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Abstract
In this paper, an elegant mathematical approach is introduced to solve the equations of warm
inflationary model without using extra approximations other than slow-roll. This important
inflationary method known as Hamilton–Jacobian formalism. Here tachyon field and the
imperfect fluid are considered to be the cosmic ingredients to create inflation. A general
formalism is developed for the considered inflationary model and further work is restricted to
weak dissipative regime. A detailed analysis of the model is presented for three different choices
of bulk and dissipative coefficients taking as constant as well as variable (function of Hubble
parameter and inflaton). In each case, the involved model parameters are constrained to plot the
physical acceptable range of scalar spectral index and tensor to scalar ratio. The parametric
trajectories proved that the acquired results for all the three cases are compatible with Planck
astrophysical data. Furthermore, the existence of warm inflation and slow-roll limit are also
verified graphically.
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1. Introduction

In reference [1], Guth put forward a compelling research
phenomenon in the field of modern cosmology named cosmic
inflation. This theoretical framework became the most suc-
cessful for describing the rapid expansion of very early cosmic
stage as well as solves some shortcomings of the hot big-bang
model, like ‘the horizon problem, the flatness problem and the
monopole problem’ [2, 3]. The observed anisotropies in the
cosmic microwave background radiation are in good agreement
with approximately Gaussian, with a scale-invariant primordial
power spectrum, adiabatic scalar perturbation [4]. Inflationary
theory has ability to bring about a causal mechanism to describe
the large scale structure of the Universe and also the source of
the CMB anisotropies, since inflaton’s quantum fluctuations
during the inflationary expansion are responsible to generate
primordial density perturbations [5].

The inflationary models have two distinct realizations: ‘cold
(isentropic) inflation’ and ‘warm (non-isentropic) inflation’ (WI)
[6–8]. During first type of inflation, the potential term (of the

inflaton’s field) remains large as compared to kinetic energy.
Ultimately, this phase terminates with a reheating era that
produces radiation into the Universe. Moreover, all interactions
of the inflaton field with other fields present in the system are
typically ignored. In contrast to standard ‘cold inflation’, the other
picture of inflation (i.e. WI) has an essential characteristic of
avoiding a reheating period as the accelerated expansion is ended
due to the decay of the inflaton into radiation and relativistic
particles during slow-roll period. The evolution equation of the
inflaton field contains dissipative term originated from this
interaction. However, the source of the density fluctuations is the
major difference between these two pictures. DuringWI scenario,
a thermalized radiation component is present with a restriction

> Hr (where  H,r be the temperature of thermal bath and the
Hubble expansion rate). Generally, the thermal fluctuations are
produced in spite of quantum [6–8]. Bartrum et al [9] and Bas-
tero-Gill et al [10] discussed the importance of being warm
during inflation and warm little inflation, respectively.

Fluctuation and dissipation phenomena could potentially
play an important role in the early universe cosmology. When
matter content of the Universe can be split into a subsystem
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interacting with a large energy reservoir, then physical pro-
cesses may be represented through effective dissipation and
stochastic noise terms Various physical systems have been
proposed for the early universe which are well suited for such
a treatment. A treatment involving fluctuation-dissipation
dynamics can be implemented at different levels of coarse
graining of the degrees of freedom. In WI, the transfer of
inflaton energy to the radiation bath is mediated by the cou-
pling (dissipation) term in the inflatonʼs conservation
equation. Due to inner couplings in the radiation fluid itself,
an additional effect can arise. Internal dissipation within
radiation fluid slightly disturbs it from thermal equilibrium.
Thus, the radiation fluid behaves as a non-ideal fluid and
viscosity effects cannot be neglected. The relevant viscous
effect, at the background level, is due to bulk pressure as it is
the only viscous effect appearing in the background equations
[11]. Decay of massive particles within fluid is an entropy-
producing scalar phenomenon, while bulk viscous pressure
(Π) has entropy-producing property. The discussion of bulk
viscous effects in cosmology, particularly in inflation, is
focused mainly on the effect of Π as a negative pressure [12].
There has been a surge of interest to study the effects of Π
which acts as the origin of the accelerating cosmic expansion
[13]. Tachyon WI with bulk viscous pressure is behaved as an
attractor under particular conditions.

