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Abstract

Parametric amplification of an elastic wave and a framework for using elastic waves that could enable a
new generation of high performance, low noise acoustic amplifiers, mixers and circulators are
presented. Using a novel approach with nonlinear materials produces highly desirable non-reciprocal
characteristics. Parametric amplification of a weak elastic signal wave is achieved by an elastic pump
wave of higher intensity. By careful selection of material orientation together with precise excitation of
signal and pump waves, ‘up frequency conversion’ is suppressed and selective amplification of the
elastic signal wave occurs at its original frequency. In addition, a general mathematical framework is
developed and used for analytical studies of coupled wave equations in nonlinear anisotropic
materials. The results obtained from the analytical studies are verified using a finite element
implementation.

Introduction

Most electronic handheld consumer products today take advantage of surface and bulk acoustic wave (SAW,
BAW) filters and delay lines [ 1, 2]. These provide the advantage of small size due to slower wave velocity at radio
frequency (RF) ranges relative to electromagnetic waves, and high efficiency due to reduction of resistive losses
compared with similar purely electronic devices. They are compatible with existing integrated circuit (IC)
fabrication techniques and can be integrated with other circuit elements [3]. However, as first stated by
Helmbholtz in 1859 and proved by Rayleigh in 1878, the propagation of acoustic waves in conventional linear
media is reciprocal [4]; which is ‘requiring the transmission of information or energy between any two points in
space to be symmetric for opposite propagating directions’ [5]. This reciprocal characteristic of acoustic waves
limits their applications where directional dependency is desirable.

Creation of non-reciprocity has been mainly achieved with three approaches [6]. Spatiotemporal
modulation of some elements of the system, applying an external symmetry breaking field such as an applied
magnetic field, or utilizing nonlinear behavior of the system.

Time and space modulation can be applied to material properties or boundary conditions of the system to
break reciprocity. In 2015, Swinteck et al [7] applied a light source with time and space variant intensity to a
material with alarge photo-elastic coupling to modulate its elastic properties. Spatiotemporal modulation of the
elastic constants of the material produced a time dependent superlattice which demonstrated nonreciprocal
propagation of a bulk elastic wave. Non-reciprocal propagation of an elastic wave in a beam with spatiotemporal
modulation of its Young’s modulus and density was investigated by Trainiti et al [8]. It was shown with both time
and space modulation, the dispersion diagrams for this system were no longer symmetric with respect to the
frequency axis and directional band gaps were created. Croenne et al [9] used spatiotemporal modulation of the
electrical boundary condition applied to a periodically repeated assembly of piezoelectric material sandwiched
between thin metallic electrode layers. They showed nonreciprocal transmission of an input longitudinal
acoustic wave. Their results showed scattering effects such as frequency conversion and generation of
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harmonics. Several recent works have also reported experimental realization of reciprocity breaking in a time
modulated system [5, 10].

Another approach to produce non-reciprocal behavior is to apply an external symmetry breaking bias field.
External magnetic field bias is commonly used [ 1 1-14] although similar symmetry breaking has been
demonstrated in a linear acoustic device with a circulating fluid that creates an angular-momentum bias [15] and
by using magneto-elastic coupling to create a gyrator [16]. Wang et al [17] demonstrated breaking time reversal
symmetry using gyroscopic inertial effects that creates an apparent external force. Adding a spinning gyroscope
to each lattice site, they showed additional topological bands are created that enables multimode propagation of
an elastic wave on the edge of the material. While external field biasing has been theoretically and experimentally
shown to be effective in some applications, it may not be desirable in terms of physical packaging, fabrication
and increased dimensionality of the system.

Another prolific area, seen frequently in phononics and metamaterials research, uses material nonlinearity
and asymmetry to break reciprocity [18-22]. Liang et al [ 18, 19] demonstrated acoustic rectification by
asymmetrically coupling a super lattice to a nonlinear medium. The nonlinear mechanism, however, do not
break reciprocity at the fundamental frequency. Non-reciprocity is realized in the total acoustic flux at the
boundaries. Non-reciprocal acoustic propagation in which the frequency of the incident wave was preserved has
been demonstrated experimentally in a system composed of a granular chain and a conical rod atlow
frequencies [23]. Other works have investigated nonlinear material with hierarchal asymmetry [24-26]. Moore
etal[25] showed breaking reciprocity within a unit cell featuring a hierarchical internal nonlinearity imposing
one directional transfer of energy from larger to smaller scale. Fronk et al [26] extended this asymmetryina
lattice of non-reciprocal unit cells and showed the non-reciprocity at global scale. The general concept of using
nonlinearity and asymmetry to break reciprocity is a common theme in the cited references; however, the source
of nonlinearity and the asymmetry elements vary.

Each of the methods used to produce non-reciprocity has various strengths and weakness and therefore tend
to be applied to specific application areas. For example, much of the work to date has focused on photonic
devices or macroscale acoustic devices but has not addressed RF range applications. Other approaches rely on
coupled resonators or construction techniques that are not compatible with current IC fabrication techniques.
While many works have reported on the study of wave propagation in isotropic [27] or anisotropic nonlinear
elastic materials [28—30], to the authors knowledge, none have shown potential for parametric amplification in a
nonreciprocal RF application. Due to the high-quality factor of mechanical resonances, development of non-
reciprocal amplification devices operating at RF frequencies based on elastic materials may prove tobe a
revolutionary concept and represents the area targeted by this paper. Here the framework to enable the
investigation of such devices is derived.

This paper shows non-reciprocal parametric amplification and non-reciprocal propagation of bulk elastic
waves in a homogenous anisotropic material. This is due to second order material and geometric nonlinearity
combined with an elastic traveling pump wave introduced in the medium as a symmetry breaking element. In
this system, non-reciprocal parametric amplification of a bulk elastic ‘signal’ wave is demonstrated. Further, it is
shown that propagation of the ‘signal’ wave traveling through the system is non-reciprocal. The non-reciprocal
propagation appears as a difference in the intensity of the ‘signal’ wave traveling with, versus traveling opposite,
to the direction of the pump wave (i.e. energy exchange occurs preferentially). This difference in intensity is due
to parametric amplification of the signal traveling in the direction of the pump wave but not in the opposite
direction. Providing the required phase matching condition for parametric amplification process and
eliminating the phase matching condition for the higher frequency component (sum frequency generation
(SFQG)), is the key to achieving parametric amplification.

A general derivation of the coupled-wave formalism for elastic waves of different frequencies is presented
and used to identify the requirements for parametric amplification and the associated phase matching
conditions. No restrictions are made on material anisotropy or direction of wave propagation. The
methodologies used to derive the coupled wave equations are adopted from the field of nonlinear photonics
[31]. A condition of slow variation of the elastic field amplitude over the distance of an elastic wavelength is
assumed, aka slowly varying amplitude (SVA) assumption.

The coupled wave equations are simplified to provide an analytic solution for collinear propagation of pump
and signal plane waves to investigate the process of parametric difference (down) frequency conversion. The
theory predicts parametric amplification of an acoustic signal wave through difference frequency conversion.
The numerical results and conclusions arrived at in the analytical theory are further investigated using a finite
element method (FEM) model to simulate the propagation and interaction of bulk elastic waves in a nonlinear
anisotropic medium. Parametric amplification and difference frequency conversion are observed in the
computational implementation, in agreement with the analytic results.
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1. Linear propagation of plane elastic waves and modal expansions

This section begins with a review of the linear theory of elastic plane waves propagating in a bulk anisotropic
material. The modal expansion of plane wave solutions derived in this section is used in the development of the
nonlinear theory.

The approach is to define the constitutive properties in the global, crystal, coordinate system, selecta
propagation direction, then determine the type of wave propagation that is possible in this propagation
direction. In an isotropic material, this will lead to a bulk longitudinal wave propagating at bulk velocity and a
shear wave propagating at shear wave velocity where the shear velocity is degenerate, i.e. independent of the
displacement direction in the plane orthogonal to the propagation direction.

