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1.  Introduction

It has now been over a decade since the publication of the 
theoretical works of S. A. Mikhailov on the low-frequency 
(intraband) nonlinear response of the monolayer of graphene 
to an external electric field [1, 2], which marked the birth 
of the study of nonlinear optical (NLO) responses in two- 
dimensional materials. In the past ten years, this area has 
become increasingly active and diverse, as it gathered the 
attention of both theoretical [3–16] and experimental groups 
[17–25]. This has also been extended to many other, more 
recently isolated, layered materials [26–30]. In those mat
erials, like in graphene, the nonlinear optical response has 
been shown to be very intense, much more so than in three 
dimensional materials.

One key issue, that followed directly from those initial 
works, was to expand the understanding of the nonlinear 

intraband response—frequencies in the microwave and the 
infrared—into the high frequency range—frequencies in 
the near infrared and above [6–9]. Doing so required a full 
quantum treatment of the electrons in a crystal, and meant 
recovering the formalism for the calculation of NLO coeffi-
cients in bulk semiconductors of the late eighties and early 
nineties, developed by J. E. Sipe and collaborators [31–34]. 
Their work, mostly formulated in the so-called length gauge, 
provided expressions for the second and third order optical 
conductivities that are directly applicable to a system of non-
interacting electrons in a solid, taking both intraband and 
interband transitions into account. Many other works have 
since used this framework. In practice, due to the complexity 
of the general expressions, calculations of nonlinear optical 
conductivities usually require performing the analytical 
calculation (i.e. an integration over the FBZ) for the particular 
system under study: in third order this is already rather cum-
bersome. Often, it is only really tractable for simple effective 
Hamiltonians (such as the Dirac Hamiltonian in graphene), 
that describe only a portion of the FBZ. This has limited the 
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length gauge method to sufficiently small frequencies for such 
effective Hamiltonians to be applicable.

Another approach, based on the velocity gauge, was devel-
oped concurrently but presented early difficulties. Spurious 
divergences and inaccurate results upon the truncation of the 
number of bands led the velocity gauge to be less adopted. 
The origin of these difficulties was understood early on as 
a violation of sum rules [33]. This was solved only recently 
[14], with a reformulation of the velocity gauge that is able 
to reproduce the results from the length gauge and that is best 
suited for numerical calculations that involve the full FBZ. 
Two diagrammatic methods based on this formulation of the 
velocity gauge have since been developed [35, 36], the former 
of which was used in the study of Weyl semimetals, while the 
latter was shown to be applicable even in disordered systems. 
In this velocity gauge approach there is no added dificulty 
in moving to higher frequencies and in fact its implementa-
tion requires the use of models defined in the entire FBZ. The 
authors will use the new velocity gauge approach of [14] to 
probe the NLO response of graphene in a frequency range 
beyond the Dirac approximation.

We present numerical results for the second and third order 
responses of the plain graphene (PG) and gapped (GG) gra-
phene monolayers to a monochromatic electric field of frequen-
cies (energies) that range from the microwave (�ω ∼ 0.005 
eV) to the ultraviolet (�ω ∼ 6 eV). These results differ from 
what has been previously reported in literature [6–9, 14, 16] 
for two reasons: we go beyond the Dirac cone approximation 
(valid up to about 1 eV) and study the response of the PG and 
GG monolayers at high frequencies. Our calculations address 
all different components of the conductivity tensors—on 
which intrinsic permutation symmetry is imposed—and not 
the effective tensors of [16], which also goes beyond the Dirac 
approximation, but where Kleinman’s symmetry is addition-
ally imposed. Since this second symmetry follows from the 
consideration that the nonlinear susceptibilities (or conduc-
tivities) can be deemed dispersionless [37], it lacks justifica-
tion in the study of the response in these frequency ranges. 
Although seemingly technical in nature, this difference is 
practically relevant as the conductivities computed here can 
be directly related to measurements of the current response, 
Jα(t), in an experiment (regardless of the polarization of the 
electric field), whereas the effective tensors cannot.

The paper is organized as follows. In the following sec-
tion, we perform a review of the calculations of NLO con-
ductivities in the length and the velocity gauges. Section 3 is 
dedicated to the use of tight-binding Hamiltonians in velocity 
gauge calculations and to two pertinent points: the compu-
tation of h coefficients, which are integral to the description 
of the response in the velocity gauge become simple when 
working on a basis for which the Berry connections are all 
trivial; the second point concerns the relation between these 
Berry connections and the manner by which one defines 
the position operator in the lattice. It is shown that this has 
implications in the optical response by studying the interband 
portion of the linear conductivity of plain graphene. In sec-
tion 4, we present the aforementioned results, i.e. the second 
harmonic generation and optical rectification conductivities, 

of the GG monolayer and for the third order response, i.e. the 
harmonic generation and Kerr effect conductivities, of the PG 
and GG monolayers, in the aforementioned frequency regime. 
For the two second order effects the results are complemented 
by analytical calculations of the real part of the conductivities. 
The final section is dedicated to a summary of our work.

