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Abstract
Present work addresses the mixed convective peristaltic transport of electrically conducting
ethylene glycol and boron-nitride nanofluids through inclination of asymmetric channel. This
investigation also includes the effects of Hall and Ohmic heating. The factor of thermal
conductivity is considered to change with temperature. Computations have been done for
entropy, temperature, velocity, pressure gradient and concentration by considering the
lubrication theory. Analytical solutions of nonlinear system have been computed through
homotopy perturbation method. Entropy generation is analyzed graphically under Brownian
movement, variable conductivity and thermophoresis aspects. Numeric benchmark of heat mass
transport rates is presented. Stresses at the boundaries are examined using bar charts. This
research shows that the studied nanofluid presents rise in entropy generation for increase in Hall
parameter while reduction is noted when thermal and concentration Grashoff numbers increases.
Entropy generation can be controlled at the upper wall when inclination of channel increases but
at the same time it rises at the lower wall. Also, the results are found to be in good agreement
with the numerical and outcomes reported previously.

Keywords: entropy generation, peristaltic flow, EG-BN nanofluid, variable thermal conductivity,
Ohmic heating

(Some figures may appear in colour only in the online journal)

Nomenclature

(x , y ) dimensional coordinates in wave frame

(u , v ) dimensional velocity component in wave
frame

d half width of the channel

( )h h,1 2 non-dimensional walls in wave frame

( )a b, amplitudes of the wave

c wave velocity

n dimensionless power law index

t dimensional time parameter

Q dimensional flow rate in laboratory frame

q dimensional flow rate in wave frame

Sij components of stress tensor

A1 Rivlin–Erickson tensor

F dimensionless flow rate in wave frame

DB Brownian diffusion coefficient

DT thermophoresis diffusion coefficient

K thermal conductivity

Physica Scripta

Phys. Scr. 95 (2020) 035212 (14pp) https://doi.org/10.1088/1402-4896/ab49f8

0031-8949/20/035212+14$33.00 © 2020 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0003-3591-9853
https://orcid.org/0000-0003-3591-9853
mailto:sabirali@cuisahiwal.edu.pk
https://doi.org/10.1088/1402-4896/ab49f8
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ab49f8&domain=pdf&date_stamp=2020-02-04
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ab49f8&domain=pdf&date_stamp=2020-02-04


B0 applied magnetic field

L gradient of velocity

( )T C,m m mean temperature and concentration

Ns entropy generation number

Be Bejan number

Pr Prandtl number

Bi heat transfer Biot-number

Mi mass transfer Biot-number

We Weissenberg number

Br Brinkman number

Ec Eckert number

M Hartmann number

Nt thermophorosis parameter

Nb Brownian motion parameter

Gt thermal Grashoff number

Gc concentration Grashoff number

Greek symbols

β viscosity parameter

α fluid parameter

μ dimensionless flow rate

σf electrical conductivity

η apparent viscosity

ψ stream function

f dimensionless concentration

θ dimensionless temperature

g shear rate

 phase difference

w* concentration coefficient

a* thermal expansion Coefficient

ω inclination angle

λ wavelength

δ wave number

1. Introduction

Nanofluids are essential for thermal efficiency improvement
and are considered for commercial applications. Nanofluids
revealed finer heat transfer characteristics than conventional
fluids and are being extensively used in biomedicines,
industrial and engineering processes such as cryosurgery,
hyperthermia, IT cooling, nuclear power plants, microelec-
tronics, building heating, milk pasteurization etc [1–8].
Dogonchi et al [9] presented the effect of non-uniform heat
source on MHD of nanofluid over expanding flat. Reduction
in concentration profile is seen with rising of the hetero-
geneous and homogenous reaction parameters. Furthermore,
shape effects of nanoparticles are studied to determine the

heat transfer [10]. Moreover, the role of natural convection
between a wavy circular cylinder and rhombus is investigated
to analyze heat transfer of Fe3O4–water nanofluid [11].

