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Abstract
Anewmethod to diagnose extreme laser intensities throughmeasurement of angular and spectral
distributions of protons directly accelerated by the laser focused into a rarefied gas is proposed.We
simulated a laser pulse focused by an off-axis parabolicmirror by Stratton–Chu integrals, that enables
description of laser pulsewith different spatial-temporal profiles focusing in a focal spot down to the
diffraction limit, thatmakes our theoretical predictions be a basis for experimental realization. The
relationship between characteristics of the proton distributions and parameters of the laser pulse have
been analyzed. The analytical and numerical results obtained justify the newmethod of laser
diagnostics. The proposed scheme should be valuable for the commissioning of new extreme intensity
laser facilities.

1. Introduction

Over the past two decades, significant progress in short-pulse high-power laser technology has resulted in the
development of petawatt-class lasers [1–12], ten petawatt-class lasers [13–18]. Even higher power laser systems
have been proposed [19]. Focusing of these high power laser beams to diffraction limited spots has led to laser
intensities exceeding 1022W cm−2 [20–22], with even higher intensities possible in the near future. Such
intensities will enable the exploration of light-electron interactions at the limit where radiation-reaction effects
dominate the electron dynamics. In addition, these intensities can elucidate effects of vacuumpolarization, can
trigger electron–positron pair production in photon–photon and electron–photon collisions, can initiateQED
cascades, and also allow the study of nuclear quantumoptics [23].

The directmeasurement of such extreme intensities is challenging using conventional techniques, and so it is
important to be able to accurately compare the results of different experiments with theoretical predictions and
with each other. Therefore, the development of newmethods for characterizing the laser intensity is crucial for
the realization of experiments requiring extreme intensities and for the commissioning of new laser facilities.
Moreover, by using optimization techniques [24], the intensitymay be significantly increased for high
repetition-rate systems, if the intensity ismeasured accurately.

Typically, intensity characterization is based on separatelymeasured spatial (focal spot) and temporal (pulse
duration) characteristics at low pulse energy, then extrapolating these results to full laser power. However, the
laser intensity given by this approachmay significantly differ from the actual value achieved in experiment
because of wavefront and spectral phase distortions in the laser stretcher-amplifier-compressor chainwhich can
degrade the focal spot and temporal pulse shapemainly due to chromatic aberrations and frequency chirp
[25–27]. The other indirect approach, whichmeasures a part of the beam that ‘leaking-through’ amirror in the
interaction chamber, will not account for the final focusing optic, which is themain source of aberrations,
particularly for short-focal length parabolicmirrors.

Severalmethods have been proposed and implemented to characterize laser intensities, which include the
use ofmultiple tunneling ionization of highZ atomswith high ionization potentials [28–30], nonlinear
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Compton scattering [31, 32], and temporally resolved intensity contouring based on a chirped probing scheme
[33]. Thefirstmethod involves the time-of-flight (TOF) detection ofmultiple ion species produced in the focus
of a laser interactingwith very low density gases. These ions are accelerated using a few static kV electric field in
the direction perpendicular to the laser propagation direction. The ions are then detectedwith dual
microchannel plates (MCPs). Themajor problemwith thismethod at intensities above 1022Wcm−2 is the
importance of ponderomotive acceleration of highZ ionsin the laser fieldwhichwill complicate the TOF
measurements. The secondmethod involves a complicated experimental setupwhich uses the collision of the
laser pulse with a laser wakefield accelerated electron beam. This requires perfect synchronization and spatial
overlap of both beams, and the electron beammust be fully characterized. The latter approach is based on the
diagnostics of the laser intensity distribution via the overdense plasma contour formed as a result of the laser-
plasma interaction. The target is probed by the chirped laser pulse, which is replicated after that. A small unique
frequency range is chosen from each copies by narrow bandpassfilters, so that each residual part of the probing
pulse contains information about the laser spatial distributions in the uniquemoments of time. It allows
measure the pulse temporal profile on the picosecond scales, that is undoubtedly important.

At the same time, the highest intensities can be achieved only in the case of ultra-tight focusing close to the
diffraction limit. Such a laser pulse, which has a complex electric field structure at the focus, will accelerate
particles without needing subsidiary devices or electron beams. The effects of direct (vacuum) particle
acceleration can then be used to diagnose the laser pulse. There have been some recent work, which considered
ponderomotive electron acceleration [34–39]. Some of them are devoted to experiments in a limited range of
laser intensities (1018− 1021W cm−2) [37, 40], whereas theoretical studies cover awider range of intensities (up
to 1022W cm−2) [36, 38, 39]. Such diagnostics are based onmeasurements of angular and spectral distribution
of electrons accelerated froma rarefied gas. This allows for the omission of plasma fields, which are small in
comparisonwith the amplitude of the laser field, so that electron dynamics are determined only by parameters of
themeasured pulse. This approach can also be supplemented by themeasurement of the secondary radiation of
electrons [41].

While the approach discussed above has a simple experimental realizationwith a lowZ gas used as a target,
the atoms of the gaswill be fully ionized by the leading edge of the intense laser pulse and the ionized electrons
will escape the focal region before the peak intensity is reached.Here, instead, we propose using protons
accelerated from the rarified hydrogen gas for the laser intensity diagnostic. Laser intensities below 1024W cm−2

are considered as the interaction of lasers with protons below the limit will result in particle velocities
significantly smaller than the speed of light. Hence, the protons will staywithin the focal volume during the full
duration of their interactionwith the femtosecond duration pulse, and the resulting energy of the protonwill be
directly related to the laser intensity.

