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Figure 1.  Probability of transitions from the upper level to the lower level of the 
two-level system in thermal radiation field with the condition that the system 
initially was in the upper level. Solid line represents free-space Rabi flopping in 
thermal radiation field, and follows equation (8) for the parameters as mentioned in 
the figure. Dashed line follows equation (13), and represents cavity-space vacuum 
Rabi flopping for the natural decay rate A  =  0.553 6116  ×  106 s−1 with negligible 
contribution of the thermal photons in the resonant cavity of Q-factor Q  =  7  ×  107. 
Dotted line represents fitting of the same equation for the same parameters except 
for the fitted value (A  =  1  ×  106 s−1) of the natural decay rate. Circles represent 
experimental data adapted for the circular Rydberg states (with the principal 
quantum number n  =   50 and n  =  51) of 87Rb atoms in an open resonant cavity 
of Q-factor 7  ×  107 and size π(50/2)2  ×  27 mm3 at the temperature T  =  0.8 K [12].

https://doi.org/10.1088/1742-5468/ab6a02
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Figure 2.  Solid line follows equation (11), and represents the Rabi model result 

for Einstein’s B coecient. Dotted line (B(t)/B0 ≡
»
2/πωγt) represents envelope 

for the oscillations in the B coecient. Inset follows equation (23) and represents 
the B coecient for the same system interacting with a monochromatic wave of a 
single polarization.

Figure 3.  Occupation probabilities for the 3s 1
2
 and 3p 1

2
 states of a 23Na atom 

in the thermal radiation field with the condition that the system initially was 
in the lower level. Upper and lower solid lines follow equations  (19) and (21) 
respectively for the parameters as mentioned in the figure  corresponding to 
u12  =  2.5ea0  =  2.1196  ×  10−29 cm [38]. Lower and upper dotted lines represent 
Einstein probabilities for the same system, and follow equation (18) and its follow-
up respectively.

https://doi.org/10.1088/1742-5468/ab6a02
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Figure 4.  Lower and upper solid lines represent occupation probabilities, and 
follow equation  (24) and its follow-up for the same parameters of the two-level 
system at the resonance in the monochromatic radiation field as mentioned in 
figure 3. Adjacent dotted lines represent corresponding Einstein probabilities, and 
follow equation (18) and its follow-up respectively.

Figure 5.  Entropy production for the 3s 1
2
 and 3p 1

2
 states of a 23Na atom in the 

thermal radiation field. Plots follow from equation  (26) for the parameters as 
mentioned in figure  3. Dotted lines represent the same obtained from Einstein 
probabilities (equation (18) and its follow-up).
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Abstract.  Starting from the Rabi Hamiltonian, which is useful in arriving 
at non-perturbative results within the rotating wave approximation, we have 

found Einstein’s B coecient to be time-dependent: B(t) ∝ |J0(ωγt)| for a 
two-level system (atom or molecule) in thermal radiation field. Here ωγ is the 
corresponding Rabi flopping (angular) frequency and J0 is the zeroth order Bessel 
function of the first kind. The resulting oscillations in the B coecient—even 
for very small ωγ—drives the system away from thermodynamic equilibrium at 
any finite temperature contrary to Einstein’s assumption. The time-dependent 
generalized B coecient facilitates a path to go beyond Pauli’s formalism of non-
equilibrium statistical mechanics involving the quantum statistical Boltzmann 
(master) equation. In this context, we have obtained entropy production of the 
two-level system by revising Einstein’s rate equations, while considering the A 
coecient to be the original time-independent one and the B coecient to be 
time-dependent.
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1.  Introduction

Einstein’s A and B coecients are quite well known to the scientific community in con-
nection with the formation of spectral lines involving fundamental processes, such as 
spontaneous emission, stimulated absorption and stimulated emission, undergone on a 
two-level system (atom or molecule) in the presence of an oscillatory electromagnetic 
field, say laser light, thermal radiation, etc [1]. While the A coecient is the rate of 
spontaneous emission from a higher energy level to a lower energy level of the two-
level system caused by vacuum fluctuations of electromagnetic field, the B coecient 
is the rate of stimulated absorption B12 (or emission B21) of (or from) the same system 
in the radiation field for unit energy density of the radiation per unit (angular) fre-
quency interval around the Bohr frequency [1, 2]. Einstein’s A and B coecients are 
of very high importance, as because, the spectral lines have huge applications almost 
everywhere in the modern science, engineering, and technology. These coecients also 
determine density of photons in thermal equilibrium when the probability of transitions 
for a two-level system reaches a steady state.

Historically, almost a century back—during the era of old quantum mechanics—
when time-dependent perturbation theory was not known [1], Einstein’s A and B 
coecients were proposed to be time-independent. These coecients, for the two-level 
system in thermal radiation field at an absolute temperature T, were determined in terms 
of fundamental constants by Dirac, Weisskopf, and Wigner in the quantum mechan-
ics era within (i) the frameworks of the time-dependent perturbation theory for the 
light-matter interactions and (ii) the quantum field theory of the stimulated emission, 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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the stimulated absorption, and the spontaneous emission of radiation [3, 4]. However, 
neither Einstein’s semi-classical theory of radiation [1] nor Dirac’s first order quantum 
mechanical perturbation theory of radiation [3] predicted regularity in the stimulated 
transitions (absorption and emission) though the electromagnetic field incident on the 
two-level system oscillates in a regular manner. This regularity was predicted a decade 
later by Rabi [5]. He and his collaborators showed resonance in the two-level system 
in the course of stimulated absorption and emission within a nonperturbative model 
which is now known as the Rabi model [5, 6]. For the two-level system (having the 
electric dipole moment �d  and the Bohr (angular) frequency ω0 corresponding to energy 
eigenstates |ψ1〉 and |ψ2〉) in presence of an oscillatory electromagnetic field with the 

electric field component �E = �E0 cos(ωt), Rabi et al obtained a generalized (angular) fre-
quency for the transition induced flopping of the two states, as Ω =

√
(ω − ω0)2 + ω2

γ  

which is now known as the Rabi formula where ωγ = |〈ψ1|�d · �E0|ψ2〉|/� is the Rabi 
flopping frequency [6].

It it quite well known, that, the generalized Rabi flopping frequency (Ω) tends to 
the Rabi flopping frequency (ωγ) at resonance (ω → ω0), i.e. where the probability of 
the stimulated transitions for the stimulated emission from the initial (t  =  0) state 

|ψ2〉 to the final state |ψ1〉 at time t, say P2→1(t) = ω2
γ
sin2(Ωt/2)

Ω2 = ω2
γ

sin2(
√

(ω−ω0)2+ω2
γt/2)

(ω−ω0)2+ω2
γ

, 

is sharply peaked [6–9]. The expression of transition probability (involving the Rabi 
flopping frequency) is quite successful, as it gives a reliable value of the nuclear mag-
netic moment to experimentalists [6]. Later experimentalists found this expression quite 
successful for atoms, molecules, semiconductors, Bose–Einstein condensates, many-
bodies, etc exposed in laser light [10–16]. One can get the perturbation result (which 
is compatible with Fermi’s golden rule) [3, 7] back if one assumes |ω − ω0| � ωγ in the 

Rabi formula. But, condition for the time-dependent perturbation (P2→1(t) � 1 ∀ t, 

i.e. ω2
γ/(ω − ω0)

2 � 1) does not hold [7] at the resonance (ω → ω0) at least for t → ∞ 
however weak the light-matter coupling (�ωγ) may be. The problem with the upper 
limit of time (0 � t < ∞) can not be avoided to get the frequency matching condition 
(δ(ω − ω0)

5) for the dipole-transitions stimulated by a sinusoidal perturbation [3, 7]. 
Thus, the divergence of the transition probability questions soundness of the 1st order 
perturbation theory at the resonance for t → ∞. The soundness can, of course, be 
restored only for ωγ → 0 so that limωγ→0,ω→ω0 ωγδ(ω − ω0) = constant � 1.

