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Abstract
In this paper the general deformed boson algebra called aj-deformed boson algebra is discussed
based on the j-addition and j-subtraction. The j-derivative and the realization of j-deformed
boson algebra are also discussed. Besides, j-deformed su(2) algebra ( jsu 2( ) algebra) and
supersymmetric quantum mechanics are also discussed. Seven possible j-deformed boson
algebras are discussed and j-coherent states and non-classical properties are investigated.
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1. Introduction

The ordinary boson algebra takes the following form

= = - =a a N a a N a a, 1, , , , . 1[ ] [ ] [ ] ( )† † †

The first deformation of boson algebra was accomplished by
Wigner [1], who considered the following deformed algebra

n n- = + - >aa a a 1 2 1 , 0. 2N( ) ( )† †

After this, three types of q-boson algebras appeared in [2–5].
Arik and Coon [2] considered the following q-boson algebra

- =aa qa a 1 3( )† †

and Biedenharn [3] and Macfarlane [4] considered the fol-
lowing q-boson algebra

- = -aa qa a q 4N ( )† †

and Odaka et al [5] considered the following q-boson algebra

- =aa qa a q . 5N ( )† †

These algebras were unified into the following general
deformed boson algebra (GBA) [6–8]

j j= + - = - =a a N N N a a N a a, 1 , , , , ,
6

[ ] ( ) ( ) [ ] [ ]
( )

† † †

j j= = +a a N aa N, 1 , 7( ) ( ) ( )† †

where j x( ) is a positive analytic function called a structure
function with j =0 0( ) , and N is the number operator. The
structure functionj x( ) contains some deformation parameters
and it reduces to x when the deformation parameters take
some special values. Later another type of deformed boson
algebras appeared in literatures: The q-deformed Wigner
algebra [9] was presented in the form

n- = + --aa qa a q 1 2 1 . 8N N( ( ) ) ( )† †

Unification of three q-boson algebra [2–5] appeared in the
following form [10]

- = a b+aa qa a q . 9N ( )† †

More general form of the above algebra appeared in the
following form [11]

- =g a b+aa q a a q . 10N ( )† †

Recently, a new kind of the deformed boson algebra appeared
by Rebesh et al [12] in the form

=
+

+
-

+ -
a a

N

qN

N

q N
,

1

1 1 1
. 11[ ]

( )
( )†
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The deformation of ordinary boson algebra can be applied to
the thermodynamics of deformed boson gas [13–21] or to
investigation of non-classical properties of deformed coherent
states [22, 23] when photon is regarded as a kind of deformed
boson.

In this paper we discuss a general deformed boson
algebra called j-deformed boson algebra which is written in
terms of the j-addition and j-subtraction for invertible
structure function j. This paper is organized as follows: in
section 2 we discuss j-deformed boson algebra. In section 3
we discuss j-derivative, j-integral and realization of
j-deformed boson algebra (infinite Fock space). In section 4
we discuss supersymmetric quantum mechanics (SQM). In
section 5 we discuss possible structure functions. In section 6
we discuss j-deformed boson algebra as a Hopf algebra. In
section 7 we discuss j-deformed su(2) algebra ( jsu 2( ) alge-
bra). In section 8 we discuss j-coherent states and non-
classical properties.

2. j-deformed boson algebra

The GBA (1) is written in terms of the commutator
= -A B AB BA,[ ] . In this paper we will introduce the

j-addition and j-subtraction to change the commutator into
the j-deformed commutator AB BA. We will show that all
GBA can be written with a help ofj-deformed commutator in
the form =aa a a 1† † . Here and from now on we demand
that j x( ) should obey

j j= =0 0, 1 1. 12( ) ( ) ( )

2.1. j-addition and j-subtraction

Now let us consider j-deformation of an ordinary addition
and subtraction.

Definition 2.1. For invertible structure function j x( ),
j-addition is defined as

j j jÅ = +- -x y x y . 131 1( ( ) ( )) ( )

Proposition 2.1. The j-addition obeys the following:

Å = Åx y y x, 14( )
Å Å = Å Åx y z x y z. 15( ) ( ) ( )

Proof. It is simple. ,

Proposition 2.2. The j-additive identity is 0.

Proof. Using the equation (12), we have Å =x 0
j j j j+ = =- -x x x01 1( ( ) ) ( ( )) , which completes the
proof. ,

Definition 2.2. The j-additive inverse of x denoted byx is
defined through

Å =x x 0. 16( ) ( )

Proposition 2.3. The j-additive inverse of x is given by

j j= - -x x . 171( ( )) ( )

Proof. It follows from j j+ =- - x x 01 1( ) ( ) . ,

Definition 2.3. The j-subtraction is defined as

j j j= Å = -- - x y x y x y . 181 1( ) ( ( ) ( )) ( )

2.2. j-deformed boson algebra

In this subsection we will derivej-deformed boson algebra in
an algebraical way with a help of j-addition and
j-subtraction.

Proposition 2.4. All j-deformed algebras are written as

= = - =aa a a N a a N a a1, , , , , 19[ ] [ ] ( )† † † †

where

j=a a N 20( ) ( )†

and j j= =0 0, 1 1( ) ( ) . Thus, the j-deformed boson
algebra can also be written as

j j= + -aa a a1 . 211( ( )) ( )† †

Proof. From the relation (20) we have

j= -N a a . 221( ) ( )†

From the equation (19) we get

= Åaa a a1 , 23( )† †

which gives

j j= Å = +aa N N1 1 , 24( ) ( ) ( )†

which completes the proof. ,

Proposition 2.5. Whenj n 0( ) for =n 0, 1, 2,, the Fock
representation of thej-deformed boson algebra is as follows:

ñ = ñ =N n n n n, 0, 1, 2, , 25∣ ∣ ( )

jñ = - ña n n n 1 , 26∣ ( ) ∣ ( )

jñ = + + ña n n n1 1 . 27∣ ( ) ∣ ( )†

Thus, we have infinite Fock space.

