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Abstract
We consider a coupled optomechanical system, in which two charged mechanical resonators are
coupled through long range Coulomb interaction. It is shown that remote entanglement between
the two charged mechanical resonators can be achieved by long range Coulomb interaction. Such
a coupled optomechanical system exhibits the classical to quantum transition behavior. The
outcome of our numerical simulation shows that in the absence of optomechanical coupling,
quantum entanglement between the two mechanical resonators can be achieved for large
Coulomb coupling strengths and small effective temperature. In addition, the entanglement
between the two mechanical resonators can be enhanced through input laser power. We also
investigate the entanglement transfer through Coulomb interaction and optomechanical
couplings.
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1. Introduction

Quantum entanglement [1, 2], as a cornerstone of quantum
physics, plays an important role in the foundation of quantum
theory and also has many applications in quantum world,
such as quantum metrology [3] and quantum information
science [4]. In particular, how to prepare macroscopic
mechanical entanglement is of high interest and significance
because such macroscopic entanglement might provide
explicit proof for quantum phenomena [5] and might poten-
tially help us to elucidate the quantum to classical transition
[6, 7]. So far, one has had a fairly good understanding of how
to generate entanglement among microscopic entities. More-
over, the entanglement has been successfully prepared and
manipulated in many microscopic systems, such as atoms
[8–12], photons [13–15], ions [16–19] Bose–Einstein con-
densates [20, 21], and so on.

Recently, the research of micro-mechanical resonators
(MRs) has attracted considerable interests in both nano-
technology and quantum mechanics in the past decade,
because of the fact that micro-mechanical resonators is an
ideal candidate to search quantum properties. These quantum
properties not only provide insights into the fundamental
physical principle in quantum regime [22], but also give many
applications of MRs, such as, quantum information proces-
sing [23, 24], optomechanical metrology [25], gravitational
wave detection [26] and biological sensing [27]. However,
only few quantum properties on MRs can be obtained
experimentally directly, since the quantum properties on MRs
are very much difficult to observe. Therefore, it is desirable to
observe more quantum properties on MRs. The steady
entanglement between the MRs is one of this type of quantum
properties.

Until now, numerous schemes have been proposed to
establish entanglement between the micro-mechanical
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resonators from different angles of view: such as entangling
two remotely separated resonators by employing the entan-
gled light fields [28], realizing entanglement between two
dielectric membranes [29] and establishing entanglement
between two micro-mechanical resonators induced by the
radiation pressure in a two-cavity optomechanical system
[30]. Particularly, long range entanglement between two
micro-mechanical resonators in separated cavities via inject-
ing squeezed light or conditional quantum measurements is
examined [28, 31, 32]. Also, it was revealed that weak
mechanical entanglement between two distant resonators can
be obtained simply by optomechanical coupling [33]. The
remote entanglement of distant elements is of great impor-
tance for establishing long-distance quantum communication
networks [34, 35].

In an interesting study by Chen et al Coulomb assisted
optomechanical setup has been considered [36]. They have
discussed dissipation induced optomechanical entanglement
and found that there is a considerable dependence of entan-
glement on the Coulomb interaction strength. In their scheme,
they have a single optical mode coupled with a mechanical
resonator which further is coupled to a second mechanical
resonator through a Coulomb force. Bai et al considered a
similar optomechanical system with an additional contrib-
ution due to the inclusion of a degenerate OPA [37], which
provides some additional features such as entanglement
enhancement, since OPA leads to squeezed optical field. In
another interesting study, Bai et al [38] have presented a
scheme for robust entanglement in an optomechanical system
consisting of two coupled optomechanical cavities. In their
study, they considered the coherently driven ensemble of two-
level atoms inside one of the cavity. Their results show that
enhancement of entanglement is strongly dependent on the
optomechanical coupling strength.