2.  Calculation of nonlinear optical conductivities in 
crystals

A system’s nonlinear current response to a monochromatic 
electric field, that is considered to be constant throughout the 
material,

E(t) = E0 e−iωt + (E0)
∗ eiωt� (1)

is described, in second order, by the second harmonic 

generation, σ
(2)
βα1α2

(ω,ω), and the optical rectification, 

σ
(2)
βα1α2

(ω,−ω), conductivities2,

J(2)
β (t) = σβα1α2(ω,ω)Eα1

0 Eα2
0 e−i2ωt

+ σβα1α2(ω,−ω)Eα1
0 (Eα2

0 )∗

+ c.c.,

�

(2)

while, in third order, it is described by the third har-

monic generation, σ(2)
βα1α2α3

(ω,ω,ω) and the Kerr effect, 
σ
(3)
βα1α2α3

(ω,ω,−ω), conductivities,

J(3)
β (t) = σβα1α2α3(ω,ω,ω)Eα1

0 Eα2
0 Eα3

0 e−i3ωt

+ σβα1α2α3(ω,ω,−ω)Eα1
0 Eα2

0 (Eα3
0 )∗ e−iωt

+ c.c..

�
(3)

The problem of studying J(n)
α (t) is thus a problem of knowing 

how to calculate the conductivities, σ(n), by means of a per-
turbative expansion. This topic has been the subject of intense 
research for crystalline systems [6, 9, 13, 14, 31–34] and we 
will use, in particular, results of our previous work [13, 14], in 
the following review of those calculations. The baseline con-
siderations here are the same as before: the electric field is 
constant throughout the crystal and electron-electron interac-
tions, integral to a description of an excitonic response, are not 
taken into account.

2.1.  Crystal Hamiltonian and its perturbations

In a perfect infinite crystal, the eigenfunctions of the unper-
turbed (crystal) Hamiltonian, H0, are, according to Bloch’s 
theorem, written in terms of a plane wave and a function that 
is periodic in the real space unit cell,

ψks(r) = eik·r uks(r),� (4)

for R , any lattice vector,

uks(r) = uks(r + R).� (5)

2 We consider two things in the following expressions: repeated cartesian in-
dexes are being implicitly summed over; conductivities satisfy the property 
of intrinsic permutation symmetry [37].
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Each of these eigenfunctions and its corresponding eigen-
value, εks, is labelled by a crystal momentum, k, that runs 
continuously throughout the first Brillouin zone (FBZ) and by 
the s index, indicating the band. For a d dimensional crystal, 
their normalization reads,

〈ψks|ψk′s′〉 = (2π)d δss′ δ(k − k′).� (6)

Furthermore, the periodic part of the Bloch functions (for a 
fixed k) also forms an orthogonal basis, with an inner product 
that is defined over the real space unit cell, instead of the 
entire crystal,

〈uks|uks′〉 =
1
vc

∫

vc

d3r u∗ks(r) uks′(r) = δss′ .� (7)

One can then write the full Hamiltonian, composed of the 
crystal Hamiltonian and the coupling of the electrons to the 
external electric field, in the single particle basis of band 
states. The explicit form of the coupling depends on the rep-
resentation one chooses for the electric field in terms of the 
scalar (φ(r, t)) and vector potential (A(r, t)), i.e. on the chosen 
gauge.

For the length gauge, the vector potential is set to zero,

E(t) = −∇φ(r, t),� (8)

and the coupling to the electrons is performed via dipole inter-
action, VE

kss′(t),

HE =

∫
ddk
(2π)d

∑
s,s′

|ψks〉
[
εks δss′ + VE

kss′(t)
]
〈ψks′ |,� (9)

where,

VE
kss′(t) = ieE(t) · Dkss′ .� (10)

The covariant derivative, Dkss′, is defined as [13],

Dkss′ = ∇kδss′ − iξkss′ ,� (11)

for ξkss′, the Berry connection between band states [38],

ξkss′ = i〈uks|∇kuks′〉.� (12)

As for the velocity gauge, it is the scalar potential that is set 
to zero,

E(t) = −∂tA(t),� (13)

and the full Hamiltonian in this gauge, HA, is obtained from 
HE by means of a time-dependent unitary transformation [13, 
14],

HA =
∫ ddk

(2π)d

∑
s,s′ |ψks〉

[
εks δss′ + VA

kss′(t)
]
〈ψks′ | , 		  (14)

for a perturbation, VA
kss′(t), that is written as an infinite series 

in the external field,

VA
kss′(t) =

∞∑
n=1

en

n!
Aα1(t)(...)Aαn(t) hα1(...)αn

kss′ .� (15)

The coefficients in that expansion, hα1(...)αn
kss′ , are given by 

nested commutators of the covariant derivative, equation (11), 
with the unperturbed Hamiltonian [14],

hα1(...)αn
kss′ = 〈uks|(∇αn

k ...∇α1
k H0k)|uks′〉,� (16)

=
1
�n

[
Dαn

k ,
[
(...),

[
Dα1

k , H0
]]
(...)

]
ss′ ,� (17)

with the first one being the velocity matrix element in the 
unperturbed system. Finally, one can write the velocity oper-
ator in each of the gauges: vβ = �−1

[
Dβ , H

]
. In the single 

particle basis, they read as

vE,β =

∫
ddk
(2π)d

∑
s,s′

|ψks〉v(0),β
kss′ 〈ψks′ |,� (18)

vA,β(t) =
∫

ddk
(2π)d

∑
s,s′

|ψks〉
[
v(0),β

kss′ +

∞∑
n=1

en

n!

× Aα1(t)(...)Aαn(t) hβα1(...)αn
kss′

]
〈ψks′ |.

