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Abstract
We investigate the decoherence effects from a spin environment on two detached qubits coupled
by a single Majorana wire (SMW) and double Majorana wires (DMWs) respectively when
teleporting entanglement between the distinct qubits. The role of the composite system
parameters on entanglement and entanglement teleportation are examined. Our results shows that
strong coupling between the spin environment and the dots modifies the coupling between the
qubits and the Majorana fermions (MFs) thus lifting the degenerate zero energy state for the case
of the SMW. The SMW is seen to undergo a topological quantum phase transition as seen from
the stable asymptotic increase and decrease in its dynamics as the coupling between the qubits
and the MFs are varied. We observed that the DMWs are robust against quantum fluctuations of
the spin environment with a characteristic cyclic beating phenomenon. This behavior shows that
information is mediated via a channel endowed with the anti-ferromagnetic phase and the
topological phase that harbors the Majorana zero-energy state. We probe the extent to which the
capacitive and pure coupling that defines the DMWs should be tune for entanglement generation
between the two sites and thus enhancement of the teleported state. Our description for the
Majorana zero modes is in the spin model for spin based quantum applications.

Keywords: spin environment, qubits, single Majorana wire, double Majorana wires,
entanglement, teleportation, fidelity

(Some figures may appear in colour only in the online journal)

1. Introduction

The quest for a protected channel during quantum state transfer
between distinct quantum processors and registers has remain
a challenge over the recent past years in the community of
quantum computation and information processing technolo-
gies. The use of spin-chains and possible optimization techni-
ques for enhancing its performances as a quantum channel
[1–7] has been the subject of intense concerned recently.
However for faithful quantum communication using the spin

chain as channel, quantum engineers need to resolve a number
of obstacles such as, decoherence arising from quantum fluc-
tuations due to quasi-particle excitations within the chain,
Dzyaloshinsky–Moriya interactions, chain length, external
degrees of freedom or finite precision control changes the
coupling strengths or induces energy fluctuations of the spins
thus affecting the transfer fidelity and again when the quantum
code to be transmitted suffers inevitable interactions with its
host environment . All these require much quantum engineer-
ing resources. Among other proposals as quantum channels
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[8–11], we consider in this paper a channel that in it is inherent
the topological phase; a phase that is robust to local pertuba-
tions and has been reported to be useful in quantum compu-
tation and information processing protocols [12–15]. In
condensed matter physics a topological phase features Major-
ana fermions (MFs) (quasi-particles that have neither a fer-
mionic nor a bosonic character) if the hybrid system is rightly
tuned [16–18]. MFs as quasi-particle excitations were antici-
pated to occur in different solid-state systems, such as the 5/2
fractional quantum Hall system [16], the p-wave super-
conductor [17] and the hybrid systems of a topological insu-
lator [19]. Semiconductor nano-wire in proximity to an s-wave
superconductor has recently been of great interest in the search
for both theoretical and experimental exotic signatures of
Majorana bound states (MBSs) [20–27]. In the quantum dot
(QD) Majorana coupling settings [25], studied the quantum
correlations between two spatially separate QDs induced by a
pair of MFs emerging at the two ends of a semiconductor
nanowire, in order to develop a new method for probing the
MFs. They showed that the exotic nature of the MFs enhances
entanglement even when the initial states are un-entangled.
Ricco et al [28] investigated theoretically charge transport and
heat tuning via MFs by considering a system of QD connected
both to a pair of MFs residing at the edges of a Kitaev wire and
two metallic leads. We consider a setup similar to that inves-
tigated in [24, 25, 27] where we call the single Majorana wire
(SMW) but in different illumination. Here the remote dots
(qubits) are buried in geographically detached but the same
type of spin environment. This gives us room to address
decoherence effects arising from quantum fluctuations from the
sending and receiving environment during the teleportation of
bipartite entanglement using a channel that support the topo-
logical phase. In the Majorana Wire setting, we consider that
no interactions are made with the environment and thus no
decoherence as a result of interaction between topological
qubits and spin environment. The decoherence pattern of
topological qubits couple to fermionic/bosonic Ohmic-like
environment has been investigated in [26]. We further consider
a configuration called the double Majorana wires (DMWs) as a
bridge to route information between the remote qubits; a
configuration that project the system to that of the macroscopic
Kitaev’s toy model [17], for Majorana wires when rightly
tuned. As reported in [29], such a system with additional
capacitive coupling between adjacent islands leads to an
effective interaction between the Majorana modes and can be
tuned to various phases, i.e. anti-ferromagnetic phase (AFM),
paramagnetic phase (FM), topological phase and the floating
phase, as the parameter space are varied. Studying quantum
state teleportation over such a channel seems instructive as
information can be driven through the various phases. This
thus prepares the ground to investigate which channel; the
SMW or DMWs is suitable for quantum state transfer.

