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Abstract

To observe the loophole-free violation of the Clauser—Horne—Shimony—Holt (CHSH) inequality
between distant two parties, i.e. the CHSH value S > 2, the main limitation of distance stems from the
loss in the transmission channel. The entanglement swapping relay (ESR) is a simple way to amplify
the signal and enables us to evade the impact of the transmission loss. Here, we experimentally test the
heralded nonlocality amplifier protocol based on the ESR. We observe that the obtained probability
distribution is in excellent agreement with those expected by the numerical simulation with
experimental parameters which are precisely characterized in a separate measurement. Moreover, we
experimentally estimate the nonlocality of the heralded state after the transmission of 10 dB loss just
before final detection. The estimated CHSH valueis S = 2.113 > 2, which indicates that our final
state possesses nonlocality even with transmission loss and various experimental imperfections. Our
result clarifies an important benchmark of the ESR protocol, and paves the way towards the long-
distance realization of the loophole-free CHSH-violation as well as device-independent quantum key
distribution.

1. Introduction

Nonlocality is not only an interesting feature of quantum mechanics which can be tested by the celebrated Bell
inequality [1, 2], but also the key resource for quantum information protocols. Recently, it was pointed out that
the system violating the Bell inequality in a detection loophole-free manner is directly related to the quantum
information applications such as device-independent quantum key distribution (DIQKD) [3, 4]. Assuming that
the physical apparatuses are honest [5, 6], DIQKD allows the two users, Alice and Bob, to guarantee the security
without characterizing internal workings of the devices. However, its practical implementation is still
challenging. One of the most formidable obstacles is closing the detection loophole [7—12], which necessitates
the receiver to detect at least 2 /3 of emitted photons [13]. That s, if a standard optical fiber at
telecommunication wavelength with 0.2 dB km ™ '-loss is used as a transmission channel, the achievable distance
becomes less than 10 km even if photon detectors with unity detection efficiencies are employed.

Toward realization of the loophole-free violation of the Bell inequality over long distance, several protocols
to circumvent the impact of transmission loss have been proposed, such as the linear-optics-based heralded
photon amplifier (HPA) [14-16] and the heralding protocol with a nonlinear process [17]. When a single
photon state (such as a part of the entangled photon pair) is sent into a lossy channel, the state turns out to be a
mixture of a single-photon state and a vacuum. These protocols can increase the fraction of qubit (single
photon) and suppress the vacuum fraction with a certain probability. For example, the HPA utilizes an ancillary
entangled state formed by a vacuum and a single photon state to amplify the single-photon fraction of the input
state. By applying them to the Bell state transmission, one can recover the lost Bell state with some success
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probability. Although the concept of the HPA has been experimentally demonstrated [18—20], they did not
recover the nonlocality and thus the heralded state could not show the loophole-free Clauser—Horne—Shimony—
Holt (CHSH) violation, even if Alice and Bob had perfect detectors.

An alternative option is the linear-optical entanglement swapping relay (ESR), which is widely used as an
entangling operation of independently prepared photon pairs in a postselection manner [21-24]. While the ESR
is simpler than the other schemes, at first, this method was not believed to work in the experiment without
postselection such as DIQKD [14, 17]. This is because if one applies the ESR to the entangled photons generated
by the spontaneous parametric-down conversion (SPDC), which is currently the most practical source of a
photonic entangled state, even if the swapping is successful, the generated state (without postlsection) is far from
the two-qubit maximally entangled state (less than 0.5 fidelity between them). Surprisingly, however, Curty and
Moroder [25] showed that the ESR without postselection is, in fact, able to violate the CHSH inequality [26], i.e.
the CHSH value S > 2. This was confirmed by the following numerical analysis by Seshadreesan et al [27], which
contains various practical imperfections and the multi-pair generation of the SPDC sources. These theoretical
predictions show that even if the ESR state is not close to the ideal Bell state, it still shows nonlocality, which is
useful for quantum protocols such as DIQKD. Related to this, not the CHSH inequality violation but the event-
ready quantum steering was recently demonstrated by using the ESR [28].

In this paper, we perform a proof-of-principle experiment of Bell test based on ESR, and estimate the
nonlocality of the experimentally generated state by the ESR-based heralding, which shows the violation of the
CHSH inequality even after transmitting through a channel with loss corresponding to the 50 km-optical fiber.
More specifically, first we introduce a realistic model of ESR, and investigate the optimal parameters and
configuration which maximize the CHSH parameter S through numerical simulation. Second, we perform
experimental demonstration of the ESR scheme using the optimal parameters and configuration. Entangled
photon pairs from the SPDC sources are transmitted through lossy channels corresponding to the 50 km-
optical fiber and then the ESR heralding is performed. Finally, we perform the Bell test on the heralded state
without postselection. Although the detection efficiencies of our system are not in the range of directly observing
the violation of the CHSH inequality of the heralded state, the probability distributions obtained by the
experiment are in excellent agreement with those independently obtained by our numerical model that includes
imperfections. This feature allows us to estimate the nonlocality and the density matrix of the experimentally
heralded state before the final detection. The estimated CHSH value is S = 2.113, which shows that the
experimentally heralded state has significant nonlocality. This result indicates that we successfully amplified the
nonlocality of the SPDC-based entangled photons, which are degraded by losses in the transmission channels,
viathe ESR. As far as we know, this is the first experiment recovering the nonlocality of the SPDC-based
entangled photons after significant transmission losses. In light of the practicality of the SPDC-based entangled
photons, our work paves a way to realize long-distance CHSH violation as well as DIQKD by combining it with
the state-of-the-art highly efficient photon detectors.

The paper is organized as follows. In section 2, we briefly review the ESR-based heralded nonlocality
amplifier in [25]. In section 3, we describe our theoretical model and show the numerical result comparing these
two schemes. The experimental setup and results are described in section 4. In section 5, we discuss the density
operator of the heralded state and section 6 concludes the paper.