As described in detail in appendix A, in the absence of body forces and under a small strain—displacement
assumption, a linear elastic wave with displacement field in its complex form can be written as equation (1.1)

0%u;
Ciikitg,j = - (1.1)
ikl Uk,li = P o2
Following the methodology described in [30], solutions of the above equation can be expressed as
equation (1.2).
ur(%, t) = Uy eIw(yit), (1.2)

where, I = /—1, Uy istheamplitude, p = (p,, p,, p;)is a unit vector in the direction of propagation defined
relative to the global coordinate system and considered to be fixed in space, and ¢ is the wave speed (phase
velocity). Substituting equation (1.2) into (1.1) results in (1.3)

Tk — por) U = 0, (1.3)
where

Lk = Cijup;p, (1.4)

is the symmetric Christoffel acoustic tensor. Equation (1.3) is an eigenvalue problem in U and for non-trivial
solutions the determinant of the multiplying matrix must equal to zero, i.e.

det|Ty — pc?6ii| = 0 (1.5)

which gives a cubic polynomial in terms of pc?. Each eigenvalue, ¢ determined from the solutions of
equation (1.5) has a corresponding eigenvector U that is found from equation (1.3). Unit vectors [ * are defined
by normalizing U in equation (1.6).

U
0= —L (1.6)

¥ .
Un(;l) U,i?)
Here and throughout the paper, parentheses on repeated indices, e.g. (@), are used to indicate no Einstein
summation.
The orthonormal eigenvectors [ * form a 3D basis set and can be used for the expansion of any vector.
Expressed in the eigenvector basis, the components of displacement are represented in equation (1.7)

u® = il = u;lf". (1.7)

The superscript on displacement indicate components referenced to the modal basis while the subscripted u
refers to the global or material system. Unlike isotropic materials which have one distinct longitudinal and two
degenerate shear speeds, anisotropic materials generally have three distinct eigenvalues or phase velocities, (.
Consequently, each shear mode can have a different wave velocity. This phenomenon is called ‘Birefringence’
[32]. Additionally, the modes I “ are not necessarily purely longitudinal or purely transverse with respect to the
propagation direction. However, one mode is predominately in the direction of propagation and is called the
quasi-longitudinal mode and the two others are predominately normal to the direction of propagation and are
called the quasi-shear modes.

Defining the scalar quantity ¢ as the inner product of the p and %,

E=px (1.8)
we can assume the modes are exponential functions of the scalar quantity £ as equation (1.9)
U@ = () gk (1.9)

where k(@) = C(f;) is the magnitude of the wave vector for a wave in mode [ . A general wave with particle
displacement not aligned with any of the eigen-basis vectors, does not have a single value for its propagation

velocity but can be expanded in its modal form, equation (1.10), with each of its components having the velocity
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of the corresponding modal displacement
uj(%, 1) = (U'eWOL + Y21 4 GpPedkO})elor, (1.10)

The presumption that the displacement field of a wave is only in direction of one modal basis is called the
mono-mode assumption. In this case only one phase velocity for the wave is excited.

Once a crystal orientation and a propagation direction relative to the crystal orientation has been specified,
orthonormal eigenvectors [ * are found that form a three-dimensional basis set for that propagation direction
and can be used to expand any plane wave displacement vector propagating in that direction in the crystal.
Consequently, the modal expansion of equation (1.7), while based on the eigen solution of the linear material
constitutive properties, can be applied to both the linear and nonlinear systems. In the next section, we will apply
this expansion to develop the nonlinear equations.

2. Second order nonlinear processes, parametric frequency conversion

In this section, the different second order frequency conversion processes are introduced and the coupled wave
equations are represented for these processes. Only quadratic nonlinearity is investigated, since the order of the
magnitude of the strain terms in typical BAW or SAW devices are small and adding higher order terms will not
add a significant contribution to the behavior of the system. The final form of the equation is given for an
arbitrary number of frequencies. Investigation of the parametric amplification process in an anisotropic
nonlinear elastic material is based on the coupled wave equations discussed in this section.

A process is called parametric when there is no net exchange of energy between a traveling wave and the
medium in which the wave is propagating. Consequently, the sum total energy of all the waves traveling in the
medium is conserved. In addition, linear wave processes do not exchange energy between different frequency
components. Hence, in a linear parametric process there is no exchange of energy between the waves and the
medium or the wave components themselves. In a nonlinear medium, waves at different frequencies can
exchange energy among themselves due to frequency mixing, or frequency conversion processes. In a nonlinear
parametric process, even though there is no exchange of energy between the waves and the medium, different
frequency components couple and energy transfers among them. For instance, in the presence of a weak signal
wave and another wave at a different frequency propagating in a nonlinear medium, the energy transfer between
the two waves can lead to parametric amplification of the weak signal wave with a corresponding reduction in
the intensity of the other wave. Second order nonlinearities in elastic materials are described by nonlinear terms
in the constitutive equations and by second order displacement gradients in the definition of the Lagrangian
strain. These are the material and the geometric nonlinearities. As shown in appendix B, these two effects can be
combined in the form of nonlinear elastic wave equations represented by equation (2.1)

o,
y Po 8t2 .

@2.1)

ijklmn

1
(CijklUk,z + EC © Uk,lUm,n)

Complex displacement fields, useful for decomposing the frequency mixing equations, can be represented
through the relation to the real fields as equation (2.2)

U, t) = %(u(i, t) + u* (%, 1)). (2.2)
Substituting equation (2.2) in (2.1), results in (2.3)

1 0%u;
(Cijkzuk,z + chg‘zmn(uk,lum,n + Mk,lu:nk,n)) = Po(ﬁ) (2.3)
b}

and a corresponding conjugate equation.
Equation (2.3) contains product terms of i1 (%, t) and i* (X, t) in addition to those of i1 (%, t) making the
expression more complicated than equation (1.1). The pure plane wave solutions of equation (1.2) are no longer

possible solutions for the nonlinear problem; however, when the nonlinear terms are small, the nonlinear effects
can be approximated as shown in equation (2.4)

ui(%, 1) = Y ul(x)e la, (2.4)
q

where each 7 term is a perturbation of the solution of the linear problem at frequency wj. Substituting the
expansions of equation (2.4) in (2.3) and using the notational convention described in equations (2.5) and (2.6),

ul(x) = ui(w,) (2.5)
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u(E) = uf(wy) = ui(—wy) (2.6)

leads to equation (2.7)

ny 1 10
> Ciir (wg) et + ZZCiﬂ-i),mn(uk,z(wr)um,n(ws) e frtedt oy (wy)
q r,s

Xt (—w)e @D = o STy (wp e, 2.7)
q

Since the relation in equation (2.7) must hold for all times, the exponential terms are collected so that the
same frequency exists in each summand. This requires w; = w, + w; where r, g, and s can take on negative
values. The negative values of r, g, and s are interpreted as appropriate to satisfy the conjugate frequency
notation of equation (2.6). This implies equation (2.8)

Citatiki () + ~3 Ch it @) @) | = = podui(ey. 2.8)
(r,5) J

The summation in equation (2.8) is over all frequency combinations that satisfy the constraint w,; = w;, + w;
for each w; independently. The notation (r,s) here is used to represents a pair that satisfies this constraintand r
is not independent of s. Equation (2.8) can be used to describe any plausible parametric frequency mixing
process.

Parametric frequency mixing or frequency conversion, in a second order nonlinear process involving three
frequencies can be classified into three categories. SFG or up conversion, second harmonic generation (SHG),
and difference frequency generation (DFG) or down conversion. In SEG, two input waves, say w; and w,,
generate a third higher frequency wave wsrg = w; + w,. In SHG, the input waves are at the same frequency
w; = w, and generate an output at wsyg = 2w;. With DFG, the inputs interact to generate a wave at
WprG = w3 — wy, the difference frequency.

Parametric amplification uses the process of DFG to amplify the input signal and generates a byproduct wave
component at frequency wpgg, i.e. wprg is not the target of the amplification process. In the process of
parametric amplification, it is common to refer to the three interacting frequency components as the idler,
pump and signal such thatw; = w, — wy;,, where i represents the idler, the unintended parasitic wave at wpgg,

p the pump and sig is the signal. The higher frequency component is the pump wave which gets its name from
the fact it supplies energy, pumping up the amplitude of the lower frequency signal wave, w;; and
inadvertently w;.

