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Abstract

CrossMark

This article explains how a charged body can retain its integrity despite electrostatic repulsion
within itself. The study requires derivation of the field equations governing the velocity of any
arbitrary element within the system. These relations are obtained from two Lagrangian principles
based on obvious and least disruptive modifications of known concepts in classical mechanics.
The two Lagrangians lead to a relativistic energy-momentum equation describing the motion and
Maxwell’s equations quantifying the electromagnetic fields, respectively. The energy-
momentum relation shows that rigid body motions creating stationary fields in a rotating frame is
a viable solution for the velocity inside the continuum. It also yields a combined potential which
remains constant throughout the rotating particle. This constancy coupled with Maxwell’s
equations and boundary conditions for proper interfacial continuity provides the charge
distribution and geometric shape required for continued coherence of the domain. The paper
presents specific simulations for slender annuli steadily rotating about the axis of symmetry
where the charge density and the axial width are plotted as radial functions. Curiously, when the
analysis is extended to systems with different axes of rotation and symmetry, the
proportionalities between energy and frequency as well as momentum and wave-number can be
established. Such results are very similar to Planck’s and de Broglie’s laws, even though derived
from classical principles. Thus, the presented theory might have deeper implications like, for

example, in mathematical computation of fine structure constant.

Keywords: relativistic continuum dynamics, Lagrangian mechanics, vorticity theorem,

elementary particles, quantum mechanics fundamentals

1. Introduction

Stable existence of a particle with extremely localized charge
is counter-intuitive. If it contains similar charge everywhere,
electrostatic repulsion within itself is expected to cause
eventual disintegration. In contrast, if opposing charges
occupy the volume, a sufficiently large external field can
fragment the system. This issue of coherence is explained for
atomic nucleus by theorizing the restoring effect of strong
force counteracting electrodynamic fields. Strong force is,
however, not relevant for elementary particles like electrons
or positrons. Hence, it is not obvious how such a charged
body can maintain its integrity despite inherent electrostatic
repulsions. We attempt to answer this vexing question here by
identifying the charged domains capable of retaining their
geometry and by analyzing the dynamics inside their interior.

0031-8949,/20,/035003+14$33.00

Quantum electrodynamics [1] disregards the aforemen-
tioned issue due to axiomatic presumption of point charges.
Around the time of quantum revolution, however, there had
been numerous classical studies searching for an explanation
behind stable dynamics of particles with localized charge
[2-4]. Research on related topics has continued for nearly a
century, and a number of relevant articles have been pub-
lished throughout this period [5—10]. Most of these papers
have assumed simplistic geometries where configurational
coherence requires substantial extrapolation of the known
principles of mechanics unfortunately. This is why such
analysis necessitates inclusion of stabilizing influence of
rather contrived phenomenon like Poincare stresses [11] or
gravity-like potentials [12, 13]. The present article demon-
strates that a much less disruptive continuum formulation can
indeed explain integrity of a charge domain if undue
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adherence to presumed geometric models is relaxed. The
resulting freedom also allows us to conceive systems with
inherent quantum features which can be viewed as potentially
the most significant inference drawn from our findings.
Consequently, this may eventually lead to a new paradigm
where classical interpretation of quantum wave-function and
causal explanation of entanglement will be possible.

The key consideration in continuum approach is the
finiteness of the volume for any charged matter even if it is
very small. The complete dynamics of such a body can only
be described by studying the motion of any arbitrary volume
element inside the continuum. This formulation is intrinsi-
cally different from typical electrodynamic problems, where
generally available initial conditions provide starting values
of the relevant fields. In contrast, the present analysis assumes
no initial condition—it replaces this crucially required infor-
mation by a criterion for sustained integrity. A sufficient
constraint for continued coherence of the material domain is
that every material element inside the particle comes back to
its original position relative to the center of the body. Thus,
this strictly periodic time-dependence in displacement with
respect to the center is used to complete the proper mathe-
matical description of the system.

Accordingly, we first investigate whether the well-known
principles of classical relativistic mechanics are suitable for
addressing the outlined problem. Consequently, an obvious
and least disruptive modification in classical continuum
equations is proposed, and significant generic features of the
corresponding field solutions are identified. Our analysis
combines these conclusions with constraints of continuity
between electromagnetic fields inside and outside the matter.
This ultimately determines the geometries and appropriate
charge distribution in the interior of the domain where its
continued integrity is ensured by the balance between inertial
and electromagnetic force. To demonstrate the practicality of
this procedure, we present simulation results that reveal the
charge density and the axial width of slender charged annuli
steadily rotating about their axis of symmetry. Such approach,
when extended to systems with misaligned axes of symmetry
and rotation, can establish proportionalities between fre-
quency and energy as well as wave-number and momentum.
If these results are linked with Planck’s and de Broglie’s law,
a framework can be built to mathematically compute fine
structure constant. The discussed outcomes show validity and
potentially significant impact of the constructed theory.

This paper is organized in the following way. In
section 2, we find the governing relations from appropriate
Lagrangians after minimal tinkering of classical mechanics
principles. Section 3 outlines two crucial features of the
general solutions for the obtained field equations. Section 4
reveals a steady rigid body rotation as a viable motion for
which constancy of a scalar field named as ‘combined
potential’ can be established. In section 5, constancy of the
scalar is used in a simplified special problem to simulate the
charge density and the axial width of steadily rotating slender
annuli as radial functions. Section 6 addresses the general
rigid body motion again to derive energy-frequency and
momentum-wavelength relations similar to Planck’s and de

Broglie’s laws by extending the analysis to systems with
misaligned axes of rotation and geometric symmetry. Finally,
the article is summarized, and conclusions are drawn in
section 7.

2. Review and reconstruction of classical continuum
mechanics

According to classical relativistic continuum mechanics, the
energy-momentum conservation relations along with Max-
well’s equations govern the fields relevant to dynamics inside
a charged body. In this section, we review these field
equations starting from basic Lagrangian constructions. The
analysis adhere to a doctrine of least disruption so that well-
known classical Lagrangian descriptions are altered mini-
mally. The challenge is to see whether such approach can
conform to the constraint of sustained integrity requiring
strictly periodic unsteadiness in displacements inside the
charged domain.

It is to be noted here that even if our least disruptive
approach can assure sustained integrity, further tinkering in
the Lagrangian formulation might be needed for problems
with different length and time scales. For example, an astro-
nomic problem might need modifications in Lagrangians by
small corrections which are irrelevant to the system analyzed
in the present paper. We, however, keep these questions open
for future considerations while focusing on the simplest
possible explanations.

2.1. Charged continuum and relevant fields

The mechanics of continuum describes time-dependent
motion of each elementary part inside a material domain.
Thus, to analyze such dynamics, one has to first form a pre-
cise idea about matter and motion.

Our theory considers matter to be identified by its charge
content which remains fixed for a specific material volume
even if it undergoes arbitrary deformation in the course of its
motion. This charge itself might even be zero, but then its
absence is the marker for that specific element. If this is
considered as an axiomatic statement derived from the con-
servation of charge, then there is no a priori necessity to
define mass. In that case, a quantity similar to mass appears
subsequently as a consequence of the Lagrangian construction
satisfying all relevant properties demanded by classical
mechanics.