In our present study, we have considered a different
scheme than their schemes. Here, we have considered two
independent optomechanical cavity systems having two
mechanical resonators which are mutually coupled through
Coulomb force. These mechanical elements are spatially
separated by a distance r. We throughout the study focused
the effects of Coulomb coupling upon the entanglement. An
interesting result of our study is that Coulomb interaction
implies a finite non-zero entanglement even at zero effective
optomechanical coupling. Our results show that increased
Coulomb coupling strength improves the degree of entan-
glement. Furthermore, we propose a coupled optomechanical
system to create the distant entanglement between two micro-
mechanical resonators due to long rang Coulomb interaction
exhibiting the classical to quantum transition behavior. Our
scheme that the entanglement between the two mechanical
resonators by Coulomb interaction is different from the con-
ventional optomechanical system which the entanglement
between two movable mechanical resonators is induced by
the external atoms [39] or bring forth by the inner cavity
modes [40]. Contrast to previously conventional methods, the
Coulomb interaction between the two micro-mechanical
resonators belongs to long-range interactions [36, 41, 42].
Furthermore, we also show the enhancement of the

enatnglement between the two micro-mechanical resonators
through the input laser power. In addition, transferring
entanglement between subsystem is very helpful to study the
information storage in the quantum information processing
[38, 43–46]. In the present work, we also show how the
entanglement between the two mechabical resonators can be
transferred to the entanglement between optical cavity field
and the mechabical resonator either by decreasing the Cou-
lomb coupling strength between the two mirrors or by
increasing the input laser field.

This paper is organized as follows. In section 2, we
introduce the optomechanical model, present the equations of
motion, steady state values and linearized quantum Langevin
equations. In section 3, we transform the quantum Langevin
equations into a equivalent differential equation of the cov-
ariance matrix. In section 4, we present the numerical results
and quantify the entanglement measurement of the two
charged mechanical resonators using logarithmic negativity
and the section 5 concludes our paper.

2. The model and the dynamics

The system under consideration comprises two spatially
separated optomechanical cavities. The two partially trans-
mitting mirrors, at a distance r, are in contact with a thermal
bath in equilibrium at temperature T. As shown schematically
in figure 1, the two movable mechanical resonators of the two
cavities are coupled through the long rang Coulomb interac-
tions Γ . The two optomechanical cavities are separately

driven by a coupling field with amplitudes e = k
w
Ã



2
j

j j

L
where

κj and Ãj are the decay rate and the pump power corresp-
onding to the jth cavity field. We describe the optical modes
of the two cavities, respectively, by annihilation (creation)
operators c cj j( )† where j=1, 2. The momentum and position
operators of the mechanical resonators are represented by pj
and qj where j=1, 2. The optomechanical coupling strength
between the optical field and the mechanical resonator is

Figure 1. Schematic diagram of 2 coupled OMS. The left and right
cavity comprise a fixed mirror and a mechanical resonators R R1 2( ).
The two mirrors coupled to each other under the action of the
Coulomb interaction. The electrode having charge Q Q1 2( ) on R R1 2( )
is charged by voltage V V1 2( ). The equilibrium separation between R1

and R2 is r. The small deviation of R1 and R2, due to Coulomb
interaction and radiation pressure interaction, from their equilibrium
positions are q1 and q2 respectively. The left (right) cavity is driven
by a controlled field ε1 (e2).

2

Phys. Scr. 95 (2020) 035108 A Sohail et al



given by = w
w

 gj L m
c

j mj

where L is the length of each cavity.

The similar description can be found in [47]. The Hamiltonian
of the coupled optomechanical system is given by
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where the first term in square bracket is the free Hamiltonian
for a two single mode cavities, second term describes the
vibration of the two charged resonators and third term cor-
responds to respective cavity-mechanical resonator interac-
tion. The first term in the second line represents the
interaction of optomechanical cavities and the external laser
fields. The second term in the second line represents the
Coulomb interaction between two charged resonators R1 and
R2 is given as =

pe
-

+ -
H C V C V

r q qCI 4 o

1 1 2 2

1 2∣ ∣
with r being the equili-

brium separation between two resonators. The two resonators
R1 and R2 take the charges =Q C V1 1 1 and = -Q C V2 2 2 with
C1(C2) and V1(-V2) being the capacitance and the voltage of
the bias gate, respectively. We assume the distance between
the two charged resonators is much greater than the small
oscillations of the charged resonators r?qi, the term
describing the interaction between two charged resonators can
be expanded to the second order as:
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The linear term can be absorbed into the definition of the
equilibrium positions, and the quadratic term includes a re-
normalization of the oscillation frequency for both resonators
R1 and R2. Through further omitting the constant term, the
Coulomb interaction term can be written in a simpler from

= G q qH , 3CI 1 2 ( )

where G=
pe w
C V C V

m r4 o m

1 1 2 2
3 [36, 48–50]. In the rotating frame at the

coupling frequency ωL, the Hamiltonian of our system can be
written as
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where d w w= -j c L. The set of nonlinear Langevin equations
for this system can be written as

w
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where κj is the decay rate of the cavities and γj is the damping
rate of mechanical resonators.