�

(19)

2.2.  Density matrix and conductivities

The electric current density in the crystal is given by the 
ensemble average of the velocity operator times the charge of 
an electron,

〈Jβ〉(t) = (−e)Tr
[
vβρ(t)

]
,� (20)

= (−e)
∫

ddk
(2π)d

∑
s,s′

vβks′s ρkss′(t),� (21)

and it is written in terms of the matrix elements of the den-
sity matrix (DM), whose time evolution is described by the 
Liouville equation,

(i�∂t −∆εkss′)ρkss′(t) = [Vk, ρk(t)]ss′ .� (22)

Each gauge has its own set of equations of motion, following 
from the perturbations of equations (10) and (15). The pertur-
bative treatment of the current response requires an expansion 
of the ρkss′(t) in powers of the electric field and solving—
recursively—the equations of motion for the matrix elements 
of the DM, equation (22), in frequency space. For the velocity 
gauge, it also requires an expansion of the velocity matrix 
elements, equation (19), since these also depend on the elec-
tric field. At the end of that procedure [13, 14], one obtains 
the conductivities of arbitrary order n in both the length and 
velocity gauges. Here we only present the expressions for the 
second order conductivities, following the scattering prescrip-
tion described in [14],

σ
(2),E
βα1α2

(ω1,ω2) = e3
∫

ddk
(2π)d

∑
s,s′

hβks′s

�ω12 + 2iγ −∆εkss′

×
[
Dα1

k ,
1

�ω2 + iγ −∆ε
◦
[
Dα2

k , ρ(0)
k

]]
kss′

+ ({α1,ω1} ↔ {α2,ω2}),
� (23)
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σ
(2),A
βα1α2

(ω1,ω2) =
e3

ω1ω2

∫
ddk
(2π)d

∑
s,s′

[ hβ
ks′s

�ω12 + 2iγ −∆εkss′

×
([

hα1
k ,

1
�ω2 + iγ −∆ε

◦
[
hα2

k , ρ(0)
k

]]
kss′ +

1
2
[
hα1α2

k , ρ(0)
k

]
kss′

)

+ hβα1
ks′s

1
�ω2 + iγ −∆εkss′

[
hα2

k , ρ(0)
k

]
kss′

+
1
2

hβα1α2
ks′s ρ

(0)
kss′ + ({α1,ω1} ↔ {α2,ω2})

]
.

�

(24)

In the absence of an electric field, the zeroth order DM matrix 
element is given by the Fermi–Dirac distribution and the band 
space identity matrix,

ρ
(0)
kss′ = f (εks) δss′ .� (25)

The equivalence between these two conductivities, as well as 
for conductivities at an arbitrary order n, is ensured by the 
existence of sum rules [14, 32], that are valid as long as the 
integration over k is taken over the full FBZ. Though it is still 
possible to perform calculations using only a portion of the 
FBZ—e.g. graphene in the Dirac cone approximation [6–9, 
11]—one must do so in the length gauge [13], making it the 
suitable choice for analytical calculations [14]. In this work 
we present two analytical results, for the effects of second har-
monic generation and optical rectification, in the clean limit: 
γ → 0.

The velocity gauge, on the other hand, is suitable for 
numerical approaches that involve the entire FBZ [14]. It does 
not feature higher order poles, and it avoids having to take 
derivatives of the density matrix. Instead, for a response of 
order n, one has to compute all h coefficients, equation (16), 
up to order n  +  1, hα1...αn+1

kss′ . All numerical results in this paper 
were calculated in the velocity gauge.

3.  Velocity gauge for tight-binding Hamiltonians

A perturbative description of the response in the velocity gauge 
is correct only if the unperturbed Hamiltonian is defined in the 
full FBZ. For the purpose of this work, we consider it to be a 
tight-binding model. This section is therefore dedicated to two 
points that concern this type of Hamiltonian: we show that the 
calculation of h coefficients is made simple when one chooses 
a basis for which all Berry connections are trivial; we also 
trace the source of variations in the calculations of these coef-
ficients, and to the Berry connections found in the literature, 
to subtle changes in the definition of the position operator. 
This difference is illustrated in the linear optical response of 
the plain graphene monolayer.

3.1.  Covariant derivatives in the second Bloch basis

A tight-binding model is a simplified description of electrons 
in a lattice, where electronic motion is characterized by hop-
pings from one orbital to its neighbouring ones (tij (Rn, Rm)), 
where i, j index different orbitals of the same unit cell, which 
may have distinct on-site energies (εi). In real space,

H =
∑∑
Rn, Rn, i, j

[
tij(Rn, Rm)

∣∣φRn i
〉〈
φRm j

∣∣+ h.c.
]

+
∑
Rn

∑
i

εi(Rn)
∣∣φRn i

〉〈
φRn i

∣∣.� (26)

A |φRn i〉 represents a Wannier orbital centered at the position 
Rn + λi, with λi being the vector from that i-orbital site to the 
unit cell origin.

As seen in the previous section, the eigenvalues of this 
Hamiltonian are the bands, εks, and the eigenfunctions are 
the Bloch eigenstates, |ψks〉. There is, however, a second basis 
of functions that also satisfies Bloch’s theorem, where each 
Bloch state is built out of a single type of Wannier orbitals 
(same i),

∣∣ψki
〉
=

∑
Rn

eik·(Rn+λi)
∣∣φRn i

〉
.

�
(27)

A very common approximation is to define the position oper-
ator as diagonal in the Wannier basis:

r
∣∣φRn i

〉
= (Rn + λi)

∣∣φRn i
〉
.