The rest of the work is structured as follows; we provide
the model describing the SMW as a bridge to teleport bipartite
entanglement between two decohered qubits initially prepared
in an arbitrary superposition of state that supports the
Majorana end states in section 2.1 and subsequently that
describing the DMWs in section 2.2. This paves the way for

the analytical derivation of the density matrices. The eva-
luation of concurrence, entanglement teleportation and aver-
age fidelity, for the respective configurations are carried out in
section 3. The interpretation of the numerical results and
conclusion forms the basis of sections 4 and 5 respectively.

2. Model Hamiltonian

2.1. Single Majorana wire (SMN)

We study a hybrid structure shown in figure 1, where a
semiconductor nanowire with strong spin-orbit coupling with
the conspiracy of pronounced Zeeman magnetic field and
proximity-induced pairing correlations inherited from an
s-wave superconducting substrate will induce the Majorana
end states that are tunnel-coupled to two QDs, respectively.
Two copies of the system below (figure 1) are used for
transferring the entanglement as described in the Lee and Kim
teleportation protocol [30]. The remote qubits are correlated
only via the Majorana end states otherwise uncorrelated.

The remote QDs are considered to be in a single spin
states (such that they can also be referred to as qubits) and are
embedded in a spin bath permitting us to address decoherence
effects on quantum correlations and entanglement teleporta-
tion. The Hamiltonian of the hybrid system can be written as

= + -H H H . 1D E1 sys ( )

The system Hamiltonian, Hsys describes the MBSs plus the
single-level QDs and their tunnel coupling as follows
[24, 25, 27]

å e b g

e g g

= + -

+

=

+ +H d d d d

i

2
. 2

j A B
j j j j j j j

m A B

sys
,

[ ( ) ]

( )

Here +d dA A( ) and +d dB B( ) and are the annihilation (creation)
operators of the two single-level QDs, gA and gB are the
Majorana operators associated with the two MBSs at the ends of
the nanowire. The Majorana operators are Hermitian g g= +

j j

and fulfill the Clifford algebra g g d=, 2 ;i j ij{ } accounting for the
fact that an isolated MBS is an equal superposition of electron

Figure 1. Schematic setup to probe quantum correlations and fidelity
of entanglement teleportation between remote dots (qubits) mediated
via a Majorana wire. The qubits are embedded in the same type of
spin environment. The Majorana zero modes are represented by
white dots.
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and hole excitations and therefore not a fermionic state. The two
MBSs interact with each other by a strength e » x-e ,M

L/ which
damps exponentially with the length L of the nanowire, x is the
superconducting coherent length. bA and bB are the coupling
amplitudes between Majorana end states and remote dots.
For practical calculations, a transformation from the Majorana
representation to the regular fermion one is necessary: g =A

- +f fi( ) and g = + +f f ,B with f and +f obeying the anti-
commutation relation =+f f, 1.i{ } After an additional local
gauge transformation, d di ,A A and f fi ,  -+ +f fi , we
re-express equation (2) as

åe e b

b b

= - + + +

- + + +

+

=

+ + +

+ +

H f f d d d f f d

d f fd d f fd
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j j j j j j
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sys
,

