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Abstract.  We investigate a system of interacting bosons with random intersite 
tunnelling amplitudes. We describe these by introducing Gaussian-distributed 
hopping integrals into the standard Bose–Hubbard model. This system has 
been recently shown to exhibit a quantum phase transition to a glassy state. 
The latter is characterized by a quenched disorder of boson wave-function 
phases. In this aspect, the system resembles quantum spin-glass systems that 
attracted much attention. By exploiting this analogy, we employ the well-
established methodology originated by Sherrington and Kirkpatrick, which 
bases on the replica trick and the Trotter–Suzuki expansion. This treatment 
transforms the original quantum problem into an eective classical one with 
an additional time-like dimension. Here, we focus on autocorrelation functions 
of canonical variables of the eective system in the time-like domain. Deep 
in the disordered phase, we find a highly dynamical nature of correlations in 
agreement with the expected short memory of the system. This behaviour 
weakens while approaching and passing the phase boundary, where in the glassy 
phase asymptotically non-vanishing correlations are encountered. Thus, the 
state features infinite memory, which is consistent with the quenched nature of 
glassy disorder with random but frozen boson phases.
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1.  Introduction

The interplay of disorder and interactions leads to the emergence of interesting physical 
phenomena in many-body systems. In particular, quantum eects play an important 
role in such systems, thus making the phase transition significantly dierent than it is 
in the classical case [1]. The rise of quantum simulation techniques [2–4] promises rapid 
advancement in studies of this kind of systems, as it allows for experimental explora-
tion of arbitrarily formed systems.

Most of the studies concerning disordered bosonic systems was made for the diago-
nal case [5–7], i.e. when the randomized part of the system is the diagonal matrix ele-
ment, so in the potential term. It was found [8] that in the presence of such a diagonal 
disorder, the usual phase transition between superfluid and Mott insulator phases fades, 
as a new Bose Glass phase emerges between those two. Dierently, the o-diagonal 
case, i.e. the one with randomized tunneling term, is far less explored. Existing works 
are mostly limited to one-dimensional models [9–11]. As a consequence, it is not yet 
established whether the direct superfluid to Mott insulator transition is possible in such 
a setting.

The o-diagonal disorder is a characteristic feature of spin-glass systems. Thus, a 
bosonic system carrying this ingredient is expected to share at least part of the physical 
properties with spin glasses. An important dierence between diagonal and o-diagonal 
cases lays in the presence of frustration in the latter [12]. Frustrated systems character-
ize with multiple degenerate ground states, separated by significantly high potential-
energy walls [13]. Thus, at low temperature, the system stays in the vicinity of the initial 
state in the phase space, and it may never reach the global energy minimum. However, 
in quantum-mechanical systems this picture changes. This is because quantum eects 
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can result in broadening of the accessible part of the phase space, as they enable tun-
nelling between the states even if they are separated by a potential energy barrier [14].

In this paper, we study a system of bosons with quenched o-diagonal disorder. In 
our previous work [15], we have found the phase transition and characterized the two 
phases as disordered and glassy. Here, we focus on the dynamic self-interactions, i.e. 
autocorrelations of canonical variables, and from their behaviour we achieve a better 
understanding of the time correlations in the system. This allows us to establish that 
deep in the disordered phase the system is characterized by short memory, while the 
phase classified as the glassy one corresponds to the quenched disorder. The latter 
is reflected in asymptotically non-vanishing correlations that may be understood as 
infinite memory of the system.

2. Methods

2.1. Model

We describe the system under study with the Bose–Hubbard Hamiltonian [8]

H = −
∑
i<j

Jij

(
a†iaj + a†jai

)
+

U

2

∑
i

n̂i (n̂i − 1)− µ
∑
i

n̂i,� (1)

where ai and a†i are respectively the annihilation and creation operators for a boson 
at the site i, while n̂i ≡ a†iai is the particle number operator. The first term of the 

Hamiltonian describes the random hopping (tunnelling) between each pair of sites, 
where the amplitudes Jij are identically distributed independent Gaussian random vari-
ables with zero mean and the standard deviation equal to J/

√
N . The second and third 

terms are the standard Bose–Hubbard terms that describe the repulsive on-site inter-
action (i.e. the energetic penalty for a double occupation) and the chemical potential, 
respectively. Since the interactions in the considered model are of infinite range, the 
problem of fluctuations does not arise. On the contrary, fluctuations are an issue in 
short-range models, however those were found to be very hard to solve in the case of 
spin glasses, hence we turn into the infinite-range case.