Peristalsis is well known for its numerous implications in
industrial and physiological systems. Food transport, blood
circulation, transport of urine etc are some physiological
applications which occur because of the contraction and
expansion of flexible walls. Moreover, peristalsis in connec-
tion with heat transfer is beneficial for corrosive fluid trans-
port, analysis of tissues, hemodialysis and oxygenation etc.
Further, the notion of mass transfer is important in metal
sanitization, blood purification in kidneys, water and salt
absorption in plants and nuclear reactors etc. Several studies
related to peristalsis can be visualized through [12–15].

Advancement in technology of flow meters, power
plants, hydroelectric, radar systems, blood pump machines,
Bleeding reduction during surgeries and heating elements etc
make the study of MHD very important. MHD coupled with
peristalsis of nanofluids is considered beneficial for drug
delivery, detection of tumor and treating cancer tissues etc. In
view of such frequent applications peristaltic flows have been
investigated by various investigators (see [16–19]).

Non-Newtonian fluids have been demonstrated to be very
significant in several fields. Rheological properties of fluids
can be predicted through Carreau’s fluid which is one of the
models suggested for non- Newtonian fluids. In-spite of
change in thermal properties, mechanical properties can also
be affected by the incorporation of nanoparticles in fluid.
Such rheological properties of nanofluids can be well pre-
dicted when the nanofluid is assumed to be non-Newtonian in
nature. Rheological properties of ethylene glycol-boron
nitride nanofluids are presented by Zyla et al [20]. In this
study authors showed experimentally that EG-BN nanofluid
exhibits non-Newtonian nature and proposed that the Car-
reau’s fluid model can be used to predict the rheological
characteristics of BN-EG nanofluid. Investigation on such
fluids has been pursued by number of researchers for different
models [21–24].

In recent years, analysis of entropy generation has gained
popularity among researchers because of its association with
real processes. Entropy generation occurs where the quality of
energy decreases due to the disorder in system. Such disorder
or randomness is mainly caused by process specially heat
transfer. Improvement in the heat transfer processes due to the
development in the advance fluids such as nanofluid, more the
chances of energy lose. Hence distribution of entropy gen-
eration is important to be analyzed within the fluid volume in
order to preserve quality of energy. The minimization of
entropy generation is used for controlling and estimating the
blood flow in arteries during hyperthermia, optimization of
thermal engineering devices such as solar collector, electronic
cooling devices etc. Some investigations in this direction can
be found through [25–31]. Some studies display rise in
entropy generation number as the Rayleigh number and the
nanoparticles volume fraction increase [32, 33]. Seyyedi et al
[34] reported the numerical results of a research on entropy
generation for convective hydromagnetic flow in inclined
cavity. Their results showed decay in entropy generation
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number for constant Rayleigh and increasing Hartmann
numbers.

Analyzing entropy generation for peristalsis of BN-EG
nanofluid with variable thermal conductivity has not been
presented so far. To include rheological aspects for Carreau’s
fluid, Buongiornio’s formulation has been employed where
important slip mechanisms i.e. Brownian diffusion and ther-
mophoresis effects are incorporated. This paper presents a
detailed study of such flow under influence of magnetic field
through asymmetric channel. Final equations have been
solved analytically via homotopy perturbation method
(HPM). It is worth stating that the method is applied without
limiting assumption and is free of round-off errors. Unlike
perturbation method which requires small parameter in the
equation.

2. Mathematical modeling

Consider the peristaltic flow of boron-nitride nanoparticles
suspended in ethylene-glycol mixture in an asymmetric
inclined channel of thickness ( )+d d .1 2 The channel’s
length is taken parallel to X -axis and Y -axis is chosen
normal to it. Further, the channel is inclined at an angle ω.
Due to a magnetic field ( ( ))=B B0, 0, ,0 Hall effect and
Ohmic dissipation aspects are included. Two dimensional
velocity field is considered to be of the form

[ ( ) ( ) )]=V U X Y t V X Y t, , , , , , 0 . The forms of waves
propagating on the channel walls are defined as:

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )p

l
= + -H X t d a X ct, cos

2
1 1 1

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )p

l
= - - - + H X t d b X ct, cos

2
.2 2 1

Here, t , λ,  represent the time, wavelength, phase difference
of two waves and a1, b1 signifies the amplitude of waves at
upper-lower walls, respectively. The equations governing
the flow are presented as:
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In these equations, ( )=s
m ,

