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Abstract

Accurate astrometric parameters and photometric data in three bands for more than 1.3 billion sources (mainly
stars) were made available in the recent Gaia Data Release 2, allowing us to find new open clusters in the milky
Way. We propose a novel sample-based clustering search method with high spatial resolution to search for open
clusters (OCs). We used the proposed method to find 16 new OC candidates. Their astrometric parameters are
presented, including age, etc.
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1. Introduction

An open cluster (OC) is a stellar group of up to a few
thousand stars. These stars form simultaneously in a giant
molecular cloud (Lada et al. 1993) such that they are roughly
the same age and bounded by mutual gravitational attraction.
OCs have been found only in spiral and irregular galaxies, in
which active star formation is occurring (Payne-Gaposchkin
1979). Young OCs are effective tracers for the structure and
evolution of the Milky Way (Janes & Adler 1982; Dias &
Lépine 2005; Piskunov et al. 2006; Moitinho 2010). It was
believed that the census of the population of OCs was
complete up to distances of 1.8 kpc (Alessi et al. 2003;
Kharchenko et al. 2005; Röser et al. 2016). However, recent
studies have supported the doubts expressed by Moitinho
(2010) on the claim of completeness (Cantat-Gaudin et al.
2018a, 2018b; Castro-Ginard et al. 2018, 2019; Liu &
Pang 2019; Sim et al. 2019).

The recent Gaia Data Release 2 (Gaia DR2) includes
accurate astrometric parameters (position, parallax, and proper
motions) for more than 1.3 billion sources (mainly stars),
including three-band photometry (Gaia Collaboration et al.
2018). This enormous database opens a new era for the study of
OCs in the Milky Way. Castro-Ginard et al. (2018) developed
an OC search method using an algorithm called the density-
based spatial clustering of applications with noise (DBSCAN)
(see Section 2.2, Ester et al. 1996) and detected 31 new OC
candidates. They confirmed that DBSCAN can reliably detect
OCs using the TGAS data set (Tycho Gaia Astrometric
Solution, Michalik et al. 2015; Lindegren et al. 2016) and
Gaia DR2. They explored the Milky Way disk by scanning all

longitudes in the region ±20° in latitude. They also detected
53 OCs that were previously unknown in a region covering the
Galactic anticentre and the Perseus arm (120°�l�205° and
−10°�b�10°) using the same method (Castro-Ginard et al.
2019).
Cantat-Gaudin et al. (2018a) detected 54 new objects by

applying the membership assignment code, UPMASK (Unsu-
pervised Membership Assignment Method in Stellar Clusters,
Krone-Martins & Moitinho 2014) to stellar fields centered on
each known cluster or candidate. They compiled a list of 3328
known clusters and candidates taken from the catalogs of Dias
et al. (2002) and Kharchenko et al. (2013), and the publications
of Froebrich et al. (2007), Schmeja et al. (2014), Scholz et al.
(2015), and Röser et al. (2016). They relied exclusively on
Gaia DR2 and applied UPMASK to determine lists of OC
member stars. They also reported the discovery of 41 new
candidates in the direction of Perseus (Cantat-Gaudin et al.
2018b), using a variant of the method. They used data from the
entire region defined by galactic coordinates lä[120°, 200°]
and bä[−10°, 10°].
In this study, we propose a new method that improves the

efficiency of detection as well as the quality of member stars.
The UPMASK used by Cantat-Gaudin et al. (2018a) provided
member stars and mean parameters for a set of 1212 OCs and
54 newly discovered objects. With their method, however, only
small groups of stars were identified in the three-dimensional
astrometric space (ϖ, μα*, μδ). The total number of clusters for
which they were able to identify members (1212) was
significantly lower than the initial list of clusters and candidates
(3328).

Publications of the Astronomical Society of the Pacific, 132:034502 (18pp), 2020 March https://doi.org/10.1088/1538-3873/ab694d
© 2020. The Astronomical Society of the Pacific. All rights reserved. Printed in the U.S.A.

1

mailto:cjhao@pmo.ac.cn, xuye@pmo.ac.cn
mailto:cjhao@pmo.ac.cn, xuye@pmo.ac.cn
mailto:cjhao@pmo.ac.cn, xuye@pmo.ac.cn
mailto:cjhao@pmo.ac.cn, xuye@pmo.ac.cn
mailto:cjhao@pmo.ac.cn, xuye@pmo.ac.cn
https://doi.org/10.1088/1538-3873/ab694d
https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/ab694d&domain=pdf&date_stamp=2020-02-04
https://crossmark.crossref.org/dialog/?doi=10.1088/1538-3873/ab694d&domain=pdf&date_stamp=2020-02-04


Our proposed method, the sample-based clustering search
method (SBCSM), employs the DBSCAN algorithm (Castro-
Ginard et al. 2018). However, we selected a much smaller
region, which is more sensitive to cluster density. Our proposed
method discovered 16 new OC candidates.

2. Method

2.1. Sample Selection

The parameters of the DBSCAN algorithm are based on big
regions—more than one hundred square degrees. Yet
DBSCAN is a density-based clustering algorithm, and back-
ground field stars have a great impact on star clusters, such that
large regions can result in missed objects. Therefore, the
regions we selected were smaller than before. As such, we can
improve the spatial resolution to discover more objects. The
efficiency of detection for OCs is closely related to the extent
and distance of the region. Hence, as we narrowed the region
and analyzed the search results, we found that tiles of 1°×1°
were ultimately the best. Larger regions (such as 2°×2°,
3°×3°, etc.) incur more time for calculations. More impor-
tantly, some targets are left out (almost 30%). Distributions are
more extended for closer targets, so smaller ranges (such as
0°.5×0°.5, etc.) result in missed memberships. Therefore, the
tiles of 1°×1° offer the spatial resolution needed to best unveil
OCs. In particular, if the amount of data for exceptive areas is
extremely large, the sources in these areas can be layered
according to the parallax (usually divided into two layers).

