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Abstract
We present a study of the structure of phase diagrams for matter-radiation systems, based on the
use of coherent states and the catastrophe formalism, that compares very well with the exact
quantum solutions as well as providing analytical expressions. Emphasis is made on 2- and
3-level systems, but in general n-level systems in the presence of ℓ electromagnetic modes are
described. Due to the infinite-dimensional nature of the Hilbert space, and using the results of the
analyses and the behaviour of the solutions, we construct a sequence of ever-approximating
reduced bases, which make possible the study of larger systems both, in the number of atoms and
in the number of excitations. These studies are of importance in fundamental quantum optics,
quantum information, and quantum cryptography scenarios.

Keywords: phase transitions, coherent states, quantum optics, light–matter interaction, reduced
bases

(Some figures may appear in colour only in the online journal)

1. Introduction

With the ability to manipulate single atoms and photons in a
cavity came a renewed interest in the models that describe
their behaviour. An important feature of atom-field interac-
tions is the presence of a phase transition from a normal to a
collective behaviour: effect involving all N atoms in the
sample, where the decay rate is proportional to N2 instead of
N (the expected result for independent atomic emission) [1].

Except in the thermodynamic limit systems cannot be
solved analytically, so good approximations through cata-
strophe theory become a very useful tool of study [2]. In this,
the use of the Glauber coherent states [3], introduced in the
context of quantum electrodynamics to provide a complete
description of coherence in the electromagnetic field, has
proved to be of utmost importance. They constitute the back-
bone of quantum optics and they have been generalised to other
bosonic quantum field theories. Other studies by Glauber and

co-workers (see, e.g. [4]) include systems of coupled harmonic
oscillators with thermal baths at different temperatures, where
the phase diagram techniques presented in this work could be
useful in order to study intermediate equilibrium states.

The study of quantum phase transitions has received
much interest. The order of a quantum phase transition may
be determined either by following the Ehrenfest method,
through the fidelity of neighbouring states, or by means of the
Wehrl entropy [5]. It is also of importance, amongst other
fields, in quantum information processing; entanglement
measures have been used as a signature to characterise dif-
ferent quantum phases in models such as the Lipkin–Mesh-
kov–Glick and the Dicke models [6].

In this work, we will analyse the structure of the phase
diagram of a system of atoms in the presence of a radiation
field, with particular but not exclusive interest in the case of a
finite number of atoms. We treat, for ease of reading and
motivation, 2- and 3-level atoms and 1 or 2 modes of the
electromagnetic field, but we then generalise our results to
n-level atoms and ℓ modes.

An overdetermined basis of coherent states for the Hil-
bert space is used, which we then adapt to maintain the
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symmetries of the Hamiltonian of the system. With this, we
calculate the minimum energy surface in the space of the
matter-field coupling parameters of the system, in order to
analyse the properties of the ground state.

We also discuss a method for building an ever approx-
imating sequence of bases for the Hilbert space of the system,
which makes it much more manageable and allows us to
approximate the exact quantum solution as much as is
desired, as well as to tackle previously intractable problems
due to the large dimension of the quantum systems.

The paper is organised as follows. Section 2 presents the
mathematical model that describes the system. Section 3 takes
coherent states as trial states and, via a variational procedure,
obtains the critical values of the field and matter parameters.
This leads to a structure of the phase diagram, which we
discuss, and some expectation values are calculated and
compared with those of the exact quantum solution. In
section 4 the symmetries of the Hamiltonian are studied and
symmetry-adapted states (SAS), which preserve the Hamil-
tonian symmetry, are introduced. It is shown that the varia-
tional results for the ground state obtained from these states
constitute an excellent approximation to the quantum solu-
tion. In section 5 we present a generalisation to 3-level sys-
tems, study their phase transitions, and show that one of the
atomic configurations, the Ξ-configuration, is special in that it
presents a true triple quantum phase transition, independent of
the number of atoms and constituting the thermodynamic
limit of all other triple points. We show the behaviour of the
ground state around this triple point, and calculate a critical
exponent for the system. Section 6 generalises the study to the
most general case of n-level atomic systems in the presence of
a radiation field of ℓ modes. We show here that an iterative
procedure may be carried out in order to reduce any system to
2-level subsystems, thus simplifying the study of its phase
diagram and phase transitions. In section 7 we briefly describe
how to construct a sequence of ever-approximating bases for
the Hilbert space, which allows us to overcome the strongest
limitation of all: that of the exploding dimension of the
Hilbert space when the number of atoms or the number of
excitations grow. We close with some remarks and conclusions.

