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Abstract
In this paper, a SIRS epidemic model with nonlinear incidence rate, saturated treatment and two
time delays is investigated. Firstly, by using the method of regeneration matrix, we have
determined the basic regeneration number R0 and demonstrated the existence of the positive
equilibrium point. The permanence of the SIRS epidemic model is obtained by mathematical
analysis. Moreover, by selecting time delay as the bifurcation parameter, we discuss the local
asymptotic stability of the positive equilibrium point and the existence of Hopf bifurcation for
six different situations. Afterwards, to minimize the spread of infectious diseases, we introduce
an optimal control technique by the Pontryagin’s maximum principle. Finally, we verify the
correctness of theoretical analysis through numerical simulations.
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1. Introduction

To prevent and control the spread of disease, many mathe-
maticians devote themselves to studying models of various
infectious diseases. A lot of mathematical models of infec-
tious diseases have been proposed. It can be found that many
factors influence the dynamic behavior of the epidemic
model, for example, incidence rate, recovery rate and so on.
Control strategy also plays an important role in epidemic
models. Thus, it is very necessary to investigate these factors.

There are many studies on incidence rate and treatment
function in infectious disease models [1–6]. In [7], Wang et al
investigated a SIR infectious disease model with constant
treatment function and bilinear incidence rate, and presented
the evidences of choosing a bilinear incidence rate to prove
the existence of Hopf bifurcation. In [8], a SIR epidemic
model with saturated treatment function was studied.

According to the article [9], Liu introduced the SIRS infec-
tious disease model with nonlinear incidence function, and
proved the existence of Hopf bifurcation. Moreover, in order
to give a better description of population growth under
restricted conditions, Verhulst [10] proposed a logistic
equation which was very appropriate to describe changes in
the population of one animal species. In fact, the susceptible
population in the study of infectious diseases is always con-
sidered to be subject to Logistic growth model according to
the former literatures [11–17]. For example, Xu [13] gave a
simple criterion for the existence of Hopf bifurcation for an
SEIR epidemiological model with logistic growth. By intro-
ducing the saturated treatment and logistic growth rate into an
SIR epidemic model, Teng [15] obtained the conditions of the
backward bifurcation. Song [16] and Jin [17], by constructing
reaction-diffusion models of infectious diseases with logistic
growth, analyzed the pattern dynamics of infectious disease
models. Inspired by the above articles, we will investigate a
SIRS epidemic model with a saturated incidence rate and a
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saturated treatment function which is in the following
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where S(t) denotes the density of the susceptible individual, I(t)
represents the density of the infected individual and R(t)
denotes the density of the recovered individual at time t. We
assume that the susceptible individuals follow Logistic growth
model. Logistic model describes the natural growth process of
species, which is a comprehensive reflection of species’ birth
and death [15]. Thus, we’re no longer looking at the natural
mortality of the susceptible individuals alone in system (1.1).
β1, β2, α1, α2, r, k, μ, ε, σ are positive constant. β1 is the
incidence rate between susceptible individual and infected
individual, β2 represents the recovery rate, α1 and α2 are the
half saturation and the coefficient respectively, r represents the
intrinsic growth rate, k represents the carrying capacity for S(t),
μ and ε denote natural mortality rate and disease mortality rate
respectively, σ is the ratio that the recovered individual
becomes susceptible individual. ( ) ( )

( )
b

a+
S t I t

I t1
1

1
is more realistic than

the bilinear incidence rate which is affected by psychological
factors. ( )

( )
b
a+
I t

I t1
2

2
is a saturated treatment function, which is

limited by medical conditions and individual physical qualities.
With the development of infectious disease models,

many scholars have paid attention to the time delay infectious
disease model. Because it is closer to the reality of the pro-
blem. We find that time delay plays an important role in
infectious disease model and affects the stability of equili-
brium points. When we consider time delay in the system, the
stability of equilibrium point may change, such as from stable
to unstable [18, 19]. In recent years, more and more scholars
increase time delay factor on the epidemic models with
nonlinear incidence rate. For example, in [20], a time delay
infectious disease model with saturated incidence was stu-
died. In [21], Jin et al investigated a time delay epidemic
model of vector transmission and its global stability. Xu et al
[22] discussed the global stability of disease-free equilibrium
point and the existence conditions of local epidemic stability.
According to the article [23], Deng et al investigated a ratio-
dependent predator-prey system which exists the stage
structure and two time delays. Inspired by the above works,
we will establish a new class of time-delay SIRS infectious
diseases model based on system (1.1), which is in the fol-
lowing form
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with the initial conditions

( ) ( ) ( ) ( )q q q> > >S I R0, 0, 0, 1.3

where [ ( ) ]q t tÎ -max , , 01 2 .

Each parameter has the same meaning as the parameters
in system (1.1). When the susceptible individual is infected by
the infected individual, the symptoms of the disease are not
immediately apparent, and we still consider him (or her) to be
susceptible. Therefore, there is a time delay defined by τ1 in
the process from the susceptible to the infectious. τ2 is due to
the limited medical level in each region, the recovery process
of the disease, and the limit to the ability of each individual to
resist disease. A time delay in the process from the infectious
to the recovered is existent. In conclusion, it is reasonable to
add two time delays in this model.

In order to better prevent and reduce the spread of
infectious diseases, more and more scholars pay attention to
optimal control [24–26]. In [24], an optimal control model for
SIR infectious diseases was discussed. The existence of the
control model was proved and an optimization system was
obtained. In [27], because of the outbreak of infectious dis-
eases Ebola, Finkenstädt established a realistic stochastic
model to study its dynamic behavior and the influence of
control behavior on the model. In [28], an optimal control
method for a class of problems was proposed and its effec-
tiveness was also illustrated. Inspired by the above articles,
we will further establish a control model corresponding to
(1.2) in our paper.

The structure of this article is as follows. In section 2, the
existence of the positive equilibrium point is proved. In
section 3, we prove the persistence of system (1.2). In
section 4, by discussing the characteristic equation of the
positive equilibrium point, we prove the local asymptotic
stability of the positive equilibrium point, and give the suf-
ficient conditions for the existence of Hopf bifurcation
[29–31]. In section 5, an optimal control model of SIRS
model with time delay is presented and we obtain the optimal
control [32–34]. In section 6, we test the validity of some
theorems and the effect of some parameters on disease
spreading by numerical simulations. Finally, we have made a
brief summary of this paper.

2. The existence of a positive equilibrium point

The basic regeneration number is obtained by using the
spectral radius of the regeneration matrix, now we write
system (1.2) as

( ) ( )= -
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F x V x ,
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A simple calculation shows that
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Lemma 1. When >R 10 , system (1.2) has at least one
positive equilibrium point, denoted by ( ) =E S I R, ,* * * *
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Proof. Let the three equations of system (1.2) equal zero, we
know from the second and third equations of system (1.2) that
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Regard the left half of the above equation as f (I). When
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Therefore f (I)=0 has at least one positive root I*. In other
words, system (1.2) has at least one positive equilibrium
point
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3. Permanence

Now we will prove that system (1.2) has the permanence.

