
New J. Phys. 22 (2020) 023008 https://doi.org/10.1088/1367-2630/ab61da

PAPER

Heralded amplification of nonlocality via entanglement swapping

Yoshiaki Tsujimoto1 , ChenglongYou1,2 , KentaroWakui1,Mikio Fujiwara1, KazuhiroHayasaka1,
ShigehitoMiki3, Hirotaka Terai3,Masahide Sasaki1 , JonathanPDowling1,2 andMasahiro Takeoka1

1 Advanced ICTResearch Institute, National Institute of Information andCommunications Technology (NICT), Koganei,
Tokyo 184-8795, Japan

2 Hearne Institute for Theoretical Physics andDepartment of Physics &Astronomy, Louisiana StateUniversity, BatonRouge, LA 70803,
United States of America

3 Advanced ICTResearch Institute, National Institute of Information andCommunications Technology(NICT), Kobe,
Hyogo 651-2492, Japan

E-mail: tsujimoto@nict.go.jp

Keywords:Bell inequality, nonlocality amplification, spontaneous parametric down conversion, entanglement swapping

Abstract
Toobserve the loophole-free violation of theClauser–Horne–Shimony–Holt(CHSH) inequality
between distant two parties, i.e. the CHSHvalue >S 2, themain limitation of distance stems from the
loss in the transmission channel. The entanglement swapping relay(ESR) is a simpleway to amplify
the signal and enables us to evade the impact of the transmission loss. Here, we experimentally test the
heralded nonlocality amplifier protocol based on the ESR.We observe that the obtained probability
distribution is in excellent agreementwith those expected by the numerical simulationwith
experimental parameters which are precisely characterized in a separatemeasurement.Moreover, we
experimentally estimate the nonlocality of the heralded state after the transmission of 10dB loss just
before final detection. The estimatedCHSHvalue is = >S 2.113 2, which indicates that our final
state possesses nonlocality evenwith transmission loss and various experimental imperfections. Our
result clarifies an important benchmark of the ESR protocol, and paves theway towards the long-
distance realization of the loophole-free CHSH-violation aswell as device-independent quantumkey
distribution.

1. Introduction

Nonlocality is not only an interesting feature of quantummechanics which can be tested by the celebrated Bell
inequality [1, 2], but also the key resource for quantum information protocols. Recently, it was pointed out that
the system violating the Bell inequality in a detection loophole-freemanner is directly related to the quantum
information applications such as device-independent quantumkey distribution(DIQKD) [3, 4]. Assuming that
the physical apparatuses are honest [5, 6], DIQKDallows the two users, Alice and Bob, to guarantee the security
without characterizing internal workings of the devices. However, its practical implementation is still
challenging. One of themost formidable obstacles is closing the detection loophole [7–12], which necessitates
the receiver to detect at least 2/3 of emitted photons [13]. That is, if a standard opticalfiber at
telecommunicationwavelengthwith 0.2dB km−1-loss is used as a transmission channel, the achievable distance
becomes less than 10km even if photon detectors with unity detection efficiencies are employed.

Toward realization of the loophole-free violation of the Bell inequality over long distance, several protocols
to circumvent the impact of transmission loss have been proposed, such as the linear-optics-based heralded
photon amplifier(HPA) [14–16] and the heralding protocol with a nonlinear process [17].When a single
photon state(such as a part of the entangled photon pair) is sent into a lossy channel, the state turns out to be a
mixture of a single-photon state and a vacuum. These protocols can increase the fraction of qubit(single
photon) and suppress the vacuum fractionwith a certain probability. For example, theHPAutilizes an ancillary
entangled state formed by a vacuum and a single photon state to amplify the single-photon fraction of the input
state. By applying them to the Bell state transmission, one can recover the lost Bell state with some success
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probability. Although the concept of theHPAhas been experimentally demonstrated [18–20], they did not
recover the nonlocality and thus the heralded state could not show the loophole-free Clauser–Horne–Shimony–
Holt (CHSH) violation, even if Alice and Bob had perfect detectors.

An alternative option is the linear-optical entanglement swapping relay(ESR), which is widely used as an
entangling operation of independently prepared photon pairs in a postselectionmanner [21–24].While the ESR
is simpler than the other schemes, atfirst, thismethodwas not believed towork in the experimentwithout
postselection such asDIQKD [14, 17]. This is because if one applies the ESR to the entangled photons generated
by the spontaneous parametric-down conversion(SPDC), which is currently themost practical source of a
photonic entangled state, even if the swapping is successful, the generated state(without postlsection) is far from
the two-qubitmaximally entangled state(less than 0.5 fidelity between them). Surprisingly, however, Curty and
Moroder [25] showed that the ESRwithout postselection is, in fact, able to violate theCHSH inequality [26], i.e.
the CHSHvalue S>2. This was confirmed by the following numerical analysis by Seshadreesan et al [27], which
contains various practical imperfections and themulti-pair generation of the SPDC sources. These theoretical
predictions show that even if the ESR state is not close to the ideal Bell state, it still shows nonlocality, which is
useful for quantumprotocols such asDIQKD.Related to this, not theCHSH inequality violation but the event-
ready quantum steeringwas recently demonstrated by using the ESR [28].

In this paper, we perform a proof-of-principle experiment of Bell test based on ESR, and estimate the
nonlocality of the experimentally generated state by the ESR-based heralding, which shows the violation of the
CHSH inequality even after transmitting through a channel with loss corresponding to the 50km-optical fiber.
More specifically,first we introduce a realisticmodel of ESR, and investigate the optimal parameters and
configurationwhichmaximize theCHSHparameter S through numerical simulation. Second, we perform
experimental demonstration of the ESR scheme using the optimal parameters and configuration. Entangled
photon pairs from the SPDC sources are transmitted through lossy channels corresponding to the 50km-
opticalfiber and then the ESR heralding is performed. Finally, we perform the Bell test on the heralded state
without postselection. Although the detection efficiencies of our system are not in the range of directly observing
the violation of theCHSH inequality of the heralded state, the probability distributions obtained by the
experiment are in excellent agreement with those independently obtained by our numericalmodel that includes
imperfections. This feature allows us to estimate the nonlocality and the densitymatrix of the experimentally
heralded state before the final detection. The estimatedCHSHvalue is S=2.113, which shows that the
experimentally heralded state has significant nonlocality. This result indicates that we successfully amplified the
nonlocality of the SPDC-based entangled photons, which are degraded by losses in the transmission channels,
via the ESR. As far as we know, this is the first experiment recovering the nonlocality of the SPDC-based
entangled photons after significant transmission losses. In light of the practicality of the SPDC-based entangled
photons, ourwork paves away to realize long-distance CHSHviolation aswell as DIQKDby combining it with
the state-of-the-art highly efficient photon detectors.

The paper is organized as follows. In section 2, we briefly review the ESR-based heralded nonlocality
amplifier in [25]. In section 3, we describe our theoreticalmodel and show the numerical result comparing these
two schemes. The experimental setup and results are described in section 4. In section 5, we discuss the density
operator of the heralded state and section 6 concludes the paper.