Thus, smaller regions reduce the computational time, and
insofar as the DBSCAN (see Section 2.2, Ester et al. 1996)
algorithm requires a starting source to define the average
density of sources in the region, smaller regions are more
representative than the entire sky. Furthermore, the subsequent
parameters obtained in small tiles are more efficient. However,
when the sky is divided into small tiles, targets can be located
at the edges of areas. To solve this problem, the right ascension
(R.A.) and declination (decl.) can be translated up and down
and to the right and left. Thus, clustering analysis can be
performed multiple times.

2.2. Spatial Clustering Algorithm: DBSCAN

We mainly used the proposed SBCSM to generate suitable
parameters for the DBSCAN algorithm (Ester et al. 1996).
DBSCAN is a density-based algorithm that uses the concept of
the distance between two sources to define a set of nearby
points as clusters. It offers advantages over other methods that
can find clusters of arbitrary shapes.

DBSCAN describes the proximity of a sample based on a set
of neighborhoods. The definition of a cluster depends on two
parameters: ò and minPts. They are used to describe the
proximity of the sample distribution in the neighborhoods,
where ò describes the neighborhood distance threshold of the

sample, and minPts describes the number of objects in the
sample neighborhoods with distance ò.
A hypersphere with a radius ò is centered on each source. If

the number of sources falling within the hypersphere is greater
than or equal to the preset minPts, then these objects are
considered to be clustered. Consequently, the types of sources
in space can be divided into three types:
Core object: A source with multiple “neighbors” greater than

or equal to minPts (within the hypersphere of radius ò).
Member objects: There are no or few sources in their

hyperspheres but they are within the hypersphere of a core
object.
Noise object: A source that does not correspond to the first

two conditions.
The clustering results are completely reliant on the

parameters ò and minPts that we set. When the parameter
values ò and minPts are too large, we will find many clusters.
By contrast, when the parameters are too small, none will be
found and all sources will be considered noise. In addition, we
found that the influence of the parameter ò is more significant to
the clustering results. For the DBSCAN algorithm, it is
indispensable to determine suitable parameters.

2.3. Statistical Analysis

Before searching for OCs, we analyzed the parametric
characteristics of a large number of known clusters and
candidates. This step is significant to the DBSCAN algorithm,
with which we can estimate whether the indicators of
N-dimensions are balanced. Member stars of OCs are clusters
with common origins, with a similar position (R.A., decl., ϖ)
and proper motion (μα*, μδ). Therefore, the parameters of
these five-dimensions can be used as the foundation for the
search for OCs. We performed statistical analysis on 1229
known OCs as well as candidates to confirm the efficiency of
SBCSM, based on the work in Cantat-Gaudin et al. (2018a).
We extracted the position, parallax, and proper motion of
member stars from these 1229 clusters and candidates.
Then, we calculated the information entropy and entropy
weight of these five indicators in each sample separately, using
the entropy weight method (EWM) (EWM, Kemal &
Yakup 2018).
The principle of the EWM is to determine the objective

weight based on the magnitude of the variability of the index.
Entropy is the measure of uncertainty, and this can be used to
determine the degree of dispersion of an indicator. If the degree
of dispersion of an indicator is higher, the entropy value will be
smaller, and the index will have more influence on the
comprehensive evaluation. The EWM proceeds in three steps:
standardizing data, finding the information entropy of each
indicator, and determining the entropy weight of each indicator.
Figure 1 presents the information entropy and entropy

weights for these five indicators. It can be elicited that the
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distribution of each entropy value and entropy weight of these
five parameters is basically semblable. The entropy of the
parallax is minimal, and the R.A. and decl. take second place. It
is clear that the entropy weight of the parallax is larger than the
position (R.A., decl.) as well as the proper motion. The size and
shape of the OCs are particularly uncertain, but the proper
motions are so similar that the dispersion is extremely small.

Although the positions (R.A., decl.) of the member stars are
similar, it is impossible for them to be distributed in the same
location. Likewise, the parallax also has a higher degree of
dispersion. Therefore, these five indicators are distribution
features that are completely rational and acceptable. This
further indicates that the OCs are authentically irregular. On the
other hand, we can conclude that the dispersion of these five
indicators is approximately uniform, such that there is no need
to weigh the indicators specifically for the DBSCAN algorithm,
which assigns equal weight to these five parameters.

2.4. Data Normalization

The units of data in Gaia DR2 differ in position, parallax, and
proper motion. It is thus inconvenient to perform statistical
analysis directly. In order to eliminate the discrepancy of the
units as well as the range difference between the indicators,
which will significantly influence the results of clustering
analysis, the data needs to be standardized. That is, the data
must be scaled proportionally to fall into a specific area. It will
be advantageous to do so before proceeding to the comprehen-
sive analysis. There are two main methods of standardizing data:

Min–max standardization: Linear normalization, or disper-
sion normalization, involves a linear transformation of the
original data that causes the results to fall within the [0,1]

interval. The conversion function is as follows:

=
-
-

x
x min

max min
. 1* ( )

For this method, max is the maximum value of the sample data,
and min is the minimum value. Hence, this normalization
method is more suitable for cases where the numerical
comparison is concentrated. However, the method has a
drawback. If the maximum and minimum are unstable, the
normalization results can be precarious. Moreover, the max-
imum and minimum values will change when new data is added,
at which point they will need to be redefined. Consequently,
empirical constants can be used to replace the maximum and the
minimum. In practice, we have found that this normalization
method has distinct drawbacks for the data from Gaia DR2.
z-score standardization: This standardization method is

based on the mean and standard deviation of the data from
the sample, where the original value x of the sample A is
normalized to x′. z-score normalization is exceptionally
applicable to the case where the maximum and minimum
values of the sample A are unknown, or when out-of-group
data exceeds the value range. By using this transformation, all
data for each attribute is eventually aggregated with a mean of
0 and a variance of 1. The conversion function is as follows:

m
s

=
-

x
x

. 2* ( )

We found that this normalization works better in practice.
Actually, z-score standardization performs better when the
distance is used to measure the similarity, especially in
classification and clustering algorithms. This is because the
dimension of each dimension is equivalent when using it.