2. The model for 2-level systems

A many-body system (e.g. a cold 2-level atomic cloud)
interacting with a 1-mode radiation field inside an optical

cavity in the dipolar approximation is described by the
Hamiltonian H shown in figure 1, where we have pointed out
the contributions of the field, the atomic sector, and the
interaction between the two. Here, ωF represents the fre-
quency of the electromagnetic mode, a and a† are the anni-
hilation and creation operators for the field, w A˜ is the energy
difference between the atomic levels, Jz the population dif-
ference between these levels, J+ and J−the raising and low-
ering atomic level operators, which satisfy the angular
momentum algebra, N the number of 2-level systems (atoms
or artificial atoms or spin systems), and g g g, ,1 2˜ ˜ are coupling
constants between the matter and the field. The term con-
taining k̃ is the so-called diamagnetic term, arising from the
square of the electromagnetic vector potential A upon
quantisation.

We can make the diamagnetic term vanish via the (uni-
tary) gauge transformation [7, 8] = å =

U r Aexp i e

c s
N

s1[ · ],
and when g g=1 2˜ ˜ we have the known Dicke model [9].
Furthermore, in the rotating wave approximation (RWA),
where the counter-rotating term (which does not preserve the
total number of excitations) is neglected, this Hamiltonian
yields the Tavis–Cummings model [10].

In this work we use the Dicke and Tavis–Cummings
models, and their generalisations to accommodate any number of
atomic levels and any number of field modes. It serves to work
with dimensionless quantities, thus we set ÿ=1 and define

w
w
w

g
g
w

w= = =, , 1,A
A

F F
F

˜ ˜

which allows us to measure all frequencies in units of the field
frequency. We also consider indistinguishable particles, so that

=J
N

2
,

where J is the total angular momentum operator. Distinguishable
particles have been considered for 2- and 3-level systems, using
different representations for SU(2) and SU(3) respectively,
leading to different cooperation numbers [11, 12].

The Dicke Hamiltonian then takes the form

w g
= + + + ++ -H

N
a a

N
J

N N
a a J J

1
1A

z ( )( ) ( )† †

with now

w g + -J J J J J, , , , , , : all dimensionless.A z x y

Expressions for the dimensional and dimensionless quantities
are given in table 1. This Hamiltonian is invariant under the

Figure 1. Full Hamiltonian per particle for the interaction of a 2-level atomic cloud with a one-mode radiation field. See text for details of
each quantity. We have taken ÿ=1.
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canonical transformation γ→−γ and a→−a, so all our
results for expectation values and fluctuations will present this
symmetry.

This system is not solvable analytically except in very
special cases, so one may solve via numerical diagonalisation
for specific scenarios.

3. Coherent states as trial states

Another approach is to take as a test state a direct product of
coherent Heisenberg–Weyl HW(1)-states añ∣ for the electro-
magnetic field, and coherent SU(2)-states zñ∣ for the atomic
field

å åa z
z

a
n

z n

ñ Ä ñ=
+

´
+

ñ Ä ñ

a

n
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-

=
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∣ ∣

The energy surface is the expectation value of the Hamiltonian
in this state, a z a z a zº á Ä á ñ Ä ñ H,( ) ∣ ∣ ∣ ∣ and is given by
[13]

a z w q

g q f

= + -

+

 p q j

j q

,
1

2
cos

2 sin cos , 3

A
2 2( ) ( )

( )

where we have defined

a z
q

f= + =q p
1

2
i , tan

2
exp i . 4⎜ ⎟⎛

⎝
⎞
⎠( ) ( ) ( )

Here (q, p) correspond to the expectation values of the radiation
field quadratures, and (θ, f) determine a point on the Bloch
sphere.

Critical points which minimise the energy surface are
obtained via a variational procedure on these variables. These
are found to be

The critical points of  also determine 3 regions, viz.,
for ωA>4γ2, ωA<−4γ2, and w g< 4A

2∣ ∣ respectively.

Here, l = á + ñ + = áLña a J jc z c c
† with L = + -J 1 42

+ +J a a1 2 z
† the total excitation number operator (a con-

stant of motion in the RWA, and of conserved parity in the
full Dicke model).

The 3 regions define a separatrix [13, 14], where the
Hessian of  is singular, given by ωA=±4γc

2. This is shown
in figure 2. The parameter space is (γ, ωA), and different paths
crossing the separatrix are shown. Crossing the separatrix
along paths I, II, III, and IV leads to second-order phase
transitions; crossing it along path V to first order transitions.
The figure is for the Tavis–Cummings model; in the Dicke
model the parameter space is rescaled by a factor of 1/2, with
the same results.