⎜ ⎟⎛
⎝

⎞
⎠ [ ( )]

( ) ( )
( )

Equation (3) is further transformed into the spin model; recol-
lecting in general that, = -f S Si ,x y = ++f S Six y and =Sy

t ,y1

2
t=S ,x x1

2
thus

e
s

e
s e t b s t b s t= + + + +H

2 2
, 4A

A
z B

B
z

m
z

A A B Bsys
y y y y ( )

where s sA
z

B
y( ) and t tz y( ) represents the Pauli spin operators for

the right (left) dots (which may be regarded in this picture as two
remote spins) and MFs respectively. For simplicity, we adopt a
symmetric setup with b b b= = .A B Moreover, the two QDs are
adjusted such that e e e= = .A B For the new fermionic repre-
sentation of the system Hamiltonain, Hsys equation (4), it is
convenient to use the state basis ñn n nA M B∣ describing the possible
spin configuration of the dot-Majorana-dot system, where nA B( )
and nM denotes, respectively, spin ‘up’ or ‘down’ in the right
(left) and the central MBSs. We consider the following subspace
with spin configuration: ñ ñ ñ ñ001 , 010 , 100 , 111∣ ∣ ∣ ∣ (a subspace
with odd-parity for the corresponding charge configuration of the
system Hamiltonian equation (3) [25]).

The Hamiltonian of the two remote spins transversely
coupled to similar but separated spin environment, which is
described by the one-dimensional XY model, is given by ( is
taken to be unity)

å
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where lH ,E
( ) given by the first line of equation (5) denotes

the Hamiltonian of the environmental spin chain and H ,I

given by the second line, describes the interaction between
the two-qubit spins and the spin chain. The Pauli matrices
s m =m x y z, ,l ( ) are used to describe the spin chain of the
environment. The parameter l characterizes the intensity of
the transverse magnetic field, and a measures the anisotropy
in the in-plane interaction. The XY spin model described

by the first line in equation (5) encompasses other two spin
models; the Ising spin chain with a = 1 and the XX spin chain
with a = 0.

Using the result in [31] the diagonalized form of the
Hamiltonian of the central two qubits dressed with the
environment due to interaction is given by

å= W -l l
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. 6E
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The absolute value of the decoherence factors is given as
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where the energy spectrum W l
k

j( ) is given by W =l
k

j( )

e a+l p2 sin ,k
k

N
2 2 2 2j( )( ) with e l= -l pcos .k j

k

N

2j( ) The

parameters lj are l l=  g,1 2( ) l l=3 4( ) corresponds to
the dressed eigen-value due to interaction between the
remote two spins and spin chain. a q q= -l l l 2k k k

j j( )( ) ( ) ( ) /

with angles, q l
k

j( ) satisfying, q e= Wl l lcos 2 .k k k
j j j( ) ( ) ( ) The

energy spectrum W l
k

j( ) carries information about all the pos-
sible excitations in the spin chain. Interaction between the
spin chain and the qubits induces overlap between these
excitations and thus quantum fluctuations.

The time evolving density matrix of the composite sys-
tem may be written as

r r= - +

´ +

l

l

t H H t

H H t

exp i 0

exp i . 8

E

E

sys

sys

j

j

( ) ( ( ) ) ( )

( ( ) ) ( )

( )

( )

Considering that the initial density matrix of the composed
system is separable, i.e. the preparation of the initial state of the
central spin system takes place on a time scale much shorter than
all the other characteristic time scales of the Hamiltonian, then,
r r r= Ä0 0 0 .AB E( ) ( ) ( ) r = F ñáF0 0 0AB ( ) ∣ ( ) ( )∣ is the density
matrix of the central spins in the initial state, F ñ0∣ ( ) is assume to
be an initially prepared state of the systems Hamiltonian.
Without lost of generality, we consider the initial spin config-
uration of the dot-MBSs-dot system to be in the following
arbitrary superposition of state: Fñ = ñ + ña b010 111 ,∣ ∣ ∣ with
coefficients satisfying: + =a b 1.2 2( ) ( ) The density matrix,
r = Y ñ áY0 0 0E E E