Figure 1. Information entropy (left) and entropy weight (right) of the five-dimensional parameters of 1229 clusters and candidates. The different colors represent five
different indicators: green, blue, yellow, purple, and brown represent the R.A., decl., parallax, proper motion μα*, and proper motion μδ.
(A color version of this figure is available in the online journal.)
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Figure 2. Histogram of the data distribution of the region around cluster NGC 6561. The solid black line is the distribution curve of the generated random sample. The
red dotted line shows a normal distribution, which is the fitting curve of the observed region itself (where the mean and variance are derived from the region around
this cluster). X is the actual value of the parameter of the observed sample, and F(x) is obtained from the probability density function.
(A color version of this figure is available in the online journal.)
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The process of data normalization involves scaling the stellar
parameters used by the subsequent DBSCAN algorithm,
because the algorithm uses the distance between the sources
in the N-dimensional space to define whether the stars are
aggregated. And we have found that the weights of these five
parameters (R.A., decl., ϖ, μα*, and μδ) are equivalent. For
this reason, we used z-score normalization.

2.5. Gaussian Kernel Density Estimation (GKDE)

We generated random samples for each small tile with the
same number and distribution of the five astrometric parameters
(R.A., decl., ϖ, μα*, and μδ). The random samples obtained by
GKDE will affect the parameter settings for the DBSCAN
clustering algorithm, with which we can reduce parametric
errors from the instability of the distribution of the observed
sample. In other words, the random sample greatly improves
the accuracy of the algorithm parameters that we set. In our
evaluation, we could find only half of the objects when we
omitted this process.

The principle of the kernel density function (Zambom &
Dias 1998) is relatively straightforward. If we know the
probability distribution of an object in advance, and if there is a
determinate amount in the observation, we can consider that the
probability density of this object is very large. Moreover, the
density will be even higher when the probability is adjacent to
this object. By contrast, if the probability is away from this
object, the density will be smaller.

Kernel density estimation (KDE, Lampe & Hauser 2011) is
used in probability theory to estimate the density function of
variables. It is one of the non-parametric tests. We used the
GKDE to generate a new random sample with the same number
of stars as the observed sample. Furthermore, we used the five
random astrometric parameters (R.A., decl., ϖ, μα*, and μδ)
according to the distribution of the primordial sample (Castro-
Ginard et al. 2018).

Based on this idea, we can use a kernel function (K) to fit the
farthest and most recent probability density for each object in the
observed sample. Subsequently, a plurality of probability density
distribution functions fitted to each of the observed objects is
averaged. If there are some important objects, they can be
processed using a weighted average. Notably, we are not trying
to find the true distribution function. The essence of KDE is to
use a kernel function (such as a Gaussian function) to obtain the

N-kernels function, in which we use the value and bandwidth of
each object as the parameters of this function. Then, we use
linear superimposition to form a function, and, after normal-
ization, the kernel density can be estimated by it. Moreover, we
can use this function to generate a new random sample.
We used a Gaussian kernel for density estimation:

- = - - sK x xc x xcexp . 3
2

2 2( ) { } ( )   

Here, xc is the center of the kernel function, and σ is the width
parameter for the function. The only parameter that needs to be
determined is the bandwidth, which is also the standard
deviation of the normal distribution.
There are several ways to set the bandwidth h. In this paper,

we use the optimal bandwidth based on the characteristics of
the sample:

= * * -h N1.06 std . 4total
1
5( ) ( ) ( )

Here, std denotes the sample standard deviation, and Ntotal is
the total number of samples. The distribution of random
samples generated by setting this bandwidth is consistent with
the observed sample.
Figure 2 shows the five parameters (R.A., decl., ϖ, μα*, and

μδ) between the random sample obtained by GKDE and the
observed sample of the region around the cluster NGC 6561.
The histogram is the distribution of the observed sample, and
the solid black curve is the distribution of the random sample.
For comparison, the red dotted curve is a normal distribution,
which fits the observed sample itself (with the mean and
variance derived from the observed sample). It is clear that the
black solid curve is consistent with the distribution of the
histogram, such that the random sample obtained is indeed
credible. In what follows, we show how this random sample is
used to generate applicable parameters for the algorithm
applied.

2.6. Parameter Determination

DBSCAN can solve the clustering of an irregular shape,
while also processing for noise objects. Hence, this algorithm is
adaptive to OCs insofar as there are clusters of stars with
approximate positions (R.A., decl., ϖ) and proper motions
(μα*, μδ). Gaia DR2 contains precise information about these
five parameters. In this study, we defined the Euclidean
distance between two sources.

Table 1
Summary of 34 Known Open Clusters and Candidates Found with the Proposed SBCSM

Trumpler_14 Dias_6 NGC 581 NGC 6561 Berkeley_30 Ruprecht_18 Alessi_Teutsch_8 Alessi_10 FSR_1363
Trumpler_15 IC_4996 NGC 1893 NGC 7031 Berkeley_33 Ruprecht_63 Majaess 211 NGC4103 Dolidze_53
Trumpler_16 Pismis_3 NGC 2254 NGC 7654 Berkeley_69 Ruprecht_172 Feibelman_1 Berkeley_86 Dolidze_20
Alessi_12 Teutsch_7 NGC 3532 LDN_988e Berkeley_85 Barkhatova_1 UBC67

Note. Lists: Kharchenko et al. (2013), Dias et al. (2014), Cantat-Gaudin et al. (2018a), Castro-Ginard et al. (2019).
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To obtain suitable parameters, we adopted the k-nearest
neighbors algorithm (KNN, Altman 1992). To determine the
k-value of the kth nearest distance, Castro-Ginard et al. (2018)
demonstrated that the result is more effective for OCs when k is
[5, 6, 7, 8, 9].