In general, coherent variational states approximate well
the properties of the ground state of the quantum solution. But
some properties are not well pictured; an example is shown in
figure 3 where the fluctuation in the number of photons is
plotted against the coupling parameter γ. While the exact
quantum solution (lower, blue curve in the figure) levels off at
around 0.01, the coherent state solution (upper, red curve in
the figure) grows unbounded.

Differences arise from the fact that the coherent state
contains contributions from all eigenvalues

l n= + +m j 6( )

of the excitations number operator Λ, and therefore does not
reflect the symmetry of the Hamiltonian leading to the con-
stant of motion.

4. Symmetry-adapted states (SAS)

Considering the unitary transformations
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N

Iexp i , with
2

, 7z( ) ( ) ( )†
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we find

c c w
g

g

= + + +

+ +c c

- +

-
+ -

U H U a a J
N

a J a J
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a J a Je e , 8
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2i 2i
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( ) ( )

† † †
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so that we have a symmetry transformation for χ=0, π, i.e.
H is invariant under the group = pL I , e2

i{ }.
This parity symmetry

=pL He , 0i[ ]

allows for the classification of the eigenstates in terms of the
parity of the eigenvalues of Λ, λ=ν+m+j, Kbut
coherent states do not have this symmetry. We may recover
the symmetries of the Hamiltonian by projecting with

=  p


LP I
1

2
e 9i( ) ( )

thereby obtaining the so-called SAS [15]
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where  denotes the normalisation factor.

The expectation value of H takes the form
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and is amiable to analytical calculations.
Working variationally with these states yields a much

better approximation to the exact quantum solution in all the
expectation values of field and matter operators, except in a
very small vicinity of the separatrix [15]; here we just show
that the approximation to the photon number fluctuation is
restored. In order to compare with the results in figure 3, we
show in figure 4 the photon number fluctuation for the Tavis–
Cummings model; note the scale difference in these figures.
We have used, for both of them, N=20, Δ=0.2, where the
detuning is defined as Δ=ωF−ωA=1−ωA.

Figure 3. The fluctuation in the number of photons plotted against
the coupling parameter γ. The exact quantum solution (lower, blue
curve) levels off at around 0.01; the coherent state solution (upper,
red curve) grows unboundedly.

Figure 4. The fluctuation in the number of photons, plotted against
the coupling parameter γ, obtained from the symmetry-adapted
ground state solution (lower, red curve), compared to that of the
exact quantum solution (upper, blue curve). Note the difference in
scale with respect to the previous figure where coherent states
were used.

Figure 2. Separatrix for the Dicke model, showing the 3 regions in
parameter space (γ, ωA) corresponding to θc=0 (North Pole),
θc=π (South Pole), both normal regions, and the collective region
q w g= arccosc A

2( ). Different paths crossing the separatrix are
shown; all crossings are second order transitions except for the
crossing of path V at the origin, which is of first order.

Table 1. Relation between dimensional and dimensionless quantities
in the Hamiltonian. Here, d is the atomic dipole moment, e is the
electron charge, m the atomic mass, and ρ the matter density within
the quantisation volume.
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That restoring the Hamiltonian symmetries yields a var-
iational basis with which one may much better resemble the
exact quantum states may be verified by using the fidelity
between the projected state and exact quantum ground state.
This is a measure of how similar two states are, and it is given
by

=    F , tr . 121 2 1 2 1( ) ( ) ( )

Figure 5 shows, for the same N and Δ, the fidelity
between the projected ground state and the exact quantum
ground state in the Tavis–Cummings model. It is equal to 1 in
the normal region, drops to 0.996 at the phase transition, only
to recover itself at larger values of the coupling constant. The
behaviour is very similar in the Dicke model.

5. 3-level systems

3-level systems are richer in structure and, due to the dipolar
nature of the interaction, there are 3 atomic configurations
called Ξ, Λ, and V depending on the possible transitions, as
shown in figure 6, where we now denote by μij the coupling
constant between the radiation field and the transition
between levels i and j, and we label the atomic levels fol-
lowing the convention w w w 1 2 3.