As mentioned earlier, inflaton decays during WI and
relativistic particles are produced which usually taken as
radiation. By considering the generation of other mass parti-
cles in the fluid could alter the inflationary dynamics by
modifying the pressure of fluid in two ways [14]: firstly, the
hydrodynamic equilibrium pressure shifts from = rP

3
to

P=(γ−1)ρ (1�γ�2 denotes adiabatic index); sec-
ondly, taking into account non-equilibrium viscous pressure
during inter-particle interaction and particle decay inside the
fluid [15]. The adiabatic index, g = 4

3
, for a quasi-equilibrium

high temperature thermal bath as an inflationary fluid. Misner
[16] was probably the first to introduce the viscosity from the
standpoint of particle physics; see also Zel’dovich and
Novikov [17]. Nevertheless, on a phenomenological level, the
viscosity concept was actually introduced much earlier, with
the first such work being that of Eckart [18]. When con-
sidering deviations from thermal equilibrium to the first order
in the cosmic fluid, one should recognize that there are in
principle two different viscosity coefficients, namely the bulk
viscosity and the shear viscosity. In view of the commonly
accepted spatial isotropy of the Universe, one usually omits
the shear viscosity. This is motivated by the WMAP [19] and
Planck observations [20], and is moreover supported by
theoretical calculations, which show that in a large class of
homogeneous and anisotropic universes isotropization is
quickly established. Brevik et al [21] used a theoretical
approach to provide information concerning quantities related
to observations, giving estimations on the inflationary
observables, as well as on the magnitude of the current bulk
viscosity itself. From this analysis, one can see the important
implications and the capabilities of the incorporation of

viscosity, which make viscous cosmology a good candidate
for the description of Nature.

After introducing WI, several work has been done in this
direction. Fang [22] firstly proposed the concept of coincident
particle production during WI and motivated to develop the
inflationary scenario using the condition > Hr . Moss [23]
and further going into detail Yokoyama and Maeda [24]
performed the inflationary calculations including a dissipative
term fW ˙ into the evolution equation of the inflaton field. del
Campo and Herrera [25] investigated the ‘generalized Cha-
plygin gas’ inspired WI driving by an inflaton field containing
canonical kinetic term and using dissipative coefficient, i.e.

fW µ m. The consistency of WI with observational data is
examined using the chaotic potential in the framework of
‘loop quantum cosmology’ by Herrera [26]. Herrera et al [27]
studied the evolution of generalized dissipative coefficient
W µ = -

f - m; 1, 0, 1, 3T m

m 1 during ‘intermediate’ and ‘loga-

mediate’ eras. Bamba et al [28] considered single and mul-
tiple scalar field theories, tachyon scalar theory and
holographic dark energy as models for current acceleration
with the features of quintessence/phantom cosmology, and
demonstrated their equivalence to the corresponding fluid
descriptions. Further, WI driven by a tachyonic, vector and
non-Abelian gauge fields is analyzed by Setare and Kamali,
they assumed the scale factor evolves according to ‘inter-
mediate’ and ‘logamediate’ models [29–31]. Furthermore,
special attention is paid to the equivalence of different dark
energy models. Setare and Kamali [32] for the first time
considered warm tachyon inflation with viscous pressure
motivated by the fact that it gives an end for tachyon inflation.

