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1.  Introduction

The moiré method was first introduced ~50 years ago [1, 2]. 
Moiré patterns are low-frequency fringe patterns generated 
by the geometric interference between two grids with similar 
frequencies. The geometric interference, which amplifies dis-
placement without distortion, makes the moiré method more 
sensitive compared with other structured light methods. Using 
the phase-shifting method [3–5], we can easily calculate full-
field phase maps and then unwrap the phase [6–8] to calculate 
displacement.

In the projection moiré approach, a specimen grating is 
projected onto an object’s surface. The measurement area 
can be adjusted by increasing or reducing the projection area. 
The projection moiré method [9, 10] is used to measure out-
of-plane displacement. With a reference plane, the out-of-
plane displacement can be considered as height. Owing to 
its advantages of being a non-contacting, high-speed, full-
field-measuring, and high-resolution method, the projection 
moiré method is widely applied in many fields [11–16], such 
as detection of structural scoliosis [13] and measurement of 
elastic-plastic stress/strain [14, 15]. Obviously, the moiré 

method’s resolution positively correlates with the grid fre-
quency. Higher frequency implies smaller grating pitch, 
yielding larger phase changes for the same height. When 
measuring a large object in high resolution (for example, 
monitoring a satellite’s antenna deformation) and prescribing 
adjustment for segmented components, if the measurement 
area is simply expanded by adjusting the zoom lens in the 
projection system, the system’s accuracy and resolution will 
decrease; a way to overcome this drawback is to develop a 
rotation scanning measurement system.

Much research has been done on applications of struc-
tured light scanning to problems, such as three-dimensional 
(3D) object modeling [17], robot vision [18], and documenta-
tion of archaeological finds [19]. These scanning techniques 
were developed based on different structured light methods, 
including line-structured light and surface-structured light, 
and the measurement accuracy and resolution are expected 
to decrease in most circumstances. Taking a facial scan-
ning system, for example, the error for the same observer is 
under 1 mm, while the inter-observer error is ~1.5 mm [20]. 
Given that surface-structured light has higher measurement 
efficiency, and the projection moiré method has the highest 
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resolution among surface structured light methods, we believe 
it is necessary and meaningful to develop a scanning projec-
tion moiré technique.

In our previous work, we have already built a model for an 
arbitrarily arranged projection moiré system, derived expres-
sions for linking phase variation and height, presented an 
iterative method to calculate the height from the phase, and 
proposed a calibration method to calibrate the system param
eters [21]. These findings are also applicable to the rotation 
scanning projection moiré system. Considering the structural 
characteristics of measurement systems, scanning projection 
moiré systems can be classified into two types: (i) a single-
axis mode with a projection system and a receiving system 
placed on the same turntable, and (ii) a dual-axis mode with 
a projection system and a receiving system placed on two 
turntables. Nevertheless, the single-axis mode can be seen as 
a special case of the dual-axis mode, and the theory for the 
dual-axis mode can also be applied to the single-axis mode. 
The main problem that needs to be solved is how the system 
parameters would transform after rotation. For the sake of 
simplicity of the rotation scanning system, the two main parts 
of the rotation scanning projection moiré system (the pro-
jecting system and the receiving system) could be seen as one 
block, the components and configurations of which would not 
change in both systems. This paper first introduces the basic 
principle of the projection moiré topography. Next, we pro-
vide a detailed derivation of parameter transformations for 
the rotation scanning projection moiré technique. Finally, we 
describe a system-validation experiment.

2. Theory

2.1.  Projection moiré topography

Figure 1 illustrates a generalized arbitrarily arranged projec-
tion moiré system. The projection system on the left bottom 
projects fringe pictures, and the receiving system captures 
pictures. The projection system can be divided into two 
parts: a wide-angle lens, L1, and a ‘luminous’ grating, G1. 
Usually G1 is a light-emitting element in a projector, which 
is a digital micromirror device (DMD) showing fringe pic-
tures. L1 amplifies parallel fringes onto the object’s surface. 
The fringe projection is modulated by the object’s surface. 
The receiving system is composed of a wide-angle lens, L2, 
a standard grating, G2, and a charge-coupled device (CCD) 
camera linked to a computer to capture digital images behind 
them. L2 images modulated fringes onto G2, where the moiré 
pattern is generated. The CCD camera transforms the optical 
information into digital information, and all the moiré patterns 
on G2 are recorded as digital images. The world coordinate 
system (OXYZ ) is fixed in the reference plane, and two other 
coordinate systems, O1X1Y1Z1, and O2X2Y2Z2, are fixed at the 
lenses, with the centres of lenses O1 and O2 being the origin, 
while the lenses’ axis stand for theZ1 and Z2 axes.