2. Heralded nonlocality amplification by entanglement swapping

In this section, we review the ESR-based heralding scheme. The ESR-based heralding scheme proposed in [25] is
illustrated in figure 1(a). Entangled photon pairs are prepared at Alice’s side by source A. One of them is sent to
Bob via a lossy optical channel with transmittance 77, which easily destroys the nonlocality of the state. Bob
prepares another entangled photon pair by source B, and performs the ESR by the Bell state measurement (BSM)
to recover the lost nonlocality of the shared state between Alice and Bob. Since the ESR succeeds only
probabilistically, this is a probabilistic protocol and we use the state only when heralded by the successful events
of the ESR.

In practice, entangled photon pair sources A and B are based on the SPDC, which generates entangled
photon pairs only probabilistically, and moreover, sometimes generates multiple pairs simultaneously. The
adverse influence of the probabilistic nature of SPDC sources on the heralding schemes has been addressed in
some previous studies. For example, it is argued that the vacuum components of the SPDC sources remain in the
heralded state p, 5, and this leads to the vanishing of nonlocality [29]. However, this is not true, since after
successful swapping, the heralded state mainly consists of the superposition of the following three events: (i) two
photon pairs from source A and no photon pair from source B, (ii) two photon pairs from source Band no
photon pair from source A, and (iii) one photon pair from each of sources A and B, which actually does not
contain vacuum component. In [14, 17], it is pointed out that, in the above heralded state, (iii) is clearly the
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Figure 1. The schematic diagram of the ESR-based Bell-test experiment. Linear optical Bell-state measurement (BSM) is realized by a
half beamsplitter (HBS) followed by polarization measurements using two polarization beamsplitters (PBSs). Under the condition of
the successful BSM at the ESR node, Alice and Bob perform the polarization-measurement based on their measurement settings

X; € {X;,X;}and Y] € {Y), Y3}, respectively. By repeating the measurement, they calculate the CHSH value S. (a) The ordinary
configuration of the ESR-based DIQKD (the SH scheme). (b) The MH scheme we introduce. The BSM is performed in the middle of
Alice and Bob.

desirable event, but the probability that the unwanted events (i) or (ii) occur is almost the same probability as
(iii). Therefore, the fidelity of the heralded state p, ; to the two-qubit maximally entangled states never exceeds
0.5, which was thought to be a reason that the generated state loses its nonlocality. However, as shown by Curty
and Moroder [25], this p,  still violates the CHSH inequality. That s, p, ; contains some nonlocality, although it
is far from ideal Bell states.

In this paper, we demonstrate these theoretical predictions by estimating the nonlocality and density matrix
of the heralded state using experimental results.

3. Theoretical analysis

3.1.Model

We first explain the procedure to generate a raw key using the ESR-based DIQKD in figure 1(a). Alice (Bob)
generates entangled photon pairs at source A(B). Under the condition that the BSM succeeds at the ESR node,
Alice and Bob perform the polarization-measurements based on the measurement settings X; € {X;,X,} and
Y; € {Y}, Y,}, respectively. The measurement outcomes are binary, i.e. a;, b; € {—1, + 1}. Byrepeating the
measurement, they calculate

S = <(llb1> + <(12b1> + <(llbz> — <a2b2>, (1)

where (a;bj) = P(a = b|X;, ;) — P(a = b|X;, Y;). While the maximal value of |S|is upper-bounded by 2 in
the framework of a local realism theory, quantum mechanics allows |S| to take the maximal value of 2+/2, which
is known as the Tsirelson bound [30]. When Alice and Bob perform DIQKD, Alice chooses another
measurement basis Xo, and the raw key is generated by the outcomes under the measurement setting of { Xo, Y }.
The lower bound of the asymptotic key rate ris represented by [3, 4]

r=mpw=1-—hQ) — x(), 2
where rpy is Devetak—Winter rate [31], Qis qubit error rate which is defined by P(a = b|X,, Y1), and

2 _
(S = 1+ (52/2) 1 . 3)

Here, h( - ) is the binary entropy defined by h(x) = —xlog,x — (1 — x)log,(1 — x).

Next, we describe the theoretical model. We modify the configuration in figure 1(a) to the one illustrated in
figure 1(b). The difference is that the BSM is located not in Bob’s side but in the middle of the channel and thus
the channel is split into two with 714 and 71, respectively. We do so, since the previous theoretical studies with
ideal Bell state [32] and single-photon sources [29] indicate that the configuration in figure 1(b) is better. This
anticipation is investigated in detail using the realistic model introduced below. Hereafter, we call the
configuration in figure 1(b) the middle-heralding (MH) scheme and the other one as the side-heralding (SH)
scheme.

As arealistic model with SPDC sources, we introduce a theoretical model similar to the one introduced in
[27], as shown in figure 2. Each entangled photon pair source consists of a pair of two-mode squeezed
vacua (TMSV). The Hamiltonian is given by A= (G54 ;II (3) ﬁ\z w T C2(4)Ez$1(3) a ITIM) + h.c.forsource A (B),
respectively, where d 1; is the photon-creation operator of the i-polarized single photon in mode j which satisfies
the commutation relation [d;;, ﬁ,jl] = 63.0;. Hand V denote the horizontal and vertical polarizations,
respectively. ¢, = |Ck|ei‘9k is the coupling constant of TMSVk (k € {1, 2,3, 4}), which is proportional to the
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Figure 2. The realistic model of the ESR-based Bell-test experiment. A pair of two-mode squeezed vacua (TMSV) is used to prepare
polarization entangled photon pairs. The linear optical Bell-state measurement is composed of a half beamsplitter (HBS) followed by
polarization measurement at each output port. Alice (Bob) set the angle of the polarizer to be 8,4 (6p) and perform polarization
measurements. All of the photon detectors are the threshold detectors with dark counts.

complex amplitude of each pump. In the following, ¢y is fixed as ¢; = ¢, = ¢3 = O0and ¢, = 7, which means
that, when |¢]* = |(,J* and |G]* = |{,[?, the two-qubit components of the generated state form

[UH), = ([HV )1, + |VH),) /2 forsource A,and [U-)3, := ([HV )34 — |VH)s4)/~/2 forsource B.Here,
|H); :==a ;IJ |0)and |V'); := dy |0) denote the H- and V- polarization states of a single photon in mode},
respectively. At the ESR node, we perform the partial Bell-sate measurement using linear optics. We adopt the
projection onto |¥ ™), which is realized by detecting the two-fold coincidence between (Dsy N Dgy) or