( ) ∣ ( ) ( )∣ describes the density matrix of the
spin chain in the initial state, Y ñ0 .E∣ ( ) Tracing the environmental
degrees of freedom leads to the following equation

år j j= ñá
m n

m n m n
=

t C C F t , 9
m n

m n
mn

, , , 1

4
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where j f f= - á ñá Fñm m mC E texp im
m m( ) ∣ ∣ and =n nC E texp in* ( )

f f jáF ñá ñn .n n∣ ∣ mE and j ñm∣ are respectively the energy eigen-
value and eigen vectors of the Hamiltonian equation (4).

We introduced the eigen-states, f ñ:m∣ ñ ñ010 , 001 ,∣ ∣
ñ ñ100 , 111 ,∣ ∣ of the interaction Hamiltonian to account for the

fact that the system Hamiltonian, Hsys does not commute with
the interaction Hamiltonian, H .I After eliminating the degrees
of freedom of the MFs, the reduced density matrix in the
standard basis ñ ñ ñ ñ00 , 01 , 10 , 11{∣ ∣ ∣ ∣ } takes the X-structure

r
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2.2. Double Majorana wires (DMWs)

We investigate the additional feature prevailed by non-
locality of the low lying Majorana modes when they are
capacitively and purely coupled between adjacent island
when teleporting quantum states i.e. short distance quantum
teleportation in quantum networks (figure 2).

In this case there is entanglement hoping in alternate site,
i.e. the double Majorana end modes plays the role of electron
sites as seen from the Kitaev chain model. The two sites each

support a MBs. The Hamiltonian of the total system mapping
into effective spin model reads

= +H H H , 11I2 sys˜ ( )

where

= +H H H , 12sys 0 ANNNI˜ ( )
e
s

e
s b s t b s t= + + +H

2 2
, 13A

A
z B

B
z

A A
y y

B B
y y

0 1 2 ( )

å t t t t t= D + +
=

+ +H U E . 14
j

N

j
z

j
z

j
z

m j
x

j
x

ANNNI
1

1 1( ) ( )

The sub-system Hamiltonian, Hsys˜ equation (12) constitutes the
transverse axial next-nearest-neighbor Ising (ANNNI) model
[17]. Detailed derivation of equation (14) is found in [29]. We
only give meaning to the parameters entering the Hamiltonian;
U introduces additional capacitance between adjacent island
that leads to an effective interaction between the low-energy
Majorana degrees of freedom. E ,M is pure Majorana coupling
between adjacent island or Majorana sites. In our DMW
representation, we have two sites, with one site occupied by
each wire. From here the Hamiltonian equation (14) becomes;

t t t t t t= D + D + +H U E .z z z z
m

x x
ANNNI 1 2 1 2 1 2 The parameters

D and U can be directly tuned through the induced charge q on
the islands via a common back gate voltage V .g H ,I describes
the interaction between the two-qubit spins and the spin chain
as discussed in equation (5).

In the same reasoning as in section 2.1, the reduced
density matrix after tracing the environmental degrees of
freedom is given as

år j j= ñá
m n

m n m n
=

t C C F t , 15
m n

m n
mn

, , , 1

8
*( ) ( )∣ ∣ ( )

where
j f f= - á ñá Fñm m mC E texp im

m m( ) ∣ ∣ and =n nC E texp in* ( )
f f jáF ñá ñn .n n∣ ∣ mE corresponds to the eigen-value of the

system Hamiltonian H .sys˜ Considering the basis states of the

Figure 2. Schematic setup to probe teleportation mediated by double
Marjorana wires between two remote dots (qubits) interacting in the
same manner with respective spin environments. The Majorana zero
modes are represented by white dots. The tunnel coupling of individual
electrons between the superconducting islands is proportional to the
energy scale E .M A common gate voltage Vg can be used to tune the
relative strength of the different terms in the Hamiltonian. The capacitive
couplings between the elements are denoted by C, CJ and C ,g

respectively as defined in [29].