Therefore, we first calculate the distance sets of the sources
after normalization of the observed samples, which means
calculating the distance between all sources in the m∗n-
dimensional matrix. After sorting the distance, we extract the
5th, 6th, 7th, 8th, and 9th distance sets for the observed
samples as follows: E′(5), E′(6), E′(7), E′(8), and E′(9),
respectively. Ultimately, we take the minimum of each set as
follows: obs 5‐ , obs 6‐ , obs 7‐ , obs 8‐ , and obs 9‐ , respectively.
Similarly, for the random samples generated by GKDE, as with
the observed samples, ò denotes rand 5‐ , rand 6‐ , rand 7‐ , rand 8‐ ,
and rand 9‐ , respectively.

In order to obtain the concentrated clusters and minimize the
pollution effect of field stars, our choice for the distance
parameter ò is ò=(òobs + òrand)/2. Since minPts determines
the minimum number of members in the cluster, the relation-
ship between the k and minPts is k=minPts−1. Therefore, ò
has a one-to-one correspondence with minPts.

3. Data

To demonstrate the superiority of the proposed SBCSM, we
took the mean parameters of R.A. and decl. for each OC
candidate as the center points. These were taken from the 54
new OC candidates discovered by Cantat-Gaudin et al.
(2018a). Then, the small tiles were set to the squares of
1°× 1° in these center points to derive all sources in these

areas. The data was collected from the Gaia data website of the
ESA:https://gea.esac.esa.int/archive/.
We rejected sources with abnormal proper motion and

parallax, such as particularly large or negative parallax or
extremely large motion. The rejection criterion was set as
follows: ma*∣ ∣, md∣ ∣>30mas yr−1; ϖ<0mas and ϖ>7 mas;
G>18. Cantat-Gaudin et al. (2018a) concluded the character-
istics of sources in Gaia DR2: stars with a magnitude greater
than 18 (weaker stars) have particularly large parallax errors,
even exceeding 0.2 mas. As Cantat-Gaudin et al. (2018a) did, we
made use of sources that brighter than G=18, corresponding to
typical astrometric uncertainties of 0.3 mas yr−1 in proper
motion and 0.15mas in parallax, and the individual errors of
the sources were not taken into account in the proposed method.

4. Results

In total, we found 104 OCs and OC candidates. These 104
objects have been cross-matched with known catalogs of OCs
(Kharchenko et al. 2013; Dias et al. 2014; Cantat-Gaudin et al.
2018a; Castro-Ginard et al. 2019), including position (R.A.,
decl.), parallax and proper motion. The criterion in three
parameter spaces was set as follows: distance between the
centers of two clusters is 3 times greater than the sum of the
radii of two clusters; difference of mean parallax between two
clusters is 5 times larger than the standard deviation; the
criterion of proper motion is the same as parallax. We
confirmed all 54 OC candidates that were previously
discovered by Cantat-Gaudin et al. (2018a), with 100%
efficiency. Furthermore, 34 other known OCs and candidates
were discovered (see Table 1). Among these 34 known OCs

Table 2
Summary of Mean Parameters for 16 New OC Candidates

Cluster R.A. Decl. R N μα* μδ ϖ d AG log(age)
(deg) (deg) (deg) (mas yr−1) (mas yr−1) (mas) (pc)

OC-1 51.78(0.01) 45.14(0.01) 0.09 43 0.18(0.16) −2.46(0.17) 0.61(0.01) 1645.3(13.7) 0.70 9.08
OC-2 80.11(0.01) 33.26(0.01) 0.08 32 1.27(0.09) −3.33(0.12) 0.59(0.01) 1690.9(13.6) 0.80 8.90
OC-3 80.14(0.01) 33.41(0.01) 0.08 24 0.61(0.35) −5.06(0.35) 1.13(0.02) 882.9(9.2) 0.66 8.90
OC-4 80.25(0.01) 33.83(0.01) 0.06 21 0.55(0.13) −3.60(0.10) 0.56(0.01) 1762.1(22.4) 1.04 8.76
OC-5 80.37(0.01) 33.39(0.01) 0.05 20 −0.12(0.09) −3.18(0.08) 0.79(0.02) 1266.8(11.8) 0.88 7.74
OC-6 80.54(0.02) 33.83(0.02) 0.07 15 −0.45(0.16) −3.43(0.29) 1.27(0.05) 790.2(5.1) 0.90 7.92
OC-7 80.57(0.01) 35.42(0.02) 0.09 19 1.49(0.12) −2.88(0.23) 0.58(0.02) 1735.0(15.9) 1.18 7.60
OC-8 80.57(0.01) 33.79(0.01) 0.04 21 −0.16(0.06) −3.13(0.08) 0.85(0.02) 1178.0(9.9) 1.14 7.24
OC-9 80.78(0.02) 33.09(0.01) 0.09 18 1.72(0.29) −5.15(0.24) 1.15(0.02) 868.5(9.8) 0.64 8.90
OC-10 81.94(0.01) 33.28(0.01) 0.04 18 1.32(0.05) −2.93(0.05) 0.32(0.01) 3092.5(18.9) 1.28 8.50
OC-11 127.86(0.01) −47.99(0.01) 0.07 34 −4.34(0.07) 4.61(0.15) 0.57(0.01) 1751.9(17.2) 0.80 8.74
OC-12 167.12(0.01) −58.74(0.01) 0.09 62 −7.03(0.12) 2.07(0.08) 0.60(0.01) 1655.3(14.6) 0.52 8.84
OC-13 274.21(0.02) 10.79(0.03) 0.17 45 −0.61(0.19) −6.19(0.24) 1.12(0.01) 890.9(11.2) 0.22 9.60
OC-14 302.38(0.01) 38.29(0.01) 0.03 53 −2.61(0.02) −4.89(0.02) 0.27(0.01) 3669.9(28.2) 2.66 6.96
OC-15 317.62(0.01) 46.81(0.01) 0.08 134 −3.31(0.01) −3.63(0.01) 0.14(0.01) 7294.2(25.5) 3.14 6.84
OC-16 318.35(0.01) 46.29(0.01) 0.11 150 −2.59(0.08) −3.79(0.09) 0.62(0.01) 1611.8(10.6) 1.02 8.58