B

en
f

e

0 P , r ,f T and Tm denote the

Hall parameter, pressure, density, fluid’s temperature and the
mean temperature of both the channel walls respectively.
Further, S L. stands for the viscous dissipation term, L the
velocity gradient, g represents the acceleration due to
gravity, C the concentration, Sij the extra stress tensor’s
components, ω* the coefficient of concentration expansion,
Cf the fluid’s specific heat, α* the thermal expansion coef-
ficient and ( )K T the dimensional thermal conductivity.
Moreover, DB and DT indicate the mass diffusivity and
thermal diffusivity respectively. Also, τ (= ( )

( )
r
r

C

C
p

f
) is the ratio

of effective heat capacity of nanoparticles to the heat capa-
city of base fluid.

Hence, an extra stress tensor of Carreau’s fluid is stated
as:

( )h=S A , 61

here η and A1 and represent the apparent viscosity and first
Rivlin–Erickson tensor respectively. Where,
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In the above relations the zero shear-rate and the infinite
shear-rate viscosities are denoted by h0 and h¥. Further, α,
grad V, g and n denote the fluid parameter, the velocity
gradient, the shear rate and the non-dimensional power law
index.

The transformations for wave frames (x , y ) and labora-
tory (X , Y t, ) are given as:

( )
( ) ( )

= - = = = -
=

x X ct y Y v V u U c p x y

P X Y t

, , , , ,

, , . 9

By using above transformations in equations (1)–(5), one
obtains:
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Here s L. represents the viscous dissipation term. Also, the
stress components sij for Carreau’s model are given as:

The dependence of thermal conductivity of nanofluid on
temperature is provided via relation:

( ) ( ( )) ( )x= + -K T K T T1 . 160 0 0

Here x0 represents the dimensional thermal conductivity
parameter at constant temperature.

Making use of following dimensionless parameters and
variables:
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and using the small Reynolds number and large wave length
approximations, equation of continuity is satisfied identically
and components of momentum equations i.e. x and y take
following form:
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Solving equations (18) and (19), one obtains the following

form:
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In these equations Pr, Br, Ec and M denote the Prandtl,
Brinkman, Eckert and Hartman parameters, while W G,e t and
Gc indicate the Weissenberg, thermal Grashof and con-
centration Grashof numbers respectively. The terms N N,t b

and j signify thermophoresis, Brownian motion and Hall
parameters. In addition, f is the concentration, θ the fluid’s
dimensionless temperature, ψ the stream function and Cm the
mean concentration. The terms C0, T0 and C1, T1 are con-
centration and temperature of upper and lower walls
respectively.

Dimensionless energy, concentration and stress tensor
expressions in wave-frame reference under lubrication
approach are:
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Here ( )b = h
h
¥

0
is the viscosity parameter and f in above

equation is given as:
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and dimensionless walls are given as:

( ) ( )p= +h x x1 acos 2 ,1

( ) ( )p= - - + h x d xbcos 2 .2

Dimensionless no slip conditions are given as:
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Relationship between dimensionless volume flow rate in

laboratory and wave frames ( )m =Q

cd
and ( )=F q

cd
are stated

Table 1. Heat and mass transfer rates at the upper wall for various parameters when = = = =n W x Pr2.5, 0.1, 0, 0.5,e
= = =Br a b0.3, 0.4, 0.3, m = = = pM0.7, 1, ,

4
=d 0.8, b w= = p, .0.052 6613

1.33 6

ξ ω j Gc Gt Nb Nt − ( )q¢ h1 − ( )f¢ h1

0.0 π/4 0.5 2.0 2.0 0.5 0.5 0.783 36 0.028 78
0.2 0.872 72 -0.012 66
0.4 0.970 37 -0.054 12
0.2 0 0.928 68 -0.012 66

π/6 0.872 72 -0.012 66
π/3 0.831 75 -0.012 66

0.2 π/4 0.1 0.812 91 0.038 72
0.4 0.857 82 0.000 17
0.7 0.857 82 -0.038 36

0.2 π/4 0.5 0.0 0.900 70 -0.012 66
1.5 0.879 71 -0.012 66
3.0 0.858 73 -0.012 66

0.2 π/4 0.5 2.0 0.0 0.900 70 -0.012 66
1.5 0.879 71 -0.012 66
3.0 0.858 73 -0.01266