Proof. It is simple. ,
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Proposition 2.6. When j n 0( ) for =n p0, 1, , and
j + =p 1 0( ) for =p 1, 2,, we have the +p 1( )-dimen-
sional Fock space. In this case, the Fock representation of the
j-deformed boson algebra is as follows:

ñ = ñ =N n n n n p, 0, 1, , 28∣ ∣ ( )

jñ = - ñ =a n n n n p1 , 0, 1, , 29∣ ( ) ∣ ( )

jñ = + + ñ = -a n n n n p1 1 , 0, 1, , 1 30∣ ( ) ∣ ( )† 

ñ =a p 0. 31∣ ( )†

Thus, we have finite Fock space. In this case we also have

= =+ +a a 0. 32p p1 1( ) ( )†

Proof. It is simple. ,

3. j-derivative, j-integral and realization of
j-deformed boson algebra (infinite Fock space)

Now let us introduce j-derivative to discuss realization of
j-deformed boson algebra. Here we will restrict our interest
to infinite Fock space.

3.1. j-derivative

Definition 3.1. The j-derivative jDx is defined as follows:

j= =j -D x n x n, 0, 1, 2, 33x
n n 1( ) ( )

Imposing the equation (12) we have

=jD 1 0. 34x ( ) ( )

Proposition 3.1. The j-derivative jDx can be written as

j j= ¶ =
+ ¶

+ ¶ ¶jD
x

x
x

x
1 1

1
1 , 35x ( ) ( ) ( )

where

¶ =
x

d

d
.

Proof. From j =0 0( ) , we can set

åj =
=

¥

x c x . 36
k

k
k

1

( ) ( )

Thus we have

å

å

j

j

= ¶ = ¶

= =

j

=

¥

=

¥
-

D x
x

x x
x

c x x

x
c n x n x

1 1

1
. 37

x
n n

k
k

k n

k
k

k n n

1

1

1

( ) ( )

( ) ( )

Besides, we have

å å

å j

= ¶ = ¶ ¶

=
¶

¶ ¶ =
+ ¶

+ ¶ ¶

j

=

¥

=

¥
-

=

¥

D
x

c x c x

x
c x

x
x

1

1 1

1
1 . 38

x
k

k
k

k
k

k

k
k

k

1 1

1

1

( ) ( )

( ) ( ) ( )

This completes the proof. ,

Proposition 3.2. The j-derivative jDx is linear

Proof. We have + = +j jD aF x bG x aD F xx x( ( ) ( )) ( )
jbD G xx ( ). ,

3.2. j-integral

Definition 3.2. The j-integral is defined as

ò

ò
j

j

=
¶

=
+ ¶

+ ¶

jxF x
x

xF x

x
x

x F x

d
1

d
1

1
1 . 39

( )
( )

( ( ))

( )
( ) ( ) ( )

Proposition 3.3. The j-integral and j-derivative obey

ò ò= =j
j j

jxD F x D xF x F xd d . 40x x( ) ( ) ( ) ( )

Proof. From the definition of j-integral and j-derivative, we
have

ò j
=

¶
=j

j jxD F x
x

xD F x F xd
1

41x x( )
( )

( ( )) ( ) ( )

and

ò

ò

j

j

=
+ ¶

+ ¶ ¶

´
+ ¶

+ ¶ =

j
jD xF x

x
x

x
x

x F x F x

d
1

1
1

d
1

1
1 . 42

x ( ) ( )

( )
( ) ( ) ( ) ( )

This completes the proof. ,

3.3. j-exponential function

Definition 3.3. The j-exponential function je x( ) is defined as
follows:

å j
=j

=

¥

e x
n

x
1

. 43
n

n

0

( )
( )!

( )

Proposition 3.4. The j-exponential function obeys

=j
j jD e x e x . 44x ( ) ( ) ( )

Proof. It is simple. ,
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Proposition 3.5. For thej-exponential function the following
holds:

= +j j j je x e y e x y , 45( ) ( ) (( ) ) ( )

where

å j
+ = +j j j

=

¥

e x y
n

x y
1

46
n

n

0

(( ) )
( )!

( ) ( )

and

å
j

j j

+ =

=
-

j
j

j

=

-x y
n
k x y

n
k

n

k n k

,

. 47

n

k

n
k n k

0
( )

( )
( )

( )!
( )! ( )!

( )

Proof. It is simple. ,

From the definition of the j-exponential function, we can
define the following function:

j je a x e x: . 48a( ) ≔ [ ( )] ( )

Then we have

=j
j jD e a x ae a x: : . 49x ( ) ( ) ( )

Definition 3.4. The j-hyperbolic functions are defined as
follows:

= + -j j ja x e a x e a xcosh :
1

2
: : , 50( ) ( ( ) ( )) ( )

= - -j j ja x e a x e a xsinh :
1

2
: : . 51( ) ( ( ) ( )) ( )

Proposition 3.6. For the j-hyperbolic functions, the follow-
ing holds:

=j
j jD a x a a xcosh : sinh : , 52x ( ) ( ) ( )

=j
j jD a x a a xsinh : cosh : . 53x ( ) ( ) ( )

Proof. It is simple. ,

3.4. Realization of j-deformed boson algebra

In order to have a functional realization of this representation,
we consider the space  of all polynomials in one supple-
mentary variable x, and introduce its basis of monomials;

j
ñ « =n e x

x

n
, 54n

n

∣ ( )
( )!

