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Abstract
The issue of the non-fragile - ¥2L L synchronization for chaotic time-delay neural networks
subject to semi-Markovian jump parameters is addressed in this paper. Unlike the Markovian
jump process, the sojourn time of the semi-Markovian jump process allows to be non-
exponential distributed and the transition rate allows to be time-varying. By utilizing the
discretized Lyapunov–Krasovskii functional method and introducing two free-weighting
matrices, a sufficient condition is proposed to ensure the synchronization error system to be
stochastically stable with an - ¥2L L performance index. Then, by means of a matrix
congruence transformation and some inequality techniques, an approach to the non-fragile

- ¥2L L controller design is developed. Finally, two illustrative examples are employed to
show the usefulness of the proposed results.

Keywords: chaos, time delay, semi-Markovian process, non-fragile control, synchronization,
neural networks
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1. Introduction

Over the past few decades, neural networks (NNs) have attracted
considerable research interest due to their applications in various
fields including target tracking [1], trajectory prediction [2],
secure communication [3], and signal classification [4]. These
applications are closely linked to the dynamic behavior of NNs.
For example, it has been recognized that a NN is suitable for
secure communication via the well-known master-slave

synchronization configuration provided it possesses a chaotic
behavior. Time delays are often unavoidable in both biological
and artificial NNs and shown to be able to make a chaotic NN
yield more complex strange chaotic attractors. Therefore, a great
deal of efforts have been dedicated to the synchronization issue
of chaotic time-delay NNs. In [5], by designing an adaptive
controller, the global asymptotic synchronization of two classes
of different chaotic time-delay NNs was guaranteed. Time-delay
NNs with mismatched parameters were researched in [6], where
an integral sliding mode control method was developed for
ensuring the global asymptotic synchronization. When the
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burden of network bandwidth is considered, it was shown in [7]
that the exponential synchronization of chaotic time-delay NNs
can be reached by using a hybrid event trigger approach. For
recent developments on the subject of synchronization for
chaotic time-delay NNs, one can refer to [8–10].

In engineering practice, the NNs may show the behavior
of finite-state expressions, which is called as the information
latching [11]. In this circumstance, the network states are able
to jump between different modes in light of a Markov chain
and the NN can be modeled as a switched system with
Markovian jump parameters. During the past twenty years,
many researchers are committed to Markovian jump NNs and a
large number of achievements have been made [12–18]. In
most literature, however, the sojourn time between the jumping
subsystems is required to obey the exponential distribution,
which is quite restrictive. Some attention has therefore been
paid to the semi-Markovian jump process, in which the sojourn
time allows to be non-exponential distributed and the transition
rate allows to be time-varying and, thus, it is more general than
the usual Markovian jump process. Very recently, the syn-
chronization problem of time-delay NNs with semi-Markovian
jump parameters has been investigated in [19–22], where the
Lyapunov theory and several integral inequality techniques
were used to develop sufficient conditions for the stochastic
synchronization, passivity-based synchronization, and the
event-triggered synchronization, respectively.

Although substantial progress has been achieved in the
study of synchronization for time-delay NNs with semi-Mar-
kovian jump parameters, there are some basic issues need to be
addressed further. An important observation is that [19–22] did
not take into account the external interference, which, in rea-
lity, is generally inevitable in the environment of neurons and
might exert a great influence on the synchronization dynamics
of the NNs. This leads to the need to introduce the - ¥2L L
control approach, which aims at ensuring that the peak value of
the controlled output to be within a certain range, and its
effectiveness has been well established in the control com-
munity for various disturbance-affected systems; see, e.g.
[23–25]. On the other hand, it is observed that the existing
controller designs were not concerned with the possibility of
gain perturbations. In the engineering implementation of a
control system, however, the controller usually has parameter
inaccuracy to some degree as a result of the digital rounding
failures, the demand for extra tuning of parameters, the
imprecision of analog-digital conversions, etc [26]. As pointed
out in [27], even a relatively slight controller gain perturbation
can severely reduce the control effect. In view of the above
findings, a question arises: how to determine non-fragile

- ¥2L L controllers to ensure the synchronization for chaotic
time-delay NNs with semi-Markovian jump parameters?