This paper is dedicated to a detailed theoretical analysis of proton dynamics driven by high-intensity
femtosecond laser pulses focused by an off-axis parabolicmirror. This work could become the basis of a new
method to diagnose extreme laser intensities viameasurement of angular and spectral distributions of
accelerated protons. Thework addresses a range of laser parameters with intensities from1021 to 1024W cm−2,
pulse durations from15 to 80 fs and focal spot diameters from1λ to 4λ, whereλ=0.8μm is a laser wavelength
of Ti:Sapphire based laser systems. Stratton–Chu integrals are used to describe a laser pulse with different
spatial-temporal parameters (this approach allows us to perform accurate calculations for the focal spots down
to the diffraction limit), and a test particlemethod using a ponderomotive force is used to simulate laser-proton
interactions. Bothmodels and the conditions for their applicability are considered in section 2. In section 3, we
discuss the spectral and angular characteristics of the proton distributions depending on the laser parameters,
such as peak intensity, temporal-spatial profiles and the diameter of the focal spot, from the perspective of their
use as a the diagnostic of the laser pulse.

2.Model of proton acceleration

Themethod for characterizing a laser pulse intensity profile presented in this paper is based on the analysis of the
protonmomentumdistributions after direct acceleration by the laser field. For the proton distributions to be
unambiguously related to the pulse parameters themain requirement is a negligible effect of Coulomb fields
induced in the plasma on the proton dynamics. In this case, the dynamics of charged particles can be described as
a solution of the equation ofmotion through the Lorentz force
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where q andm are the charge andmass of the particle;

R ,

v and γ are its position, velocity and Lorentz-factor;


E

and

B are the electric andmagneticfields of the laser pulse. Some trajectories have been integrated independently
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by the Adamsmethod [42] and the Boris scheme [43]. A good agreement between the results confirmed the
calculation accuracy, and subsequently a preference has been expressed for the first numerical scheme.

In this paperwe use the solution ofHelmholtz equation in the formof Stratton–Chu integrals [44] to
describe all six components of the laser pulse focused by an off-axis parabolicmirror. The integrals with
boundary conditions for incident and reflection laserfields give the following relation between the components
of the incident and focused laser pulses [39]:
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where k is amagnitude of thewave vector, ( )


¢ ¢E x y,i and ( )


¢ ¢B x y,i are the components of the incident laser
pulse,A and


n are themirror surface and the unit vector normal to it, =G kre ikr

S
i S is theGreen’s function for

theHelmholtz equation, and rS is the vector from the reflecting point on themirror to the observed point. After
the transformation from the surface integrals to the double integrals, taking into account the shape of the
reflecting surface ( ( )¢ = ¢ + ¢ -z x y F F42 2 , where F is a focal length of the parent parabola, seefigure 1), the
diffraction integrals can bewritten in the following form:
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where ( )
 
E r t, and ( )

 
B r t, are the electric andmagnetic components of the focused laser beam, ( )

¢ ¢l r x y, , is a
function describing a distance between themirror ( ( ))¢ ¢ ¢ ¢ ¢x y z x y, , , and the observation point (x, y, z), also
taking account of additional phase for different points on themirror; ( )

¢ ¢r x yC , ,e and ( )
¢ ¢r x yC , ,b are tensors

whose components depend onmirror characteristics, such as off-axis angleψoff and effective focal length
( )y= +F F2 1 coseff off ,ω is the carrier frequency. Here, to introduce relations between themirror and laser

characteristics, we review themain steps of the construction of the formulas describing the focused laser pulse,
which are shown in detail in [39]. The integrated area corresponds to the projection of themirror surface onto
the planeX′Y′ perpendicular to the direction of the propagation of the incident laser pulse:
( )y r¢ - + ¢ x F ysineff off

2 2 2, if the y′-axis was a rotating axis. After reflection, the direction of laser
propagation rotates to the angleψoff such that a new coordinate system can be defined by the following
expressions, y y= ¢ - ¢x x zcos sinoff off , y y= ¢ + ¢z x zsin cosoff off and y=y′. In this system, the laser pulse
will propagate along the z-axis, and the incident laser pulse linearly polarized along the x′-axis will be
transformed to the reflected laser pulse linearly polarized along the x-axis. Both coordinate systems are shown in
figure 1, their origin is coincident with the best focal position (the pointO). The requirements for the
discretization scheme have been discussed in [45], which has concluded that is necessary to resolve only the
variations in the shape of the incident pulse. This enables us to use the straightforward Simpsonmethod [46] to
calculate laser fields from the formulas (3).