The motion of a material element is described by the
tangent to its trajectory traced in four dimensional (4D)
physical space as conceived by special theory of relativity.
Accordingly, the 4D space is hyperbolic between time and
space, where three dimensional (3D) spatial subspace is
elliptic. In absence of an external force field, a convenient
description can be offered by a notation where b is inter-
preted as a 4D vector related to a temporal component b, and
spatial components represented by b

b — {bo, b}. (1)
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The hyperbolic nature of the metric coefficients means
b-b=>b}—b-b=>b - b2 — b} —b? 2)

with by, by, b; being three orthonormal spatial components.
The conciseness in the expressions and the convenience in
switching from 4D to 3D space are the reasons behind our
preference for the vector notation involving b and b instead
of the usual covariant representations.

In our mathematical analysis, the 4D position vector X is
considered as the only independent variable:

X — {ct, x}, 3

where 7 is time, c is the velocity of light, and X is the spatial
position vector. The gradient in X is given by V

?ﬁ{lg,v}, )
c Ot

with V representing the spatial derivatives. Also, the motion
defining tangent vector S to the trajectory in 4D space is
treated as the dependent variable to be evaluated

- B —c v
S_){SO’S}_{\/CZ—V'V’\/cz—v-v}’ )

where v is rate of change of X with respect to ¢ as known in
Newtonian kinematics.
The conservation of charge ensured by our definition of
matter can be given by the following continuity equation
dp

5+v~(pv)=—v(p§>=—v3=0, (6)

where p is the charge per unit material volume seen by a
stationary observer. In contrast, p = pvc2 — v - v is the
charge density measured by an observer moving with the
element where the effect of length contraction is included.
The electric current in 4D space is ]

J=p8— {—pc, pv}, @)
which has causal relation with all electrodynamic interactions.
Its effects on neighboring matter are felt by a 4D vector
a — {ao, a}, where ag = —¢/c is related to the electric
scalar potential ¢, and a is the magnetic vector potential. The
main goal of the continuum analysis is to find coupled vari-
ables j and & as functions of X.

2.2. Lagrangian construction of field equations

The field equations governing j(i’) and a(X) can be derived
by using two Lagrangian principles. This is a standard pro-
cedure in classical mechanics [14] from which the specific
expressions of Lagrangians are imported after a slight mod-
ification in the interpretation.

The first Lagrangian principle states that for a known
a(X) every material element follows a 4D trajectory joining
two given points in such a way that the Lagrangian
L, =S - a is extremized among all possible paths. In other
words, § is chosen in such a way that L, is extremized when
a(X) and two end points on the locus are provided. The
statement has a slight departure from traditional classical

mechanics where an additional term associated with the mass
and the kinetic energy exists in the Lagrangian expression.
We, however, note that the same term can be incorporated in
the formulation by recognizing the inherent definitional
constraint for s

s-s=1 (8)

Thus, the extremization of L,, in presence of the above con-
dition (equation (8)) implies the following variational rela-
tion, where an appropriate Lagrange multiplier ( is introduced

6f:2(§-5+<§-§)dc=0. ©)

Here, the integral is over the 4D curve with an elementary
curve-length dC in a trajectory connecting any given starting
and ending points p; and p,. Also, the scalar field { acts as a
Lagrange multiplier for the constraint in equation (8). At the
same time, it plays the role similar to inertia in the continuum
dynamics. Ultimately, the variational principle leads to an
energy-momentum field equation

—5-V(8) =5 -Va— (Va) -s. (10)

It coincides with macroscopic classical electrodynamics, if the
Lagrange multiplier ¢ is interpreted as mc/q, where m and ¢
are total mass and charge of the particle. In that case, one
recovers the well-known relation, where left hand side of
equation (10) is rate of change of energy and momentum,
while its right hand side is the electrodynamic work and
Lorentz force. We are, however, a little reluctant to assert
¢ = mc/q, though we concur with the energy-momentum
interpretation of equation (10). The reason behind this subtle
disagreement is the fact that ( is a field variable, whereas both
m and q are integral quantities associated to the whole system.
Hence, in our view, it is premature to relate { to m and ¢ at
this point—for now ( should be treated as a Lagrange mul-
tiplier and a dependent variable to be determined, nothing
more, nothing less. Physically, it dictates how much curvature
can be created in 4D locus of an element by the force acting
on it. In principle, ¢ can even have a sign opposite to the local
charge making the so called ‘bare mass-density’ (*p < 0 in
the rigion a locally negative quantity. The resulting freedom is
crucial as it might be useful in finding a criterion for stability
of the system under external or stochastic perturbation. For
charged bodies, apparently unrealistic (*p < 0 does not
necessarily mean unphysical negative inertia for the overall
body. Even when (*p < 0, added mass due to the electro-
magnetic field combines with the contribution from the matter
to make the particle-inertia positive ensuring no contradiction
with all known aspects of observable dynamics.

Unlike the first Lagrangian principle, the second one is a
direct implant from classical electrodynamics. It states that for
a given 3, the vector a is such that integral of another
Lagrangian denoted by Ly over the 4D volume is extremized.
The expression for L, is known:

1 2. =, >, >, 2 o
Ly=IVa - (Va)']: [Vd — (Va)'] — poj -8, (11)

where i is the magnetic permeability, and the superscript T
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indicates transpose of the second order tensor in 4D space.
The field equation obtained from equation (11) is

V- [VE - (VA = po). (12)
This is a condensed and convenient form of Maxwell’s
relations when ay = —¢/c and a are considered as the scalar
and vector potentials [15].

We solve for (, p, S and a from equations (10) and (12)
which can also be expressed by covariant representations.
Both relations are invariant to Lorentz gauge transformation
as expected. The related scalar gauge field plays a crucial role
in our subsequent analysis.

2.83. Boundary conditions for interfacial continuity

The second order of equation (10) requires two boundary
conditions for a. Firstly, the exterior fields far away from the
particle must decay to zero. Secondly, there cannot be any
singularity in the interior of the charged domain.

The system also requires proper continuity at the inter-
face between the interior and the exterior domains. The
interfacial discontinuity in a is not permissible, because this
means unphysical infinite strength of electromagnetic fields.
Moreover, the normal gradient of 2 must be continuous to
ensure finite charge density at the boundary of the particle.
These two constraints for continuity help to obtain the geo-
metry of the body and the homogeneous solutions in the
mathematical formulations.

For complete mathematical description, the boundary
conditions are coupled with the criterion for sustained integ-
rity implied by periodic change in displacement relative to the
particle-center. Thus, we intend to identify only these systems
instead of finding a general solution.

3. Features of the field solutions

In this section, we identify a few important properties of the
general solution for equations (10) and (12). These properties
are crucial for finding the solutions which guarantee sustained
integrity of the charged particle.