2.Heralded nonlocality amplification by entanglement swapping

In this section, we review the ESR-based heralding scheme. The ESR-based heralding scheme proposed in [25] is
illustrated infigure 1(a). Entangled photon pairs are prepared at Alice’s side by source A.One of them is sent to
Bob via a lossy optical channel with transmittance ηT, which easily destroys the nonlocality of the state. Bob
prepares another entangled photon pair by source B, and performs the ESRby the Bell statemeasurement (BSM)
to recover the lost nonlocality of the shared state betweenAlice and Bob. Since the ESR succeeds only
probabilistically, this is a probabilistic protocol andwe use the state only when heralded by the successful events
of the ESR.

In practice, entangled photon pair sourcesA andB are based on the SPDC,which generates entangled
photon pairs only probabilistically, andmoreover, sometimes generatesmultiple pairs simultaneously. The
adverse influence of the probabilistic nature of SPDC sources on the heralding schemes has been addressed in
some previous studies. For example, it is argued that the vacuum components of the SPDC sources remain in the
heralded state r̂AB, and this leads to the vanishing of nonlocality [29]. However, this is not true, since after
successful swapping, the heralded statemainly consists of the superposition of the following three events: (i)two
photon pairs from sourceA and no photon pair from sourceB, (ii)two photon pairs from sourceB and no
photon pair from sourceA, and (iii)one photon pair from each of sourcesA andB, which actually does not
contain vacuumcomponent. In [14, 17], it is pointed out that, in the above heralded state, (iii) is clearly the
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desirable event, but the probability that the unwanted events (i) or (ii) occur is almost the same probability as
(iii). Therefore, thefidelity of the heralded stater̂AB to the two-qubitmaximally entangled states never exceeds
0.5, whichwas thought to be a reason that the generated state loses its nonlocality. However, as shown byCurty
andMoroder [25], this r̂AB still violates the CHSH inequality. That is, r̂AB contains some nonlocality, although it
is far from ideal Bell states.

In this paper, we demonstrate these theoretical predictions by estimating the nonlocality and densitymatrix
of the heralded state using experimental results.

3. Theoretical analysis

3.1.Model
Wefirst explain the procedure to generate a raw key using the ESR-basedDIQKD infigure 1(a). Alice(Bob)
generates entangled photon pairs at sourceA(B). Under the condition that the BSM succeeds at the ESR node,
Alice and Bob perform the polarization-measurements based on themeasurement settingsXiä{X1,X2} and
Yjä{Y1,Y2}, respectively. Themeasurement outcomes are binary, i.e. ai, bjä{−1,+1}. By repeating the
measurement, they calculate

( )= á ñ + á ñ + á ñ - á ñS a b a b a b a b , 11 1 2 1 1 2 2 2

where ( ∣ ) ( ∣ )á ñ = = - ¹a b P a b X Y P a b X Y, ,i j i j i j .While themaximal value of ∣ ∣S is upper-bounded by 2 in
the framework of a local realism theory, quantummechanics allows ∣ ∣S to take themaximal value of 2 2 , which
is known as the Tsirelson bound [30].WhenAlice and Bob performDIQKD,Alice chooses another
measurement basisX0, and the raw key is generated by the outcomes under themeasurement setting of {X0,Y1}.
The lower bound of the asymptotic key rate r is represented by [3, 4]

( ) ( ) ( )c= - -r r h Q S1 , 2DW

where rDW isDevetak–Winter rate [31],Q is qubit error rate which is defined by ( ∣ )¹P a b X Y,0 1 , and
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Here, h(·) is the binary entropy defined by h(x)=−xlog2x−(1−x)log2(1−x).
Next, we describe the theoreticalmodel.Wemodify the configuration infigure 1(a) to the one illustrated in

figure 1(b). The difference is that the BSM is located not in Bob’s side but in themiddle of the channel and thus
the channel is split into twowith ηTA and ηTB, respectively.We do so, since the previous theoretical studies with
ideal Bell state [32] and single-photon sources [29] indicate that the configuration infigure 1(b) is better. This
anticipation is investigated in detail using the realisticmodel introduced below.Hereafter, we call the
configuration infigure 1(b) themiddle-heralding(MH) scheme and the other one as the side-heralding(SH)
scheme.

As a realisticmodel with SPDC sources, we introduce a theoreticalmodel similar to the one introduced in
[27], as shown infigure 2. Each entangled photon pair source consists of a pair of two-mode squeezed
vacua(TMSV). TheHamiltonian is given by ˆ ( ˆ ˆ ˆ ˆ )( )

† †
( )

† †
( ) ( ) ( ) ( )

z z= + +H a a a ai h.c.H V V H1 3 2 41 3 2 4 1 3 2 4
for sourceA(B),

respectively, where ˆ †aij is the photon-creation operator of the i-polarized single photon inmode jwhich satisfies

the commutation relation [ ˆ ˆ ]† d d=a a,ij kl ik jl.H andV denote the horizontal and vertical polarizations,

respectively. ∣ ∣z z= fek k
i k is the coupling constant of TMSVk (kä{1, 2, 3, 4}), which is proportional to the

Figure 1.The schematic diagramof the ESR-based Bell-test experiment. Linear optical Bell-statemeasurement(BSM) is realized by a
half beamsplitter(HBS) followed by polarizationmeasurements using two polarization beamsplitters(PBSs). Under the condition of
the successful BSMat the ESRnode, Alice and Bob perform the polarization-measurement based on theirmeasurement settings
Xiä{X1,X2} andYjä{Y1,Y2}, respectively. By repeating themeasurement, they calculate theCHSHvalue S. (a)The ordinary
configuration of the ESR-basedDIQKD(the SH scheme). (b)TheMHschemewe introduce. TheBSM is performed in themiddle of
Alice and Bob.
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complex amplitude of each pump. In the following,fk is fixed asf1=f2=f3=0andf4=π, whichmeans
that, when ∣ ∣ ∣ ∣z z=1

2
2

2 and ∣ ∣ ∣ ∣z z=3
2

4
2, the two-qubit components of the generated state form

∣ ≔ (∣ ∣ )Y ñ ñ + ñ+ HV VH 212 12 12 for sourceA, and ∣ ≔ (∣ ∣ )Y ñ ñ - ñ- HV VH 234 34 34 for sourceB. Here,