( )

where

j j j j j= -n n n 1 2 1 55( )! ( ) ( ) ( ) ( ) ( )

and

j = =0 0 1. 56( )! ! ( )

Proposition 3.7. Acted on analytic function y Î x( ) , the
operators of the j-deformed boson algebra with infinite Fock
space can be realized as follows;

= ¶ = =jN x a D a x, , . 57x ( )

Then we have

j j= ¶ + - ¶jD x x x, 1 . 58x[ ] ( ) ( ) ( )

Proof. Using the equation (54) we have

j j
= ¶ = =Ne x x

x

n
n

x

n
ne x , 59n

n n

n( )
( )! ( )!

( ) ( )

j j
j= = = +

+

+ae x x
x

n

x

n
n e x1 ,

60

n

n n

n

1

1( )
( )! ( )!

( ) ( )

( )

j
j

j
j= = =j

-

-a e x D
x

n
n

x

n
n e x .

61

n x

n n

n

1

1( )
( )!

( )
( )!

( ) ( )

( )

†

The derivation of the equation (58) is as follows:

å å

å

j

j

= ¶ = ¶ = ¶

= + ¶ = + ¶

=

¥

=

¥

=

¥

Dx
x

x x
x

c x x c x

c x x

1 1

1 1 , 62

k
k

k

k
k

k

k
k

k

1 1

1

( ) ( ) ( )

( ) ( ) ( )

which completes the proof. ,

4. Supersymmetric quantum mechanics (SQM)

The simplest SQM for j-boson and ordinary fermion is
expressed in terms of two supercharges

= =+ - Q w af Q w a f, , 63( )† †

where a a, † are step operators of j-deformed boson algebra
and f f, † are fermion’s step operators obeying =f f,{ }†

= =f f1, 02 2( )† .

Proposition 4.1. For j-boson and fermion, the SQM algebra
is given by

= = = + - Q Q Q H H Q0, , , , 0, 642 { } [ ] ( )

where

j= +jH w N N 65F( ) ( )

and Nj and NF denote number operators of j-boson and
fermion, respectively.
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Proof. We have

j j
j j j

j

= + + -
= + + -
= +

j j

j j j

j

+ - 





Q Q w N N N N

w N N N N

w N N

, 1 1

1

66

F F

F

F

{ } ( ( ) ( )( ))
[ ( ) ( ( ) ( )) ]
( ) ( )

which completes the proof. ,

5. Possible structure functions for infinite Fock
space

In this section we discuss some interesting choices ofj x( ) for
infinite Fock space.

5.1. Case I: boson algebra

Now let us consider the boson algebra

- = = = -aa a a N a a N a a1, , , , . 67[ ] [ ] ( )† † † †

This algebra has infinite Fock space and we have =N a a† .
The first relation of the equation (67) is the same as

=aa a a 1, 68( )† †

where  is the ordinary subtraction.

5.2. Case II [2]

Now let us consider the following q-boson algebra [2]

- = = = -aa qa a N a a N a a1, , , , . 69[ ] [ ] ( )† † † †

This algebra has infinite Fock space for >q 0. The Fock
space is not well defined for complex q because a† cannot be
regarded as Hermitian adjoint of a. The algebra (69) gives the
following relation

=
-
-

a a
q

q

1

1
, 70

N

( )†

which implies that the structure function and its inverse are
given by

j j=
-
-

= + --x
q

q
x

q
q x

1

1
,

1

ln
ln 1 1 . 71

x
1( ) ( ) [ ( ) ] ( )

Then, j-addition and j-subtraction is defined as

Å = + + -x y x y q xy1 , 72( ) ( )

=
-

+ -
x y

x y

q y1 1
. 73

( )
( )

The first relation of the equation (69) is the same as

=aa a a 1 74( )† †

because we have

= Åaa a a1 75( )† †

j= Å N1 76( ) ( )
j j= + + -N q N1 1 77( ) ( ) ( ) ( )

= + + -a a q a a1 1 78( ) ( )† †

= + qa a1 . 79( )†

5.2.1. j-deformed derivative and j-deformed integral. The
j-deformed derivative is given

=
-

-jD
q x

T
1

1
1 , 80x q( )

( ) ( )

where

= =¶T q T F x F qx, . 81q
x

q ( ) ( ) ( )

The deformed Leibnitz rule for j-deformed derivative is

= +j j jD F x G x D F x G qx F x D G x . 82x x x( ( ) ( )) ( ( )) ( ) ( ) ( ) ( )

The j-deformed integral is given by

ò
å

= - -

= -

j
-

=

¥

xF x q T xF x

q q xF q x

d 1 1

1 . 83

q

n

n n

1

0

( ) ( )( ) ( ( ))

( ) ( ) ( )

The j-deformed exponential function obeys the following
relation

= + -j je qx q x e x1 1 . 84( ) ( ( ) ) ( ) ( )

5.3. Case III [3, 4]

Now let us consider the following q-boson algebra [3, 4]

- = = = --aa qa a q N a a N a a, , , , . 85N [ ] [ ] ( )† † † †

This algebra has infinite Fock space for >q 0. When
= =p +q pe , 1, 2, 3,pi 1( )  is a complex number, we have

finite dimensional Fock space because j + =p 1 0( ) . The
algebra (85) gives the following relation

=
-
-

-

-
a a

q q

q q
, 86

N N

1
( )†

which implies that the structure function and its inverse are
given by

j

j

=
-
-

= - + - +

-

-

- - -

87

x
q q

q q

x
q

q q x q q x

,

1

ln
ln

1

2
4 .

x x

1

1 1 1 2 2⎡
⎣⎢

⎤
⎦⎥

( )

( )

( ) (( ) ( ) )

Then, j-addition and j-subtraction is defined as

Å = + - + + -- -x y x q q y y q q x
1

2
4 4 ,

88

1 2 2 1 2 2( ( ) ( ) )

( )

= + - - + -- -x y x q q y y q q x
1

2
4 4 .