Lemma 2. For any positive solution ( ( ) ( ) ( ))S t I t R t, , of
system(1.2) with initial conditions (1.3), there exist positive
constants M M M, ,1 2 3 which satisfy:
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Proof. We assume that ( ( ) ( ) ( ))S t I t R t, , is an arbitrary
positive solution of system (1.2) with the initial conditions
(1.3). We prove lemma 2 by contradiction. Assume that when
 +¥t , we have  +¥I .
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where M is a positive constant.
Therefore, there exist nonnegative constants M1 and M3

(   M M M M M M, ,1 2 3 ) such that for any positive
solution of system (1.2) with the initial conditions (1.3), the
following conditions are always true, namely,

( ) ( )
+¥ +¥

 supS t M supR t Mlim , lim .
t t

1 3

In conclusion, lemma 2 has been proved.
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to ( ) ( )+¥ +¥ supI t M supR t Mlim , limt t2 3, therefore
x" > $T0, 0, and when t>T0, we have

x x x x- < < + - < < +M I M M R M, ,2 2 3 3

4
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and then

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

( )
( )

( )
( )

b x
a x

s x

b x
a x

b x
a x

- -
+

+ -
+ -

- -
+

+ -

= - + -
+

+ -





dS

dt
rS

S

k

M S

M
M

S r
rS

k

M S

M

S
rS

k
r

M

M

1
1

1

1
.

1 2

1 2
3

1 2

1 2

1 2

1 2

We calculated that

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( )
( )b x

a x
-

+
+ -+¥

infS t
k

r
r

M

M
lim

1
. 3.3

t

1 2

1 2

Denote

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭
( )

( )
b x
a x

= -
+

+ -
m

k

r
r

M

M
max

1
, 0 ,1

1 2

1 2

where m1 is a nonnegative constant.
Hence, we have

( ) ( )
+¥

infS t mlim . 3.4
t

1

By ( )( )
( )

m s= - +b t
a t

-
+ -

RdR

dt

I t

I t1
2 2

2 2
, when t>T0, we can get

( ) ( )
( )

( )m s
b x
a x

- + +
-

+ +
dR

dt
R

M

M1
. 3.52 2

2 2

According to the comparison principle, we can obtain
that

( ) ( )
[ ( )]( )

( )b x
a x m s

-
+ + ++¥

infR t
M

M
lim

1
. 3.6

t

2 2

2 2

Denote

( )
[ ( )]( )

b x
a x m s

=
-

+ + +
m

M

M1
,3

2 2

2 2

where m3 is a positive constant. Therefore, we have

( ) ( )
+¥

infR t mlim . 3.7
t

3

By ( )( ) ( )
( )

m e= - + -b t t
a t

b
a

- -
+ - +

IdI

dt

S t I t

I t

I

I1 1
1 1 1

1 1

2

2
, when t>T0,

we can get

⎛
⎝⎜

⎞
⎠⎟( )

( )( )
( )

( )

m e
b

a x
b x x

a x

- + +
+ -

+
- -

+ +

dI

dt M
I

M M

M

1

1
. 3.8

2

2 2

1 1 2

2 2

Like the one above, we obtain

⎛
⎝⎜

⎞
⎠⎟

( ) ( )( )
( )

( )
( )

b x x
a x

m e
b

a x

- -
+ +

´ + +
+ -

+¥

-

infI t
M M

M

M

lim
1

1
. 3.9

t

1 1 2

2 2

2

2 2

1

Denote

⎛
⎝⎜

⎞
⎠⎟

( )( )
( ) ( )

b x x
a x

m e
b

a x
=

- -
+ +

+ +
+ -

-

m
M M

M M1 1
,2

1 1 2

2 2

2

2 2

1

where m2 is a positive constant. Hence, we have

( ) ( )
+¥

infI t mlim . 3.10
t

2

In conclusion, lemma 3 is proved. Therefore, we con-
clude that system (1.2) has permanence.

4. Local stability and Hopf bifurcations

In epidemic models, Hopf bifurcation occurs when the com-
plex conjugate set of eigenvalues of a linear system becomes
a pure imaginary root at a fixed point. A point may change
from stable to unstable when there exists a Hopf bifurcation.
In this section, we study the local asymptotic stability Hopf
bifurcation of system (1.2) at the positive equilibrium
point E*.

We linearized system (1.2) at the positive equilibrium
point E*, the result is as follows

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

( )

( )

( )

t t

t

= + +

= - + + -

= - +

a S t a I t a R t

b S t a I t b I t

b I t a R t

,

,

,

4.1

dS t

dt
dI t

dt
dR t

dt

11 12 13

21 1 22 22 1

31 2 33

where

( )

( )
( )

( ) ( )

b
a

b
a

s m e
b
a

m s
b
a

b
a

b
a

= - -
+

= -
+

= = - + -
+

=- - =
+

=
+

=
+

a r
rS

k

I

I
a

S

I

a a
I

a b
I

I

b
S

I
b

I

2

1
,

1
,

,
1

,

,
1

,

1
,

1
.

11
1

1
12

1

1
2

13 22
2

2
2

33 21
1

1

22
1

1
2 31

2

2
2

* *

*

*

*

*

*

*

*

* *

The characteristic matrix of the linearized system (4.1) is

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )= +lt lt

lt

- -

-
A

a a a

b e a b e

b e a

0

0
. 4.2

11 12 13

21 22 22

31 33

1 1

2

Thus, the characteristic equation of the linearized system (4.1)
is

( )
( )( )

l l l l l+ + + + + +
+ =

lt

l t t

-

- +

m m m n n n e

qe 0, 4.3

3
1

2
2 3 1 2 3

2 1

1 2

where

=- - - = + +
=- = -
= + - = - = -

m a a a m a a a a a a
m a a a n a a b a b a
n b a a b a b n b q a b b

, ,
, ,

, , .

1 11 22 33 2 11 22 22 33 11 33

3 11 22 33 1 12 33 21 11 22 33

2 22 33 11 22 12 21 3 22 13 21 31

5
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Case 1: When both delays are zero, i.e. τ1=0, τ2=0,
the characteristic equation (4.3) becomes

( )l l l+ + + =m m m 0, 4.43
12

2
11 10

where

= + = + = + +m m n m m n m m n q, , .12 1 3 11 2 2 10 3 1

According to the Huiwitz criterion, if the following con-
dition holds: ( ) > - > >H m m m m m: 0, 0, 011 12 12 11 10 10 ,
then equation (4.4) has negative real roots. Thus, system (1.2)
is locally asymptotically stable at the positive equilibrium
point E*.

