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Abstract
Convective phenomena in a nanofluid flow under the influence of gravitational and magnetic
body forces is analyzed in this communication. Nanofluid is of viscoelastic nature that preserves
viscosity as well as elasticity. In order to capture the more realistic behavior of the convective
phenomena Caputo fractional derivative and fractional relaxation time are introduced in the
Buongiorno nanofluid model. Fractional derivative and relaxation time are used for controlled
flow mechanism and to overcome infinite propagation speed for the temperature and
concentration. The proposed model will also help to understand the hereditary and memory
properties of the viscoelastic nanofluid. In order to more closely analyze the buoyancy forces
nonlinear convection is introduced in the mathematical modeling of the flow problem. Finite
difference-finite element numerical computations are carried out for the governing nonlinear
partial differential equations. Quantities of physical interest are computed and discussed for the
fractional model. The proposed fractional model can be used to realistically simulate various
flow problems in polymer and chemical industries.
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1. Introduction

In recent times nanofluids gained interest of industrialists due
to their efficient use in the production of lightweight materials
and discussed by various researchers in literature [1, 2].
Various studies are performed to observe nanofluids flow
through micro [3] and macro [4] channels under different flow
configurations and their solutions are noted with small per-
turbation of flow parameters. Particularly viscoelastic nano-
fluids are used in electrospinning for the mass-production of
nanofibers [5, 6]. Nanoparticles suspension in the base fluid to
form nanofluid is only possible if there exist interaction
between the base fluid and nanoparticles surface to overcome
the differences of density. Nanoparticles effectively influence
the properties of base fluid. Thermal conductivity of base
fluid increases with these particles suspension. As a result
significant enhancement in the coefficient of heat transfer may

be seen in the flow domain and can not be tackled by tradi-
tional correlations [7]. Hence Buongiorno [8] provide an
explanation with his nanofluid model that with heated fluid,
viscosity of the fluid decreases results in increase of heat
transfer. In this article we have introduced Caputo fractional
derivative and the fractional relaxation time in the
Buongiorno model to control abrupt increase in heat transfer.

Control of heat transfer along with accurate description
of viscoelastic behavior [9] can be tackled simultaneously by
the improved form of Buongiorno model with fractional
derivatives. In recent years fractional calculus gained impor-
tance in fluid mechanics and many other branches of science.
Impact of fractional calculus with modern fractional operators
is seen in viscoelasticity, control theory and electrochemistry
[10, 11]. Also, applications of fractional calculus are
increasing due to modern advancements in fractional deriva-
tives that are more mathematically and physically reliable for
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example Atangana–Baleanu, Caputo–Fabrizio, and Caputo
fractional derivatives [12–15]. Sheikh et al [13] discussed the
importance of Atangana–Baleanu and Caputo–Fabrizio frac-
tional derivatives in flow problems with the presence of
chemical reacting species and also compare these two deri-
vatives in order to analyze the heat transfer. Ali et al [14]
described the combined effect of magnetic body force and
fractional derivative on the blood flow, where blood is
behaving like a Casson fluid. Magnetic particles are incor-
porated in the fluid flow and flow is generated by a pressure
gradient. Convective phenomena in a fluid flow via fractional
derivative combined with temperature and concentration
gradients is analyzed by Sheikh et al [15]. Physical
systems can better be understand by fractional derivatives
because they capture hereditary behavior of diverse sub-
stances [16–18]. Simulations of nonlinear models with frac-
tional derivatives can estimate experimental data in a better
way than the classical fluid models [19] and help to under-
stand microscopic characteristics of governing physical
system [20].

In order to control the flow, Lorentz force plays a vital
role within the flow domain particularly in viscoelastic pro-
blems such as in MHD generators and nuclear reactors.
Influence of magnetic body force can help to resist the flow in
boundary layer upto feasible extent. Convection, more pre-
cisely nonlinear convection has great influence on flow
characteristics because transport phenomena is effected by
both buoyancy and gravitational forces. It has widespread
applications in nuclear reactors, heat ex-changer and boilers.
Zhou and Liang [21] presented DDM scheme for unsteady
equations with convection and diffusion effects.