89

1 2 2 1 2 2( ( ) ( ) )

( )

The first relation of the equation (85) is the same as

=aa a a 1 90( )† †

because we have

5
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= Åaa a a1 91( )† †

j= Å N1 92( ) ( )

j j= + - + +- -q q N N q q
1

2
4 931 2 2 1( ( ) ( ) ( )( )) ( )

= + - + +- -q q a a q q
1

2
4 94N N 2 1( ( ) ( )) ( )†

= + + - -- -q q qa a q q a a
1

2
2 95N N 1( ( ) ) ( )† †

= + + - -- -qa a q q q q
1

2
96N N N N( ( )) ( )†

= + -qa a q . 97N ( )†

5.3.1. j-deformed derivative and j-deformed integral. The
j-deformed derivative is given

=
-

-j
-

-D
q q x

T T
1

. 98x q q1
1

( )
( ) ( )

The deformed Leibnitz rule for j-deformed derivative is

= +j j j-D F x G x D F x G qx F q x D G x .
99

x x x
1( ( ) ( )) ( ( )) ( ) ( ) ( )

( )

The j-deformed integral is given by

ò
å

= - -

= -

j
- - -

-

=

¥
- - - -

xF x q q T T xF x

q q q xF q x

d

. 100

q q

n

n n

1 1 1

1

0

2 1 2 1

( ) ( )( ) ( ( ))

( ) ( ) ( )

The j-deformed exponential function obeys the follow-
ing relation

- = -j j j
- -e qx e q x q q xe x . 1011 1( ) ( ) ( ) ( ) ( )

5.4. Case IV [5]

Now let us consider the following q-boson algebra [5]

- = = = -aa qa a q N a a N a a, , , , . 102N [ ] [ ] ( )† † † †

This algebra has infinite Fock space for >q 0. The Fock
space is not well defined for complex q because a† cannot be
regarded as Hermitian adjoint of a. The algebra (102) gives
the following relation

= -a a Nq , 103N 1 ( )†

which implies that the structure function and its inverse are
given by

j j= =- -x xq x
q

W qx q,
1

ln
ln , 104x 1 1( ) ( ) ( ) ( )

where W x( ) is Lambert function, which is defined as

=  =x ye y W x . 105y ( ) ( )

Then, j-addition and j-subtraction is defined as

Å = +x y xe ye , 106W qy q W qx qln ln ( )( ) ( )

= --x y e xe ye , 107W qy q W qy q W qx q2 ln ln ln( ) ( )( ) ( ) ( )

where we used

=W x
x

W x
ln . 108( )

( )
( )

The first relation of the equation (102) is the same as

=aa a a 1 109( )† †

because we have

= Åaa a a1 110( )† †

j= Å N1 111( ) ( )

j= +je N e 112W q q N W q qln ln( ) ( )( ( )) ( )

= +e a ae 113W Nq q W q qln lnN ( )( ) † ( )

= +e qa a 114N qln ( )†

= +q qa a, 115N ( )†

where we used

=W q q qln ln . 116( ) ( )

5.4.1. j-deformed derivative and j-deformed integral. The
j-deformed derivative is given

= ¶jD T . 117x q ( )

The deformed Leibnitz rule for j-deformed derivative is

= +j j jD F x G x D F x G qx F qx D G x .
118

x x x( ( ) ( )) ( ( )) ( ) ( ) ( )
( )

The j-deformed integral is given by

ò ò=j
-xF x xF q xd d . 1191( ) ( ) ( )

The j-deformed exponential function obeys

¶ =j jT e x e x 120q ( ) ( ) ( )

or

¶ =j j
-e x e q x . 1211( ) ( ) ( )

Here we have

å=j
=

¥ - -
e x

q

n
x . 122

n

n n
n

0

11
2

( )
!

( )
( )

5.5. Case V [12]

Now let us consider the following q-boson algebra [12]

=
+

+
-

+ -
a a

N

qN

N

q N
,

1

1 1 1
. 123[ ]

( )
( )†
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This algebra has infinite Fock space for >q 0. The algebra
(123) gives the following relation

=
+ -

a a
N

q N1 1
, 124

( )
( )†

which implies that the structure function and its inverse are
given by

j j=
+ -

=
-
-

-x
x

q x
x

q x

qx1 1
,

1

1
. 1251( )

( )
( ) ( ) ( )

Then, j-addition and j-subtraction is defined as

Å =
+ -
-

x y
x y qxy

q xy

2

1
, 126

2
( )

=
-

- +
x y

x y

qy q xy1 2
. 127

2
( )

The algebra (123) can be written as

=aa a a 1, 128( )† †

which gives

+ - = +aa q a a q a a a2 1 1 . 1292 2( ) ( ) ( )† † †

The algebra (123) can also be written as

+ - + - =qN aa q N a a1 1 1 1. 130( ) ( ( )) ( )† †

5.5.1. j-deformed derivative and j-deformed integral. The
j-deformed derivative is given