If waves at different frequencies, i.e. u jq (%) have the same propagation direction, i.e. are collinear, then it is
convenient to use the same eigen basis to expand all of them. The expansion of the displacement field for a single
frequency component on the eigen basis is represented in equation (2.94)

ui(wy) = u*(wyl™. (2.9a)

In this equation, the component #® is the amplitude of the mode «, I, and defines the direction of
‘particle’ displacement (for example quasi-longitudinal, shear, etc). If we assume the displacement field at
frequency w, is composed of only one mode, i.e. its particle displacements are aligned with only one of the eigen
basis, we can simplify equations (2.94)—(2.9b)

ui(wg) = u® (wp) 1. (2.9b)

This is referred to as the mono-mode assumption.

If the variation of the amplitude of a wave over its wavelength is small, the SVA assumption applies. The SVA
assumes the spatial dependence of the amplitude function for a wave can be decomposed into the product of a
slowly varying envelope term, or amplitude, and a harmonic function capturing its oscillations. Under the SVA
assumption the wave components at different frequencies,u®(w,), propagating in direction p, i.e. along £, have
the form of equation (2.10),

WO (wg) = UL (@) eME = U (w,)e S, (2.10)

where % 51”‘) (x)isthe SVA term and k,;o‘) is the magnitude of the wave vector for the wave component at
frequency w;, in mode a.

As itis described in detail in appendix B, with above assumptions, equation (2.8), leads to a system of coupled
equations in which the amplitude of the displacement field at frequency wy, couples to the amplitude of the fields
atfrequency w, and w;, as long as they satisfy the condition w; = w, + w;. Consequently, substituting
equation (2.10) into (2.8) we have
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HaBy k(@k(’»)
@/(a)( ) = Z (k(J) + k(w))%(ﬁ)(w YU (wy) ekt (2.11)

(r p Goa k (o)
where

Goo — Jkll(a)l(a)p o
HeY = c© l(a)l(’f)l( pjplpn and

1]k mn"i

8 / ,
Ak = kD + KD — k.

Here, Cjj and Cjigy are the components of the rank four and six stiffness tensors, respectively, and

C ;i}mn = Cjitimn + 2Cjnki6im + Ciini Oxm is the effective nonlinear rank six tensor (see appendix B).
Equation (2.11) is the most general form of the coupled wave equations for a frequency mixing process in a
nonlinear elastic material under the mono-mode and SVA assumptions, regardless of the number of frequencies
involved. In general, analytic solutions of equation (2.11) do not exist and numerical methods must be applied
for a specific frequency mixing process. In section 5 analytic solutions of equation (2.11) for the process of DFG
involving three frequency components is given and its application to parametric amplification process is
discussed. Before completing the analytic solutions, in the next section phase matching conditions are discussed

to motivate the rationale for the DFG analytic solutions.

3. Phase matching condition

In general, when signal wyjg and pump w, waves are supplied to the medium, conservation of elastic energy, with
WSFG = Wy + Wsig, implies that with SFG, one phonon at signal frequency and another at pump frequency must
annihilate simultaneously (combine) to generate a phonon at SFG. In DFG, wyjs = w, — wj, a phonon at signal
and idler frequencies are generated when a phonon at pump frequency annihilates. Both these processes can
happen simultaneously when the pump and signal waves are input at the boundary. When parametric
amplification of the signal wave is of interest, generation of a sum frequency wave reduces the intensity of both
pump and signal waves, which results in an overall reduction in the intensity of the signal wave instead of
amplifying it. Therefore, it is significant to know what are the conditions that allow a frequency mixing process
to happen. This section provides an investigation of these effects.

Inaprocess involving only three wave components such that w, = w;, + w;, the change in intensity of a wave
atfrequencies w, with respect to &, has the form of equation (3.1) (see appendix C),

df - ejz{(r s) Cos (wrsq)> (31)
where .2/, ;) is a positive quantity that depends on the material properties and the wave intensities and
Vrsg = BkgS + 6. + &, + & — & (3.2)

In this equation, ¢, is a function of the effective material properties and is either 0 or 7. Ak, is the phase
mismatch in equation (2.11),and ¢,, ¢, and q’)q are the phases of the wave envelopes at frequenciesw;, w; and w;,
respectively. The phasor of the wave envelope is represented by % (w) = |% (w)| e

Equation (3.1) shows that the derivative of the intensity with respect to the propagation distance £ changes
sign periodically, with periodicity 1/3 While Cos(z) > 0, the frequency mixing process transfers energy from
the wave components at frequencies w;, and w; to the w, wave and reverses energy the flow when Cos(z/) changes
sign. Hence, elastic energy flows back and forth among different frequency components over a distance % The
interaction distance before the frequency conversion process is reversed is called the coherence length.

leoh = —. (3.3)
G

In general, to maximize the coherence length, v should be minimized. 1) is composed of two parts, the sum
of the wave envelope phases and the phase mismatch factor Ak,,. For the first part, ¢, + ¢, + ¢, — @, is
determined by the material properties and the relative phases of the two input waves at frequency w, and w. In
practice, these can be adjusted at the boundary,{ = 0, suchthat ¢, + ¢, + ¢, — ¢, = 0. Consequently, the
more significant factor to consider is Ak,q,.

From equations (3.2) and (3.3), it is seen that with a smaller phase mismatch, larger coherence length is
achieved. The ideal situation happens when the Ak, term goes to zero; this is called the phase matching
condition.

In a second order, nonlinear frequency conversion process involving three frequencies such that
w; = wy + ws, the phase matching condition is written as equation (3.4)

6
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kg =k + k. (3.4)
Under the collinear propagation assumption, the phase matching condition, equation (3.4), turns into a
scalar relation among the magnitude of the wave vectors as equation (3.54a),

|Eq| = |Er| + |E5| (3.5a)

w

or in terms of phase velocities,c = P

, with mono-mode assumption, as equation (3.5b).
w
IR (3.5b)
Cq fo Cs
Once the pump and signal waves are launched in a nonlinear media both SFG and DFG occur
simultaneously. Considering wj, to be the signal wave at frequency wyg, such that wy, = w, — w;and
Wsig = WskG — Wp, Equation (C.21a) gives the general form in equation (3.6)

(ﬁzg = prG Cos(Yprc) + src Cos(Ysra), (3.6)
where .o/prg and .ofsgg are two positive numbers that can be obtained from equation (C.22) in appendix C.
Initially, at £ = 0, the energy transfer from the signal to the sum frequency wave, reduces the intensity of the
signal wave until Cos (1sg) changes sign and the process is reversed. However, if the phase mismatch term is
large for the process of SFG, the coherence length of this process will be small and its effect can be negligible on
the propagation of the signal wave.
If we assume the effect of SFG is negligible, equation (3.6) reduces to (3.7)

dlg
d¢

= 2/prg Cos (Ypra). 3.7

For ¢prg — Oatinput § = 0, the signal wave can be supplied such that ¢y, = @, + ¢, — ;. A smaller

o dl; . . L
value for Akpgg is desired so that the d—; term changes sign at a larger distance from the origin, i.e. the

amplification process has larger coherence length.
From the above discussion, it is concluded that parametric amplification is feasible when the associated
phase matching condition is satisfied and the input waves have the appropriate initial phases.

4, Parametric amplification

Unlike electromagnetic waves, SAW and BAW are relatively non-dispersive over the typical frequency ranges of
interest and, for purposes here, the wave velocity ¢ is not a function of the frequency of the propagating wave. In
an anisotropic material where the three waves have the same mode, i.e. all displacements are along the same [
vector, or in an isotropic material when the waves are all shear or all longitudinal mode, the velocities of the three
traveling waves are equal, ¢, = ¢, = ¢,, and equation (3.4) is always satisfied. When this happens, both the DFG
and SFG wave components are phase matched which leads to poor amplification or decay of the signal wave.

One way to overcome this obstacle is to utilize the birefringent property of anisotropic materials. In this case
two waves propagating in the same direction but having different displacement modes can have different phase
velocities. This way by choosing the proper direction of propagation and exciting the pump and signal waves in
the desired modes, the phase mismatch term can be maximized for SFG and minimized for DFG. Consequently,
the SFG wave has small coherence length and does not interfere significantly with the desired DFG process.

To find the best propagation direction and modal orientation for the pump and signal waves, we start with
DFG. Substituting w; = w, — wg in equation (3.5b) for the process of DFG, equation (4.1) is obtained.