∣ ≔ ˆ ∣†ñ ñH a 0j Hj
and ∣ ≔ ˆ ∣†ñ ñV a 0j Vj

denote theH- andV- polarization states of a single photon inmode j,

respectively. At the ESRnode, we perform the partial Bell-satemeasurement using linear optics.We adopt the
projection onto ∣Y ñ- , which is realized by detecting the two-fold coincidence between ( ÇD D5H 6V) or
( ÇD D5V 6H). The successful operation of the ESR in the two-qubit system is described by
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where ˆ ≔ ∣ ∣ ∣ ∣ñá - ñáZ H H V V and ˆ ≔ ∣ ∣ ∣ ∣ñá + ñáX H V V H are Pauli operators, and
∣ ≔ (∣ ∣F ñ ñ + ñ+ HH VV 2 . The polarizer with angle θworks as a polarization-domain beamsplittermixing
theH andVmodeswhose transmittance and reflectance are cos2θ and sin2θ, respectively. Under the condition
of the two-fold coincidence between ( ÇD D5H 6V) or ( ÇD D5V 6H), Alice(Bob) chooses her(his) angle from
θA={θA0, θA1, θA2}(θB={θB1, θB2}), respectively, and performs polarizationmeasurements.We calculate the
probability of all the combinations of the photon detection (click) and no-detection (no-click) events amongD1,
D2, D3 and D4 for each polarization angle, and obtain the probability distributions. For calculating S, Alice/Bob
determines her/his local rule, and assign+1 or−1 for each detection event.We introduce the following simple
local assignment strategy for Alice(Bob): only D1(D2) clicks -1and otherwise +1, respectively. The
losses in the transmission channels are represented by ηAH, ηAV, ηBH, and ηBV.(Thus, the SH scheme can be
simulated by setting ηBH=ηBV=1.)The local system losses including the imperfect quantum efficiencies of
the detectors aremodeled by inserting virtual lossmaterials denoted by ηl for lä{1,L, 8}.We consider that all
of the detectors are threshold detectors, which only distinguish between vacuum(no-click) and non-
vacuum(click). the dark-count probability ν, which is a false click of the detector, is also taken into account in
themodel. Themode-mismatch betweenAlice’s TMSV andBob’s TMSV ismodeled by inserting virtual
beamsplitter(BS)whose transmittance isTmode in each input port of the half beamsplitter(HBS) at the ESR
node as shown in the inset offigure 2. In otherwords, two virtual BSs divide themode of the eachTMSV into two
parts: themodewhich interferes with probability amplitude Tmode and that does notwith probability
amplitude - T1 mode . The experimental value ofTmode can be determined by performing theHong–Ou–
Mandel interference experiment [33–35].

3.2. Numerical results
TheCHSHvalue S in equation (1) is numerically calculated by using characteristic-function approach based on
the covariancematrix of the quantum state and symplectic transformations [27, 36, 37]. See appendix A and [36]
formore details of thismethod. Belowwe show the numerical results comparing theMHand the SH scheme.

Figure 2.The realisticmodel of the ESR-based Bell-test experiment. A pair of two-mode squeezed vacua(TMSV) is used to prepare
polarization entangled photon pairs. The linear optical Bell-statemeasurement is composed of a half beamsplitter(HBS) followed by
polarizationmeasurement at each output port. Alice(Bob) set the angle of the polarizer to be θA(θB) and performpolarization
measurements. All of the photon detectors are the threshold detectors with dark counts.
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When the corresponding fiber length is Lkm,we set ηAH=ηAV=ηT and ηBH=ηBV=1 for the SH scheme,
and h h h h h= = = =AH AV BH BV T for theMH scheme, respectively, where ηT=10−0.2L/10. Infigure 3(a),
we show the relation between L and theCHSHvalue S in an ideal systemwhere all the local detection efficiencies
are unity, themode-matching is perfect, and detectors have no dark counts(i.e. " l ηl=1,Tmode=1, and
ν=0 ). At each point, we perform the optimization over the average photon numbers of the TMSVs, and
measurement angles using a random search algorithm.We see that the degradation of S against the transmission
distance is small for both of theMHand the SH schemes, since it is possible to set the optimal average photon
numbers to be small(typically∼10−5) in the ideal case. Thismakes the detrimental contribution of themultiple
pairs negligible. Interestingly, themaximal violation at 0km is S∼2.34, which is slightly better thanwhat is
achieved by using a single-mode SPDC-based entangled pair source(NoESR) [37, 38]. On the other hand, the
minimumdetection efficiency to obtain S>2 is calculated to be 91.1%,which is larger than 66.7%needed in
the case ofNoESR [37, 38]. These differences come from the fact that the density operator of the heralded state is
far from the state directly generated by SPDCwhichmainly consists of vacuum state. The relation between L and
the key rateK is shown infigure 3(b). Here, we defineK≔Psuc×rDW in theMHand the SH scheme, and
K≔rDW inNoESR, where Psuc is the success probability of the linear-optical BSM. The average photon
numbers, whichmaximize S, are no longer optimal formaximizingK, since employing the small average photon
numbers results in the lowPsuc at the ESRnode. That is, there is a trade-off between S andPsuc formaximizingK.
We clearly see the difference ofK between theMHscheme and the SH scheme. The reason is qualitatively
understood as follows. In the SH scheme, since a large loss is imposed on theTMSVs from sourceA, the average
number of photonswhich survive at the ESRnode is smaller than that in theMHscheme, which results in the
lowerPsuc. In shortfiber length regime,K inNoESR is about two orders larger than that in theMHand the SH
scheme. This is becausePsuc is around 0.01while rDW is similar betweenNoESR and theMH/SH scheme.Next,
we adddark count probabilities ofν=10−6 and ν=10−5, and compare Sof the SH scheme and theMHscheme
as shown infigure 4(a). Sof the SH scheme starts to deviate from that ofMHscheme for largeL. The reason is also
understood by the trade-off between S andPsuc.Whendark counts are considered, it is necessary to keep the
averagenumber of thephotons that survive at ESRnode sufficiently larger than thedark-count probability. Thus,
in the SH scheme, the optimal average photonnumber of sourceAmust be larger than that in theMHscheme,
which however results in smaller S. Theminimumdetection efficiencies to obtain S>2 slightly increase. For
example, at L=50km in theMHscheme, 91.6%and 92.7%are necessary in the case ofν=10−6 andν=10−5,
respectively. Finally,we compareKof the SH scheme and that of theMHschemewith considering the dark-count
probabilities as shown infigure 4(b).We see a large gap betweenKof theMHscheme and the SHscheme.These
results suggest that theMHscheme is always better than the SHscheme,which is consistentwith previous studies
aboutESR schemes [29, 32] and time-reversed versionof ESR schemes [39–42].

4. Experiment

4.1. Experimental setup
Weperform the ESR-based Bell-test experiment using the setup illustrated infigure 5. The pump
pulse(wavelength: 792 nm, pulse duration: 2 ps, repetition rate: 76 MHz) is obtained by a Ti:Sapphire laser. The
pumppulse is split into two optical paths by a half waveplate(HWP) and a polarization beamsplitter(PBS), and
fed to the two independent Sagnac-loop interferometers with group-velocity-matched periodically poled