Unless otherwise specified, we consider linearly polarized incident laser pulses withwavelengthλ=0.8 μm
and aGaussian spatial profile: ( ) ( ( ) )

 
¢ ¢ = - ¢ + ¢¢E x y E e x y w, expi x0

2 2
0
2 , wherew0 is theGaussian beam radius

chosen so that 99%of the laser powerwould fall on themirror, of dimensions ρ≈5 cm,ψoff=90°, as
indicated infigure 1.We have not taken into account the effect of the temporal distribution on the spatial laser
characteristics. The temporal envelope of the reflected laser pulse is described by theGaussian function

( ) ( ( ( ) ) )t- = - - -f t z c t z z cexp 20
2

0
2 , the duration of the laser pulse at full-width-half-maximum

(FWHM) is t t= 2 ln 2FWHM 0. Hence, this approach allows formodeling laser pulses with different spatial-
temporal profiles focused to spots down to the diffraction limit, provided their durations are sufficiently long to

Figure 1. Schematic of laser pulse focused by off-axis parabolicmirror. F, Feff are parent and effective focal lengths,ψoff is the off-axis
angle, ρ is themirror radius.
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neglect spatial-temporal correlations [47]. The reflected laser pulse is characterized by the focal spot sizeDF at
FWHM,which is determined by the f-number of the focusing system, r=#f F 2eff , and the spatial distribution

of the laser pulse. For the parameters considered here,DF=1.3λ for f#=1,DF=2λ for =#f 1.5 and
DF=3.9λ for f#=3.

Analogous to the usualfield strength parameter a0 for electrons, we introduce w=a qE m c0p , which is the

normalized amplitude of the laser field in terms of the protonmassm. For intensities, ∣ ∣


p= <I c E 8 102 24

Wcm−2, considered here, a 10p and the quiver energies of protons, e = mc a 2q
2

0p
2 , are nonrelativistic, and

therefore their Lorentz-factor is γ;1 throughout the interactionwith the laser pulse. The amplitude of the
proton oscillations, l p=x a 2max 0p , is also substantially smaller than the characteristic size of the laser focal
spot, which allows for averaging the particlemotion over an optical period, which is described by the
ponderomotive force [48]:
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This force can therefore replace the Lorentz force (1) to give equations ofmotion for the averaged velocity (the
so-called drift velocity) and particle position. This equation is also numerically integrated by the Adamsmethod.
We have compared the results obtained by this approachwith those calculated by the full Lorentz force.
Figure 2(a) shows net proton energies as a function of particle initial position for y=0 and z=0. The results
are in a good agreement with each other. The same results were also received for distribution of proton positions.
Proton energy as a function of time is shown infigure 2(b). The full Lorentz force allows calculated proton
dynamics in the everymoment of time, whereas the ponderomotive approximation gives the time-average
characteristics of protonmotion.However, themoving average of the proton energies calculated by the former
approach show the samefinal energy gain as the ponderomotive approach. Thus, the ponderomotive
approximation can be used for the description of the average andfinal characteristics of proton dynamics.
Hence, belowwe use ponderomotive description in the proton equation ofmotion unless specified otherwise.

In real experiments, the requirement of negligible plasma effects places limits on the proton density in the
rarefied gas, which can be estimated in the followingway. The interaction of the laser pulsewith the gas results in
the effective removal of electrons from the interaction area, leading to the formation of a volume of charge. The
Coulomb interaction of an individual protonwith the resulting charge volume should be negligible as compared
with the ponderomotive force of the laser. The strength of theCoulomb interaction can be estimated as

~F q n VC
2

p
1 3, where np is the concentration of protons and ~ ^V r r2 is the interaction volume. ~r̂ DF and

 l~r DF
2 are the characteristic longitudinal and transverse sizes, respectively. By comparing it with the

magnitude of the ponderomotive force results in the limit of themaximumproton concentration:
n mc a q V4p

2
0p
2 2 2 3, a0p is less than 1 for nonrelativistic interactions, for instance, I=1021W cm2

corresponds to ( )l m» ´a 0.01 0.8 mp0 . The limiting expression can be rewritten as

( ) l ml
- - -n a D10 0.8 m cmp

23
0p
2

F
8 3 2 3, where l=lD DF F . In this article, theminimumvalue of the laser

peak intensity considered is I=1021W cm−2 and themaximum focal spot diameter is approximatelyDF=4λ.
Therefore, in experiments the proton concentration should be less than 1017 cm−3 tomeet this criterion.

At the same time the laser pulse is affected by the ionized gas (hydrogen), being refracted. Since the refractive
index depends on electron density, neglecting the shift of the focal spot position in comparisonwith the laser

Figure 2.Comparison of results obtained by Lorentz force (red color) and ponderomotive force (blue color): (a)final energy as a
function of initial proton position along x-axis (y = 0, z = 0) and the absolute value of intensity gradient ofGaussian laser beam
(green line), (b) average energy (from the ponderomotive approximation) and itsmoving average (fromLorentz approach) as a
function of time.Numerical calculations were performed for aGaussian laser pulse with peak intensity Ip=1022W cm−2 and
τFWHM=36 fs, focused to a spot of sizeDF=1.32λ.

4

New J. Phys. 22 (2020) 023003 OVais et al



wavelength also limits the gas concentration n. It can be approximately estimated using geometrical optics by the
expression: n=λncr/l, where l is thickness of the ionizedmedium and w p=n m q4cr e

2 2. If l≈10 cm, the
concentration should be less than 1016cm−3, that is amore restrictive condition in contrast with the one
discussed before.

3.Diagnosing a laser pulse using the protonmomentumdistribution

Based on themodel introduced in the previous section, we now consider the possibilities of using themeasured
protonmomentumdistributions as a diagnostic of ultraintense laser pulses. In this sectionwefirst discuss
typical accelerated proton spectra, and then show the connection between its characteristics and different laser
parameters, such as the peak laser intensity, pulse duration, and focal spot size aswell as the spatial-temporal
profile. The numerical calculations discussed in this sectionwere performed for 10 125 test particles randomly
uniformly distributed in a box of l l l´ ´ = ´ ´# # #x y z f f f3 3 9 2 .

