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Abstract

Due to their excellent structural flexibility, low dimensional materials allow to modulate their
properties by strain engineering. In this work, we illustrate the phonon calculation of deformed quasi-
one dimensional nanostructures involving inhomogeneous strain patterns. The key is to employ the
generalized Born—von Karman boundary conditions, where the phonon states are characterized with
screw and rotational symmetries. We use wurtzite ZnO nanowire (NW) as a representative to
demonstrate the validity and efficiency of the present approach. First, we show the equivalence
between the phonon dispersions obtained with this approach and that obtained with standard phonon
approach. Next, as an application of the present approach, we study the phonon responses of ZnO
NWs to twisting deformation. We find that twisting has more influence on the phonon modes resided
in the NW shell than those resided around the NW core. For phonon at the NW shell, the modes
polarized along the NW axis is more sensitive to twisting than those polarized in the NW radial
dimension. Twisting also induces significant reduction in group velocities for a large portion of optical
modes, hinting a non-negligible impact on the lattice thermal conductivity. The present approach
may be useful to study the strain-tunable thermal properties of quasi-one dimensional materials.

1. Introduction

Due to their large aspect ratio, quasi-one dimensional nanostructures such as nanotubes (NTs) [1-4],
nanoribbons (NRs) [5-9], and nanowires (NWs) [ 10—13] are usually structurally flexible, and thus can sustain
high level of strain. This feature offers a strain way to tailor electronic properties of these materials, which often
involves inhomogeneous strain patterns. For example, it was shown that an axial twist could realize metal-to-
insulator transition in carbon N'Ts (CNTs) [14, 15] and graphene NRs (GNRs) [16—18]. On the other hand, in
deformed ZnO [19, 20] and other semiconductor NWs [21-23], their fundamental bandgaps could be also
tuned to a great extent. Strain can also alter the architecture of the entire electronic spectrum of the system. As a
striking example, it was shown that bending [24] or twisting [25] deformation could induce Landau quantization
of electronic states. Can thermal behaviors of materials be also effectively modulated by inhomogeneous strains?
In essence, this relies on how lattice vibrates at the presence of structural deformations and can be addressed by
performing phonon calculations. However, there are difficulties for this purpose, assembly associated with the
computational bottleneck.

The standard phonon calculation of crystalline materials within harmonic approximation employs the
translational symmetry, and the lattice wave is discretized by imposing the so-called Born—von Karman
boundary conditions [26, 27]. For a quasi-one dimensional structure with a unit cell of N, atoms

© 2020 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/ab6da1
mailto:swgao@csrc.ac.cn
mailto:swgao@csrc.ac.cn
mailto:swgao@csrc.ac.cn
mailto:dbzhang@bnu.edu.cn
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab6da1&domain=pdf&date_stamp=2020-02-04
https://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/ab6da1&domain=pdf&date_stamp=2020-02-04
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

10P Publishing

New J. Phys. 22 (2020) 023004 ZLiuetal

Uy (\, n) = \/_Z eq(n|q)expligh — iw(g)t], (1)

where, u, (), 1) is the displacement of atom n in A replica of the unit cell along the adirection. —7 < g < 7is
the wave vector along the axial direction. M,, is mass of atom n. N, indicates the size of supercell. w(q) is g-
dependent angular frequency. e, (11]q) is the normal mode of lattice wave. The motion equations are then
obtained as

Mn ﬁa(A> I’l) = - Z q)(yx?(An) )\/7’!/) ng(A/, 1’1/), (2)

PXRTUNG]
where ®,3(An, A'n’) is the harmonic force constant indicating the force on atom n in A" unit cell alongthe o
direction induced by moving atom 7’ in A" unit cell along the 3 direction. Note that , 3 = x, y, z. Substituting
equation (1) into (2) with 3, exp[i(q" — q) A\] = No &4, one obtains
wi(@)ea(nlq) = Y Dag(nr'|q)es(n’|q), 3
n',3

where

P, 5(0n, N'n')exp(ig\), 4)