Figure 3. (a), (b)The corresponding fiber length L versus S(K ) in the ideal situation (" l ηl=1,Tmode=1, and ν=0). The blue
solid curve and the red dashed curve are S(K ) for theCHand for the SH scheme, respectively. The black solid curve corresponds the
case where the ESRnode is absent.
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KTiOPO4 (GVM-PPKTP) crystals [43]. The polarization of the each pumppulse is properly adjusted by aHWP
and a paired quarter-waveplates(QWPs). The two-qubit components of the states generated from sourcesA
andB form themaximally entangled states ∣Y ñ+ 12 and ∣Y ñ- 34, respectively.While the photon1(4) passes
through the dichroicmirror(DM) and goes to Alice’s(Bob’s) side, the photons 2 and 3 are led to the ESR node
to perform the linear-optical BSM.The transmission losses in the opticalfibers are emulated by two neutral
density filters(NDs) inserted inmodes 2 and 3. In each optical path, we insert an interference filter(IF)whose
center wavelength and bandwidth are 1584nmand 2nm, respectively, which is used to improve the purity of
the SPDCphotons. The linear-optical BSM is implemented bymixing two input photons bymeans of aHBS
followed by the polarization-dependent coincidence detection between D5V and D6H, which projects the photon
pair inmodes 2 and 3 onto the singlet state ∣Y ñ- 23 with the success probability of 1/8.We note that if we
introduce another two detectors and perform active feed forward, themaximum success probability becomes
1/2.We use superconducting single-photon detectors(SSPDs)whose quantum efficiency is around 75%each
[44]. Alice and Bob setmeasurement angles {θA1, θA2} and {θB1, θB2}, respectively, bymeans of theHWPs and
fiber-based PBSs(FPBSs). Finally, the photons are detected by four SSPDs: D1 and D3 for Alice, and D2 and D4

for Bob, respectively. In the experiment, the detection signal from D5V is used as a start signal for a time-to-
digital converter, and the detection signals from D , D , D , D6H 1 2 3 and D4 are used as stop signals. Under the

Figure 4. (a), (b)L versus S(K )with dark counts (" l ηl=1,Tmode=1, and ν=10−5, 10−6). The blue and green solid curves are S
(K ) for theMH schemewith ν=10−6 and ν=10−5, respectively. The red and orange dashed curves are S(K ) for the SH schemewith
ν=10−6 and ν=10−5, respectively.

Figure 5.The setup for the ESR-based Bell-test experiment. To generate entangled photon pairs by SPDC,we use counter propagating
pump pulses to pump theGVM-PPKTP crystals in the Sagnac loop interferometers. Alice and Bob choose themeasurement angles
{θA1, θA2} and {θB1, θB2}, respectively, and assign+1 or−1 for the each detection event to calculate S value. GVM-PPKTP: group-
velocity-matched periodically poled KTiOPO4, HBS: half beamsplitter, IF: interference filter, QWPs: paired quarter waveplates,
HWP: half waveplate, DM: dichroicmirror, ND: neutral density filter, PBS: polarization beamsplitter, FPBS:fiber-based PBS, SSPD:
superconducting single-photon detector.
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condition that the two-fold coincidence between D5V and D6H occur, all the combination of click and no-click
events are collectedwithout postselection.We assign−1 to the events where ( )D D1 2 clicks onAlice’s(Bob’s)
side and+1 to all the other events, and then calculate S.

4.2. Characterization of experimental setup
Wemeasure the experimental parameters whichwill be used in the numerical simulation.Wefirst characterize
theHBS at the ESR node using laser light centered at 1584nm. It is found that theHBS is lossy only for the
H-polarized light frommode3. This loss ismodeled by decomposing theHBS into the lossymaterial
(ηAH=0.27) and the idealHBS in the numerical simulation.We also characterize the local detection efficiencies
ηl for lä{1,L, 6} by using theweakly-pumpedTMSVs [45]. The results are shown in table 1. Throughout the
experiment, we set thewidths of the detectionwindows to be 1ns. The dark-count rate within the detection
window ismeasured to be ν=10−6.

Under the above experimental conditions, we perform the numerical optimization of the average photon
numbers of the TMSVs and themeasurement angles such that S ismaximized. Note that, in the optimization, we
assume η1=η2=η3=η4=1, since the detection efficiencies shown in table 1 are not sufficient to observe the
detection-loophole-free violation of theCHSH inequality. In addition, we impose a condition that each average
photon number is at least ´ -1.5 10 2 tofinish the experiment within reasonable time.We set the average
photon numbers of the TMSVs based on the numerical results. The optimal average photon numbers and the
experimentally-measured ones are shown in table 2, whereμk is the average photon number of TMSVk.We see
thatμ2 is larger than the others, since ηAH is imposed in the transmission path of TMSV2. The optimal
measurement angles are {θA1, θA2}={0,0.58} [rad] and {θB1, θB2}={1.47,2.01} [rad].With above
experimental parameters, the two-qubit subspace of the input quantum states and the indistinguishability
between photon3 and the photon4 are also characterized.(See appendices C andD.)

4.3. Experimental results
Weadopt theMHscheme, and perform the ESR-based Bell-test experiment. Under the condition of the
successful BSM,we accumulate every detection event of the heralded state without postselection. First, we
remove theND filters, and perform the Bell-test experiment on the heralded state with the optimal
measurement angles. Since the detection efficiencies of our system are not in the range of closing the detection
loophole, S does not directly exceed the threshold value of S=2. In fact, whenwe input all the experimental
parameters to the numerical simulation, the value of S is expected to be Sth=1.614.Nevertheless, it is still
possible to compare Sth and theCHSHvalue obtained by the experimentSexp. From the experimentally-
obtained conditional probability distributions, Sexp is calculated to be Sexp=1.597±0.002, which coincides
with Sth.We also compare the conditional detection probabilities. For example, all the conditional detection
probabilities for {θA1, θB1}={0,1.47} [rad] are shown infigure 6. Since each of Alice andBob possesses two
detectors, there are 24=16 possible detection events for eachmeasurement angle. The red bars and blue bars
correspond to the conditional probabilities obtained by the experiment and the numerical simulation,
respectively.We clearly see an excellent agreement between the experimental results and the numerical
simulations.Moreover, the L1-distance  defined by ∣ ∣= å -= p qi i i1

16 is calculated to be as small as
=  0.037 0.001, where Pi(qi) is the ith experimentally(theoretically)-obtained conditional detection

probability, respectively. For the othermeasurement angles, the L1-distances are calculated to be

Table 1.The local detection efficiencies estimated by using
theweakly-pumped TMSV.

η1 η2 η3

14.63±2.75% 14.44±0.85% 10.87±2.36%
η4 η5 η6

10.64±0.59% 14.43±0.01% 11.57±0.07%

Table 2.The optimal average photon numbers of the TMSVs, and the average photon
numbers estimated by the experiment.

μ1 μ2 μ3 μ4

Optimal 1.50×10−2 3.95×10−2 1.50×10−2 1.50×10−2

Experiment 1.48×10−2 3.83×10−2 1.64×10−2 1.52×10−2
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=  0.036 0.001 for {θA1, θB2}={0,2.01} [rad], =  0.033 0.001 for {θA2, θB1}={0.58,1.47} [rad]
and =  0.030 0.001 for {θA2, θB2}={0.58,2.01} [rad].