Note. The parameters shown are the mean and standard deviation for the (N) members found. R: radius containing half the memberships discovered in this study. N:
number of member stars. AG: extinction in the G band.
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Figure 3. Top left: member stars (black) in the sky for OC-8 (R.A., decl.). Top right: member stars (blue) together with field stars (gray) for OC-8 in proper motion
space. Middle: histograms of proper motion. Bottom: color–magnitude diagram showing the sequence of the members.
(A color version of this figure is available in the online journal.)
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and candidates, 31 were noted by Cantat-Gaudin et al. (2018a)
and the remaining 3 objects were found by other projects. We
confirmed the OCs Dolidze_20 and LDN_988e (Kharchenko
et al. 2013; Dias et al. 2014). We also confirmed the OC
candidate UBC67, which was recently discovered by Castro-
Ginard et al. (2019). Beyond this, 16 new OC candidates were
obtained in these areas. None of these 16 new candidates is
compatible in at least one parameter space (see Figure 7).
Evidently, the SBCSM offers very high spatial resolution for
unveiling OCs, along with good accuracy.

4.1. New OC Candidates

Table 2 lists the parameters of the 16 new OC candidates.
We calculated the mean position (R.A., decl.), parallax, and
proper motion of each candidate, including the standard
deviation. These new candidates were obtained using the
proposed SBCSM.

Figure 3 shows the distribution in the sky of a new OC
candidate, OC-8, along with the proper motion of member stars
and the distribution characteristics of the color–magnitude
diagrams (CMDs). The candidate OC-8 is distributed on 80°.57
(R.A.) and 33°.79 (decl.), with a radius of about 0°.04. Its
distance is about 1.2 kpc, with proper motion of −0.16 and
−3.13 mas yr−1. This is the radius containing half of the
member stars discovered in this work, and the distance of each
OC candidate is the mode of the distance likelihood.

4.2. Age Determination

OCs are considered to be groups of stars with common
origins and with similar position and proper motion (R.A.,
decl., ϖ, μα*, μδ). Member stars are formed almost
simultaneously in a giant molecular cloud and are roughly
the same age. Therefore, the CMDs can provide empirical

isochrones for comparison with theoretical models (Castro-
Ginard et al. 2018). The distribution of the member stars of an
OC is almost concentrated on a theoretical curve.
To estimate the cluster age, we constructed CMDs for our

OC candidates. We compared each CMD to the metallicity
z=0.015–0.029 isochrones of the PARSEC library (Bressan
et al. 2012), updated for the Gaia DR2 passbands with
photometric calibration of Evans et al. (2018). The least-squares
fitting of isochrones was used to match the observed cluster
CMDs. We used the inverse of the averaged parallax as the
cluster distance. The CMDs were corrected for the extinction
AG and reddening E (GBP–GRP), using the extinction law Rv=
3.1 (Cardelli et al. 1989; O’Donnell 1994). We selected those
candidate clusters with CMDs that (visually) appeared well-fitted
to theoretical isochrones and estimated their age. The results are
shown in Table 2.
Figure 4 shows the results of theoretical curves that fit

NGC4103. The parameters that come from this theoretical
curve are shown at the top of the figure. We compared the
member stars we obtained with Cantat-Gaudin et al. (2018a). It
can be clearly seen that the memberships we obtained are
strongly distributed on a theoretical curve and have higher
goodness of fit. The memberships from Cantat-Gaudin’s
project Cantat-Gaudin et al. (2018a) have high dispersion,
and there are some member stars that deviate significantly from
the theoretical curve. Furthermore, it is extremely difficult to
find a theoretical curve fitted to member stars from Cantat-
Gaudin et al. (2018a) because there are many memberships that
cannot be on a curve in the meantime.

5. Discussion

We compared the OC candidate Gulliver18 obtained by
SBCSM to that found by Cantat-Gaudin et al. (2018a). Figure 5
distinguishes these two candidates and includes their

Figure 4. CMDs for a sample of NGC 4031 from this work (left) and from Cantat-Gaudin et al. (right). The red curves denote theoretical isochrones corresponding to
the cluster parameters.

(A color version of this figure is available in the online journal.)
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distribution in the sky and CMDs. From the figure in the top
left, we can see that the distribution in the sky of member stars
that were obtained by Cantat-Gaudin et al. (2018a) is extended,
and its configuration is similar to a circle. Many stars were
considered as memberships and the radius of the distribution
approached 0°.7. In addition, the farther away from the center of
the cluster, the more evenly distributed the member stars.
Actually, we could obtain the same result in practice. This
means that we could also gain abundant member stars for this
candidate with approximate positions and proper motions in
this small region, although we abandoned it.

What should be emphasized is that the member stars of an
OC not only have a similar position and proper motion, but,
more crucially, they form at almost the same time in the same
giant molecular cloud. The distribution of member stars in
the CMDs is almost concentrated on a theoretical curve.