Ci — Gsig | ¢p
. [7]_ @
Ci — Cp

Examining equation (4.1), for w, to be greater than wy;g, the phase speeds either have to satisfy inequality
(4.2a) or (4.2b)

Csig > Cp > € (4.2a)

or

Ci > €p > Cyig- (4.2b)
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Going through the same procedure for SFG, inequalities (4.3a) and (4.3)) are achieved.

Cp — Csi C
p Sig SFG
WSFG = (7]—0}5@

Cp — CSFG ) Gsig
Csig > CSFG > €p (4.3a)
or
Cp > CSEG > Csige (4.3D)

Considering both inequalities (4.2) and (4.3), implies
Csig > ¢p > ¢ and cgg > CspG > Cp (4.4a)
or
i > ¢p > C4g and ¢, > Cspg > Csig- (4.4b)

The set of inequalities in equation (4.4a) always have smaller phase mismatch for the process of DFG.
Therefore, solutions satisfying this set of inequalities are the ones sought here.

Assuming the eigen modes are ranked in order of decreasing phase velocity, the first pair of inequalities
require the signal and pump waves to be in modes /' and I * respectively.

While the idler wave generates in all modes, for simplicity, under the mono-mode assumption, only the
mode with largest coherence length is tracked and the other two are neglected. The largest coherence for this
process occurs when the idler wave is in the [ ’ mode. For the process of SFG, the smallest Akggg, occurs for its [ 2
mode, therefore, this mode has the largest coherence length and greatest effect on the system. The other modes
are assumed to be negligible. With this, the phase mismatch term for the two processes are represented in
equations (4.5) and (4.6)

Akprg = — — DY (4.5)
(4.6)

For situations when Akggg is large and Akpgg is small, the SFG has negligible effect on the DFG and
parametric amplification is significant. The accuracy of this assumption is further studied in the finite element
simulation section. In these cases, equation (2.11) can be simplified to account only for signal (wyig), pump(w;)
and idler (w;) frequencies resulting in equations (4.7)—(4.9),

—1 (H123 + Hl32)

U e(wsig) = ?T[k; kU (wp) U*(wi)] (4.7)
213 231

U(wp) = é(Hg#[ki kP U (wiig) U (wi)] (4.8)
-1 H321 H312

Ue(wi) = ?(;f)[kﬁkiw(wp)%l*(ws)], (4.9)

where all the terms in equations (4.7)—(4.9) are as defined in equation (2.11).

The above system of coupled equations represents three nonlinear equations with three unknowns. The
amplitude of the pump wave is generally much greater than the amplitude of the signal wave in envisioned
applications; consequently, we assume the magnitude of the pump wave to be almost constant throughout the
interaction. This will allow us to treat %*(w,) as a know function that factors out of the equations for % }g(ws,-g)
and % ’35 (wj). The accuracy of this assumption is also discussed further in the finite element simulation results
section. Under this assumption, equations (4.7) and (4.9) can be written as equations (4.10) and (4.11),
respectively.

%}g(“}sig) = Ksi%?’*(wi) (4.10)
”7/)35*((4},') = ﬁis%](wsig) 4.11)
with
—1 (H123 _|_ H132)
Rsi = ?Tkgk?%z(wp) (412)
—1 (H3 4 fg312 *
- (?(Gf)k;k;%z(wp)) . (4.13)
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By introducing
K = JRsiFis- (4.14)
Equations (4.10) and (4.11) have the solutions of the form equations (4.15) and (4.16), respectively
ke —ke¢
<%xwg::<%gﬁi—iéf——l::zwchﬂmkg) (4.15)
, K _ ke ,
Wmm:ﬁ%ﬁjlhwﬁ%mmg (4.16)
Rsi Rsi

where %; is the amplitude of the signal wave at ¢ = 0.
The intensity of the acoustic wave at frequency wj, in the direction of  is calculated as equation (4.17), (see

appendix C).
w; ,
Iy = p— U (w) . (4.17)
kq
Equation (4.17) for intensity, combined with equations (4.15) and (4.16), result in the gain for signal
intensity of
Gain = L0 _ Cosh?(kl). (4.18)
1,(0)

These equations will be used in the results section for different orientations of LINbOj; to find directions of
propagation such that Akpgg is much smaller than Akggg as needed for parametric amplification. After
determining the most promising directions, quantitative values for the gain in LINbOj; are provided from
equation (4.18).

5. Breaking reciprocity

In this section, it is shown in a parametric amplification process when the required phase matching condition is
satisfied for pump and signal waves traveling in the same direction, the signal wave is amplified and when the
signal wave travels in a direction opposite the pump wave, the required phase matching condition cannot be
satisfied. Therefore, the magnitude of the signal wave at the destination is different depending on its direction of
propagation. This results in directional dependency of the propagation of the signal wave. It is concluded that in
anonlinear media with a traveling pump wave in one direction, non-reciprocal propagation of an elastic wave
can be achieved.

The phase matching condition for the process of DFG for pump, signal and idler waves when,
Wp — Wi = Wyg, Is Written as equation (5.1).

ky — ki = kg. (5.1)

When the pump and signal waves travel in the same direction, figure 1(a), equation (5.1) is satisfied. However,
when the pump and signal waves travel in opposite direction, figure 1(b), the relationship among their wave
vectors cannot satisfy the required phase matching condition and the frequency conversion process cannot take
place in this situation. Therefore, without energy transfer between the pump and signal waves, the amplitude of
the signal wave remains constant. This directional bias in amplitude of the signal wave is interpreted as non-
reciprocity in its propagation. In addition, when the DFG does not happen, the idler frequency does not
generate. That means comparing the Fourier spectrum of the elastic wave in the forward direction, figure 1(a),
versus the backward direction, figure 1(b), the idler frequency is only observed for the forward direction and is
absent in the backward direction.

6. Results

In this section, linear and nonlinear material properties of LINbOj3 (appendix D), are used as an example of the
concepts and equations derived. Although the piezoelectric properties of LINbO3 are not considered in this
paper, we envision the piezo coupling will be used to produce electromechanical devices similar to the SAW and
BAW devices currently in commercial applications. This simplified system is the first step for designing practical
devices. LINbO3 has alow loss and a high coupling factor that makes it easy to work with for applications at RF
frequencies and LiNbOj; has published data for the higher order coupling terms which are of sufficient
magnitude to use for proof of concept.
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Figure 1. Propagation of two elastic waves (a) in the same direction, (b) in the opposite direction. Non-reciprocal propagation of the
elastic wave can be realized through the phase matching condition.

Ou
©® nb
Qo

Figure 2. Definition of the propagation vector with respect to the crystal axes in LINbO;.

In the first section, propagation directions with small phase mismatch for DFG and large mismatch for SFG
are determined. Directions with a ratio of % < 0.2, are assumed as plausible candidates for parametric

SFG
amplification where the effect of SFG is negligible. The gains in directions of propagation with % < 0.2are

SFG
calculated considering only the process of DFG. The directions of propagation with largest gain are indicated. In

the second part of this section, the nonlinear elastic wave equations are solved numerically with FEM
simulations. In these simulations, the equations are solved considering both DFG and SFG processes (i.e. four
frequency interaction). Further, in the numerical simulations, the SVA and mono-mode assumptions are not
used. These results are compared with the analytical solutions, validating previous simplifications and
assumptions.