(Dsy N Dgp). The successful operation of the ESR in the two-qubit system is described by

AAAAA

(VT[T U)3s = 23(PT 2 X0 X0 X525 DT )15 | DT )3y
23(BF| 23 X5 250 )12 | D )34
= — 3 (@F X5/ @ )12 | DT )34

1

= Xe > Sialinlk)
22 &

= —%|‘1’+>14a 4)

where Z := |H) (H| — |V)(V|and X := |H) (V| + |V) (H|are Pauli operators, and

|®+) = (JHH) + |VV) /~/2. The polarizer with angle § works as a polarization-domain beamsplitter mixing
the H and Vmodes whose transmittance and reflectance are cos’6 and sin>6, respectively. Under the condition
of the two-fold coincidence between (Dsy N Dgy) or (Dsy N Dgy ), Alice (Bob) chooses her (his) angle from

04 = {040, 041,042} (05 = {0p1,05,}), respectively, and performs polarization measurements. We calculate the
probability of all the combinations of the photon detection (click) and no-detection (no-click) events among Dy,
D,, D5 and D, for each polarization angle, and obtain the probability distributions. For calculating S, Alice/Bob
determines her/his local rule, and assign +1 or —1 for each detection event. We introduce the following simple
local assignment strategy for Alice (Bob): only Dy (D;) clicks — —1and otherwise — +1, respectively. The
losses in the transmission channels are represented by 1, 14v> e and 1y (Thus, the SH scheme can be
simulated by setting gy = 1y = 1.) The local system losses including the imperfect quantum efficiencies of
the detectors are modeled by inserting virtual loss materials denoted by n; for I € {1, ---,8}. We consider thatall
of the detectors are threshold detectors, which only distinguish between vacuum (no-click) and non-

vacuum (click). the dark-count probability v, which is a false click of the detector, is also taken into account in
the model. The mode-mismatch between Alice’s TMSV and Bob’s TMSV is modeled by inserting virtual
beamsplitter (BS) whose transmittance is Ty,0q4. in €ach input port of the half beamsplitter (HBS) at the ESR
node as shown in the inset of figure 2. In other words, two virtual BSs divide the mode of the each TMSV into two
parts: the mode which interferes with probability amplitude +/ Tj,04e and that does not with probability
amplitude \/1 — Tjoqe- The experimental value of Ty,04. can be determined by performing the Hong—Ou—
Mandel interference experiment [33—35].

3.2. Numerical results

The CHSH value S in equation (1) is numerically calculated by using characteristic-function approach based on
the covariance matrix of the quantum state and symplectic transformations [27, 36, 37]. See appendix A and [36]
for more details of this method. Below we show the numerical results comparing the MH and the SH scheme.
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Figure 3. (a), (b) The corresponding fiber length L versus S(K ) in the ideal situation (V17 = 1, Tjpode = 1,and v = 0). The blue
solid curve and the red dashed curve are S(K') for the CH and for the SH scheme, respectively. The black solid curve corresponds the
case where the ESR node is absent.

When the corresponding fiber length is L km, we set g = 1nav = nr and gy = 1y = 1 for the SH scheme,
and 7,y = My = Ny = Ny = /Ty for the MH scheme, respectively, where n; = 107%24/1° In figure 3(a),
we show the relation between L and the CHSH value Sin an ideal system where all the local detection efficiencies
are unity, the mode-matching is perfect, and detectors have no dark counts (i.e. VI = 1, Tpoge = 1,and

v = 0). Ateach point, we perform the optimization over the average photon numbers of the TMSVs, and
measurement angles using a random search algorithm. We see that the degradation of S against the transmission
distance is small for both of the MH and the SH schemes, since it is possible to set the optimal average photon
numbers to be small (typically ~10~°) in the ideal case. This makes the detrimental contribution of the multiple
pairs negligible. Interestingly, the maximal violation at 0 kmis S ~ 2.34, which is slightly better than what is
achieved by using a single-mode SPDC-based entangled pair source (No ESR) [37, 38]. On the other hand, the
minimum detection efficiency to obtain § > 2 is calculated to be 91.1%, which is larger than 66.7% needed in
the case of No ESR [37, 38]. These differences come from the fact that the density operator of the heralded state is
far from the state directly generated by SPDC which mainly consists of vacuum state. The relation between L and
the key rate K'is shown in figure 3(b). Here, we define K := P** X rpy in the MH and the SH scheme, and

K := rpwin No ESR, where P*"“is the success probability of the linear-optical BSM. The average photon
numbers, which maximize S, are no longer optimal for maximizing K, since employing the small average photon
numbers results in the low P°**“ at the ESR node. That is, there is a trade-off between Sand P*"° for maximizing K.
We clearly see the difference of K between the MH scheme and the SH scheme. The reason is qualitatively
understood as follows. In the SH scheme, since a large loss is imposed on the TMSVs from source A, the average
number of photons which survive at the ESR node is smaller than that in the MH scheme, which results in the
lower P°*"“. In short fiber length regime, K'in No ESR is about two orders larger than that in the MH and the SH
scheme. This is because P*"“ is around 0.01 while rpyy is similar between No ESR and the MH/SH scheme. Next,
we add dark count probabilities of v = 10~ ®and v = 10, and compare S of the SH scheme and the MH scheme
as shown in figure 4(a). S of the SH scheme starts to deviate from that of MH scheme for large L. The reason is also
understood by the trade-off between S and P*"“. When dark counts are considered, it is necessary to keep the
average number of the photons that survive at ESR node sufficiently larger than the dark-count probability. Thus,
in the SH scheme, the optimal average photon number of source A mustbe larger than that in the MH scheme,
which however results in smaller S. The minimum detection efficiencies to obtain S > 2 slightly increase. For
example, at L = 50 km in the MH scheme, 91.6% and 92.7% are necessary in the case of v = 10 ®and v = 107,
respectively. Finally, we compare K of the SH scheme and that of the MH scheme with considering the dark-count
probabilities as shown in figure 4(b). We see a large gap between K of the MH scheme and the SH scheme. These
results suggest that the MH scheme is always better than the SH scheme, which is consistent with previous studies
about ESR schemes [29, 32] and time-reversed version of ESR schemes [39—42].