Considering an arbitrary point A (x, y, z) in the reference 
plane, its coordinates in the other two coordinate systems, 
O1X1Y1Z1, and O2X2Y2Z2, are (x1, y1, z1) and (x2, y2, z2), 
respectively:

(x1, y1, z1)
T
= R1(x, y, z)T

+ T1� (1)

(x2, y2, z2)
T
= R2(x, y, z)T

+ T2.� (2)

R1, R2 are unit orthogonal rotation matrices. T1, T2 are transla-
tion vectors.

A1 and A2 are the corresponding points of A on the two 
gratings. Regarding the projection system as an inverse 
camera, and considering the receiving system as a whole, 
the pixel coordinate (u1, v1) of A1 in the fringe picture, and 
the pixel coordinate (u2, v2) of A2 in the picture captured  
by the CCD are

(u1, v1, 1)T
= K1

Å
x1

z1
,

y1

z1
, 1
ãT

� (3)

(u2, v2, 1)T
= K2

Å
x2

z2
,

y2

z2
, 1
ãT

.� (4)

K1 and K2 are intrinsic parameters of the projection and the 
receiving systems.

The phase of the moiré pattern is the difference between 
the two gratings:

ϕ1(x,y,z) =

Å
2πu1

p1
+ ϕ10

ã
−
Å

2πu2

p2
+ ϕ20

ã
.� (5)

p1 and p2 are the equivalent pitches of gratings G1 and G2 
in the pixel. p1 is the period of the fringe pattern we project 
onto the reference plane. p2 = p × c, where p is the pitch of 
the standard grating G2, and c is the scale factor of the CCD 

Figure 1.  Schematic of the projection moiré system.
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camera. ϕ10 and ϕ20 are the initial phases of gratings G1 and 
G2.

Removing the reference plane and putting an object in the 
measurement area, point A (x, y, z) becomesA′ (x, y, z+h (x, y)). 
Its phase is calculated in the same way:

(x′1, y′1, z′1)
T
= R1

(
x, y, z + h(x,y)

)T
+ T1� (6)

(x′2, y′2, z′2)
T
= R2

(
x, y, z + h(x,y)

)T
+ T2� (7)

(u′1, v′1, 1)T
= K1

Å
x′1
z′1

,
y′1
z′1

, 1
ãT

� (8)

(u′2, v′2, 1)T
= K2

Å
x′2
z′2

,
y′2
z′2

, 1
ãT

� (9)

ϕ2(x,y,z+h(x,y)) =

Å
2πu′1

p1
+ ϕ10

ã
−
Å

2πu′
2

p2
+ ϕ20

ã
.� (10)

The change in the phase caused by h (x, y) is

∆ϕ(x,y,z,h(x,y)) =
2π
p1

(u′1 − u1)−
2π
p2

(u′2 − u2) .� (11)

When the reference plane coincides with the Z  =  0 plane, the 
out-of-plane displacement equals to the height. Substituting 
all intermediate variables, u1, u′

1, u2, u′
2, into equation  (11) 

with the corresponding expressions of x, y , h, we obtain

∆ϕ(x,y,h(x,y))

= 2πK111
p1

[
R111x+R112y+R113h(x,y)+T11

R131x+R132y+R133h(x,y)+T13
− R111x+R112y+T11

R131x+R132y+T13

]

+ 2πK112
p1

[
R121x+R122y+R123h(x,y)+T12

R131x+R132y+R133h(x,y)+T13
− R121x+R122y+T12

R131x+R132y+T13

]

− 2πK211
p2

[
R211x+R212y+R213h(x,y)+T21

R231x+R232y+R233h(x,y)+T23
− R211x+R212y+T21

R231x+R232y+T23

]

− 2πK212
p2

[
R221x+R222y+R223h(x,y)+T22

R231x+R232y+R233h(x,y)+T23
− R221x+R222y+T22

R231x+R232y+T23

]
.