3.1. Lagrange multiplier as constant of motion

We recognize two identities related to the two sides of
equation (10). Firstly, if its left hand side is dotted with §, the

following conclusion can be drawn by applying s - § = 1:
—5-[V(S)] -5 = —-8.VC (13)

Secondly, when the same dot product is performed to the right
hand side, the product disappears:

[§-Va — (Vd)-§]-§=0. (14)

Thus, combining equations (10), (13) and (14), we can infer

3.V¢=0. (15)

This means that the Lagrange multiplier ¢ has to be a constant

of motion. The relation is analogous to conservation of rest
mass in classical continuum mechanics.

It is to be noted that if a quantity is a constant of motion,
it does not necessarily imply its constancy over the entire
volume of the particle. From equation (15), we can only infer
that ( is fixed in the course of the motion of an infinitesimally
small material element inside the particulate domain. How-
ever, ( can, in general, vary from one element to another. Its
invariance over the entire domain can only be attributed from
additional considerations.

3.2. Momentum vorticity theorem

When ( is a constant of motion, the temporal or energy
component of equation (10) becomes dependent on its spatial
or momentum relations. As a result, the 4D vector equation
can only provide three independent relations. Thus, we solely
focus on the momentum components of equation (10).

The momentum components of equation (10) describing
3D vector fields in spatial subspace take the following form

9 __ o +v-V v
Ot Jo2 _ 2 2 _ 2
:(Va)-v—VqS—@—v-Va, (16)
ot
where ag = —¢@/c. If momentum p and energy e per unit
charge are defined using known canonical forms
2
p:C—V_i_a, g:L+¢, (17)
2 _ 2 2 _ 2
one can rewrite equation (16)
@+V-Vp=(Vp)~v—Ve+\/c2—v2 V¢ (18)

ot

Here, both p and e are field variables which are functions of
space and time. The left hand side of equation (18) is the
substantial derivative of momentum per unit charge, whereas
the right hand side is force per unit charge.

If the curl of equation (18) is considered, one finds

%(VXP)+(VXP)V'V*(VXP)-VV
=Ve? —v? x V¢,

where d/dt = 0/0t + v - V is the substantial derivative. We
recognize the similarity between equation (19) and vorticity
transport relation for inviscid fluid [16]. The right hand side
of equation (19) acts as a source term akin to baroclinic
contribution in variable density fluid, whereas the expression
left to the equality represents rate of change of appropriate
components of V x p. The features of equation (19) prompt
us to prove a statement analogous to Kelvin’s theorem for
inviscid flow. Continuum kinematics ensures:

19)

%(ﬁ(SA) — (V- VASA — (V) - A 6A, (20)

where n is the unit normal on a material area OA. If
equation (19) is dotted with ndA, and combined with
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equation (20), it shows
di[ﬁ -(V x p)6A] = h - (VN2 — 12 x VOBA.  (21)
t

We refer V x p as momentum vorticity and equation (21) as
its theorem following the fluid mechanics precedence. This
relation implies that if basis vectors remain fixed with a
material volume undergoing deformation and rotation, the
components of V x p in that basis evolve as integrals of the
baroclinic term V+/c¢Z — v? x V(. If Vie?2 —v? x V¢
disappears, these components of V x p become constants of
motion. Here, it is to be noted though that neither the
momentum vorticity nor the baroclinic source is an invariant
vector in 4D Minkowski space. Thus, even if components of
V x p in material basis are constant in one reference frame,
these can exhibit temporal variations in another. For sake of
simplicity, ¢ can be heuristically assumed as a constant of
space in a special case to avoid potentially distracting math-
ematical complications. In our subsequent analysis, however,
the general system involving radially varying ( introduces
minimal changes. The innocuous nature of the added com-
plexity prompts us to choose generality over simplification.

We recognize the vorticity momentum theorem as a key
result useful in determination of the desired field solutions
satisfying sustained integrity. Accordingly, the subsequent
strategy is going to be a search for a reference frame and a
velocity field for which the baroclinic source is automatically
0, and material components of V x p are obviously constant.
Once these general systems are identified, we will focus on a
specific special case among these where the appropriate
charge densities and the consequent electromagnetic fields
will be computed. The purpose of the simulation is to
demonstrate viability of the theory in construction of physical
solutions associated to a coherent particle with non-zero
charge. After establishing such capability, we will revisit the
general system to discuss a few important observations which
indicate a possible connection between the continuum ana-
lysis and the quantum mechanics fundamentals.

4. Rigid body rotation as viable solution for motion

The momentum vorticity theorem equation (21) infers that
steady rigid body motion with appropriate charge distribution
ensures the satisfaction of all governing equations and
boundary conditions. Such motion can be described by a pure
rotation about a translating axis. Without an external force,
the translation remains time-independent allowing an inertial
frame fixed with the axis of revolution. We assume that the
entire system is undergoing a rotation without deformation
relative to this axis which aligns along the axial coordinate of
a cylindrical system. We also consider ( to vary radially in
that cylindrical system. Under the assumed conditions, the
baroclinic source in equations (19) and (21) disappears
implying +/c? — v? V( a potential vector field. In addition,
this makes all fields time-invariant if expressed in terms of
rotating co-ordinates and basis vectors. In other words, tem-
poral variations in all fields would appear to an inertial

observer only due to the change in rotating co-ordinates and
basis vectors in a frame fixed with the particle. It can be
proven that equation (21) is then automatically satisfied.

The underlying rationale behind the construction is the
obvious fact that fi - q has to be a constant of motion if
component of q with respect to a rotating basis vector like fi
remains fixed. Thus, equation (21) is immediately satisfied, if
components of V x p along rotating basis vectors are time-
invariant. This observation prompts us to propose rigid body
motion as a solution for the velocity field in the system.
Moreover, such motion would have an additional appeal by
enforcing the condition of periodic deformation needed for
sustained integrity. Subsequent analysis first justifies our
proposition more clearly, and then outline the details about
how to compute the correct charge density in one specific
example problem.

4.1. Kinematics of rigid body motion

The relative velocity field with respect to the steadily trans-
lating axis of rotation is only due to the rigid body rotation. It
can be described by a time-dependent rotation tensor R(r)
which relates initial spatial location x,, of a material element
to its subsequent positions X

x =R x,. (22)
The second order tensor R in 3D spatial domain is
R(#) = I — eé)cos(2) + E - esin(2) + ee. (23)

Here, I and E are second order identity and third order per-
mutation tensors in 3D. Also, e(¢) is time-dependent unit
vector representing the instantaneous direction of the axis of
rotational displacement, and 2(¢) is the angle rotated about
that line in that specific instant.

A crucial property of R is that it is orthogonal:

R R =1, R xR’ =R -E. (24)
This implies
T
i(R.RT):():;,_ﬁ.RT:R.ﬁ
dt dt dt
T
= (ﬁ . RT) (25)
dt

making the dot product of the temporal derivative of R with
its transpose an antisymmetric tensor. Any antisymmetric
tensor in 3D can be expressed in terms of E

R

—w-E-R=w xR,
dr

(26)
where w(r) is a spatially invariant time-dependent vector.
Thus, velocity field induced by rotation is given by

V:d—X:§~xo:w><(R~xo):w><x.
dr dt

This shows that the description provided by equations (22)—

(26) is a concise way to quantify arbitrary unsteady rotation

given by Euler. We prefer our tensorial representation for its

utility in the subsequent analysis.