Next, we insert theNDfilters, and perform the Bell-test experiment on the heralded state while changing the
transmission losses. Note that wefix the average photon numbers andmeasurement angles throughout the
experiment. The results are shown infigure 7 as three black dots. The total transmittance of theND filters are
equivalent to (i)0km, (ii)24kmand (iii)50kmof the opticalfibers, and the corresponding S are
(i)Sexp=1.597±0.002, (ii)Sexp=1.579±0.002 and (iii)Sexp=1.591±0.002. They agreewell with the
theoretical curve for theMHscheme(shownby an orange solid curve) obtained by using the experimental
parameters characterized by a separatemeasurement in section 4.2.When the detection efficiencies are small,
the difference between theMHscheme and SH scheme(shownby red diamonds) is small. The blue solid
curve(theMH scheme) and green diamonds(the SH scheme) are obtained by the numerical simulationwith
the experimental parameters but assuming that ηl=1 for lä{1, 2, 3, 4}. Since ourmodelfits the experimental
results, these curves are considered to be the nonlocality of the heralded state just before detection. Interestingly,
there is a large gap between theMHscheme and the SH scheme. The estimatedCHSHvalues(S η=1) are shown
by the three circles infigure 7. The values are estimated to be S η=1=2.123(0 km), 2.121(24 km) and
2.113(50 km), respectively, which indicates that the quantum state just before detection possesses potential to
violate theCHSH inequality evenwith various experimental imperfections.

Figure 6.The conditional detection probabilities obtained by the experiment(red bars) and the numerical simulation(blue bars).
The error bars are calculated by assuming the Poissonian distribution. Defining, for example, the conditional detection probability
that only D1 and D2 click by ( )ÇP D D1 2 , the correspondence between the 16 labels and the 16 detection events are described as
follows: 1:P(Vac), 2: ( )P D3 , 3: ( )P D1 , 4: ( )P D2 , 5: ( )P D4 , 6: ( )ÇP D D1 3 , 7: ( )ÇP D D2 3 , 8: ( )ÇP D D3 4 , 9: ( )ÇP D D1 2 , 10: ( )ÇP D D1 4 ,
11: ( )ÇP D D2 4 , 12: ( )Ç ÇP D D D1 2 3 , 13: ( )Ç ÇP D D D1 3 4 , 14: ( )Ç ÇP D D D2 3 4 , 15: ( )Ç ÇP D D D1 2 4 , and 16: ( )Ç Ç ÇP D D D D1 2 3 4 ,
where ( )P Vac is the conditional probability that none of D , D , D1 2 3 and D4 clicks.

Figure 7.The corresponding fiber length L versus S. The orange solid curve(theMH scheme) and the red diamonds(the SH scheme)
are obtained by the numerical simulationwith all of the experimental imperfections. The blue solid curve(theMH scheme) and green
diamonds(the SH scheme) are obtained by the numerical simulationwith assuming that ηl=1 for lä{1, 2, 3, 4}. The black dots are
S obtained by the experiment. The circles on the blue solid curve are S of the heralded states just before detection. The purple solid line
is the threshold value of S=2.
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5.Discussion

In this section,we estimate the densitymatrix of the experimentally heralded state just before detection by
compensating the detection inefficiencywith the help of our theoreticalmodel. As shown infigure 2, the heralded
state is distributedover the fourmodes:H1,V1,H4, andV4. In addition, as described in section 1, the successful
BSMmainly consists of the superposition of the following four events (i)one photon in eachofmodeH1,V2,V1

andH2, (ii)onephoton in each ofmodeH3,V4,V3 andH4, (iii)onephoton in each ofmodeH1,V2,H3 andV4, and
(iv)one photon in eachofmodeV1,H2,V3 andH4. Thus,we restrict ourselves to the subspace spanned by
{∣ ∣ ∣ ∣ ∣ ∣ }ñ ñ ñ ñ ñ ñ0011 , 0101 , 0110 , 1001 , 1010 , 1100 , where themodes are arranged inorder ofH1,V1,H4, and
V4, and ∣ ñ1 is the single-photonFock state. By thenumerical simulation,weknow the characteristic function of the

heralded state ( )ˆc xrH V H V1 1 4 4

herald .(The explicit formula is given in appendixA.)Thus, thematrix elements of r̂H V H V
herald

1 1 4 4

in the Fock-state basis are calculatedby the inner product of ( )ˆc xrH V H V1 1 4 4

herald and the characteristic function of the

corresponding four-mode Fock state. For example, ∣ ˆ ∣rá ñ0011 1100H V H V
herald

1 1 4 4
is calculated by

⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( ) ( )ˆ ∣ ∣òp

c x c x x-r ñá
1

2
d , 5

4

1100 0011
H V H V1 1 4 4

herald

where ( )∣ ∣c xñá1100 0011 is the characteristic function of ∣ ∣ñá1100 0011 .We use the characteristic function of the
heralded state for 50km, and reconstruct the unnormalized partial densitymatrix, as shown infigure 8.(See
appendix B for the detailed calculation.) In addition to the four center peakswhich correspond to ∣ ∣Y ñáY+ + , we
clearly see the contribution of the events (i) and (ii). By renormalizing this partial densitymatrix, the fidelity to
∣ ∣Y ñáY+ + is calculated to be 0.47. This indicates that the heralded state is clearly far from the two-qubit
maximally entangled states, while it possesses enough nonlocality to violate theCHSH inequality. This
counterintuitive resultmay come from the fact that the heralded state possesses significant amount of
entanglement. The densitymatrix shown infigure 8 implies that r̂H V H V

herald
1 1 4 4

is very close to the pure state:

⎛
⎝⎜

⎞
⎠⎟∣ (∣ ∣ ∣ ∣ ) (∣ ∣ ∣ ∣ ( )yñ = ñ ñ + ñ ñ + ñ ñ + ñ ñ

1

2

1

2
0 1 , 1 1 , 1 0

1

2
1 1 1 1 , 6H V H V H V V Hherald 1 4 1 4 1 4 1 4

where ∣ ≔ ˆ ∣†ñ ña1 0i j ij for i={H,V} and j={1, 4}. Apparently, equation (6) ismaximally entangled state in
4×4 dimensions whose entropy of entanglement is 2. Thismeans that the amount of entanglement is enough
to present some nonlocality.

6. Conclusion

In conclusion, we experimentally demonstrate the heralded nonlocality amplifier based on the ESR. In theory,
we employ themethod to calculate the detection probabilities using the characteristic function, and investigate
the optimal parameters and configurationwhichmaximize S. In accordwith the previous studies, theMH
scheme(the ESRnode is placed in themiddle of Alice and Bob) ismuchmore robust against the transmission
loss than the SH scheme(the ESRnode is placed in Bob’s side) in realisticmodel with SPDC sources. In
experiment, we perform the ESR-based Bell-test using the optimal parameters derived by the numerical

Figure 8.The real part of the partial densitymatrix of the heralded state spanned by ∣ ñ0011 , ∣ ñ0101 , ∣ ñ0110 , ∣ ñ1001 , ∣ ñ1010 , and ∣ ñ0011 .
Thematrix elements of the imaginary part are almost zero.
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simulation.While the detection efficiencies of our system is not in the range of closing the detection loophole,
the experimental results are in excellent agreement with the numerical simulationwith experimental parameters
which are characterized in a separatemeasurement. This allows us to estimate the nonlocality and the density
matrix of the heralded state just before detection. It is revealed that, while the densitymatrix of the heralded state
is far from the ideal two-qubitmaximally entangled state, the state possesses nonlocality(S η=1=2.113>2)
after the transmission loss of 10dBwhich is equivalent to a 50-km-long optical fiber at telecommunication
wavelength. To directly observe S>2 over 50km, it is found that a detection efficiency at least 97.4% is
necessarywith our current experimental conditions. However, the threshold detection efficiency can be
improved further down to 91.6%, if the experimental imperfections other than the dark counts are reduced. In
view of the recent progress of the single-photon detection highlighted by high-efficiency single-photon detectors
with quantum efficiencies> 93% [46, 47], it could be possible to experimentally observe the nonlocality over
such a long distance. Our result thus shows an important benchmark about the ESR protocol, and represents a
major building block towards the long-distance realization of the loophole-free test of the CHSH-violation as
well asDIQKD.
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AppendixA.Detailed calculations based on the characteristic function