Daﬂ(lflﬂ,M) \/—/Z

is the dynamical matrix with a dimension of 3Ny x 3Nj. The angular frequency w(q) and vibration mode
e, (n|q) are both obtained by diagonalizing

”Dalf(nnllq) - wz(q)(saﬂénn’”:()- (5)

From the above theoretical framework, one sees that in phonon calculations, most computational efforts are
devoted to the determination of the harmonic force constant ¢, 5(An, A'n'), and solving equation (5). Fora
predictive description of lattice vibration, ®,3(An, A'n’) is desired to be determined quantum mechanically.
This means that one needs to calculate electronic structure by solving the eigenvalue problem with a supercell of
Ny Nq atoms for each of the 3Ny Ny, degrees of freedoms. Therefore, the computational expense of phonon
calculation is directly related to the size of unit cell. For a system with inhomogeneous strains, such as twisting
and bending, the unit cell has a size (INp) same with the size of the distorted motif. As a consequence, phonon
calculation of such a large number of atoms with accurate quantum mechanical approach is not within the reach
given the state-of-art algorithm.

In this work, we show that the obstacle can be overcome by adopting a generalization of the Born—von
Karman boundary conditions. Using wurtzite ZnO NWs as a representative, we present all the theoretical details
and validate the theory by showing the equivalence between the phonon dispersions obtained with the new
approach and that obtained with standard method. To showcase the applicability, we study the responses of
phonon spectra of ZnO NWs to twisting deformation, which has never been discussed before. Our calculation
reveals that phonon modes at different locations along the NW radial dimension exhibit distinct responses to
twist. For modes at the NW shell, they usually adopt relatively large thermal shifts; On the contrary, for modes
around the NW core, the thermal shifts are small, indeed. We also find that the modes polarized along the NW
axis is more sensitive to twisting than those polarized in the NW radial dimension. In addition, twisting also
induces significant reduction in group velocities for a large portion of optical modes, hinting a decrease of the
lattice thermal conductivity.

2. Method

For a quasi-one dimensional structure, twisting deformation breaks the translational symmetry which the
standard phonon calculation approaches rely on. Here we instead make recourse of screw and rotational
symmetries to address the problem. As an illustration, we present a structural description of ZnO NWs by
exploring the screw and rotational symmetries, and with this, we establish the framework for the phonon
calculation.

2.1.Structure of ZnO NWs

We consider wurtzite ZnO NWs grown along [0001] direction with a translation vector T, from which a 48-atom
translation unit cell can be identified, see figure 1(a). Besides translation, the NWs also has a three-fold rotational
symmetry with a @, = 120° rotational angle, figure 1(a) and a screw symmetry, where the screw vector

S = (Tj|6,) with a translation |Tj| = |T|/2 and arotation 6, = 60°, figure 1(b). In this way, the NWs can be
alternatively described with a primitive motif (heavy-colored atoms in figure 1(a)) containing only 8 atoms using
these symmetry components
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Figure 1. (a) Top view (left) and side view (right) for a translational unit cell of a wurtzite ZnO NW containing 48 atoms. The NW has
athree-fold rotational symmetry. The 8 atoms in heavy colors constitute the primitive motif considering both screw and rotational
symmetries. The balls in gray and red colors denote zinc and oxygen atoms, respectively. (b) Side view of ZnO NW showing the screw
vector S = (Tj|6;) with 6, = 60°. T = 2T, is translation vector.