�
(28)

Under this approximation, the periodic factor in the Bloch 
wavefunction

|uki〉 = eik·r|ψki〉 =
∑
Rn

∣∣φRn i
〉
,

is k independent and the Berry connections in this second 
basis is trivially zero,

ξαkij = i〈uki|∇α
k ukj〉.� (29)

This means that in the second Bloch basis, the covariant deriv-
ative (Dk) reduces to the regular derivative (∇k) and that the 
matrix element of the derivative of an operator is simply the 
derivative of matrix element of that operator [13],

〈uki| (∇α
k Ok) |ukj〉 = [Dα

k ,Ok]ij ,

=∇α
k [〈uki|Ok|ukj〉]− i [ξαk , Ok]ij ,

=∇α
k Okij.

�

(30)

The calculation of h coefficients is then fairly simple. 
Following from equation (16), and by use of the completeness 
relation for the states in the second basis, we can see that

hα1...αp
kss′ =

∑
i,j

〈uks|uki〉〈uki|
(
∇α1

k ...∇αp
k Hk

)
|ukj〉〈ukj|uks′〉,

=
∑

i,j

cks,i
(
∇α1

k ...∇αp
k Hkij

)
c∗ks′,j,

�

(31)

for, cks,i, the solutions to the eigenvector problem for that par
ticular value of k,

|ψks〉 =
∑

i

cks,i|ψki〉.� (32)

The Berry connection, in particular, is

ξαkss′ = i〈uks|∇α
k uks′〉,

= i〈uks|ukj〉〈ukj| (∇α
k ) (|uki〉〈uki|uks′〉) ,

� (33)
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= i
∑

j

cks,j∇α
k c∗ks′,j,� (34)

since ∇α
k (|uki〉〈uki|uks′〉) = |uki〉∇α

k 〈uki|uks′〉. Note that this 
procedure for computing the h coefficients has a profound 
impact on how the numerical calculations of the conductivity 
are performed: by having Hkij that are analytical, one can 
easily compute their derivatives. All other operations, such as 
solving the eigenvalue/eigenvector problem and calculating 
matrix elements in the band basis, can be done numerically 
and much more efficiently.

3.2.  Choosing a representation for the tight-binding  
Hamiltonian

There is a second issue concerning tight-binding Hamiltonians 
that, though it does not pertain solely to the velocity gauge, 
is extremely relevant in the calculation of nonlinear optical 
conductivities. For simplicity, we present the following dis-
cussion in terms of the nearest neighbour tight-binding model 
for the PG monolayer, since it will be used in our description 
of the nonlinear optical responses. The hopping parameter is 
set to 3 eV, both in this section and throughout the rest of the 
work [14, 16].

This Hamiltonian is usually written in two different ways,

Hk,(a/δ) =

[
0 (−t) φ(δ/a)(k)

(−t) φ∗
(δ/a)(k) 0

]
.

�
(35)

The first comes directly from the definition of the second 
Bloch basis as that in equation (27),

φ(δ)(k) = eik·δ1 + eik·δ2 + eik·δ3 ,
�

(36)

and is expressed in terms of the vectors connecting an atom 
to its nearest neighbours, figure 1. The other way of writing 
this Hamiltonian is associated to a second Bloch basis that has 
its states phase shifted with respect to those of equation (27),

∣∣ψ̃ki
〉
=

∑
Rn

eik·Rn
∣∣φRn i

〉
,� (37)

such that hoppings are written in terms of the lattice vectors 
a1 and a2, [6, 9, 14],

φ(a)(k) = 1 + eik·(a2−a1) + eik·a2 .� (38)

Both representations have the same eigenvalues since the φ 
functions are related by a phase factor,

φ(a)(k) = eik·δ2 φ(δ)(k).� (39)

There is, however, a very important subtlety. If we use equa-
tion  (31) to define the h coefficients, or equation  (34) to 
compute the Berry connection we obtain different results, 
both found in the literature, in the two representations: equa-
tions (36) and (38).

It would appear that the condition for a trivial Berry con-
nection in the entire FBZ, equation (29), that follows from the 
definition of the position operator of equation (28) is satisfied 
in the ψki basis but it is not satisfied in the ψ̃ki basis, since

∣∣ũki
〉
= eik·r∣∣ψ̃ki

〉
=

∑
Rn

eik·δi
∣∣φRn i

〉
.� (40)

Still one needs to point out equations (31) and (34) are still 

valid for the 
∣∣ψ̃ki

〉
 basis of equation (37), provided we define r 

differently, effectively neglecting the distances inside the unit 
cell, |λi|,

r
∣∣φRn i

〉
= Rn

∣∣φRn i
〉
.� (41)

These two different representations of the position operator, 
correspond naturally to different approximations to the per-
turbation term, and can lead to different results. To illustrate 
these distinctions it is worthwhile to compare the responses 
that follow from either representation, under the consideration 
that h coefficients can be computed following equation (31), 
for both the zig–zag and armchair directions.

Figure 1.  The honeycomb lattice of graphene with lattice parameter 
|δ2| = a0 and the armchair in the ŷ direction. We have represented 
both the lattice vectors, (a1, a2), and the vectors connecting an A 
atom to its nearest neighbours, (δ1, δ2, δ3). In plain graphene (PG), 
the atoms A and B are equivalent, in gapped graphene (GG), these 
are not.

Figure 2.  The real and imaginary parts of the interband portion 
of the linear conductivity, σxx(ω), for tight-binding Hamiltonians 
written in the lattice vector (ai) and nearest neighbour (δi) 
representations. The relevant parameters here are µ = 0.5 eV, 
γ = 0.005 eV and T  =  1 K. The conductivity is normalized with 
respect to σ0 = e2/4�.