Since the condition for the sinusoidal perturbation with non-vanishing light-mat-
ter coupling (�ωγ) is not satisfied [7] at the resonance (ω → ω0) where the stimu-
lated transitions (emission) are most probable, the first order perturbation result 

(B12 = B21 =
π

3ε0�2 |〈ψ1|�d|ψ2〉|2 [3, 7]6) for the B coecient obtained by Dirac [3] is not 

reliable for ωγ � 0. This is a problem with the quantum mechanical perturbation the-
ory, and it remains so even in the weak coupling regime (ωγ/A � 1) as long as the cou-
pling (�ωγ) does not tend to zero keeping the natural decay rate (i.e. the A coecient) 
fixed to a nonzero value. Consequently, a question arises: what would be the reliable 

5 The frequency matching condition follows from the limiting case of the square root of the stimulated transition 

probability limt→∞
√
P2→1(t) = limt→∞ ωγ

sin([ω−ω0]t/2)
ω−ω0

= ωγ2πδ(ω − ω0) within the 1st order sinusoidal perturbation.
6 If degeneracy of the two states are g1 and g2, respectively, then B21/B12 would be given by B21/B12 = g1/g2 [2].

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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expression for the B coecient in the weak coupling regime? This issue could have 
been addressed with a nonperturbative model such as the Rabi model [5, 6], but has 
surprisingly been overlooked for the last eight decades, though there are several works 
done in the intermediate regime (0 � ωγ/A � 1) with the consideration of moderate 
system-bath (i.e. system-radiation field) interactions. These interactions are often (i) 
semiclassically modelled as perturbation terms in the Bloch–Redfield (Markovian mas-
ter) equation within the density matrix formalism [17, 18], (ii) quantum mechanically 
modelled as non-perturbation terms in the Schrodinger equation within the generalized 
Weisskopf–Wigner (natural) decay formalism for discrete and continuum modes [25], 
and (iii) quantum mechanically modelled as non-perturbation terms in the Nakajima–
Zwanzig-type (non-Markovian master) equation within the density matrix formalism 
[19, 20].

While the stimulated transition-rates are time-independent in the (quantum) 
Markovian master equations  and are solvable for the case of the time-dependent 
perturbation on the system [17, 18, 21], they are time-dependent in the (quantum) 
non-Markovian master equations and are usually hard to solve [19, 20]; the explicit 
time-dependent terms in the stimulated transition rates render the non-Markovian 
master equations analytically intractable. Of course, some simplified versions of the 
non-Markovian master equations can be solved either in the limiting cases of weak [22] 
and linear [23] interactions between the system and the bath or in the limiting case of 
structured bath even for strong interactions [24]. Nevertheless, population dynamics 
of the open quantum system of our interest, i.e. the two-level system in the thermal 
radiation field, has not been described so far through exact analytical solutions of the 
non-Markovian master equations.

The semiclassical Rabi model, we are considering, though is a non-perturbative one, 
gives exact results even in the weak coupling regime, as the model is exactly solvable 
for the entire range of coupling constant (�ωγ). Hence, we aim (i) to get a single reliable 
expression of Einstein’s B coecient from the (semiclassial) Rabi model not only for the 
weak coupling regime (ωγ/A � 1) but also for the entire regime including the strong 
coupling regime (ωγ/A � 1), (ii) to generalize Einstein’s rate equations with the reliable 
B coecient for the two-level system in the thermal radiation field, and (iii) to describe 
population dynamics of the system by finding exact analytic solutions of the rate equa-
tions. It should be mentioned in this regard that, the thermal radiation field is not 
coherent. The population dynamics of the two-level system in the coherent radiation 
field is also of high interest, and has been experimentally investigated in a high-Q cav-
ity by Brune et al [12]. Theoretical explanation of the same has been found numerically 
by Escher and Ankerhold [24], on the dissipative quantum dynamics of the two-level 
system interacting with a structured reservoir consisting of damped harmonic modes. 
However, we are aiming at the light-matter interactions at the semi-classical level7 (and 
not at the quantum mechanical level) so that the population dynamics can be analyti-
cally described in a fairly accurately manner, at least for ω0 � ωγ and kBT � �ωγ.

7 Here in the semiclassical theory, while both the system and the bath (i.e. the thermal radiation field of photons) 
are treated quantum mechanically, the system-bath interactions are treated classically by not considering annihi-
lation and creation operators in the interactions.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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The next section of this paper begins with the Rabi model for the two-level system 
in a sinusoidally oscillating electromagnetic field [5–8]. Then we write down trans
ition probabilities for the electric-dipole transitions among the two (energy) levels, and 
recast the transition probabilities for the two-level system in the thermal radiation by 
integrating over all possible frequencies and polarizations of the thermal radiation field. 
This result significantly diers from the perturbation result. Here, we have considered 
zero-point energy of the thermal radiation field in all our analyses to get generalized 
semiclassial results on top of the semiclassical theory8. We also have obtained gener-
alized semiclassical result for vacuum Rabi flopping of the two-level system with the 
consideration of small contribution of the thermal photons in a resonant cavity at a 
low temperature. We have compared this result with the experimental data obtained 
by Brune et al [12]. We get oscillatory type time-dependent B coecient, from the 
corresponding transition-probability (i.e. the stimulated emission’s probability) for the 
thermal photons. Then we revise Einstein’s rate (master) equations, considering the 
A coecient to be the original time-independent one and the B coecient to be the 
time-dependent one, to get the time evolution of the occupation probabilities of the 
two levels [1]. We get entropy production of the two-level system, from these time-
dependent probabilities, by following Pauli’s formalism of nonequilibrium statistical 
mechanics [26, 27]. We have also considered monochromatic radiation field side by side 
throughout the paper. Finally, we discuss our results.