Proposals have been made to use them as quantum
memories or to manipulate quantum information, among
other applications [16]. In cavity QED these systems have
been favoured in particular because of their advantage when
subjected to coherent manipulations, and schemes have been
presented for various quantum gates using 3-level atoms and
trapped ions [17]. Furthermore, the monitoring of quantum
jumps has been recently made possible using superconducting
artificial 3-level atoms [18]; while these continue to appear
unpredictable in the long time scale, they seem to be pre-
dictable in the short time scale, and this may have applica-
tions for error correction in quantum information and
computing.

For N atoms of 3 levels in the Ξ-configuration, inter-
acting with a 1-mode electromagnetic field in the dipolar and

RWA approximations, the Dicke Hamiltonian generalises to

w w w

m

m

= W + + +

- +

- +

H a a A A A

N
a A a A

N
a A a A

1

1
, 13

1 11 2 22 3 33

12 21 12

23 32 23

( )

( ) ( )

†

†

†

where here Ω is the frequency of the field mode; ωi is the
frequency of the ith atomic level, with w w w  ;1 2 3 a a,†

are the creation and annihilation field operators; μij are the
coupling strength parameters between levels i, j; and Aij are
the collective atomic transition operators, with Akk denoting
the atomic population of level k.

Two operators of the form l l= + +C a a A1 11
†

l l+A A2 22 3 33 commute with the Hamiltonian:

å=

= + +
=

N A

M a a A A

total number of atoms

2 total number of excitations.
i

ii
1

3

22 33
†

As before, the system is not solvable analytically, so one
has to solve via numerical diagonalisation for specific sce-
narios. A natural basis in which to diagonalise our Hamilto-
nian is the tensorial product of HW(1) for the field sector and
the Gelfand–Tsetlin basis for the atomic sector, which in the
case of totally indistinguishable atoms takes the form [19]

n nñ = ñ Ä ñq r q r; , , ,∣ ∣ ∣

where ν labels the number of photons of the Fock state, and r,
q−r and N−q are the atomic population of levels 1, 2, 3,
respectively. Since the Hamiltonian is invariant under the
transformation m m -  -  -a a a a, , ij ij

† † , we consider
only positive values for μij.

The catastrophe formalism described above for 2-level
systems may be carried out here to calculate the energy of
ground state as function of the coupling parameters, and the
separatrices calculated via the fidelity F or the fidelity sus-
ceptibility χ of neighbouring states [20–22]

l l dl y l y l dl

c
l l dl
dl

+ = á + ñ

=
- +

F

F

, ,

2
1 ,

. 14

2

2

( ) ∣ ( )∣ ( ) ∣
( )
( )

( )

5.1. A triple-point transition

There are distinct regions for each integer value of M: the
normal region = ñM N N0, 0;∣ where all atoms are in their
ground state and there are no free photons, and the collective
regions where ¹M 0 and which meet at separatrices shown
by white lines in figure 7. It is drawn for 2 atoms, N=2; as N
grows, the separatrix enclosing the normal region M=0
remains fixed as all other separatrices slide down and to the
left, asymptotically approaching the M=0 border.

In the thermodynamic limit  ¥N we are left only with
the first separatrix. The point at m m =, 1, 212 23( ) ( ), where
the regions M=0, M=1 and M=2 meet (marked in the
figure, in red), remains fixed and is then a true triple phase

Figure 5. Fidelity between the projected ground state and the exact
quantum ground state in the Tavis–Cummings model. Note that it
only drops slightly at the phase transition.
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transition independent of N, and the limit of all other triple
points. This is a property characteristic of the Ξ-configuration,
and any quantum fluctuation at this triple point or in its
vicinity changes drastically the composition of the ground
state (see [23]).

Using the full Hamiltonian (including counter-rotating
terms)

w w w

m

m

= W + + +

- + +

- + +

H a a A A A

N
a a A A

N
a a A A

1

1
15
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( ) ( )

( ) ( ) ( )
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†

†

has the effect of shrinking the phase space by a factor of 2:

m m =,
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2
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2
.12 23

⎛
⎝⎜

⎞
⎠⎟( )

M is no longer conserved, but its parity is, i.e. the symmetry
group of the Hamiltonian is p= M1, exp i2 {ˆ ( )}.

5.2. Analytic study of the phase diagram

We take as a variational state a direct product of coherent HW
(1)-states for the electromagnetic field

åa
a
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¥

n
n 16

n

n

0

∣ }
!