=
¶

+ ¶ -
=

+ ¶
¶jD

x

x

q x qx

1

1 1

1

1
. 131x

⎛
⎝⎜

⎞
⎠⎟( )

( )

The j-deformed integral is given by

ò ò= + ¶jxF x x qx F xd d 1 . 132( ) ( ) ( ) ( )

The j-deformed exponential function obeys

= -j
-e x qx1 . 133q

1( ) ( ) ( )

5.6. Case VI

Now let us consider the following structure function

j =
+

+x
q

x qx
1

1
1 , 134( ) ( ) ( )

j = +
- + +- x q

qx

q
1

1 1 4

2
. 1351

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( )

Then j-addition and j-subtraction read

Å = + + +

´ + + + -

x y
q

qx qy

qx qy

1

4
1 4 1 4

1 4 1 4 2 , 136

( )

( ) ( )

= + - +

´ + - + +

x y
q

qx qy

qx qy

1

4
1 4 1 4

1 4 1 4 2 . 137

( )

( ) ( )

From the j-deformed boson algebra

=aa a a 1, 138( )† †

we have the j-deformed boson algebra

= +
+

a a
q

q
N, 1

2

1
. 139[ ] ( )†

When >q 0, all states in the Fock space have positive-defi-
nite norm for all n, hence we have infinite dimensional Fock
space. When = - <

+
q 0

p

1

1
, states have positive-definite

norm for n p and j + =p 1 0( ) , hence we have finite
dimensional Fock space.

5.6.1. j-deformed derivative and j-deformed integral. The
j-deformed derivative is given

=
+

¶ + ¶ = +
+

¶ ¶jD
q

qx
q

q
x

1

1
1 1

1
. 140x

⎛
⎝⎜

⎞
⎠⎟( ) ( )

The j-deformed integral is given by

ò ò=
+ ¶

j

+

xF x x
x

F xd d
1

1
. 141q

q1

( ) ( ) ( )

The j-deformed exponential function obeys

¶ +
+

¶ =j j je x
q

q
x e x e x

1
. 1422( ) ( ) ( ) ( )

5.7. Case VII

Now let us consider the following structure function

j =x
qx

q

tanh

tanh
, 143( ) ( ) ( )

j = Î- - x
q

x q q
1

tanh tanh , . 1441 1( ) ( ) ( )

The j-addition and j-subtraction read

Å = +- -x y
q

qx qy
1

tanh tanh tanh , 1451 1( ) ( )

= -- -x y
q

qx qy
1

tanh tanh tanh . 1461 1( ) ( )

From the j-deformed boson algebra

=aa a a 1, 147( )† †

we have the j-deformed boson algebra

=
+

a a
q

q N qN
,

cosh

cosh 1 cosh
. 148[ ]

( )
( )†

This gives the infinite dimensional Fock space.

5.7.1. j-deformed derivative and j-deformed integral. The
j-deformed derivative is given

= ¶ =
-
+

j -

-
D

x q
qx

x q

T T

T T

1

tanh
tanh

1

tanh
. 149x

e e

e e

q q

q q

⎛
⎝⎜

⎞
⎠⎟( ) ( )
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The j-deformed integral is given by

ò ò

å

=
+ ¶

+ ¶

= + -

j

=

¥
- -

xF x q x
q qx

x F x

q xF x q e xF e x

d tanh d
1

tanh
1

tanh 2 tanh 1 .

150n

n qn qn

0

2 2

( )
( )

( ) ( )

( ) ( ) ( ) ( )
( )

The j-deformed exponential function obeys

¶ =j jqx e x q xe xtanh tanh . 151( ) ( ) ( ) ( ) ( )

6. j-deformed boson algebra as a Hopf algebra

In this section we investigate the Hopf algebraic structure for
seven types of j-deformed boson algebras given in the pre-
vious section. For a given associative algebra A with unit, we
call A a Hopf algebra if we can define three operations in A:
the co-multiplication Δ, antipod S and co-unit 

D  ´ D = D D
 =
 =   

A A A ab a b
S A A S ab S b S a

A ab a b

: ,
: ,
: , , 152

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

where Îa b A, and  is the field of complex numbers,
and × denotes tensor product. The operations must be con-
sistent, i.e.

´ D D = D ´ D
´ D = ´ D
´ D = ´ D 

id a id a
m id S a m S id a

id a id a . 153

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

For j-deformed boson algebra, the co-multiplication Δ

should obey

D = ´aa a a I I. 154( ) ( )† †

It is well known [10] that j-deformed boson algebras for
cases I, II, III, IV are Hopf algebra. For case VI the
j-deformed boson algebra is Hopf algebra with co-multi-
plication

D = ´ + ´ +
+

´

D = ´ + ´
D = ´ + ´

N N I I N
q

q
I I

a a I I a

a a I I a

1

2

155

⎛
⎝⎜

⎞
⎠⎟( )

( )
( ) ( )† † †

and antipod

= - -
+

= - = -S N N
q

q
S a a S a a

1

2
, , 156( ) ( ) ( ) ( )† †

and co-unit

= -
+

= =  N
q

q
a a

1

2
, 0. 157( ) ( ) ( ) ( )†

For the cases V and VII, we cannot find co-multiplication Δ,
antipod S and co-unit  obeying the equations (152) and
(153). Thus, neither case V nor VII is Hopf algebra.

7. j-deformed su(2) algebra (sujð2Þ algebra)

In this section we discuss the multi mode j-deformed boson
algebra and j-deformed su(2) algebra. Some studies on the
deformed su(2) algebra are given in [24–30].