In this paper, we try to solve such an issue within the
master-slave synchronization framework. The slave system is
assumed to be affected by external disturbances and the con-
troller gain is allowed to be subject to norm-bounded pertur-
bations. The main contributions are as follows: (1) The issue
of non-fragile - ¥2L L synchronization for chaotic time-
delay NNs with semi-Markovian jump parameters is investi-
gated for the first time; (2) By utilizing the discretized

Lyapunov–Krasovskii functional (LKF) method and introdu-
cing suitable free-weighting matrices, a sufficient condition is
proposed for ensuring the synchronization error system to be
stochastically stable with an - ¥2L L performance index γ;
(3) By means of a matrix congruence transformation as well as
some inequality techniques, an approach is developed for the
non-fragile design. It is shown that the required controller gain
can be obtained via the feasible solution of a number of linear
matrix inequities (LMIs), which are computationally tractable.
The rest of this paper is organized as follows: in section 2, we
give the models of master and slave chaotic time-delay NNs
and prepare necessary preliminaries. In section 3, we propose
our analysis and synthesis results for the non-fragile - ¥2L L
synchronization. In section 4, we offer two numerical examples
to show the usefulness of the results obtained. In the last
section, we summarize our conclusions.

Notation: In the paper, the notations used is listed in table 1.

2. Preliminaries

Consider the non-fragile - ¥2L L synchronization of chaotic
time-delay NNs with semi-Markovian jump parameters, where
the master system is given by the following chaotic NN model:

V V V

V

= - + + -
+

=

 

1

x t t x t t g x t B t g x t
I t

z t L t x t
,

,

1 2
⎧
⎨⎪
⎩⎪
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˙ ( ) ( ( )) ( ) ( ( )) ˆ ( ( )) ( ( )) ˆ ( ( ))
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ˆ ( ) ( ( )) ( )

where = Î x t x t x t x t, , , ,T
i
T

n
T T n

1 1
1( ) [ ( ) ( ) ( )]  with xi(t)

being the state variable of the ith neuron at time t; V = t( ( ))
V V Va t a t a tdiag , , , ,i n1 1{ ( ( )) ( ( )) ( ( ))}  with ai(ς(t)) being the

rate at which the ith neuron resets the potential to the rest state
in isolation when isolated from the system and external input;

V t1( ( )) and V t2( ( )) are connection weight matrices of the
NN; = Î g x t g x t g x t, ,T

n
T

n
T n

1 1
1 1

1ˆ ( ( )) [ ˆ ( ( )) ˆ ( ( ))] stands for

activation function of neurons; = Î I t I t I t, ,T
n
T T n

1 1
1( ) [ ( ) ( )]

and Î z t n1ˆ ( ) represent the external input and the controlled
output, respectively; V Î ´L t n n1 1( ( )) is a real constant matrix;
ñ stands for the time delay. Note that the time delay considered
herein is supposed to be time-invariant for brevity. For systems

Table 1. List of notations.

Notations Representations

XT The transpose of matrix X
Xsym{ } X+XT

I (respectively, 0) A unity (respectively, zero) matrix with
appropriate dimension

diag{ } A diagonal matrix
* A symmetric block
l Xmin ( ) The smallest eigenvalue of matrix X
{·} The mathematical expectation
X>0 (respec-
tively, X�0)

Matrix X is symmetric positive definite
(respectively, semi-definite)

n1 The n1-dimensional Euclidean space
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with time-varying delay, one might refer to [28–31]. In (1), we
use V t t, 0( ( ) ) to represent a continuous-time and discrete-
state semi-Markovian process, which takes values in a fixed set
G = ¼1, 2, ,( ). The transition probability matrix kY =( )
p kmn{ ( )} is given as

V k V
p k k k
p k k k

+ = =

=
+ ¹

+ + =

t n t m

o m n
o m n

Pr

, ,
1 , ,

2mn

mm

⎧⎨⎩

{ ( ) ∣ ( ) }
( ) ( )

( ) ( ) ( )

in which κ>0 represents the sojourn time, =k
k
klim o

0( )( )

0, πmn(κ )�0 stands for the transition rate from mode m at
time t to mode n at time t+κ for ¹m n , and p kmm ( )
= p k-å ÎG ¹n m n mn, ( ).

Remark 1. Unlike the Markovian jump systems, the sojourn
time of the semi-Markovian jump process allows to be non-
exponential distributed and the transition rate allows for changes
over time. Consequently, the NN model with semi-Markovian
jump parameters considered in this paper is more general.