3.1. Angular-spectral proton distribution
Since the ponderomotive force (4) of the laser is in the opposite direction to the intensity gradient, in the field of a
tightly focused laser pulse, protons are pushed predominantly in the direction perpendicular to the laser
propagation. Figure 3(a) showsj-integrated proton spectra as a function ofϑ-angle, which is the polar angle
measured from the direction of laser propagation (the positive direction of the z-axis). The anglej is the
azimuthal angle in the plane perpendicular to the z-axis. It ismeasured from the direction of the laser
polarization, i.e. the positive direction of the x-axis. Themajority of the ponderomotively accelerated protons
move in the J = 90 direction. This angle also refers to the emission direction of themost energetic particles
(see figure 3(a)).

Here we analyze the impact of laser parameters on the proton energies. For a proton initially at rest close to
the laser focuswhere the phase fronts are approximately planar, the laser intensitymay be separated into

( ) ( )
x=I I g r f0 , where I0 is the peak laser intensity, ( )g r is the spatial distribution and f (ξ) is the pulse shape

with respect to the coordinate ξ=t−z/c, whichwas introduced in the previous section. Assuming the proton
moves a negligible distance during the laser pulse, which is valid provided a 10p , the energy gain of the
protons, εp, can be roughly estimated fromponderomotive approximation in the followingway:
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where x x t= FWHM*
and

 
=r r w0* ,

 
 = w0* are normalized variables. This formula shows that the

particles with the highest energy, εmax, are initially located in the area of themaximum intensity gradient
([ ( )] )
 
g r max , which agrees with the results obtained from the numericalmodeling of the interactionwith a

focusedGaussian laser pulse (seefigure 2(a)). Thus, the proton spectra has amaximumvalue εmax of the achieved
energies (see numerically calculated spectrumwith εmax≈ 350 keV infigure 3(b)) that hereinafter will be named
the ‘cutoff energy’.

This formula allows comparing energies, εp, of protons accelerated by the ponderomotive force with
energies, εC, gained through the ‘Coulomb explosion’, if the proton concentrationwould be rather high. The

Figure 3.j-integrated (a) andj,ϑ-integrated (b) spectral distributions of protons accelerated by aGaussian laser pulse with duration
τFWHM=36 fs and peak intensity Ip=5×1022W cm−2, focused by an off-axis parabolicmirror (ρ = 5.08 cm,ψoff = 90°) to a
focal spot sizeDF=1.3λ.
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problemof ion acceleration by electrostatic field of a volume of charge has been studied in detailed in the paper
[49], where linear dependence of the energy εC on the laser intensity has been demonstrated. Comparison of the
formula (5)with the result of that paper gives the following relation: e e~ ap 0p

2
C, where <a 10p for the intensity

range considered in this paper. Itmeans that the regime of ‘Coulomb explosion’ results in higher proton
energies.

3.2. Estimation of the peak laser intensity
The formula (5) shows that energies of protons are proportional to the square of the peak intensity, if the other
parameters introduced in the equation arefixed. Figure 4 illustrates the cutoff energies (dots in the formof
circles, triangles and squares) obtained in numerical calculations as a functions of the peak intensity for different
values of the focal spot size. The lines represent theoretical estimations based on the formula (5) and the
assumption of theGaussian spatial-temporal formof the laser pulse near the focal spot. For the laser intensities
in the range from1021 to 1023W cm−2, the results obtainedwith theoretical and numerical approaches are in a
good agreement with each other for different values of the focal spot size. Thus the cutoff energy of the proton
spectra can be estimated by the following analytical formula: ( [ ] )e t» ´ l

- I D1.7 10 fsmax
10

L18
2

FWHM F
2(keV),

where =I I 10L18 p
18 Wcm−2 for the laser parameters (wavelength and spatial-temporal profile) similar to ones

considered in this paper.
The formula (5) has been deduced under the assumption that the shift of protons during the interactionwith

the laser pulse is negligible as comparedwith the focal spot size, i.e. the intensity gradient retains its own value in
the position of each particle. However, higher laser intensities leads to substantial shifting the particles, therefore
the effect of the gradient variation through the interaction time changes the dependence of proton energies on
the laser peak intensity. Figure 4 shows deviations of the results, that have been calculated for the laser diameters
DF=1.3λ andDF=2λ, from thefitting lines. The smaller focal spot and the higher laser intensity requires
proton shifting to be taken into account. Net proton energies also depend on the time τint of the interactionwith
the laser beam,which is equal to the pulse duration (t t»int FWHM, see formula (5)) in the case of lower
intensities. For higher intensities, the interaction time is determined by the dynamics of accelerated protons (so
that t ~ w Ipint 0 ). By using this ratio instead of τFWHM in formula (5) results in the net proton energies to be
linearly proportional to the laser intensity and independent of the focal spot size. That is why, the points,
corresponding to Ip=1024W cm−2 forDF=1.3λ and 2.0λ, turn out to be close together.

The purple line infigure 4 shows the energies gained during proton acceleration by pulses with the same
power but different values of the focal spot size and peak intensity. In this case, the expression I Dp F

2 should be
held constant, which results in the proton energy being proportional to the cube of the intensity. The slope
coefficient of the purple line has been obtained after fitting the numerical results as 3, which is also in agreement
with the theory. Thus, the cutoff energy of the protons and the laser intensity are connected and are a function of
both the spot size and the laser pulse power. The proton cutoff energy differs from the electron energy
characteristics, where expansion of the focal size atfirst leads to growth of their energies and then to their
reduction [39].