2. Two-level system in thermal radiation field

2.1. Rabi model

The Rabi Hamiltonian for the two-level system having electric dipole moment �d  in the 

oscillatory electromagnetic field (with the electric field component �E = �E0 cos(ωt)) is 
given by [5, 6, 8, 28]

H = E1|ψ1〉〈ψ1|+ E2|ψ2〉〈ψ2|

−
�E0 · �d
2

[
eiωt|ψ1〉〈ψ2|+ e−iωt|ψ2〉〈ψ1|

]
,

� (1)

where |ψ1〉 and |ψ2〉 constitute a set of two orthonormal states of the two-sate sys-
tem (in absence of the external field) with energy eigenvalues E1 and E2 (E2 > E1) 
respectively. The third term of the Hamiltonian represents the semiclassical interac-
tion between the two-level system (atom or molecule) and the external electromagnetic 
field. The interaction term, although is not a perturbation, is consistent with the rotat-
ing wave approximation (ω0 + ω � |ω0 − ω|) which is also used in the time-dependent 
perturbation theory [6, 7]. Validity of the rotating wave approximation, however, is 
not questioned at the resonance (ω → ω0) as long as ω0 = (E2 − E1)/� is fairly large, 

8 Semiclassical results, in this respect, are found with quantum mechanical treatment of the system and semi-
classical treatment of the light-matter interactions involving statistics of photons without considering its operator 
algebra in the course of absorption and emission [7, 8]. Inclusion of the operator algebra for photon-annihilation 
and photon-creation operators would make the treatment quantum electrodynamic [32].

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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say ω0 � ωγ. Thus, the Rabi model is applicable for large Bohr frequency (ω0) of the 
two-level system, and incidentally, the Schrodinger equation for the two-level system 
corresponding to the Rabi Hamiltonian is exactly solvable under the transformation 
into the interaction-picture [6, 7]. The Rabi model is of course an integrable one due 
to the presence of a discrete symmetry in it [29]. The energy eigenvalues of the Rabi 

Hamiltonian in equation (1) thus takes the form E∓ = [E2 + E1]/2∓ �
2

√
(ω − ω0)2 + ω2

γ  

[6]. Corresponding eigenstates are now dressed due to the light-matter coupling result-
ing the energy eigenvalues dierent from those (E1,E2) of the uncoupled bare states 
(|ψ1〉, |ψ2〉). Both the eigenstates eventually are linear combinations of the uncou-
pled bare states: |ψ−〉 = cos(θ)|ψ1〉+ sin(θ)|ψ2〉 & |ψ+〉 = − sin(θ)|ψ1〉+ cos(θ)|ψ2〉 for 

tan(θ) = ωγ/[
√

(ω − ω0)2 + ω2
γ − (ω − ω0)] [30].

Eventually, the two-level system will always be in the superposition state |ψ〉 of 
the two energy eigenstates as well as of the uncoupled bare states as long as energy 
of the system is not measured. Thus, time evolution of the state of the system takes 
the following form9: |ψ(t)〉 = c1(t)e

−iE1t/�|ψ1〉+ c2(t)e
−iE2t/�|ψ2〉, where c1(t) is the trans

ition probability amplitude for the dipole-transition from the uncoupled bare state 
|ψ2〉 to |ψ1〉 and c2(t) is that from the uncoupled bare state |ψ1〉 to |ψ2〉 [3, 5, 6]. 
Transformation of the Schrodinger equation for the two-level system corresponding to 
the Rabi Hamiltonian into the interaction-picture, results in the transition probability,

P2→1(t) = |c1(t)|2 = ω2
γ

sin2(Ωt/2)

Ω2
,� (2)

on using the suitable boundary condition that the system was initially (t  =  0) only in 

the state |ψ2〉 [6–8]. Here, Ω =
√

(ω − ω0)2 + ω2
γ = (ω − ω0)

√
1 + [ ωγ

ω−ω0
]2 is the general-

ized Rabi flopping (angular) frequency and ωγ = |〈ψ1|�d · �E0|ψ2〉|/� is the Rabi flopping 
frequency for the stimulated emission from the state |ψ2〉 to the state |ψ1〉. Also, we 
keep in mind that

P1→2(t) = |c2(t)|2 = 1− P2→1(t),� (3)

is the transition probability for the stimulated absorption from the state |ψ1〉 to the 
state |ψ2〉.

Equations (2) and (3) hold good for a linearly polarized monochromatic light (hav-

ing energy density, u = 1
2
ε0E

2
0
10) incident on the two-level system.

2.2. Eect of quantum fluctuations and thermal fluctuations in free space

Let us now consider the system in a thermal radiation field in free space11 where all 
possible frequencies of the incident light are present with two independent arbitrary 

9 It takes another form, viz., |ψ(t)〉 = c−e
−iE−t/�|ψ−〉+ c+e

−iE+t/�|ψ+〉, in the basis of the energy eigenstates with time-
independent coecients (c∓) resulting in no transitions between dressed eigenstates |ψ+〉 and |ψ−〉.
10 Actual energy density, u = ε0E

2
0 cos

2(ωt), where magnetic field part also contributes equally is averaged out here, 
as because, (i) ω goes to ω0 at the resonance, and (ii) electromagnetic field oscillates many times within a single 
Rabi cycle for ω0 � ωγ [7].
11 Here free space is an idealization of a big black-body cavity of volume V → ∞. The two-level system would not 
come to equilibrium with the thermal radiation field in ideal free space.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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polarization directions. While averaging over the polarization states there results in 
factor 1/3 [7] in the rhs of equation (2), contribution of the thermal radiation of all 
possible frequencies leads to an integration in the rhs of equation (2) over ω with the 
weight-factor u(ω). This follows from Planck’s distribution formula (or Bose–Einstein 
statistics for photons) with adequate corrections for the vacuum energy density. Thus, 
we recast equation (2), as

P2→1(t) =
|〈ψ1|�d|ψ2〉|2

3�2

∫ ∞

0

2u(ω)

ε0

sin2(Ωt/2)

Ω2
dω,� (4)

where [7, 31]

u(ω) =
�ω3

π2c3

[
1

e�ω/kBT − 1
+

1

2

]
� (5)

is the average energy density of the thermal radiation (electromagnetic) field per unit 
(angular) frequency interval incident on the two-level system12. While the first term 

( �ω3

π2c3

[
1

e�ω/kBT−1

]
= uT (ω), say) in the expression for u(ω) in equation  (5) incidentally 

represents the average contribution for the thermal photons at the temperature T and 

is responsible for stimulated emission, the second term ( �ω3

2π2c3
= uq(ω), say) generalizes 

the semiclassical result and accounts for the correction due to the zero-point energy of 
the thermal radiation field.

The generalized Rabi frequency (Ω), by the definition, ranges form −
√
ω2
0 + ω2

γ  to 

−ωγ and ωγ to ∞ following the avoided crossing as ω varies from 0 to ω0 and ω0 to 
∞. The integrand in equation (4) is peaked at the resonant frequency, ω = ω0 (i.e. at 
Ω = ±ωγ), so that most of the integration comes from ω close to ω0. Further consid-
ering ω0 to be fairly large (i.e. ω0 � ωγ which is compatible with the rotating-wave 
approximation), we recast equation (4), as

P2→1(t) �
2µ2

12u(ω0)

3ε0�2

[ ∫ −ωγ

−∞

sin2(Ωt/2)

Ω2

1√
1− (ωγ/Ω)2

dΩ

+

∫ ∞

ωγ

sin2(Ωt/2)

Ω2

1√
1− (ωγ/Ω)2

dΩ

]

=
2µ2

12u(ω0)

3ε0�2
π

2ωγ
1F2

(
{1
2
}, {1, 3

2
},−

ω2
γt

2

4

)
ωγt,

�

(6)

where 1F2 is a generalized hypergeometric function13, µ12 = |〈ψ1|�d|ψ2〉| = |〈ψ2|�d|ψ1〉| is 
the transition dipole moment, and the lower limit Ω = −

√
ω2
0 + ω2

γ  (which follows 

from the avoided crossing) has been replaced14 by −∞ as the typical full-width of the 

12 Here, time averaging is taken in the very short time scale of 1/ω0. Grand canonical ensemble averaging is further 
taken for the thermal photons.
13 

1F2

(
{1/2}, {1, 3/2},−(1/4)a2x2

)
= 1

x

∫
J0(ax)dx.