We now begin to linearize the dynamics of the coupled
optomechanical system. The nonlinear quantum Langevin
equations can be linearized by rewriting each Heisenberg
operator as a sum of its steady-state mean value and an

additional fluctuation operator, i.e.

d d d= + = + = + =q q q p p p c c c j, , , 1, 2. 6j j j j j j j j j¯ ¯ ¯ ( )

After inserting these expressions into the Langevin
equations of equation (5), we can obtain a set of nonlinear
algebraic equations for the steady state values and a set of
quantum Langevin equations for the fluctuation operators.
Through setting all the time derivatives in algebra equations
for the steady state value to zero, the steady state mean values
of coupled optomechanical system are given by,
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and the linearized Langevin equations
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where dD = - g qj j j j,0 are the effective optomechanical
detunings and =G g cj j j,0 represents the effective opto-
mechanical coupling constants which is controlled by the
cavity driving input power Ã = Ã = Ã1 2 .

3. Entanglement measurement of the two charged
mechanical resonators

In this section, we adopt the standard nomenclature to find out
the steady state entanglement [51]. We start looking into the
measurement of the steady state entanglement between two
charged mechanical resonators. Defining the quadratures
d d d= +X c cj j j

1

2
( )† , d d d= -Y c cj j j

1

2 i
( )† and the

corresponding Hermitian input noise operators
d d d= +X c cj j j,in

1

2 ,in ,in( )† , d d d= -Y c cj j j,in
1

2 i ,in ,in( )† .

Inserting the quadratures into equation (8) and separating of
the imaginary and real part of equations we obtain:
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Finally we rewrite the Langevin equation in compact form as
follow

= + XF AF , 10˙ ( )

where d d d d d d d d=F X Y X Y q p q p, , , , , , , T
1 1 2 2 1 1 2 2( ) and

k k x xX = X Y X Y2 , , 2 , , 0, , 0, T
1 1

in
1
in

2 2
in

2
in

1 2( ( ) ( ) ) are the
fluctuation and noise vectors respectively. The matrix A is
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written as:
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The coupled optomechanical system is stable and reaches its
steady state only if the real part of all the eigenvalues of the
matrix A have negative real parts. The stability conditions can
be derived by applying the Routh–Hurwitz criterion. When
the stability conditions of the coupled optomechanical system
are satisfied, and the steady state Covariance matrix meets the
following Lyapunov equation

+ + =AV VA D 0, 12T ( )

where D is a diagonal matrix which is called diffusion matrix
and characterizes the noise correlations

k k k k g g= + +D n ndiag , , , , 0, 2 1 , 0, 2 1 .
13

1 1 2 2 1 1 2 2[ ( ) ( )]
( )

As, equation (13) is independent of frequency, we have the
following Markovian approximation on the quantum Brow-
nian noise

x x x x g dá ¢ + ¢ ñ + - ¢t t t t n t t
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where ni is the thermal phonon number and i=1, 2. The
Lyapunov equation (12) as a linear equation for V can be
solved. Using the Simon condition for Gaussian states, we
calculate the entanglement of the steady state [52–54]

h= - -E max 0, 2 ln , 15N [ ] ( )
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2 [ ] [ ] is the smal-

lest symplectic eigenvalue of the partially transposed covar-
iance matrix with

=
 

 
, 16

a c

c
T

b

⎛
⎝⎜

⎞
⎠⎟ ( )

and

å = + -   det det 2 det . 17a b c[ ] ( )

Here, ña, ñb and ñc are 2×2 block matrices.