J. Phys.: Condens. Matter 32 (2020) 185701
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First, we consider the linear response along the zig–zag 
direction, σxx(ω), represented in figure  2. In this case, the 
responses that follow from the two representations are exactly 

the same, as both ξx
kij  and ξ̃x

kij  are zero. This is due to the fact 
that δ2 points in the ŷ or armchair direction and as such, does 
not bear an influence in the response along the zig–zag direc-
tion. For the armchair direction, however, it is clear that the 
results in the two representations are different, figure 3. More 
importantly, we can see that in lattice vector representation, 
the responses along zig–zag, σxx(ω), and armchair directions, 
σyy(ω), are different from one another, figure 3(a). The use of 
the approximation described in equation (41) fails to properly 
translate the symmetry properties of the PG monolayer, par
ticularly at high frequencies [37]. In the nearest neighbours 
representation, that property is indeed fulfilled. It was this 
latter representation that we used for the remaining numerical 
results in this work.

4.  Results

In this section, we present the results for the second order 
response, i.e. the second harmonic generation and optical rec-
tification conductivities, of the gapped graphene monolayer 

and for the third order response, i.e. the third harmonic 
generation and Kerr effect conductivities, of the plain and 
gapped monolayers to a monochromatic electric field. We 
considered different values for the gap and chemical poten-
tial, ∆ and µ, as well as different values for the scattering 
rate, γ , but not different values for the temperature, T, as its 
effect is similar to that of γ , which is to broaden the features. 
T is thus set, throughout this work, to 1 K. Since all non-
linear optical conductivities are monotonically decreasing—
the exception being the regions around processes at the gap 
(or twice the chemical potential) and around the van Hove 
singularities—these were represented in the two frequency 
regions separately, so as to make the features more visible. It 
must be said of these high frequency results that they should 
be taken only as an indication of what the response should 
look like—they were calculated in the independent particle 
approximation and, as such, do not consider the effect of 
excitons [39, 40]. Finally, we emphasize that the following 
conductivities satisfy the property of intrinsic permutation 
symmetry [37].

4.1.  Second order response of the gapped graphene  
monolayer

A gap is introduced in the plain graphene Hamiltonian, equa-
tion (35), by adding to it a term that breaks the equivalence 
between the A and B atoms, diag(∆/2,−∆/2), and thus the 
centrosymmetricity of the PG monolayer. The study of the 
remaining symmetries in the point group then tells us that 
there is only one relevant component for this conductivity 
tensor: σyyy, with y  being the armchair direction [28]. In addi-
tion, the relation between this component and the remaining 
nontrivial components reads as,

σxxy = σxyx = σyxx = −σyyy.� (42)

The following results have been normalized with respect to 
σ2 = e3a0/4t� = 2.87 × 10−15 S·m/V [28].

4.1.1.  Second Harmonic generation (SHG).  We begin 
with the study of the one photon (�ω ∼ ∆) and two photon 
(2�ω ∼ ∆) processes at the gap for values of ∆ = 30, 300 
meV [16] and for two different values of the scattering rate, 
γ = 0.005, 0.001 eV, figure 4. It is clear from these results that 
the shape of the features is highly dependent on the interplay 
between the gap and scattering parameters, γ  and ∆. For the 
larger scattering rate and smaller gap, we can see an overlap of 
the two and one photon peaks, figure 4(a), which is markedly 
different from what happens for the larger gap, figure  4(b), 
where the two peaks are clearly distinct. For smaller values 
of the scattering rate, represented by dashed curves, there is a 
sharpening of the features—now narrower and taller—and the 
results for the two gaps are similar. To study the zero scatter-
ing limit, γ = 0, we turn to the analytical results—represented 
by the thicker green curve—that are obtained in the length 
gauge, equation (23). It can be shown that the real part of the 
two photon process in the second harmonic generation can be 
expressed in terms of the shift current coefficient that has been 
previously derived in [33, 34],

Figure 3.  The real and imaginary parts of interband portion 
of the linear conductivities, σxx(ω) and σyy(ω), following from 
equations (38)/(36), the lattice vector representation (a) and the 
nearest neighbour representation (b). The chemical potential is 
again fixed to 0.5 eV.
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Re [σyyy(ω,ω)]
σ2

= −8it
π

∫
d2k ξy

vc

(
ξy

cv

)
;y δ(2�ω −∆εcv)

� (43)
using the standard notation for the generalized derivative, (
ξα1

ss′
)

;α2
= ∇α1

k (ξα2
ss′ )− i(ξα1

ss − ξα1
s′s′)ξ

α2
ss′  [33]. By having a 

delta function in the integrand, one can see that the relevant 
contributions to the study of the two photon processes at the 
gap will come from the two regions of the FBZ around the 
band minimum, K, K′ = ±4π/3

√
3a0 x̂, which motivates 

a momentum expansion of the band around those points. 
Furthermore, since the delta function fixes ∆εcv directly to 
twice the photon energy it is the suitable variable of integration,

∆ε2
cv = ∆2 + 4t2 |φδ(k)|2 .� (44)

Now, by expanding the hopping function, φδ, for small 
momenta around one of the band minima,

|φδ(k = K + q)| = 3 |q|
2

− 3 |q|2

8
cos(3θ) +O(|q|3),� (45)

where |q| and θ are the radial and polar coordiantes associated 
with q, and by rewriting equation (44) with the help of equa-
tion (45), we obtain,

1
t

√
∆ε2

cv −∆2 =
3 |q|

2
− 3 |q|2

8
cos(3θ) +O(|q|3).� (46)

We have effectively related one of our integration variables, 
|q|, with the small parameter δ(∆εcv) =

√
∆ε2

cv −∆2/t . It is 
now possible to invert this series, so as to obtain |q| in terms 
of δ,

|q| = δ

3
+

δ2

36
cos(3θ) +O(δ3).� (47)

Performing this change of variable in the integral, |q| → δ , 
enables us to compute the integration in equation (43) analyti-
cally. The result is an expansion in powers of (2�ω)2 −∆2, 
which in the lowest orders reads,

Re [σyyy(ω,ω)]
σ2

= Θ(2�ω −∆)
[2t
∆

+
( t

9∆
− 2t3

∆3

)

×
((2�ω

t

)2
−
(∆

t

)2)
+ (...)