4. Experiment

4.1. Experimental setup

We perform the ESR-based Bell-test experiment using the setup illustrated in figure 5. The pump

pulse (wavelength: 792 nm, pulse duration: 2 ps, repetition rate: 76 MHz) is obtained by a Ti:Sapphire laser. The
pump pulse is split into two optical paths by a half waveplate (HWP) and a polarization beamsplitter (PBS), and
fed to the two independent Sagnac-loop interferometers with group-velocity-matched periodically poled
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Figure 4. (a), (b) L versus S(K) with dark counts (V17 = 1, Tpyode = 1,andv = 107°,10°). The blue and green solid curves are S
(K) for the MH scheme with v = 10~ ®and v = 10, respectively. The red and orange dashed curves are S(K ) for the SH scheme with
v =10 ®andv = 10>, respectively.
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Figure 5. The setup for the ESR-based Bell-test experiment. To generate entangled photon pairs by SPDC, we use counter propagating
pump pulses to pump the GVM-PPKTP crystals in the Sagnac loop interferometers. Alice and Bob choose the measurement angles
{041,042} and {0p,, 05, }, respectively, and assign +1 or —1 for the each detection event to calculate S value. GVM-PPKTP: group-
velocity-matched periodically poled KTiOPO,, HBS: half beamsplitter, IF: interference filter, QWPs: paired quarter waveplates,
HWP: half waveplate, DM: dichroic mirror, ND: neutral density filter, PBS: polarization beamsplitter, FPBS: fiber-based PBS, SSPD:
superconducting single-photon detector.

KTiOPO4 (GVM-PPKTP) crystals [43]. The polarization of the each pump pulse is properly adjusted by a HWP
and a paired quarter-waveplates (QWPs). The two-qubit components of the states generated from sources A
and B form the maximally entangled states |¥+);, and [U )54, respectively. While the photon 1 (4) passes
through the dichroic mirror (DM) and goes to Alice’s (Bob’s) side, the photons 2 and 3 are led to the ESR node
to perform the linear-optical BSM. The transmission losses in the optical fibers are emulated by two neutral
density filters (NDs) inserted in modes 2 and 3. In each optical path, we insert an interference filter (IF) whose
center wavelength and bandwidth are 1584 nmand 2 nm, respectively, which is used to improve the purity of
the SPDC photons. The linear-optical BSM is implemented by mixing two input photons by means of a HBS
followed by the polarization-dependent coincidence detection between Dsy and Dgyy, which projects the photon
pair in modes 2 and 3 onto the singlet state |¥~),; with the success probability of 1/8. We note that if we
introduce another two detectors and perform active feed forward, the maximum success probability becomes
1/2. We use superconducting single-photon detectors (SSPDs) whose quantum efficiency is around 75% each
[44]. Alice and Bob set measurement angles {641, 04, } and {0p;, 0p, }, respectively, by means of the HWPs and
fiber-based PBSs (FPBSs). Finally, the photons are detected by four SSPDs: D) and D; for Alice, and D, and D,
for Bob, respectively. In the experiment, the detection signal from Dsy is used as a start signal for a time-to-
digital converter, and the detection signals from Dgy, Dy, D,, D3 and D, are used as stop signals. Under the
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Table 1. The local detection efficiencies estimated by using
the weakly-pumped TMSV.

T Uy UE
14.63 + 2.75% 14.44 £+ 0.85% 10.87 + 2.36%
N4 s U3
10.64 + 0.59% 14.43 4+ 0.01% 11.57 4+ 0.07%

Table 2. The optimal average photon numbers of the TMSVs, and the average photon
numbers estimated by the experiment.

1 H2 H3 22

Optimal 1.50 x 1072 3.95 x 1072 1.50 x 1072 1.50 x 1072
Experiment 148 x 1072 3.83 x 102 1.64 x 1072 152 x 1072

condition that the two-fold coincidence between Dsy and D¢y occur, all the combination of click and no-click
events are collected without postselection. We assign —1 to the events where D; (D;) clicks on Alice’s (Bob’s)
side and +1 to all the other events, and then calculate S.

4.2. Characterization of experimental setup

We measure the experimental parameters which will be used in the numerical simulation. We first characterize
the HBS at the ESR node using laser light centered at 1584 nm. Itis found that the HBS is lossy only for the
H-polarized light from mode 3. This loss is modeled by decomposing the HBS into the lossy material

(nap = 0.27) and the ideal HBS in the numerical simulation. We also characterize the local detection efficiencies
niforl € {1, -, 6} by using the weakly-pumped TMSVs [45]. The results are shown in table 1. Throughout the
experiment, we set the widths of the detection windows to be 1 ns. The dark-count rate within the detection
window is measured tobe v = 10,

Under the above experimental conditions, we perform the numerical optimization of the average photon
numbers of the TMSVs and the measurement angles such that S is maximized. Note that, in the optimization, we
assumern; = 17, = 13 = 14 = 1, since the detection efficiencies shown in table 1 are not sufficient to observe the
detection-loophole-free violation of the CHSH inequality. In addition, we impose a condition that each average
photon number is atleast >1.5 x 1072 to finish the experiment within reasonable time. We set the average
photon numbers of the TMSVs based on the numerical results. The optimal average photon numbers and the
experimentally-measured ones are shown in table 2, where 14 is the average photon number of TMSVk. We see
that 1, is larger than the others, since 17, is imposed in the transmission path of TMSV2. The optimal
measurement angles are {041, 04,} = {0, 0.58} [rad] and {05, 05,} = {1.47, 2.01} [rad]. With above
experimental parameters, the two-qubit subspace of the input quantum states and the indistinguishability
between photon 3 and the photon 4 are also characterized. (See appendices Cand D.)