∣ ( )

and U(3)-states for the atomic field

z g g g
= ñg g g

h h h

h h h

, , , ,

e e e , , , 17A A A

1 2 3 1 2 3

1 2 33 21 2 31 1 32

∣ } ≔ ∣[ ] }
∣[ ] ( )

where ñh h h, ,1 2 3∣ [ ] represents the highest weight state of
the Gelfand–Tsetlin basis in an irreducible representation of
U(3), and for the completely symmetric representation
h2=h3=0. Minimising a g a gá ñh q r H h q r; , ; ,D1 1 1 1∣ ∣ 

with respect to α and g yields the energy surface for the
ground state.

It shows 2 distinct regions: the normal regime ñN N0; 0∣
and the collective regime which meet at a separatrix given by

w m m w m wW = + - W Q - W
18

21 12
2

23 31
2

23 31[∣ ∣ ] [∣ ∣ ]
( )

with ωij=ωi−ωj and Θ the Heaviside function. This is
shown as a white line in figure 8, in which the derivative of
the energy surface is plotted as a function of the coupling
parameters (μ12, μ23). The order of the transitions is also
given, second order transitions for m w< W23 3 and first
order transitions for m w> W23 3 .

Since the parity of M is conserved for the quantum state, it
makes sense to adapt our variational test state to a given parity

a g p a g

a g a g

ñ =  ñ

= ñ  - ñ

 M, 1 exp i ,
1

2
, , , 19

∣ ( ˆ ( ))∣

(∣ ∣ ) ( )

 

 

where a gñ+,∣ 
only contains terms with even values of M, and

a gñ-,∣ 
only contains terms with odd values of M. Using these,

the ground and first excited SAS states give an excellent
approximation to the ground and first excited quantum states.
Figure 9 shows the fidelity between the quantum and projected
SAS ground states (left), and that between the quantum and
coherent ground states (right), for N=3, this time for the V-
configuration. Notice that, except for a small vicinity of the
phase transition, the SAS states do approximate very well the
quantum solutions, while the coherent states do so only within
the normal region but fail in the collective region.

Figure 6. Atomic configurations for 3-level systems. μij denotes the coupling constant between the radiation field and the transition between
levels i and j.

Figure 7. Surface energy for the Ξ-atomic configuration. White lines
separate regions with different values of the total number of
excitations M, starting at M=0 for small values of μij, and growing
counterclockwise to M=1, 2K. Here N=2, ω1=0, ω2=1,
ω3=2, and the system is in total resonance Ω=1.
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Another good comparison between the two is given by
the expectation values of the system quantities. For the
number of photons, for instance, in the normal regime the
coherent ground state ñcoh g∣ has exactly zero photons,
whereas the SAS state ñSAS g∣ is a superposition of states with
an expectation value for ν different from zero, just as the
ground state ñquant g∣ is. In the limit  ¥N we have

a z a zá ñ =
1

2
20g gcoh coh sas sas

2∣ ∣ ∣ ( )

as expected: the SAS ground state has contributions only
from the even-parity components of coherent ground state.

5.3. Critical exponents

The singular part of many potentials in physics are homo-
geneous functions near second-order phase transitions

b b b b= =f r g f r g, with .s( ) ( ) ( ) ( )

The behaviour of important observables of a system near
phase transitions may thus be described by the system’s cri-
tical exponent s, and these are believed to be universal with
respect to physical systems. Our treatment allows us to study
the critical value of the atom-field coupling parameter μ as a
function of the number of atoms N. Although we get a very
good behaviour for the SAS approximation, as shown in

Figure 8. The derivative of the energy surface plotted as a function of the coupling parameters (μ12, μ23). The order of the phase transition
across the separatrix in every direction is also given.

Figure 9. Fidelity between the quantum and projected SAS ground states (left), and that between the quantum and coherent ground states
(right), for N=3 in the V-configuration.

Figure 10. Critical value of the atom-field coupling parameter μ as a function of the number of atoms N, for the Ξ-configuration.
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figure 10, the exponent differs from the expected −2/3 in the
quantum solution:

m - = - +Nln
1

2

11

21
ln ln 0.15812

⎜ ⎟⎛
⎝

⎞
⎠ ( ) ( )

or, equivalently,

m = + -N
1

2
0.158 2112

11
21 ( )

i.e. a critical exponent of = -ssas
11

21
as opposed

to = -s .quant
2

3

6. Generalisation to n levels and ℓ modes

In this case the Hamiltonian takes the form

= +H H HD int

with

å å w= W +
< =

H a a A 22D
j k

n

jk jk jk
j

n

j jj
1

( )†

and

å m= - + +
<

H
N

A A a a
1

. 23
j k

n

jk jk kj jk jkint ( )( ) ( )†

The operators Akj obey a U(n) algebra d= -A A A,lm kj mk lj[ ]
d Ajl km, and the transition between the levels j and k are only
promoted by mode Ωjk. The maximum number of dipolar
interaction strengths of an n-level system is ℓmax=n(n−1)/

2−(n−2); of course ℓ ℓmax and depends of the con-
sidered atomic configuration.