]
.

� (48)

This represented in figure 4, alongside the numerical results 
of the velocity gauge. We must note that, had we carried only 

Figure 4.  The real and imaginary parts of the second harmonic 
generation, σyyy(ω,ω), close to the one photon and two photon 
processes at the gap: 30 meV in the top plot, (a), and ∆ = 300 
meV in the bottom plot, (b) for different values of the scattering 
rate. The green curve represents the γ = 0 analytical result. The 
parameters not listed in the plots are the chemical potential and 
the temperature, which will be fixed to µ = 0 eV, T  =  1 K. These 
values are used in the remaining figures of this section.

Figure 5.  The real and imaginary parts of the SHG in GG, 
σyyy(ω,ω), for frequencies around the two (�ω ∼ t) (a) and one 
(�ω ∼ 2t) (b) photon processes at the van Hove singularity. The 
imaginary parts for the two photon processes are represented on 
the inset. Curves labelled as scaled have been divided by a factor of 
∆/300 meV. The scattering parameter for these plots is γ = 0.005 
eV.
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linear terms in |q| in the expansion of the hopping function, the 
Re [σyyy(ω,ω)] would be exactly zero, for the same reason it 
vanishes in the monolayer of plain graphene: in that case, the 
Berry connections, ξαqss′, are odd under q → −q, and the int
egral vanishes necessarily. To obtain a nontrivial second order 
response in GG one has to consider the trigonal warping terms 
in the expansion of equation (45). The high frequency results, 
i.e. those for the two (�ω ∼ t) and one (�ω ∼ 2t) photon 
processes at the van Hove singularities, are represented in 
figure 5. We can see that the features—for different values of 
∆—are centered around slightly different different energies, 
as

∆ε2
VHS = ∆2 + 4t2 |φδ(M)|2 .� (49)

Note also that the absolute value of these conductivities scales 
with ∆—the opposite behavior to what we found for the 
response at the gap. Another, quite surprising, point concerns 
the features for the real and imaginary parts of these conduc-
tivities as they are switched with respect to the real and imagi-
nary parts of the conductivities at the gap, figure 4. It is now 
the real part that has the shape of a logarithmic-like divergence 
while the step-like behavior is present in the imaginary part.

4.1.2.  Optical rectification.  The other second order process 
that can be observed in the response to an external monochro-
matic field is the generation of a DC current, described by the 
optical recitification conductivity: σyyy(ω,−ω), figures 6 and 
7.

From the inspection of the response at photon energies 
close to the value of the gap, �ω ∼ ∆, figure 6, we can see 
that this tensor component is always finite (even in the zero 
scattering limit), meaning that there is indeed the absence of 
the injection current, as prescribed by the symmetry properties 
of the GG monolayer, equation (42). The remaining portion of 
this response is associated to the shift current and has a feature 
which is similar to that of the second harmonic generation at 
the gap, figure 4(b). In the zero scattering limit, we have [34],

σyyy(ω,−ω)

σ2
= −4it

π

∫
d2k ξy

vc

(
ξy

cv

)
;y δ(�ω −∆εcv).� (50)

By comparison with the two photon resonance in the second 
harmonic generation, equation (48), we can see the two effects 
are essentially described by the same function with just dif-
ferent arguments—2ω  in the case of the SHG—and an extra 
factor of two3,

Re [σyyy(ω,−ω)]

σ2
= Θ(�ω −∆)

[ t
∆

+
( t

18∆
− t3

∆3

)

×
((�ω

t

)2
−
(∆

t

)2)
+ (...)

]
.

�

(51)

The similarity between the optical rectification conductivity 
and the second harmonic generation is also present at higher 
frequencies, �ω ∼ 2t , figure 7. Apart from a sign switch and 
the absence of the imaginary part—the symmetrized optical 
rectification conductivity is necessarily real—this result is 
very similar that of figure 5(b).

Figure 6.  The optical rectification conductivity, σyyy(ω,−ω), in 
GG for frequencies close to the gap: ∆ = 30 meV in the top plot 
(a) and ∆ = 300 meV in the bottom plot (b) for different values of 
the scattering rate. The green curve represents the γ = 0 analytical 
result of equation (51).

Figure 7.  The optical rectification conductivity, σyyy(ω,−ω), in 
GG for frequencies around the one photon process at the van Hove 
singularity. Curves labelled as scaled have been divided by a factor 
of ∆/300 meV. The scattering parameter in this plot is γ = 0.005 
eV.

3 We have compared this with the analytical result of [28] and found a minus 
sign discrepancy, which—according to our calculations—follows from 
excluding the derivative portion of the generalized derivative.