�

(12)

Kijk(i = 1, 2; j = 1, 2; k = 1, 2) is the element in the j th row and 
kth column of matrix Ki,Rijk(i = 1, 2; j = 1, 2, 3; k = 1, 2, 3)is 
the element in the j th row and kth column of matrix Ri, and 
Tij(i = 1, 2; j = 1, 2, 3) is the j th element of vector Ti.

Equation (12) is a universal formula that expresses the 

relationship between the phase difference ∆ϕ(x,y,h(x,y)) and 
height h (x, y), for a generic optical setup. Using the four-
step phase shifting method, it is easy to calculate the whole 

field’s phase maps and phase difference ∆ϕ(x,y,h(x,y)). h (x, y) 
can be worked out using an iterative numerical algorithm after 
system calibration.

2.2.  Rotation scanning projection moiré technique

Figure 2 shows two typical types of rotation scanning projec-
tion moiré system: (a) the single-axis mode with a projection 
system and a receiving system placed on the same turntable; 
and (b) the dual-axis mode with a projection system and a 
receiving system placed on two turntables. The basic projec-
tion moiré method still works in the rotation scanning projec-
tion moiré system. The main problem that needs to be solved 
is how to calculate the system parameters of the system after 
rotation. Driven by the desire to keep the rotation scanning 
system simple, the two main parts of the rotation scanning pro-
jection moiré system, namely the projecting system and the 
receiving system, can be considered as one block whose comp
onents and configurations do not change during experiments.

Figure 2.  Two types of rotation scanning projection moiré system: 
(a) single-axis mode, (b) dual-axis mode.

Figure 3.  (a) An arbitrary axis rotation transformation, 
(b) translation of coordinate system, (c) rotation around the 
X  coordinate axis, (d) rotation around the Y  coordinate axis, 
(e) rotation around the Z  coordinate axis.
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Overall, there are four fundamental transformations, one 
translation and three rotations around different coordinate 
axes:

Ñ
x′

y′

z′

é
=

Ñ
x
y
z

é
−

Ñ
a
b
c

é
� (13)

Ñ
x′

y′

z′

é
=

Ñ
1 0 0
0 cosα sinα
0 − sinα cosα

éÑ
x
y
z

é
� (14)

Ñ
x′

y′

z′

é
=

Ñ
cosβ 0 − sinβ

0 1 0
sinβ 0 cosβ

éÑ
x
y
z

é
� (15)

Ñ
x′

y′

z′

é
=

Ñ
cos θ sin θ 0
− sin θ cos θ 0

0 0 1

éÑ
x
y
z

é
.� (16)

We denote the four fundamental transformations as 
T
(
a b c

)
, RX (α), RY (β), and RZ (θ).

Any complex coordinate transformation could be 
separated into a series of fundamental transformations. 
Considering the coordinate system rotates about an arbi-
trary rotation axis, the rotation angle θ is given, as well as 
all of the parameters of the rotation axis PQ including posi-

tion information P
(
x0 y0 z0

)T
 and direction information 

−→
PQ =

(
a b c

)T
. The transformation can be separated into 

seven steps.

	(1)	�Translate the coordinate system and make the origin 
coincide with P , denoted as T

(
x0 y0 z0

)
.

	(2)	�Rotate the coordinate system around the X  coordinate 
axis and make the rotation axis in the XOY  plane, 
denoted as RX (α). The rotation angle α is determined by 

sinα = − b√
b2+c2

, cosα = c√
b2+c2

.

	(3)	�Rotate the coordinate system around the Y  coordinate 
axis and make the rotation axis coincide with the Z  coor-
dinate axis, denoted as RY (β). The rotation angle β is 

determined bysinβ =− a√
a2+b2+c2

, cosβ =

√
b2+c2√

a2+b2+c2
.