Sharif and Saleem [33] discussed inflationary dynamics
inspired by GCCG (‘generalized cosmic Chapygin gas’) using
standard and tachyonic fields in ‘intermediate’ and ‘loga-
mediate’ scenarios. The same authors presented a detailed
analysis on the dynamics of warm viscous inflation taking
isotropic and an anisotropic universe describing by Bianchi I
model [34–37]. They studied the model for various types of Ω
(dissipation parameter) and ξ (bulk parameter) and reported
that the scalar spectral index (ns) lies in the compatible range
for less number of e-folds (N). The authors in [38] investi-
gated the polynomial WI and confirmed the consistency of
their results with recent astrophysical data. Sadjadi and
Goodarzi [39] discussed oscillatory type of inflation with non-
minimal kinetic coupling as a resolution of few number of
e-folds (‘non-minimal derivative coupling model [40]’). They
reported that the perturbed parameters for this scenario remain
compatible with Planck 2013 data. Extending the previous
work, Saleem [41] examined the compatibility of the aniso-
tropic oscillatory inflation model having non-minimal kinetic
coupling with Planck 2015 data. However, this type of
inflation does not clear the end stage of inflation that either
reheating phase occurs or the Universe is dominated by
radiation. In literature, several work has been done on
investigating the WI in many alternative (modified) theories
of gravity [42, 43].

However, slow-roll is not the only approach for suc-
cessful implementation of the cosmic inflationary models, and

2
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particular solutions have been found without using slow-roll
limit [44]. Kinney [45] discussed a general technique in order
to evaluate inflationary solutions without implementing the
slow-roll approximation. This technique is mainly based on
the notion of considering the scalar field matter’s equation of
state as the fundamental part of the dynamical equations, as
contrary to the field itself. This approach is related to the
Hamilton–Jacobi (HJ) formalism [46], where the rate of
expansion is considered as the dynamical variable. It is shown
that a slow-roll free solution is helpful in calculating the
condition for the model to exit from inflation with inverted-

type of potentials, y = L - y
m

U 1
p

4( )( )( ) . For early stage of

inflation (where y m ), the slow-roll approximation is
taking to be good, but violates well before the ending of
inflation [45]. The same author [45] applied HJ formalism to
hybrid inflation (more complicated), in this kind of model, the
slow-roll condition fails at all points in the evolution of the
inflaton field.

Akhtari et al [47] considered WI scenario with viscous
effects for standard scalar field using HJ formalism. They pro-
vided a detail study of the model treating dissipation and bulk
viscous pressure coefficients as constant as well as variable. First
case deal with constant coefficients, which could not portray WI
scenario in agreement with Planck observational data for
restricted values of the model parameters. The other two cases
for variable coefficients are properly predicted that the perturbed
parameters are in good agreement with Planck data. Motivated
by this work, we have applied the HJ formalism on tachyon
inspired inflation with viscous pressure. In this scenario, a
general criteria is developed to evaluate the solutions of the
tachyonic inflationary model equations given in section 1. Fur-
ther, the work in this paper is restricted to weak dissipative
regime. In section 2, the present model is developed in three
different cases, i.e. x x yW = W = W = Wa b, m

0 0 0( ) ( ) ,
x x= W = Wc H0 0

2( ) , x x r= 0 . The involved model para-
meters are constrained to plot the r y r y- - -y R, ,

-n H,s r trajectories. The graphical analysis in each case
shows that the tachyon inspired WI with viscous pressure during
weak dissipation is in perfect agreement with Planck data for all
constrained model parameters. The results are concluded in the
last section.

For simplicity, we took k p= = = = = c G k8 1B
2 ,

where = = ´-G M M, 1.2 10 GeVPl
2

Pl
19 being the Planck

mass. The involved model parameters have the units men-
tioned as r r y~ ~ ~ ~g y H M P U M; , ,Pl Pl

4( ) .

2. General criteria of developing an inflationary
model

The self-interacting tachyonic scalar field y( ) and an imper-
fect fluid (with bulk viscous pressure) are the components of
the assumed matter. The Lagrangian for tachyon field is given
as follows [48]

y y y= - - ¶ ¶m
m U 1 . 1( ) ( )

The considered field has the following energy density and
pressure, respectively

r
y

y
y y=

-
= - -y y

U
P U

1
, 1 , 2

2

2( )
˙

( ) ˙ ( )

where yU ( ) is the associated effective potential. Important
characteristics of this potential are y¢ <U 0( ) and y U 0( )
as y  ¥ [49]. The energy density of the imperfect fluid is
defined by r y=  S ,( ) with temperature  and entropy
density S [50]; while total pressure of the fluid becomes
P+Π, where the bulk viscous pressure is expressed as
Π=−3ξ H [51].