6.1. Analytical results
Figure 2 refers the direction of the wave propagation vector p to the crystal axes in LINbO3, with each
propagation direction determined by two angles 6 and ¢ with respect to the positive Zand X axes, respectively.
In section 2, it is discussed that in a general anisotropic material, the wave speed for each of the three modes can
be distinct. The phase velocity as a function of direction of propagation for each mode in LINbO; is shown in
figure 3. Figures 3(a)—(c) shows the wave speed for the quasi-longitudinal and the two quasi-shear modes,
associated with the propagation direction in 3D space. In these plots, every point on the surface corresponds to a
(@, ) pair that defines the propagation direction and the distance from the origin is the magnitude of the modes’
wave speed. In addition, the speed values are color coded as indicated in the bar-legend attached. Figure 3(d)
shows the wave speed of all three modes overlaid. In LINbO3, for f# = 0°, that is propagation in the Z direction,
the two shear velocities are equal. This indicates the isotropic behavior of shear modes oriented in the X—Y plane.
We also see from figure 3(d) the two quasi-shear modes have approximately half the longitudinal wave speed.
An optimum direction of propagation is the one with (1) minimum phase mismatch for the process of DFG,
(2) maximum phase mismatch for the process of SFG and (3) maximum gain of amplification. Based on the

Wy Ws wi

discussion in section 5, the phase mismatch term for the process of DFG and SFG are, Akprg = - ==
2

and Akgpg = 2 4+ & — ¥ yegpectively. As seen in the plots of figure 3, in an anisotropic material such as
Iy a Iy

10



I0OP Publishing New J. Phys. 22 (2020) 023009 M Zakeri et al

Figure 3. Phase velocity of the first (a), second (b) and third (c) mode as function of propagation direction. (d) Plot of the three phase
velocities, the faster quasi-longitudinal mode and the two quasi-shear modes

LiNDbOj3, the wave speeds are a function of direction of propagation. In figure 4, the optimum direction of
propagation for parametric amplification is investigated. To find the direction of propagation with minimum
Akprg Leoh (SFG)

Akprg and maximum Akggg, the ratio, r = Ao — La(DFG) is defined and calculated as a function of direction
SFG coh

in space with the results shown in figure 4(a) for XY plane, i.e. propagation with § = 90°and 0 < ¢ < 360, as
an example. The magnitude of r for each direction is proportional to the distance of the point to the origin. The
color of each point indicates the value of r based on the bar-legend.

An ‘optimum’ value for 7 is not shown here since the r value does not determine gain. Our analytic gain
results, being based on three frequency interaction, do not consider the effects of SFG. Consequently, higher
values of gain can be found in certain directions, but the assumptions needed for validity of the three frequency
results are violated. By choosing low rvalues, we are considering the gain only in regions where the 3 frequency
assumptions reasonably apply. Here we have considered the points with r < 0.2 as a valid metric for when SFG
is negligible. This value is verified by the FEM results which show close agreement within this region. For the
directions with r < 0.2, the signal gain for a DFG process, neglecting SFG, is plotted in figure 4(b) for the X-Y
plane, and figure 4(c) for the entire space. The signal and pump waves have the frequencies, w, = 200 MHz and
w, = 800 MHz, respectively and the initial amplitude of UY = 10 nm, %} = 50 nm. The sparse spaces in the
gain graph represent the directions that do not satisfy the condition for r and have been eliminated.

The maximum signal gain over one wavelength is seen to be 16%. This response is observed in twelve
directions of propagation, see table 1, reflecting the crystal symmetry of LINbO;. The eigenvectors for the
direction of propagation with (6 = 82°, ¢ = 70°), are plotted in figure 4(c)as ', [* and I°.

6.2. Numerical results
COMSOL Multiphysics finite element software was used to simulate the frequency conversion processes.
Equation (2.8) is implemented to solve for the four-wave, (pump, signal, idler and sum frequency) interactions.
The simulations are done in frequency domain inputting the nonlinear terms as an external stress to the linear
elastic node of the structural mechanics interface in COMSOL. Enabling the geometric nonlinearity in the
solution node, nonlinear strains are taken into account. The equations for external stresses are given in table 2.
In the analytical results section the coordinate system which aligns with the crystal axes are assumed to be
fixed in space and the direction of propagation direction p is defined with respect to this coordinate system,
figure 2. For convenience in the numerical evaluation, a coordinate transformation is applied to align the p
propagation direction with the 7 axis, and the vectors p X Zand p x Z x p are chosen to form the Y’ and X’
axes of the FEM coordinate system, respectively’, see the figure 5(a).

11
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Figure 4. (a) Valueof r = for different directions of propagation in the X—Y plane. (b) The gain values where

Table 1. Direction of
propagation with
maximum gain.

Ho Qﬂo

82 70, 190, 310
110, 230, 350
98 10, 130, 250
50, 170, 290

Table 2. The external stresses terms for the FEM simulations are
given by the following where, Cézmn = %Cijklmn + %Cijnlékm +
Cujkt Oim + Cinki Ojm — Cijg 6mn and Cijag, Cijrayun are the second- and
third-order elastic constants.

T (wy) it W11 @)ty (=) + g1 (Waaom) (=)
T (wp) Cithn (U1 (0 i (3) + 11 W) ()
T () LNt ()t (—)

T ) Chted @)t ()

Assuming a given propagation direction and collinearity of the different wave components reducestoa 1D
problem. But even though the displacement field varies only in the direction of propagation, it has components in all
three directions. To excite the desired pump and signal wave requires 3 components of displacement to be applied at
the boundary. Since any 1D solution can be viewed as a trivial 3D solution of arbitrary periodicity (by definition the
solution is constant in the orthogonal dimensionswith u;(X’ + d, Y' + d, Z') = w;,(X’, Y/, Z") = u;(Z")),
we apply these BC in COMSOL using a 3D model. The 3D geometry of the model consists of a bar that is several
wavelengths long in the propagation direction z, and meshed with a single element across the width d in the transverse
xand y directions. We impose periodic boundary conditions of continuity type to each side of the bar in the transverse

12
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Figure 5. (a) The schematic display of the FE model. In this simulation, signal and pump waves are shown in I'and I” modes,

respectively. (b) The amplitude of the signal, idler and SFG waves in the direction of propagation. In this case, with pump wave having

. AKDEG . . e .
the 3rd mode, the ratio r = AkDFS is large. As expected, since the proper phase matching condition is not satisfied for the process of

DFG, the amplitude of the signal wave is dropped instead of being amplified.

xand y directions. This constrains the displacement components to be constant in x and y dimensions givinga 1D
problem in 3D space.

To make sure the results are not influenced by reflection from Z’ boundaries, perfectly matched layers are
used on both ends to simulate continuous propagation. The signal and pump waves are excited as prescribed
displacements at the boundary with initial amplitudes %%, = 10 nm, %(2, = 50 nm, and frequencies of,

w; = 200 MHz, w, = 800 MHz, respectively.

Three simulations are presented to show the effect of different parameters on the system. In the first
simulations, the importance of exciting the pump and signal waves in the directions suggested by equation (4.4a)
are emphasized. In this simulation, pump and signal waves are sentin /' and / ? directions, respectively, in
contrast to what equation (4.4a) would suggest. It is shown with this excitation, the phase matching condition is
not favorable for DFG and parametric amplification of the signal wave does not occur. In the second simulation,
pump and signal waves are applied in the I and I* directions, in agreement with equation (4.4a), and parametric
amplification of the signal wave is demonstrated. The third simulation shows non-reciprocal propagation of the
signal. In the third simulation, this is accomplished by taking the model from the second simulation and
reversing the propagation direction of the signal wave. The resultant magnitude of the signal wave is then seen to
be quite different from the second simulation.

In the first simulation, the waves propagate in the direction § = 82°and ¢ = 70° and signal and pump
waves are exited in [ and I directions, respectively, which are not optimum directions to eliminate the
generation of a sum frequency wave. Figure 5(b) shows in this case the signal wave does not amplify and its
displacement magnitude reduces as it propagates over the first wavelength. This agrees with the results predicted
in the analytical discussion.

The analytical coherence lengths, calculated from equation (3.3), for the two processes are I, (DFG) =
0.3* )\, and I, (SFG) = 1.47* )\, withr = m = 4.64. The coherence length estimated from the graph of

SEG
figure 5(b) matches calculated values to within the resolution of the plot. As expected, the plot shows that

coherence length of the SFG is larger than the DFG since Akprg > Akspg-

In the second simulation, the same geometry and material properties are used, however, a more favorable
phase matching condition for DFG is applied. Graphical representation of the pump and signal waves in
figure 6(a) shows the signal and pump waves are launched in the medium with modal displacements in I* and I
directions, respectively. This choice was made based on the inequalities derived in section 5, equation (4.4a). The
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Figure 6. (a) The schematic display of the FE model. In this simulation, signal and pump waves are shown in I and I* modes,
respectively. (b) Demonstration of the parametric amplification of the signal wave. The amplitude of the signal waves increases as it
travels in the media, receiving the energy from the pump wave in the DFG process. (c) The total intensity of the combined waves is
conserved in the parametric processes. (d) and (e) Comparison between the plot of the signal and idler waves obtained analytically and
numerically.

waves propagate in the direction with § = 82° and ¢ = 70°, which is the direction of propagation with
maximum gain, obtained from the analytical results, figure 4(c). Based on the analytical results, equation (3.3),
the coherence length calculated for SFGis I o, (SFG) = 0.81%\,. This is in reasonable agreement with the
estimate of 0.8\, shown on the graph of the figure 6(b). The larger phase mismatch for the SFG,

— AkDFG
. Aksrg . . . . .
increasing signal amplitude as the wave travels. This demonstrates the parametric amplification of the wave as

the result of energy transfer from the pump wave. It is also seen that the amplitude of the pump wave is fairly
constant, indicating the approximate, but reasonable, assumption of constant amplitude for the pump.