In this paper, the slave system is given by the following
perturbed NN model

V V V
V w

V

= - + + -
+ + +

=
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3
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where Î y t n1( ) , and Î z t n1( ) are the state, the control
input, and the output, respectively; V Î ´D t n n1 1( ( )) is a real
constant matrix; w Î t m( ) is external disturbance belongs to

¥ 0,2[ ) [32–34].
Considering the possible gain perturbations, the con-

troller to be used is given as

V V= + D -u t K t K t y t x t , 4( ) ( ( ( )) ( ( )))( ( ) ( )) ( )

where K(ς (t)) represents a real constant matrix denoting the
gain,ΔK(ς (t)) denotes the gain uncertainty, which is required
to meet the following assumption:

Assumption 1. [35–37] Gain perturbationDKm possesses the
norm-bounded form as

D =K H E , 5m m mF ( )

where Î Gm H, m and Em are certain real constant matrices,
and F stands for an uncertain matrix meeting  ITF F .

Define = - = -e t y t x t z t z t z t,( ) ( ) ( ) ( ) ( ) ˆ ( ) . The fol-
lowing synchronization error system can be acquired:
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V w V V
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where = -g e g y g x .( (·)) ˆ ( (·)) ˆ ( (·))
For the convenience of the notation, set V = t( ( ))

m, V = t m1 1( ( )) , V = t m2 2( ( )) , V =D t Dm( ( )) , V +K t( ( ))
VD = + DK t K Km m( ( )) , and L(ς (t))=Lm. Then system (6)

is able to be rewritten as
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For the derivation of our main results, let us prepare the
following Assumption, Definition, and Lemma:

Assumption 2. [38] The activation function
a ag x tˆ ( ( )) is

continuous and bounded, and meets the form as follows

u u a
-

-
= ¼a a

- +a a g s g s

s s
n, 1, 2, , , 8

2 1

2 1
1

^ ^( ) ( )
( )

where s2, Îs R1 , ¹s s ,2 1 and ua
- and ua

+ are known scalars.
The value of scalars u u+a a

- + and u u-a a
- + can be set as zero,

negative or positive.
Note that the condition of the activation function in

Assumption 2 is more general than the Lipschitz condition in
[39–42]. In order to simplify the sign, we set

f u u u u u u

f
u u u u u u

= ¼

=
+ +

¼
+

- + - + - + -

+
+ - + - + -

diag , , , ,

diag
2

,
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n n
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⎪ ⎪
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⎫⎬
⎭

{ }

Definition 1. [43] System (7) is stochastically stable with an
- ¥2L L performance index g > 0 if the following condi-

tions hold:

(1) It is stochastically stable with w =t 0;( )
(2) For any w Î ¥t 0,2( ) [ ),

òg w w
¥

 


z t z t t t tsup d 9
t

T T

0

2

0
{( ( ) ( )} ( ) ( ) ( )

is satisfied under the zero initial condition.

Lemma 1. [44] Given a symmetric matrix I, matrices, and
 with compatible dimensions, then

+ D + D <    0T T TI

holds for any matrix D with D D  IT if there exists a scalar
b > 0 satisfying

b b+ + <-   0.T T1I

At the end of this section, let us clearly state the issue of
non-fragile - ¥2L L synchronization to be investigated: for
the master-slave chaotic systems in (1) and (3), determine the
non-fragile controller in (4) ensuring the synchronization
error system in (7) to be stochastically stable with a pre-
defined - ¥2L L performance index γ>0.
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3. Main results

In this section, we first give a sufficient condition for the
- ¥2L L synchronization analysis of system (7).

Theorem 1. Suppose Assumption 2 holds. For a given scalar
g > 0 and a positive integer N , set = h N . Then system
(7) is stochastically stable with - ¥2L L performance index
g , if there are matrices >P 0m for each Î G L Lm Q, , , i1 2 ˜ ,
diagonal matrices > >M M0, 01 2 , and symmetric matrices

>S 0ĩ , Rij˜ = ¼i j N, 0, 1, ,( ) such that the following matrix
inequalities hold:
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with kfm ( ) being the probability density function of sojourn
time k.
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where σ is a small positive number. For ς (t)=m, one can write
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( ) ( )

( ) ( )

L

where χ denotes the time elapsed when the system remains at
mode m from the last jump; Gm(t) denotes the cumulative
distribution function of the sojourn time; qmn stands for the
probability intensity of the system jumping from mode m to
mode n. Following the same line as the proof of the analysis
result in [46], one gets