	(4)	�Rotate the coordinate system around the Z  coordinate 
axis, denoted as RZ (θ). θ is the rotation angle.

	(5)	�Apply the inverse transformation of Step 3, denoted as 
RY (−β).

	(6)	�Apply the inverse transformation of Step 2, denoted as 
RX (−α).

	(7)	�Apply the inverse transformation of Step 1, denoted as 
T
(
−x0 −y0 −z0

)
.

Figure 3 shows the first four transformations. According to 
these seven transformations, the coordinate transformation M 
after the coordinate system rotating around an arbitrary axis 
could be worked out from the following equation:

M = T
(
−x0 −y0 −z0

)
RX (−α)RY (−β)RZ (θ)

RY (β)RX (α) T
(
x0 y0 z0

)
.

�
(17)

The coordinates before and after the rotation has the relation 
as follows:

Ñ
x′

y′

z′

é
= R(x0,y0,z0,a,b,c,θ)

Ñ
x
y
z

é
+ T(x0,y0,z0,a,b,c,θ)� (18)

where

R(x0,y0,z0,a,b,c,θ) = RX (−α)RY (−β)RZ (θ)RY (β)RX (α)

T(x0,y0,z0,a,b,c,θ) = T
Ä

x0 y0 z0
ä
− R(x0,y0,z0,a,b,c,θ)T

Ä
x0 y0 z0

ä
.

� (19)
x0, y0, z0, a, b, c, θ are rotation parameters.

Table 1.  System parameters before and after rotation.

Initial

Projection system: 
−−−→
P1Q1 θ1 Projection system: 

−−−→
P1Q1 θ2

Receiving system: 
−−−→
P2Q2 γ1 Rotation system: 

−−−→
P2Q2 γ2

R1 R11 = R(x01,y01,z01,a1,b1,c1,θ1)R1 R12 = R(x01,y01,z01,a1,b1,c1,θ2)R1

T1 T11 = R(x01,y01,z01,a1,b1,c1,θ1)T1 + T(x01,y01,z01,a1,b1,c1,θ1) T12 = R(x01,y01,z01,a1,b1,c1,θ2)T1 + T(x01,y01,z01,a1,b1,c1,θ2)

K1 K1 K1

R2 R21 = R(x02,y02,z02,a2,b2,c2,γ1)R2 R22 = R(x02,y02,z02,a2,b2,c2,γ2)R2

T2 T21 = R(x02,y02,z02,a2,b2,c2,γ1)T2 + T(x02,y02,z02,a2,b2,c2,γ1) T22 = R(x02,y02,z02,a2,b2,c2,γ2)T2 + T(x02,y02,z02,a2,b2,c2,γ2)

K2 K2 K2

Figure 4.  Schematic plot of rotation axis calibration.
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Considering that the single-axis mode could be seen as a 
special case of the dual-axis mode in which the two rotation 
stages share a rotation axis, the theory for the dual-axis mode 
can also be applied to the single-axis mode. We are going to 
discuss parameter calculation in the dual-axis mode. Given 
the system parameters before the rotation, as well as related 
rotation parameters, it is possible to work out the extrinsic 
system parameters after rotation, using the coordinate trans-
formation formulas as above.

Take the projection system as an example. Considering 
an arbitrary point A (x, y, z), its coordinates in the coordinate 
system O1X1Y1Z1 is (x1, y1, z1):

(x1, y1, z1)
T
= R1(x, y, z)T

+ T1.� (20)

If the coordinate system rotates around an axis by a certain 
angle, all of the rotation parameters x01, y01, z01, a1, b1, c1, θ1 
are known. According to equation  (18), the coordinate of 
point A after the rotation is

(
x′1 y′1 z′1

)T
= R(x01,y01,z01,a1,b1,c1,θ1)(x1, y1, z1)

T

+ T(x01,y01,z01,a1,b1,c1,θ1).
�

(21)

Substituting equation (20) in (21):
(
x′1 y′1 z′1

)T
= R11(x, y, z)T

+ T11

R11 = R(x01,y01,z01,a1,b1,c1,θ1)R1�

(22)T11 = R(x01,y01,z01,a1,b1,c1,θ1)T1 + T(x01,y01,z01,a1,b1,c1,θ1).