Definition 7.1. The multi mode j-deformed boson algebra is
defined as follows:

d j j

d d

= + -

=- =

a a N N

N a a N a a

, 1 ,

, , , , 158

i j ij i i

i j ij j i j ij j

[ ] ( ( ) ( ))

[ ] [ ] ( )

†

† †

j j= = +a a N a a N, 1 . 159i i i i i i( ) ( ) ( )† †

In order to obtain jsu 2( ) algebra, we use a two mode
realization called Jordan–Schwinger realization.

Definition 7.2. The Jordan–Schwinger realization is given by

= = = -

= +

+ -J a a J a a J N N

C N N

, ,
1

2
,

1

2
, 160

1 2 2 1 0 1 2

1 2

( )

( ) ( )

† †

where

= = C J for i, 0, ,0. 161i[ ] ( )

Then, jsu 2( ) algebra reads

=  J J J, , 1620[ ] ( )
= F+ -J J J C, , , 1630[ ] ( ) ( )

where

j j
j j

F = - + +
- - + +

J C C J C J
C J C J
, 1

1 . 164
0 0 0

0 0

( ) ( ) ( )
( ) ( ) ( )

For jsu 2( ) algebra we have the following representation:

j j

j j

ñ = - ñ

ñ= + ñ

ñ= + - + ñ

ñ= + + - ñ

-

+

J n n n n n n

C n n n n n n

J n n n n n n

J n n n n n n

,
1

2
, ,

,
1

2
, ,

, 1 1, 1

, 1 1, 1 . 165

0 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

∣ ( )∣

∣ ( )∣

∣ ( ) ( ) ∣
∣ ( ) ( ) ∣ ( )

By introducing

= + = -n j m n j m, 1661 2 ( )

and

ñ ñj m n n, , , 1671 2∣ ≔ ∣ ( )

we have the following representation :

j j

j j

ñ = ñ ñ = ñ

ñ= + - + - ñ

ñ= + + - + ñ

-

+

J j m m j m C j m j j m

J j m j m j m j m

J j m j m j m j m

, , , , ,

, 1 , 1

, 1 , 1 . 168

0∣ ∣ ∣ ∣
∣ ( ) ( ) ∣
∣ ( ) ( ) ∣ ( )
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Because ñ = - ñ =+ -J j j J j j, , 0∣ ∣ , the representation is
bounded below and above and the possible value of m is
given by

= - - + - + - -m j j j j j j, 1, 2, , 2, 1, , 169( )

where =j 0, 1 2, 1, 3 2, 2, . So we have the finite
dimensional Fock space. Applying +J to the lowest state

- ñj j,∣ +j2 1( ) times, we have

- ñ =+
+J j j, 0, 170j2 1( ) ∣ ( )

and applying -J to the highest state ñj j,∣ +j2 1( ) times, we
have

ñ =-
+J j j, 0. 171j2 1( ) ∣ ( )†

For seven cases we have the following jsu 2( ) algebras.
Case I: =+ -J J J, 2 0[ ] .
Case II: j=+ -

-J J q J, 2C J
00[ ] ( ).

Case III: j=+ -J J J, 2 0[ ] ( ).
Case IV: =+ -

-J J q J, 2C2 1
0[ ] ( ).

Case V: =+ -J J,[ ]

m
- +

- + - - - - - - + +
q qC J

J C q J C q J C q J C

1 1 2 2

1 1 1 1 1 1
0

0 0 0 0

( )( )( )
( ( ))( ( ))( ( ))( ( ))

.

Case VI : = + + + + -+ - +
J J J q C q C C J, 1 1 2 2 1

q

2

1 0
2

0
2

2[ ] [ ( ) ( ( ) )]
( )

.

Case VII: =+ -J J,
q

1

tanh 2[ ]
( )

( + -q C Jtanh 1 0( )
+ -q C Jtanh 0( ) -q C Jtanh 0( ) + +q C Jtanh 1 0( )).

It is well known [31–34] thatj-deformed boson algebras
for cases I, II, III, IV are Hopf algebra. But, the cases V, VI
and VII do not give Hopf algebra structure.

8. j-coherent states and non-classical properties

In quantum mechanics, the minimum possible product of
uncertainties is characteristic of the coherent states, one of
whose definitions includes the annihilation operators for the
oscillator algebra. Now we will investigate the j-deformed
coherent state for j-boson algebra in a similar way.

8.1. Infinite Fock space

In this case the j-deformed coherent state is defined as a
eigenvector of the annihilation operator as follows:

ñ = ña z z z , 172∣ ∣ ( )

where z is a complex number. The normalized j-deformed
coherent states are then

å
j

ñ = ñ =
j =

¥

z
e x

z

n
n x z

1
, . 173

n

n

0

2∣
( ) ( )!

∣ ∣ ∣ ( )

Now let us show that the coherent state ñz∣ forms a complete
set of states. To establish this, we invoke the completeness
relation;

ò m
p

ñ á =jz x z x Id
1

, 174∣ ( ) ∣ ( )

where m x( ) is a weight function. Inserting the equation (141)
into the equation (142), we obtain

òå j
m

p
ñá =

j
j

=

¥ ¥

n
n n

x

e x
x x I

1
d

1
, 175

n

n

0 0( )!
∣ ∣ ( )

( )
( )

which is satisfied if

m
p

= -j jx e x e x
1

176( ) ( ) ( ) ( )

and

ò j- =j j
¥

xe x x nd . 177n

0
( ) ( )! ( )

The relation (145) is satisfied when j j- = -x x( ) ( ) which
corresponds to cases I, III, VII. Now we will prove this
simply. From the relation

ò - = >j j
¥

-xe ax a ad , 0, 178
0

1( ) ( )

we j-differentiate it n times with respect to a to obtain

ò  j- - = -j j
¥

- -

=

xe ax x a kd . 179n n

k

n

0

1

1

( )( ) ( ) ( )

Inserting =a 1 we get the equation (145).

