum particle separations of 
about 15 inter-particle spacings, so we can only conclude 
that disorder appears to promote medium-range hexatic order 
but cannot make conclusive statements about the asymptotic 
nature of such hexatic correlations.

3.2. The orientational neighbourhood of pinned particles: 
Voronoi tesselations

In this section, we present results for the averaged Voronoi 
tessellations as discussed in section  2 and the normalized 
probability distributions of the angle θ across the first, second, 
and third neighbour shells. Our results are summarized in fig-
ures 2–4 respectively.

We consider the pure system without disorder (Vd = 0 
in equation  (8)), simulating particle configurations in the 
neighbourhood of one or two permanently pinned particles, 
as described in section 2. A first set of results are shown in 
figures 2 and 3. The averaged Voronoi tessellations for den-
sities ρ0 = 0.8, 0.95 with either a single pinned particle or 
two pinned particles separated by r = a, 2a, 3a, 4a and 5a are 
shown in (a), and (b)–(f) respectively in these two figures.

For a single pinned particle, we expect that sufficient aver-
aging should yield an isotropic neighbourhood of particles, 
although we expect a density modulation about that particle. 
These are captured through the gr(r) for the pure system at 
that density. However, once we introduce two particles, the 
axis formed by the line connecting them breaks the isotropy. 
Note the strong π/3 orientations, seen as red, for the two pin 
case that are apparent at separation r  =  a. This structuring 
of local orientations decreases in amplitude as the separa-
tion of the pinned particles is increased. At separations of 
r  >  4a, the modulation can be represented simply as the sum 
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Figure 1.  Diagonal and off-diagonal correlations for various 
densities (ρ0): the disorder-averaged translational correlations 
(a) g(1)

r (r) and (b) g(2)
r (r) as a function of r. The orientational 

correlations (c) g(1)
θ (r) and (d) g(2)

θ (r) as a function of r. The 
densities are ρ0 = 0.8, 0.9 and 0.95.
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 (d)                                              (e)                                              (f)

 (a)                                             (b)                                              (c)

Figure 2.  Voronoi tessellations for pure system for a density ρ0 with one and two pinned particles: the averaged Voronoi tessellations for 
(a) a single pin, and two pins separated by r = a, 2a, 3a, 4a, 5a are shown in (b)–(f) respectively. These simulations are for the density value 
ρ0 = 0.8.
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Figure 3.  The Voronoi tessellations for pure system for a density ρ0: the averaged Voronoi tessellations for (a) a single pin, and two pins 
separated by r = a, 2a, 3a, 4a, 5a are shown in (b)–(f) respectively. Parameters: ρ0 = 0.95.
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of density modulations due to two separate non-interacting 
pinned particles.

In figure  3, we show results for the increased density 
ρ0 = 0.95. It is clear that the density redistribution arising 
from the two pinned particles cannot be decomposed into 
independent pieces even at a separation of r  =  5a. As correla-
tions build up at larger densities, the effects due to the pinning 
of two particles is not simply additive.

3.3. The orientational neighbourhood of pinned particles: 
angular distributions

Our Voronoi tesselations, as discussed in section 2, are well 
adapted to investigating questions of the instantaneous ori-
entational neighbourhood of pinned particles. In particular, 
we ask whether the structuring of the immediate neighbour-
hood induced by the presence of two nearby pinned particles 
might penetrate beyond their separation. We study these by 
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Figure 4.  The probability distribution of the angle in the first neighbour shell for various densities ρ0: the normalized probability 
distribution P(θ) of the angle θ subtended by the line joining a central pinned particle to a neighbour in the first neighbour shell, for 
sub-figure. (a) A single pin, where this angle is computed with respect to the x axis. Sub-figures. (b)–(f) Show the corresponding angle 
computed with respect to the axis formed by the line joining two pins separated by r = a, 2a, 3a, 4a, 5a. Data is shown for densities 
ρ0 = 0.8, 0.9, 0.95.
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Figure 5.  The probability distribution of the angle in the second neighbour shell for various densities ρ0: the normalized probability 
distribution P(θ) of the angle θ subtended by the line joining a central pinned particle to a neighbour in the second neighbour shell, for 
sub-figure (a) a single pin, where this angle is computed with respect to the x axis. Sub-figures (b)–(f) show the corresponding angle 
computed with respect to the axis formed by the line joining two pins separated by r = a, 2a, 3a, 4a, 5a. Data is shown for densities 
ρ0 = 0.8, 0.9, 0.95.
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computing, using these tesselations, the probability of finding 
a particle at a fixed angle from a central pinned particle. For 
two pinned particles, this angle is computed relative to the 
line joining them. For a single particle, the choice of an axis 
is arbitrary.

We expect the following: for a single pinned particle, the 
probability of finding another particle oriented at angle θ from 
it, in either the first, second or even third neighbour shell, 
should be uniform. For two pinned particles, however, the 
line joining them serves as an axis picked out in an otherwise 
unstructured liquid. The fact that two particles are constrained 
to lie at a specific distance along this axis constrains other 
particles, which must now populate preferred orientations 
with respect to the two particles that lie along that line. Apart 
from density-driven commensurability effects that occur if the 
two particles are within 1–2 inter-particle spacings from each 
other, we expect that the neighbourhoods of the two particles 
must now be structured, with peaks in the angular distribution 
with a periodicity of π/3 and multiples thereof. As we con-
sider shells of higher order, these angular correlations should 
become weaker until, asymptotically, they die out. We can 
extend this to the probability of finding a particle at a specific 
orientation in the first, second, third or even higher shell of 
neighbours.