27)
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4.2. Stationary fields in a rotating frame

A stationary field inside a rigid body is defined by its tem-
poral invariance in a reference frame rotating with the parti-
cle. If ¢ is a stationary scalar field, it means

P(t, x) = PRID) - x) = P(x,), (28)

so that it does not vary with time when spatial co-ordinates x,,
attached to the matter are the independent variables. Simi-
larly, if b is a stationary vector field, a steady vector function
b,(x,) can represent it

b(z, x) = R(1) - by(x,). (29)

Then, components of b in basis vectors attached to the body
remain time invariant if expressed in terms of x,,.

If V x p is stationary, momentum vorticity theorem
(equation (21)) is obviously satisfied. This is because unit
normal fi on a material area /A can be treated as a basis vector
rotating with the body. Then, temporal invariance of the
component of V x p along n is assured. In that case, the
momentum conservation in equation (18) can be easily
satisfied.

Stationary V x p implies

p(t,x) =R p,(x,) + Vg. (30)
Here, the scalar field g disappears in the expression of V x p.
It is a gauge different than Lorentz’s or Coulomb’s. The
construction in equation (30) is possible when the motion is
created by a steady angular velocity w of a rigid body:

Q@) = wr. (31

The system described in equation (31) is not necessarily time
invariant despite constant particulate motion. This dichotomy
appears because a steady rotation can still produce unsteady
variations to inertial observers [17], if the axis of spin does
not coincide with the line of symmetry.

w = wé

The constraints in equations (27) and (31) are sufficient
criteria for sustained integrity ensuring periodic displacement
of every material element. Such conditions may not be the
necessary ones though. Hence, future research should look for
potential generality so that non-rigid deforming systems like
in [18] can be viable possibilities.

4.3. Derivation of the combined potential

The satisfaction of equation (19) in a steadily rotating body
converts the momentum relation (equation (18)) into a rela-
tion where gradient of a scalar function 7 equates to 0
implying constancy of 7 over the charged continuum. We
refer to this spatially invariant scalar function as combined
potential whose expression is derived in the subsequent
analysis. The final result is analogous to Bernoulli’s relation
for potential flow in fluid dynamics.

To derive the desired relation, we prove two identities
assuming equations (27), (30) and (31) to be true. First of

these is

a—p—i—v-Vp—(Vp)~v=V%—w><ps—(VpS)-v,

ot
(32)

where p, is the stationary part of momentum p in
equation (30)

p, = R p,(x,). (33)
The second identity concludes
w x p,=[V(w xx)]-p, = (VV) - p. (34)

Subsequently, equations (32) and (34) are combined by
exploiting product rule of differential to convert equation (18)
into a gradient relation indicating irrotationality

e

[2 _ 2

Here, g, can be obtained from a model for ¢ by equating Vg,

to the potential field vc¢? — v? V(. As g disappears for
constant ¢, its existence is the only difference between sys-
tems with radially varying and spatially invariant (.
We identify the combined potential 7 as
2

¢e?
== 4g—pVt+ot+ =
=5, T& P ¢ =

V[a—g+g<—ps~v+¢+

> ]:a (35)

(36)
-V

Its gradient has to disappear according to equation (35) so that
the momentum conservation relation in equation (18) is
satisfied. Thus, 7 remains a constant throughout the charged
domain according to equation (35). Such constancy is similar
to Bernoulli’s equation in inviscid flow, and is a convenient
feature for determination of the charge density, the electro-
magnetic fields and the geometric shape defining the charged
particle. We set the value of the constant 7 to 0, as g has
sufficient freedom to be adjusted accordingly.

4.4. Governing equations for the reduced system

The description of the system is simplified when stationary
fields inside a steadily rotating charged body are considered.
This is caused by decrease in dependent variables, as Vv
becomes completely known. At the same time, automatic
satisfaction of momentum relation (equation (18)) and con-
straint for particulate coherence reduces the number of gov-
erning equations and boundary conditions.

For convenience in analysis, we replace p, defined in
equation (33) by a similarly stationary vector potential ag

(v

CZ—V2

a; = p; — (37)
As Maxwell’s relations include a;, we prefer it over p,.
Thus, the dependent variables in the reduced problem are
the stationary vector potential a,, electric potential ¢, charge
density p and gauge function g which should be governed by
one vector and three scalar equations. The first of these is
provided by the constancy of the combined potential n after
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equation (36) is substituted in equation (37)

0
a_§+g<—as~v+¢+<x/c2—v2=0. (38)
In addition, Maxwell’s relations are
1 9% 1 0%,
For T VOTIE Gga T VS .
(39
Finally, the Lorentz gauge constraint is set:
%%—f—&-V~aS=O, (40)

which simplifies equation (39), but necessitates the appear-
ance of g in equation (38). The system can be further reduced
by eliminating g and disregarding equation (40). The con-
sequent complexities in equation (39), however, prohibit us to
follow that path. Hence, we decide to seek stationary fields
that satisfy equations (38)—(40). The resulting formulation
provides the appropriate geometry and charge distribution so
that the rate of change of momentum field can counterbalance
electrodynamic forces sustaining coherence.

5. Simulation of geometries and fields for steadily
rotating annuli

The stationary solutions for equations (38)—(40) are easiest to
find where an axisymmetric system does not show any tem-
poral variation in either rotating or inertial reference frame. In
other words, the geometry has a line of symmetry about
which the body rotates with a constant speed w. In this
section, we consider specific examples of such geometry in
the form of slender disc-like annuli.

Moreover, we will consider a further simplification where
( is assumed to be constant throughout the domain. Then, the
scalar field g, introduced in equation (35) disappears from the
expression of 7. This consideration makes the trajectories of
different parts of the particle similarly curved due to action of
an external force creating a possibility of coherence even
under external disturbance.

The purpose of the presented simulation is to show that
our formulation can construct systems with sustained integrity
despite non-zero net charge under isolated unperturbed con-
dition. As a result, one can compute specific geometries with
proper charge distribution where centripetal inertia due to
rotational motion exactly balances the electromagnetic force.
Thus, we can demonstrate that the described annuli can
maintain their coherence obeying classical electrodynamic
principles.

5.1. Normalizing scales for non-dimensional fields

The first step in the simulation is to identify proper scales for
all variables so that non-dimensional quantities can be
defined. The obvious scales for time, length and velocity are
given by ft,, [, and v, respectively

t,=1/w, i =c/w, Vs = C. 40

We take [ to be isotropic, even though slenderness of the
body might imply a different characteristic dimension in the
axial direction.

The entire domain has a fixed charge g which is used to
find the scales for charge density, electric potential and
magnetic potential defined as p;, ¢, and ag,, respectively:

py = qw’/c?, ¢y = poque,  as = figqw.  (42)

The scale for current density, if needed, would be p;c.