For the complete description of transport phenomena we
describe mass, energy and momentum transport using math-
ematical relations. Precisely differential equations are used to
describe these mathematical relations along with constitutive
expressions that define fluxes of the conserved quantities [22].
Governing differential equations are solved to study transport
of chemical species, heat transfer and fluid flow in geology,
engineering sciences, material science, meteorology, envir-
onmental sciences and medicines. Transport characteristics of
diffusivity, viscosity and conductivity are given by molecular
contact and Brownian motion [22]. In literature heat along
with mass transfer is extensively discussed by numerous
researchers. For instance, Salama et al [23] solved flow pro-
blem through porous medium using the flux approximations.
Here, in this study, viscoelastic second grade fluid model is
investigated for transport phenomena with nanoparticles
suspension in the base fluid. Flow problems in polymer and
fiber handling can be attempted via second grade fluid model
such as slurries and polymer suspensions [24]. Up till now,
fractional nanofluid flows are not tackled appropriately in
literature. Fractional problems are mostly solved via various
integral transforms. But it is problematic to solve nonlinear
coupled equations by integral transforms. Hence numerical
techniques are used for solutions of linear and nonlinear
models, for instance see [25, 26] and references there in. In
this communication, we considered finite difference and finite
element numerical schemes for the solution of current

fractional flow domain. Numerical results are plotted for
numerous values of physical numbers.

In this article we discussed the flow of fractional second
grade nanofluid. For the efficient control of heat and mass
transfer within the flow domain Buongiorno model is con-
sidered with fractional derivative and relaxation time. Flow is
restricted within the domain by magnetic body force.
Analysis is carried out with flux conditions at moving
boundary. Fluid is flowing over a moving plate with normally
applied magnetic field to fluid flow. Thermophoresis and
pedesis effects are considered in the present flow regime.
Space and time variables are discretized by finite element and
finite difference schemes respectively to get stabilized solu-
tion of flow problem. Effects of numerous physical flow
parameters are examined graphically. In section 2, problem
modeling via fractional mathematical equations is discussed.
Estimation of flow field by propose scheme is given in the
section 3. Simulated behaviors are observed in the section 4.
Finally, key finding are stated in the section 5.

2. Problem formulation

First we define the Caputo fractional derivative that will be
used in the formulation of governing flow problem. The
Caputo time fractional left sided derivative of order α where
a Î  and a >e 0{ }R is given by
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here Γ(·) stands for Euler’s Gamma function stated as
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

e d , , 0.1( ) ≔ { }R

Now consider magneto-hydrodynamic flow of a nano-
liquid between the space of never ending plates with non-
integer Caputo time derivative and mixed convection. Small
particles are suspended in the base liquid. Enclosure between
plates is filled with Darcy medium. Neumann conditions are
considered at the lower boundary. Heat flux description is
given in figure 1. At the initial time plates and liquid are very
still. Additionally at that time fluid and plates are at steady
temperature θ0 and concentration f0. When time increases
i.e. t>0, liquid begins moving by the movement of lower
boundary. We accept that flow field is depending upon t and y
only. Hence, velocity takes the form

= u y tU e, . 2.2x( ) ( )

Rivlin–Ericksen stress tensors that will be used for the con-
struction of momentum equation are given by

+ U U , 2.31
tr≔ ( ) ( )

¶ +  +  +     U U U . 2.4t2 1 1 1 1
tr≔ [ ] ( · )[ ] ( ) ( ) ( )

Moreover Cauchy stress tensor, for the second grade fluid
model is given by

m b b= - + + +    p , 2.51 1 2 2 1
2 ( )
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here p denotes fluid hydrostatic pressure and  stands for
identity tensor, μ>0 represents dynamic viscosity, β1 and β2
are material parameters for the second grade model. More-
over, thermodynamic stability requirements for the second
grade fluid model are β1�0, μ�0 and β1+β2=0. For
the construction of energy equation for nanofluid flow using
Caputo fractional derivative, we first consider the energy
equation given in Buongiorno paper, for details of used
quantities please see [8]

r q
¶
¶

+  = - + c
t

hU q J , 2.6f f p p⎜ ⎟⎛
⎝

⎞
⎠· · · ( )

here ρf, cf stand for density and specific heat of the nanofluid,
θ denotes the temperature of nanofluid, hp represents nano-
particles material specific enthalpy, q J, p are energy flux and
diffusion mass flux respectively.