8.1.1. Mandel parameter. Now let us discuss non-classical
properties of j-deformed coherent states. We deal with
super-/sub-Poissonian structure for the j-deformed coherent
states. Commonly, photon-counting statistics of the
j-deformed coherent states can be investigated by
evaluating the Mandel parameter Q. The j-deformed
coherent states for which = <Q Q0, 0 and >Q 0,
respectively correspond to Poissonian, sub-Poissonian (non-
classical) and super-Poissonian state. The Mandel parameter
is defined as

=
á - ñ

á ñ
- á ñQ

N N

N
N

1
, 180

( ) ( )

where

á ñ = á ñA z A z . 181∣ ∣ ( )

Now let us the j-deformed coherent states with small
deformation and small x for seven cases. For cases II, III and
IV, let us set = + q 1 where  is small. For cases V, VI and
VII let us consider that q is small.

8.1.2. Case I. In this case we have =Q 0. Hence
j-deformed coherent states is Poissonian.

8.1.3. Case II. In this case we have

j » + - n n n1
1

2
1 . 182⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( )

For small  and small x, we have

» - Q x
1

2
. 183( )
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For small x and small  , the j-deformed coherent states is
sub-Poissonian when > 0 while it is super-Poissonian
when < 0.

8.1.4. Case III. In this case we have

j » + - n n n1
1

6
1 . 1842 2⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( )

For small  and small x, we have

» - Q x
1

2
. 1852 ( )

For small x and small  , the j-deformed coherent states is
sub-Poissonian for all non-zero  .

8.1.5. Case IV. In this case we have

j » + - n n n1 1 . 186( ) ( ( ) ) ( )

For small  and small x, we have

» -Q x. 187( )

For small x and small  , the j-deformed coherent states is sub-
Poissonian when > 0 while it is super-Poissonian when < 0.

8.1.6. Case V. In this case we have

j » - -n n n q1 1 . 188( ) ( ( ) ) ( )

For small q and small x, we have

»Q qx. 189( )

For small x and small q, the j-deformed coherent states is
sub-Poissonian when <q 0 while it is super-Poissonian
when >q 0.

8.1.7. Case VI. In this case we have

j » + -n n n q1 1 . 190( ) ( ( ) ) ( )

For small q and small x, we have

» -Q qx. 191( )

For small x and small q, the j-deformed coherent states is
sub-Poissonian when >q 0 while it is super-Poissonian
when <q 0.

8.1.8. Case VII. In this case we have

j » - -n n n q1
1

3
1 . 1922 2⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( )

For small q and small x, we have

»Q q x. 1932 ( )

For small x and small q, the j-deformed coherent states is
super-Poissonian for all non-zero q.

8.1.9. Bunching or anti-bunching effect. To investigate
bunching or anti-bunching effects, second-order correlation
function, defined as

=
á ñ
á ñ

g
a a

a a
0 , 1942

2 2

2
( ) ( ) ( )( )

†

†

where >g 0 12 ( )( ) and <g 0 1M2, ( )( ) respectively indicates
bunching and anti-bunching effects. The case =g 0 12 ( )( )

corresponds particularly to the canonical coherent states. For
seven cases, we have =g 0 12 ( )( ) , hence there is neither
bunching effect nor anti-bunching effect.

8.2. Finite Fock space

The finite Fock space can be obtained for case III with
=

p
+q e p
i
1 and case VI with = -

+
q

p

1

1
where =p 1, 2, 3, .

In this case we have +p 1( )-dimensional Fock space.
In +p 1( )-dimensional Fock space, the normalized

j-deformed coherent state is given by

å
j

ñ = ñ
=

z p c
z

n
n, , 195p

n

p n

0

∣
( )!

∣ ( )

where the normalization is

= =j
- c e x x z, 0 196p p,

1 2 2[ ( )] ∣ ∣ ( )

and

å j
=j

=

e x
x

n
. 197p

n

p n

,
0

( )
( )!

( )

The j-deformed coherent state then obeys

ñ = - ñ
-

a z p z
c

c
z p, , 1 . 198

p

p 1
∣ ∣ ( )

Now let us show that the coherent state ñz p,∣ forms a com-
plete set of states. To establish this, we invoke the com-
pleteness relation;

ò ò m qñ á =z p x z p x I
1

2
, , d d , 199p∣ ( ) ∣ ( )

where = qz z ei∣ ∣ and m xp( ) is a weight function. Inserting the
equation (195) into the equation (199), we obtain

ò m
p
j=

¥
-e x x x x nd

1
. 200p p

n

0

1[ ( )] ( ) ( )! ( )

Now let us set

åm
p

= -

=

x e x e a x
1

201p p
x

k

p

k
k

0

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

hence we get

å j+ =
=

n k a n . 202
k

p

k
0

( )! ( )! ( )

The coefficients akʼs can be determined from inversion of
matrix. For the first few pʼs we have the following.