Obviously, the distribution in Cantat-Gaudin et al. (2018a) is
not concentrated on a curve, according to the figure in the
bottom left, and we cannot unveil a theoretical curve that is
specific. The distribution of many member stars is exception-
ally cluttered, particularly for darker stars. For comparison, we
can say that the member stars we obtained are obviously
concentrated on a theoretical line in the CMDs, even darker
stars that are not discrete. Therefore, the member stars for the
candidate we obtained have higher accuracy. We also made
comparisons of the parameters for the 54 clusters in Cantat-
Gaudin et al. (2018a) (Table 3).
Figure 6 shows a comparison between this study and Cantat-

Gaudin et al. (2018a) of each parameter (parallax, R, D, and
proper motion) for the 54 clusters. The parallax, distance, and
proper motion in this study were consistent with those of the
previous project. The radius of each OC that we determined

Figure 5. Top left: distribution of member stars in the sky for Gulliver18 found by Cantat-Gaudin et al. (2018a). Top right: color–magnitude diagram for Gulliver18
found by Cantat-Gaudin et al. (2018a). Bottom: the same for Gulliver18, whose member stars were found with the proposed method.
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Table 3
Differences between Our Way of Determining Parameters and that of Cantat-Gaudin et al. (2018a)

This Study Cantat-Gaudin. T. et al.

Cluster ϖ μα* μδ R D ϖ μα* μδ R D D+ D−
(mas) (mas yr−1) (mas yr−1) (deg) pc (mas) (mas yr−1) (mas yr−1) (deg) pc pc pc