4. Numerical results and discussions

In the following, we emphasize on the stationary dynamics of
the system. Without loss of generality, we assume that all the
parameters of the two mechanical resonators to be the same,
i.e. ω1=ω2=ωm, γ1=γ2=γm. Similarly we also assume
κ1=κ2=κ and Δ2=Δ1=Δ for simplicity. In addition
the input laser power from both sides is same i.e.

Ã = Ã = Ã1 2 . We take the parameters form a recent experi-
ment on the observation of the normal-mode splitting: [55]
ωm=2π×947 kHz, γm=2π×141 Hz,
κ=2π×215 kHz, m=145 ng, λ=1064 nm and
L=25 mm. In addition, we have considered optical modes
with zero occupancy.

During the last decade, there has been remarkable
increase in experimental studies related to the practical
aspects of optomechanical setups. These experiments are
highly dependent on the availability of high-Q resonators
[56–59]. In their seminal paper, Vitali et al gave a feasible
experimental scheme for detection of mechanical motion [51].
There are many groups involved in the experimental setup for
obtaining the macroscopic optomechanical entanglement.
More recently, Riedinger and collaborators have experimen-
tally demonstrated the remote entanglement between two
micromechanical resonators which are 20 cm apart with high
quality factor of Q=2.2×105 [60]. In another interesting
experimental work, Marinkovic and collaborators have
experimentally presented the optomechanical test for viola-
tion of Bell-type inequality [61]. In their experiment, Bell-
type inequality violates for more than four-standard devia-
tions, which shows the non-classical behavior of their system.
Keeping these experimental studies, we have used the
experimentally feasible system parameters. Therefore, our
prediction presented in present paper, can be experimentally
verified through similar kind of setups.

First, we explore the crucial role of Coulomb interaction
on the entanglement between the two charged mechanical
resonators separated in space. Figure 2 shows a density plot of
EN versus the normalized detuning Δ/ωm and the Coulomb
coupling strength at a temperature T=10 μK. As illustrated
in previous section, as long as the logarithmic negativity
EN>0, there is an entanglement between the mechanical
resonators, meaning that there is a quantum correlation
between two mechanical resonators, even though they are
separated in space. With the increase of the coulomb coupling

Figure 2. The logarithmic negativity EN versus wD m and Coulomb
coupling strength Γ. The other parameters are
w w w p= = = ´2 947m1 2 kHz, g g g p= = = ´2 141m1 2 Hz,
k k k= = =1 2 2π×215 kHz and Ã = Ã = Ã = 4 mW1 2 and
T=10 μK.
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strength, not only the entanglement is progressively stronger
but also the effective detuning’s region that entanglement
exists is more and more broader, which are very highly sig-
nificant due to the fact that larger the value of the columbic
coupling G, the stronger the mechanical resonators entangled,
the broader the range of entanglement and consequently the
more easily it is observed and realized in experiments. Our
numerical results reveal that the maximum entanglement is
almost linearly dependent on the strength of the Coulomb
interaction aroundΔ/ωm=1. In addition, it is not possible to
observe the entanglement between the two mechanical reso-
nators if there is no Coulomb interaction. So the Coulomb
interaction between the mechanical resonators is the essential
reason of the entanglement. We can estimate the feasibility of
the choice of numerical values of the Coulomb coupling
strength Γ in recent experiment. If we adjust the gate voltage

= =V V 200 V1 2 , the capacitance of the gate
C1=C2=2.4 nF and the separation between mechanical
resonators without Coulomb and optomechanical interaction
r; 160 μm, in this situation Γ≈ w0.4 m. If we compare the
numerical values used in our coupled optomechanical system,
it is obvious that our choice of numerical value of Coulomb
coupling strength is easily executable in experiments.