4.3. Experimental results

We adopt the MH scheme, and perform the ESR-based Bell-test experiment. Under the condition of the
successful BSM, we accumulate every detection event of the heralded state without postselection. First, we
remove the ND filters, and perform the Bell-test experiment on the heralded state with the optimal
measurement angles. Since the detection efficiencies of our system are not in the range of closing the detection
loophole, S does not directly exceed the threshold value of S = 2. In fact, when we input all the experimental
parameters to the numerical simulation, the value of Sis expected to be Sy, = 1.614. Nevertheless, it is still
possible to compare Sy, and the CHSH value obtained by the experiment S.,,,. From the experimentally-
obtained conditional probability distributions, Sy, is calculated to be Sey, = 1.597 £ 0.002, which coincides
with S, We also compare the conditional detection probabilities. For example, all the conditional detection
probabilities for {04, 05} = {0, 1.47} [rad] are shown in figure 6. Since each of Alice and Bob possesses two
detectors, there are 2* = 16 possible detection events for each measurement angle. The red bars and blue bars
correspond to the conditional probabilities obtained by the experiment and the numerical simulation,
respectively. We clearly see an excellent agreement between the experimental results and the numerical
simulations. Moreover, the L1-distance D definedby D = le-i Ip, — g;lis calculated to be as small as

D = 0.037 £ 0.001, where Py(g;) is the ith experimentally (theoretically)-obtained conditional detection
probability, respectively. For the other measurement angles, the L1-distances are calculated to be
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Figure 6. The conditional detection probabilities obtained by the experiment (red bars) and the numerical simulation (blue bars).
The error bars are calculated by assuming the Poissonian distribution. Defining, for example, the conditional detection probability
that only D; and D, click by P(D; N D,), the correspondence between the 16 labels and the 16 detection events are described as
follows: 1:P(Vac), 2: P(D3), 3: P(Dy), 4: P(D,), 5: P(Dy), 6: P (D N D3), 7: P(D, N D3), 8: P(D3 N Dy), 9: P(D; N D,), 10: P(D; N Dy),
11: P(D, N Dy), 12: P(D; N D, N D3), 13: P(D; N D3 N Dy), 14: P(D, N D3 N Dy), 15: P(D; N D, N Dy),and 16: P(D; N D, N D3 N Dy),
where P (Vac) is the conditional probability that none of D;, D,, D3 and D; clicks.

2.2}
o . i MH
0 ol ?
% Hs=2 .
> i | % » & 4 4 SH
o 1.8} i
w2 H
5 | ; MH
1.6‘ -‘ - +* + é‘ ‘-‘ - + + ‘; -0.- +* - * +* * * + +* +*
1 *(n S (m
i() 3( ) 5( ) SH
0 20 0 60 30 100

Corresponding fiber length [km]

Figure 7. The corresponding fiber length L versus S. The orange solid curve (the MH scheme) and the red diamonds (the SH scheme)
are obtained by the numerical simulation with all of the experimental imperfections. The blue solid curve (the MH scheme) and green
diamonds (the SH scheme) are obtained by the numerical simulation with assuming that 7, = 1for! € {1,2,3,4}. The black dots are
S obtained by the experiment. The circles on the blue solid curve are S of the heralded states just before detection. The purple solid line
is the threshold value of S = 2.

D = 0.036 + 0.001for {041, 0} = {0, 2.01) [rad], D = 0.033 + 0.001 for {045, 0} = {0.58, 1.47} [rad]
and D = 0.030 & 0.001 for {045, 05,} = {0.58, 2.01} [rad].

Next, we insert the ND filters, and perform the Bell-test experiment on the heralded state while changing the
transmission losses. Note that we fix the average photon numbers and measurement angles throughout the
experiment. The results are shown in figure 7 as three black dots. The total transmittance of the ND filters are
equivalent to (i) 0 km, (ii) 24 km and (iii) 50 km of the optical fibers, and the corresponding S are
(i) Sexp = 1.597 £ 0.002, (ii) Sexp = 1.579 £ 0.002 and (iii) Seyp = 1.591 % 0.002. They agree well with the
theoretical curve for the MH scheme (shown by an orange solid curve) obtained by using the experimental
parameters characterized by a separate measurement in section 4.2. When the detection efficiencies are small,
the difference between the MH scheme and SH scheme (shown by red diamonds) is small. The blue solid
curve (the MH scheme) and green diamonds (the SH scheme) are obtained by the numerical simulation with
the experimental parameters but assuming thatn, = 1for! € {1,2,3,4}. Since our model fits the experimental
results, these curves are considered to be the nonlocality of the heralded state just before detection. Interestingly,
there is a large gap between the MH scheme and the SH scheme. The estimated CHSH values (S”~") are shown
by the three circles in figure 7. The values are estimated tobe S"=' = 2.123 (0 km), 2.121 (24 km) and
2.113 (50 km), respectively, which indicates that the quantum state just before detection possesses potential to
violate the CHSH inequality even with various experimental imperfections.
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Figure 8. The real part of the partial density matrix of the heralded state spanned by [0011), [0101), |0110), |1001), |1010), and [0011).
The matrix elements of the imaginary part are almost zero.

5. Discussion

In this section, we estimate the density matrix of the experimentally heralded state just before detection by
compensating the detection inefficiency with the help of our theoretical model. As shown in figure 2, the heralded
state is distributed over the four modes: H,, V, Hy, and V. In addition, as described in section 1, the successful
BSM mainly consists of the superposition of the following four events (i) one photon in each of mode H;, V5, V;
and H,, (ii) one photon in each of mode H3, V,, V3and Hy, (iii) one photon in each of mode H, V,, H; and V,;, and
(iv) one photon in each of mode V;, H,, V3 and H,. Thus, we restrict ourselves to the subspace spanned by

{]0011), |0101), |0110), |1001}, |1010), |1100) }, where the modes are arranged in order of Hy, V;, Hy, and
V,,and |1) is the single-photon Fock state. By the numerical simulation, we know the characteristic function of the

heralded state Xphed (&). (The explicit formula is given in appendix A.) Thus, the matrix elements of p I}%e‘r/?g v,
HyViHyg Vy

in the Fock-state basis are calculated by the inner product of pherid(§) and the characteristic function of the
H)V1H4Vy

corresponding four-mode Fock state. For example, (0011|p ;}f{,ﬁl vl 100) is calculated by

4
(i) fXﬁ}‘}fﬁjllZM (£)X|1100)<oo11|(_§)df’ (5)
where 00) (0011 (§) 1 the characteristic function of |1100) (0011|. We use the characteristic function of the
heralded state for 50 km, and reconstruct the unnormalized partial density matrix, as shown in figure 8. (See
appendix B for the detailed calculation.) In addition to the four center peaks which correspond to |[¥*) (U], we
clearly see the contribution of the events (i) and (ii). By renormalizing this partial density matrix, the fidelity to

[ ) (] is calculated to be 0.47. This indicates that the heralded state is clearly far from the two-qubit
maximally entangled states, while it possesses enough nonlocality to violate the CHSH inequality. This
counterintuitive result may come from the fact that the heralded state possesses significant amount of

entanglement. The density matrix shown in figure 8 implies that p I‘}f{,‘l‘}i v, is very close to the pure state:

L(L e
2\ 7
where |1;); = Ag|0> fori = {H, V}andj = {1,4}. Apparently, equation (6) is maximally entangled state in

4 x 4 dimensions whose entropy of entanglement is 2. This means that the amount of entanglement is enough
to present some nonlocality.