å p= +
ÎG

V e t m t

t P e t t P e t

, ,

e sym e . 14T
m

n
mn

T
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1( ( ) )
˙ ( ) { } ( ) ˜ ( ) ( ) ( )

L

In addition, it can be acquired that
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L

ò z z z z

= - - - -

- + +
-

  



V e t t

t S e t t S e t

t S e t

,

e 0 e

e d . 17

T T

T

4

0

( ( ) )
( ) ˜ ( ) ( ) ( ) ˜ ( ) ( )

( ) ˜ ( ) ( ) ( )

L



Divide - , 0[ ] into N equal parts d d = ¼- i N, 1, 2, ,i i 1[ ]( )
of length = h N , where d = - hi .i Also, divide - ´ , 0[ ]
- , 0[ ] into N×N small squares d d d d´- -, ,i i j j1 1[ ] [ ]

= ¼i j N, 1, 2, ,( ). Then, divide further each square into two
triangles. Matrix zQ̃( ) and zS̃ ( ) are set to be linear within each
d d -,i i 1[ ], and z hR ,˜( ) is set to be linear with each triangle. Then,
using the linear interpolation formula, it can be written that:

d e e e d e
e e d e d

e e e

e e e

+ = - + +

= - + + +

=
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1
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, 1, 1 1,

, 1, 1 , 1

⎪
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⎨
⎩

˜ ( ) ( ) ˜ ˜ ˜ ( )
( ) ˜ ˜ ˜ ( )

( ) ˜ ˜ ( ) ˜

( ) ˜ ˜ ( ) ˜

where e = ¼    i j N0 1, 0 1 , 1, , .( ) Therefore, the
LKF in (13) is entirely relying on Pm, Qi

˜ , Sĩ and Rij˜ ,
= ¼i j N, 1, 2, , .( ) Note that VV e t t t, ,( ( ) ( ) ) m e t1

2( )  is
satisfied with m l Pmin 1( ) if >S 0ĩ = ¼i N1, 2, ,( ) and (11)
hold true. In this regard, for d z d d h d< < < <- -,i i j j1 1, one
can write [47]:

z z= - = -- -Q
h

Q Q S
h

S S
1

,
1

,i i i i1 1˜̇ ( ) ( ˜ ˜ ) ˜̇ ( ) ( ˜ ˜ )

z h z h+ = -z h - -R R
h

R R, ,
1

.i j i j1, 1 ,˜ ( ) ˜ ( ) ( ˜ ˜ )

Then, from (13) and (14)–(17) one has
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ò
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i
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d
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where

å

j

e d e d e

p
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S =
S S S

S
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S = S = -
ÎG
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Set x e j e= + -t t F F, 1 2T T s a( ) ( )[ ( ) ]. Then for any matrix
U>0 satisfying

-
-

>
U I

I S
0,

d

⎡
⎣⎢

⎤
⎦⎥¯

by using Jensen inequality one can write

ò
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( ) ( )

( ) ( )

( )

L

in which x e x e= t t t, , e ,T T T¯ ( ) [ ( ) ¯ ( )] . By simple calculation,
one is able to get that
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Substituting the above two equalities into (18) gives rise to
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By Assumption 2 one has
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Furthermore, by (7), for any compatible free-weighting matrices
Λ1 and Λ2, one can write

w

L + L - -
+ + -
+ + + D =


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Now, with the help of (19)–(21 ), it is easy to get
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where

òj j e e j

j w

=

= -

F =
S + S

- -
S



t t t t

t g e t g e t t

F UF F

R S

e , d ,

,

1

3
0

.

T T T
T

T T T T

a aT s

d d

0

1

2

1 2

3

*
* *

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

˜ ( ) ( ) ¯ ( ) ˆ ( )

ˆ ( ) ( ( )) ( ( )) ( )

¯ ¯

By Schur’s complement, (12) ensures Φ2<0, and thus

g w w- <V e t m t t t, , 0 22T2( ( ) ) ( ) ( ) ( )L

holds for any j ¹t 0.T˜ ( )

When w =t 0( ) , one obtains from (22) that
<E V e t m t, , 0{ ( ( ) )}L , which means that system (7) is

stochastically stable [48].
Next, one concentrates on the - ¥2L L performance of

system (7) with w ¹t 0( ) . Denote

òg w w= -J z t z t t t td .T
t

T2

0
{ ( ) ( )} ( ) ( )

Then, under the zero initial condition, one has

ò

ò
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From (10) and (22) it is easy to see that J�0 for any t>0,
which means (9). That is, synchronization error system (7)
possesses - ¥2L L performance index γ. The proof is
completed.