Figure 6(c) plots the total intensity of the combined waves along with the intensity of each wave component asa
function of position in the direction of propagation. It is seen that the total intensity of the waves is conserved
and the intensity of the pump wave decreases while the intensity of the signal and idler waves increases. The
conservation of the total intensity of the involved waves is due to nature of the problem being parametric.
Figures 6(d) and (e) compare the plot of the signal and idler waves obtained analytically and numerically over a

= 0.16, eliminates its adverse effect on signal amplification and the red plot in figure 6(b) shows the
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Figure 7. (a) The schematic of the third simulations, in this setup the signal wave travels in the opposite direction of the pump wave.
Amplitude (b) and intensity (c) of the signal, pump and idler waves. This shows the amplitude of pump and signal waves are constant
and idler wave is not generated. Plot of the intensity of the waves at each frequency shows no energy transfer to the signal wave.
Compering this result with the one plotted in figure 4(e) shows the non-reciprocal behavior of the system for the signal wave.

distance of four signal wavelengths in the material. This figure shows close agreement between analytic and
numerical results for about three signal wavelengths, demonstrating the approximate range of validity for the
SVA assumption.

The objective of this last simulation was to investigate non-reciprocity in propagation of the signal wave. The
same model setup as the second simulation was used, except, the signal wave was sent in the opposite direction of
the pump wave. The results plotted in figures 7(b) and (c) show that by reversing the direction of propagation of
the signal wave, the pump and signal waves do not couple; consequently, the idler wave is not generated. Also
seen, there is no energy transfer from or to the pump and signal waves.

Comparing the second and third simulations shows that the amplitude of the signal wave is quite different
over equivalent distances of travel. For the nonlinear elastic media, the pump wave creates a symmetry breaking
field and the signal wave propagation becomes non-reciprocal.

7. Conclusions

This work has shown the derivation and verification of a system of equations that can be used for determining
amplification effects due to DFG associated with bulk elastic waves. A simplified version of these equations was
solved quasi-analytically for the ‘three wave’ problem. These idealized equations indicate promising modes of
operation for the non-degenerate eigenvalue case where amplification of the signal wave is achieved. This was
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verified numerically using a FEM model. Without the analytic equations to guide selection of the required
system characteristics, i.e. which mode to operate the pump, signal and idler as well as frequency determination,
it would be very difficult to create an amplifier due the large number of choices available in the parameter space
and the relatively limited number of combinations that can produce parametric amplification. In this paper only
the mechanical properties of the Lithium Niobate were considered and its piezoelectric effects were neglected.
This simplified system is the first step for designing practical surface acoustic devices and the piezoelectric effects
should be addressed in future studies.
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Appendix A. Linear propagation of plane elastic waves and modal expansions

In the absence of body forces, the equations of motion and small strain—displacement relations for a mechanical
system are represented in equations (A.1) and (A.2)

o;
Tijj = vy (A.1)
1
Si = E(Ui,j + Uj.). (A.2)

The mechanical fields defined in the above relations are real quantities. T is the symmetric Cauchy stress

tensor, p is the material density, U is the displacement vector and S is the small strain tensor. Each field quantity
can be represented by a function plus its complex conjugate, equation (A.3)

Z(x, t) = %(Z(X, 1+ Z*(x, 1)) (A.3)

Here Z(X, t) represents any of the stress, strain or displacement fields. Substituting equation (A.3) into (A.1) and
(A.2)leads to equations (A.4), (A.5) and a similar pair of conjugate equations, respectively

azu,-
T = A4
iij = P o (A.4)
1
Sij = E(L[i)j + uj,i)' (AS)

Assuming material properties are instantaneous in time and local in space, the stiffness tensor Cjj; can be
written as equation (A6)

Cim(F =7t —t) = Cyj 6F — 7)o(t — t'), (A.6)
where ¢ is the Dirac delta function. This allows the linear stress-strain constitutive relations to be expressed in
time domain as equation (A.7)

T;(x, t) = CijuSu(%, t). (A.7)

Substituting the complex representation of stress and strain tensors, equation (A.3), in (A.7) gives (A.8)

T (%, t) = CijpSu (X, 1). (A.8)

Using the definition of small strain, equation (A.5), in (A.8) together with use of the symmetry of the stiffness
tensor, where Cjjy = Cyj, equation (A.9) is obtained

T;j (%, t) = Cijratig,1- (A.9)

Substituting for T;; (%, t) from equation (A.9) into (A.4) results in (A.10)

8214,'

) A.10
P a2 ( )

Cijui i, =

Following the methodology described in [30], solutions of the above equation are expressed as
equation (A.11)
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w(® 1) = Uy e 1), (A.11)

where, I = /=1, Uy is the wave amplitude, p = (p,, p,, p;) isa unit vector in the direction of propagation
defined relative to the fourth order constitutive tensor that is considered to be fixed in space, and c is the wave
speed (phase velocity).

Substituting equation (A.11) into (A.10) results in (A.12)

Tk — pco) U = 0, (A.12)
where

Lk = Cijup;p, (A.13)

is the symmetric tensor called the Christoffel acoustic tensor and the components of p are defined in the crystal
coordinate system. Equation (A.12) is an eigenvalue problem in U and for non-trivial solutions the determinant
of the multiplying matrix must be zero

det|Ty — pc?6ii| = 0. (A.14)

This gives the eigenvalues as roots of a cubic polynomial in pc2. Each eigenvalue ¢?, determined from the
solution of equation (A.14) has a corresponding eigenvector U that is found from equation (A.12). Unit vectors
[ are defined by normalizing U® in equation (A.15) to obtain the eigen modes

j —’ .
[ U,(na) U,/(na)

(A.15)

Parentheses on repeated indices, e.g. («), are used to indicate no Einstein summation.

This appendix ends with derivation of an identity that is used in appendix B to simplify the nonlinear
equations developed. Once a crystal orientation and a propagation direction relative to the crystal orientation
has been specified, orthonormal eigenvectors [ “ are found that form a 3D basis set for that propagation direction
and can be used to expand any plane wave displacement vector propagating in that direction in the crystal.

Expressed in the eigenvector basis, the components of displacement vector are represented in equation (A.16)
u® = al® = ul (A.16)

The superscript on displacement indicates components referenced to the modal (eigen) basis associated with
the selected propagation direction, while the subscripted u; refers the global or material system. Assuming the
displacement field to be time harmonic, it can be represented in modal basis as equation (A.17)

uj (%, t) = u*(®) I'e ", (A.17)
Substituting equation (A.17) in (A.10) results in (A.18)

Cijkl uj]‘- l,? + pwz u® lia = 0. (A.18)

The scalar quantity ¢ is defined to be the inner product of the p and X vectors as shown in equation (A.19)
§=p% (A.19)

where p in this equation is the unit vector representing the direction of propagation. The derivative of ¢ with
respect to X is represented in equation (A.20)

S
8)(11'

Taking the derivative of the projection, defined in equation (A.19), with respect to x together with the chain
rule, equation (A.21) is obtained from equation (A.20)

uj = ug Py ;- (A.21)

= p;. (A.20)

Itis noted that under plane wave propagation assumption, u®(x) = u®(§) since the field properties only vary
along the direction of propagation, i.e. propagation is 1D.
Combining the above equations into (A.18) gives (A.22)

Dru'ee I + p wu® I = 0. (A.22)
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For a plane wave propagating in the p direction, it is assumed that u“ has the form of equation (A.23)
u@ = (@) UKVE) (A.23)
Substituting equation (A.23) in (A.22), results in (A.24)
S @ k? 1S — p W) U™ = 0. (A.24)
o

This relation will be used in appendix B to simplify the derived nonlinear equations.