Case 2: When τ1>0, τ2=0, equation (4.3) becomes

( ) ( )
l l l

l l
+ + +
+ + + + =lt-

m m m

q n n n e 0. 4.5

3
1

2
2 3

1 2 3
2 1

We assume λ=iω1(ω1>0) is a solution of equation (4.5),
then put it in equation (4.5), separating real and imaginary
parts we obtain

⎪

⎪⎧⎨
⎩

( )

( ) ( ) ( )
( ) ( ) ( )

w w w t w w t

w w w w t w w t

- + + + - + =

- + + - + - =

4.6

m m n q n n

m n n q n

cos sin 0,

cos sin 0.

1 1
2

3 1 3 1
2

1 1 2 1 1 1

1
3

2 1 2 1 1 1 1 3 1
2

1 1

Squaring and adding the two equations of (4.6), we can get
that

( )w w w+ + + =m m m 0, 4.71
6

21 1
4

22 1
2

23

where

( ) ( )
= - - = - +

+ + - = - +

m m m n m m m m

n q n n m m n q

2 , 2

2 , .

21 1
2

2 3
2

22 1 3 2
2

1 3 2
2

23 3
2

1
2

Let w=v1 1
2, then we have

( )+ + + =v m v m v m 0. 4.81
3

21 1
2

22 1 23

Denote

( ) ( )= + + +f v v m v m v m , 4.91 1 1
3

21 1
2

22 1 23

we calculate that

( ) ( )¢ = + +f v v m v m3 2 . 4.101 1 1
2

21 1 22

Then we have the following results.

Lemma 4. (1) If ( ) ( )D = - H m m m: 0, 4 3 021 23 21
2

22 ,

or ( ) > D > = <
- + -

H m v: 0, 0, 0
m m m

22 23 1
3

3
21 21

2
22* , or

( ) ( )D > > >H m v f v: 0, 0, 0, 023 23 1 1 1* * hold, then
( )f v1 1 has no positive real roots.

(2) If ( ) ( )D > > <H m v f v: 0, 0, 0, 024 23 1 1 1* * , or
( ) <H m: 025 23 hold, then ( )f v1 1 has at least one positive
real root.

Proof. By the properties of quadratic functions, when ( )H21

holds, it’s obvious that f1(v1) is increasing on the positive
half axis.

As shown in figures 1 and 2, when (H22) is satisfied,
( )¢f v1 1 has no positive root, and ( ) >f v 01 1 on the positive half

axis is always true.
As shown in figures 3 and 4, when (H23) is satisfied,

( )¢f v1 1 has at least a positive root v1*, where v1* is the larger
root, and ( ) >f v 01 1* . Therefore ( ) >f v 01 1* on the positive
half axis is always true.

As shown in figures 5 and 6, when (H24) is satisfied,
( )¢f v1 1 has at least a positive root v1*, where v1* is the larger

root, and ( ) <f v 01 1* . Therefore ( ) >f v 01 1* has at least one
positive root on the positive half axis.

If (H25) is satisfied, in other words m23<0, then we
have f1(v1)<0. Moreover, clearly ( )  +¥f v1 1 when

 +¥v1 . Because of the continuity of the function f1(v1), it
must have a positive root on the positive half axis.

Without loss of generality, we assume that equation (4.9)
has three positive real roots v v v, ,11 12 13, then equation (4.7) also
has three real roots w w w= = =v v v, ,11 11 12 12 13 13 .

The critical value of the time delay t k
j
1 satisfies

Figure 1. D > <v0, 01* . Figure 2. m23>0.

6
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Hence wi k1 are two purely imaginary roots of
equation (4.5) with t t= k

j
1 1 . Let { }t t= Îmink k10 1,2,3 1

0 ,
and w w= k10 1 0

On account of the Hopf bifurcation theorem, we want to
find the transversality condition of equation (4.5). Notice that
λ is a function of τ1. Now, taking the derivative of
equation (4.5) respect to τ1, we obtain that

⎛
⎝⎜

⎞
⎠⎟

( )

( )

( )

l
t

l l
l l l l

l
l l l

t
l

=-
+ +

+ + +

+
+

+ + +
-

-

4.12

d

d

m m

m m m

n n

n n n q

3 2

2
.

1

1 2
1 2

3
1

2
2 3

3 2

3
2

2 1

1

Extract the real part of (4.12), we can obtain

Clearly, ( )lt -
Re d

d

1

1
and ( )t

l

-
Re d

d

1
1 have the same notation.

Let

( ) ( )
( )

w w w= + - - +

+ + - -

g m m n m

n n q m m n

3 2 4 2

2 2 ,
1 10 10

4
1
2

2 3
2

10
2

2
2

3 1 1 3 2
2

and w=v10 10
2 , then

( ) ( )= + +g v v a v a3 , 4.141 10 10
2

21 10 22

Figure 3. D > >v0, 01* .

Figure 4. ( ) >m f v0, 023 1 1* .

Figure 5. D > >v0, 01* .

Figure 6. ( ) <m f v0, 023 1 1* .

( )( ) ( )
( )

( )

t
w

w w w w
w w

p
w

=
- + - + -

+ - +

+ = =

m m n q n n m

n q n n
j

k j

1
arccos

2
, 1, 2, 3, 0, 1, 2, . 4.11

k
j

k

k k k k

k k

k

1
1

1 1
2

3 1 3 1
2

2 1
2

1
2

2

1 3 1
2 2

2
2

1
2

1

⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( ) ( )

( )l
t

w w
w w w

=
+ - - + + + - -

- + - +
l w

-

=

Re
d

d

m m n m n n q m m n

m m m

3 2 4 2 2 2
. 4.13

i1

1
10
4

1
2

2 3
2

10
2

2
2

3 1 1 3 2
2

10
3

2 10
2

1 10
2

3
2

10

7
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where

( )

= - -

= + + - -

a m m n a

m n n q m m n

2 4 2 ,

2 2

21 1
2

2 3
2

22

2
2

3 1 1 3 2
2

, and

⎛
⎝⎜

⎞
⎠⎟

( )
( ) ( )

( )

l
t w w w

=
- + - +

l w

-

=

Re
d

d

g v

m m m
.

4.15
i1

1
1 10

10
3

2 10
2

1 10
2

3
2

10

Lemma 5. If ( ) ( ) >H g v: 026 1 10 holds, we can say

that ( ) >l
t

l w

-

=
Re 0d

d
i

1

1
10

.

Theorem 1. For system (1.2), when t t> =0, 01 2 , assume
that ( )H11 holds, we have the following results.

(1) If ( )H21 or ( )H22 or ( )H23 holds, t" > 01 the positive
equilibrium ( )E S I R, ,* * * * is locally asymptotically stable.

(2) If ( ) ( )H H,24 26 or ( ) ( )H H,25 26 or holds,there is a
positive constant t10 that makes E* locally asymptotically
stable when [ )t tÎ 0,1 10 and unstable when ( )t tÎ +¥,1 10 ,
furthermore, system (1.2) undergoes a Hopf bifurcation at E*
when t t=1 10.