In this section, we present the detailedmethod to compute the conditional detection probabilities using the
theoreticalmodel infigure 2.We follow the definitions introduced in [37].We define a density operator acting
on theN-dimensionalHilbert space Ä N as r̂. The characteristic function of r̂ is defined by

( ) [ ˆ ˆ ( )] ( )c x r x= Tr , A1

where

ˆ ( ) ( ˆ) ( )x x= - Rexp i A2T

is theWeyl operator.Here, ˆ ( ˆ ˆ ˆ ˆ )= ¼ ¼R x x p p, , , , ,N N1 1 and ξ=(ξ1,K, ξ2N) are a 2N vector consisting of
quadrature operators and a 2N real vector, respectively.When the characteristic function of the quantum state
has aGaussian distribution

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )c x x gx x= - - dexp

1

4
i , A3T T

the quantum state is simply characterized by a 2N×2Nmatrix γ (the covariancematrix) and a 2N-dimensional
vector d(the displacement vector).

In our theoreticalmodel, each entangled photon pair source consists of twoTMSV sources over polarization
modes embedded in the Sagnac loop. The covariancematrices of the quantum state from sourceA (gH V H V

SA
1 1 2 2

)

and sourceB (gH V H V
SB

3 3 4 4
) are given by [36, 37]

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )
( )

( )g
g m m

g m m
=

, 0

0 ,
A4H V H V

SA
SA1

1 2
SA2

1 2
1 1 2 2

and

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

( )
( )

( )g
g m m

g m m
=

, 0

0 ,
, A5H V H V

SB
SB1

3 4
SB2

3 4
1 1 2 2

respectively, where

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
( )

( )

( )

( )

( )

( )g m m

m m m

m m m

m m m

m m m

=

+ +

+ +

+ +

+ +

,

2 1 0 0 2 1

0 2 1 2 1 0

0 2 1 2 1 0

2 1 0 0 2 1

, A6SA1
1 2

1 1 1

2 2 2

2 2 2

1 1 1
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⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
( )

( )

( )

( )

( )

( )g m m

m m m

m m m

m m m

m m m

=

+ - +

+ - +

- + +

- + +

,

2 1 0 0 2 1

0 2 1 2 1 0

0 2 1 2 1 0

2 1 0 0 2 1

, A7SA2
1 2

1 1 1

2 2 2

2 2 2

1 1 1

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
( )

( )

( )

( )

( )

( )g m m

m m m

m m m

m m m

m m m

=

+ +

+ - +

- + +

+ +

,

2 1 0 0 2 1

0 2 1 2 1 0

0 2 1 2 1 0

2 1 0 0 2 1

, A8SB1
3 4

3 3 3

4 4 4

4 4 4

3 3 3

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
( )

( )

( )

( )

( )

( )g m m

m m m

m m m

m m m

m m m

=

+ - +

+ +

+ +

- + +

,

2 1 0 0 2 1

0 2 1 2 1 0

0 2 1 2 1 0

2 1 0 0 2 1

. A9SB2
3 4

3 3 3

4 4 4

4 4 4

3 3 3

The overall input quantum state is described by ≔g g gÅ H V H V H V H V
in SA SB

1 1 2 2 3 3 4 4
, where

≔ { } H V H V H V H V, , , , , , ,1 1 2 2 3 3 4 4 . The photons inmodes H V H, ,2 2 3 andV3 are sent to the ESRnode through
the transmission losses.We describe the transformation of the linear loss with transmittance t on a single-mode
Gaussian state with covariancematrix γ by

( )g g a= + K K , A10t T

where =K t I andα=(1−t)I. Then, the linear losses ηAH, ηAV, ηBH and ηBV transform the input covariance
matrixg

in into

( )g g= h h h h     A11H V H V
Loss inAH AV BH BV

2 2 3 3

( ) ( )g a= +h h h h h h h h h h h h
K K , A12H V H V

T
H V H V H V H V

inAH AV BH BV AH AV BH BV AH AV BH BV
2 2 3 3 2 2 3 3 2 2 3 3

where

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

( )

h
h

h
h

=h h h h

Å

K

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

, A13H V H V

AH

AV

BH

BV

2

AH AV BH BV
2 2 3 3

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

( )a

h
h

h
h

=

-
-

-
-

h h h h

Å1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

. A14H V H V

AH

AV

BH

BV

2

AH AV BH BV
2 2 3 3

Here, for simplicity, we represent the block diagonalmatrix like [ ]A
A
0

0
by ÅA 2. As described in section 2, the

modematching between photon(H2 andH3) and (V2 andV3) are considered by dividing the each input light
pulse into twomutually orthogonalmodes as shown infigure A1(a). This ismodeled by inserting virtual BSs
whose transmittance areTmode before theHBS as shown infigure A1(b). The fractions with probabilityTmode

interfere at theHBS, while the fractions with probability 1−Tmode aremixedwith vacua by theHBS. In the
numerical simulation, wefirst add the eightmodes(H(V )2a,H(V )3a,H(V )2b andH(V )3b) of vacua to g

Loss as

≔g g Å ¼ ¼  IH H V V
MM Loss

a b a b2 3 2 3
, where ≔ { }È ¼ ¼  H H V Va b a b2 3 2 3 . Second, we perform the symplectic

transformations of the BSs as

( ) ( ) ( )g g= Å Å Å Å Å Åq q q q q q q q
 S S S S S S S S , A15H H H H V V V V

T
H H H H V V V V

BS MM
a

T

a

T

a

T

a

T

a

T

a

T

a

T

a

T

2 2
mode

3 3
mode

2 2
mode

3 3
mode

2 2
mode

3 3
mode

2 2
mode

3 3
mode
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where ≔q TarccosT modemode
, and

⎡
⎣⎢

⎤
⎦⎥≔ ( )q q

q q-
q

Å
S cos sin

sin cos
A16ij

2

is the symplecticmatrix of the BSwhose transmittance is qcos2 acting on themodes i and j. Finally, we perform
the symplelctic transformation of theHBSs as

( )

( ) ( )

g

g

= Å Å Å Å Å

Å Å Å Å Å

p p p p p p

p p p p p p





S S S S S S

S S S S S S . A17

H H H H H H V V V V V V
T

H H H H H H V V V V V V

HBS 4 4 4 4 4 4

BS 4 4 4 4 4 4
a b a b a b a b

a b a b a b a b

2 3 2 3 3 2 2 3 2 3 3 2

2 3 2 3 3 2 2 3 2 3 3 2

Weconsider the imperfect detection efficiency of each heralding detector at the ESRnode as