The dynamical equation for the spatially flat FRW metric
is expressed as

y r r= +yH
1

3
.2 ( ) ( )

Since the tachyonic inflaton field interacts with the other
existed fields and it decays into the fluid with rate Ω, there-
fore, the conservation equations can be written as under

r r y r gr y+ + = -W + + P = Wy y yH P H3 , 3 .

3

2 2˙ ( ) ˙ ˙ ( ) ˙

( )

The coefficient Ω, being the positive quantity, can be dependent

upon temperature and scalar field, i.e. W ~
y
 3

2 [8]. Putting

values of ry and yP , the first conservation equation becomes

y
y

y
y

y
-

+ +
¢
= -

W
-H

U

U U

¨

1
3 1 , 4

2
2

˙
˙ ˙ ( )

where dot shows time derivative while derivative with respect
toy is denoted by prime. During slow-roll era, the scalar energy
density is related to effective potential as r y~y U ( ). Under
slow-roll limits, y y y+ WH1; ¨ 3

U
˙ ( ) ˙  , the above

dynamic equation reduced to the following form

y+ = -
¢

=
W

H r
U

U
r

HU
3 1 ;

3
. 5( ) ˙ ( )

The quasi-stable radiation production restricts the derivative of
energy density as r gr + PH3˙ ( ) and r yW 2˙ ˙ , then the
energy density of imperfect fluid could be estimated from
second conservation equation as under

r g y= - P =
W- Q Q
H

;
3

. 61 2( ˙ ) ( )

In canonical WI scenario, the strength of Ω (the thermal
damping) should be relatively compared to H (Hubble expan-
sion damping). We must analyze the WI model in background
and linear perturbation levels on our expanding over timescales,
which are shorter than the variation of expansion rate, but large
compared to the microphysical processes

t
W

 W-U
H HU. 71 ( )  

Putting values of rf and ρ in the Friedmann equation, we get

y y y y= - +
W

= - +H U
H

U r
1

2 3

1

2
1 . 82 2⎜ ⎟⎛

⎝
⎞
⎠˙ ( ) ˙ ( )( ) ˙ ( )

3
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From the above equation, the term ẏ is obtained as follows

y
y

y
= -

¢
+

H

U r

2

1
. 9˙ ( )

( )( )
( )

Applying the condition, r ry  on Friedmann equation, we get
following expression of yU ( ) as

y y
y y

y
= -

¢
+

U H
H H

U r
3 1

2

1
, 102

2 2

2 2

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

( )( )
( )

which leads to a polynomial of order three in yU( ) as under

y y y y y y
y y y

y y y y y

+ W -
+ W - W

´ - W + ¢ =

H U H H U

H

U H H H

9 6 27

18

3 54 0.

11

2 3 4 2

2 3

2 2 6 2

( ) ( ) ( ( ) ( ) ( )) ( )
( ( ) ( ) ( ))

( ) ( ) ( ) ( ) ( )
( )

The most important physically observed parameter is ò,
mathematically expressed as

y
y
y

= - =
+

¢


H

H U r

H

H

2

1
. 12

2

2⎛
⎝⎜

⎞
⎠⎟

˙
( )( )

( )
( )

( )

The fluid energy density can be evaluated using above
expression and the expression of f2˙ as

r g
y

r=
+

- Py
- 

Q

U r

2

3 1
. 131

2

2 2

⎛
⎝⎜

⎞
⎠⎟( )( )

( )

Therefore, at the end of inflation and for the case r?1, the
above relation reduced to

r g r=  = - Py
- 1

2

3
. 141⎜ ⎟⎛

⎝
⎞
⎠ ( )

The parameter N can be calculated as

òy y
y
y

y= - +
¢y

y
N U r

H

H

1

2
1 d , 15

e
( ) ( )( ) ( )