Since we are dealing with the incompressible fluid so
using equation (2.2), we can write equation (2.6) as

r
q¶
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with q and Jp are defined as
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where k, stands for thermal conductivity of the nanofluid, ρp
denotes the density of nanoparticles, θ0 represents the refer-
ence temperature, f is the concentration, Dθ, DB are thermal
and concentration diffusion coefficients respectively.

Infinite propagation of temperature and concentration can
be observed with thermal and concentration flux vectors given
in equations (2.8) and (2.9). In order to overcome this

situation and following the [27], we can write the
equations (2.8) and (2.9) as
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where τ1 represents the relaxation time and α stands for
Caputo fractional derivative. After applying the operator
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to equation (2.7), we can write this equation as
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Now using equation (2.10) and after simplification
equation (2.12) takes the form
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Figure 1. Flow description.
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as q = h cp p [8] and using equation (2.9), we can write
equation (2.13) as
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here cp is specific heat of nanoparticles. Similarly by
following the concentration equation given in Buongiorno
paper [8], we proceed as
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equation (2.15), we can write this equation as
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Now using equations (2.2) and (2.11) and after simplification
equation (2.16) takes the form
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In present study governing equations for the incom-
pressible flow under gravitational and magnetic body forces
are given by
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r
k

c1
f( )
denotes thermal diffusivity, g stands for

gravitational acceleration, t = r
r

c

c2
p

f
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denotes heat capacities

ratio, b3 and b4 are coefficients of thermal expansion and b
stands for magnetic body force.

We assume that there is no pressure gradient.

2.1. Flow equations

The flow equations with associated conditions are given in
this segment. Equation (2.18) is identically, satisfied by

velocity U defined in (2.2). After simplification governing
equations reduces to
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In the above expressions σ denotes electrical con-
ductivity, ν is the kinematic viscosity and B0 is external
magnetic field.

2.1.1. Flow conditions. Conditions on thermal and
concentration gradients are incorporated at lower boundary.
Initially, complete flow domain is very still with temperature
θ0 and concentration f0. Conditions in this case are defined as
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Here A is dimensional constant, f0 is the reference
concentration, qθ, qf stand for constant heat and
concentration fluxes. Complete flow problem is specified by
(2.22)–(2.28).

2.1.2. Skin friction coefficient. Relative measure of friction
among solid boundaries and fluid is given by friction
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coefficient. Here friction coefficients are calculated as
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2.1.3. Nusselt numbers. Heat fluxes at the surrounding
boundaries are calculated by Nusselt numbers. Nusselt
numbers for the governing flow field are defined as
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here qs2
is the boundary temperature at y=0.

2.1.4. Sherwood numbers. Mass fluxes at the surrounding
boundaries are calculated by Sherwood numbers. Sherwood
numbers for the governing flow field are defined as
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denotes concentration at upper boundary. Also, at

y=0 we define the Sherwood number as
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here fs2
is the concentration at the boundary y=0.

2.1.5. Non-dimensionalization of mathematical problem.
Consider following dimensionless variables to make the

problem (2.22)–(2.28) non-dimensional as
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together with following flow conditions

Here γ denotes the viscoelastic parameter, Ha is
magnetic parameter, λ and λ1 stand for convection para-
meters, Nb denotes pedesis parameter, Nt is the thermophor-
esis parameter, δ is heat flux parameter, δ1 stands for mass
flux parameter, δ2 denotes the relaxation time parameter, Sc is
Schmidt number and Pr stands for Prandtl number. Stated
dimensionless quantities are defined as
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Also non-dimensional friction coefficients, Nussselt and
Sherwood numbers are defined by
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f
d= -

¶
¶

=
=

Sh

Re y

Sh

Re
tand , 2.41

y

1

1

2
2 1

2
⎛
⎝⎜

⎞
⎠⎟ ( )

where =
n

Re AL represents Reynold’s number.

3. Discretization scheme

Discretization of problem (2.36)–(2.37) will be discussed in
this section. Non-integer derivative is discretized by finite
difference scheme as given by [10, 26] while space variable
discretization is carried out by finite element scheme pro-
posed in [10]. The well posedness of problem under con-
sideration, can be verified in suitable functional spaces [26].
In short, we consider no ill-posedness in the problem.