( )g g= h h h h h h h h h h h h             . A18H H H V V V H H H V V V
BSM HBS

a b a b a b a b2
8

2
8

2
8

2
7

2
7

2
7

3
6

3
6

3
6

3
5

3
5

3
5

The successful BSMcorresponds to the two-fold coincidence between ( )ÇD D5H 6V or ( )ÇD D5V 6H . For
example, the two-fold coincidence probability ( )ÇP D D5V 6H is given by

( ) [ ˆ ( ˆ ˆ ˆ ˆ )( ˆ ˆ ˆ ˆ )] ( )rÇ = - P P P - P P Pg
P I ID D Tr A19V V V H H H5V 6H

off off off off off off

a b a b

BSM

3 3 3 2 2 2

[ ( ˆ ( ) ∣ ∣ )( ˆ ( ) ∣ ∣ )] ( )r n n= - - ñá - - ñág Ä Ä
 I ITr 1 0 0 1 0 0 A20V V V H H H

3 3 3 3
a b a b

BSM

3 3 3 2 2 2

[ ( ˆ ( ) ∣ ∣

( ) ∣ ∣ ( ) ∣ ∣ )] ( )

r n

n n

= - - ñá

+ - ñá - - ñá

g Ä

Ä Ä

 ITr 1 0 0

1 0 0 1 0 0 A21

V V V

V V V H H H H H H

3 3

6 6 3 3
a b

a b a b a b

BSM

3 3 3

3 3 3 2 2 2 2 2 2

( )

( )

( )

( )

( )

( )
( )n

g

n

g

n

g
= -

-

+
+

-

+
-

-

+I I I
1

8 1

det

64 1

det

8 1

det
, A22

V V V V V V H H H H H H

3

BSM

6

BSM

3

BSM
a b a b a b a b3 3 3 3 3 3 2 2 2 2 2 2

≕ ( )- + -P P P P , A230 1 2 3

where g ¼j j
BSM

n1
is the submatrix obtained by extracting the rows and columns corresponding tomodes j1Kjn from

g
BSM. In equation (A19), we use the POVMelements of the threshold detector acting inmode j as

ˆ ( )∣ ∣ ( )nP = - ñá1 0 0 A24j j
off

and

ˆ ˆ ˆ ( )P = - PI , A25j j
on off

where ν is the dark-count probability. In the numerical simulation, P suc is given by ( )= Ç +P P D Dsuc
5H 6V

( )ÇP D D5V 6H . In the experiment, the success probability of the BSM Psuc is equal to ( )ÇP D D5V 6H , since we
only employD5V and D6H. Hereafter, we consider the case where ( )= ÇP P D Dsuc

5V 6H for simplicity. The
density operator of the heralded state (r̂H V H V

herald
1 1 4 4

) conditioned by the successful BSM is given by

ˆ [ ( ˆ ( ) ∣ ∣ )( ˆ ( ) ∣ ∣ )] ( )⧹r r n n= - - ñá - - ñág Ä Ä


P
I I

1
Tr 1 0 0 1 0 0 A26H V H V H V H V V V V H H H

herald
suc

3 3 3 3
a b a b1 1 4 4 1 1 4 4

BSM

3 3 3 2 2 2

( ) [ ˆ ] ( )⧹å r= - g

=P
P

1
1 Tr , A27

i

i
i H V H Vsuc

0

3

i
1 1 4 4

Figure A1. (a)The sketch of themodemismatch. Each of the light pulse is divided into two fractions: the fractionwhich interferes
with probability amplitude Tmode and the fractionwhich does not interfere with probability amplitude - T1 mode . (b)Themodel
of themodemismatch. The virtual BSswith transmittanceTmode are inserted before theHBS.
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where

ˆ ≔ ˆ ( )r rg g


P

1
, A28

0

0
BSM

ˆ ≔ [ ˆ ∣ ∣ ] ( )r r ñág g Ä


P

1
Tr 0 0 , A29V V V V V V

1

3
a b a b

1
3 3 3

BSM

3 3 3

ˆ ≔ [ ˆ ∣ ∣ ] ( )r r ñág g Ä


P

1
Tr 0 0 , A30V V V H H H V V V H H H

2

6
a b a b a b a b

2
3 3 3 2 2 2

BSM

3 3 3 2 2 2

ˆ ≔ [ ˆ ∣ ∣ ] ( )r r ñág g Ä


P

1
Tr 0 0 . A31H H H H H H

3

3
a b a b

3
2 2 2

BSM

2 2 2

Here, we define ⧹Tr H V H V1 1 4 4
by partial trace over all remainingmodes except forH1,V1,H4 andV4. The

covariancematrices of r̂g1, r̂g1 and r̂g3 are given by the Schur complements [48] of g
BSM as

≔ (

) ( ) ( )
{ }{ } { }{ ⧹ } { ⧹ }{ ⧹ }

{ }{ ⧹ }

g g g g

g

-

+ Å -

  

I , A32

V V V V V V V V V V V V V V V V V V

V V V V V V
T

1
BSM BSM BSM

3 1 BSM

a b a b a b a b a b a b

a b a b

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3

≔

( ) ( ) ( )
{ }{ } { }{ ⧹ }

{ ⧹ }{ ⧹ } { }{ ⧹ }

g g g

g g

-

´ + Å -



  I , A33

V V V H H H V V V H H H V V V H H H V V V H H H

V V V H H H V V V H H H V V V H H H V V V H H H
T

2
BSM BSM

BSM 6 1 BSM

a b a b a b a b a b a b a b a b

a b a b a b a b a b a b a b a b

3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2

3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2 3 3 3 2 2 2

≔ (

) ( ) ( )
{ }{ } { }{ ⧹ } { ⧹ }{ ⧹ }

{ }{ ⧹ }

g g g g

g

-

+ Å -

  

I . A34

H H H H H H H H H H H H H H H H H H

H H H H H H
T

3
BSM BSM BSM

3 1 BSM

a b a b a b a b a b a b

a b a b

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

Here, { }{ }g ¼ ¼i i j j
BSM

n n1 1
is the submatrix obtained by deleting rows corresponding tomodes i1Kin and columns

corresponding tomodes j1Kjn from g
BSM. Then, the characteristic function of the heralded state is given by

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )ˆ åc x g x= - -r

=P
P

1
1 exp

1

4
, A35

i

i
i

T
i H V H Vsuc

0

3

,
H V H V1 1 4 4

herald
1 1 4 4

where gi H V H V, 1 1 4 4
is the covariancematrix of [ ˆ ]⧹ rgTr H V H V i

1 1 4 4
. Before the detection, we perform the symplectic

transformations of the (polarization-domain) beamsplitters followed by the detection losses on each of
gi H V H V, 1 1 4 4

for iä{0, 1, 2, 3} as
≔ [( ) ( )] ( )g gÅ Åh h h h q q q q    S S S S , A36i H V H V H H V V H V H V