For non-dimensionalization, the dimensional variables
are divided by their scales. Accordingly, non-dimensional
radial and axial cylindrical co-ordinates are 7 and Z

F=r/ly=wr/c, Z=z/li=wz/c,  (43)
where r, z are their dimensional counterparts. Similarly
= [/ts = wit, p= P/Ps, Q_ﬁ = ¢/¢y a; = as/ass,
(44)

are all relevant dimension-less quantities.
Rigid body rotation with axial symmetry of the con-
sidered system suggests the following simplifications

(45)

where €, is the unit vector in direction of variation of the
cylindrical angle. Also, the temporal invariance of the system
converts the time derivative of the gauge function g in
equation (38) to a constant whereas invariance of ( ensures
g¢c = 0. Hence, equations (38)—-(40) become cold Euler—
Maxwell equation, and simplify into three scalar relations:

V=v/c=rFé a; = ayé€y,

Fag— & =pBNE1— 72 +kp), (46)
-5 - 28 - pl(1L R w)
F OF F\F dF
and
) 1 [280 B
= - —— . 4
P 1—f2[f oF +(1—f2)3/2] “

Here, V represents gradient in non-dimensional spatial co-
ordinates, and IEg is the non-dimensional gauge constant to be
determined by exploiting boundary conditions. Also, 3 is a
fixed dimension-less parameter:

B=— (49)
Hoqw

This should be evaluated by enforcing
f pdx = +1,

where the integral is over the dimension-less volume of the
entire charged particle. It is equated to 1 so that the charge
content in the whole body remains +q.

(50)

5.2. Brief outline of the computational procedure

Conveniently, equations (46)—(48) are all linear and steady
relations. So, a finite difference scheme with appropriate
spatial discretization can find the numerical solutions for p, ¢
and ay. Accordingly, these variables are represented in
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discretized form by column |p), |¢) and |a), whose elements
are the respective values at spatial grids.

We realize that p and ¢ are coupled by two independent
linear relations. Firstly, p can be obtained from ¢ by using
equation (48) whose finite difference discretization yields

lp) = [S1l9) + BlY). (G

Here, the elements of column |¢) represent the known radial
function multiplied to 3 in the right hand side of
equation (48). In contrast, the square matrix [S] is formed by
discrediting the differential operator acting on ¢ in
equation (48). In the second relation, ¢ is equated to the Biot—
Savart integral corresponding to a Poisson’s equation
Vo =p

< e p(x) A%

A

= [B]lp) = 9).

(52)
We explicitly evaluate the square matrix [B] representing the
kernel of the Biot-Savart integral in equation (52). If
dependent variables p and ¢ satisfy both equations (51) and
(52), then all boundary conditions including interfacial con-
tinuity are automatically enforced.

The first step in a general simulation starts with an initial
guess of the system geometry. Then, equations (51) and (52)
need to be combined by eliminating ¢ to find a matrix
equation solely involving p

(1 — SBllp) = BlY).

Next, the charge distribution can be determined from
equation (53) by a simple inversion of [/ — SB], where [[] is
the identity matrix. Subsequently, the computed charge den-
sity should be used in equation (51) to find ¢ which would, in
turn, be utilized in equation (46) for calculation of the vector
potential dy. Finally, the shape of the domain as well as the
gauge constant k, are modified iteratively to ensure zero
charge density at a layer attached to the periphery of the
particle.

The initial simulation results obtained by the outlined
general procedure allow us to simplify the computation sub-
stantially. These findings show the axial thickness of the
annuli to be very thin compared to the radial dimensions
especially in the region of denser charge. As a result, we can
approximate the system as a saucer-like two dimensional
geometry with negligible axial variations due to small height.
Consequently, an effective surface charge density & with
predominantly radial variation can describe the dynamics

(53)

h
og=2 pdz,
0

(54)

where /i (F) is the radially varying half-width of the domain
along the z direction. One can relate |¢) and |a) to & con-
sidering electrodynamic relations as Poisson’s equation.
Thus, the following matrix relations are available

l¢) = [Bllo), la) = [Allo),

where elements of the column |o) are the different values of &
at different radial grid points. The coupling square matrices
[B] and [A] are calculated from explicit elliptic integrals

(55)

derived by integrating the Biot—Savart kernels over angle 6.
Hence, |o) is evaluated by exploiting the matrix form of
equation (46)

[RA — Bllo) = BlY + ky), (56)
where [R] is a diagonal matrix with radial positions of the grid

points as elements, and the column |¢)) represents the
7-dependent term in the right hand side of equation (46).

The system geometry is defined by the axial width /(7)
as well as the inner and outer radii 7; and 7,. After finding |o),
we iteratively determine 7 and 7, along with k, enforcing
& = 0 atboth 7 = 7 and 7 = 7,. Then, ¢ and a, are computed
from equation (55). Also, approximate leading order p is
evaluated by using equation (48). Finally, the axial thickness
h(F) is evaluated by dividing & by 2.

The outlined method gives a leading order description of
the slender system. We also use the general scheme discussed
before to capture the axial changes which seem to be negli-
gible variations (less than 1%). Thus, we present the results
from the simplified slender body analysis next.

5.3. Evaluation of the radial dimensions

The most challenging component of the simulation is to
identify potential geometries which correspond to mathema-
tically valid and physically meaningful radial variations of the
evaluated functions. Hence, the first task in the computation is
to recognize the allowable region in the parametric space
formed by the geometry-defining quantities. In our slender
body problem, inner and outer radii 7; and 7, dictate the basic
features of the system. Among these, if one is given, the other
can be determined along with the gauge constant k, by
enforcing & to disappear at the inner and outer edges of the
slender disk. Thus, we choose 7; independently, and compute
7, and k, by satisfying the consistency at the edges.

Our study reveals that an arbitrary value of 7 is not
permissible for slender body analysis. For physically mean-
ingful systems, & and p should have same sign at every radial
position inside the annular domain. Otherwise, the thickness /
at a certain location would be negative making the geometry
physically absurd. We find out that the positive definiteness of
h is assured if 0.897 < 7. Also, the numerical errors in the
computed elliptic integrals used in calculations of [A] and [B]
(equation (55)) increase when 7 > 0.96. Thus, to ensure less
than 1% relative error as well as permissible geometry, we
confine our study in a parametric region 0.897 < 7; < 0.95.

In figure 1, we plot the outer radius as a function of 7
within the designated range. Two different values of the
number of grid points N are chosen as either 500 or 1000. The
results demonstrate good numerical convergence and negli-
gible numerical errors. The value of 7, varies within a short
range very near to unity. This means that the velocity at the
outer edge approaches c. We expect this behavior because
stability of the rotating charge is possible only when the
magnetic effect is strong enough to counter-balance the
electrostatic repulsion. This fact can also explain the per-
missible region for 7—the inner radius cannot be too small so
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Figure 1. Normalized outer radius corresponding to permissible
geometry is presented as a function of normalized inner radius. The
simulation is performed for radial grid points N = 1000 (solid line)
and N = 500 (dashed line).
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Figure 2. Non-dimensional parameter 3 defined in equation (49) is
presented as a function of normalized inner radius for radial grid
points N = 1000 (solid line) and N = 500 (dashed line).

that the magnetic field becomes negligible near the inter-
ior edge.