[ herald = (00 11p5 Iv)s + [1a> Ly )l0)s) + (el )s + |1V>1|1H>4)a (6)

6. Conclusion

In conclusion, we experimentally demonstrate the heralded nonlocality amplifier based on the ESR. In theory,
we employ the method to calculate the detection probabilities using the characteristic function, and investigate
the optimal parameters and configuration which maximize S. In accord with the previous studies, the MH
scheme (the ESR node is placed in the middle of Alice and Bob) is much more robust against the transmission
loss than the SH scheme (the ESR node is placed in Bob’s side) in realistic model with SPDC sources. In
experiment, we perform the ESR-based Bell-test using the optimal parameters derived by the numerical
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simulation. While the detection efficiencies of our system is not in the range of closing the detection loophole,
the experimental results are in excellent agreement with the numerical simulation with experimental parameters
which are characterized in a separate measurement. This allows us to estimate the nonlocality and the density
matrix of the heralded state just before detection. It is revealed that, while the density matrix of the heralded state
is far from the ideal two-qubit maximally entangled state, the state possesses nonlocality (S"~' = 2.113 > 2)
after the transmission loss of 10 dB which is equivalent to a 50-km-long optical fiber at telecommunication
wavelength. To directly observe S > 2 over 50 km, itis found that a detection efficiency at least 97.4% is
necessary with our current experimental conditions. However, the threshold detection efficiency can be
improved further down to 91.6%, if the experimental imperfections other than the dark counts are reduced. In
view of the recent progress of the single-photon detection highlighted by high-efficiency single-photon detectors
with quantum efficiencies > 93% [46, 47], it could be possible to experimentally observe the nonlocality over
such along distance. Our result thus shows an important benchmark about the ESR protocol, and represents a
major building block towards the long-distance realization of the loophole-free test of the CHSH-violation as
well as DIQKD.
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Appendix A. Detailed calculations based on the characteristic function

In this section, we present the detailed method to compute the conditional detection probabilities using the
theoretical model in figure 2. We follow the definitions introduced in [37]. We define a density operator acting
on the N-dimensional Hilbert space H®V as p. The characteristic function of p is defined by

X (&) = Tr[pW()], (A1)
where
W(E) = exp (—i€"R) (A2)

is the Weyl operator. Here, R=G@&, ..., % Pp> - Py)and & = (&, ..., &n) are a 2N vector consisting of
quadrature operators and a 2N real vector, respectively. When the characteristic function of the quantum state
has a Gaussian distribution

© = exp(—im - idT&), (A3)

the quantum state is simply characterized by a 2N x 2N matrix y (the covariance matrix) and a 2N-dimensional
vector d (the displacement vector).
In our theoretical model, each entangled photon pair source consists of two TMSV sources over polarization

modes embedded in the Sagnacloop. The covariance matrices of the quantum state from source A (vz?vl v,
and source B (72:‘/3 HY ) are given by [36, 37]
[, SA1
SA Y (s ) 0
TYHViHV, = (A4)
1V V) i 0 A/SAZ(/«LP Nz)
and
[ SB1
SB T sy fhy) 0
YHVH,V, = > (A5)
Vit Va ] 0 "YSBZ(Ny ﬂ4)
respectively, where
2y + 1 0 0 2y + 1
0 24y + 1 2 pa(py + 1) 0
VM (s 1) = , (A6)

0 2\ 1, (py + 1) 20y + 1 0
2y + 1) 0 0 2 + 1
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2y + 1 0 0 —2Jm(p + 1)
VSR 1) = 0 24, + 1 —=2{p(py + 1 0
0 =2y (py + 1) 2y + 1 0
=2 (g + 1) 0 0 2y + 1
2p3 + 1 0 0 2\ ps(ps + 1)
0 2y + 1 =2y + 1) 0
B (s, p1y) =
0 =2y + 1) 2y + 1 0
e NTR(TRERSY 0 0 25+ 1
23 + 1 0 0 —2ps(ps + 1
B2 _ 0 2py + 1 2 g Cpty 4 1) 0
Y (.u3: ﬂ4) =
0 2 T D 2+ 1 0
*2 pa (s + 1) 0 0 23 + 1
The overall input quantum state is described by 72 g = o H1V Y, 7H;V3 HV, ,where

Y Tsujimoto et al

(A7)

(A8)

(A9)

S = {H,, V|, H, V,, H3, V5, Hy, V;}. The photons in modes H,, V5, H; and V3 are sent to the ESR node through
the transmission losses. We describe the transformation of the linear loss with transmittance ¢ on a single-mode

Gaussian state with covariance matrix y by
L'y = KT9K + a, (A10)

where K = JtIanda = (1 — t)I. Then, the linear losses 141, 1)av» prr and gy transform the input covariance
matrix 7 into

Loss _

EWAH£’7AVC’73H£"BV (A11)
= R T KA e (12
where
10 0 0 0 0 0 0"
01 0 0 0 0O 00
0 0 /My 0 0 0O 00
Mau"lav "By — 00 0 V'lav 0 0 00 (A13)
HyVoHs Vs 00 0 0 g 0 0 0f 7
00 0 0 0 Sy 0 0
00 0 0 0 0 10
[0 0 0 0 0 0 0 1]
(10 0 0 0 0 0 0]
01 0 0 0 0 00
0 01—y 0 0 0 00
00 0 1—n 0 0 00
Naray'lpulpy AV Al4
H,V,H3 V3 00 0 0 1 — Mgy 0 00 ( )
00 0 0 0 1 -1, 00
00 0 0 0 10
|0 0 0 0 0 0 0 1]