Case 3:When t t= >0, 01 2 , equation (4.3) becomes

( ) ( )
( )

l l l+ + + + + + + =t-m n m n m n qe 0.
4.16

3
1 3

2
2 2 3 1 2

We assume ( )l w w= >i 02 2 is a solution of equation (4.16),
then put it in equation (4.16). Separating real and imaginary
parts we obtain

⎧
⎨⎪

⎩⎪
( )

( )
( ) ( )

( )
w
w t

w w w t

- + + +
+ =

- + + - =

m n m n
q

m n q

cos 0,

sin 0.

4.17
1 3 2

2
3 1

2 2

2
3

2 2 2 2 2

Squaring and adding the two equations of (4.17), we can get
that

(( ) ( )) ( ( )

( )( ) ) ( )
( )

w w

w

+ + - + + - +

+ + + + + - =

m n m n m n

m n m n m n q

2 2

0.

4.18

2
6

1 3
2

2 2 2
4

1 3

3 1 1 3
2

2
2

3 1
2 2

Let w=v2 2
2, then we have

( )+ + + =v m v m v m 0. 4.192
3

31 2
2

32 2 33

Denote

( ) ( )= + + +f v v m v m v m , 4.202 2 2
3

31 2
2

32 2 33

where

( ) ( )
( )( ) ( )

( )

= + - +
=- + + + +
= + -

m m n m n

m m n m n m n

m m n q

2 ,

2 ,

.

31 1 3
2

2 2

32 1 3 3 1 2 2
2

33 3 1
2 2

Lemma 6. (1) If ( ) ( )D = - H m m m: 0, 4 3 031 33 31
2

32 ,

or ( ) > D > = <
- + -

H m v: 0, 0, 0
m m m

32 33 2
3

3
31 31

2
32* , or

( ) ( )D > > >H m v f v: 0, 0, 0, 033 33 2 2 2* * holds, then
( )f v2 2 has no positive real roots.
(2) If ( ) ( )D > > <H m v f v: 0, 0, 0, 034 33 2 2 2* * , or

( ) <H m: 035 33 holds, then ( )f v2 2 has at least one positive
real root.

Proof. The proof of the lemma is similar to lemma 4.

Without loss of generality, we assume that
equation (4.20) has three positive real roots v v v, ,21 22 23,
equation (4.18) also has three real roots w = v ,21 21

w w= =v v,22 22 23 23 .
The critical value of the time delay t k

j
2 satisfies

( ) ( )

( )

t
w

w

p
w

=
+ - +

+ = =

m n m n

q
j

k j

1
arccos

2
, 1, 2, 3, 0, 1, 2, . 4.21

k
j

k

k

k

2
2

1 3 2
2

3 1

2

Hence wi k2 are two purely imaginary roots of
equation (4.16) with t t= k

j
2 2 . Let { }t t= Îmink k20 1,2,3 2

0 ,
and w w= k20 2 0

.
On account of the Hopf bifurcation theorem, we want to

find the transversality condition of equation (4.16). Now,
taking the derivative of equation (4.16) with respect to τ2, we
have

⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( ( ) ( ) ( ))

( )

l
t

l l
l l l l
t
l

=-
+ + + +

+ + + + + +

-

-d

d

m n m n

m n m n m n

3 2

.

4.22

2

1

2
1 3 2 2

3
1 3

2
2 2 3 1

2

Extract the real part of (4.22), we can obtain

Obviously, ( )l
t

-
Re d

d

1

2
and ( )t

l

-
Re d

d

1
2 have the same

notation. Let

( ) ( ( ) ( ))
( ) ( )( )

w w w= + + - +

+ + - + +

g m n m n

m n m n m n

3 2 4

2 ,
2 20 20

4
1 3

2
2 2 20

2

2 2
2

1 3 3 1

⎛
⎝⎜

⎞
⎠⎟

( ( ) ( )) ( ) ( )( )
( ( ) ) ( ( ) ( ))

( )l
t

w w
w w w

=
+ + - + + + - + +

- + + - + + +
l w

-

=

Re
d

d

m n m n m n m n m n

m n m n m n

3 2 4 2
. 4.23

i2

1
20
4

1 3
2

2 2 20
2

2 2
2

1 3 3 1

20
3

2 2 20
2

1 3 20
2

1 3
2

20
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and w=v20 20
2 , then

( ) ( )= + +g v v a v a3 , 4.242 20 20
2

31 10 32

where ( ) ( ) ( )

( )( )

= + - + = +

- + +

a m n m n a m n

m n m n

2 4 ,

2

31 1 3
2

2 2 32 2 2
2

1 3 3 1

.

We can calculate that

Lemma 7. If ( ) ( ) >H g v: 036 2 20 holds, then

( ) >l
t

l w

-

=
Re 0d

d
i

1

2
20

.

Theorem 2. For system (1.2), when t t= >0, 01 2 , assume
that ( )H11 holds, we have the following results

(1) If ( )H31 or ( )H32 or ( )H33 holds, the positive
equilibrium point ( )E S I R, ,* * * * is locally asymptotically
stable for t" > 02 .

(2) If ( ) ( )H H,34 36 or ( ) ( )H H,35 36 holds, there is a positive
constant t20 that makes the positive equilibrium point E* is
locally asymptotically stable when [ )t tÎ 0,2 20 and unstable
when ( )t tÎ +¥,2 20 . Furthermore, system (1.2) undergoes a
Hopf bifurcation at E* when t t=2 20.

Case 4:When t t t= = > 01 2 , equation (4.3) becomes

( )

( )

l l l l l+ + + + + +

+ =

lt

lt

-

-

m m m n n n e

qe 0.

4.26

3
1

2
2 3 1 2 3

2

2

Multiply both sides of equation (4.26) by lte , we can
obtain

( )
( )

l l l l l+ + + + + +
+ =

lt

lt-

n n n m m m e

qe 0. 4.27
3

2
2 1

3
1

2
2 3

Suppose that equation (4.27) has a pure imaginary root
( )l w w= >i 0 , then put it in equation (4.27) the real part and

the imaginary part of equation (4.27) are separated as follows

⎧⎨⎩
( ) ( )
( ) ( ) ( )wt wt
wt wt

+ =
+ =

E E E
E E E

sin cos ,
sin cos .

4.2841 42 45

43 44 46

where

w w w
w

w w w w

= - = - + +
=- + -
=- + = - = -

E m E m m q

E m m q

E m E n n E n

, ,

,

, , .

41
3

2 42 1
2

3

43 1
2

3

44
3

2 45 3
2

1 46 2

From equation (4.28) we can obtain that

⎧
⎨⎪
⎩⎪

( )

( )
( )

wt

wt

=

=

w w w
w w w

w w
w w w

+ +
+ + +

+ +
+ + +

sin ,

cos .
4.29

A A A

B B B

A A A

B B B

41
5

42
3

43
6

41
4

42
2

43

44
4

45
2

46
6

41
4

42
2

43

where

( )

( ) ( )

= = - -
= - +

= - = -

= - = -
= - + - = -

A n A m m n m n
A m n n m q

B m m B m m m

B m q A n m n
A n m q n m n m A n q m

, ,
,

2 , 2 ,

, ,
, .