In figure 2, convergence of gauge constant k, with N is
presented for systems with different 7. Similarly, figure 3
shows the same for the parameter 3 in equation (50). Both
reveal good convergence indicating small numerical errors.

5.4. Surface charge distribution and field quantities

The computation method outlined earlier is used to compute
the surface charge density p next. Accordingly, equation (56)
is inverted to find |o) from which the values for each radial
grid point are evaluated. This result is presented in figure 4,
where the radial position is recalibrated so that the trans-
formed variable is 0 at 7 = 7; and 1 at 7 = 7,. The plots show
that & is small near the inner periphery of the annular domain.
Then, the function increases rapidly with increasing radius.
Such behavior ensures a positive radial gradient in the electric
potential so that the inward electrostatic force hold the inside

-2.15

255 I I I I I I I I I
0.9 0.905 0.91 0.915 0.92 0.925 0.93 0.935 0.94 0.945 0.95

T

Figure 3. Non-dimensional gauge constant &, is presented as a

function of normalized inner radius for radial grid points N = 1000
(solid line) and N = 500 (dashed line).

25

20

(7 —7i)/(To — T4)

Figure 4. Dimension-less surface charge density & versus relative
radial position between the inner and outer radius for 7 = 0.95 (solid
line) and 7 = 0.9 (dashed line).

core together by providing the required centripetal accelera-
tion necessary for the rotational motion. However, the charge
density starts to decay fast after attaining a maximum very
near to the outer edge. At this point, both the magnetic and
electric potentials start to decrease, but the former has a
stronger variation. Hence, the magnetic effect not only com-
pensates the outward electric force near the external periphery
but also can create enough inward force needed for the
motion.

The discussed nuances are further explained by the radial
variations in electric potential ¢» and magnetic potential .
We plot ¢ and ay as functions of radial position in figures 5
and 6, respectively. These quantities have their maximum
values near the outer edge. One can see subtle differences in
two sides of this region of maximization. In the segment with
positive radial gradient, electric effect is dominant over
magnetic influence causing radially inward net force. In
contrast, the situation reverses in the other side of the
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Figure 5. Normalized electric potential ¢ versus radial position for
7 = 0.95 (solid line) and 7 = 0.9 (dashed line).

(r—7i)/(To — Ti)

Figure 6. Normalized magnetic vector potential @y versus radial
position for 7 = 0.95 (solid line) and 7 = 0.9 (dashed line).

maxima, because @y has a relatively sharper decline than ¢.
As a result, the net electromagnetic force is again radially
inward, and the required centripetal acceleration is supplied
for the rotational motion.

In figures 4-6, the results are plotted for two systems.
First of these is the narrower band where 7; is 0.95, and the
corresponding 7, from figure 1 is 0.997 3775. In contrast, the
second is near the critical geometry with 77 = 0.9 which is
near the least permissible value 0.897. One can see & is higher
in the former. This is because smaller radial span requires
larger density to make net charge same as given by
equation (50). This, consequently, causes higher ¢ and Gy in
the narrower domain.

It is to be noted that the velocity approaches to ¢ near the
outer rim of the annuli. This does not, however, make the
obtained solution invalid, as all the results in this fully rela-
tivistic formulation are derived from equations (10) and (12)
which have complete covariant representation in hyperbolic
Minkowski space. Hence, equation (46) and its corresponding
matrix representation equation (56) ensure a perfect balance
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Figure 7. Normalized magnetic vector potential gy versus relative

radial position between the inner and outer radius for ## = 0.95 (solid
line) and 7 = 0.9 (dashed line).
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among electric, magnetic and inertial forces throughout the
entire material domain from the core to the rim. We recheck
this fact by dividing the difference between electric and
magnetic forces by the inertial contribution. The resulting
ratio is uniformly 1 for the entire radial span 7; < 7 < 7,.

5.5. Determination of the radial variation in width

The final task of the simulation is to determine the axial
dimension of the annular domain as a radial function, and
check whether it conforms with our slender body presump-
tion. For such geometries, the half width 4 for the annulus is
calculated by

h=35/(2p), (57
where volumetric charge density p is given by equation (48).
This construction automatically satisfies the continuity
between leading order axial gradient of electrodynamic
quantities inside and outside of the charged particle. As a
result, radial variation of / presented in figure 7 completes the
description of the system under consideration.

Volumetric charge density increases sharply with radius
according to equation (48). As this change over-compensates
the variation in &, one expects 4 to be a decaying radial
function near the outer edge. Also, i =0 at 7 =7, 7,
because 7 is set to be 0 at the edges in our construction. These
features are evident in figure 7.

One can also see distinct differences in the shape of the
two domains shown in figure 7. The axial thickness is much
smaller for narrower radial band with 77 = 0.95. In contrast, as
7; approaches its critical value of 0.897, the body widens in z
direction near the inner edge. Actually, if # = 0.897, then / at
7 = 7 is infinity, as p is O there. For even smaller inner radius,
p is negative making the width negative in turn after a certain
interior point. This is the basic reason for critical nature of the
value 0.897 for 7. The increase in axial thickness near the
inner edge is a simple manifestation of this critical feature.
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6. Momentum-wavenumber and energy-frequency
proportionalities

It is possible to construct a number of systems with specific
geometries and charge densities for which the isolated particle
can maintain its self-sustaining coherence. In these material
domains, electro-magnetic fields ensure the exact balance
between the net force and the required centripetal inertia for
rigid body rotation as seen in the previous section. The steady
dynamics described in the earlier section shows only a few
examples of such systems. The important question is how to
characterize the crucial aspects of the dynamics for all pos-
sible solutions.

Hence, our main goal in this section is to highlight any
major general feature of the possible systems with sustained
integrity. Among the charged particles undergoing rigid body
rotation, one can conceive a situation where the system
steadily rotates about an axis which is not its axis of sym-
metry. This represents an intrinsically different dynamics than
the one seen in the previous section, because when axes of
symmetry and rotation do not coincide, wave-like unsteadi-
ness is manifested to an inertial observer even for steady
particulate motion. The present section focuses on analyzing
such time-dependent behavior in the electrodynamic fields
produced by the asymmetrically rotating charged bodies with
variable (.

The perceived model is slightly different than the
accepted description of elementary charge particles which are
typically assumed to have axial symmetry. In contrast, we
propose a rotating stationary configuration which may have
possible azimuthal variations. This apparent contradiction is,
however, easily explainable if one considers very fast revol-
ving geometry which would make the system appear as an
axisymmetric one for an observation time-scale much larger
compared to the period of rotation. As a result, any mani-
festation of electric or magnetic multipoles would reveal as
axisymmetric to a macroscopic observer. Thus, the postulated
dynamics can conform to well-known observations despite a
fundamental conceptual departure in short-time behavior.