Figure 4.The cutoff energies as a function of the laser peak intensities forfixed value of the focal spot sizes (red,R, green,G, and blue,
B, lines) and laser peak power (purple,P, line). Dots show results of numerical calculations, RGB lines are results of their estimations
with the formula (5). The purple line is a result offitting by the linear function y=kx+b on a logarithmic scalewith kP≈3 of dots
for the same power of laser pulses. Calculations have been performed for aGaussian laser pulse with τFWHM=36 fs.
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3.3. Effect of the laser pulse temporal profile
The estimation of the final energy shows its value to be proportional to the square of the laser duration.However
this estimate is only validwhen the drift of the protons is negligible comparedwith the spatial scale of the laser
pulse throughout the interaction. This restricts the range of valid laser durations, which can be estimated by the
following approximate relation: t <a c Dp0 FWHM F. Figure 5 shows the cutoff energy as a function of the laser
duration on a double logarithmic scale. Results fromnumerical calculations are shownwith red dots and a linear
fit of the form y=kx+b on this scale is indicated by the blue line. Thefit coefficient is k≈2, which is in
agreementwith the theoretical hypothesis of squared dependence of the cutoff energy. Itmeans that the
simulation parameters indeed refer to a regime of proton dynamics with negligible spatial drift during the
interaction time.

In this regime of the laser-particle interaction, the accelerated proton energy depends on the integral of the
temporal distribution of the laser pulse (5). It results in the same energy distribution of protons for laser pulses
with the same energyW and focal spot sizeDF, where the laser pulse energy is ( )ò=W I x y t x y t, , d d d . This
assumption refers to the negligible drift of protons as well as the case discussed above.We have carried out a
number of numerical calculations for laser pulses with different temporal profiles (see infigure 6(a)) and equal
energies, peak intensities and focal spot sizes.We have consideredGaussian, 6-orderGaussian distributions and
their different configurations. The results show that the temporal formof a pulsewith fixed pulse energy does
not impact the cutoff energies of the proton spectra for the peak laser intensity 1022W cm−2, and therefore this
characteristic is not uniquely determined by the accelerated protons spectrum (figure 6(b)). A recent paper [39]
shows that the electron distributions are sensitive to the temporal profile of the laser pulse, and so can be used as
a complementary diagnostic in this case. Hence, if the laser pulse is free of femtosecond features and has a high
level of energy contrast, the laser duration can be estimatedwith a good accuracy by the proposedmethod.Our
calculations have shown that the protons gain 1%higher energy during the interactionwith the laser pulse,
which has additional 1%of its energy in picosecond prepulse. Therefore, this introduces an insignificant
contribution to the results of the proposed diagnostic.

Figure 5.The cutoff energies as a function of the pulse duration τFWHMof theGaussian laser pulse with Ip=1022W cm−2 and
DF=1.32λ. Dots show results of numerical calculations, line is a result of theirfitting by the linear function y=kx+b in the
logarithm scale, where k≈2.

Figure 6.Temporal distributions of laser pulses (a) ( ) ( )t= -f t texp 2
0
2 (Gaussian, purple), ( ) ( )t= -f t texp 6

0
6 (blue),

( ) [ ( ) ( )]t t= - + -f t t texp exp1

2
2

0
2 6

1
6 (orange), double Gaussian laser pulses (green and red). The corresponding cutoff energies

of the proton spectra for laser pulses with the same energies, focal spots and peak intensities: (b) =I 10p
22 and (c) Ip=1024 Wcm−2.

The results were obtained by a series of numerical simulations.
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As it was shown in section 3.2, the displacement of the protons becomes significant relative to the focal spot
size for a laser intensity of 1024 W cm−2.We have performed a series of numerical calculations for the same laser
profiles and given peak laser intensity. Similar to the case of the laser interactionwith electrons, the temporal
formof the laser pulse impacts the proton energies in this regime, as shown infigure 6(c). A laser pulse with a
steeper leading edge results in greater values of themaximumproton energy: 32 MeV for ( ) ( )t= -f t texp 6

0
6

(blue) and 23MeV for a double Gaussian laser pulse with a femtosecond prepulse (green).

3.4.Diagnostics of cross beam spatial inhomogeneity in the laser focal spatial distribution
In the previous sectionwe discussed the impact of the laser parameters on the proton energy characteristics. The
ponderomotive approximation also allows us to analyze the angular distributions of accelerated particles. From
the expression (4) introduced to the equation ofmotion, the relation between components of the proton
momentum and laser intensity distribution is given by:

( ) ( )
p

w
= -

¶
¶

p

t

q

m c

I r t

r

d

d

2 ,
, 6i

i

2

2

where the dummy index i indicates either the x, y or z coordinate. Because the emission angles (ϑ andj) of the
particle are determined by the values of themomentumprojections, j q=p p cos sinx , j q=p p sin siny ,
pz=p cos θ, features of the laser focal distributionwill correspond to properties of the angular distributions of
protons.