( )
( )

where ye and y be the start and end value of inflaton. The other
slow-roll parameter is given as under

h
y

y
y

= - =
+

H

HH U r

H

H

¨ 2

1
. 16˙ ( )( )

( )
( )

( )

The thermal power spectrum of scalar perturbation is read
as [49]

y
c y
y

=
W -

¢
P

H

U U
32

exp 2
, 17s r

1
2⎛

⎝⎜
⎞
⎠⎟( )

[ ( )]
( )

( )

where the quantityc y( ) (auxiliary function) is calculated as [49]

òc y
y

g

g
x

x
f

=-
+

+
+

+

´ W + -
+

´ - + P
¢r

W¢
¢

W

W

W

W¢ ¢

W

H G

H

H

HU
H H

U

U

3

9

8

2

3

4
12 3

1 d , 18

U

U

U

U

U

U

U

2

,

2

⎡

⎣
⎢⎢⎢

⎛

⎝
⎜⎜

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

( )

( )

( )
( )

( ) ( )

here

y gr
gr

g

x

x
= - + P +

+ P
P -r

G
H

1
1

8
2 3 1 .

2

,
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠
⎟⎟( )

The power spectrum of tensor perturbation is [49]

p
=


P

H k

2
coth

2
.T

2

2

⎡
⎣⎢

⎤
⎦⎥

The scalar spectral index (ns) can be calculated in the following
form

c y y

- =

=
W¢
W

+
¢
-

¢
-


¢
- ¢

n
P

k
H

H

U

U

U

U

1
d ln

d ln

2 2 2
2 2 , 19

s
s

⎡
⎣⎢

⎤
⎦⎥( ) ˙ ( )

where =k H td ln d . The tensor-scalar ratio is defined by

p
y c y=

W
¢ =




R k

U
H U

k

64
exp 2 coth

2
.

20

r
k k0 2

2
1
2 3

2
0

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥( ) ( ) [ ( )] ∣

( )

Now, we will analyze the behavior of perturbed model
quantities by comparing with recent Planck data in the following
section. To complete the task, a specific power-law form of
Hubble parameter as a function of inflaton is proposed as

y y=H H n
0( ) , where n is an arbitrary constant and H0 has

dimension -M n1 .

3. Weak dissipative regime

Here, we will develop all these calculation under weak dis-
sipation condition,  Wr H1 3  . The coefficients Ω and
ξ are considered to be constant and variable in alternative cases.

3.1. Case I: Ω ¼ Ω0; ξ ¼ ξ0

During weak dissipative regime and for constant coefficients,
equation (10) is reduced to be

y y
y
y

= -
¢

U H
H

U
3 1

2
, 212

2

2

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

( )
( )

which leads to following polynomial of order three in U(ψ)

y y y y y- + ¢ =U H U H H3 6 0.3 2 2 2 2( ) ( ) ( ) ( ) ( )
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Taking y=H H n
0 , the solution of yU ( ) has the following

form

y y y y

y y

y y

= -

+ -

+ +

- + +

+ -

- -

U H n H n

H n H n

H n

9 6

3

. 22

n n n

n n

n

0
7 6 2 2 1

0
2 8 1 2 2 5 2

0
6 6 6

0
4 2 4 1

0
2 2 2 1 2

1
3

( ) [

]
( )

( ) ( ) ( )

( )

( )

The value of y2˙ can be calculated from the expression
y y= - HU22˙ ˙ ( ) (equation (9)) as

y y y y

y y y

y y

=- ¢ +

+ -

+ -

- -

- + +

+ - -

H H n

H n H n

H n H n

2

9 6

3 . 23

n

n n n

n n

0
2 2 2 1 2

0
7 6 2 2 1

0
2 8 1 2 2 5 2

0
6 6 6

0
4 2 4 1 11

3

˙ ( )[

[

] ] ( )

( )

( ) ( ) ( )

( )

The weak dissipation regime produced the following
number of e-folds given in equation (15) as

ò ò
y
y

y y y y y= -
¢

= -
y

y

y

y
N

H

H
U

n
U

1

2
d

1

2
d ,

24
e e

( )
( )

( ) ( )

( )

which leads to the solution of y as

y y y= - + + +

+ +

nN
H n

H n

H n
H n

exp
1

2
ln

2
1

4
1 .