Because the components and configurations in the projection 
system do not change during the rotation, the internal param
eter K1 can be seen as a constant matrix. Only the external 
parameters will change after the rotation: R1, T1 will change 
into R11, T11. Equation  (22) provides the formulas for their 
calculation.

If the projection system rotates by another angle, θ2 , the 
exterior parameters, R12 and T12, can be worked out in the 
same way:

(
x′′1 y′′1 z′′1

)T
= R12(x, y, z)T

+ T12

R12 = R(x01,y01,z01,a1,b1,c1,θ2)R1�

(23)T12 = R(x01,y01,z01,a1,b1,c1,θ2)T1 + T .

Similarly, if the receiving system rotates around another 
axis, the parameters of this axis, x02, y02, z02, a2, b2, c2, are 
known, as well as two different rotation angles γ1, γ2, and the 
coordinate transformations are as follows:

(
x′2 y′2 z′2

)T
= R21(x, y, z)T

+ T21

R12 = R(x01,y01,z01,a1,b1,c1,θ2)R1� (24)

T21 = R(x02,y02,z02,a2,b2,c2,γ1)T2 + T(x02,y02,z02,a2,b2,c2,γ1)

(
x′′2 y′′2 z′′2

)T
= R22(x, y, z)T

+ T22

R12 = R(x01,y01,z01,a1,b1,c1,θ2)R1�

(25)T22 = R(x02,y02,z02,a2,b2,c2,γ2)T2 + T(x02,y02,z02,a2,b2,c2,γ2).

In general, if the object’s 3D surface reconstruction needs 
to be conducted from three different measurement angles, we 
take the two positions in the middle as the 0° position for each 
system, as shown in figure 2(b). The rotation angles for the 
projection system and the receiving system are θ1, θ2 , γ1, γ2, 
also marked in figure 2(b). Summarizing equations (22)–(25), 
the changed exterior parameters can be calculated; these are 
listed in table 1. The first column lists the system parameters 
when the projection system and receiving system are at their 
initial positions. Column 2 and Column 3 list system param
eters after the two systems are rotated to different positions. 
However, a precondition is that rotation parameters need to 
be calibrated. Actually, calibration of rotation parameters 
can be conducted at the same time as the camera and pro-
jector calibrations. The latter is needed because a calibration 
board is moved and the board’s image is captured from sev-
eral different orientations. If the calibration board is fixed, the 
camera can be rotated to different positions for image acquisi-
tion, which is equivalent to fixing the camera and rotating the 
calibration board around the same axis. Thus, the axis could 
be fitted out with those grid points’ discrete circular tracing 
points.

3.  Experiment

To validate our approach, we conducted an experiment using 
the dual-axis mode for measuring a gypsum plate from three 
different directions. Before that, system parameters should 
be calibrated in the first place, including camera intrinsic 
parameter, extrinsic parameter, as well as two rotation axes’ 
parameters.

3.1.  System calibration

Zhang’s method [22] is fast, simple, and most widely applied. 
The calibration process only needs to take a few picures of a 
calibration board from different orientations by moving either 
the calibration board or camera. Both the intrisic and extrinsic 

Figure 5.  Gypsum plate with bamboo design.
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Figure 6.  Four-step phase shifting moiré patterns of the gypsum plate.

Table 2.  Parameters of the rotation scanning projection moiré system.