Xoour = RRX, 00 + N, (6)

where, X,, (0,0) denotes the positions of atoms inside the primitive motif. R; = R;(6,) is an rotation around the
[0001] axis for the angle 6, and R, = R,(6,) is an rotation around the [0001] axis for the angle 6,. A; and \, are
both integers. X,, (), ), denotes the positions of atoms inside the replica of the primitive motif, indexed by (A,

)\2)-

2.2.Phonon calculation

To simplify the eigenvalue problem of phonon, it is highly desirable to fully consider the symmetries explored
above. In one dimension, screw and rotation both around the same axis commute with each other, or
equivalently, share the same eigenfunctions [28]. The screw S has an eigenvalue of exp(i§) by imposing the
helical boundary conditions, and rotation R has an eigenvalue of exp(ilf,) by imposing the cyclic boundary
conditions. Note that § is the helical quantum number with —7 < § < 7 and /is rotational quantum number
with! = 0,...,27/60, — 1. This way, we have two good quantum numbers, 4§ and / to label a phonon state and
the atomic displacement due to lattice vibration is now [29-36]

1

Ua (A, Mgy 1) = WZ[; Rap(Q)eg(nlghexpli(@h
+ a0y — iw(@ht], ()

where R, gis the rotational matrix elements around the [0001] axis with a rotational angle of 2 = A;6; + A0,
w(ql) is angular frequency and eg(11]4]) is the eigenvector indicating the vibration of atom n along (3 direction.
25 Rap (€ es(n|ql) is the symmetry-adapted vector of normal mode (4, /). Accordingly, the equation of motion
reads

Mnaa'()\l) )\2: 71) = _Z)\{,)\é,n’,ﬂ q)ozﬁ()\lAZn) )\{)\lzn/)
X ug(\, Ay, 1), (8)

where @, 5(\ A1, \|\,n') is force constant indicating the force in «v direction acting on atom 7 in the replica of
primitive motif, indexed by (A;, \,) contributed by the motion in G direction of atom 7’ in the replica of the
primitive motifindexed by (\;, \}). Substituting equation (7) into (8) gives

w(@hea(nlgh) = > Dag(nn'|gl)es(n’|gl), 9)
n',3
where
- 1
Dag(nn’lql) = WZM))\§>W (I'Q’Y(OOT’Z, )\{ )\/21’1/)
X Ry (Q)expli(@A] + IX;00)], (10)

is the dynamical matrix of normal mode (4, 1). Note that )/ = )\{ 0, + )\; Orand o, B, v =x, ¥, z.

It can be seen that the harmonic force constant, @, is the key quantity to construct the dynamical matrix.
Obtaining accurate @ needs a reliable total energy that can be obtained by carrying out quantum mechanical
calculation in general. For crystals with translational symmetry, such calculations are routine now [37, 38].
However, standard methods encounter difficulties in dealing with crystals with screw and rotational
symmetries. We indicate that this obstacle can be well overcome by a generalized Bloch scheme [39, 40] that are
formulated with these symmetry operations when solving electronic eigenvalue problem.

This way, for a given structure (NT, NR, and NW), the total energy (E,,,) is obtained by carrying out
electronic structure calculation using the generalized Bloch theorem coupled density-functional tight-binding
[41]. With this, ® is obtained as
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Figure 2. Phonon dispersions as function of wave vector q at each quantum number [ calculated with the 8-atom motif of the ZnO
NWsin figure 1.
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To ensure the convergence of the obtained ®, a supercell with sufficient large size (Ng,) is chosen and the finite
difference, equation (11), is evaluated for each atom inside the supercell.

2.3. Phonon spectrum of ZnO NWs

We now use the ZnO NWs shown in figure 1(a) as an example to demonstrate the validity and efficiency of the
new approach. Before proceeding, we note that in order to make a direct comparison with standard phonon
calculation, a new representation that explicitly accounts for translation is adopted to describe the structure of
ZnONWs

X0 = RPRX, + AT + AT, (12)

where, T is the translation vector of ZnO NWs. Rotational matrix R; with rotation angle 6, is the rotational
component of the screw vector S, and T is the translation component. R, is rotational matrix with 6, for the
rotation operation. X,, ( x,,) is the replica of the primitive motif X,.. A; = 0,1, A, = 0, 1,2, and

—00 < A < +00. This way, repeated screw and rotation operations on the primitive motif generate the
translational unit cell, and the infinite long NW is obtained by repeatedly applying translation operation T to the
translational unit cell. Accordingly, equation (7) of the displacement should be modified slightly as [29-36]