Our results for the normalized probability distributions 
P(θ) of the angle θ for various densities ρ0 in the first, second, 
and third neighbour shells are shown in figures 4 (first neigh-
bour shell), 5 (second neighbour shell) and 6 (third neigh-
bour shell) respectively. In the first neighbour shell, shown 
in figure 4, the distribution is uniform for the single pinned 
particle. Similar behavior is seen for higher order neighbour 
shells, as shown in figures 5(a) and 6(a). This is, of course, 
expected since the presence of a single pinning site does not 
bias the angular distribution of particles in its neighbourhood.

Our results for two pinned particles across different neigh-
bour shells, with the particles separated by r = a, 2a, 3a, 4a 
and 5a are shown in figures  4(b)–(f), 5(b)–(f) and 6(b)–(f). 
For pins separated by r  =  a, as in figures 4(b), 5(b) and 6(b), 
the probability of a fluid particle appearing in-between them is 
suppressed for purely steric reasons. However, there are other 
prominent peaks separated by an angle of π/3 that appear in 
the angular probability distribution, pointing to a well-defined 
orientational neighbourhood.

As the separation of the pinned particles is increased, 
through r = 2a, 3a, 4a and 5a, the peaks in the nearest neigh-
bour shell are suppressed, as shown in figures 4(b)–(f). The 
peaks are most strongly suppressed for the lowest densities. 
As the density is increased, the periodic oscillations in P(θ) 
that are an indication of a well-formed angular neighbour-
hood become more prominent. They are only indistinguish-
able from the single pin case when particles are separated by 
more than about 4–5 inter-particle spacings.

Similar considerations hold for the higher-order neighbour 
shells. Commensurability effects lead to a large signal in the 
second neighbour distribution for r  =  2a (figure 5(c)). This 
signal is suppressed as the pinned particles are progressively 
separated. A similar commensurability is seen for the third 
neighbour shell for particles separated by 3a. Oscillations in 
the orientation of the neighbouring particles are prominent 
even at separations of r  =  4a.

4.  Summary and conclusions

In this paper, we first discussed the general problem of many-
body correlations in a collection of particles in two dimensions 
that interact with a inverse twelfth power potential [49]. These 
particles, in addition, also experience a quenched, random 
one-body potential field with short-ranged correlations 
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Figure 6.  The probability distribution of the angle in the third neighbour shell for various densities ρ0: the normalized probability 
distribution P(θ) of the angle θ subtended by the line joining a central pinned particle to a neighbour in the third neighbour shell, for 
sub-figure (a) a single pin, where this angle is computed with respect to the x axis. Sub-figures (b)–(f) show the corresponding angle 
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ρ0 = 0.8, 0.9, 0.95.
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[10–12]. We reproduced our earlier results for two point 
translational and orientational correlations in such a system, 
including those that calculated a new orientational correlation 
function, with non-trivial values only in systems of interacting 
particles with quenched disorder. The corresponding quantity 
involving positional correlations was studied earlier using a 
combination of liquid state theory, simulations and experi-
ments [10–12].

In our earlier work, we found that that increasing quenched 
disorder enhanced medium-range orientational (hexatic) corre-
lations in a liquid but destroyed it in a crystal. In this paper, we 
addressed this specific question, examining the suggestion that 
pairs of pinned particles might structure the neighbourhood 
around them so as to promote hexatic order. If the influence 
of these pairs of pinned particles could be propagated to larger 
scales, that would explain why quenched disorder plays such a 
counter-intuitive role in disordered fluids, acting both to sup-
press translational order while subtly enhancing orientational 
order, at least at intermediate scales accessible in simulations.

Our results indicated that the influence of a pair of parti-
cles pinned even at distances of about 4–5 inter-particle spac-
ings could structure upto the third shell or more of neighbours 
about them in terms of hexatic correlations. We used Voronoi 
tesselations, as discussed in the earlier section, to first identify 
the instantaneous neighbourhood about pinned particles. This 
then enabled us to compute the orientational neighbourhood 
about these particles. We found that orientational anisotropies 
could persist over a length scale much larger than the particle 
separation.

Our physical picture of orientational order in correlated 
classical fluids in the presence of quenched disorder is thus 
the following. The ability for system-wide orientational struc-
ture to persist in a disordered interacting particle system in its 
fluid phase can only arise due to the presence, to lowest order, 
of a low density of pairs of well-pinned particles that are not 
too far away from each other. These structure their orienta-
tional neighbourhood even in the fluid. Because the orienta-
tional (hexatic) correlation length, even in the fluid, is large, 
the effect of such pinned pairs can be expected to persist for 
larger length scales than the pair separation. Other particles, 
even if far away, can adjust their positions so as to best align 
with these neighbourhoods. This could then potentially lead 
to hexatic order that could propagate weakly across a finite 
system, as seen in our simulations. We expect that quenched 
disorder cannot stabilize a long-ranged ordered hexatic phase, 
although there have been suggestions of a hexatic glass with 
related properties [50]. In contrast to that suggestion, we con-
sider only the well-equilibrated fluid here.

We can suggest a number of additional directions that 
should be examined. The statistics of the minima of Gaussian 
random fields is one quantity that determines the probability 
of finding well-pinned particles proximate to each other. The 
study of effective field theories describing systems with short-
to-medium-range hexatic order in the presence of specific 
types of correlated random fields might also provide useful 
insights into this problem.

To the best of our knowledge, the idea that local orienta-
tional order in two-dimensional fluids might be most affected 
by pairs of pinning sites that define local axes within the fluid, 
with such order percolating across short to intermediate scales, 
is new. Indeed, the presence of such strong local triangular 
order, induced by pinning, in a fluid system might be relevant 
to earlier observations of non-trivial three-body correlations 
in fluid and glassy phases of superconducting vortex systems 
[51]. We look forward to further experiments that might be 
able to test these ideas.
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