Projector Receiving system

Intrinsic parameter

K1 =

Ñ
3865.2 0 959.5

0 3852.3 599.5
0 0 1

é
K2 =

Ñ
2283.1 0 830.4

0 2281.2 782.9
0 0 1

é

Extrinsic parameter

R1 =

Ñ
0.0158 0.9766 0.2145
0.9953 0.0052 −0.0969
−0.0957 0.2150 −0.9719

é
R2 =

Ñ
0.0123 0.9876 −0.1283
0.9998 −0.0104 0.0155
0.0140 −0.1285 −0.9916

é

T1 =

Ñ
−9.2
−30.6
889.7

é
T2 =

Ñ
−29.4
−60.4
745.7

é

Rotation parameter
Ñ

x01
y01
z01

é
=

Ñ
3.0
0

153.6

é Ñ
x02
y02
z02

é
=

Ñ
26.8

0
−108.2

é

Ñ
a1
b1
c1

é
=

Ñ
−0.0017

1
−0.0003

é Ñ
a2
b2
c2

é
=

Ñ
−0.0001

1
−0.0002

é

Table 3.  Rotation angles of the projection system and the receiving system.

Status 1 Status 2 Status 3

Projection system/° 0 7 −8
Receiving system/° 0 8 −7

Meas. Sci. Technol. 31 (2020) 045018
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parameters could be worked out, as well as corner points’ 
coordinates under different orientations.

In a projection moiré system, the receiving system could be 
seen as a whole, like a camera, and the projector also could be 
seen as an inverse camera. Both of them could be calibrated 
using Zhang’s method. The intrinsic and extrinsic parameters 

in the initial position are listed in table 2. Please refer to [21] 
for more details.

The rotation parameter means the rotation axes’ position 
and direction. We fix the calibration board, rotate the projector 
and receiving system, and take a few pictures. Figure 4 shows 
the calibration board and seven positions of the projector. 

Figure 7.  Reconstruction result for the gypsum plate.

Figure 8.  Height curves of the 3D surface measurement result for the gypsum plate: (a) the 100th row, (b) the 210th row, (c) the 330th row.

Meas. Sci. Technol. 31 (2020) 045018
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Rotation parameters can be worked out by fitting arc locus. 
The rotation parameters are also listed in table 2.

3.2.  Measurement experiment

The gypsum plate’s dimensions were 800 mm  ×  420 mm; the 
plate is shown in figure 5. The rotation angles of the projection 
system and the receiving system for the different measuring 
statuses are listed in table 3. Figure 6 shows the moiré pat-
terns of the gypsum plate during the experiment. The mea-
surement area for each status was about 200 mm  ×  180 mm. 
The white dotted lines are three randomly picked lines; their 
height curves will be discussed later.

The result of the reconstruction is shown in figure 7. By 
combining the measurement results for the three statuses, we 
obtain a 480 mm  ×  180 mm reconstructed surface. For more 
details, we drew three lines across the reconstructed surface 
and show the height curves in figure 8. The real error is the 
difference between the results for the different view-angles of 
the same point, but it is not very difficult to find each point’s 
corresponding point. The height curve in figure 8 can only tell 
the Z coordinate error from different view-angles. The max-
imal error of the Z coordinate is ~0.5 mm.

Generally, if we want to discuss measurement error, the 
real value is needed as a reference. In our experiment, we 
measured a complex unknown surface; it is difficult to ascer-
tain the exact coordinate information. So we conduct another 
experiment using the same method. Firstly, we measure the 
surface of a planar board. Then, we translate the board twice 
toward projection moiré system and measure its surface, 5 mm 
at a time. Table 4 gives the measurement error of the transla-
tion experiment. The error of status 1 is smaller than the other 
two status. It is completely comprehensible. Status 1 is the 
initial position, where the extrinsic parameters R1and T1 are 
calibrated. They are more accurate than the extrinsic param
eters of statuses 2 and 3 calculated from rotation axis and rota-
tion angle.

4.  Conclusion

This paper presented a rotation scanning projection moiré 
method for 3D surface reconstruction. We derived the system 
parameters’ transformation equations after rotation; thus, all 

system parameters can be worked out in the circumstance 
of pure rotation for the projection system and the receiving 
system. Measurements can be completed using the new set 
of system parameters. In this way, the measurement area 
increases. The experiment confirms the feasibility and validity 
of the proposed method. The measurement area increased 
from 200 mm  ×  180 mm to 480 mm  ×  180 mm. The biggest 
RMS error is about 0.035 mm. But this method has its limi-
tations, too. Since the projection moiré method is based on 
moiré phases, so the measurement area is limited by high-
quality imaging by camera.
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