We follow, as before, a variational procedure starting
from coherent states to find the energy surface, and we find
the critical points with the use of the fidelity between
neighbouring states to determine the separatrices [24].

Figure 11 shows the structure of the phase diagram for
n=3 levels and ℓ=2 modes, together with the order of the
transitions. N indicates the normal region (in black), and the
labels Sij indicate that the mode Ωij dominates in these
regions. The parameters used are given in the figure caption.

For n=3 and ℓ=2 there are 2 parity symmetries
pP = Kexp i ;j j( ) in the Ξ-configuration, for instance, these are

n n
n

= + + +
= +

K A A
K A

2
24

1 12 23 22 33

2 23 33 ( )

besides, N=A11+A22+A33. It is then useful to construct
SAS, and the Hilbert space will consist of the direct sum of 4
sub-spaces according to the parity of each of these symmetries

= Å Å Å     . 25ee eo oe oo ( )
One may calculate the energy surface in each of these sub-spaces,
and then take the minimum at each point in parameter space in
order to get the energy surface corresponding to the ground state.

Similarly, for n=4 levels and ℓ=3 modes, in the
Ladder configuration, the energy surface is divided into a
normal region and 3 collective regions, in each of which only
a monochromatic electromagnetic field mode contributes
strongly to the ground state (see figure 12). The transition

N S12 is of second order; all others are of first order.

Figure 11. Phase diagram for n=3 levels and ℓ=2 modes, together with the order of the transitions. N indicates the normal region (in
black), and the labels Sij indicate that the mode Ωij dominates in these regions. (a) Ξ-config: Ω12=1, Ω23=0.5, ω1=0, ω2=1, ω3=1.3.
(b) V-config: Ω12=0.8, Ω13=1, ω1=0, ω2=0.8, ω3=1. (c) Λ-config: Ω13=1, Ω23=0.8, ω1=0, ω2=0.2, ω3=1.
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6.1. Level reduction

One may allow each of the modes to interact with more than
one pair of atomic levels. Setting g f=  exp ii i { } in
equation (17), and carrying out the variational procedure with
respect to the field variables p and q, and the matter variables
ρi (i=1, 2, 3, 4), the critical values at = = =   0c c c

2 3 4
give the vacuum state for the field contribution and all atoms
in their lower state: ñ Ä ñN0 , 0, 0, 0F M∣ ∣ . But when at least
one critical value ρi is non-zero the system may be reduced to
subsystems with one number of levels less [24], from n to
n−1, essentially because we find critical points at ¥. Fol-
lowing the process iteratively, we may arrive at a collection of
sub-systems of the Dicke model with one radiation mode,
which in the variational method can be solved.

We have shown schematically in figures 13 and 14 the
reduction paths of the 4-level configurations λ and N. In the
case of λ, with two radiation modes (one acting between
levels 3 4 and the other between the levels 1 3 and
2 3 ), one may set ρ1=1 for state normalisation and when
ρ4=0 we get the 3-level Λ configuration, which we can
study as in previous sections. When r  ¥2 we obtain a
3-level Ξ configuration in new variables (denoted by η in the
figure), which itself reduces to 2-level Dicke systems
according to the critical values of η3 and η4.

The way in which the N configuration splits is richer. We
take here two radiation modes as well, one acting between
levels 2 3 and the other between the levels 1 2 and
3 4 . Here, once again set ρ1=1 and when r  ¥2 we
get a 3-level V configuration in new variables η; this yields
two 2-level subsystems when η3=0 and when η4=0. On
the other hand, when ρ4=0 the N-configuration reduces to a
3-level Λ configuration, which again reduces by iteration to
two 2-level subsystems when ρ2=0 and when r  ¥2 (see
the figure).

By studying these 2- and 3-level subsystems one can
reconstruct the phase diagram for any desired configuration.
We show that of the 4-level N configuration in figure 15. The
normal region is shown in black, with the label Snorm. The
collective region is divided by a separatrix (blue surface)
below which (labels S13 and S24) Ω1 contributes to the atomic
transitions, and above which (label S23) mode Ω2 contributes.

The region where mode Ω1 dominates is itself divided by a
separatrix (green surface) which determines which of the 2
subsystems, S13 or S24, is excited. The transition between the
normal region and S13 is a second order transition; all others
are first order transitions.