For discretizations of model (2.36)–(2.37), we must
introduce proper functional spaces.

We denote the square integrable space W2( ) of functions
defined on Ω=(0, 1) with -2 norm and inner product.
Also, Wp( ) represents Sobolev space, p>0, Wp

0 ( ) is taken
as closure of W¥0 ( ) in Wp( ) and W¥0 ( ) denotes classical
infinite continuously differentiable functions, with proper
compact support in Ω [28]. Also we consider space

W = Î W == u u 0 ,p p
y1 1( ) { ( )∣ ∣ }

with W = W ´ W ´ W  2 2 2 2( ) ( ) ( ) ( ) and W = W ´ p
0( ) ( )

W ´ W  .p p
1 1( ) ( )

Let W   T t0, ; : 0, f
2( ( )) [ ] equipped with
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W W
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Furthermore, W t0, ;f
0([ ] ( )) is the space of continuous

functions  u t: 0, f[ ] with

W
Î

  u umax .t
t t

0, ;
0,

f
f

0 ≔([ ] ( ))
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and also we denote by W = W  t t0, ; 0, ; .k
f

k
f

3([ ] ( )) [ ([ ] ( ))]

3.1. Finite difference estimations

Discretization of time variable in (2.36)–(2.37) is carried out
by finite difference algorithm. Time interval [0, tf] is divided
by fixing time step t t

m
f≔ such as tt k ,k ≔ here

=k m0, 1, 2, , . Approximation of time derivative at fixed

time tk, 0<k<m

t
¶
¶

-+
+ u

t
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here for k=0,

t
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t
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,

, ,
.0

1 0( ) ( ) ( )

Initial conditions (2.37) give

u y t u y t, 0 and , 0. 3.21 0( ) ( ) ( ) 

The non-integer time derivatives ¶a
t (0<α<1) for all

0�k<m can be estimated using Caputo derivative [26]
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Finite difference estimations of the operators qat [ ] and
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s

k

s k s k s
1

1

0
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3.2. Finite element discretization

The section describes discretization of spatial variable with
finite element scheme. For the discretize of spatial variables
define the partition of the domain W = 0, 1[ ] into
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n sub-domains W = +y y,i i i 1( ) for i=1, 2, K, n, satisfying

W = W W W = Æ " ¹
=

i jand , .
i

n

i i j
1

⋃ ⋂

The elements Ωi length h is assumed fixed, i.e.
-+h y y
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where WPr i( ) is Lagrange polynomials space with degree less
than or equal to r over the element Ωi for all i=1, 2,L, n.
Also note that W = W ´ W ´ W   .h h h h

0 1 1( ) ( ) ( ) ( )
The weak form of the model problem (2.36)–(2.37) can

then be obtained by

Weak Form. Find q f Î W u T, , 0, ;1( ) ([ ] ( )) such that

for all z y Î Wv, ,( ) ( ). ,

Weak form (3.9) can be used to incorporate discrete weak
form at specific time t=tk, 0<k<m
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algebraic equations

q f z y

g

l l q q

q z q z z

z d z

f y f y q y d d y

q q f f

Î W " Î W

+ + á ñ +

- + =

+ á ñ -

- = -

+ á ñ + á ñ = - -

= = = = =

a a q f

a q

a

+ + +

¶
¶ +

¶
¶ + +

+ +

+ +
¶

¶

¶

¶

¶
¶

+ + +

+ +

+

 





 u t t t v

u y t v u y t v Ha u y t v

y t y t v

Pr y t y t PrNb

PrNt t

Sc y t y t y t t t

u y y y y y

Find , , , , , s.t. , ,

, , 1 , , , ,

, , , 0,

, , , , ,

, , 0 ,

, , , , , , , 0 ,

0, 0 , 0

, 3.10

h k k k
h h

t h k t h k h k

h k h k

t h k h k t
y t

y

y t

y

t
y t

y

t h k h k
Nt

Nb h k

h h h h h

1 1 1

1 1 1

1 1 1

1 1
, ,

, 2

1 1 1 1

0 0 1 0 1

h k h k

h k

1 1

1⎜ ⎟

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎛
⎝

⎞
⎠

( )
( )

( )
( (· ) (· ) (· )) ( ) ( ) ( )

( ( ) ) ( ) ( ( ) )