T
i H V H V H V H V,

final
,

A B A B
1 1 4 4 1

1
4

2
1
3

4
4

1 1 4 4 1 1 4 4 1 1 4 4

where θA and θB are themeasurement angles for Alice and Bob, respectively. Finally, we calculate the detection
probabilities. For example, the probability of observing clicks in D1 and D2 and no-clicks in D3 and D4 under the
condition of the abovemeasurement angles (≕ ( ∣ )q qP c1, c2, nc3, nc4 ,A B ) is given by

⎡
⎣⎢

⎤
⎦⎥( ∣ ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( ) ˆ ( )åq q n n n n r= P P P P - g

=

P
P

Pc1, c2, nc3, nc4 ,
1

Tr 1 A37A B H H V V
i

i
isuc

on on off off

0

3

i H V H V
1 4 1 4

, 1 1 4 4

final

⎡
⎣⎢

⎤
⎦⎥ ( )

( ) ˆ ( ˆ ( )∣ ∣ )

( ˆ ( )∣ ∣ )( )∣ ∣ ( )∣ ∣

å r n

n n n

= - - - ñá

´ - - ñá - ñá - ñá

g

=

A38

P
P I

I

1
Tr 1 1 0 0

1 0 0 1 0 0 1 0 0

i

i
i H

H V V

suc
0

3

i H V H V, 1 1 4 4

final
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4 1 4

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟⎟ ( )

( ) ( )

( )

( )

( )

( )
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( )
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å
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g
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g
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g

n
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-

+
-

-

+

-
-

+
+

-

+

=

A39

P
P

I I

I I

1
1

4 1

det

8 1

det

8 1

det

16 1

det
,

i

i
i

i V V i H V V

i V H V i H V H V

suc
0

3 2

,
final

3

,
final

3

,
final

4

,
final

1 4 1 1 4

1 4 4 1 1 4 4

where g ¼i j j, n1
is the submatrixobtainedbyextracting the rowsand columns corresponding tomodes j1Kjn from g i

final.

Appendix B. The characteristic function of the Fock states

The characteristic function of the four-mode Fock state is represented by

( )∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣c c c c c=ñá ¢ ¢ ¢ ¢ ñá ¢ ñá ¢ ñá ¢ ñá ¢ . B40klmn k l m n k k l l m m n n
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Here, we only consider up to single-photon state for eachmode i.e. { }¢ ¢ ¢ ¢ Îk k l l m m n n, , , , , , , 0, 1 . The
characteristic function of the single-mode state ∣ ∣ñán m is given by the inner product with the displacement
operator ˆ ( ) ≔ ( ˆ ˆ)†a a a-D a aexp * as [49]

[∣ ∣ ˆ ( )] ( )∣ ∣c a= ñáñá n m DTr B41n m

∣ ( ˆ ˆ)∣ ( )†a a= á - ñm a a nexp B42*

⎧
⎨
⎪⎪

⎩
⎪⎪

!
!

( ∣ ∣ )( ) (∣ ∣ )( )

!
!

( ∣ ∣ )( ) (∣ ∣ )( )
( )

( )

( )

a a a

a a a
=

- - >

- >

- -

- -

n

m
L m n

m

n
L n m

exp 2

exp 2 ,

B43

m n
n

m n

n m
m

n m

2 2

2 2*

where

⎜ ⎟⎛
⎝

⎞
⎠( ) ≔ ( )

!
( )( ) å - +

-=

L x l k
l i

x

i
1 B44l

k

i

l
i

i

0

is the generalized Laguerre polynomial.We note that, in the single-mode case, the complex numberα in the
displacement operator and the complex numbers ξ1 and ξ2 in theWeyl operator are connected by

( )a
x x

=
- i

2
. B452 1

AppendixC. Input state characterization

Wecharacterize the input quantumstates by performing the two-qubit quantumstate tomography [50]. Changing
themeasurement angles,we collect the two-fold coincidence counts between ( )D D1 2 and D6H for characterizing
thequantum state generated fromsourceA(B), respectively. In this experiment,we insert aQWPand aHWP in
mode 6, and aQWP just before aHWP in each ofmode 1 andmode 4. The two-qubit quantum states generated by
the sourcesA andB are reconstructed by performing themaximally likelihood estimation [51]using the
probability distributions obtainedby the experiment. The reconstructed two-qubit density operators generated
from sourcesA(r̂A) andB(r̂B) are shown infiguresC1(a) and (b), respectively. Thefidelity of r̂A to ∣ ∣Y ñáY+ + is
calculated to be ≔ ∣ˆ ∣ráY Y ñ = + +F 0.884 0.004A A . Similarly, thefidelity of r̂B to ∣ ∣Y ñáY- - is calculated to be

≔ ∣ˆ ∣ráY Y ñ = - -F 0.906 0.002B B . Theses results indicate that highly entangled states are prepared as initial
states. The error bars are obtained by assuming aPoissonian distribution for thephoton counts.

FigureC1.The real parts and imaginary parts of r̂A (a) and r̂B (b).
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AppendixD. Characterization of indistinguishability

In order to evaluate the indistinguishability between the photons inmodes 2 and 3which interfere at theHBS,
we perform theHOMexperiment [33–35].We detect the photons inmodes 1 and 4withV-polarization, and
observe theHOM interference between theH-polarized photons inmodes 2 and 3.Wemeasure the four-fold
coincidence counts among D , D , D1 2 5H, and D6H with changing the relative delay bymeans of amotion stage.
The result is shown infigureD1.We clearly see theHOMdip around the zero-delay point. The visibility is
calculated to be = V 0.74 0.03HOM . The degradation of the visibility ismainly caused by (i)Themode
matchingTmode between the photons3 and 4, and (ii)multiple pair generation at the sources. To see the degree
of the contribution ofTmode, we perform the theoretical calculation considering the experimental imperfections.
Whenwe setTmode=1, the visibility is estimated to be =V 0.91HOM

th , which indicates that the remaining

degradation is caused by themodemismatch. =V 0.74HOM
th is obtained forTmode=0.9.We adopt this value in

the numerical simulations.

Appendix E. Characterization of the heralded state

We show the two-qubit density operators of the heralded states reconstructed by the experimentally-obtained
probability distributions infigure E1. (i), (ii) and (iii) correspond to the two-qubit density operators of the

FigureD1.The observedHOM interference between the photon3 and the photon4. The blue dots are the four-fold coincidence
counts in 60 s. The error bars are calculated by assuming a Poissonian distribution. The red solid curve is obtained byGaussian fitting.

Figure E1.The reconstructed density operators of the two-qubit component of the heralded state for three different distances:
(i)0km, (ii)24kmand (iii)50km.
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heralded states when the corresponding fiber lengths are 0km, 24km and 50km, respectively. Thefidelities to
∣Y ñ+ are calculated to be (i) = F 0.78 0.05herald

ex , (ii) = F 0.75 0.06herald
ex , and (iii) = F 0.69 0.05herald

ex ,

respectively. In theory, the fidelities are estimated to be =F 0.81herald
th regardless of the distance.We guess the

reasonwhy Fherald
ex is lower than Fherald

th is that additional spatialmode-mismatch is caused by insertingNDfilters.
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