Appendix B. Nonlinear propagation of plane elastic waves and coupled wave equations

When stress is applied to an element of the medium, the element undergoes a displacement given by
U(x, t) = £ — X (&, t), where the vectors & and X describe the element position in the deformed and
undeformed states, respectively.

Starting with the nonlinear constitutive equations, the second Piola—Kirchoff stress tensor is approximated
as a series expansion of the strain energy with respect to the Lagrangian strain, S;;, in equation (B.1)

0P 1
Tij = —_—— = Cijlekl + _CijklmnSlemn+-~-’ (B'l)
oS 2
where @ is the elastic energy function, Cijuis the rank four stiffness tensor, that is associated with linear behavior,
Cijkimn is the rank six stiffness tensor that represents quadratic nonlinearity and the Lagrangian strain, S;;, which
is given in equation (B.2),

ij>

1
Sij = E(Ui,j + Ui + UiiUs) (B.2)

here, U;; = %, the displacement gradient, is the derivative of the displacement with respect to the undeformed
]

coordinate. Lagrangian strain can be divided into linear and geometrically nonlinear terms as in equation (B.3)
Si = S§ + Si*-. (B.3)

Substituting equation (B.3) in (B.1), results in (B.4)

1
Ty = Cyu(Sk + S§b) + Eci,-kzmn(SbSin + StShw + SHShn + S Shi)- (B.4)

Keeping the terms up to the second order in displacement gradients, the nonlinear constitutive equations
can be written as equation (B.5)

1
T,']' = Cijkl(Sil + S%L) + Ecijklmn(SilSann)- (B.5)

Substituting for Sfjand S{}’L from equation (B.2) in (B.5), results in (B.6)

1 1 1
T; = Ecijkl(]Uk,l + Up + ECijkIUp,kUp,l + Ecijklank,lUm,n- (B.6)

The equation of motion is written in terms of first Piola—Kirchoff stress as in equation (B.7)
aa'ji 0 2U,‘
= pO .
0X i ot?

(B.7)

Here p, is the density of the matrial represented in the undeformed coordinate system.
The first Piola—Kirchoff stress is related to the second Piola Kirchoff stress by equation (B.8)
Ox i jl( s 8Ui

_ JU;
O'jz':jla_Xl: i1+—)=Tji+T

— B.8
0X; # 0X| (B.8)

Substituting for T;; from equation (B.6) and keeping the terms up to the second order in displacement
gradients, the term ']Tﬂ% in equation (B.8) is found in (B.9)
1

U,
Ty—

X, = Cimi U Ui = Cinki Oim Ug Ups, e (B.9)

Considering symmetry properties of the rank four and six tensors and by substituting from equations (B.6)
and (B.9) into (B.8), the first Piola—Kirchoff stress can be found in terms of displacement gradients in
equation (B.10)
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1
i = CiaUst + = Ciit Ukl (B.10)
where
C,-(j?lmn = Cjittmn + 2Cjuki 6im + Ciin1Otm (B.11)

is the effective rank six tensor. Substituting for &;; from equation (B.10) into the equation of motion
equation (B.7), (B.12) is derived

| oM,
(CijklUk,z + Ecig-k)lank,lUm,n) =p ' (B.12)

0 .
J or?
As in appendix A, the definition of equation (A.3) is used to introduce the complex displacement field i (X, t)
which transforms equation (B.12) into (B.13) and its complex conjugate

2
(Cijkl Uy, + iclgi)lmn(uk,lum,n + gty ) ) = Po(%)- (B.13)
i
The previous expression contains product terms of i (%, t) and #* (%, t) in addition to those of 7 (%, t)

making the expression more complicated than the linear equation, equation (A.10). Pure plane wave solutions of
equation (A.11) are no longer possible for the nonlinear problem. However, the nonlinear effects can be
approximated as a perturbation of the linear system when the nonlinear terms are small. This is shown in
equation (B.14), where each 7 term is a solution of the linear problem at frequency wy,

uj(% 1) = ) ul(®e (B.14)
q

where the amplitude, or envelope term uf, is allowed to vary with X. Substituting the complex displacement
expansions of equation (B.14) in (B.13) and using the notational convention described in equations (B.15a4) and
(B.15b),

ul(%) = ui(w,) (B.15a)
u®) = uf (W) = ui(—wy) (B.15b)

leads to equation (B.16)

_L 1 _ w.
[ 32, Gttt (wq)e ™™t 4 535, (C (1)t (@) €T 4 i (@03t

X (—w)e 1@ = —poS Wl uy(wy)e . (B.16)

Since the relation in equation (B.16) must hold at all times, the exponential terms are collected together so
that the same frequency exists in each summand. This requires w, = w, + w, where r, g, and s can take on
negative values as appropriate to satisfy the conjugate frequency notation of equation (B.15b). This implies:

1 2
Ciitti1(Wg) + =Y Cih it (W) (W) | = = powytti(wy) (B.17)
(r,5) i
N
The summation in equationequation (B.17) is over all frequency combinations that satisfy the constraint
w; = wy + w; for each w, independently. The notation (r,s) here is used to represent a pair that satisfies the
constraint on w, and ws; consequently, r and s are not independent of each other. Distributing the derivatives in

equation (B.17) leads to equation (B.18)

1
Cita (@) + =D Cithn Ui (0 thimn (W5) + i1 (W i (W) = — Pyt () (B.18)
(r,9)
If waves at different frequencies are collinear, i.e. u]-q (%) have the same propagation direction, the eigen basis
of equation (A.15) is equivalent for all components. Projecting these displacement fields on the eigen basis
results in equation (B.194)

ui(wy) = u(wy) 14, (B.19a)

In the above equation, the component (™ is referred as & mode of the wave and [ * defines the direction of
‘particle’ velocity. Here it assumed each displacement field at frequency w; is only composed of one mode, i.e. its
particle displacements are aligned with only one of the eign basis. This is referred as the mono-mode
assumption.

Defining the scalar quantity £ being the inner product of the p and %, { = p.X, taking the derivatives with
respect to xy and using the chain rule, results in equations (B.19b) and (B.19b)
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ug1(wg) = 1 (wg) pili, (B.19b)
Ui (wq) = 'y (wy) py. (B.19¢)

Substituting equations (B.19a)—(B.19¢) into (B.18) gives (B.20)

1 BY1(~ 5 ,
Cita PR & o) + D2l piby 1 (e (@) @) + ) (wn) ug ()
(r,8)
= —powéli(”)u(a)(wq). (B.20)
Using the definition of Iy = Cjjy pip in equation (A.14), also defining A j,, in equation (B.21),
Nitm = Cltlunnli D1y (B.21)

Equation (B.20) is rewritten as equation (B.22)

(¢ C 1 £ Y 3 % % ,
Tk u (@g) + =3 A1 ) () u@ () + u (w)u (w)
9
= — pwi [V u® (wy). (B.22)

The SVA assumption presumes if the variation of the amplitude of a wave over its wavelength is negligibly
small, its mathematical representation can be composed of two terms. The envelope or the amplitude of the
wave and a sinusoidal function capturing its oscillations. Under the SVA assumption the wave components at
different frequencies, u® (w,), propagating in p direction, i.e. along &, can have the form

4@ (wy) = %;o» (%) elk¢ — gy (wq)ezk;")s, (B.23)

where % (qa) (%) is the SVA term, kq(“) is the magnitude of the wave vector for the wave component at frequency w,
and associated with polarization direction .. With equation (B.23), equations (B.195) and (B.19¢) can be written
as equations (B.24) and (B.25), respectively

) (wg) = [UQ (wg) + Tk U (wy)]e™i¢ (B.24)
' (wg) = (UG (wg) + 20k U'P (wy) — k\PU (wg)]e™i™¢ . (B.25)

With the SVA assumption, the inequalities in (B.26) hold,
WG (wg) < kiU (wg) < (ki) U (wy) (B.26)

and equation (B.25) simplifies to equation (B.27)
'l (wg) = [ U (wg) — (k2 (wy)]ekis . (B.27)

Substituting equations (B.24) and (B.27) into (B.22) and discarding the low order terms in inequalities
(B.26), equation (B.28) is obtained