25

e e
n0

2

0
3 2 2

0
2

0
3 2

⎡
⎣
⎢⎢

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥

⎤
⎦⎥

( )

( )
( )

The slow-roll parameters are reduced to

y y

h

y y

= - -

- + +

- +

= - +

´ - - + +

+ + -

 n H n nN

H n
H n

H n H n

n H n H n

nN
H n

H n

H n
H n n n

2 1 2 exp 4

2 ln
2

1

1 ,

1 1

exp
1

2
ln

2
1

4
1 3 1 .

26

e e
n

e e
n

2
0
3 2

0
2

0
3 2 2

0
2

0
3 2

2
0
2 2

0
3 2

0
2

0
3 2 2

0
2

0
3 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎤
⎦
⎥⎥

⎤
⎦
⎥⎥

[ [

( )

( )]]
[ ( )

( )

( ) ( )
( )

The value of ye can be evaluated using the exit condition
ò=1 in the following form

y = - + - +
-

- +

-

+

H n
H n nN

n

H n

H n
H n

exp
2

1 2 ln
2 1

4

2
1 .

27

e
0
2

0
3 2

2

0
3 4

0
2 2

0
3 2

n

1
2

1
1 2

⎡

⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎤
⎦
⎥⎥

( )

( )
( )

Figure 1 (left plot) shows that tachyon field slowly rolls down
to its minimum point and then attains stable configuration.

The right plot of figure 1 satisfies the restriction of work done
in weak dissipative regime as r=1 for above mentioned
values of the model parameters. The energy density is
restricted under r=1 as

r g
y
y

g
y

y y y

= - P

=
+ +

- P

-

-
- -

H

H

H H n H n

2

3 U

2

3 3 6
.

28

n

n n

1
2

2

1 0
2 2

0
6 6 4

0
4 4 4 4

0
5 2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )
( )

( )

The plots of ρ and ρψ versus ψ are plotted in left and right
plots of figure 2. By comparing the attained range of both
energy densities for specified values of the model parameters,
it can be noticed that the slow-roll condition is true in
this scenario. The other involved parameters are fixed
to g x= = ´ - M1.5, 7 10 .p0
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The scalar power spectrum in weak limit has the form as
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where ψ is given in equation (25). The tensor power spectrum
is calculated to be
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The above two equations of spectrum lead to express
tensor-scalar spectrum ratio as
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The parametric trajectory of R–ns is plotted in figure 3 for
specified values of model parameters. These trajectories fall in

the physical acceptable range allowed by Planck astrophysical
data as R<0.11 for ns=0.968. Hence, the constant
coefficients case is compatible with Planck data for
constrained values of the model parameters.

The temperature of weak regime can be expressed as
under using the relation, r = = g S C 4
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Figure 4 verifies that the current model gracefully
describes the existence of WI by satisfying the condition

>g H for constrained model parameters. For constant
coefficients case, the expression Ω<3H constrained as

Figure 1. Left plot ψ versus N: red for n=0.5, H0=1.6×10−2; green for n=1, H0=5×10−3; blue for n=2, H0=5×10−4. Right
plot r verses ψ for Red for n=0.5, H0=1.6×10−2; green for n=1, H0=5×10−3; blue for n=2, H0=5×10−4.

Figure 2. Left plot ρ versus f: dotted for n=0.5, H0=1.6×10−2; dashed for n=1, H0=5×10−3; thick for n=2, H0=5×10−4.
Right plot rf versus f: dotted for n=0.5, H0=1.6×10−2; dashed for n=1, H0=5×10−3; thick for n=2, H0=5×10−4.