14 Correction to the integration, for this replacement, quickly vanishes as [−π/2 + Si(ω0t) +O(ω2
γ/ω

2
0)]t.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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transition probability, ∆Ω = 4π/t, is well contained (for reasonable values of t) within 

the lowest possible value (−
√
ω2
0 + ω2

γ ) and the highest possible value (∞) of Ω for 

fairly large ω0. All these approximations for evaluating the above integrations are also 
applied in the time-dependent perturbative calculation keeping ωγ → 0 [3, 7]. We dier 
from the perturbation result [3, 7] only by keeping ωγ �= 0.

The natural question arises about quantifying the Rabi flopping frequency for the 
two-level system in the thermal radiation field. Equation (6) is the generalization of 
equation (2) with proper normalization for all the frequencies of the thermal radiation 
around ω0. Thus for t → ∞ and ω → ω0, the right hand sides of both equations (2) and 
(6) are averaged out to 1/2 under the consideration that u(ω0) remains fixed for emis-
sion (including the spontaneous ones) and absorption processes. Thus, we get the Rabi 
flopping frequency for the two-level system in the thermal radiation field in the free 
space as

ωγ =
2πµ2

12u(ω0)

3ε0�2
.� (7)

This form of the Rabi flopping frequency is quite general for the two-level system, and 

is of course, unaltered even for the case of vacuum (u(ω0) = uq(ω0) =
�ω3

0

2π2c3
, uT (ω0) = 0) 

Rabi flopping [32] as u(ω0), by definition (equation (5)), contains non-zero vacuum 
energy density per unit frequency interval around ω = ω0. Now, using equations (6) and 
(7), we get the probability for the stimulated transitions in free space from the upper 
level to the lower level, as

P2→1(t) =
ωγt

2
1F2

(
{1
2
}, {1, 3

2
},−

ω2
γt

2

4

)
.� (8)

Equation (8) is our generalized semiclassical result for the Rabi flopping in free space. It 
is called so because non-negligible eect of the zero-point energy of the electromagnetic 
field has been considered on top of the semiclassical result. We represent this transition 
probability by the solid line in figure 1. It is clear from the plot that the rate of stimu-
lated transitions is time-dependent. It is also clear from this plot that the Rabi flopping 
is dissipated in the thermal radiation field as expected from the system-bath (i.e. the 
system-radiation field) interactions that are often modelled perturbatively within the 
density matrix formalism by the Bloch–Redfield (master) equation  [17, 18], in free 
space. Though additional dissipations are expected from the spontaneous emission 
(natural decay), our approach is quite non-perturbative, and goes beyond the Bloch–
Redfield formalism. Time-averaged transition probability was alternatively calculated 
within the same (semiclassical) Rabi model not for multi-frequency components rather 
for a single frequency component of the incident electromagnetic field decades back 
by Shirley [9]. His result on the time-averaged transition probability is significantly 
dierent from our net time-dependent transition probability, presented in equation (8), 
where contributions of all the frequency components of the thermal radiation field are 
averaged out with the Planck’s distribution.

However, it needs a full quantum electrodynamic description to capture all the 
features of the electromagnetic interactions of the two-level system (atom/molecule) 
with the thermal (as well as coherent) radiation field. Such a quantum electrodynamic 

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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description was given long before by Jaynes and Cummings but for interactions with 
a single cavity mode in a resonant cavity [32]. However, our generalized semiclassical 
result is still useful for interactions in the free space with the broad-band modes near 
around the resonance frequency. It would be important in relating the Rabi model with 
Einstein’s rate (master) equations which are useful in describing nonequilibrium phe-
nomena in terms of the fundamental processes.

The time-derivative of the rhs of equation (6) is the transition probability per unit 

time (R2→1(t) =
d
dt
P2→1(t)), i.e. the rate of stimulated emission from the state |ψ2〉 to 

the state |ψ1〉, which we get from equation (6), as

R2→1(t) =
µ2
12u(ω0)

3ε0�2

[ ∫ −ωγ

−∞

sin(Ωt)

Ω

1√
1− (ωγ/Ω)2

dΩ

+

∫ ∞

ωγ

sin(Ωt)

Ω

1√
1− (ωγ/Ω)2

dΩ

]

=
πµ2

12u(ω0)

3ε0�2
J0(ωγt),

�

(9)

where J0(ωγt) is the Bessel function of the order zero of the first kind. The rate of 
absorption (R1→2(t) =

d
dt
P1→2(t)) from the state |ψ1〉 to |ψ2〉, on the other hand, is just 

the opposite, i.e. R1→2(t) = −R2→1(t) as P2→1(t) + P1→2(t) = 1. From equations (3) and 

Figure 1.  Probability of transitions from the upper level to the lower level of the 
two-level system in thermal radiation field with the condition that the system 
initially was in the upper level. Solid line represents free-space Rabi flopping in 
thermal radiation field, and follows equation (8) for the parameters as mentioned in 
the figure. Dashed line follows equation (13), and represents cavity-space vacuum 
Rabi flopping for the natural decay rate A = 0.553 6116× 106/s with negligible 
contribution of the thermal photons in the resonant cavity of Q-factor Q = 7× 107. 
Dotted line represents fitting of the same equation for the same parameters except 
for the fitted value (A = 1× 106/s) of the natural decay rate. Circles represent 
experimental data adapted for the circular Rydberg states (with the principal 
quantum number n  =  50 and n  =  51) of 87Rb atoms in an open resonant cavity of 
Q-factor 7× 107 and size π(50/2)2 × 27 mm3 at the temperature T  =  0.8 K [12].

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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(9), it is clear that the rate of stimulated absorption from the state |ψ1〉 to the state 
|ψ2〉 would be

R1→2(t) = −R2→1(t) = −πµ2
12u(ω0)

3ε0�2
J0(ωγt).� (10)

Einstein’s B coecient was already defined as the rate of stimulated transitions 
(emission or absorption) per unit energy density of radiations per unit (angular) fre-
quency interval around the Bohr frequency. However, the rate of transitions in equa-
tion  (10) quasi-periodically alters its sign in the course of time as if the absorption 
becomes emission and vice-versa whenever there is an alternation of the sign. Thus, 
following the definition of the B coecient, the feature of alternating the sign of 
the transition rates and the fact R1→2(t) = −R2→1(t), we get Einstein’s B coecient 
(B(t) = |R1→2(t)|/u(ω0) = |R2→1(t)|/u(ω0)) from equations (9) and (10), as

B(t) = B0|J0(ωγt)|,� (11)

where B0 =
πµ2

12

3ε0�2  is the original B coecient obtained by Dirac [3, 7]. The B coecient 

would be unaltered if we alter the initial conditions, by taking c1(0)  =  1 and c2(0)  =  0, as 
we always have R1→2(t) = −R2→1(t). We show the time-dependence in the B coecient 
in figure 2. We are not able to compare this result with the existing experimental data 
because they have not been obtained by any direct measurement (as far as we know); 
rather, experimentalists apply time-dependent perturbation theory for the indirect 
measurement of the B coecient [33].