41 3 42 1 2 1 2 3

43 2 1 2 3

41 1
2

2 42 2
2

1 3

43 3
2 2

44 2 1 3

45 3 3 1 1 2 2 46 1 3

Squaring and adding the two equations of equation (4.29), we
can get that

( )
w w w w w w+ + + + + + =e e e e e e 0,

4.30

12
45

10
44

8
43

6
42

4
41

2
40

where

= -

= + - -

= + - - -

= + - - -

= - - = -

e B A

e B B A A A

e B B B A A A A A

e B B B A A A A A

e B B A A A e B A

2 ,

2 2 ,

2 2 2 2 ,

2 2 2 ,

2 2 , .

45 41 41
2

44 41
2

42 41 42 44
2

43 43 41 42 42
2

41 43 44 45

42 42
2

41 43 42 43 45
2

44 46

41 42 43 43
2

45 46 40 43
2

46
2

Let w=v 2, we can obtain that

( )
+ + + + + + =v e v e v e v e v e v e 0.

4.31

6
45

5
44

4
43

3
42

2
41 40

Denote

( )
( )

= + + + + + +f v v e v e v e v e v e v e .
4.32

6
45

5
44

4
43

3
42

2
41 40

Without loss of generality, we assume that f (v)=0 has
six positive real roots vk, k=1, 2, L, 6, then equation (4.30)
also has six real roots w = =v k, 1, 2, ,6k k . The critical

value of the time delay tk
j satisfies

( )

( )

 

t
w

w w
w w w

p
w

=
+ +

+ + +

+ = =

A A A

B B B
j

k j

1
arccos

2
, 1, 2, ,6, 0, 1, 2, . 4.33

k
j

k

k k

k k k

k

44
4

45
2

46
6

41
4

42
2

43

⎛
⎝⎜

⎞
⎠⎟

( )
( ( ) ) ( ( ) ( ))

( )l
t w w w

=
- + + - + + +

l w

-

=

Re
d

d

g v

m n m n m n
. 4.25

i2

1
2 20

20
3

2 2 20
2

1 3 20
2

1 3
2

20
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Hence wi k is a pair of pure imaginary roots of (4.26)
with t t= k

j , let { }t t= Îmink k0 1,2, ,6
0 , and w w= k0 0

.
Notice that λ is a function of τ. Now taking the derivative

of (4.26) with respect to τ, we obtain

⎜ ⎟⎛
⎝

⎞
⎠

( )
( )

( )

l
t

l l l
l l l l l

t
l

=
+ + + +

- + + + +
-

lt

lt lt

-

-

d

d

n n m m e

m m m e q e

2 3 2
.

4.34

1

3 2
2

1 2
3

1
2

2 3

Extract the real part of equation (4.34), we can obtain

⎜ ⎟⎛
⎝

⎞
⎠ ( )l

t
=

+
+l w

-

=

Re
d

d

Q P Q P

P P
, 4.35

i

R R I I

R I

1

2 2
0

where

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

w w t w w t

w w w t w w t

w w w t

w w w w t

w w w w t

w w w t

= + - + -

= + - + +

= - +

+ - +

= + -

+ - +

Q n m m

Q n m m

P m

q m m

P q m m

m

3 cos 2 sin ,

2 3 sin 2 cos ,

cos

sin ,

cos

sin .

R

I

R

I

2 0
2

2 0 0 1 0 0 0

3 0 0
2

2 0 0 1 0 0 0

0
4

2 0
2

0 0

0 1 0
3

3 0 0 0

0 1 0
3

3 0 0 0

0
4

2 0
2

0 0

Thus, when ( ) + >H Q P Q P: 0R R I I41 holds, we have

( ) >l
t l w

-

=
Re 0d

d
i

1

0

.

Theorem 3. For t t t= = > 01 2 in system (1.2), if ( )H11

holds, and assume further that ( )H41 satisfies. Then there is a
positive constant t0 such that the positive equilibrium point
E* of system (1.2) is locally asymptotically stable when

[ )t tÎ 0, 0 and unstable when ( )t tÎ +¥,0 . That is to say,
system (1.2) undergoes a Hopf bifurcation at t t= 0.

Case 5:When [ )t t tÎ >0, , 01 10 2 , and t t¹1 2,
equation (4.3) becomes

( )

( )

( )

l l l l l+ + + + + +

+ =

lt

l t t

-

- +

m m m n n n e

qe 0.

4.36

3
1

2
2 3 1 2 3

2 1

1 2

Suppose that equation (4.36) has a pure imaginary root
( )l w w= >i 03 3 , then taking the real and imaginary parts of

equation (4.36), we can obtain that

⎧⎨⎩
( ) ( )
( ) ( ) ( )w t w t
w t w t

- =
+ =

E E E
E E E

sin cos ,
cos sin ,

4.3751 3 2 52 3 2 53

51 3 2 52 3 2 54

where

( )
( )

( ) ( )
( )

( ) ( ) ( )

w t
w t

w w w t
w w t
w w t w w t

w w

=
=

=- + + - +
+

=- - + +

- +

E q
E q

E m m n n
n

E n n n

m

sin ,
cos ,

cos
sin ,

sin cos

.

51 3 1

52 3 1

53 1 3
2

3 3 3
2

1 3 1

2 3 3 1

54 3 3
2

1 3 1 2 3 3 1

3
3

2 3

Squaring and adding the two equations of equation (4.37), we
can get that

(
) ( )

( ) ( ) ( )

w w w w w
w t

w w w w t

+ + + + +
+

+ + + =

e e e e e
e

e e e

cos

sin 0, 4.38

3
6

58 3
4

57 3
2

56 55 3
4

54 3
2

53 3 1

52 3
5

51 3
3

50 3 3 1

where

( )
( )

( )
( )

= -
= - + + = -
= = - - +
= -

= + - = - + -

+ = - +

e m n n m
e m n n m n e n
e m n e m n m n m n
e m n n

e m n q e m m m n n

n e m m n

2 ,
2 , 2 ,
2 , 2 ,
2 ,

, 2 2

, 2 .