Figure 3. R versus ns: red for n=0.5, H0=1.6×10−2, Ω=0.03;
green for n=1, H0=5×10−3, Ω=0.01; blue for
n=2, H0=3×10−3, Ω=0.033.

Figure 4. Parametric plot of g versus H: thick for
n=0.5, H0=1.6×10−2; dotted for n=1, H0=5×10−3;
dashed for n=2, H0=6×10−4.
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follows
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The expressions for amplitude of tensor perturbations without
and with viscous pressure shall satisfy the following con-
straint for H0, respectively
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where Ps is given in equation (30).
Next, we will use the same formalism taking variable

dissipation coefficient.

3.2. Case II: Ω ¼ Ω0ψ
m; ξ ¼ ξ0

In this case, the expressions for ψ, ò, η and ρ remains the same
as in the previous case. While for variable dissipation coef-
ficient (as a function of y), c y( ) is turn out to be
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Using above equation, Ps has the form as mentioned below

y

y y y

y y y

y

y y y

g
g

y

= W

´
+ + +

- + - + +

+
- W

- - + +

- + + +

-
- - W
- +

- - -

- -

- +

- -

-

+
P T H

H n H n H

n H n H n H

m

n m n H n H n

H n H n H

n m

m n H n H n

32

1

2 2 2 1 2

exp
2

3 2 2 3 3 1

2 ln 1

2 1 2 2

144 5 1
,

39

s r

n

n

m n

n

m n

0 0

2
0
2 2

0
3 2 2 1

0
3 2 1

2
3

0
2 2

0
3 2 2 3

0
3 2

0
3 3

0
3 2

0
3 2

2
0
2 2

0
3 2 2 2

0
3 2

2
0

0
5 2

0
3 2

5

m n1
2

1
2 2

⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦
⎥⎥

( ( ) )

( ( ) ( ) )

( )( ) ( )
[ ( ) ]

( )( )
( ) ( ) ( )

( )

where y is perviously used given in equation (25). The
logarithm derivative of the above equation leads to following
parameter
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The tensor power spectrum is calculated in equation (31).
Equations (31) and (39) combined to produce physical para-
meter R as
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Figure 5 represents a parametric plot of R versus ns for three
different values of n and m=3. This plot clearly proves the
compatibility of this case with Planck data as both of the
perturbed parameters follow the physical bound for con-
strained model parameters.

3.3. Case III: Ω ¼ Ω0H
2; ξ ¼ ξ0ρ

Under these conditions, the auxiliary function is modified to
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which further leads us to calculate scalar power spectrum as
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The tensor-scalar spectrum ratio can be calculated as
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The nature of R–ns trajectory is depicted in figure 6. For
constrained values of the model parameters, the value of R is
always less than 0.11 for standard value of ns=0.968. Hence

the third case of WI model inspired by tachyon field remains
compatible with Planck bound.

4. Concluding remarks

Dissipation is an important phenomenon for the description of
entropy mode production. The inflationary models with vis-
cous effects have ability to generate a rich variety of power
spectra ranging between red and blue. The possibility of a
spectrum which runs from blue to red is particularly inter-
esting, because it is not commonly seen in inflationary
models, which typically predict red spectra. Models of infla-
tion with dissipative effects and models with interacting fields
have much more freedom than a single self-interacting
inflaton in agreement with the observational data.

The inflationary era (a phase of early cosmic evolution)
could be gracefully described by tachyon field, related to
unstable D-brane, due to the tachyon condensation near the
maximum of the effective potential. On the other hand,
tachyon fields may produced relativistic fluid or a new type of
cosmological dark matter in the cosmos at the late time.
Tachyon potentials have two special characteristics: firstly a
maximum of U(ψ) is obtained, where y  0; secondly
minimum of U(ψ), which is obtained for y  ¥. If the
tachyon field starts to roll down the potential, then the Uni-
verse dominated by a new form of matter, will smoothly
evolve from cosmic inflation to an era, which is dominated by
a non-relativistic fluid. So, we can explain the phase of
exponential expansion in terms of tachyon field. In the fra-
mework of cold tachyon inflation, after slow-roll phase,
tachyon fields evolve towards minimum of U(ψ) without
oscillating about it, thus, here the reheating mechanism does
not applicable. Warm tachyon inflation is a picture, where
there are dissipative effects playing important role during
inflation. As a result of this, the inflation evolves in a thermal
radiation bath; therefore the reheating problem of cold tach-
yon inflation can be solved in the framework of warm tachyon
inflation. It is noted that the cold tachyon inflation era can
naturally end with the collision of the two branes so in this
situation, WI is not needed. If the collision of two branes does