Let us consider two laser pulses with different spatial profiles in the focal plane (figure 7) and the same peak
intensity, Ip=5×1022Wcm−2, and duration, τFWHM=36 fs. One of them is a laser beamwith theGaussian
initial spatial profile studied in the previous sections, ( ) ( ( ) )¢ ¢ = - ¢ + ¢g x y x y w, exp 2 2

0
2 , the other is a half-

Gaussianwith non-zero values for x′>0with initial profile proportional to ( ( ) ) ( )- ¢ + ¢ Q ¢x y w xexp 2 2
0
2 ,

whereΘ(x′) is theHeaviside step function. Thus, in the focal plane, the first pulse is axially symmetric while the
second one turns into an ellipse with themajor axis oriented along the x-axis with l»D 2.94xF , D yF along the
minor axis y is approximately equal to 1.57λ. Such change of the spatial distribution can be explained because
the far-field distribution is related to the Fourier transformof the near-field distribution, so introducing an
aperture in one dimensionwill increase the diameter in reciprocal space in that dimension.

These laser beams allow us to analyze the effect of the spatial inhomogeneity on the angular-energy
distributions of protons. Figure 8 illustratesϑ-integrated spectral distributions of protons, the results were
received by the numerical calculations. Although the f# of the focusing systemswere the same, the smallest
diameter of the elliptical focal spot is larger than one of thej-symmetrical laser beam (1.57λ and 1.3λ,
respectively). It leads to the smallest energies of protons accelerated by the half-Gaussian laser pulse for the same
peak laser intensities, as shown in section 3.2. The formula (6) keeps a similar form in cylindrical coordinates for
the radial component of protonmomentum,whichmeans thej-energy distributions should bej-symmetric
for particles accelerated by aGaussian beam, since the intensity does not depend onj-angle. This assumption is
in agreementwith results obtained fromour numerical calculations (see infigure 8(a)). For the elliptical laser
beam,we consider two orthogonal directions,j=0° andj=90°, for particles propagating in theϑ=90°
direction, which correspond to themomentum components px and py respectively. Since p p D Dx y y xF F ,

Figure 7. Focal profiles of focused laser pulses with different initial spatial distributions. The laser intensity ismeasured inWcm−2.

8

New J. Phys. 22 (2020) 023003 OVais et al



which can be evaluated from formula (6), the ratio betweenmaximum energies detected along thej=0° and
90° directions will be proportional to the square of this expression. Figure 8(b) shows thej-angular spectral
distribution of protons accelerated by the laser pulse pictured infigure 7(b). As predicted by the theoretical
hypothesis, themaximum energy detected along the x-axis achieves lower values than the same characteristic of
the particles propagating along y-axis. The ratio of εp(j= 0°) to εp(j= 90°) is equal to 0.3, which agrees with
the estimate ( ) »D D 0.3y xF F

2 . Thus, this laser diagnosticsmethod also enables us to evaluate the ratio of the
beam focal widths. The ponderomotive force is independent of the laser polarization (see formula (4)). Itmeans
that replacing the x′-coordinate by y′ in the functionΘ(x′) only leads to rotating the proton distribution in
figure 8(b) to 90°, i.e.maximum energies will be detected alongj=0°and 180°.

The diagnosticmethod considered in this paper is not limited to aGaussian spatial formof the laser pulse.
Based on formula (5), themaximum energy of protons can be calculated for the laser pulses with different focal
distributions, including profiles with peripheral rings. In this case, themaximumenergy of protonswill be
defined by the intensity at themain (central) peak of the spatial profile, whereas peripheral rings should lead an
increase in the number of protons with intermediate energies, as it has been shown for electrons in [39]. At the
same time our approach is restricted by the intensity gradient of the rings, which should be less than that of the
main peak. Let consider a pathological example; the laser pulse has an on axis intensityminimum. In this case,
the assumption that the proton energy is correlatedwith the diameter and intensity of themain peak, which does
not exist, is erroneous. Itmeans that we should know some a priori information about the focal spot distribution.
However, thismethod can be supported by a similarmethod based on electrons [39].

3.5. Evaluation of the focal spot size
Figure 3(a) indicates an angular width, JD , measured at the half-maximum level, in the angularly resolved
energy spectrum. To estimate how the laser intensity profile relates to this characteristic, we start from formula
(6) under the same assumption t <a c D0p FWHM F as before, which results in the following relations in

cylindrical coordinates, = +r x y2 2 and z:

⎜ ⎟⎛
⎝

⎞
⎠

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )a

µ
¶

¶
µ

¶
¶

= =
¶

¶
¶

¶

-

p r z
I r z

r
p r z

I r z
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r z
p

p

I r z

z

I r z

r

,
,

, ,
,

,

tan ,
, ,

, 7

r z

z

r

1

whereα is the angle between the direction of particle emission andϑ=90°. Thefinal energy of the protons is
proportional to the sumof squared components of theirmomenta:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ) ( ) ( ) ( )e µ + µ

¶
¶

+
¶

¶
r z p p

I r z

r

I r z

z
,

, ,
. 8

r zp
2 2

2 2

The results produced above show the highest-energy particles propagating alongϑ=90° and that the
longitudinal component of theirmomentum, pz, is zero. If the initial position of such particles is { }r z,0 0 , then
their energy can be expressed in the form:

Figure 8.ϑ-integrated spectral distributions of protons accelerated by axial symmetric (a) and anisotropic (b) laser pulses,
corresponding to the focal distributions shown infigures 7(a) and (b).
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Hence, the initial position of protons with energy εmax/2may be determined as an implicit function r of z:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( ) ( )¶
¶

+
¶

¶
=

¶
¶

I r z

r

I r z

z

I r z

r

, , 1

2

,
. 10

r z

2 2

,

2

0 0

Introducing the substitution of variables:Z=z/zR andR=r/DF, where zR corresponds to the FWHM
intensity along the z-axis, i.e. the Rayleigh range, and using the expression for tanα, we can rewrite (10) in the
following form:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
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,
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1

2

,
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R Z

2
2

,

2

0 0

In our calculations, the squared tangent of the emission angleα of the protons with energies e e= 2p1 2 max was
small,α=1, and so it can be neglected in formula (11). Thus, using normalized scales {R,Z} the initial
positions of the particles, which gain approximately εp1/2 energies, have almost no dependence on the focal spot
size (see figure 9(a)). Let this area be determined by the functionR=Ri(Z).