Remark 2. Theorem 1 gives a criterion for the stochastic
stability and - ¥2L L performance of system (7). It can be
seen that the condition depends on the number of segments
(i.e. N ), which specifies the degree of discretization. The
change of N can give rise to different consequences. In
general, the larger N is selected, the less conservative result
can be obtained.

When there are no parameter switches and controllers,
system (7) reduces to

w= - + + - +

=

  e t e t g e t g e t D t

z t Le t .

23

1 2⎪

⎪

⎧
⎨
⎩

˙( ) ( ) ( ( )) ( ( )) ( )

( ) ( )
( )

Then, we can propose the following result.

Corollary 1. Suppose Assumption 2 holds. For a given scalar
g > 0 and a positive integer N , set = h N . Then system
(23) is asymptotically stable with - ¥2L L performance
index g , if there are matrices > L LP Q0, , , i1 2 ˜ , diagonal
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matrices > >M M0, 01 2 , and symmetric matrices >S 0,ĩ

Rij˜ ( = ¼i j N, 0, 1, , ) such that
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The other symbols are the same as those in Theorem 1.

Remark 3. In Corollary 1, a novel criterion for the - ¥2L L
synchronization analysis of chaotic time-delay NNs is
proposed. As shall be shown in Example 2, the criterion is
less conservative compared with that in [49].

In the following, our attention is paid on solving of the
non-fragile - ¥2L L synchronization issue. An approach for
the required non-fragile - ¥2L L control design is given as
follows:

Theorem 2. Suppose Assumptions 1 and 2 hold. For given
scalars γ>0, l>0, and positive integer N, set = h N .
Then the non-fragile - ¥2L L synchronization issue is
solvable, if, there are matrices > ¡P 0,m m1 for each

Î G L >m Q, 0, i1 ˜ , diagonal matrices M1 > 0 > 0, M2

> 0, symmetric matrices >S 0ĩ , Rij˜ (i, j=0,1, K,N), and
scalar b > 0 such that conditions (10), (11) and the following
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The other symbols are the same as those in Theorem 1. In this
case, the gains of non-fragile controller (4) is able to be given
by = L ¡-Km m1

1
1 Î Gm( ).

Proof. Set

= L L =  K, 0, , 0, 0, 0, 0 , , 0, 0, 0, 0, 0, 0, 0 .T T T
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On the other hand, let us set

¡ = L L = LK l, ,m m1 1 2 1

and pre- and post-multiple the obtained matrix by
L-I I I I I I I I Idiag , , , , , , , , , 1

1{ } and its transpose. Then,
according to the inequality

b b-L L - L - L-  ,T T
1

1
1 1 1

one can obtain (28) from (27). In this way, the proof is
completed.

Remark 4. With the aid of a matrix congruence transforma-
tion and some inequality techniques, an approach to the
design of non-fragile controller (4) for ensuring synchroniza-
tion error system (7) to be stochastically stable with an

- ¥2L L performance index γ is developed in Theorem 2. It
is shown that the desired control gains can be obtained via
solving a number of LMIs, which are computationally
tractable via the well-known software MATLAB.

4. Numerical example

In this section, two numerical examples are given to
demonstrate the usefulness of the proposed analysis and
design results, respectively.

Example 1. Consider system (1) with the following
parameters [49]:

= = = -
-

=
-

   L2.2 0
0 3.5

, 0, 1 0.4
0 0.1

, 1 1
0 1

.

29

1 2
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )

Take ñ=1. It is found that - ¥2L L stability criterion in
[49] is not applicable for γ<1.26. However, when setting
N=1, it can be verified the LMIs in (24)–(26) possess
feasible solutions for γ>0.79, which means that system (23)
is asymptotically stable with minimum allowable - ¥2L L
performance index γmin=0.79. Table 2 gives the minimum
allowable - ¥2L L performance index γ for different N. As
can be seen from the table, when N increases, the results
obtained become less conservative. A similar phenomenon is
shown in table 3.