0.2 π/4 0.5 2.0 2.0 0.5 0.872 72 -0.012 66
1.0 0.953 32 0.175 04
1.5 1.038 23 0.237 61

0.2 π/4 0.5 2.0 2.0 0.5 0.5 0.872 72 -0.012 66
1.0 0.970 43 -0.543 55
1.5 1.076 78 -1.178 08

Table 2. Qualitative comparison of present study with the results of Abbasi et al [23].

j
Velocity for pre-

sent study

Velocity for
previous
study [23]

Temperature for
present study

Temperature for
previous study [23]

Concentration for
present study

Concentration for
previous study [23]

0 −0.168 301 0.159 052 0.228 039 0.624 138 −0.067 2404 −0.576 545
0.1 −0.170 642 0.155 116 0.237 224 0.690 52 −0.076 4253 −0.635 007
0.2 −0.172 939 0.151 262 0.246 353 0.756 246 −0.085 5541 −0.692 289
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as:

( )m = + +F d1 . 24

Here, dimensional flow rate in fixed and moving frames are
represented by Q and q respectively, where F is given as:
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3. Entropy generation

Entropy generation equation is written in a form:
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Here SG indicates the actual entropy and its ratio to the
characteristic entropy generation is termed as entropy gen-
eration number which is denoted by Ns and is expressed as:

( )=N
S

S
. 27s

G

c

Here Sc stands for characteristic entropy generation and it is
defined as:

( )=S
K

d
. 28c

0

1
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Dimensionless form of entropy generation after utilizing
equations (8) and (16) due to the heat transfer, viscous dis-
sipation, magnetic field, Brownian motion and thermophor-
esis effects is given as:
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The dominance of heat transfer irreversibility can be analyzed
through Bejan which is defined as the ratio of heat transfer
entropy generation to the total entropy generation. It is given
as:

=Be
N

N
.h

s

Dimensionless form of Bejan number is given as:

4. Analytical method

The system presented through expressions (20)–(22) having
boundary condition (23) is solved using HPM. The above
equations are written as follows:
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The linear operators are selected as follows:
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And the initial guesses are defined as:
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The expansion series are defined as:
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Using equations (40)–(42) into (31)–(33) and matching the
powers of p, the system of linear differential expressions with
their relative boundary conditions are solved and as p 1
solution is obtained as follows:

( ) ( )∣ ( )y y y y y=  = + + + ¼y y p p p p, 1 ., 430 1
2

2

( ) ( )∣ ( )q q q q q=  = + + + ¼y y p p p p, 1 ., 440 1
2

2

( ) ( )∣ ( )f f f f f=  = + + + ¼y y p p p p, 1 .. 451
2

2

The zeroth, first and second order systems of linear differential
equations are obtained and then solved using computing
package in Mathematica. Obtained series solutions are then
substituted in equations (43)–(45) to get series expansion of
y q, and f. Obtained results are analyzed in next section.

5. Graphical analysis

This section aims to analyze the nature of velocity, entropy,
temperature, Bejan number, pressure gradient and con-
centration through graphs, whereas table 1 is made to
examine the heat mass transport rates for different parameters.
Present result has been compared with results drawn from

Figure 1. (a)–(d) Variations in velocity when = = =n W Br2.5, 0.1, 0.3,e = = = =x Pr a b0, 0.5, 0.4, 0.3, m = =N0.7, 0.5,t

= =N M0.5, 1,b = = = pG G2.0, 2.0, ,t c 4
b= =d 0.8, ,0.052 6613

1.33
j w x= = =p0.5, , 0.2.
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Figure 2. (a)–(e) Variations in temperature when = = = =n W Br x2.5, 0.1, 0.3, 0,e m= = = =Pr a b0.5, 0.4, 0.3, 0.7,
= = = =N N M G0.5, 0.5, 1, 2.0,t b t = = =pG d2.0, , 0.8,c 4

b j w x= = = =p, 0.5, , 0.2.0.0526613
1.33 6

8

Phys. Scr. 95 (2020) 035212 M Gul et al



numerical approach for its verification. They are in good
agreement as they have been illustrated in the figures 8 and 9.
To validate current study comparison with other studies given
in literature [23] has been presented through table 2. Further,
stresses are computed for variation in different parameters.