Here, for simplicity, we represent the block diagonal matrix like [13 g] by A®2. As described in section 2, the

mode matching between photon (H, and Hs) and (V; and V3) are considered by dividing the each input light
pulse into two mutually orthogonal modes as shown in figure A1(a). This is modeled by inserting virtual BSs
whose transmittance are Ty,0q. before the HBS as shown in figure A1(b). The fractions with probability Ty,oqe
interfere at the HBS, while the fractions with probability 1 — T,,q. are mixed with vacua by the HBS. In the
numerical simulation, we first add the eight modes (H(V ), H(V )34, H(V )5, and H(V )3;,) of vacua to WLOSS
VM= S @ Iy Vs vy Where U s= S U {Hy, ... HzpVag ...
transformatlons ofthe BSs as

Vip}. Second, we perform the symplectic

Tmode )T Tmode) ,

BS T T Or, MM T T Or,
WP = Sy @ Sijmt ® Syps © (Sris @ Syl © Syis @ Syl (Al5)
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Figure Al. (a) The sketch of the mode mismatch. Each of the light pulse is divided into two fractions: the fraction which interferes
with probability amplitude / T},,04e and the fraction which does not interfere with probability amplitude \/1 — Tj0de- (b) The model
of the mode mismatch. The virtual BSs with transmittance Tp,oq. are inserted before the HBS.

where 07 := arccosy/ Tmode » and

o._ | cosf sinf “2
Sij = [—sin0 cos 0] (A16)

is the symplectic matrix of the BS whose transmittance is cos? § acting on the modes i and ;. Finally, we perform
the symplelctic transformation of the HBSs as

BS 4 4 /4 4 4 4
= (Siln, ® S, ® Silm, ® S ® Si/y, @ STy,
BS
V0 (SHE, © SHtn, © S, ® SEAL © S/, ® S/, (A17)

We consider the imperfect detection efficiency of each heralding detector at the ESR node as
,YBSM Lﬂs L”g EHZ;, £7I7 £7I7 [:Vz;, £ Lﬂﬁ £H3b EWS Lﬂs [:Vsb 'YEBS- (A18)

The successful BSM corresponds to the two-fold coincidence between (Dsy M Dgy) or (Dsy N Dgy). For
example, the two-fold coincidence probability P (Dsy N Dgy) is given by

A off A A off ~ off A off
P(Dsy N Den) = Trlpi™ (F — Iy 11y, 1y ) (F — T 157 11571 (A19)
=Tr[p"u" (I = (1 = w)0) (0833, v, (F = (1 = 2910} (015, 10,1 (A20)

=Tr[p"" (- (1 — )’0) (013, vs,
+ (1 — v)°|0) <0|V3V3aV3bH2H2aHZb — (1 — v)*0) <0|H2H2,IH21,)] (A21)
_ 3 _ 6 _ 3

-1 8(1 — v) " 64(1 — v) B 8(1 — v) ’ (A22)

BSM BSM BSM

\/ det (Vvv;, v, + 1) \/ det (Vvv,, vy by iy, + 1) \/ det (Y, + 1)

= Py— P+ P, — P;, (A23)

where W?SMj is the submatrix obtained by extracting the rows and columns corresponding to modes j; .. .j, from
L

'yZSM In equation (A19), we use the POVM elements of the threshold detector actingin mode jas

ff
= (1 — )|0)(0]; (A24)
and
e =1 -1, (A25)

where vis the dark-count probability. In the numerical simulation, P is given by P** = P (Dsy N Dgy) +
P(Dsy N Dgy). In the experiment, the success probability of the BSM P**“ is equal to P (Dsy N Dgp), since we
only employ D5y and Dgy. Hereafter, we consider the case where P = P (Dsy N Dgy) for simplicity. The

density operator of the heralded state (p I}f‘r,ag v,) conditioned by the successful BSM is given by

R 1

Pt = Toue Tymviml e (4= (1= 0210) O, = (1= 010) (Ol )] (A26)
1
PSC

Z( 1P T\ g v, v [P (A27)
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where
P = iﬁvﬁs‘“, (A28)
Py
ph= ?Tr‘@VSuV}b[p u"10) (U B (A29)
o 1 o~ BSM
P = o Trv v ity [P 10) (O, vy s 1 (A30)
2
a 1 Ay BS
p’y3 = ? Terqusz[p /ZSM|0> <0|%3H2aH2b]' (A31)
3

Here, we define Tr\mvim, v, by partial trace over all remaining modes except for Hy, V, Hyand V. The

covariance matrices of p%, phand p% are given by the Schur complements [48] of fyBSM

.— ~BSM _ _BSM (
= Y (ViVa Vi) (i VaaVash — Y {V3 Va0 Vi) (U\ V3 V54 Vi) W{M\vgvsavab} {U\ V3 V3, Vi)
®3\—1/~,BSM T
I (Y (Vi via) e Ve Vaa Vi) ) > (A32)
BSM _ _BSM
V2= VsV3aV3szH2asz}{V3VsaVstzH2qub} V{3 Va0 Vap Hy Hao Hap} {U\ V3 Vaq Vi Hy Hoa Flap )
B6y—1(~BSM T
XY N V3 Vi Vi H Fog Fo) U\ Vi Vi Vi Fla o). 1) YUV V) 0\ VaVa Vi iy ) > (A33)

— ~BSM _ ~BSM ( BSM
Y3 *= V{H,H,Hyp} { HyHyo Hop) Y{H,H,Hyp) {U\ HyH,,Hap} W{M\HZHZaHZb}{U\HZHZ‘IHZb}

+ 1&3) 1(7 { Hy Hao Hpp} {U\ HyHyo Hop} )T' (A34)
Here, vﬁlle YUioi) is the submatrix obtained by deleting rows corresponding to modes ;.. ..i, and columns
corresponding to modes j1---jn from 'yBSM Then, the characteristic function of the heralded state is given by
1
Py psc ;)( D'P; eXP(——§ i, Hllemﬁ) (A35)

where 7, ; v, v, 1 the covariance matrix of Tr\ i1, v,[07]. Before the detection, we perform the symplectic
transformations of the (polarization-domain) beamsplitters followed by the detection losses on each of
Vo HViH,V; fori € {0,1,2,3} as