(( ( )) ( ) )

( ( ) ) ( )

( ( ))

( ( ) ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )

g l l q q

q z q z q z z z d z

f y f y q y d d y

q f

+ + á ñ + - + =

+ á ñ - + = -

+ á ñ + á ñ = - -

= = = = =

a a q f q

a

q f

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

 



u v u v Ha u v v

Pr Pr Nb Nt t

Sc t t

u y y y y y

, 1 , , , 0,

, , , , , , 0 ,

, , , , 0 ,

, 0 , , 0 0 , 0 , and , 0 0 , 0

, 3.9

t t

t t y y y

t
Nt

Nb

t t

1

2

1

⎜ ⎟

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟( ) ( )

( )

( )

( ) ( ) (( ) )

( ) ( ) ( ( ))

( ) ( ( ))

( ) ( ) ( ) ( ) ( )

( )

7

Phys. Scr. 95 (2020) 035211 M S Anwar



where for all =p q N, 1, 2, , h0 and =l m N, 1, 2, , h1 .

q fQ FuU , , ,h p p h l l h l l( ) ≔ ( ) ≔ ( ) ≔
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W W W W

W W
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l

h
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h
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( ) ≔ ( ) ≔ ( )†

The system of algebraic differential equations (3.14) has
been solved by using Newton’s method. Implementation of
numerical scheme is carried out via a MatLab code. Lagrange
elements of linear nature have been used to obtain matrices in
system (3.14). Simulations of velocity, temperature and
concentration for numerous physical parameters have been
examined in next section.

4. Simulated results

Simulated results for the velocity, temperature and con-
centration are discussed in this section. Mainly we focus on
the influence of fractional time derivative on the convective
transport phenomena using Buongiorno model. Physics of the
problem is understood by the variations of non-dimensional
parameters. Flow generation, heat and mass transfers are
analyzed for the governing mathematical model. Numerical
results are noted for the time intervals [0, 2] and [0, 2 ].
Figure 2 is plotted to observe velocity characteristics for
numerous values of fractional number α. It is noted by
increase of α, velocity increases 2(a). Variations in velocity
profile with increase of Hartmann number Ha and viscoelastic
parameter γ are sketched in figure 2(b). It is noted that
velocity decreases with increase of Ha and contradictory
trends are observed in case of viscoelastic parameter γ. With
the increase of Ha, Lorentz force enhances that resist fluid
motion. Consequently, velocity decreases as Ha increases.
Effects of mixed convection parameter λ on velocity are
sketched in figure 3. It is seen that velocity profile increases
with the increase of mixed convection parameter λ 3(a).
Inertial forces are inversely related to λ while direct impact is
presented for buoyancy forces. When λ>0, transfer of heat
is from plates to fluid. As a result, q q-s 01( ) and q q-s 02( )
increase. Consequently, increase in λ, enhances buoyancy
forces, q q-s 01( ) and q q-s 02( ). As a result, fluid velocity
increases. Analogous argument can be build for the behavior
of nonlinear convection parameter λ1 3(b). As there is con-
vection, only the mode of convection is nonlinear so as
expected results remain same as that of mixed convection

parameter λ. Figure 4 is sketched to examine the temperature
profile for numerous values of fractional number α. Temp-
erature increases with the increase of α 4(a). Changes in
temperature profile with the increase of pedesis parameter Nb
and Schmidt number Sc are sketched in figure 4(b). It is
concluded that temperature increases with increase of Sc and
Nb. Momentum diffusivity increases with increase of Sc
which enhances the friction between different layers of the
fluid. Therefore temperature increases with increase of Sc.
Existence of Brownian coefficient, in the non-dimensional
form of Nb and decrease of base fluid heat capacity with
increase of Nb, results in the decrease of temperature. Char-
acteristics of Prandtl number Pr, thermophoresis number Nt
on temperature profile is explored in figure 5. Temperature
increases with increase of Nt while opposite behavior is noted
for Pr 5(a). As Nt increases, heat capacity of fluid decreases
consequently temperature increases with the increase of Nt.
Thermal diffusivity, decreases with increase of Pr conse-
quently temperature remain at lower level for higher value of
Pr. Figure 5(b) is outlined the effect of heat flux δ and mass
flux δ1 parameters on the temperature. It is concluded that
temperature increases with increase of δ while contrary trends
are observed for δ1. Thermal conductivity, of base fluid
decreases with the increase of δ which reduces the rate at
which the heat passes through the base fluid thus temperature
increases with the increase of δ. Figure 6 is plotted to see the
change in concentration for numerous values of fractional
number α. Concentration increases with the increase of α