Gulliver 1 0.34(0.01) −7.83(0.05) 3.63(0.03) 0.02 2937.9(21.7) 0.32 (0.04) −7.93(0.08) 3.58(0.08) 0.09 2837.3 2210.6 3693.2
Gulliver 2 0.68(0.01) −4.96(0.02) 4.54(0.03) 0.02 1465.1(16.1) 0.70 (0.06) −4.95(0.10) 4.58(0.12) 0.07 1379.2 1212.1 1600.4
Gulliver 3 0.19(0.01) −2.93(0.03) 4.10(0.03) 0.02 5126.6(22.5) 0.19 (0.07) −2.96(0.09) 4.11(0.11) 0.04 4550.3 3127.0 8345.1
Gulliver 4 0.30(0.01) −2.95(0.02) 3.07(0.02) 0.03 3318.4(25.8) 0.30 (0.04) −2.91(0.06) 3.03(0.06) 0.08 3042.1 2332.3 4372.9
Gulliver 5 0.42(0.01) −5.03(0.02) 4.98(0.03) 0.08 2398.4(21.4) 0.41 (0.03) −5.10(0.03) 4.90(0.07) 0.11 2297.8 1868.4 2981.3
Gulliver 6 2.37(0.01) 0.02(0.03) −0.21(0.05) 0.12 421.1(13.9) 2.37 (0.11) −0.01(0.39) −0.21(0.37) 0.52 417.3 400.6 435.5
Gulliver 7 0.09(0.01) −3.54(0.02) 3.14(0.02) 0.03 11078.7(21.2) 0.08 (0.05) −3.55(0.15) 3.11(0.10) 0.03 8844.8 4693.3 ¥
Gulliver 8 0.84(0.02) −0.15(0.05) −3.12(0.07) 0.06 1196.7(8.6) 0.87 (0.09) −0.16(0.23) −2.98(0.15) 0.10 1110.3 999.3 1249.0
Gulliver 9 1.97(0.01) −5.79(0.05) 6.88(0.07) 0.09 507.9(22.9) 1.99 (0.09) −5.99(0.27) 6.92(0.38) 0.97 496.5 473.0 522.4
Gulliver 10 1.62(0.02) −4.52(0.10) 5.06(0.10) 0.11 619.5(8.3) 1.65 (0.08) −4.44(0.24) 4.97(0.15) 0.18 594.9 561.5 632.6
Gulliver 11 1.06(0.02) 0.36(0.04) −2.24(0.03) 0.04 941.2(19.5) 1.06 (0.07) 0.40(0.21) −2.23(0.15) 0.13 917.3 840.2 1009.9
Gulliver 12 0.54(0.01) −6.28(0.05) 0.16(0.05) 0.02 1857.5(67.4) 0.56 (0.03) −5.95(0.07) −0.41(0.09) 0.08 1699.4 1452.6 2047.4
Gulliver 13 0.63(0.01) −2.87(0.03) 0.28(0.04) 0.03 1589.4(23.5) 0.62 (0.06) −2.94(0.13) 0.28(0.11) 0.12 1540.4 1334.9 1820.8
Gulliver 14 0.72(0.01) −3.68(0.05) −4.73(0.06) 0.05 1389.5(21.3) 0.75 (0.04) −3.72(0.07) −4.79(0.09) 0.18 1291.5 1143.8 1483.1
Gulliver 15 0.50(0.01) −1.06(0.03) −1.59(0.02) 0.06 1989.8(27.6) 0.51 (0.07) −1.06(0.12) −1.64(0.10) 0.09 1869.3 1574.8 2299.2
Gulliver 16 0.21(0.01) −1.26(0.01) −0.59(0.01) 0.03 4903.7(26.4) 0.21 (0.07) −1.25(0.06) −0.61(0.08) 0.05 4217.7 2964.6 7288.6
Gulliver 17 0.56(0.01) −1.11(0.02) −3.06(0.03) 0.03 1777.2(33.3) 0.56 (0.04) −1.08(0.12) −3.03(0.15) 0.06 1711.8 1461.7 2065.0
Gulliver 18 0.61(0.01) −3.18(0.02) −5.66(0.02) 0.06 1630.2(18.1) 0.61 (0.06) −3.20(0.09) −5.65(0.10) 0.12 1558.6 1348.4 1846.3
Gulliver 19 0.63(0.01) 0.89(0.04) −2.25(0.03) 0.08 1602.5(18.6) 0.63 (0.06) 0.89(0.13) −2.26(0.15) 0.16 1507.9 1310.3 1775.7
Gulliver 20 2.36(0.02) 0.99(0.10) −6.38(0.21) 0.15 423.3(11.9) 2.35 (0.08) 1.04(0.25) −6.53(0.17) 0.70 420.9 403.9 439.4
Gulliver 21 1.49(0.01) −1.95(0.05) 4.16(0.05) 0.08 672.8(15.3) 1.50 (0.05) −1.93(0.12) 4.21(0.14) 0.36 652.2 612.3 697.8
Gulliver 22 1.28(0.02) −1.37(0.08) −4.62(0.10) 0.08 781.2(6.7) 1.26 (0.11) −1.52(0.29) −4.61(0.12) 0.12 777.8 721.7 843.4
Gulliver 23 0.25(0.01) −2.47(0.01) −4.44(0.01) 0.04 3912.3(20.6) 0.25 (0.05) −2.45(0.09) −4.44(0.10) 0.05 3643.0 2670.1 5723.3
Gulliver 24 0.64(0.01) −3.23(0.04) −1.52(0.03) 0.07 1563.3(16.4) 0.64 (0.05) −3.24(0.10) −1.57(0.09) 0.10 1504.9 1308.1 1771.6
Gulliver 25 0.75(0.02) 1.01(0.09) −4.23(0.10) 0.10 1329.8(11.3) 0.71 (0.05) 0.96(0.11) −4.09(0.10) 0.33 1351.3 1190.4 1562.4
Gulliver 26 0.34(0.01) 1.94(0.03) −2.85(0.02) 0.05 3015.7(21.0) 0.36 (0.08) 2.02(0.17) −2.87(0.13) 0.08 2570.1 2044.5 3459.1
Gulliver 27 0.32(0.01) −4.67(0.02) 3.47(0.02) 0.03 3095.9(26.8) 0.32 (0.03) −4.66(0.07) 3.47(0.08) 0.05 2850.4 2218.1 3987.1
Gulliver 28 1.61(0.03) −4.21(0.18) −3.51(0.19) 0.16 619.2(5.9) 1.58 (0.07) −4.49(0.16) −3.40(0.14) 0.56 621.3 584.9 662.5
Gulliver 29 0.91(0.01) 1.24(0.04) −2.12(0.04) 0.03 1090.4(29.6) 0.91 (0.06) 1.33(0.16) −2.21(0.17) 0.68 1070.9 967.3 1199.3
Gulliver 30 0.44(0.01) −2.48(0.03) −3.72(0.02) 0.03 2269.8(24.5) 0.43 (0.04) −2.52(0.07) −3.70(0.07) 0.08 2192.3 1797.7 2808.6
Gulliver 31 0.37(0.01) −1.50(0.03) −3.12(0.03) 0.02 2724.6(26.8) 0.40 (0.03) −1.50(0.06) −3.11(0.09) 0.08 2352.8 1905.6 3077.1
Gulliver 32 0.57(0.01) −0.98(0.04) 2.35(0.07) 0.03 1751.7(34.5) 0.58 (0.06) −0.88(0.10) 2.30(0.11) 0.10 1469.8 1416.2 1975.6
Gulliver 33 0.84(0.01) 0.25(0.05) −3.81(0.08) 0.09 1193.3(12.4) 0.87 (0.06) 0.27(0.12) −3.96(0.07) 0.31 1116.5 1044.6 1256.9
Gulliver 34 0.22(0.01) −6.27(0.03) 2.42(0.02) 0.05 4641.0(61.2) 0.22 (0.03) −6.18(0.06) 2.41(0.07) 0.05 3972.3 2842.1 6580.6
Gulliver 35 0.24(0.01) −3.90(0.03) −6.09(0.04) 0.02 4207.1(21.0) 0.23 (0.07) −3.91(0.14) −6.26(0.16) 0.06 3906.2 2808.8 6406.3
Gulliver 36 0.74(0.01) −0.21(0.03) 0.61(0.04) 0.02 1343.3(30.6) 0.73 (0.04) −0.24(0.08) 0.61(0.07) 0.40 1326.7 1171.3 1529.6
Gulliver 37 0.64(0.01) −0.78(0.04) −3.70(0.04) 0.06 1560.1(16.6) 0.64 (0.04) −0.78(0.07) −3.74(0.09) 0.11 1490.9 1297.6 1751.8
Gulliver 38 0.40(0.01) −0.95(0.01) −2.57(0.02) 0.03 2477.5(24.6) 0.40 (0.04) −0.92(0.12) −2.59(0.13) 0.06 2329.1 1889.9 3036.6
Gulliver 39 0.34(0.01) −4.43(0.02) 1.28(0.02) 0.03 2982.4(28.1) 0.34 (0.04) −4.41(0.07) 1.27(0.06) 0.05 2747.5 2155.3 3788.6
Gulliver 40 0.58(0.01) −7.67(0.07) 2.61(0.06) 0.06 1732.3(19.9) 0.59 (0.04) −7.69(0.04) 2.48(0.06) 0.08 1618.7 1393.1 1931.3
Gulliver 41 0.17(0.01) −1.79(0.10) −4.04(0.06) 0.04 4970.7(27.9) 0.17 (0.13) −1.79(0.30) −4.71(0.26) 0.03 5000.2 3333.8 9982.9
Gulliver 42 0.18(0.01) −2.63(0.03) −5.51(0.03) 0.02 5684.2(21.3) 0.18 (0.17) −2.78(0.19) −5.45(0.22) 0.05 4763.9 3226.7 9092.1
Gulliver 43 0.34(0.01) −2.92(0.02) −5.75(0.02) 0.05 2929.0(29.8) 0.35 (0.05) −2.92(0.09) −5.80(0.10) 0.08 2631.6 2083.3 3571.7
Gulliver 44 0.79(0.01) −0.66(0.02) 2.33(0.03) 0.07 1268.8(23.1) 0.79 (0.05) −0.67(0.14) 2.30(0.13) 0.19 1228.2 1093.9 1400.2
Gulliver 45 0.27(0.01) −0.76(0.03) 2.43(0.03) 0.03 3648.8(20.8) 0.28 (0.09) −0.76(0.20) 2.51(0.19) 0.05 3196.9 2422.4 4699.2
Gulliver 46 0.18(0.01) −6.90(0.02) 0.13(0.01) 0.03 5367.8(21.7) 0.18 (0.06) −6.95(0.09) 0.13(0.07) 0.02 4766.3 3227.8 9113.6
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Table 3
(Continued)

This Study Cantat-Gaudin. T. et al.