Figure 2.  Solid line follows equation (11), and represents the Rabi model result 

for Einstein’s B coecient. Dotted line (B(t)/B0 ≡
√
2/πωγt) represents envelope 

for the oscillations in the B coecient. Inset follows equation (23) and represents 
the B coecient for the same system interacting with a monochromatic wave of a 
single polarization.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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2.3. Eect of quantum fluctuations and thermal fluctuations in a resonant cavity

The vacuum Rabi flopping of the two-level system (87Rb), however, was observed by 
Brune et al in a high-Q open resonant (Fabry–Perot) cavity at a very low temperature 
[12]. Two circular mirrors of diameter 50 mm each were kept nearly 27 mm apart in the 
cavity set-up so that the 9th harmonic among all the modes of the standing waves in 
the cavity-geometry corresponds to the Bohr frequency (ω0 = 2π × 51.099× 109 Hz) for 
the circular Rydberg states |n = 50〉 and |n = 51〉 of the 87Rb atom [12]. Their obser-
vation of the vacuum Rabi flopping among these two states was phenomenologically 
well explained by Wilczewski and Czachor by extending the Jaynes–Cummings theory 
for the resonant cavity [34]. Wilczewski and Czachor considered a number of fitting 
parameters and fitting functions (e.g. those in the transition probabilities expressed in 
equation (29) or (30) or (31) in their paper) for explaining the vacuum Rabi flopping by 
considering the rates of the stimulated transitions to be time-independent. In contrast, 
no fitting functions and fitting parameters have been used in deriving our free-space 
transition probability (equation (8)). In what follows, we are now going to derive an 
expression for the cavity-space transition probability in a similar way by further con-
sidering natural decay and the Ohmic losses from the high-Q cavity.

Losses of the total stored average electromagnetic field energy (U(t)) from the 
resonant cavity (ω → ω0) at the constant rate ω0/Q for unit U(t) results the time-
dependence: U(t) = U(0) e−ω0t/Q. This leads to the Lorentzian broadening of the aver-

age energy density per unit (angular) frequency interval in the frequency domain, as 

uc(ω) = u(ω0)
(ω0/Q)2

4(ω−ω0)2+(ω0/Q)2
 where Q is the mode quality factor of the resonant cavity 

[35]. A form similar to the Lorentzian distribution also appears for the spontaneous 

emission from the upper level to the lower one with the natural decay rate γ = A 

as ud(ω) = u(ω0)
A2

4(ω−ω0)2+A2 [4]. These two line-shapes (uc(ω) and ud(ω)) can be con-

volved—neglecting Doppler, thermal, and other type of broadening at a low temper
ature and low number density of atoms/molecules—to write [36]

u′(ω) = u(ω0)
Γ2

4(ω − ω0)2 + Γ2
,� (12)

where Γ = A+ ω0/Q represents the net decay rate for the two-level system in the 
resonant cavity. Equation (4) would result the cavity-space stimulated emission prob-
ability if u(ω) is replaced by u′(ω) of equation (12). Thus, we recast equation (4) with 
the Lorentzian distribution—in the same manner as we have reached equation (8)—as

P2→1(t) �
2ωγ(1 + 2ωγ/Γ)

π

×
∫ ∞

ωγ

[
Γ2

4(Ω2 − ω2
γ) + Γ2

]
sin2(Ωt/2)

Ω
√

Ω2 − ω2
γ

dΩ
�

(13)

where the pre-factor takes care of the normalization of the transition probability, the 
factor 2 in the numerator takes care of the integration in the domain (−∞,−ωγ], and 
the Rabi flopping frequency is now modified to

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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ωγ =
2πµ2

12u(ω0)

3ε0�2
1

1 + 2ωγ/Γ
.� (14)

Here no contributions of the thermal photons (i.e. uT (ω0) = 0 and 

u(ω0) = uq(ω0) =
�ω3

0

2π2c3
) correspond to the vacuum Rabi flopping (with frequency 

ωγ = [−1 +
√
1 + 4

µ2
12ω

3
0

3πc3ε0�
2Q

ω0+AQ
]/ 4Q

ω0+AQ
) at the resonance, and further sending the net 

decay rate (Γ = A+ ω0/Q) to ∞ (i.e. sending either Q to 0 or A to ∞) corresponds to 

the vacuum Rabi flopping (with frequency ωγ =
µ2
12ω

3
0

3πc3ε0�) in free space. The form of the 

later exactly matches with that of the result of the Jaynes–Cummings theory obtained 
even for a single cavity mode [32]. It is easy to conclude from equations (13) and (14) 
that, the transition probability takes on the expression P2→1(t) = sin2(ωγt/2) for A → 0 
and Q → ∞ (or �ω → 0). The vacuum Rabi flopping frequency vanishes in this limit, 
as the two-level system does not find even a single mode to couple with in the loss-less 
resonant cavity without any natural decays.

We represent the rhs of equation (13) by the dashed line in figure 1 for the reported 
experimental value of Q-factor (Q = 7× 107) and the calculated value of the A coecient 
(A = 0.553 6116× 106 s−1)15 for the spontaneous emission from the circular Rydberg  
state |n = 51〉 to |n = 50〉 of 87Rb atoms in the open resonant cavity of geometrical 
volume V = π(50/2)2 × 27 mm3 [12]. Substantial deviation of the solid line (equa-
tion (8) for the stimulated emission) from the dashed one or the experimental data 
mainly comes from the natural decay in the open resonant cavity. Natural decay is 
usually enhanced in the high-Q (Q � 1) resonant cavity with respect to that in free 

space by the Purcell factor, 3(2πc/ω0)3Q
4π2V ′  [37], where V ′ is the mode-volume of the cavity. 

Here V ′ ideally goes to ∞ for the open cavity. Such an enhancement eect (called the 
Purcell eect) is not applicable directly to the system and the cavity of our interest, 
as although the Q-factor (Q = 7× 107) is high, the ratio of the free-space decay rate 
A = 0.553 6116× 106/s to the Bohr frequency (ω0 = 2π × 51.099× 109 Hz) is not neg-
ligible enough to contain a single bound mode of the electromagnetic field in the open 
resonant cavity.

However, we anticipate replacement of the Q-factor by Q/(1 + AQ/ω0)
16 in the 

Purcell factor to capture the Purcell eect substantially in such a cavity with fur-
ther replacement of the mode-volume by an eective finite mode-volume (Veff ). The 
eective mode-volume would considerably increase the value of the A coecient from 
A = 0.553 6116× 106/s to A = 1× 106/s for fitting equation (13) with the experimental 
data [12] for the eective mode-volume 300.7 times the geometrical volume of the cav-
ity. We show the fitting of equation (13) by the dotted line in figure 1 for the enhanced 
decay in the open resonant cavity. Natural decay from the lower level (|n = 50〉) is 
ignored in our analysis as radiative lifetime (30 ms [12]) is quite longer than the time 
scale involved in figure 1. However, agreement of our result (equation (13); dashed line, 
figure 1) with the experimental data [12] gives us enough confidence to go ahead with 

15 Equation (14) has been used to find out µ12, which has been used in determining the value of A =
ω3
0µ

2
12

3πε0�c3  [4, 7] in 

free space for the relevant parameters used in the experiment in the open resonant cavity [12].
16 Net quality factor corresponding to the net decay rate (Γ = A+ ω0/Q) would be Q′ such that Γ = ω0/Q

′. Thus, 
we have Q′ = Q/(1 + AQ/ω0).
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the generalized semiclassical model to show the time-dependence in the rate of stimu-
lated transitions and its natural consequences for nonequilibrium statistical mechan-
ics of a two-level system exposed to the thermal radiation field in free space at any 
temperature.