50 3 2 1 2

51 1 2 1 2 3 52 3

53 3 1 54 1 1 3 3 2 2

55 1 3 2

56 3
2

1
2 2

57 1 3 2
2

1 3

2
2

58 1
2

2 3
2

Assume that equation (4.38) has finite positive roots
w w w, , , k31 32 3 , for each w =i k, 1, 2, ,i3 , then there is a

corresponding delay threshold ( ) t =j, 1, 2, ,i
j

2 where

( )

( )

 

t
w

p
w

=
-
+

+

= =

E E E E

E E

j

j i k

1
arccos

2
,

0, 1, 2, , 1, 2, , . 4.39

i
j

i i
2

3

51 54 53 52

51
2

52
2

3

Let { }( ) t t¢ = =i kmin , 1, 2, ,i20 2
0 , at the same time

w30 and t¢20 are correspond.
On account of the Hopf bifurcation theorem, we want to

find the transversality condition of equation Now taking the
derivative of (4.36) with respect to t2, we obtain

Extract the real part of (4.34), we can obtain

⎛
⎝⎜

⎞
⎠⎟ ( )l

t
=

+

+

~~ ~

~ ~

~

l w

-

=

Re
d

d

Q P Q P

P P
, 4.41

i

R R I I

R I
2

1

2 2
30

⎛
⎝⎜

⎞
⎠⎟

( ) (( ) ( ) ) ( )( )
l
t

l l l l l t
l

t t
l

=
+ + + + - + +

-
+lt

l t t

- -

- +

d

d

m m n n n n n e

qe

3 2 2
. 4.40

2

1 2
1 2 3 2 3

2
2 1 1 1 21

1 2
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where

( ( ) ) ( )
( ) ( )

( ) ( )
( ) ( )

( ( ) ( ) ( ) ( ))
( ( ) ( ) ( ) ( ))

w w t w t
w w t w t

w t w w t
w w t

w w t w t w t w t

w w t w t w t w t

=- + + - - +
+ -

= + -

+ - - +

= +

= -~

~

~

~
Q m n n n

n n

Q m n n

n n n

P q

P q

3 cos
2 sin ,

2 2 cos

sin ,

cos sin sin cos ,

cos cos sin sin .

R

I

R

I

30
2

2 2 3 30
2

1 1 30 1

3 30 2 30 1 30 1

1 30 3 2 1 30 30 1

3 30
2

2 1 30 1

30 30 1 30 2 30 1 30 2

30 30 1 30 2 30 1 30 2

Clearly, when ( ) + >
~~ ~~

H Q P Q P: 0R R I I51 holds, we

have ( ) >l
t

l w

-

=
Re 0d

d
i

1

2
30

.

Theorem 4. For [ )t t tÎ >0, , 01 10 2 and t t¹1 2 in system
(1.2), if ( )H11 holds, and assume further that ( )H51 satisfies.
Then there exists a positive constant t¢20 such that the positive
equilibrium point E* of system (1.2) is locally asymptotically
stable when [ )t tÎ ¢0,2 20 and unstable when ( )t tÎ ¢ +¥,2 20 .
Furthermore, system (1.2) occurs a Hopf bifurcation at E*
when t t= ¢2 20.

Case 6: When [ )t t t> Î0, 0,1 2 20 , and t t¹1 2,
equation (4.3) becomes

( )

( )

( )

l l l l l+ + + + + +

+ =

lt

l t t

-

- +

m m m n n n e

qe 0.

4.42

3
1

2
2 3 1 2 3

2 1

1 2

Suppose that equation (4.42) has a pure imaginary root
( )l w w= >i 04 4 , then put it in equation (4.42), and separate

real and imaginary parts, we obtain

⎧⎨⎩
( ) ( )

( ) ( ) ( )w t w t
w t w t

+ =
- + =
E E E

E E E
cos sin ,

sin cos ,
4.4361 4 1 62 4 1 63

61 4 1 62 4 1 64

where

( )
( )

w w t
w w t

w w w

=- + +
= -

= - = -

E n n q
E n q

E m m E m

cos ,
sin ,

, .

61 3 4
2

1 4 2

62 2 4 4 2

63 1 4
2

3 64 4
3

2 4

Squaring and adding the two equations of (4.43), we can get
that

( ) ( )

( )
( )

w w w w w t

w w t

+ + + + +

+ =

e e e e e

e

cos

sin 0,

4.44

4
6

65 4
4

64 4
2

63 62 4
2

61 4 2

60 4 4 2

where

= - - = - +

+ - = - -
= = - =

e m m n e m m m

n n n e m n q
e n q e n q e n q

2 , 2

2 , ,
2 , 2 , 2 .

65 1
2

2 3
2

64 1 3 2
2

1 3 2
2

63 3
2

1
2 2

62 3 61 1 60 2

Assume that equation (4.44) has finite positive roots
w w w, , , l41 42 4 , for each w =i l, 1, 2, ,i4 , there is a

corresponding delay threshold ( ) t =j, 0, 1, 2, ,i
j

1 and

( )

( )

 

t
w

p
w

=
+
+

+

= =

E E E E

E E

j

j i l

1
arccos

2
,

0, 1, 2, , 1, 2, , . 4.45

i
j

i i
1

4

61 63 62 64

61
2

62
2

4

Let { }( ) t t¢ = =i lmin , 1, 2, ,i10 1
0 , at the same time

w40 and t¢10 are correspond.
On account of the Hopf bifurcation theorem, now we

want to find the transversality condition of equation (4.42).
Notice that λ is a function of t1, we take the derivative of
equation (4.42) with respect to t1, then

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

( )

( )

l
t
l l l t

l l l l
t
l

=
+ + + + -

+ + +

-

lt l t t

lt l t t

-

- - +

- - +

d

d

m m n n e q e

n n n e q e

3 2 2

.

4.46

1

1

2
1 2 3 2 2

3
2

2 1

1

1 1 2

1 1 2

Extract the real part of equation (4.46), we can obtain

⎛
⎝⎜

⎞
⎠⎟ ( )l

t
=

+

+l w

-

=

Re
d

d

Q P Q P

P P
, 4.47

i

R R I I

R I1

1

2 2
40

where

( ) ( )
( ( ))

( ) ( )
( ( ))

( ) ( ) ( )
( ( ))

( ) ( ) ( )
( ( ))

w w t w w t
t w t t
w w t w w t
t w t t

w w t w w w t
w w t t

w w w t w w t
w w t t

=- + + +
- +

= - +
+ +

=- + - +
+ +

= - + +
+ +

Q m n n
q

Q m n n
q

P n n n
q

P n n n
q

3 cos 2 sin
cos ,

2 sin 2 cos
sin ,

cos sin
sin ,

cos sin
cos .

R

I

R

I

40
2

2 2 40 1 3 40 40 1

2 40 1 2

1 40 2 40 1 3 40 40 1

2 40 1 2

2 40
2

40 1 3 40
3

1 40 40 1

40 40 1 2

3 40
3

1 40 40 1 2 40
2

40 1

40 40 1 2

Hence, when ( ) + >H Q P Q P: 0R R I I61 holds, we

have ( ) >l
t

l w

-

=
Re 0d

d
i

1

1
40

.