Case of =p 1: In this case the equation (202) gives

=
a
a

1 1
1 2

1
1

, 2030

1( ) ( )( ) ( )

which gives = =a a1, 00 1 . Thus the weighting function is

m
p

= j
-x e x e

1
204x

1 ,1( ) ( ) ( )

10

Phys. Scr. 95 (2020) 035106 W S Chung and H Hassanabadi



Case of =p 2: In this case the equation (202) gives

=
a
a
a

1 1 2
1 2 6
2 6 24

1
1
1

, 205
0

1

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

which gives the weighting function

m
p

j
j

j

= + -

+ - +

j
-x e x e x

x

1 2

2
2 2

1

2

2

4
. 206

x
2 ,2

2

⎜

⎜ ⎟

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠⎟

( ) ( ) ( ) ( ( ))

( ) ( )

Case of =p 3: In this case the equation (202) gives

j
j j

=

a
a
a
a

1 1 2 6
1 2 6 24
2 6 24 120
6 24 120 720

1
1
2

2 3

, 207

0

1

2

3

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟( )
( ) ( )

( )

which gives the weighting function

m
p

j j j

j j j

j j j

j j j

= - + -

+ - +

+ - + -

+ - +

j
-x e x e

x

x

x

1
2 2 2

1

6
2 3

8
11

2
2

1

1
2 3

7

2

5

2
2

1

4
2 3

1

3

1

4
2

1

36
2 3 .

208

x
3 ,3

2

3

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )

8.2.1. Mandel parameter. The Mandel parameter depends on
p and is given by

=
¶

¶
- ¶j

j
jQ

x e x

x e x
x e xln . 209p

x p

x p
x p

2
,

,
,

( ) ( )
( )

( ) ( )

For a small x, Qp behaves like Q1 while for a large x, Qp

approaches zero.

8.2.2. Bunching or anti-bunching effect. In this case second-
order correlation function is

= j j

j

-

-

g
e x e x

e x
0 . 210p

p p

p

2 , , 2

, 1
2

( )
( ) ( )

( )
( )( )

8.2.3. Case III with q ¼ e
πi

p+1 . In this case structure function is

j =

p

p
+

+

n
sin

sin
211

n

p

p

1

1

( ) ( )

and j-exponential function is

å


=j

p

p
=

+

= +

e x
x sin

sin
. 212p

n

p
p

n

k

n k

p

,
0

1

1 1

( )
( ) ( )

For the first few pʼs, j-exponential functions are

= +e x x1 , 2131( ) ( )

= + +e x x x1 , 2142
2( ) ( )

= + + +e x x
x x

1
2 2

. 2153

2 3
( ) ( )

Mandel parameters for =p 1, 2, 3 are

=
+

>Q
x

1

1
0, 2161 ( )

=
+ +

+ + +
>Q

x x

x x x

1 4

1 2 1
0, 2172

2

2( )( )
( )

=
+ + + +

+ + + +
>Q

x x x x

x x x x

2 2 4 2 10 2 4 2

1 2 2 2 2 2 3 2
0,

218

3

2 3 4

2 2

( )
( )( )( )

( )

which shows super-Poissonian distribution. Figure 1 shows
plot of Qp versus x for =p 1 (Gray), =p 2 (Brown) and
=p 3 (Pink).
The second-order correlation function for =p 1, 2, 3 are

= <g 0 0 1, 2191
2 ( ) ( )( )

=
+ +

+
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x x

x
0

1

1
1, 2202
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2
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which shows anti-bunching effect.

8.2.4. Case VI with q ¼ � 1
p+1 . In this case structure function

is

j = + -n
n

p
p n1 222( ) ( ) ( )

and j-exponential function is

= - -je x F p px; ; , 223p
p

, 0 1( ) ( ) ( )( )

Figure 1. Plot of plot of Qp versus x for =p 1 (Gray), =p 2
(Brown) and =p 3 (Pink).
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where

å=
=

F a t
n a

t; ;
1

. 224p

n

p

n

n
0 1

0

( )
!( )

( )( )

For the first few pʼs, j-exponential functions are

= +e x x1 , 2251( ) ( )

= + +e x x x1 , 2262
2( ) ( )

= + + +e x x
x x

1
3

4

3

4
. 2273

2 3
( ) ( )

Mandel parameters for =p 1, 2, 3 are

=
+
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1
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=
+ +

+ + +
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x x

x x x

1 4

1 2 1
0, 2292
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x x x x

x x x x x

16 48 120 48 9

4 6 9 4 4 3 3
0, 2303

2 3 4

2 2 3

)
( )( )

( )

which shows super-Poissonian distribution. Figure 2 shows
plot of Qp versus x for =p 1 (Gray), =p 2 (Brown) and
=p 3 (Pink).
The second-order correlation function for =p 1, 2, 3 are

= <g 0 0 1 2311
2 ( ) ( )( )

=
+ +

+
<g

x x

x
0

1

1
1 2322

2
2

2
( )

( )
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=
+ + + +
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x x

x x
0

1 1

1
1, 233

x x

3
2

3

4

3

4

2 2

2 3( )
( )

( )

( )
( )( )

which shows anti-bunching effect.

9. Conclusion

In this paper we discussed general deformed boson algebra
called j-deformed boson algebra. We introduced j-addition
and j-subtraction for invertible structure function j to derive
the j-deformed boson algebra. We considered two types of

j-deformed boson algebra; one has infinite Fock space and
another finite Fock space. Forj-deformed boson algebra with
infinite Fock space, we introduced j-derivative and obtained
realization of j-deformed boson algebra. Besides we intro-
duced j-exponential function and j-hyperbolic functions and
investigated some of their properties. We discussed multi
mode j-deformed boson algebra and j-deformed su(2)
algebra. We discussed the SQM for j-boson and fermion and
constructed the Hamiltonian. As examples, we considered
seven possible structure functions which are invertible. Here
cases III and VI have infinite and finite Fock spaces while
others have infinite Fock space only. As a physical example
we dealt with non-classical properties for the j-deformed
coherent states.
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