4

Phys. Scr. 95 (2020) 035803 N E Afuoti et al



dot-MBSs–MBSs-dot spin configuration: ñ ñ1101 , 1011 ,∣ ∣
ñ ñ1110 , 0111 ,∣ ∣ ñ ñ ñ ñ1000 , 0001 , 0100 , 0010 ,∣ ∣ ∣ ∣ the corresp-

onding eigen-states, may take the general form

f ñ = ñ + ñ + ñ

+ ñ + ñ + ñ

+ ñ + ñ

m m m m

m m m

m m

a b c

d e f

g h

1101 1011 1110

0111 1000 0001

0100 0010 , 16

∣ ∣ ∣ ∣
∣ ∣ ∣
∣ ∣ ( )

where, m = 1...8. The coefficients in equation (15) are
obtained when deriving the eigen vectors of the Hamiltonian
equation (13).

The eigen states, f ñ:m∣ ñ ñ ñ ñ1101 , 1011 , 1110 , 0111 ,∣ ∣ ∣ ∣
ñ ñ ñ ñ1000 , 0001 , 0100 , 0010 ,∣ ∣ ∣ ∣ are those of the interaction

Hamiltonian, HI between the remote two-qubit spins and the
spin chain. The dressed eigen-values are:

l l l l l l= + = = -g g, , . 171 2 3,4,5,6 7 8 ( )( ) ( )

The absolute value of the decoherence factors are
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Without lost of insight of the general physics, we consider the
initial spin configuration of the dot-MBSs–MBSs-dot system
to be in the following arbitrary superposition of state: Fñ =∣

ñ + ñ + ñ + ña b c d1101 1011 0100 0010 ,∣ ∣ ∣ ∣ with coefficients
satisfying: + + + =a b c d 1.2 2 2 2( ) ( ) ( ) ( ) Tracing over
the degrees of freedom of the MFs the reduced density
matrix in the standard basis ñ ñ ñ ñ00 , 01 , 10 , 11{∣ ∣ ∣ ∣ } takes the
X-form as
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The decoherence factors in equations (9) and (18) can be
consider as the amplitude of overlap of the different states of
the spin environment for l l l l¹ ¹j j j j( )/ / as a result of the
interaction between the remote qubits and the spin environ-
ment. This interaction introduces overlap of the different
bases of the system. The diagonal elements of the system
Hamiltonian are not influence by the decoherence factors as it
has a value equal to unity for =j j ./ We seek to evaluate the
extent to which a quantum state to be teleported is influenced
by these decoherence factors observed at the sending and the
receiving locations taking into account non-locality between
the two locations.

3. Entanglement teleportation and average fidelity

Having obtained the reduced density matrix for the two sys-
tems, we turn to look on quantum quantifiers of correlations
between the distant dots and the quality of information
transfer. In this illumination, use is made of the entanglement,
entanglement teleportation and the average fidelity of the
teleported state using two copies of the single and double
Majorana wire(s) respectively as quantum bridges.

The entanglement dynamics of the SMW can be calcu-
lated from the time dependent density matrix r tAB ( ) of the
system using Wootters concurrence [32], as

r v v v v= - - -C t max 0, ,

22
AB 1 2 3 4( ( )) { }

( )

where the quantitiesvi are roots of the eigenvalues in decreasing
order of the auxiliary matrix V r s s r= Ät tAB y y AB( )( ) ( )⁎

s sÄ .y y( ) r tAB ( )⁎ denotes the complex conjugate of r tAB ( ) in
the standard bases and sy is the Pauli matrix. The evaluation of
concurrence gives

r r r r
r r r r

= +

- - -

C t max

2 . 23
AB 11 44 14

11 44 14 22

( ( )) { ∣ ∣
∣ ∣ ∣∣ } ( )
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We consider the two qubit teleportation protocol proposed by
Lee and Kim, using two copies of the system figures 1 and 2 for
the two configurations. We study the effects of the environment
and the channel parameters on the entanglement, entanglement
teleportation and average fidelity.