The variation in velocity profile for various parameters,
Hall parameter j, concentration Grashof number Gc, thermal
Grashof number Gt and channel inclination parameter ω are
examined through figures 1(a)–(d). All these figures show
parabolic path where maximum values are attained near
center of channel. Figure 1(a) depicts decreasing behavior
with an increment in j near center of channel but the effects
are seen opposite near upper wall. Figure 1(b) shows opposite
trend near both walls when Gt is increased i.e. velocity
increases when fluid approaches lower wall whereas it is
reduced as it approaches upper wall. Similar behavior is seen

for Gc (see figure 1(c)). Figure 1(d) portrays that increase in
the values of ω enhances velocity near center of the channel
and lower wall, conversely decreasing behavior is observed as
it approaches upper wall.

Effects of thermal conductivity ξ, Hall j, Brownian
motion Nb, thermophoresis Nt and channel inclination ω para-
meters are examined in this section through figures 2(a)–(g).
Figures 2(a) and (b) indicate that increase in ξ and j parameters
increase the temperature of fluid. Similar behavior is noticed
for both Nt and Nb i.e. temperature increases when these values
attain larger values (see figures 2(c) and (d)). Increase in ω near
lower wall increases temperature but such increase in ω tends to
decrease temperature near upper wall (see figure 2(e)).

Variation in concentration profile for parameters ξ, j, Nb,
and Nt are plotted through figures 3(a)–(d). Figure 3(a) shows
that concentration of BN nanoparticles considerably decreases

Figure 3. (a)–(d) Variations in concentration when = = = =n W Br x2.5, 0.1, 0.3, 0,e m= = = =Pr a b0.5, 0.4, 0.3, 0.7,
= = = =N N M G0.5, 0.5, 1, 2.0,t b t b= = = =pG d2.0, , 0.8, ,c 4

0.0526613
1.33

j w x= = =p0.5, , 0.2.
6
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Figure 4. (a)–(g) Variations in entropy generation when = = = =n W Br x2.5, 0.1, 0.3, 0,e m= = = =Pr a b0.5, 0.4, 0.3, 0.7,
= = = =N N M G0.5, 0.5, 1, 2.0,t b t = = =pG d2.0, , 0.8,c 4

b = ,0.0526613
1.33

j w x= = =p0.5, , 0.2.
6
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with an increase in ξ. Similarly concentration of nanoparticles
can be reduced by increasing the values of j (see figure 3(b)).
Figures 3(c) and (d) notify that the effect of Nt of the con-
centration nanoparticles is opposite to that of Nb i.e. reduction
and enhancement in concentration of nanoparticles is seen for
increase in both values of Nt and Nb respectively.

In this section the plots for entropy generation are
analyzed in order to explore the effect of various parameters
j, ξ, Gc, Nb, Gt, Nt and ω through figures 4(a)–(g).
Figure 4(a) is plotted to check the impact of j. Significant
increase in entropy generation can be noticed for gradual
increase in the values of this parameter. Another important
point that can be inferred that entropy is greatly affected near
the center of the channel. Further, similar behavior is ana-
lyzed for both Gt and Gc numbers on entropy generation i.e.
it is increased near the center of channel and lower wall,
whereas decreased near the channel walls (see figures 4(b)

and (c)). With regard to figures 4(d) and (e) it is observed
that entropy generation for Nb and Nt parameters increases as
it approaches upper wall. Figure 4(f) shows non uniform
behavior of entropy generation under the influence of ω.
Noticeable increases in this parameter lead to increase
entropy generation near lower wall but decrease near upper
wall. This fact depicts that entropy generation can be con-
trolled near upper wall by increasing ω. Also through
figure 4(g) it is seen that entropy generation reduces near
center of the channel as ξ raises.