In figure 3 we show how we switch from classical
behavior to quantum behavior. For this purpose, we consider
the important role of the optomechanical couplings G1 and
G2. Figure 3 shows a density plot of EN versus the environ-
ment temperature T and the Coulomb coupling strength in the
absence of the optomechanical couplings i.e. G1=G2=0 .
As shown in figure 3, it can be seen that in the absence of
optomechanical couplings, if we increase the Coulomb cou-
pling and decrease the temperature, the system comprising
two separated mechanical resonators in space will exhibit the
quantum entanglement behavior. But as we increase the
environment temperature, the thermal noise increases and as a
result this quantum entanglement behavior will vanishes.
From this result, we infer that an increase in temperature,
leads to the transition from quantum to classical regime,
which is obviously due to the thermal fluctuations. These
thermal fluctuations are very important in a sense that they act

as a Decoherence channel [6]. Hence, the system in classical
regime do not shows any entanglement even though there
exists quite strong Coulomb coupling strength. Due to this
fact, we cannot observe the quantum behavior in macroscopic
world. Hence the emergence of quantum behavior in macro-
scopic bodies in mechanical motion is usually bounded by the
thermal noise. However, under the auxiliary of the two
optomechanical couplings, the two mechanical resonators in
the classical regime can exhibit the quantum entanglement
and once the optomechanical couplings from both sides
vanish, the entanglement between the mechanical resonators
will vanish accordingly. Consequently, the system come back
to the classical regime. This is because of the optomechanical
couplings cool down the mechanical resonators and sup-
presses harmful effect of the thermal noise. Therefore, the
optomechanical couplings play an important role to study the
transition from classical behavior to quantum behavior.

Next, we examine the variation of the entanglement
between the two mechanical resonators versus the input laser
power and the temperature of the phonon reservoir. Figure 4
shows the steady-state entanglement between the two
mechanical resonators, measured by the logarithmic nega-
tivity, EN, as a function of the strength of laser power Ã and
the temperature of the phonon reservoir T for the normalized
detuning Δ/ωm=1, and for different values of the Coulomb
coupling strength Γ. From figures 4(a) and (b), it is obvious
that when the value of the Coulomb coupling strength is
weak, the maximum entanglement can be achieve for a low
value of temperature and input laser power. In addition,
entanglement between the two mechanical resonators
decreases when any of the two quantity increase. For strong
Coulomb coupling strength as shown in figures 4(c) and (d),
we see that for small value of environment temperature, the
entanglement first increases, reaches to maximum value and
then decrease as we increase the input laser power. Further-
more, one can easily note that the entanglement has a max-
imum value for a small interval of input laser power. Hence,

Figure 3. The logarithmic negativity EN as a function of Coulomb
coupling strength Γ/ωm when G1=G2=0 and the environment
temperature T. The other parameters are same as in figure 2. Figure 4. Plot of the logarithmic negativity EN as a function of the

environment temperature and input laser power for normalized
detuning wD = 1m when (a) wG = 0.2 m, (b) Γ=0.4ωm, (c)
Γ=0.6ωm and (d) Γ=0.8ωm. The other parameters are same as in
figure 2.
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we conclude that for strong Coulomb coupling strength, we
cannot only enhance but also conrtol the maximum value of
the entanglement between mechanical resonators by appro-
priately adjusting the input laser power. It is interesting to
mention here that one can also control as well as enhance the
entanglement through optimal control theory [62, 63].

We also investigate the stationary entanglement transfer
of the two bipartite subsystems. We denote the logarithmic
negativities for mirror 1-mirror 2 and cavity 1-mirror 1/cavity
2-mirror 2 as EN

mm and EN
C mi i (i=1, 2) respectively. As our

system is symmetric, so the entanglement between cavity
1-mirror 1 and cavity 2-mirror 2 must be equal i.e.

=E EN
C m

N
C m1 1 2 2. We have studied the entanglement transfer by

two ways: firstly, by changing the coupling strength at fixed
input power and secondly by changing the input laser power
at fixed coupling strength. In figure 5, we have plotted the two
bipartite logarithmic negativities EN

C mi i (orange solid line), and
EN

mm (green dashed line), versus the normalized detuning
Δ/ωm for fixed value of Coulomb coupling strength. It is
obvious that there is a sort of entanglement transfer between
two bipartite subsystems, i.e. the bipartite entanglements
EN

C mi i increase while the bipartite entanglement EN
mm decrease

with the increase of input laser power. In figure 6, we have
plotted the two bipartite logarithmic negativities EN