We are about to find the critical lines, defined via the Edwards–Anderson order 
parameter [16]

QEA =
1

N

∑
i

〈
|〈ai〉st|

2〉
J
,� (2)

where 〈· · · 〉J ≡
∏

i<j

∫∞
−∞ dJij · · · exp[−J2

ij/(2J
2)] is the average over the distributions 

of Jij and 〈· · · 〉st ≡ Tr · · · exp(−βĤ)/Z is the statistical average, with Z = Tr exp(−βĤ) 

being the partition function. However, to make the undertaken derivation convenient 
and feasible, we need first to write the Hamiltonian in a more suitable basis. For 
this, we choose the basis of the quasi-momentum P̂i = i(a†i − ai)/

√
2 and quasi-position 

Q̂i = (a†i + ai)/
√
2 operators, which are defined in the analogy to the standard solution 
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to the quantum harmonic oscillator problem. Upon this, the Hamiltonian takes the 
form

H = −
∑
i<j

Jij

(
P̂iP̂j + Q̂iQ̂j

)
+
∑
i

(
Ũ n̂2

i − µ̃ n̂i

)
,

� (3)

where we have introduced the reduced variables µ̃ = µ+ U/2 and Ũ = U/2.

2.2. Replica trick and Trotter–Suzuki expansion

We intend to calculate the free energy of the considered system and minimize it. We 
start by writing the free energy and expanding it using the replica trick [17],

F =
1

β
lnZ = − lim

n→0

1

βn
(〈Zn〉J − 1) ,� (4)

where

Zn = Tr exp

(
−β

n∑
α=1

Hα

)
,� (5)

and β = 1/kBT . In the last expression, we replicated the Hamiltonian into n copies, 
each with the same realization of disorder. Next, we split the replicated Hamiltonian 
into three parts

Hrepl =
∑
α

Hα = HP +HQ +Hn,� (6)

where

HP = −
∑
α

∑
i<j

JijP̂iαP̂jα,

HQ = −
∑
α

∑
i<j

JijQ̂iαQ̂jα,

Hn = Ũ
∑
iα

n̂2
iα − µ̃

∑
iα

n̂iα.

� (7)

These terms do not commute, so we apply the Trotter–Suzuki formula [18] to convert 
the exponent of the full Hamiltonian into a product of exponents of each of the parts

exp (−βHrepl) �
[
exp

(
− β

M
HP

)
exp

(
− β

M
HQ

)
exp

(
− β

M
Hn

)]M
,� (8)

which converges with rising M and is exact in the limit of M → ∞. In the above, 
between each pair of consecutive exponents, we insert a summation over a complete set 

of eigenvectors of either P̂  or Q̂, such that the matrix elements of the first two parts of 
the Hamiltonian can be calculated. The resulting expression reads
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Zn =Trp,q

M∏
k=1

exp

[
β

M

∑
α

∑
i<j

Jij

(
p
(k)
iα p

(k)
jα + q

(k)
iα q

(k)
jα

)]

×
〈
p(k)

∣∣q(k)〉
〈
q(k)

∣∣∣∣ exp
(
−βHn

M

) ∣∣∣∣p(k+1)

〉
,

�

(9)

where the trace runs over all configurations of {p(k)iα ; q
(k)
iα }, i.e.

Trp,q(·) ≡
∑

p
(1)
11

. . .
∑

p
(M)
Nn

∑

q
(1)
11

. . .
∑

q
(M)
Nn

(·),
� (10)

and we have introduced product states |p(k)〉 =
⊗

i,α |p
(k)
iα 〉, while variables p

(k)
iα  are the 

eigenvalues of the operator P̂iα, i.e. P̂iα|p(k)iα 〉 = p
(k)
iα |p(k)iα 〉, and q

(k)
iα  are the eigenvalues 

of Q̂iα. Dierent Jijs may be now treated separately and therefore we can perform the 

averaging over Gaussian distributions, which results in the following expression

〈Zn〉 = TrpqMp,q

∏
i<j

exp


 J2β2

2M2N

(∑
kα

(
p
(k)
iα p

(k)
jα + q

(k)
iα q

(k)
jα

))2

 ,� (11)

where Mpq is a product of matrix elements

Mp,q =
∏
i

M(i)
p,q =

∏
i,α

∏
k

〈
p
(k)
iα

∣∣∣q(k)iα

〉〈
q
(k)
iα

∣∣∣∣ exp
(
−βHn

M

) ∣∣∣∣p(k+1)
iα

〉
� (12)

that will not be analytically handled in this derivation.
At this point, the expression for 〈Zn〉 becomes classical. The only reminiscence of 

the quantum nature of the system is implicitly present in Mpq. However, we can treat 

it as an unknown function of variables p
(k)
iα , p

(k)
iα , thus eectively making it classical. 

This means that we have mapped a quantum-mechanical problem onto a classical one, 
but with an additional time-like dimension.