Theorem 5. For [ )t t t> Î0, 0,1 2 20 and t t¹1 2 in system
(1.2), if (H11) holds, and assume further that ( )H61 satisfies.
Then there exists a positive constant t¢10 such that the positive
equilibrium point E* of system (1.2) is locally asymptotically
stable when [ )t tÎ ¢0,1 10 and unstable when ( )t tÎ ¢ +¥,1 10 .
Meanwhile, the Hopf bifurcation occurs when t t= ¢1 10. That
is, system (1.2) has a branch of periodic solutions bifurcating
from the positive equilibrium point E* near t t= ¢1 10.

5. Optimal control techniques in a delayed model

Based on model (1.2), we establish an optimal control model,
the main purpose of this model is to propose effective control
methods to control the spread of infectious diseases. We
assume that t t t= = > 01 2 , the optimal control model is as
follows
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with initial condition (1.3), where θ is a positive constant,
and [ ]q Î 0, 1 .

Denote

{ ( ) ( ) ( ) } ( )= Î    U u t L T t T u t0, : 0 , 0 1 , 5.22

where u(t) is the control variable, and it’s Lebesgue
measurable.

The biological significance of u(t) is to reduce the
number of infected individuals and increase the number of
susceptible individuals by decreasing contact between infec-
ted individuals and susceptible individuals. Hence, the opti-
mal control treatment u(t) transfers part of infected
individuals to susceptible individuals and recovered indivi-
duals. Our goal is to achieve optimal control of the disease by
maximizing the number of susceptible individuals and
recovered individuals and minimizing the number of infected
individuals. At the same time, we also expect to minimize the
cost of control. Based on the above ideas, we establish the
following objective function

( ) [ ( ) ( ) ] ( )ò= +J u I t
c

u t dt
2

, 5.3
T

0

2

where c is a positive weighting factor.
Next, we will look for the minimum value of the

Lagrangian function ( ) ( ) ( )= +L I u I t u t, c

2
2 . Let

( ) ( ( ) ( ) ( )) ( ) ( ( ) ( ) ( ))
( ( ) ( ) ( ))

( ) ( ( ) ( ) ( ))
t t t

l l l l

= =
= - - -
=

t t t tx t S t I t R t x t S t I t R t

S t I t R t

t t t t

, , , , ,

, , ,

, , ,

T T

T

T
1 2 3

and define the Hamiltonian function of the optimal control
problem as follows

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( )

( )
( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ))
( )

l l l

l l

b
a

s q

l
b t t

a t
m e

b
a

l
b t
a t

m s q

= + +

+ = + + -

-
+

+ +

+
- -

+ -
- +

-
+

- +
-

+ -

- + + -

tH x x u L I u t
dS

dt
t

dI

dt

t
dR

dt
I t

c
u t t rS t

S t

k

S t I t

I t
R t u t I t

t
S t I t

I t
I t

I t

I t
u t I t t

I t

I t

R t u t I t

, , , ,

2
1

1

1

1 1

1 .

5.4

1 2

3
2

1

1

1

2
1 1 1

1 1

2

2
3

2 2

2 2

Theorem 6. For system (5.1), given objective function (5.3)
with the initial condition (1.3), there is an optimal control

Îu U* which makes ( ) ( )= ÎJ u J uminu U* .

Proof. We take advantage of the result of [20] to demonstrate
the existence of an optimal control. We have proved the non-
negativity of covariant variables and the control

( ) u t0 1. In this minimization problem, the objective
function in u(t) is convex. By the definition, ( ) Îu t U is
convex and closed. Because the optimal system is bounded,
the optimal system is the compact support. Furthermore, the

integrand ( )) (+I t u tc

2

2
is convex on the dominating set U.

Finally, it is easy to know that there exist the constants
r h> >1, 01 and h > 02 , which satisfies

( ) (∣ ∣ )h h+
r

J u u2 1
2 2 . In conclusion, this theorem has been

proved.

According to the Pontryagin Maximum Principle, there
exists a continuous function ( ) [ ]l Ît T0, , which satisfies the
following three equations.

(i) The state equation

( ) ( )( ) ( )l= l t
dx t

dt
H x x u t, , , , 5.5

(ii) The optimality condition

( )( ) ( )l= tH x x u t0 , , , , 5.6u

(iii) The adjoint equation

( )( ) ( ) ( )( )

( )

l
l l t l- = + +t tt

d

dt
H x x u t t H x x u t, , , , , , ,

5.7

x x

where lH denotes the derivative with respect to l H, u

denotes the derivative with respect to u, Hx denotes the
derivative with respect to tx H, x denotes the derivative
with respect to tx .

Theorem 7. Given an optimal control u* and the corresp-
onding optimal solution ( ) ( ) ( )S t I t R t, ,* * * of system (5.1),
then there are the adjoint variable ( ) ( ) ( )l l lt t t, ,1 2 3 , which
satisfies

⎧

⎨
⎪⎪

⎩
⎪⎪

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )
( )

( ) ( )
( )

s q

m e

m s q

= - - + +

= - + - -

= - + + -

b
a

b t t
a t

b
a

b t
a t

+

- -
+ - +

-
+ -

rS t R t u t I t

I t u t I t

R t u t I t

1 ,

,

1 ,

5.1

dS t

dt

S t

k

S t I t

I t

dI t

dt

S t I t

I t

I t

I t

dR t

dt

I t

I t

1

1 1

1

1

1

1

1

2

2

2

2
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with boundary conditions

( ) ( )l = =T i0, 1, 2, 3. 5.9i

Then, the optimal control u* satisfies

⎧⎨⎩
⎧⎨⎩ ( ( ) ( )

( )( )) } } ( )

l q l

l q

= - +

- -

u
I

c
t t

t

max min

1 , 1 , 0 . 5.10

1 2

3

*
*

Proof. We use the Hamiltonian (5.4) to calculate the
boundary conditions and the adjoint equation. According to
the adjoint equation (5.7), let ( ) ( )=x t x t* and ( ) ( )=t tx t x t* ,

we can obtain

( ) ( ) ( ) ( ) ( )l
l t- = + +

t

d t

dt
H t t H t , 5.11S S

1
1* *

( ) ( ) ( ) ( ) ( )l
l t- = + +

t

d t

dt
H t t H t , 5.12I I

2
2* *

( ) ( ) ( ) ( ) ( )l
l t- = + +

t

d t

dt
H t t H t . 5.13R R

3
3* *

If we put the specific expression of Hamiltonian (5.4)
into (5.11)−(5.13), we can get the adjoint equations (5.8). By
the optimality condition (5.6), we obtain

( )( ) ( ) ( )
( )( )

l l q l
l q

= + -
+ - =

tH x x u t cu t I t I

t I

, , ,

1 0.
u 1 2

3

* * *

*

Figure 7. When t t= < E13 ,1 10 * is locally asymptotically stable.

Figure 8. When t t= > E14 ,1 10 * is unstable.