It is to be noted that the stable existence of all these
systems depends on whether their integrity can be maintained
even under the action of an external force field. The stability
criteria in non-dissipative systems as outlined in [19] under
different externally imposed perturbations should be a topic
of future research. At this point, we are, however, not inter-
ested in identifying all possible stable and unstable solutions,
as it requires understanding many-body interactions. We
concentrate, instead, on the general temporal variations
shown by an isolated particle in an inertial frame of reference.

6.1. Transformations from inertial to rotating frames

The temporal derivatives in inertial co-ordinates and in the
ones rotating with the rigid body are related:

0 0

— = —(w xx,) -V,
ot ory, ( )

(58)

Here, initial and later positions x, and X are related by
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equation (22), whereas V,, is the gradient in x,. We derive
equation (58) by using properties in equation (24) and the fact
that angular velocity w is an eigen vector of rotation tensor R

R -w=w. (59)
If the axes of symmetry and rotation coincide, we find
(W x X,) -V, =0, (60)

making the two temporal derivatives in two different refer-

ence frames given in equation (58) exactly the same.
Temporal variations in any stationary scalar i or vector b

are given below, when these satisfy equations (28) and (29):

g

- — X X, vo s
o (W X X,) P
g_b =(wx +w-E:x,V,)R - b,. (61)
T Ik

Such dependence on time ensures that if the rotating coor-
dinates and basis vectors are chosen, ¥ and components of b
become temporally invariant.

If we consider that scalars g, ¢, p and vectors v, a; are all
stationary in rotating frame like ¢) and b, equations (38)—(40)
transform into the following forms

—(W X X,) + (8 + V) + g + 6 + (V2 =V =0,

(62)
1 2
[—(w X X,) - Vo] ¢ — Vod = pyc?p, (63)
C
w X (W X a,) + {(W X X,) - vo}zao — 2(W X X,)
VW x a, — c2V2a, = p1,c2pw X X,, (64)
and
LW x) Vo + Y, =0, (65)
C

with a, being the x,-dependent factor in a;. We use the
equalities in equation (61) to derive equation (62) from con-
stancy of combined potential, equations (63)-(64) from
Maxwell’s relations, and equation (65) from Lorentz gauge
constraint.

The key feature in equations (62)—(65) is that these are all
time-independent relations like equations (46)—(48). Conse-
quently, all dependent fields g, p, ¢, a, vary as functions of
the rotating spatial co-ordinates x,, only. In other words, when
expressed in terms of x,, dependent variables g, p, ¢, a, are
temporally invariant, and their solutions are stationary scalar
and vector fields given by equations (28) and (29). Such
temporal invariance is expected because both the energy-
momentum and electrodynamic equations retain their forms
under rotational transformations.

Thus, if a certain class of geometry is considered for an
asymmetrically rotating steady rigid body motion, the simu-
lation presented in the previous section can also be extended
to solve equations (62)—(65). Consequently, the geometry as
well as the charge distribution for the new systems can be
computed ensuring continued integrity like before. The only
difference in the two problems would be in the details—for
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example, the elliptic integrals that construct the square
matrices would be formed considering retarded potential
instead of Coulombic interactions used earlier. This enables
explorations of different kinds of charged domains with
sustained coherence. In all cases, satisfaction of
equations (62)—(65) ensures such multipolar contributions
[20] that the surface integral of Poynting’s vector at infinity
disappears making the electromagnetic radiation zero despite
inherent variations in time.

6.2. Energy and momentum in an inertial reference

At this point, let us assume that an asymmetrically rotating
charged domain with sustained coherence has been identified,
where all relevant fields and the geometry are known. We
intend to find the energy and momentum of the entire system
measured by an inertial observer.

At first, we consider an inertial observer who is trans-
lating with the axis of rotation. The total linear momentum
P,y of the system in the conceived reference frame is 0. The
total energy ey, for that charged body does not, however,
disappear because different parts of the localized continuum
move and experience electro-magnetic interactions. One can
calculate ey as:

foq°c

Esys = w,
4mey

(66)
where & is a non-dimensional integral given in terms of
known non-dimensional field quantities:

1 S p
g—47rf(¢+rae+m

Here, non-dimensional variables 7, p, {ﬁ, dy are normalized
according to equations (43) and (44) by the scales defined in
equations (41) and (42). Dimension-less constant (3 is
obtained using charge normalization in equation (50). As the
fields are steady when expressed in terms of x,, the integral
representing & does not change with time. We refer to & as
the structure constant which remains unique for a specific
coherent system. For the symmetrically rotating annuli, 1 /& is
14.63 and 13.96 for 7; = 0.95 and 7; = 0.9, respectively. If the
geometry and charge distribution for particles like electron or
positron are identified, the value of & should coincide with the
fine structure constant. We believe that such systems must
rotate asymmetrically exhibiting temporal variations to an
inertial observer.

When an observer moves relative to the axis of rotation
with a translational velocity —u, the new energy &y and
momentum P, of the system satisfy Lorentz transformation.
The new values &y, and Dyys in the new frame are related to
the old values ey and p,,; by

) p dx,. (67)

Esys

e o

ésys =
and
~ CeysU

Pys = — 7777
v 21 — u?/c?

(69)
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Here, the relations are simplified by taking p,,; = 0. Thus, the
energy and the momentum carried by the particle with an
arbitrary translational velocity u can be obtained from
equations (68) and (69).

It is to be noted that we are non-committal about the mass
of the charged particle throughout our formulation. The rea-
son behind this is that there are two possible explanations for
the rest mass m. The first one is in terms of the Lagrange
multiplier ¢ in equation (9). The second way to define m is by
using the rest energy ey, In our view, this issue cannot be
resolved before understanding how the localized charge
continuum reacts to an external field. As such analysis is
beyond the scope of the present article for isolated systems,
the resolution of the question would be a matter for future
investigations.

6.3. Unsteady variations in steadily rotating system

The stationary fields in asymmetrically rotating frame reveal
an inherent temporal variation when viewed by an inertial
observer. It is an obvious but often ignored consequence of
steady rigid body rotation about an axis which is not a line of
axial symmetry. The effect is akin to an oscillating wake
created by a rotating blade inside a fluid. In general, such
periodic variation is always present if any asymmetrically
rotating rigid body is responsible for creating spatially and
temporally varying fields. In our system, electric and magn-
etic fields exhibit similar behavior which can be quantified by
decomposing the rotation tensor R using discrete Fourier
transform.

Any vector field b given by equation (29) can be
decomposed in terms of complex functions

b = R - b,(x,) = e“'b + e “'b, + b, (70)
The complex vector fields b and b} are given by
b, =R*-b,,  b)=RC-b,, (71)

where temporally invariant second order tensors R* and R?
are obtained by decomposing R

R = ¢“R* + e “ R~ + RO, (72)
One can derive their expressions
Rt =1 — é FiE - &)/2, RO = é¢, (73)

in which no time-dependence is present.

Thus, if the axis of rotation is fixed with respect to the
inertial observer, the predominant unsteady variation in the
vector field b would be noticeable in the form of a periodic
oscillation with frequency w/(27). Any long-range electro-
dynamic variable like electric field, magnetic field, Poynting
vector can be represented by b. The larger scales in the var-
iations of these fields are embedded in the functions b and
b?. These correspond to slower temporal and more gradual
spatial changes compared to the predominant oscillation
manifested by exp(d-iwt) which is recognized as small-scale
behavior.