Plots for Bejan number are presented to analyze impact
of different parameters. Figures 5(a) and (b) show that
increase in thermal conductivity parameter ξ and Harman
number M, tend to decrease Bejan number while mixed
behavior is observed for increase in thermal Grashof number
Gt, concentration Grashof number Gc and channel inclination
parameter ω through figures 5(c)–(e).

Figure 5. (a)–(e) Variations in bejan number when = = = =n W Br x2.5, 0.1, 0.3, 0,e m= = = =Pr a b0.5, 0.4, 0.3, 0.7,
= = =N N M0.5, 0.5, 1,t b = = = pG G2.0, 2.0, ,t c 4

b= =d 0.8, ,0.0526613
1.33

j w x= = =p0.5, , 0.2.
6
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The influence of various parameters on pressure gradient
is shown in figures 6(a)–(d). Figure 6(a) depicts decreasing
behavior for increasing values of Hall parameter j. Such
reduction is large in the wider portion of the channel. Similar
reduction is seen for increasing values of both concentration
Grashof number Gc and channel inclination parameter ω (see
figures 6(b) and (c)). Pressure gradient is minimum in the
wider region while it is maximum in the narrow part of the
channel. The influence of thermal Grashof number Gt is
viewed through figure 6(d) which portrays less enhancement
and large enhancement in the contracted and wider parts on
the channel respectively.

Bar charts are presented to analyze the impact of Hall
parameter j, channel inclination angle ω, and thermal con-
ductivity parameter ξ through figures 7(a)–(c). There is an
enhancement in stress at the wall for increasing values of j
(see figure 7(a)). On the other hand reduction is observed in
stresses at the wall for variation in the values of ω and ξ (see
figures 7(b)–(c)).

Table 1 is constructed to examine the influence of ξ, j,
Gt, Gc, Nb, Nt and ω on heat and mass transfer rate at the
upper wall.

These numerical data depict that increment in the values
of j, ξ, Nb and Nt result in the enhancement in heat transfer

rate, whereas such rate reduces with an increase in ω, Gt,
and Gc.

Increase in mass transfer can be noticed for increase in
Nb. Conversely, enhanced values of Nt, ξ and j tend to
decrease mass transfer rate. Moreover, no change in mass
transfer rate is observed for Gt,, Gc and ω.

From figures 8 and 9 it is interesting to note that HPM
results are in good agreement with the numerical result.
Results of study investigated by Abbasi et al [23] are showed
(see table 2) to observe the validity of found present. Inves-
tigators found that more resistance is offered to the fluid due
to the increase in effective electric conductivity of nanofluid
which heat up the fluid when the hall parameter is increased
and, as a result, the temperature increases and both velocity
and concentration decrease. This table depicts that present
results show qualitative agreement with previously reported
results.

6. Conclusions

Entropy generation for MHD mixed convective peristaltic
flow of BN-EG nanofluid has been analyzed under the
influence of thermophoresis effects and Brownian motion

Figure 6. (a)–(d) Variations in pressure when = = = =n W Br x2.5, 0.1, 0.3, 0,e m= = = =Pr a b0.5, 0.4, 0.3, 0.7,
= = =N N M0.5, 0.5, 1,t b = = = pG G2.0, 2.0, ,t c 4

b= =d 0.8, ,0.0526613
1.33

j w x= = =p0.5, , 0.2.
6
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with temperature dependent thermal conductivity. Key find-
ings of this analysis are given below:

• Fluid’s velocity, concentration of nanoparticles and
pressure gradient can be reduced by increasing Hall
parameter j while temperature, heat transfer rate, stress
and entropy generation can be increased by increasing j.

• Increase in thermal Grashof number Gt, concentration
Grashof number Gc and channel inclination parameter ω
enhance fluid’s velocity but reduce heat transfer rate,
entropy near upper wall and pressure gradient.

• Increase in thermal conductivity parameter ξ rises
temperature and heat transfer rate while reduces concen-
tration of nanoparticles and stresses in fluid.

• The boosting values of Nb and Nt have opposite effect on
mass transfer rate and concentration of BN nanoparticles
i.e. increase in Nt and Nb tend to decrease and increase for
both profiles.

• Increase in Hartman number M decreases Bejan number
near center of the channel.
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