Based on the introduced substitution, the formula (7) for ( )a R Ztan , is represented in the following form:

⎜ ⎟⎛
⎝

⎞
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( ) ( ) ( ) ( )a
=

¶
¶

¶
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-R Z

D z
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Z
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1

Tofind the value ofΔϑ/2 for given focal spot size, which refers to themaximumα-value for particles initially
located in the areaR=Ri(Z), we shouldmaximized the value attained by the right part of the equation (12)
under the conditionR=Ri(Z):
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Since both themaximized function and the condition do not depend on the focal spot size, if themaximum
value (i.e. the right-hand side of the equation) exists, that was observed in the numerical simulations, it also does
not depend on the focal spot size. As a result, the left part of the equation (13) remaining fixed for different values
of the focal diameter. Consequently, tan (Δϑ/2) is inversely proportional to zR/DF. Since zR is nonlinearly
relatedwithDF (e.g. the square dependence for paraxial approximation [50]), the ratio zR/DF takes on a different
value for various focal spot sizes. The considered characteristic of proton spectra does not depend on the laser
peak intensity in the ranges of the laser parameters discussed at the beginning of this section. This fact was
verified by a series of numerical calculations. At the same time the results demonstrated herewere received for
Ip=5×1022Wcm−2.

Table 1 contains the spatial characteristics of the laser pulse (DF, zR) and corresponding angular widths of the
proton spectra. The numerical calculations show that the ratio of ( )JDtan 2 to the expression (DF/zR) is
maintained for different spot sizes, being approximately equal to 0.8 in the case of the laser pulse with the

Figure 9. (a)MatchingR=r/DF toZ=z/zR for the initial positions of protonswith final energies ( )e e= 0.5 0.015p max . (b)The
graph of connection between the angularwidth of proton spectra,Δϑ, and the focal size,DF, for the laser pulse withGaussian initial
spatial profile: the red points are corresponding to the numerical simulations, the green squares are results of semi-theoretical
predictions, the blue line presents the data approximation.
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Gaussian initial spatial profile. The points corresponding to these results are shown infigure 9(b) by the red dots.
The green squares represent semi-theoretical results, that have been obtained by two sequential steps: (i)
numerical calculation of the Rayleigh length for the different focal diameters and (ii) transition from the value of
DF/zR to the angular width of proton spectra by formula (13). Figure 9(b) also illustrates with the blue line the
result of data approximation, this curve is converted into the dashed line for ( )JDtan 2 exceeding 0.14. It
means that for the latter range of the angular widths the determination of the focal spot size by this plot should
take into account error associatedwith no smallness of JD 2 (or equivalentlyα). If the error has an
unacceptably high value, the numerical calculations can be used to specify the result.

Therefore, the proposedmethod of the laser diagnostics allows estimating the focal spot size bymeans of
corresponding calculations, based on the technique discussed above, or the graph infigure 9(b) (forGaussian
laser pulses). Using the angular widths of the proton spectra for the laser diagnostics requiresminimizing the
effect ofmultiple proton scattering due to collisions of protonswith hydrogen nuclei (ion–ion collisions). It
leads to both distortion of the proton angular distribution and energy losses. The effect of proton interactions
with ambient gas is considerably weaker.With regard to the angular spreading, the limit of the gas thickness, l,
(proton propagation distance) and density, n, can be roughly estimated by the following expression [51]:

( ) ( ) [J e< ´ Dnl m c1.5 10 219
er

2
p e

2 2 cm−2], whereΔϑer is the acceptable angular error in degrees, that should
be as low as the accuracy of the angularmeasurement,me is the electronmass. The energy losses of the
accelerated protons can be also neglected for small angular widening. Thus forΔϑer=1° and εp=2 keV, the
gas parameters are limited by nl<1015 [cm−2]. It can be fulfilled in experiments, for instance, by using a gas jet
of low concentration (<1016 cm−3) and 1 mm thickness. Formore accurate estimations of the proton elastic
scattering and energy losses, commonly used computer software [52, 53], whichmodel ion propagation though
matter using aMonteCarlomethod can be used.

3.6. Principal schemeof diagnostics
Using the results discussed above, we propose the following scheme of laser pulse diagnostics (see figure 10). The
laser pulse is focused by the off-axis parabolicmirrorwith an effective focal length Feff and an off-axis angleψoff

into a rarefied hydrogen gas. The concentration of the gas should be sufficiently low to satisfy three conditions:
(i) the insignificance of plasma effects (section 2); (ii) stopping distance for protonswith energyE∼εmax/10,
where εmax corresponds to the peak laser intensity (figure 4), should bemuch larger than the distance to the
detector (section 3.5); (iii) the laser power is below the critical power for the relativistic self-focusing
PL<Pcrit=17(ω/ωpe)

2 [GW]. Themost demanding restriction is related to proton scattering, it is overcome
by using a gas jet [with centimeter-thickness and low concentration(<1016cm−3)]. The number of particles in
the interaction area exceeds 104 for this gas density and the smallest focal spot considered in the paper.