Example 2. The parameters of the NNs in (1) and (3), and the
controller in (4) are chosen as follows:

w= =
+

= =g x
x
x

t
e

I t
tanh
tanh

, 1
1

1

1
, 0, 1;

t
1

2
^

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( )

( ) ( ) · ( )

Mode 1:

= = -
-

= - -
- -

= -
-

= -

=
-

=

 



D H

E L

1 0
0 1

, 2.0 0.1
5.0 2.0

,

1.5 0.1
0.2 1.5

,

0.2 0.1
0.1 0.2

, 0.1 0
0 0.3

,

0.2 0
0 0.1

, 0.1 0
0 0.1

;

1 11

21

1 1

1 1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Mode 2:

= = -
-

= - -
- -

= -
-

=

= = -
-

 



D H

E L

1 0
0 1

, 2.0 0.1
5.0 4.5

,

1.5 0.1
0.2 4.0

,

0.21 0.15
0.1 0.19

, 0.1 0
0 0.2

,

0.2 0
0 0.1

, 0.2 0.3
0.3 0.2

.

2 12

22

2 2

2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

According to the chosen activation function, one can get

f f= =- +0 0
0 0

, 0.5 0
0 0.5

. 30
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ ( )

The probability density function of the sojourn time is
described by

k v J k J k J k= - >v v-f exp , 0.m
1( ) ( )( ) ( ( ) )/ / /

And the transition rate functions rely on the Weibull
distribution with (ϑ=1, ϖ=4) for m = 1 and
(ϑ=1,ϖ=3) for m = 2, respectively. Then the transition
probability matrix of ς(t) is calculated as follows:

k
q k q k
q k q k

k k
k k

Y = = -
-

4 4
3 3

.11 12

21 22

3 3

2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

( ) ( )

Consequently, the mathematical expectation of matrix Ψ(κ )
can be obtained

kY = -
-

 3.6763 3.6763
2.7082 2.7082

. 31
⎡
⎣⎢

⎤
⎦⎥{ ( )} ( )

Then, the mode transitions are shown in figure 1. Under the
mode change in figure 1, the chaotic attractor of the master
system with initial value = - - Î -x s s3; 0.4 , 0T( ) [ ] ( [ ])
is described in figure 2.

Next, we show the usefulness of the controller designed.
Choose γ=0.1 and l=1. Then, solving the LMIs in (10),
(11), and (27), the corresponding controller gains can be

Table 2. Minimum allowable - ¥2L L performance index γ for
different N.

N 1 3 5 7 9

γmin 0.79 0.78 0.76 0.74 0.71

Table 3. Maximum allowable time-delay bound ñ for different N.

N 1 2 3 4 5

max 1.17 1.29 1.39 1.50 1.66
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obtained as follows:

= -
-

= -
-

K

K

14.4506 8.2655
9.4769 48.5009

,

16.9373 9.2686
10.3032 56.6638

.

1

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Then we divide the time-delay interval - , 0[ ] into 3 seg-
ments; that is, N=3. Set the initial conditions of the master-
slave systems to be = - - Î -x s s3; 0.4 , 0T( ) [ ] ( [ ]) and

= - Î -y s s8; 2 , 0T( ) [ ] ( [ ]), respectively. Then, the state
evolution of the master-slave systems and that of the syn-
chronization error system are depicted in figures 3 and 4,
respectively. It can be found that, under the effect of the non-
fragile control, the state trajectories of the master-slave sys-
tems tend to coincide rapidly as time goes, which means
that the synchronization is achieved. The plot of g =t( )

ò w w
¥

 z t z t t t tdT T
0

{( ( ) ( )} ( ) ( ) versus time under the zero

initial condition is shown in figure 5, from which one can see

Figure 1. Mode transitions.

Figure 2. Phase-plane plot of the master system.

Figure 3. State trajectories of the master-slave systems.

Figure 4. State trajectories of the synchronization error system.
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that g = ´ -tsup 6.5981 10t
4( ) . It is less than the pre-

scribed - ¥2L L performance index γ (i.e. 0.1).

5. Conclusions

The issue of non-fragile - ¥2L L synchronization for chaotic
NNs with semi-Markovian jump parameters has been addres-
sed in this paper. By utilizing the discretized LKF method and
introducing two free-weighting matrices, a sufficient condition
has been obtained to guarantee the stochastic stability and

- ¥2L L performance of the error system (7). Then, by means
of the matrix congruence transformation and some inequality
techniques, an approach to the non-fragile - ¥2L L design
has been developed for which the desired controller can be
acquired by the feasible solution of several LMIs. In the end,
two illustrative examples have been employed to show the
usefulness of the proposed analysis and design results.
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