The fact that these 2-level reductions can be carried out
iteratively, plus the fact that the polychromatic collective
region of the phase space divides itself into monochromatic
sub-regions, allows us to overcome the strongest limitation of
all: that of the exploding dimension of the Hilbert space when
the number of atoms N or the number of excitations M grow.
This we treat in the following section.

7. Reduced bases

Perhaps the strongest limitation of all, in the study of finite
matter-radiation systems, is the fact that the dimension of
Hilbert space becomes unwieldy as the number of atoms N
and/or the number of excitations M grow. Table 2 shows the
dimension of  for a 3-level Λ configuration under resonant
conditions Δjk=0. The way to read it is as follows.

The first column shows the number of atoms, from 1 to 5.
The columns labelled e10 show the dimension required in
order for the calculated ground state to differ by less than an
error of e−10 from the exact quantum ground state, as mea-
sured by the fidelity between the states. The same goes for the
columns labeled e15, in this case for an error less than e−15.
The numbers in parenthesis at the top of the columns
show the value of the dimensionless coupling constant =xij

m mij ij
c,coh (where mij

c,coh is the critical value of the coupling
constant μij using coherent states) at which the dimension is
calculated.

It is important to stress that the fidelity constraint is
arbitrary, of course, and may be set according to the problem
to be tackled; we have chosen these approximations because,
for instance, to an error of e−10 the expectation value of the
energy of the ground state remains fixed up to 10−8 (even for
large values of the coupling constants).

The figures differ only slightly for the other configura-
tions Ξ and V. This table begs the question, can one reduce
the dimension of the Hilbert space while still obtaining
essentially the same results as with the exact basis? The logic
behind a possible answer in the affirmative is twofold:

(i) We have iterative method for reducing a system of n-
level atoms interacting with radiation to a system of
(n−1)-level atoms. By using repeatedly this method
we arrive at a collection of 2-level subsystems. Thus,
looking at the number of atoms to be allowed in each of
the 2-level subsystems is essential.

(ii) The polychromatic phase diagram divides itself natu-
rally into monochromatic subregions, where a single
electromagnetic mode dominates. Then, checking the
total number of excitations allowed in each of the two
2-level subsystems will be crucial.

Figure 12. Phase diagram for 4-level ladder-configuration with
Ω12=1, Ω23=0.7, Ω34=0.3, ω1=0, ω2=1, ω3=1.7, ω4=2.
The mode Ωij dominates in the region denoted by Sij. The region S34
lies above those coloured in the diagram. The transition N S12 is
of second order; all others are of first order.
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Once having reduced the system to the study of 2-level
subsystems, each interacting with one mode of the electro-
magnetic field, the Hamiltonian of each subsystem jk

possesses only one parity operator

nP = = +p M Ae , , 26jk
M

jk jk kk
i jk ( )

Figure 13. Reduction of the 4-level λ-configuration to 3- and 2-level configurations in the collective regime. Two radiation modes are
considered, one acting between levels 3 4 and the other between the levels 1 3 and 2 3 , shown in different colours.

Figure 14. Reduction of the 4-level N-configuration to 2-level configurations in the collective regime. Two radiation modes are considered,
one acting between levels 2 3 and the other between the levels 1 3 and 2 4 , shown in different colours.
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with Mjk the total number excitations operator for the sub-
system jk (which would be a constant of motion if the rotating
wave approximation were to be considered). From the var-
iational calculation [25], this system presents a phase trans-
ition at

m w w w wW -
1

2
; ,jk

c
jk kj kj k j¯ ≔ ≔

where j<k.
The field basis states are just the corresponding Fock

states n ñjk{∣ }, and if we require the ground state to be
unchanged in, say, one part in 10−10, a maximum number of
photons will be given by a corresponding maximum eigen-
value mjk of Mjk that conforms to the desired approximation
(which will depend of course on the matter-field coupling
strength). For instance, if we are in the S12 sector of a 3-level
atom we take n  m x12 12 12( ), and for the other transitions we
propose [26]

n n n n
n
n

= ñ
+
+











B m x

m x

m x

,

min 2 1, ,
min 2 1, , 27

F 12 13 23 12 12 12

13 13 13

23 23 23

12 ( ) {∣ ∣ ( )
{ ( )}
{ ( )}} ( )

with the order  in the interval

  m x m x m x
0 max

2
,

2
,

2
.