2.3. Self-consistent solution

We apply the Hubbard–Stratonovich transformation to the terms containing four vari-
ables and two sites, which results in reducing the problem to just a single site and 

introduction of three sets of order parameters labelled λP
kαk′α′, λ

Q
kαk′α′, and λPQ

kαk′α′:

〈Zn〉 = TrpqMp,q

∏
kαk′α′

exp

[
− J2β2

4M2N

∑
i

(
( p

(k)
iα )2 + (q

(k)
iα )2

)(
( p

(k′)
iα′ )

2 + (q
(k′)
iα′ )

2
)]

×

[√
N

π

∫
dλP

kαk′α′ exp

(
−N(λP

kαk′α′)2 +
λP
kαk′α′Jβ

M

∑
i

p
(k)
iα p

(k′)
iα′

)]

×

[√
N

π

∫
dλQ

kαk′α′ exp

(
−N(λQ

kαk′α′)
2 +

λQ
kαk′α′Jβ

M

∑
i

q
(k)
iα q

(k′)
iα′

)]

×

[√
N

2π

∫
dλPQ

kαk′α′ exp

(
−N(λPQ

kαk′α′)2

2
+

λPQ
kαk′α′Jβ

M

∑
i

p
(k)
iα q

(k′)
iα′

)]

https://doi.org/10.1088/1742-5468/ab633b
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∝ Trpq

∫ ∫
. . .

∫ ( ∏
kαk′α′

dλP
kαk′α′dλ

Q
kαk′α′dλ

PQ
kαk′α′

)

×

{ ∏
kαk′α′

exp

[
−N(λP

kαk′α′)2 −N(λP
kαk′α′)2 −

N(λPQ
kαk′α′)2

2

]}

×
∏
i

M(i)
p,q

{ ∏
kαk′α′

exp

[
− J2β2

4M2N

(
( p

(k)
iα )2 + (q

(k)
iα )2

)(
( p

(k′)
iα′ )

2 + (q
(k′)
iα′ )

2
)]

× exp

[
λP
kαk′α′Jβ

M
p
(k)
iα p

(k′)
iα′ +

λQ
kαk′α′Jβ

M
q
(k)
iα q

(k′)
iα′ +

λPQ
kαk′α′Jβ

M
p
(k)
iα q

(k′)
iα′

]}
.

�

(13)

After carrying out the summation over i, we can rewrite the above expression in the 
form

〈Zn〉 ∝
∫ ∫

. . .

∫ ( ∏
kαk′α′

dλP
kαk′α′dλ

Q
kαk′α′dλ

PQ
kαk′α′

)

× exp
[
−NF

(
{λP

kαk′α′λ
Q
kαk′α′ ,λ

PQ
kαk′α′}

)]
,

�

(14)

where we have defined the eective free energy

F =
∑

kαk′α′

[
(λP

kαk′α′)2 + (λQ
kαk′α′)

2 +
(λPQ

kαk′α′)2

2

]
− ln Trpq exp (−βHeff) ,� (15)

and the eective Hamiltonian

−βHeff =− 1

N

[∑
kα

Jβ

2M

(
( p(k)α )2 + (q(k)α )2

)
]2

+ lnMpq

+
Jβ

M

∑
kαk′α′

[
λP
kαk′α′p(k)α p

(k′)
α′ + λQ

kαk′α′q
(k)
α q

(k′)
α′ + λPQ

kαk′α′p
(k)
α q

(k′)
α′

]
.

� (16)

In the thermodynamic limit, the first term of this Hamiltonian vanishes, while the 
saddle-point method gives the minimum of 〈Zn〉 at ∂F/∂x = 0 for all x ∈ {λX

kαk′α′} 
(X = P ,Q,PQ), resulting in the following expressions for order parameters:

λP
kαk′α′ =

Jβ

2M

〈
p(k)α p

(k′)
α′

〉
eff
,

λQ
kαk′α′ =

Jβ

2M

〈
q(k)α q

(k′)
α′

〉
eff
,

λPQ
kαk′α′ =

Jβ

M

〈
p(k)α q

(k′)
α′

〉
eff
,

� (17)

where 〈· · · 〉eff are the thermodynamical averages taken with the Hamiltonian Heff and 
defined as

〈X〉eff =
TrpqX exp (−βHeff)

Trpq exp (−βHeff)
.� (18)

https://doi.org/10.1088/1742-5468/ab633b
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Note, that besides the explicit dependence of λX
kαk′α′ on p

(k)
α , and thus on the Trotter 

index k, there is also an implicit dependence via the averaging, as Heff is a function of 

{p(k)iα ; q
(k)
iα }, and that this dependence is not necessarily symmetric on swapping indices. 