1 .
o (A, Ay A, 1) = ﬁZﬁ Raﬁ(Q)eﬂ(”MZ) expligh
+ (M6 + A02) — iw(gDt], (13)
where, quantum number/ = 0,1, ...,5and —7 < g < 7. This way, we have performed phonon calculation of

the ZnO NWs with the 8-atom motif. Figure 2 plots the obtained phonon dispersions as function of wave vector
qateach quantum number /. We find there are four acoustic phonon branches: two degenerate branches with
smaller frequencies at/ = 1, 5 and two nondegenerate branches with larger frequencies at/ = 0. This result is in
good agreement with the previous theoretical model [29] and similar to phononic properties of CNTs [42]. In
addition, like bulk wurtzite ZnO [43], there is a large gap among optical phonon branches in phonon dispersions
of ZnO NWs, which originates from the difference in the bonding strengths.

What is interesting is that the phonon dispersion obtained here is equivalent to the one obtained with
standard phonon calculation. As a demonstration, we plot these phonon dispersions corresponding to all
allowed  on the same graph. One finds that they are identical with the one computed from the 48-atom
translational unit cell, see figure 3.

3. Exemplification: phonon properties of ZnO nanowires under twisting

We now illustrate the applicability of the new method to strain-tunable phonon properties by calculating the
phonon dispersions of the wurtzite ZnO NWs under twisting deformation. The diameter of NWs is about
2.42 nm and its primitive motif contains 192 atoms inside the translational unit cell. Twisting breaks the
translational symmetry of the NWs. Instead, we describe the twisted structure using screw and the three-fold

4
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Figure 3. Phonon dispersions of ZnO NWs in figure 1 obtained with the present approach (left) and with standard phonon calculation
(right). The colors in the left panel indicate phonon dispersions with different L.
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Figure 4. (a) Top view of twisted ZnO NWs at different twist rates: v = 0 (strain-free) [left], v = 10°/nm [middle],and v = 15°/nm
[right]. The translational unit cell contains 192 atoms. The primitive motif containing 64 atoms for our calculation is colored in blue.
Black dashed lines indicate the structures have three-fold rotational axis. Zinc and oxygen atoms are in gray and red colors,
respectively. The atomic positions indexed withn = 1,2, 3,4, 5 are on oxygen atoms. (b) Schematic sketch of the four bonds between
an oxygen atom and its neighbors in the twisted ZnO NWs (left) and the changes of bond lengths versus position 7 (right) for the NWs
in (a)[middle] with v = 10°/nm. b/ and b; (i = 1,2, 3, 4) represent bond lengths in twisted and strain-free NWs.

rotational symmetries with a primitive motif containing a third of atoms inside the translational unit cell

(64 atoms), see figure 4(a). Thus, for equation (6), we obtain 6, = 120°, || = |T| = 5.21 A, and 6, stands for
the twist angle. This way, the twist rate is obtained as v = 6, /|Tj|. For each considered twist rate, the NW is fully
relaxed using the generalized Bloch theorem [39, 40].

Due to the constrain of cyclic boundary conditions, the rotational quantum number ! = 0, 1, 2. Therefore,
we calculated phonon dispersions of twisted ZnO NWs at each [ with several twist rates . The outcomes are
summarized in figure 5(a), where figure 5(a)[left] plots the phonon dispersions for strain-free ZnO NWs
(v = 0), and figure 5(a)[middle] and [right] plot the phonon dispersions of twisted ZnO NWs with vy = 10°/
nm, andy = 15°/nm, respectively.
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Figure 5. (a) Phonon dispersions as function of wave vector § at different quantum numbers / of twisted ZnO NWs at twist rate y = 0
(strain-free) [left], ¥ = 10°/nm [middle], and v = 15°/nm [right]. (b) Group velocity v,, obtained from phonon dispersions in (a),
versus frequency.