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( )( )

( )

( )

( )
( ) ( )

( ) ( )
( )

l l t l
b
a

l q l m e l q

l t l l t l

l s l m s

- = - - + +
+

- = - - - + + + + -

+ + + +

- = - +

l b
a

l b
a

b
a

b
a

b
a

l

+

+ +

+ +

t r S t t
I

I

t u t u t u

t t t t

t t

1
,

1

,

,

5.8

d t

dt

r

k

I

I

d t

dt

S

I I

S

I I

d t

dt

1
2

1 1 2
1

1

1 1 2 1 3

2 2 1 2 3 1

1 3

1 1

1

2 1

1
2

2

2
2

1

1
2

2

2
2

3

*
*

*
*

*
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Figure 9. When t t= < E34.5 ,2 20 * is locally asymptotically stable.

Figure 10. When t t= > E36 ,2 20 * is unstable.

Figure 11. When t t= < E1.3 ,0 * is locally asymptotically stable.

Figure 12. When t t= > E2 , * is unstable.
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That is to say,

( ( ) ( ) ( )( ))l q l l q= - + - -u
I

c
t t t 1 .1 2 3*

*

Thus,

That is

⎧⎨⎩
⎧⎨⎩ ( ( ) ( )

( )( )) } }

l q l

l q

= - +

- -

u
I

c
t t

t

max min

1 , 1 , 0 .

1 2

3

*
*

6. Numerical simulation

Next, we verify the above conclusions by some simulation by
some numerical simulation and analysis of the impact of
parameters b1 and b2 on the basic regeneration number R0.

Example 1. Consider the situation of t t> =0, 01 2 . When
we choose parameters b= = =r k0.3, 9, 0.71 , a = 0.2,1

s = 0.3, m e= =0.3, 0.5, b a= =0.4, 0.1,2 2 it is not
difficult to get = >R 5.25 10 , the equilibrium point

( )E 1.839 7, 0.442 9, 0.282 7* and t = 14.706 610 . At the
same time, the conditions H H,25 26 are satisfied. According
to theorem 1, we know when t t<1 10, the rumor spreading
equilibrium point E* is locally asymptotically stable and
when t t> E,1 10 * is unstable. As shown in figures 7 and 8,
E* is locally asymptotically stable for t t= <131 10 and
unstable for t t= >151 10. That is to say, the simulation
results are consistent with the above theory.

Example 2. In system (1.2), when t t= >0, 01 2 , we choose
b= = =r k0.01, 2, 0.71 , a s m= = =1, 0.5, 0.11 , e =

b a= =0.35, 0.5, 42 2 , then we obtain that

Figure 13. When t t= < E5.5 ,2 20 * is locally asymptotically stable.

Figure 14. When t t= > E6 ,2 20 * is unstable.
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= >R 1.473 7 10 . Moreover, the conditions H34 and H36

are satisfied at the positive equilibrium point =E*
( )1.345 3, 0.008 3, 0.006 7 . Meanwhile, a simple calculation
shows that t = 35.260 320 . As shown in figures 9 and 10, the
positive equilibrium point E* is locally asymptotically stable
when t t= <34.52 20, and it is unstable when t t= >362 20,
which is consistent with theorem 2.

Example 3. For t t t= =1 2 and b= = =r k0.3, 9, 1

a =0.7, 0.21 , s m e= = =0.3, 0.3, 0.5, b = 0.4,2

a = 12 which satisfy H41, we obtain = >R 5.25 10 ,
( )E 1.675 1, 0.435 4, 0.202 2* and t = 1.789 20 . By theorem

3, when the value of t t< 0, the equilibrium point E* is
asymptotically stable and when t t> 0, the equilibrium point

E* is unstable. We choose t t= <1.3 0 and t t= >2 to
verify the theorem, the corresponding figure is shown as
figures 11 and 12.

Example 4. Consider case 5, that is [ )t t tÎ >0, , 01 10 2 . The
parameter is selected as t t t= =1 2 and = =r k0.3,

b a= =10, 0.7, 0.21 1 , s m e= = =0.3, 0.3, 0.5, b =2
a =0.4, 0.12 , we obtain = > =R E5.833 3 1,0 *

( )1.843 2, 0.455 0, 0.290 1 and t¢ = 7.684 110 . Choose the
parameter t t= < ¢71 10, by calculation we can get
t = 6.260 620 . Combined theorem 4, E* is locally asympto-
tically stable for t t<2 20 and when t2 exceeds t20, Hopf
bifurcation occurs. When t t= <5.52 20 and t t= >62 20 is
selected, the images are as follows (figures 13 and 14).

Figure 16. The relationship among R0, β1 and β2, where k=1, μ=0.1, ε=0.2.

Figure 15. The relationship between R0 and parameters.
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Example 5. In this example, we discuss how R0 varies with
the parameters b1 and b2. As shown in figure 15(a), we can
find that R0 and b1 have a direct proportion relationship, and
as shown in figure 15(b), we find that as b2 increases, R0

decreases. Moreover, we further study the relationship among
bR ,0 1 and b2. As shown in figure 16, we choose parameters

[ ]m e b= = = Îk 1, 0.1, 0.2, 0, 0.81 and [ ]b Î 0, 0.82 . It
shows that as b1 increases and b2 decreases, R0 is gradually
increasing. High incidence rate between susceptible indivi-
dual and infected individual and low recovery rate are more
conducive to the spread of epidemic diseases.

7. Conclusions

In this paper, a SIRS epidemic model with nonlinear inci-
dence rate, saturated treatment and two time delays is inves-
tigated, in which the nonlinear incidence rate can reflect the
psychology of people facing infectious diseases, and the
nonlinear recovery rate can reflect the local medical level and
personal physical quality. We use the method of regeneration
matrix to find out the basic regeneration number R0, and show
that there is at least one positive equilibrium point in system
(1.2), we also have proved system (1.2) has permanence.
Meanwhile, two time delays are selected as bifurcation
parameters and the corresponding characteristic equations are
given. The sufficient conditions for the local stability of
positive equilibrium and the existence of Hopf bifurcation are
obtained. When there is no delays, we have obtained the
condition for local stability of the positive equilibrium point

( )E S I R, ,* * * * . When there exist time delays, by taking
t > 01 (t = 02 ) and t > 02 (t = 01 ) as bifurcation parameter,
we have obtained the Hopf bifurcation conditions and a cri-
tical value of delay t10 and t20, by taking t t t= = > 01 2 we
have obtained the corresponding Hopf bifurcation conditions
and a critical value of delay t0. Similarly, we have obtain the
Hopf bifurcation conditions and a critical value of delay of

[ )t t t t t> Î ¹0, 0, ,2 1 10 1 2 and [ )t t t t t> Î ¹0, 0, ,1 2 20 1 2.
As we can see, for time delays, there is a threshold under
which the positive equilibrium is stable, but if the delay is
greater than the threshold, sustained oscillations will occur.
Furthermore, to minimize the spread of infectious diseases,
we have studied the optimal control techniques by the Pon-
tryagin’s maximum principle. Finally, we conduct a series of
numerical simulations to prove some of the conclusions in
this paper, and also investigate the effect of some parameters
on R0.
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