Without loss of generality we consider the input state to
be teleported to be the general state:

y
q q

q p f p

ñ = ñ + ñj

   

cos
2

10 e sin
2

01 ,

0 and 0 2 , 24

in
i∣ ∣ ∣

( ) ( )

where q represent the amplitude and f represents the phase of
the input state. The density matrix related to the input state
y ñin∣ is

r y y= ñá . 25in in in∣ ∣ ( )

The output state can be obtained by applying joint measure-
ments and local unitary transformations on the input state r .in
Following the teleportation protocol proposed by Lee and
Kim output state of the two qubit teleportation can be written
as

år s s r s s= Ä ÄP , 26
i j

ij
i j i j

out
,

in( ) ( ) ( )

where =i j, 0, 1, 2, 3, s = I0 (identity 2×2 matrix), while
s s= ,x1 s s= ,y2 and s s= z3 are Pauli Matrices.

The probabilities =P PPij i j satisfy the condition

å =P 1
i j ij,
with

r=P ETr 27j
j

channel{ } ( )

Here r r

r r
r r
r r

r r

= =t

0 0

0 0

0 0

0 0
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32 33

14 44*
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⎠

⎟⎟⎟⎟
( ) is the reduced

density matrix of the two qubits at the remote ends of the wire
and serves as our quantum channel. The projective mea-
surements E j are defined from the four maximally entangled
Bell states as follows:

y y f f f f
y y
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+ +
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with the maximally entangled bell states given by

y fñ = ñ  ñ ñ = ñ  ñ 1

2
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After a straight evaluation of equation (26) we obtain the

density matrix of the output states of the form
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v
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where we have:
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We now evaluate the concurrence of the output state and we
find that it can be expressed as

z z z z= - - -C max , 0 , 32out 1 2 3 4{ } ( )

where z1�z2�z3�z4 are the square roots in order of
decreasing magnitude of the eigen values of the operator

r s s r s s¢ = Ä ÄR . 33y y y y
out out

*( ) ( ) ( )

The quantities in equation (32) z ,1 z ,2 z3 and z4 are given as:
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As there must be quantification of the quality of the infor-
mation transfer, use is made of the figure of merit called the
fidelity [33, 34]. It is an important tool to characterize the
closeness of any two mixed states, and often used in modern
applications of quantum mechanics. It is equal to unity if and
only if both states do coincide. The fidelity between the input
state and the output state for our system is defined by [34]

r r r r r=F , Tr . 35in out in out in
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2{ }( )( ) ( ) ( ) ( )

Considering the density matrices of the input state rin and the
output state r ,out the fidelity of the teleportation is obtained as
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Replacing the values of w, x and, y we can write the fidelity
as:

r r r q r r f

r r

= +

+ +

F , 4 sin 4 cos 2

. 37
in out 22

2 2
14 14

11 44
2

*( ) { ( )
( ) } ( )

To efficiently measure the quality of the protocol, we
calculate the average fidelity between the input and output
states by averaging over all possible input states. Under the
influence of the environment and channel parameters, the
maximally entangled component can vary with time. There-
fore, the best quality of the teleportation can be obtained by
the optimal estimation of the projective measurements. Thus
the average fidelity will be a function of time. The average
fidelity is defined from the fidelity as

ò òp
f r r q q=

p p
F t F

1

4
d , sin d . 38A

0

2

0
in out( ) ( ) ( )

We obtain the average fidelity as

r r r= + +F t 4
2

3
. 39A 22

2
11 44

2( ) ( ) ( )

In the same setting, the expressions of concurrence and
entanglement teleportation for the DMWs are as follows

r r r r

r r r r
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4. Results and discussions

In figure 3(a) we provide a comparative study of the role of
the spin environment weakly coupled to the two remote
qubits on entanglement dynamics for the SMW and the
DMWs. It is observed that entanglement drops so quickly and
later achieves an asymptotic behavior for the SMW while for
the DMWs, there is enhancement in entanglement with
characteristic cyclic beating. In the same setting, we noticed a
similar trend in the dynamics of entanglement teleportation
figure 3(b).