Cluster ϖ μα* μδ R D ϖ μα* μδ R D D+ D−
(mas) (mas yr−1) (mas yr−1) (deg) pc (mas) (mas yr−1) (mas yr−1) (deg) pc pc pc

Gulliver 47 0.39(0.01) 0.32(0.04) −2.61(0.03) 0.06 2512.8(34.8) 0.37 (0.05) 0.33(0.15) −2.54(0.11) 0.12 2539.0 2024.9 3403.0
Gulliver 48 1.06(0.01) −4.70(0.06) −6.77(0.06) 0.08 938.5(15.6) 1.06 (0.05) −4.78(0.14) −6.67(0.17) 0.28 919.8 842.3 1013.0
Gulliver 49 0.58(0.02) −3.99(0.02) −3.05(0.02) 0.09 1721.0(21.3) 0.59 (0.04) −4.02(0.11) −3.05(0.11) 0.16 1621.7 1395.5 1936.5
Gulliver 50 0.51(0.01) −7.24(0.02) 1.68(0.01) 0.02 1971.7(38.4) 0.51 (0.04) −7.20(0.10) 1.66(0.06) 0.11 1841.7 1554.9 2256.8
Gulliver 51 0.65(0.01) −4.89(0.04) −0.09(0.03) 0.03 1539.7(21.1) 0.65 (0.03) −4.89(0.10) −0.15(0.08) 0.08 1479.6 1288.9 1736.5
Gulliver 52 0.40(0.01) −4.77(0.02) 1.46(0.02) 0.02 2462.6(49.8) 0.40 (0.04) −4.76(0.07) 1.47(0.08) 0.15 2350.8 1903.3 3073.5
Gulliver 53 0.36(0.01) 0.48(0.04) −2.89(0.02) 0.07 2780.0(26.6) 0.38 (0.04) 0.40(0.11) −2.84(0.11) 0.12 2421.9 1949.5 3196.2
Gulliver 54 0.78(0.02) −0.57(0.05) −7.23(0.06) 0.06 1279.4(15.6) 0.79 (0.06) −0.60(0.14) −7.30(0.18) 0.10 1219.0 1086.5 1388.3

Note. The parameters shown are the mean and standard deviation of these 54 known objects in this study (left). Parameters come from Cantat-Gaudin et al. (2018a) (right).
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Figure 6. Comparison of our study to that of Cantat-Gaudin et al. (2018a) in terms of the five parameters (parallax, R, D, and proper motions) for the 54 clusters.
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was smaller than before, at approximately 1/4 of the value
given by Cantat-Gaudin et al. (2018a). This indicates that the
distribution of member stars we obtained is more concentrated,
and it can be considered that the memberships are more
credible. Particularly, the radius of Gulliver9 and Gulliver20 is
much smaller. These two objects are closer. In fact, we
obtained more memberships when the tiles were slightly larger.
Considering the projection effect of the spatial distribution of
the targets, the distribution scales of OCs at different distances
are dissimilar. The closer the OC is, the larger the scale is. And
the scale is smaller when the target is farther away. Therefore,
we believe that we can find more OCs by changing the distance
resolution.

We confirmed 54 OC candidates discovered with the
proposed SBCSM. Among these, 16 OC candidates were
newly discovered. These new candidates may have been
omitted due to defects in previous methods, such as excessive
sample space or unreasonable parameter selection. This shows
that our method outperforms previous methods, and that there
are still many OCs that have not yet been detected. Moreover,
the confirmation of the memberships of OCs is a problem that
remains to be solved. In addition, Gaia contains radial
velocities for 7 million stars, which we did not employ in
this study. However, these radial velocities will facilitate the
study of OCs, and, particularly, research on galactic kine-
matics. Similarly, OCs serve as excellent tracers for the study

of the mechanism of star formation and the structure of the
Milky Way.

6. Summary

We proposed a novel method, called SBCSM, which makes
full use of the astrometric parameters and three-band photo-
metry released by Gaia DR2 to detect new OCs in the Milky
Way. The SBCSM offers high spatial resolution, and the
memberships it obtains have higher accuracy. Starting from a
sample of 54 OC candidates found by Cantat-Gaudin et al.
(2018a), our proposed SBCSM detected 104 other objects.
Among these, 16 OC candidates were newly discovered.
Owing to the projection effect of the spatial distribution of the
OCs, future methods should consider the effect of distance.
The astrometric parameters for these 16 new OC candidates

were presented, including their age. This work challenges
previous claims that the census of OCs is complete up to
distances of 1.8 kpc. With more sources and fewer errors in the
Gaia data, more OCs can be discovered.

This work was funded by the NSFC, grant numbers
11933011, 11873019, and 11673066, and by the Key
Laboratory for Radio Astronomy.

Appendix
Maps, Proper Motions, and CMDs for 16 New

Candidates
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Figure 7. Maps (left) and proper motion (middle): member stars (blue) together with field stars (gray), and CMDs (the red curves are theoretical isochrones) for new
OC candidates (left).
(A color version of this figure is available in the online journal.)
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Figure 7. (Continued.)
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Figure 7. (Continued.)
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Figure 7. (Continued.)
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