C mi i (orange
solid line), and EN

mm (green dashed line), versus the normal-
ized detuning Δ/ωm for fixed value of input laser power. It
can be easily observed that for a fixed value of input laser
power, as the Coulomb coupling strength increases, the
entanglement between the cavity and mirror increases while
the entanglement between the two mechanical resonators
decreases. It is obvious that when we increase the input laser
power for fixed value of the Coulomb coupling or decrease
the Coulomb coupling between the two resonators at fixed
value of input laser, the interaction between two resonators

slightly decrease and therefore, entanglement between the
mirror–mirror decrease. Hence, it can be clearly seen from the
figures 5 and 6 that the bipartite entanglement EN

C mi i is
increased while the bipartite entanglement EN

mm is decreased
with either by decreasing the coupling strength for a fixed
value of input laser field or by increasing the input power
from both side for a fixed value of Coulomb coupling
strength. In other words, the enhancement of the entangle-
ments EN

C mi i at the expense of the entanglement EN
mm.

In experiments, it is very hard to attain two totally
identical mechanical resonators. So, it is very much necessary
to discuss the case in which the two separated mechanical
resonators in space have unequal frequencies. For this pur-
pose, we plot the logarithmic negativity EN

mm when two
mechanical resonators have different frequencies. One can
easily observe from figure 7 that the influence of 5% devia-
tion of the frequency of the mechanical resonator on the
entanglement between the two mechanical resonators is
almost similar. Furthermore, when the frequency of
mechanical resonator ω2=0.95ω1, the two mechanical
resonators are more entangle but the optimal entanglement is
shifted towards lower detuning value while if the frequency of
mechanical resonator w w= 1.052 1, the entanglement between
the two mechanical resonators is slightly reduced and optimal
entanglement is moved towards higher detuning value. It is
confirmed from the above discussion that small frequency
deviation between the two mechanical resonator will not
affect the classical to quantum entanglement behavior
between the two mechanical resonators separated in space. In
addition, the strength of the entanglement can be control by
appropriately adjusting the frequencies of the two mechanical
resonators.

Figure 5. The logarithmic negativity =E EN
C m

N
C m1 1 2 2 and (dashed

green line) EN
mm (solid orange line) as a function of the Δ/ωm for

different values of the input power when (a) Ã = 2 mW, (b)
Ã = 4 mW, (c) Ã = 6 mW and (d) Ã = 8 mW. In (a-d), we set
Γ=0.4ωm. The other parameters are same as in figure 2.

Figure 6. The logarithmic negativity =E EN
C m

N
C m1 1 2 2 and (dashed

green line) EN
mm (solid orange line) as a function of the Δ/ωm for

different values of the coupling strength when (a) Γ=0.8ωm, (b)
Γ=0.6ωm, (c) Γ=0.4ωm and (d) Γ=0.2ωm. In (a-d), we set
Ã = 4 mW. The other parameters are same as in figure 2.
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5. Conclusion

In conclusion, we have studied the steady state entanglement
between the two mechanical resonators which are coupled
through Coulomb interaction in coupled optomechanical
systems. We have shown that the Coulomb interaction
between the mechanical resonators is the essential reason for
the existence of entanglement between the two mechanical
resonators that are separated in space. Our results show that
we can achieve non-zero quantum entanglement between the
two mechanical resonators for large Coulomb coupling
strengths at small effective temperature even at zero effective
optomechanical couplings and show a quantum behavior.
Furthermore, an increase in temperature leads to the transition
from quantum to classical regime, which is due to the thermal
fluctuations which act as a decoherance channel [6]. In
addition, the optomechanical coupling strengths of the two
cavities are two significant factors to control the entanglement
between the two mechanical resonators at different Coulomb
coupling strength. Moreover, in experimentally feasible
regimes, the results of our numerical simulation showed that
we can easily transfer the entanglement, based on our coupled
optomechanical system and have shown the transfer of the
entanglement from mirror–mirror to the cavity-mirror either
by decreasing the Coulomb coupling strength or by increasing
the input laser power from both side. Finally, we have shown
that we can control and enhance the maximum entanglement
through appropriately adjusting the frequencies of the two
mechanical resonators. In addition, frequency deviation
between the two mechanical resonators cannot affect the
classical to quantum transition behavior.
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