We carried out the same comparative studies but in the
opposite end of strongly coupled spin environment with the
remote qubits for the entanglement dynamics figure 4(a) and
the dynamics of the teleported state figure 4(b). Entanglement
for the SMW (red solid curve) drops noisily during the first
periods of its dynamics and later observes a quasi-periodic
death and revival during the long time dynamics (see insert
figure 4(a)). The strong coupling between the spin environ-
ment and the qubits leads to strong quantum fluctuations in
the qubits which in turn are observed by the MBS (as seen
from the noisy oscillations). The qubits strong quantum
fluctuations remove the zero-energy MBs by driving the
system through a topological quantum phase [35] character-
ized by the closing of the energy gap at the topological critical

Figure 3. Comparative study on the dynamics of (a) entanglement (b) entanglement teleportation, for the single Majorana wire and double
Majorana wires for a weakly coupled dots-spin environment, =g 0.05. Other parameters are set to: e = 0.1, b = 0.1, e = 0.01,m

D = = =U E 0.01,m l = 1, a = 0.1, =N 101.
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point where MFs become entangled with other gapless states
[36]. The manifestation of periodic death and revival in the
entanglement dynamics arises from the memory effects of the
spin bath.

The dynamics for the DMWs (blue dash curve) beats
rapidly and cyclically. A similar trend is observed in the
dynamics of entanglement teleportation (figure 4(b)) for both
configurations with the difference that no death and revival is
observed for the SMW. For the parameter space considered in
both coupling regimes, the DMWs seems to show a better
entanglement router than the SMW as the former seems
robust to the fluctuating action of the spin environment cou-
pled to the qubits. This behavior as seen from the cyclic
beating phenomenon stems from the fact that the DMWs is
endowed with the trivial phases and the topological phases
which serves as channels for routing information. The pre-
sence of these phases has been observed in the general form
of the spin model Hamiltonian equation (16) for = j N1
[29]. The topological phase includes the anti-ferromagnetic
phase (AF) and two degenerate ground states. The presence of
the AF-phase marches well with the report given in [5, 7]
where perfect entanglement transfer over arbitrary long dis-
tance is achieved for an AF spin chain than for the ferromag-
netic spin chain. These inherent features boost information
transfer in the DMWs setting.

In figure 5, we investigate the influence of the coupling
between dots and Majorana for an arbitrary coupling strength
between dots and spin environment on the teleported state.

For the SMW configuration (figure 5(a)), the teleportation
dynamics observes an asymptotic stable increase for very
small dot-Majorana coupling and asymptotic stable decrease
as we increase the dot-Majorana coupling. For the DMWs
configuration figure 5(b), we see that there exists a critical
value of the dot-Majorana coupling where the entanglement
dynamics is maximum. Reducing the coupling increases the
entanglement teleportation up to a maximum value after
which it reduces when further increasing the coupling.

This suggests that there exist a critical point where the
coupling between the dots and the MFs drives the SMW
configuration to a topological quantum phase transition and to
other topological phases for the DMWs configuration. The
peak value (figure 6) should correspond to the topological
phase that features the MFs. We note that the DMWs imitate
the behavior of the SMW.