The variations are notable. There is a reduction of the phonon gap because that some optical branches below
(above) the gap adopt upward (downward) shift, see figures 5(a) and (b). One can also see that some optical
branches of highest frequencies (~500 cm ') also shift upwards. This indicates that these relatively large thermal
shifts are from phonon modes resided at the NW shell, which is illustrated as follows. Figure 6 showcases two
phonon branches that resided around the NW core. Under twisting, the thermal shifts of these modes are only of
several wave numbers. On the contrary, for those phonon branches that resided at the NW shell as shown in

6
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Figure 6. Visualization of axial and radial components of phonon polarization vectors of modes indicated by green dots and triangles
at § = /2 of the phonon dispersions (with I = 0) of twisted ZnO NWs at different twist rates: v = 0 (strain-free) [left], v = 10°/nm
[middle],and y = 15°/nm [right].

figure 7, the thermal shifts can be large. We attribute the distinct variations of phonon modes to the twist-
induced structural distortions. Figure 4(b) shows the bond lengths between the referred atom and its four
neighbors for the atom at different atomic sites, n = 1, 2, 3,4, 5 in a twisted NW. Apparently, for the atomic sites
closer to the NW surface, the variations of bond length are more significant, indicating that the atomic structure
are significantly distorted; while for the atomic sites near the NW core, the variations of bond length are
negligible. This hints that the NW core is less distorted. Further, we also notice that the thermal shifts for phonon
modes that are polarized in the NW radial dimension, as shown in figure 7(a) are smaller than those polarized
along the NW axis, figure 7(b). This can be also understood by analyzing the structural distortion. A twisting
deformation induces an inhomogeneous shear along the NW axis [44], while has little impact on the atomic
geometry in the NW radial dimension.

Twisting also induces a significant lifting of the degeneracy, for example, for these phonon branches with
frequencies between 100 and 150 cm ™", figure 5(a). Such disturbance also causes a flattening of the phonon
branches, giving rise to a reduction in group velocities, figure 5(b). We note that twisting may also induce a
reduction in phonon lifetime because that the twist-induced structural distortion may introduce more phonon-
phonon scattering [45, 46]. Overall, these aspects suggest a decrease of the lattice thermal conductivity of the NW
according to Peierls-Boltzmann theory [47-49].

4. Conclusions

To summarize, we present the phonon calculation within harmonic approximation of deformed quasi-one
dimensional nanostructures with inhomogeneous strain pattern by using twisted ZnO NWs as an example.
Because twisting breaks the translational symmetry of NWs, standard phonon calculation approaches encounter
difficulty. Here, we instead make recourse of screw symmetry and rotational symmetry. We demonstrate the
validity of the present approach by carrying out equivalent calculations of phonon dispersion using this
approach and standard phonon approach. We showcase the applicability of this special approach by performing
a case study of the phonon properties of ZnO NWs under twisting. Our calculations reveal that twisting has
more influence on the phonon modes resided in the NW shell than those resided around the NW core. For
phonon at the NW shell, the modes polarized along the NW axis is more sensitive to twisting than those
polarized in the NW radial dimension. These variations can be attributed to the twist-induced structural

7
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Figure 7. Visualization of axial and radial components of phonon polarization vectors of modes indicated by (a) green dots and (b)
green triangles at § = /2 of the phonon dispersions (with I = 0) of twisted ZnO NWs at different twist rates: ¥ = 0 (strain-free)
[left], ¥ = 10°/nm [middle],and vy = 15°/nm [right].

distortion. Twisting also induces significant reduction in group velocities for a large portion of optical modes
that should be resided in the NW shell. Therefore, for a twisted ZnO NW, although the twist deformation has
little impact on the NW core, it does cause a significant reduction in the lattice thermal conductivity of the NW
shell. This hints that the heat transport along the axis of a twisted ZnO NW is better confined around the
ultrathin NW core. The present approach may find important applications in the area of the strain-tunable
phononic and thermal properties of nanomaterials.
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