For the detection of the accelerated protons, the chevron typeMCPdetectors working in the TOFmode or
nuclear track detectors CR-39 can be used. TheMCPs have a detection efficiency of∼10% for protons with
E∼0.1 keV and of∼70% for protons withE�1 keV [54], providing intensitymeasurements above

Table 1.Numerically calculated angularwidth of proton spectra for different values of
the focal spot size for theGaussian laser pulse.

f# DF zR Δϑ, deg. ( )JDtan 2 ( ) ( )JD D ztan 2 F R

1 1.3λ 7.8λ 15.4 0.14 0.84

1.5 2.0λ 18λ 9.8 0.086 0.77

3 3.9λ 73.6λ 4.95 0.043 0.81

Figure 10.Principal scheme of the laser pulse diagnostics via angular-spectral distributions of protons accelerated from the focus of
measured laser pulse.
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1021Wcm−2 (figure 4). For theMCPoperation, a vacuumbetter than 0.1mTorr is required. If the pressure in
the experimental chamber is above this value, differential pumping of theMCP can be used. The time of arrival
to the detector situated at a distance Ldet and the proton energy are connected as =t L E m2det . By
measuring the time of arrival of the accelerated protons, their spectrum can be reconstructed. Ideally, it is
necessary to use severalMCPdetectors positioned at differentϑ-angles relative to the laser propagation direction
as indicated onfigure 10. This will enable collecting the information about the angular and spectral distribution
of protons.

TheCR-39 detectors have∼100%detection efficiency for protons above 30 keV [55]. Such energy detection
threshold for theCR-39 sets a lower boundary for a peak laser intensity of (2−5)×1022W cm−2, depending on
the focal spot size. CR-39 detectors canwork in an accumulationmode, collecting information for hundreds or
even thousands of laser shots.Multiple CR-39 detectors can also be placed at the differentϑ-angles and at
differentj-angles. The later will provide information about the axial asymmetry of the focal distribution (see
section 3.4). This configuration of the experiment allows the laser focal spot size and a peak intensity to be
inferred.

4. Conclusion

Wehave considered the impact of the laser pulse parameters on the characteristics of angular-spectral
distributions of protons accelerated from a rarefied gas to analyze the possibility of ultra intense laser pulse
diagnostics. The description of the laser pulse was based on diffraction integrals [44], which allows calculating
laser pulses focused by off-axis parabolicmirror to focal spots with sizes down to the diffraction limit. In this
paper the peak laser intensities were varied in the range from1021 to 1024Wcm−2, which justifies the use of the
ponderomotive force approximation in calculations of proton dynamics by the test particlemethod. This
approach also helped us to construct analytical formulas estimating the angular-spectral characteristics of
particles.

Using the results presented in themain part of the paper, we emphasize the central points of the proposed
diagnosticmethod. First of all, it was found that the angular width of proton spectra is determined by the focal
spot, which is uniquely related to the convergence angle of the laser beam (the angularmeasure of the decreasing
of the beamdiameter, when the laser pulse converges to the focal spot), andmaintained during variation of the
peak intensity. Thusmeasuring this characteristic breaks ambiguity about the laser focal spot size. Energy
characteristics of the protons depend on the peak intensity, time duration and also focal spot size of the laser
pulse. The next step of the diagnostics is a determination of cross spatial inhomogeneity of the laser beam,which
consists inmeasuring the ratio of themaximum energy of protons emitted at the differentj-angles in the plane
perpendicular to the direction of the laser propagation. After that, the product of laser peak intensity and pulse
duration can be estimated, the square of which is proportional to themaximumenergy of protons. Itmeans that
if there is no information about the duration and temporal form, the diagnostics will not be able to
unambiguously determine the value of the peak intensity. However, in related recent work [39]we show that
energy characteristics of electrons are sensitive to these parameters of the laser pulse, which could solve this
ambiguity problem. Both approaches of the laser diagnostics could be realized at the same time. Instead of keV-
protonsmainly propagating perpendicular to the laser pulse, electrons are accelerated toMeV energies
relativisticallymoving at smallϑ-angles to the laser propagation direction. This fact leads to possible
complementarymeasurements using different detectors set in disjoint positions.

The analytical estimations were received in this paper under the assumption of a laser pulse representable by
separation of the spatial and temporal profiles. Spatio-temporal coupling can, however, exist in the laser pulses
[56]. This configuration of the laser-particle interaction ismore complicated and is left as future work.

The proposedmethod allowsmeasurement of the spatial features of the laser beam and its energy that is
actually concentrated in the focal volume. Temporal characteristics should be known previously or determined
by anothermethod. At the same time, themethod discussed here seems to be easy-to-handle, low cost and does
not require significant calculation. This technique can be of high interest for the contemporary sub-petawatt/
petawatt laser facilities, which have already been commissioned, and for large laser systems that will be
developed in the future. The approach considers awide range of laser intensities, only the low-intensity part of
which has been achieved in experiments, which emphasizes the applicability of this diagnosticmethod.
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