Figure 7 shows that the dynamics of entanglement tele-
portation is almost insensitive to the number of atoms after a
short while for the DMWs figure 7(a) and the SMW
figure 7(b). This contradicts the fact that for an exchange
coupled spin configuration the dynamics of quantum corre-
lations decrease as the number of bath atoms increases [31].
This is one of the reasons why at zero temperatures the spin
environment effects are dominated by localized modes rather
than the size of the environment. Using MFs to teleport
quantum state(s), this scenario is observed. We would like to
report that, in one of our research paper, we show that

Figure 4. Comparative study on the dynamics of (a) entanglement (b) entanglement teleportation, for the SMW (red solid line) and DMWs
(blue dash line) for a strongly coupled dots-spin environment, =g 10. The inserts in plots (a) and (b) are for the long time dynamics. Other
parameters are set to: e = 0.1, b = 0.1, e = 0.01,m D = = =U E 0.01,m l = 1, a = 0.1, =N 101.
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quantum correlations and fidelity are influenced by the spin
model.

The role of the capacitive coupling on the DMWs is
investigated in figure 8. We generally noticed that small
values of the capacitive coupling, enhances entanglement
dynamics figure 8(a), and the dynamics of entanglement tel-
eportation figure 8(b). The same trend is observed when
varying the pure coupling between the two Majorana island
figure 9. This implies very small values of the capacitive
coupling and coupling between Majorana island are necessary
for entanglement generation between the two sites featuring
the Majorana zero modes while large values could drive the

system to Mott insulator characterized by the Floating phase
and the Anti-phase [29] thus destroying the topological pha-
ses that accommodate entanglement generation.

5. Conclusion

This work investigates the decoherence effects on the tele-
portation of entanglement between distinct qubits embedded
in a spin environment using a single and double Majorana
wire(s) respectively as quantum channels or data buses. The
role of the composite system parameters on entanglement,
entanglement teleportation and average fidelity are examined.
The sensitivity of the teleported state on the different coupling
regimes between the spin environment and qubits are estab-
lished. Our results show that strong coupling between the spin
environment and the qubits modifies the coupling between the
qubits and the MFs thus lifting the degenerate zero energy
state for the case of the SMW. The SMW is seen to undergo a
topological quantum phase transition as seen from the stable
asymptotic increase and decrease in its dynamics as the
coupling between the qubits and the MFs are varied. To
achieve better transmission of information, optimal engi-
neering of the coupling between the qubits and the MBs is
required for both channels irrespective of the decoherence
effect from the sending and the receiving host spin environ-
ment. While the SMW configuration is prone to the envir-
onmental quantum fluctuations, the DMWs configuration is
robust as observed from the coherent cyclic beating in its
dynamics. We attribute the cyclic beating as coherent leakage
of information between the topological and the AFM phases.
We also observed that large values of capacitive coupling and
coupling between Majorana islands destroys entanglement
generation between the two sites and thus decrease in the

Figure 6. Plot of the variation of entanglement teleportation and
average fidelity as b is varied for the double Majorana wires. Other
parameters are set to: e = 0.1, e = 0.01,m D = = =U E 0.01,m

l = 1, =g 0.10, a = 0.1, =N 101.

Figure 5. Dynamics of entanglement teleportation (a) single Majorana wire (b), double Majorana wires, for different coupling between dots
and Majorana, b. Other parameters are set to: e = 0.1, =N 101, e = 0.01,m D = = =U E 0.01,m l = 1, =g 0.10, a = 0.1.

9

Phys. Scr. 95 (2020) 035803 N E Afuoti et al



fidelity of quantum state transfer. In the whole, to have better
entanglement, entanglement of the teleported state and the
average fidelity of the teleported state in a decohered

environment, we need optimal engineering of the parameter
space of the composite system Hamiltonian such that the
topological phase that features MFs could be accessed.

Figure 8. Dynamics of (a) entanglement (b) entanglement teleportation for the double Majorana wires as the capacitative coupling is varied,
U. Other parameters are set to: e = 0.1, b = 0.01, e = 0.01,m D = =E 0.01,m l = 1, a = 0.1, =g 1, =N 101.

Figure 7. Dynamics of entanglement teleportation for (a) double Majorana wires (b) single Majorana wire, for different number of atoms.
Other parameters are set to: e = 0.1, b = 0.1, e = 0.01,m D = = =U E 0.01,m l = 1, =g 0.10, a = 0.1.
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