[Lh20k (V1D U (wg) — kO — pgwl )V U@ (wg)] e
= Sl Ik U+ KPP @) 2 @l K7HRDE = o (B.28)

In appendix A, equation (A.24), itis shown, Z (E—k(kc‘f)zlf‘ — P wé 1) *(wy) = 0, and equation (B.28)

simplifies to equation (B.29)

[Ekké{”lé“)%f?) (wq)] elkj,“)g _ lZAika [kr(ﬁ)kéw) (kr(ﬂ) T ké”)l,ﬁ“)l,(r?’)%(m
(r,9) By
(W)U (w;)] el KP+KME = (B.29)
Multiplying both sides of equation (B.29) by 1%, equation (B.30) is achieved
, v (&3 1 v -~
(kg EOUO U e = =5 Nl VO1D kD (6 + k)

X UD (@)U (w,)]e! T HRDE, (B.30)

By defining, G** = T3l(1{* and H*" = Ay, {11, and K = kPO (kP 4 k).
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Equation (2.30) can be rewritten as equation (B.31)

1 ( By
Gk () = S S H KT U ) U (]! R HDE, (B.31)
(1)

In asecond order process involving two distinct frequencies w;, and w, frequencies that satisfy w, = w, + w;
inherently satisfy w, = w; + w,. Rewriting equation (B.31) for the symmetric pairs of w, and w;, becomes
equation (B.32)

aby ady | ko
UG (wy) = %%lﬁw(ww (ws)]e’@kwvf, (B.32)
q

where Ak, = kP 4 kO — kq(“). This form is further developed in the body of the article to yield the final
equations.

Appendix C. Calculation of the intensity of an acoustic wave

The power density or intensity of an acoustic wave, in the direction of propagation p, can be calculated from
equation (C.1)

Intensity = %Lﬁ.(ﬁ -+ P%), (C.1)

where P is the complex acoustic Poynting vector, represented in equation (C.2) [32] and P* denotes its complex
conjugate.

P=

3 (C.2)

In equation (C.2) 7* is the complex conjugate of the particle velocity and T isthe symmetric Cauchy Stress.
For a time-harmonic displacement field defined as uy (%, t) = u;(X) e ™!, where, I = +/—1, itisreadily
seen,

vi(X, 1) = —Iw ur(x, t) (C.3a)
and,

Vi, ) = o uf (%, b). (C.3b)

Substituting from equation (C.3b) for 7* and the constitutive equations T; (X, t) = Cijyuy,(X, t), for 7_”,
into equation (C.2), results in equation (C.4)

—Tw
P, = Tu,-* Ciji i, 1- (C.4)

Expressed in the eigenvector basis and assuming mono-mode expansion of the displacement field, its
components are represented in equation (C.5)

up = u@ [, (C.5)
Assuming propagation in the p direction, and, £ = p.X
@) = (@) oIk (C.6)

where %(® and k() are the amplitude of the displacement and wavenumber of mode c, respectively.
Substituting equations (C.6) and (C.5) in (C.4), results in equation (C.7)

A R A (€7)
Equation (C.8) is obtained by multiplying both sides of equation (C.7) by p;
PP = %C,-jk, KO @Y @ [ pp, (C.8)
Here, with %O %*® = |9/ *,and T = Cjy p;p; equation (C.8) reduces to equation (C.9)

w a)1(a [s
PP = > |2 Ty 11 k), (C.9)
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With T, L1 = p

(ktj)z (equation (A.24) in appendix A), equation (C.9) reduces to equation (C.10)

Bh =10 S, (C.10)

Substituting equation (C.10) in (C.1), the intensity of an acoustic wave can be obtained from
equation (C.11),

3
ity = 2| Y i
Intensity = 5 | 7@ | %) | (C.11)
or,
Intensity = %pwzc(“) | U |2, (C.12)

where ¢, is the wave speed of the mode a.
From the above equation, the intensity of the wave at frequency w, can be written as equation (C.13)

I, = pw 2SN U (wy) P (C.13)

When the displacement is represented in its phasor notation, % (w,) = |%“(w,)| e'%, the magnitude of its
a mode can be written in terms of intensity as equation (C.14),

1/2
21,

1% (wg)| = 5 (C.14)
P wy gy

and, its derivative with respect to £ is calculated as equation (C.15)

i (@) = i (@) U@ % 13,
dg% (wg) (dgl% (Wo)| + 11U (wg)] i e

2 () q

1/2
dI, d
_ l 2 -2 e +Il%(a)(wq)| ﬁ elo,, (C.15)
pwy ¢ d¢ dg

Solving equation (C.15) for the derivative of the intensity with respect to £, equation (C.16) is derived

d, do,
= 2p SN2 Pw, i%ﬂ)(wq)e% — U (wy)] —|. (C.16)
de N ae dg
From equation (2.11), % (2) can be written as
k@™ ) o
Jz[(a)(w ) = Z|C§gv rka(k,(‘@) + ké”) |@/(;i) (W 12D (wy)| el Bkl o+ I+ +0) (C.17)
() q

where, it is assumed,

1 (H*)

W) = 0@ € A () = 0 @3)] 1% <2 = [C7 | el

and

@) (
(krﬂ K§ *D 4 kgw)] _ | K ksw KK 6o 4 ko)

()
kq

Substituting for d%% @ (w,), from equation (C.17) in (C.16), results in (C.18)

. k(d)
d_ﬁq = @ &)L w0 | G rkmf (k(m + k) (1A D @)1 (w,)] el
dé,
= 1 (wy)| —, C.18
| (wy)] i (C.18)
where,
Ursqg = Dksgé + & + &, + & — &, + O (C.19)
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Substituting for | % (w,)|and | % (w;) | from equation (C.13) and using the definition of the wave speed to

substitute for kq(") =2 kO = % and ks(” = “(]f) ,equation (C.18), equation (C.20) is derived
[ ¢’

C[;a)’ r
3/2 1/2
dr 2¢@ LI ) , / dé
1 _ Z - Q(m) (il RTXC I ké”’IICe‘??"I el — 211, gl (C.20)
d¢ e\ 6 G P d¢

Dividing equation (C.20) into real and imaginary parts results in equations (C.21a) and (C.21b), respectively.
Since intensity of an elastic wave is a real value equation (C.20a) represents the equation for intensity gradient.
equation (C.21b) also provides the equation to solve for the change in phase of the wave at frequency wj.

3/2 1/2
dr 2 ¢l LLI
q q q-res 5} v
— =35 1k + kP 11CS7 | Cos(thrsg) (C.21a)
d€ (r,5) [ P
3/2 1/2
do 2@ LLLY/
q q q-res I3 1 :
12 1, = P e 1k + kO 1CE7 | Sin (W) | = 0. (C.21b)
5 (r,s) GG p
Defining
’ 3/2 1/2
2¢@ LILI
A = | —F— L2 16 + kNS, (C22)
> GRS P
r S
Equation (C.21a) is written as
dI,
- = Z&/(r,s) COS(%gg)- (C.23)
d€ (r,s)
Appendix D. Linear and nonlinear material properties of LINbO; [30]
Table D1. Nonlinear material properties for Lithium Niobate (LINbO3), (x 10° Pa)and C155 = C166 = C125 = C135 =
C145 = C146 = €225 = C226 = C235 = C236 = C136 = C245 = C246 = C334 = C335 = C336 = C345 = C346 =
C445 = C446 = C555 = C556 = C566 = C666 = C126 = 0.
Cl11 Cl112 C113 Cl14 C123 Cl124
—512 454 728 —410 719 55
Cl44 Cl155 C222 C333 C344 C444
—37 —599 —478 —363 —540 —41
C156 C166 C224 €233 C234 C244
1225 —216 300 —340 1 —599
C455 C356 C355 C266 C366 C456
41 -1 —540 —250 45 —281
C133 C134 C122 C256 C255 C466
—34 -1 420 —232.5 —370 55
C223
728

Table D2. Linear material properties for Lithium Niobate
(LiNbO3) (x 10~9Pa), density = 4700 kgm > and C15 =
Cl6=C25=C26=C34=C35=C36=C45=C46=0.

Cl11 C12 C22 C14 C24 C13
203 57.3 203 8.5 —8.5 75.2
C23 C33 C44 C55 C56 C66
75.2 242.4 59.5 59.5 8.5 72.85
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