While the rate of stimulated emission can be found to be primarily controlled by the 

convolved line-shape in equation (12) as dP2→1(t)
dt

∝ e−Γt in short time scale (ωγt � 1), 
the rate would be found to be primarily controlled, as shown in the next section, by 
the oscillatory part in equation  (13) in the long time scale (ωγt � 1). Thus the line 
shapes, even if heuristically structured, have no major roles in the long time behaviour 
of the population dynamics which would be specially important if we analyse the situ-
ation near the thermodynamic equilibrium of the system in the weak coupling regime 
(ωγ/A � 1).

3. Einstein’s rate equations and their solutions for a two-level system in thermal 
radiation field in free space

It is to be noted that ωγ , however small, can greatly influence the time-evolution of the 
statistical mechanical occupation probabilities P1(t) and P2(t) of the states |ψ1〉 and |ψ2〉 
respectively even for the case of thermal radiation field. Time-evolution of the occupa-
tion probabilities are to be determined from Einstein’s rate (master) equations [1, 7, 27] 
which are now revised with the time-dependent stimulated transition probabilities, as:

dP2

dt
= −AP2(t)− |R2→1(t)|P2(t) + |R1→2(t)|P1(t)� (15)

and

dP1

dt
= AP2(t) + |R2→1(t)|P2(t)− |R1→2(t)|P1(t)� (16)

where A =
ω3
0µ

2
12

3πε0�c3 � 0 [4, 7] is the original (time-independent) Einstein’s A coecient 

which represents the rate of spontaneous emission from the upper level to the lower level 
due to the quantum (vacuum) fluctuations. The time-evolution of these probabilities, 
because of the constraint P1(t) + P2(t) = 1, can be solely determined from any one of the 
above two equations, say equation (15), with P1(t) replaced by 1  −  P2(t). Thus, we recast 
equation (15) with the time-dependent rate of absorption, R(t) = R1→2(t) = −R2→1(t), 
as

dP2

dt
= |R(t)| − (A+ 2|R(t)|)P2(t).� (17)

The rate of stimulated transitions was found in [3] to be time-independent: 
|R(t)| = |R(0)| = B12u(ω0) = B21u(ω0) � 0, within the first order time-dependent 
perturbation theory of quantum mechanics with u(ω0) = uT (ω0) [7]. Weisskopf and 
Wigner determined the rate coecient A within the domain of quantum field theory 
[3, 4]. Equation (17), in such a case, has a physical solution with the initial condition: 
P2(0)  =  0, as [1, 7]

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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P2(t) =
|R(0)|

A+ 2|R(0)|
[1− e−[A+2|R(0)|]t]� (18)

which is often equated with the (time-independent) Boltzmann probability, 

P2(∞) = e−E2/kBT

e−E1/kBT+ e−E2/kBT , in thermodynamic equilibrium for t → ∞ [1, 7]. Occupation 

probability of the lower level, on the other hand, can be given by P1(t) = 1− P2(t). 

Figure 3.  Occupation probabilities for the 3s 1
2
 and 3p 1

2
 states of a 23Na atom in the 

thermal radiation field with the condition that the system initially was in the lower 
level. Upper and lower solid lines follow equations (19) and (21) respectively for the 
parameters as mentioned in the figure corresponding to µ12 = 2.5ea0 = 2.1196× 10−29 
cm [38]. Lower and upper dotted lines represent Einstein probabilities for the same 
system, and follow equation (18) and its follow-up respectively.

Figure 4.  Lower and upper solid lines represent occupation probabilities, and 
follow equation  (24) and its follow-up for the same parameters of the two-level 
system at the resonance in the monochromatic radiation field as mentioned in 
figure 3. Adjacent dotted lines represent corresponding Einstein probabilities, and 
follow equation (18) and its follow-up respectively.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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Equation (18) is Einstein’s semiclassical result for the occupation probability. Let us 
call the time-dependent probabilities, P1(t) and P2(t), which follow from equation (18), 
as Einstein probabilities. Dotted lines in figures 3 and 4 represent the Einstein prob-
abilities. Our aim for the rest of the paper is to modify the Einstein probabilities due to 
the presence of the Rabi flopping in the same system within the generalized semiclas-
sical description.

We solve equation (17) with the initial condition, P2(0)  =  0, for R(t) in equation (10), 
as

P2(t) = |R(0)| e−At−2|R(0)|fωγ (t)

×
∫ t

0

eAτ+2|R(0)|fωγ (τ)|J0(ωγτ)|dτ
�

(19)

where fωγ (t) is given by

fωγ (t) = 1F2

(
{1
2
}, {1, 3

2
},−

ω2
γt

2

4

)[
2U(J0(ωγt))− 1

]
t

−
�ωγt�∑
j=1

[
(−1) jγ0,j1F2

(
{1
2
}, {1, 3

2
},−

γ2
0,j

4

)

× U(ωγt− γ0,j)

]
2

ωγ

�

(20)

where γ0,j is the j th zero of J0 and U is the unit step function. Now, we get the occupa-
tion probability of the lower level from equation (19), as

P1(t) = 1− P2(t).� (21)
Equations (19) and (21) are our generalized semiclassical results for the occupation 
probabilities of the two states of the two-level system in the thermal radiation field. 
We plot these probabilities in figure 3 for the relevant values of the parameters for the 

3s 1
2
 and 3p 1

2
 states of a 23Na atom. For this plot, we have purposefully considered the 

temperature to be very high (T = 5× 104 K) so that both the rates of spontaneous ones 
(A/ωγ = 0.2393) and stimulated ones (|R(0)|/ωγ = 1/2) are comparable to the Rabi 
flopping frequency to show oscillations in the occupation probabilities. A 23Na atom 
is not expected to be ionized even in such a high temperature, as its first ionization 
potential is 5.1 eV  =  59 183 kBK. While the occupation probability (P2(t)) of the upper 

level asymptotically (i.e. for ωγt � 1) vanishes as |R(0)|
A

√
2

πωγt
, the occupation probabil-

ity (P1(t)) of the lower level asymptotically reaches unity as 1− |R(0)|
A

√
2

πωγt
. It is clear 

from figure 3 that the occupation probabilities of the two-level system are significantly 
deviating from the Einstein probabilities (as well as the Boltzmann probabilities) as 
time evolves, and the system goes away from thermodynamic equilibrium as a conse-
quence of the Rabi flopping with non-zero frequency. Our results, of course, match with 
Einstein probabilities if Rabi flopping is turned o, i.e. if ωγ → 0.