Figure 5. R versus ns: red for n=0.5,H0=3×10−3,Ω=0.001 5;
green for n=1.5,H0=4×10−4,Ω=0.001 2; blue for n=2.5,
H0=3.5×10−2,Ω=0.003.

Figure 6. R versus ns: red for n=0.5, H0=3×10−2, Ω=0.0022;
green for n=1.5, H0=9×10−4, Ω=0.0002; blue for
n=2, H0=10×10−4, Ω=0.0002.
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not arise naturally, WI is perfectly good scenario that can
solve the problem of end of tachyon inflation [52].

Motivated by dissipation and tachyon fields, this paper is
devoted to discuss warm tachyon inflation with dissipation and
viscous effects originated by tachyon field using a powerful
method known as HJ formalism. The advantage of this method
is to get rid of too many approximations other than slow-roll
used to solve the system of inflationary model equations.
Considering this scenario, we have developed a general criteria
to evaluate the solutions of ψ and U(ψ) and to modify the slow-
roll as well as perturbed parameters for the present model.
Here, the analysis is made in weak dissipative regime. The
tachyon inspired inflationary model is being developed for
three different choices of Ω and ξ: (a)Ω=Ω0,ξ=ξ0;

y x x x x rW = W = W = W =b c H, ; ,m
0 0 0

2
0( ) ( ) , where

m is an arbitrary positive constant. The involved model para-
meters are constrained to get the required results.

The solution of inflaton in terms of number of e-folds is
calculated, using this solution, we have formed the expressions of
r ry, and yU ( ) as a function of N. The scalar field is slowly
rolls down towards minimum value of potential and after a time
inflaton is in equilibrium state as shown in left plot of figure 1.
Right plot of figure 1 verifies that model is interpolated from high
to low dissipative regime. To observe the nature of these quan-
tities, we have plotted ρ and ry versus ψ in left and right plots of
figure 2. On comparing these two plots, it is noted that imperfect
fluid energy density is much less than inflaton density for specific
values of the model parameters. The values for left plot are
constrained to n=0.5,H0=1.6×10

−2 (dotted curve);
n=1,H0=5×10

−3 (dashed); n=2,H0=5×10
−4 (thick)

while for right plot: n=0.5,H0=1.6×10
−2 (dotted);

n=1,H0=5×10
−3 (dashed); n=2,H0=5×10

−4 (thick).
Hence, it can be verified that the slow-roll condition is true in this
scenario. The other involved parameters are fixed to
g x= = ´ -1.5, 7 100

14. Further, to check the compatibility
of the warm tachyon inflationary model with observational data,
we have plotted R–ns trajectories for specified values of the
model parameters. Figures 3, 5 and 6, plotted for three different
choices of Ω, ξ, verify that the model is in good agreement with
Planck bound as R<0.11 for ns=0.968 for all the three values
of n. In figure 4, the trajectories of - Hr are plotted, which
proves the existence of WI by satisfying the condition  Hr  .

We have compared the results of our paper with previous
literature. It is proved that our model gives more physical
acceptable cases as compared to [47, 53]. All the three cases
(constant and variable coefficients) of tachyon inspired WI are
compatible with Planck data as compared to standard scalar
field inflation. The parameters are more fine-tuned as com-
pared to high dissipative regime [53]. It is worth mentioning
that tachyon inspired WI with bulk viscous pressure is rea-
listic as its ends gracefully and entered into another cosmic
era. In future, we will discuss this work by implementing first
principle of QFT.
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