28

12 12 13 13 23 23⎧⎨⎩
⎢
⎣⎢

⎥
⎦⎥

⎢
⎣⎢

⎥
⎦⎥

⎢
⎣⎢

⎥
⎦⎥

⎫⎬⎭
( ) ( ) ( )

( )

Idem for the other subregions of the collective behaviour. We
thereby obtain an ordered sequence of reduced bases for the
electromagnetic field, that can be written as the direct sum of
the basis states for the different subregions,

Å Å   B B B B . 29F F F F12 13 23( ) ≔ ( ) ( ) ( ) ( )

A similar procedure may be followed for the matter
sector [27]. The complete reduced bases are obtained by
their tensorial product with the matter basis, =s ( )

Ä B BF M( ) ( ), with indicating the approximation order.

Thus, guided by the ground state variational solution in
terms of coherent states, by the constants of motion of the
system, and by a fidelity criterion, a sequence of ever-
approximating reduced bases may be constructed that has
proven to be useful in the study of finite phase diagrams for a
finite number of atoms, even when this is large as well as the
number of excitations. This allows for the study of previously
intractable systems.

As an example, table 3 shows the dimension of the
Hilbert space for a system of 4 atoms in the Ξ configuration
under resonant conditions Δjk=0, for the bases of orders 0,
1, 2 and for the exact basis. In figure 16 the percentual error
D ( ) in the quantum ground energy surface for each of the
reductions is shown, defined as

D =
-






E
,

g

g
( )

where g denotes the energy of the ground state using the
exact basis and E denotes that obtained from the basis of
order. We also set D = 0( ) when = 0g since all bases
give E=0 when = 0g . The maximum error is always
obtained in a vicinity of the separatrix, as is expected. The
difference in scale in each subfigure makes it evident that, as
the order increases, s ( ) is a much better approximation to
the exact solution. In fact, for s 1( ) we obtain the exact
solution in almost all, but not quite, the Normal region. All of
the Normal region and much more of the phase space

Figure 15. Phase diagram for the N-configuration. The normal region
is shown in black, with the label Snorm. The collective region is
divided by a separatrix (blue surface) below which Ω1 contributes to
the atomic transitions, and above which mode Ω2 contributes. The
region where mode Ω1 dominates is itself divided by a separatrix
(green surface) which determines which of the 2 subsystems is
excited. The parameters used are Ω1=1, Ω2=0.25, ω1=0,
ω2=0.8, ω3=1, ω4=1.9.

Table 2. Dimension of the Hilbert space  for a 3-level Λ
configuration under resonant conditions Δjk=0, at different values
of the dimensionless coupling constant and for different
approximations. See text for details.

N e10(1.5, 1.5) e10(3, 3) e15 (1.5, 1.5) e15 (3, 3)

1 131 397 246 584
2 527 1442 839 2207
3 1058 3557 1622 5645
4 2073 7797 3576 12 552
5 3399 14 421 5649 21 951

Table 3.Dimension of the Hilbert space for a system of 4 atoms in
the Ξ configuration under resonant conditions Δjk=0, using bases
of order 0, 1, 2 and the full (exact) basis.

Basis Dimension

s 0( ) 1020

s 1( ) 2413

s 2( ) 3609

s exact( ) 9546
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coincides exactly for s 2( ), with a maximum error of 0.6% in
a very small portion of the separatrix, and yielding a reduction
of almost two thirds in the dimension of the Hilbert space.

8. Remarks and conclusions

We have covered the study of phase diagrams for systems
consisting of the interaction of matter with radiation fields,
using variational methods based on coherent states that
compare very well with the exact quantum solutions, as well
as providing analytical expressions for their analysis. We
have also shown how restoring the symmetries of the
Hamiltonian in the catastrophe formalism improves the
agreement with the quantum diagonalisation calculation. In
general, n-level systems in the presence of ℓ electromagnetic
modes have been studied. Using the results of the analyses
and the behaviour of the solutions we were able to construct a
sequence of ever-approximating reduced bases, which make
possible the study of larger systems both, in the number of
atoms and in the number of excitations. These studies are of
importance in fundamental quantum optics, quantum infor-
mation, and quantum cryptography scenarios.

The work discussed here would not have been possible
without the pioneering work of Prof. Roy Glauber using
coherent states, who laid the groundwork for the under-
standing of the behaviour of light from different sources and
for new technologies based on quantum optics. He also pio-
neered the study of first-order phase transitions in statistical
physics, and the quantum mechanical behaviour of trapped
wave packets. We present this work in his honour.
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