https://dx.doi.org/10.1088/1742-5468/2019/00/000000
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4. The case of monochromatic radiation field

For the case of a monochromatic light (having a single polarization direction perpend

icular to a fixed direction of propagation and time averaged17 energy density u = 1
2
ε0E

2
0) 

incident on the two-level system, we need not average over the directions of polariza-
tions as done in equation (4), and can recast equation (10) as

R2→1(t) = −R1→2(t) =
µ2
12u

ε0�2
sin(Ωt)

Ω
.� (22)

Here, we are not considering the eect of vacuum fluctuations so as to restrict our 
considerations only to monochromatic field. Of course, it needs to be included if one 
wants to explain the experimental observations dealing with injected laser light [12, 
13]. Now, if we define the B coecient (B(t) = |R1→2(t)|/[u/Ω] = |R2→1(t)|/[u/Ω]) for 
a monochromatic wave, as the rate of the stimulated transitions (emission and absorp-
tion) per unit time average energy density per unit generalized Rabi flopping frequency, 
then it would be

B(t) =
3B0

π
| sin(Ωt)|.� (23)

We show the time-dependence in the B coecient in figure 2 (inset).
On the other hand, for the case of the monochromatic wave, we solve equation (17) 

with the initial condition P2(0)  =  0 for R(t) in equation (22), as

P2(t) = |R(0)| e−At−2|R(0)|gωγ (t)

×
∫ t

0

eAτ+2|R(0)|gωγ (τ)| sin(ωγτ)|dτ
�

(24)

where gωγ (t) is given by

gωγ (t) =
1− cos(ωγt)

ωγ

[2U(sin(ωγt))− 1]− 2

ωγ

×
�ωγt�∑
j=1

(−1) j[1− cos( jπ)]U(ωγt− jπ).
�

(25)

For this case too, we have P1(t) = 1− P2(t). The occupation probabilities are quantum 
mechanical (not statistical mechanical) for the study of the single frequency in the mono-
chromatic wave. We plot these quantum mechanical probabilities in figure 4 for the 
relevant values of the parameters for the same system. It is clear from this figure that, 
the quantum mechanical probabilities oscillate near the corresponding Einstein prob-
abilities without decay of their amplitudes. Thus, the two-level system (atom/molecule) 
neither in thermal radiation field nor in the monochromatic radiation field equilibrate 
with the surroundings as long as the Rabi flopping frequency is non-zero.

17 Here, time averaging is taken in the very short time scale of 1/ω0.
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5. Non-equilibrium statistical mechanical implications

Although the two-level system in the rapidly oscillating electromagnetic field makes 
transitions (if frequency of the oscillations is close to the Bohr frequency of the two 
levels), the transitions occur over a much larger time scale (t ∼ 1/ωγ). Thus, it is not 
exactly known when the system would make a transition. Instead, we know the prob-
ability of the transition, and consequently, the occupancy of the two states becomes 
probabilistic. This loss of information can be quantified by the entropy production 
of the system. The entropy production of the two-level system either in the thermal 
radiation field or in the monochromatic radiation field can be written, by following the 
Pauli–von Neumann formalism of nonequilibrium statistical mechanics, as [26, 27, 39]

S(t) = −kB[P1(t) ln(P1(t)) + P2(t) ln(P2(t))].
� (26)

We illustrate the time-dependence of the entropy in figure 5 for both the cases; the result 

corresponding to the monochromatic case is in the inset. Pauli proved the quantum 

mechanical H-theorem (i.e. dS(t)
dt

� 0) even for a single atom/molecule (say, a two-level 
system) in the radiation field by introducing the Pauli master equation (which is analo-
gous to Einstein’s rate equation for A  =  0) [26, 40]. He considered absolute values of 
the rates of stimulated transitions to be time-independent for this purpose [26].

However, the two-level system in thermal (or monochromatic) radiation field does 
not fully evolve spontaneously. The stimulated transitions have control over the evo
lution of the system specially if the rates of the stimulated transitions are time-depen-
dent. Moreover, the spontaneous emission favour the lower level, as clear from figure 3, 
once control of the thermal (broad band) radiation to the stimulated transitions is 
damped (as ∼ 1/

√
ωγt) after suciently long time (ωγt � 1). Such a damping of the 

Rabi flopping in free space is caused due to the finite width (∼ ωγ) of the frequency 
distribution around the resonance as all the frequency components of the thermal 

Figure 5.  Entropy production for the 3s 1
2
 and 3p 1

2
 states of a 23Na atom in the 

thermal radiation field. Plots follow from equation  (26) for the parameters as 
mentioned in figure  3. Dotted lines represent the same obtained from Einstein 
probabilities (equation (18) and its follow-up).
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radiation field incoherently contribute to the resultant Rabi flopping. Thus, a nonzero 
finite value of the Rabi flopping frequency causes extraordinary favour on top of the 
spontaneous transitions to the lower level after suciently long time, and consequently, 
the entropy (S(t)) of the two-level system, instead of always increasing with time, 

asymptotically (i.e. for ωγt � 1) vanishes as kB
|R(0)|
A

√
2

πωγt

[
1− ln

[ |R(0)|
A

√
2

πωγt

]]
 violat-

ing the second law of thermodynamics. This feature is apparent in figure 5 where we 

also have plotted the entropy production based on the Einstein probabilities. Such a 
damping, however, is not possible for the monochromatic wave, as clear from figure 4, 
as there is no frequency distribution of the incident waves which causes damping to 
the Rabi flopping; thus, the Rabi flopping, as clear in the inset of figure 5, causes oscil-
lations of the entropy near the non-decreasing semiclassical result (having the satur
ation value kB ln(2)). Thus, the second law of thermodynamics is violated for this case 
too. All the oscillations or the damping are caused for nonzero finite value of the Rabi 
flopping frequency. Thus, if ωγ → 0, we again get back Einstein’s semiclassical result 
and validate the second law of thermodynamics for a two-level system (atom/molecule) 
in the thermal/monochromatic radiation field.

A question naturally arises: whether there would be any change in the occupation 
probabilities if we take an alternative initial condition such that initially the two-level 
system (atom/molecule) is at the upper level (i.e. P1(0)  =  0, P2(0)  =  1) like that in equa-
tion (2). The Rabi flopping frequency would not certainly change under this alternation. 
However, some of the results would change, e.g. P2→1(t) would be changed to P1→2(t) 
and vice versa, R(t) would be changed to −R(t), an additional term e−At−2|R(0)|fωγ (t) 
would have to be added to the rhs of equation (19)18, etc. The two solid lines both in 
figures 3 and 4 would intersect once keeping their individual tails unaltered.

6. Discussion and conclusion

We have shown that the Rabi model result for Einstein’s B coecient depends on 
time and the Rabi flopping frequency for the two-level system (atom or molecule) in 
the thermal radiation field at an absolute temperature T. This result is accurate for 
fairly large Bohr frequency (ω0 � ωγ

19) and fairly higher temperature (kBT � �ωγ), 
and is significantly dierent from the perturbation result which is not reliable near the 
resonance in the Rabi flopping. Our analytical result regarding the B coecient is an 
invitation for the experimentalists to do direct measurement of the B coecient.