When the particle translates with a steady velocity u with
respect to a new observer, the predominant temporal
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oscillation morphs into a more complex variation dramati-
cally. For the new observer, the time 7 and the position vector
I obey the rule of Lorentz transformation relating # relevant to
the earlier reference frame:

r

u?/c?

_ i n u-
JI—2/2 21—

This reveals a new frequency and wave-number for oscillat-
ing fields to a static observer

t (74)

=Y . (75)
1 fuz/cz, 21 — u?/c?

The transformed frequency & and wave-number X are iden-
tified from variation of 7 in 7—F space when equation (74) is
substituted in the small-scale variation exp(=Liwt).

When w and u in equations (66), (68) and (69) are
expressed in terms of @ and X , remarkable relations can be
derived

2
~ C ~
By = 101 (76)
V¥ et
and
,uoqzc g
Pyys = o A 77

These are the proportionalities similar to quantum mechanical
postulates proposed by Planck and de Broglie.

If 1/a in equation (67) coincides with fine structure
constant for an asymmetrically rotating system, the pro-
portionality constant in equations (76) and (77) matches with
reduced Planck constant. The resulting relations are true not
because of any quantum mechanics postulate. On the con-
trary, if the particle has to maintain its integrity, it has no
option but to contain energy and momentum which are pro-
portional to the frequency and wave-number of the field
variables revealed to an inertial observer.

The presented model can be related to the known
phenomenon ‘zitterbewegung® which suggests a cyclic
motion of the particle-center superimposed to rectilinear
translation. It is theorized by Schrodinger from the solution of
Dirac’s equation [21]. The frequency of the rigid body rota-
tion predicted in this paper corresponds exactly to the same
for zitterbewegung. Moreover, the momentum-vorticity the-
orem in equation (21) and subsequent field solutions indicate
further connections between our analysis and the quantum
description. According to our theory, a spatially variable { can
make the centers of charge and mass different. Furthermore,
our description allows many shape of the same deformable
body as long as V x p remains the same for all possible
material elements. Thus, there can be arbitrary change in the
separating distance between the centroid of mass and the axis
of rotation. Either way, it is possible to perceive a cyclic
motion of the particulate center. In that case, details of the
dynamics would be specified by the aforementioned separa-
tion and the overall translation of the entire system. This
causes a decoupling between the velocity of the centroid and
the net momentum stored in the electromagnetic field. If the
separating distance changes, the geometry of the charge
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continuum also alters due to the inherent deformability of the
charged continuum inside its interior. If the associated
deformation field is counted as an independent variable, the
phase space for the conceived dynamics matches exactly with
the one proposed by Barut and Zanghi [5]. Such observations
imply potential value of the outlined continuum formulation
for deeper understanding of fundamental physics.

7. Summary and conclusions

This paper shows how a slightly modified interpretation of
classical mechanics can explain the sustained integrity of a
charged body. The key aspect of the theory is the conception
of a localized continuum for the charge occupying a finite
volume even if it is extremely small. Such a model requires
description of the motion of an arbitrarily chosen infinitesi-
mally small material element inside the particle. This is
achieved by two classical Lagrangian principles. The only
change introduced in the well-known formulation is the
replacement of mass by a scalar field acting as a Lagrange
multiplier for the kinematic constraint inherent in special
theory of relativity.

The formulation reveals that a steady rigid body rotation
can represent the velocity field inside the localized continuum
with sustained integrity. This fact is congruent to the notion of
inherent spin of a charged particle. Also, such observation
leads to a convenient property where a functional referred as
combined potential can be proven to be a constant of space.
When this constancy relation is coupled with Maxwell’s
equations and appropriate boundary conditions, the geometry
and the interior charge distribution needed for the continued
coherence of the system can be determined. As a result, the
electrodynamic force provides the required centripetal accel-
eration for circular motion, and surface integral of Poynting
vector disappears making the dynamics non-dissipative.
These facts are tested with simulations of slender annuli
steadily rotating about their axis of symmetry.

A modified version of the same simulation can be applied
for a system steadily rotating about a line which is not the axis
of symmetry. In that case, an inertial observer can detect
periodic spatial and temporal variations in electrodynamic
fields. We have shown that the observed frequency and wave-
number are directly proportional to the measured energy and
momentum of the system in that reference frame, respec-
tively. This seems to be, at least apparently, an analytical
construction of Planck’s and de Broglie’s laws considered as
quantum postulates. As the analysis also shows how to cal-
culate the associated proportionality constant, a mathematical
recipe for numerical evaluation of the fine structure constant
may be derived from the presented theory.

The physical implication of the obtained results should
be viewed with both excitement and caution—it is not clear
yet whether the theory truly signifies new understandings or
merely presents some intriguing coincidences. In one hand, it
has the potential to explain fundamental dynamics of matter
and motion in a new way. On the other hand, it can simply be
a description which matches with a few known physical
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postulates serendipitously. A true evaluation in this regard is
possible only if the following three studies are successfully
completed.

The first and foremost of these unresolved questions is
how the described system interacts with an externally
imposed field or another particle at proximity. Our present
study concentrates on an isolated body which can have self-
sustained coherence. As a result, it deliberately avoids the
issues pertinent to external interactions. The consideration of
an external field would, however, reveal whether our theor-
etical frame-work can reproduce quantum mechanical results
like energy-levels in different bound states or spin manifes-
tation in presence of a magnetic field. Moreover, this would
show us the true measure of particulate mass which should be
defined as the curvature response to an imposed force field.
We can, then, extend the many-body dynamics to analyze
inter-particle interactions and collisions.

The second study should investigate the stability criteria
for particles under the action of an external field or pertur-
bation. The systems described in this paper maintain self-
sustaining integrity when isolated from external impetus.
These can be, however, quite unstable if the dynamics is
perturbed. Hence, one can hypothesize that many possible
configurations permissible under our present consideration
may only be partially stable or totally unstable in real world.

The third and final analysis would involve specific
simulation for the domains which satisfy the stability criteria
under external perturbation. This requires identification of the
systems which are at least partially stable. Then, the com-
putation of the field and the geometry associated to these
particles will lead to the calculation of fine structure constant
whose accurate evaluation can be viewed as the final
triumph of the presented theory.

If the three proposed studies are successfully concluded,
a new paradigm for elementary charged particles can be
theorized. Then, one can infer the classical electrodynamics
inside charged continuum with spatially varying ( is indeed
the most basic principle of mechanics in the smallest possible
scale. All quantum phenomena are relatively large-scale
manifestations of this fundamental dynamics quantifying
many-body interactions spanned across interparticle separa-
tion much larger than particulate dimensions. Thus, processes
like wave-function collapse or short-time variations during
scattering should be explained by the new continuum model.
In contrast, quantum mechanics should be reserved for
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description of the states attained long after the transiency
caused by collision or sudden fluctuations. Reality of the
physical world might be captured in new details by such
hierarchy of multiscale theories.
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