Vi = Ly Lh Ly LY [(SHIV1 H4V4) Vi, 1111\/1H4\/4(5Hlvl & SHM)] (A36)

where 04 and 6 are the measurement angles for Alice and Bob, respectively. Finally, we calculate the detection
probabilities. For example, the probability of observing clicks in D; and D, and no-clicks in D3 and D, under the
condition of the above measurement angles (=:P(cl, c2, nc3, nc4|6,, 0p)) is given by

P(cl, 2, nc3, ncd|0y, 05) = —Tr[HH(y)HH4(y)H(‘),ff(V)HW (Z/)Z( 1)Pp:H1V1H4V4:| (A37)

i=0

TI[Z(—I)PP zH1V1H4V4(I = (1 = 1)]0)(0])

suc
P i=0

x (I = (1 = 1)]0) (0l,)(1 — )]0} {0l (1 — )]0) <0|v4] (A38)

4(1 — v)? _ 8(1 — v)’
Jdetr By det(y 1)

3
Z (—1)P,

PSUC

8(1 —v)’ n 16(1 — v)* ’ (A39)

Jdety B oy ety D)

where , i, is the submatrix obtained by extracting the rows and columns corresponding to modes j; . . .j,, from 'yﬁ“al

Appendix B. The characteristic function of the Fock states

The characteristic function of the four-mode Fock state is represented by

Xiktmny (kmn') = Xjky 1 X010 (1 X m) (') X ) (| (B40)
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Here, we only consider up to single-photon state for each modei.e. k, k', I, I', m, m’, n, n’ € {0, 1}. The
characteristic function of the single-mode state |n) (| is given by the inner product with the displacement
operator D (o) := exp(ad’ — od)as [49]

X () = Trlln) (mID()] (B41)
= (m|exp(ad’ — o*a)|n) (B42)

S exp(—lal/2)(—ay" "L (o) > n)
m:

- (B43)
m!
,/—| exp(—|al?/2) (@) "Ly ™ (|al?)(n > m),
n!
where
! i
LO) = Z(—l)i(ll + ’l‘)x—' (B44)
i=0 AL

is the generalized Laguerre polynomial. We note that, in the single-mode case, the complex number « in the
displacement operator and the complex numbers £; and &, in the Weyl operator are connected by
£ —i§
o= . (B45)
V2

Appendix C. Input state characterization

We characterize the input quantum states by performing the two-qubit quantum state tomography [50]. Changing
the measurement angles, we collect the two-fold coincidence counts between D; (D;) and Dy for characterizing
the quantum state generated from source A (B), respectively. In this experiment, we inserta QWP and a HWP in
mode 6, and a QWP just before a HWP in each of mode 1 and mode 4. The two-qubit quantum states generated by
the sources A and B are reconstructed by performing the maximally likelihood estimation [51] using the
probability distributions obtained by the experiment. The reconstructed two-qubit density operators generated
fromsources A (p,)and B (D) are shown in figures C1(a) and (b), respectively. The fidelity of p, to [U) (¥*|is
calculated tobe Fy == (¥F|p,|¥*) = 0.884 + 0.004. Similarly, the fidelity of pj to [¥~) (¥|is calculated to be

Fg := (U7[pglT™) = 0.906 £ 0.002. Theses results indicate that highly entangled states are prepared as initial
states. The error bars are obtained by assuming a Poissonian distribution for the photon counts.

(a) Re Im
3 5%
HH HH @
S @< ® @ G
\.% ¢ VH VH.'> w
» W » "
F, = 0.884 + 0.004
(b) Re Im
% Jb . 2 /\/lyiﬁy »
> HH > 7
HH < '>\> . R W}VQ \’>VH w
2. , v ‘ » w
7 Fy = 0.906 + 0.002
Figure C1. The real parts and imaginary parts of p, (a) and pj (b).
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Figure D1. The observed HOM interference between the photon 3 and the photon 4. The blue dots are the four-fold coincidence
counts in 60 s. The error bars are calculated by assuming a Poissonian distribution. The red solid curve is obtained by Gaussian fitting.
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Appendix D. Characterization of indistinguishability

In order to evaluate the indistinguishability between the photons in modes 2 and 3 which interfere at the HBS,
we perform the HOM experiment [33—35]. We detect the photons in modes 1 and 4 with V-polarization, and
observe the HOM interference between the H-polarized photons in modes 2 and 3. We measure the four-fold
coincidence counts among D, D,, Dsy, and Dgy with changing the relative delay by means of a motion stage.
The resultis shown in figure D1. We clearly see the HOM dip around the zero-delay point. The visibility is
calculated to be Vizom = 0.74 £ 0.03. The degradation of the visibility is mainly caused by (i) The mode
matching T},.4. between the photons 3 and 4, and (ii) multiple pair generation at the sources. To see the degree
of the contribution of Tyy,04e, We perform the theoretical calculation considering the experimental imperfections.
When we set Tpoqe = 1, the visibility is estimated to be Vil = 0.91, which indicates that the remaining
degradation is caused by the mode mismatch. Vi = 0.74 is obtained for Tyoqe = 0.9. We adopt this value in

the numerical simulations.

Appendix E. Characterization of the heralded state

We show the two-qubit density operators of the heralded states reconstructed by the experimentally-obtained
probability distributions in figure E1. (i), (ii) and (iii) correspond to the two-qubit density operators of the
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Figure E1. The reconstructed density operators of the two-qubit component of the heralded state for three different distances:
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heralded states when the corresponding fiber lengths are 0 km, 24 km and 50 km, respectively. The fidelities to
|U*) are calculated to be (i) Faaq = 0.78 £ 0.05, (i) Fiaaq = 0.75 £ 0.06,and (iil) Fiaaq = 0.69 £ 0.05,
respectively. In theory, the fidelities are estimated to be Fih 4 =081 regardless of the distance. We guess the
reason why Fpy,.1q is lower than Fih 4 is that additional spatial mode-mismatch is caused by inserting ND filters.
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