Although the limit ωγ → 0 retrieves the original B coecient, yet the time-depend
ence plays a significant role in the population dynamics. The oscillations in the B 
coecient, even for very small ωγ , drives the system away from the thermodynamic 
equilibrium at any finite temperature. This is at odds with the Einstein’s assumption 
about the thermodynamic equilibrium of an atom/molecule with the thermal radiation 
field [1]. The predicted equilibrium, however, can be ensured for the case ωγ → 0, i.e. 

18 An additional term e−At−2|R(0)|gωγ (t) would have to be added to the rhs of P2(t) in equation (24).
19 This is also a requirement for the rotating wave approximation, which is inbuilt in the Rabi model, to be valid.
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in absence of the Rabi flopping, as is expected. Nonzero finite value of the light-matter 
coupling (�ωγ) quasi-periodically drives the two-level system for the multi-frequency 
modes of the thermal radiation field. We have also obtained results for the same system 
in the monochromatic radiation field. The drive would be periodic for this case.

Individual contribution of each frequency component of the thermal radiation field 
when randomly added damp the Rabi flopping causing extraordinary favour to the 
lower level on top of the eect of the spontaneous emission. The second law of thermo-
dynamics is not applicable for a driven system. It should be noted in this regard that 
the consideration of the memory-less transitions, as dealt with by Fermi’s golden rule 
in the time-dependent perturbation theory, is an hypothesis equivalent to the molecu-
lar chaos hypothesis which is a necessary condition but not sucient for reaching 
equilibrium of a thermodynamically isolated system [40, 41]. The light-matter coupling 
(�ωγ) further needs to tend to zero for the system to be not driven by the radiation 
field, and in turn, to be thermodynamically isolated for observing non-decrease of its 
entropy as an application of the second law of thermodynamics.

Nonequilibrium quantum statistical mechanics is often modelled with the semi-
classical or the quantum master equations which to some extent are generalizations 
of Einstein’s rate equation, such as the Pauli master equation [26], the Boltzmann–
Uehling–Uhlenbeck equation or the quantum statistical Boltzmann equation [26, 40], 
the Gorini–Kossakowski–Sudarshan–Lindblad equation [21], the Bloch–Redfield mas-
ter equation  [17, 18], the Caldeira–Leggett master equation  [18, 42], the quantum 
Fokker–Planck equation  [43], the adiabatic/nonadiabatic master equation  [44], Van 
Hove master equation  [45], and the Nakajima–Zwanzig master equation  [19]. These 
equations are either of Markovian master equation or non-Markovian master equation20 
type irrespective of the strength of the system-bath (i.e. light-matter or matter-matter) 
coupling. None of these equations  can be derived fully from either the Schrodinger 
equation or the Liouville–von Neumann equation or even the Heisenberg equation of 
motion because the system can not be found in a pure state in the thermal radiation 
field. These equations  (so as Einstein’s rate equations) are arrived purely from phe-
nomenological point of view because (i) the bath is assumed to be not aected by the 
(much smaller) system, and (ii) the eects of the bath-variables are averaged out with 
heuristically structured spectral line-shapes of the bath or in turn temporal correlations 
in the system within various approximations such as the Markov approximation, the 
Born approximation, etc [46]. The stimulated rate coecients in the master equations, 
in general, are time-dependent within the finite time interval after commencement of 
the light-matter interactions. However, the fundamental processes remain phenomeno-
logically same in both the weak coupling regime and the strong coupling regime even 
if the (stimulated) rate coecients are time-dependent (or time-independent) because 
the bare uncoupled bare states (|ψ1〉 and ψ2〉) and the energy eigenstates (ψ−〉 and |ψ+〉), 
which are dressed after light-matter interactions, belong to the same Hilbert space, 
and the stimulated transitions take place only between the uncoupled bare states not 
between the dressed states. Thus, we are generalizing Einstein’s rate equations  for 
the time-dependent coecients and applying to our problem, as the time-dependent 

20 Here only Van Hove and Nakajima–Zwanzigmaster equations are listed to be of non-Markovian type.
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coecients are not bringing any other (new) fundamental processes into the consid-
eration. Application of the generalized rate equations  would be a useful model for 
studying nonequilibrium statistical mechanics for both the weak and the strong light-
matter couplings. The generalized rate equations may be classified as a time-dependent 
semiclassical Markovian master equation as (i) the rates of the stimulated transitions 
are essentially derived from a semi-classical (Rabi) model and are found to be time-
dependent, and (ii) all the occupation probabilities (P1 and P2) in the generalized rate 
equations are employed at the same time with no memory kernels in the equations.

While the Rabi flopping usually is studied for strong light-matter interactions 
(ωγ/A � 1), Einstein’s rate equations are usually applied for weak light-matter inter-
actions (ωγ/A � 1). Incidentally, the Rabi model, which gives exact results in both 
the weak coupling regime and the strong coupling regime, is not phenomenologically 
dierent from the fundamental processes’ point of view. We have been interested in 
bringing the Rabi flopping and the rate equation together in a single footing for this 
reason. We have been specially interested in the intermediate regime (0 � ωγ/A � 1) 
where the partial oscillations, as shown in figure (3) for ωγ/A = 4.1789, are expected to 
be damped for the broadband excitations [25]. These partial oscillations, of course, are 
not periodic21 for the nonzero width (�ω) of the frequency band around the resonance. 
The partial oscillations as shown in figure (4), however, would neither be damped nor 
be aperiodic for monochromatic wave, i.e. for extremely narrow band (�ω → 0).

Roles of the fundamental processes (the spontaneous emission, the stimulated emis-
sion, and the stimulated absorption) in the evolution of the entropy of a system are 
exemplified by considering the Rabi model as a toy model for the two-level system in 
the thermal radiation field. The quantum statistical Boltzmann (master) equation is 
usually employed for time-independent stimulated transition rates. Our time-depen-
dent B coecient opens a path to go beyond the Pauli–von Neumann formalism of 
the non-equilibrium statistical mechanics involving the quantum statistical Boltzmann 
equation [26, 39]. We are, however, not shaking the usual notion of the thermal equi-
librium between atoms (or molecules) and black body radiation and Einstein’s conclu-
sions, as they are all correct for memory-less transitions under no (external) drives. We 
are bringing quasi-periodic drive in the calculation of the B coecient in terms of the 
Rabi flopping of the two-level system in the thermal radiation field. No system equili-
brates under any (external) drives.

Before concluding the article, we take this opportunity to point out that, our work 
opens avenues of many interesting research possibilities: (i) how to calculate entropy 
productions of the laser trapped ultra-cold Bose and Fermi systems by generalizing the 
toy model, (ii) how to generalize our results for degenerate states of a two-level system, 
(iii) how to further generalize our generalized semiclassical results, within the purview 
of the quantum Rabi model (while considering the cavity modes [32, 34]) which has 
attracted both the experimentalists [12, 13, 47] and the theoreticians [34, 48–50] alike 
in the last few decades, and (iii) how to generalize the results for the quasi-continuous 
splitting of the two levels due to the vibrations in a coupled chain of identical two-level 
systems.

21 This aperiodicity can be linked to the non-regular intervals of the zeros of the Bessel function (J0) in  
equation (9).
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