J. Phys.: Condens. Matter 32 (2020) 185701



G B Ventura et al

9

4.2. Third order response of the GG and PG monolayers.

The third order response is finite even in the presence of inver-
sion symmetry and as such, we present results for both the 
gapped graphene and the plain graphene monolayers for the 
nonlinear processes of third harmonic generation and optical 
Kerr effect. Though associated to different point group sym-
metries, the components of their third order conductivities sat-
isfy the same relations,

σyyyy = σxxxx = σxxyy + σxyxy + σxyyx,
σxxyy = σyyxx, σxyxy = σyxyx, σxyyx = σyxxy.

� (52)
As we are also imposing intrinsic permutation symmetry, 
there is only one relevant component in third harmonic gener-
ation (THG), with all other components of the tensor trivially 
expressed in terms of it,

σxxyy(ω,ω,ω) = σxyxy(ω,ω,ω) = σxyyx(ω,ω,ω),
σxxyy(ω,ω,ω) = 1

3σxxxx(ω,ω,ω) = 1
3σyyyy(ω,ω,ω).

� (53)
We will thus present only the σyyyy in our study of the THG. 
For the optical Kerr effect, we consider both the σyyyy and σyxxy 
components. The following results have been normalized by 
σ3 = e4a2

0/8�t2 = 6.84 × 10−26 S·m2/V2.

4.2.1. Third harmonic generation (THG).  One of the points 
covered in a previous subsection (SHG) concerned the inter-
play between ∆ and γ , and how this affected the features one 
sees in the conductivities. If one were to do this analysis in the 
THG, one would again conclude that for larger scattering rates 
one sees a broadening, possibly even a merger, of the main 
features in the conductivity. The scattering rate is therefore 
fixed to γ = 0.005 eV. We will, instead, focus on the THG of 
the gapped and plain graphene monolayers, in the case where 
the value of the gap in the GG is equal to the energy value  
of the region of states that are Pauli-blocked, 2µ, of the PG, 
and that this is equal to 300 meV, figures 8 and 9.

We begin by studying the response of the several different 
photon processes, n�ω = ∆, 2µ for n = 1, 2, 3, figure 8. It is 

clear that the conductivities for gapped and plain graphene are 
very much different: for the three photon resonance, there are 
prominent features in both sets of curves but the sign appears 
to be switched with respect to one another; for the two photon 
resonance, there are no clear features in the GG monolayer, 
whereas in the PG, one finds a shoulder and a local minimum 
in the real and imaginary parts, respectively. An exception 

Figure 8.  The real and imaginary parts of the third harmonic 
generation, σyyyy(ω,ω,ω), in the GG, ∆ = 300 meV, and PG, 
2µ = 300 meV, monolayers for frequencies that cover the different 
(one, two and three) photon processes at the gap / twice the value 
of the chemical potential. Note that the vertical scale is in units of 
106. The inset represents a zoom-in in the region of the one photon 
process, �ω ∼ ∆, 2µ.

Figure 9.  The real and imaginary parts of the third harmonic 
generation, σyyyy(ω,ω,ω), for frequencies around the three photon 
(3�ω ∼ 2t ), (a), two photon (�ω ∼ t), inset of (a), and one photon 
(�ω ∼ 2t), (b), processes at the van Hove singularity in the GG, 
∆ = 300 meV, and PG, 2µ = 300 meV, monolayers.

Figure 10.  The real and imaginary parts (the latter is represented 
in the inset) of the optical Kerr effect for the components, 
σyyyy(ω,ω,−ω) and σyxxy(ω,ω,−ω), in the GG, ∆ = 300 meV, 
and PG, 2µ = 300 meV, monolayers for frequencies around the 
one photon process at the gap / twice the value of the chemical 
potential. Note that the vertical scale is in units of 106. 
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to this, however, are the features for the one photon process, 
inset of figure 8. The differences between the low frequency 
limit of the gapped and plain graphene monolayer can be 
easily ascribed to the intraband terms of the response, domi-
nant in this frequency range, that are completely absent from 
the response of the GG—a cold semiconductor—but present 
in the response of the doped PG monolayer.

For higher frequencies, associated with the different pro-
cesses around the van Hove singularities, figure  9, we can 
see that the conductivities of the PG and GG monolayers 
are rather similar. For those energies, the band structures are 
rather similar (as ∆ � t) and the chemical potential that is set 
in the PG is completely irrelevant. The only difference in the 
two curves comes from the different energy values for the van 
Hove singularity, equation (49).

4.2.2.  Optical Kerr effect (OKE).  Our final set of results con-
cerns the optical Kerr effect (OKE), once again calculated 
for the cases of the GG and PG monolayers of parameters, 
∆ = 2µ. Now, unlike the THG—equation (53)—not all non-
zero components of the conductivity tensor associated with 
the OKE can be directly related to the diagonal terms. To 
show their differences, we present the σyyyy(ω,ω,−ω) and 

σyxxy(ω,ω,−ω) components in the low-frequency portion of 
the response, i.e. around the one and two photon processes at 
the gap (twice the chemical potential for the PG), figures 10 
and 11(a), as well as the response around the one photon 
process at the van Hove singularity, figure 11(b). Figure 10 
shows that the two conductivity components of the GG mono
layer have opposite signs—in both the real and the imaginary 
part—and that they are similar, but not exactly equal, in mod-
ulus. In the PG, it is only the height of the features that is dif-
ferent, being less pronouced in the off-diagonal component. 
For the two photon processes at the gap (twice the chemical 
potential), figure  11(a), both the GG and PG conductivities 
display sign differences between the two tensor components 
and the property observed in the one photon seems to appear 
in reverse: here it is in the response of the GG that we see 
the less pronounced features for the off-diagonal component; 
the PG conductivities have opposite signs and are rather simi-
lar, in modulus, across the frequency range considered. For 
the high frequency response, i.e. one photon processes at the 
van Hove singularity, figure  11(b), we see that the features 
on both components of the OKE conductivity are essentially 
the same, differing only by an overall factor of three. As in 
the THG, the only distinction between responses of the GG 

Figure 11.  The real and imaginary (the latter represented in the insets) parts of the Kerr effect, σyyyy(ω,ω,−ω), in the GG, ∆ = 300 meV, 
and PG, 2µ = 300 meV, monolayers for frequencies around ∆ = 2µ, (a), and for frequencies around the van Hove singularity, (b). Note 
that the vertical scale in both figures is in units of 106.