6(a). Combined effects of thermophoresis Nt and pedesis Nb
parameters on the concentration are displayed in figure 6(b).
Concentration increases with increase of Nt while reverse
effect is seen for the case of Nb. Increase of concentration is
due to increase of coefficient of thermophoretic diffusion,
present in non-dimensional form of Nt. Collective effects of
Prandtl Pr and Schmidt Sc numbers on the concentration
profile can be visualized through figure 7. Concentration
increases with the increase of Pr while opposite trends are
seen for Sc 7(a). Momentum diffusivity increases with the
increase of Pr, hence concentration is at higher level for larger
value of Pr. Fluid viscosity increases while coefficient of
Brownian diffusion decreases with increase of Sc. Hence
concentration profile remains at lower level with the increase
of Sc. Figure 7(b) is plotted to see the influence of heat flux δ

and mass flux δ1 parameters on the concentration. Con-
centration increases with increase of δ and δ1. Rate of con-
centration transfer decreases with increase of δ1 thus
concentration increases with increasing values of δ1. Finally
figures 8(a), (b), 9(a), (b) are sketched for time dependent

t g t tl tl

t t t q d

t t d d

Q Q

Q Q Q Q

F F Q

Q Q F F
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Figure 2. Effects of non-integer exponent, Hartmann number and viscoelastic parameter on the velocity profile.

Figure 3. Effects convection parameters on the velocity profile.

Figure 4. Effects of non-integer exponent, pedesis parameter and Schmidt number on the temperature profile.
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Figure 6. Effects of non-integer exponent, thermophoresis and pedesis parameters on the concentration profile.

Figure 7. Effects of Prandtl number, Schmidt number, heat flux and mass flux parameters on the concentration profile.

Figure 5. Effects of Prandtl number, thermophoresis, heat and mass flux parameters on temperature profile.
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velocity, temperature and concentration profiles. These
figures demonstrated anomalous behavior of fractional
nanofluid. Variations of skin friction and Nusselt numbers
with pertinent fractional model parameters are examined via
tables 1–3. Skin friction magnitude, increases with increase of
α, δ2, Pr and Ha while it decreases with increase of γ, λ, λ1,
δ, Sc, Nt and Nb. Moreover Nusselt number at the lower plate
increases with the increase of Pr while it decreases with the
increase of Nt, Nb and δ2.

5. Conclusion

Fractional formalism of the Buongiorno model with Caputo
derivative is constructed in this study. Viscous as well as
elastic characteristics of the viscoelastic fluid is observed via
non-integer time derivatives. Fractional relaxation times are
introduced to control the transport process. In order to deeply
observe the influence of buoyancy forces on the flow regime,
nonlinear convection is introduced in the mathematical

modeling of the flow problem. Brownian motion and ther-
mophoresis effects are also tackled in a nanofluid flow. Flow
behavior is handled by the applied magnetic field. Change in
temperature and concentration with respect to their gradients
is noted at the lower boundary. Numerical technique, which
includes finite element discretization for the space variable
while finite difference discretization of the Caputo fractional
derivative, is applied to solve the governing highly nonlinear
flow differential equations. Fractional time derivative α tends
to increase the velocity, temperature and concentration pro-
files. Consequently, parameter α helps to control the transport
process in the flow domain. The abrupt changes in heat and
mass transfer which may be seen in Buongiorno model, can
be easily handled with α. Brownian motion and thermo-
phoresis parameters have similar effects on the temperature
profile while opposite behavior is noted in the case of con-
centration profile. Applications of these flows can be seen in
geology and fiber technology. The study can be extended for
relaxation time phenomena in Maxwell fluid flow. An

Figure 9. Transient temperature and concentration profiles for different values of parameters over the time interval 0, 2[ ].

Figure 8. Transient velocity profiles for different values of parameters over the time interval [0, 2].
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investigation can also be considered to handle nonlinear
radiation aspects in a nanofluid with fractional derivative.
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