Figure 12.  The real and imaginary (the latter represented in the insets) parts of the Kerr effect, σyyyy(ω,ω,−ω), in the GG, ∆ = 300 
meV, and PG, 2µ = 300 meV, monolayers for frequencies around 2�ω ∼ ∆ = 2µ (a), and for frequencies around �ω ∼ ∆ = 2µ (b) for 
different values of the scattering parameter: γ = 0.005 eV (black), γ = 0.0025 eV (red) and γ = 0.001 eV (orange). Note that in (b), the 
conductivities for different γ  have been scaled by different factors: 1.5 for black, 0.5 for red and 0.1 for orange. As before, the vertical scale 
in both figures is in units of 106.
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and PG monolayers comes from the fact the different energy 
values for the van Hove singularity: slightly higher in the GG 
monolayer, equation (49).

A second point of interest in the OKE concerns the exist-
ence of a divergence in the real part of its associated conduc-
tivity for frequencies above the one photon absorption at the 
gap (twice the chemical potential) in the scatteringless limit 
[33], that is related to the acceleration of electron-hole pairs—
produced in one photon absorption processes—by a static, 
nonlinear, electric field. This divergence should be present in 
both the GG and PG monolayers and was indeed seen in an 
analytical calculation of the OKE in the monolayer of plain 
graphene, in the context of a linearized band [6]. Although 
we cannot probe this singularity directly—in the sense that 
the scattering parameter is necessarily finite in the numerical 
calculations—we find that it is nonetheless clear that such a 
divergence does exists, in both the PG and the GG monolayer. 
Figure 12 represents the real and imaginary parts of the OKE 
conductivity for frequencies around the two photon (a) and 
one photon (b) at the gap (twice the chemical potential) for 
different values of the scattering parameter, γ . For frequen-
cies, 2�ω ∼ ∆ = 2µ, figure 12(a), we can see that a decrease 
in the value of γ  is associated with sharper features in a small 
region around the absorption threshold, that then tend to 
merge as one moves to frequencies away from those around 
the threshold. This is similar to what we have observed in fig-
ures 4(b) and 6(b) and it is the expected behavior for features 
in any given regular conductivity. When we move to frequen-
cies above the one photon absorption, �ω � ∆ = 2µ, this 
no longer holds for the real part of the OKE conductivity. It 
increases in absolute value as γ  is reduced with the curves for 
different γ  running parallel to one another. Instead of a well-
localized feature, one can see the appearance of a divergence.

5.  Summary

In this work we have studied second and third harmonic gen-
eration, the optical rectification and the optical Kerr effect 
for the gapped and plain graphene monolayers to a mono-
chromatic pulse by using the density matrix formalism in the 
velocity gauge as well as in the length gauge. Although the 
topic is not new, this is the first work to present all tensor 
components of the nonlinear conductivities of these materials, 
in a frequency range that extends beyond the Dirac approx
imation. We emphasize that the tensor components considered 
here are not the effective tensors of [16], the use of which, we 
think, has not been adequately justified.

To calculate the conductivities in this work, we used the 
velocity gauge formalism developed in a previous work [14] 
with an additional point that we presented here: the choice 
of an adequate basis—the second Bloch basis—can be used 
to reduce covariant derivatives to regular k-space deriva-
tives, which in turn simplifies the computation of the h coef-
ficients that are required for the calculation of nonlinear 
optical responses in the velocity gauge. We have also shown 
how this treatment of the covariant derivative is related to the 

representation of the position operator, the choice of which 
bears an influence in the results.

As for the nonlinear conductivities themselves: for the 
second harmonic generation and the optical rectification 
conductivity at the gap, the numerical results of the velocity 
gauge were complemented by analytical, zero scattering limit, 
results in the length gauge. From these numerical results we 
saw how the interplay between the gap, ∆, and the scattering 
rate, γ , affected the form of the features at low frequency. For 
higher frequencies, that is, around the van Hove singularity, 
we saw the relation between conductivities of GG monolayers 
with different values of the gap as well as a blueshift of the fea-
tures for increasing values of ∆. For the third order response, 
we instead focused on a comparison between the responses 
of the gapped graphene and doped plain graphene monolayer, 
in the case where the excluded energy region for interband 
transitions is the same, i.e. ∆ = 2µ. We saw, in the case of 
the THG, that the low frequency limit in the two materials is 
very different, which can be traced back to the presence of 
intraband terms in the response of the doped PG monolayer. 
For higher frequencies, the two responses are very much alike, 
with the exception of the shift that follows from the different 
location of the van Hove singularity. For the OKE, we studied 
two different components of the conductivity tensor, for both 
low and high frequencies, as well as the existence of a diver-
gence for frequencies above the one photon absorption at the 
gap (twice the chemical potential) in the response of both the 
PG and the GG monolayers.
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