In the limit of M → ∞, the discrete indices k transform into a continuous variable. 
Such a description has been used in systems that were possible to be fully investigated 
analytically [14]. Here, we are forced to resort to numerical solutions. Due to the sym-
metries in the Hamiltonian, we have〈

p(k)α p
(k′)
α′

〉
eff

=
〈
q(k)α q

(k′)
α′

〉
eff
,

〈
p(k)α q

(k′)
α′

〉
eff

= 0,� (19)

meaning there is just one unique set of variables λP
kαk′α′ = λQ

kαk′α′ ≡ λkαk′α′.

2.4. Dynamic self-interactions

These order-parameter variables introduced above are of two types with regard to the 
replica space:

λkαk′α′ = δαα′Rkk′ + (1− δαα′)Qαα′ .� (20)
In the above, the variables denoted by Qαα′, acting in two dierent replica subspaces 
(α �= α′), are static (not dependent on k) and related to the Edwards–Anderson order 
parameter (2)

QEA = lim
n→0

2

n(n− 1)

∑
α>α′

Qαα′ .� (21)

On the other hand, those acting in a common replica subspace (α = α′) are called 
dynamic self-interactions. They are denoted by Rkk′ and they depend on the absolute 
dierence of indices |k − k′| only. Since the Trotter index k has a character of a time 
axis, the self-interactions serve as a measure of the memory of the system.

After inserting the decomposition (20) into equations (15) and (16), the eective free 
energy and Hamiltonian now read respectively

F = 2n
∑
kk′

R2
kk′ + 2M2

∑
α�=α′

Q2
αα′ − ln Trpq exp (−βHeff)� (22)

and

−βHeff =
Jβ

M

∑
kαk′α′

[δαα′Rkk′ + (1− δαα′)Qαα′ ]
(
p(k)α p

(k′)
α′ + q(k)α q

(k′)
α′

)
+ lnMpq.

� (23)
We are working within the replica-symmetric case and put Qαα′ = 0. The replicas 
decouple now, and we can perform the summation over α as well as the limit of n → 0. 
The eective free energy and Hamiltonian take their final forms

F = 2
∑
kk′

R2
kk′ − ln Trpq exp (−βHeff)� (24)

and

https://doi.org/10.1088/1742-5468/ab633b
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−βHeff =
Jβ

M

∑
kk′

Rkk′ ( pkpk′ + qkqk′) + lnMpq� (25)

where we have moved k to the subscript for simplicity. The self-consistent equa-
tion reads now

Rkk′ =
Jβ

2M
〈pkpk′〉eff .� (26)

To obtain the critical line, we expand the free energy (22) to the second order in the 
spin-glass order parameter Qαα′, and following the Landau theory we arrive at the 
condition

∑
k

Rkk′ =
1

2
,� (27)

which corresponds to the point where the Edwards–Anderson order parameter QEA 

reveals the phase transition. The cases of 
∑

k Rkk′ <
1
2
 and 

∑
k Rkk′ >

1
2
 correspond to 

the disordered (QEA = 0) and the glassy (QEA �= 0) phase, respectively.

2.5. Numerical calculations

To obtain quantitative results, we solve the self-consistent equations (26) numerically. 

These contain a summation over full bases of the operators P̂  and Q̂, which are infinite 
and therefore cannot be numerically calculated. To circumvent this, we truncate the 
Hilbert space to contain only the states with up to two particles per site, making the 
trace finite. The probability of adding two particles via thermal excitation to a site 
initially containing n particles is given by

exp

[
U
2
n(n− 1)− µn

T
−

U
2
(n+ 2)(n+ 1)− µ(n+ 2)

T

]
= exp

(
2µ/U − (2n+ 1)

T/U

)
,� (28)

which becomes exp(−U/T ) for µ/U = n and lower for µ/U < n. At temperatures consid-
ered here, T/U ∈ {0.01, 0.05, 0.1}, these values are exp(−U/T ) = 3.7 · 10−44, 2.1 · 10−9, 
4.5 · 10−5, respectively. Therefore, we consider two-particle excitation extremely unlikely 
for µ/U � n � 1 and assume the physical properties of the system with µ/U � 1 to 
be correctly estimated within a description employing up to two particles per site. 
However, the number of terms in the summation is still as high as 9M, so it remains 
the main challenge of the numerical calculation and significantly limits the highest 
available M, as the Quantum Monte Carlo method is not available in this case due to 
a severe sign problem [19].

The self-consistent calculation is performed in the following manner. First, we fix 
the parameters M, µ/U , J/U and T/U and choose the initial values of Rkk′ (it is compu-
tationally beneficial to use the result of a previous computation in a series with varying 
parameter). Then, we keep replacing the values of Rkk′ with the result of the right-hand 
side of equation (26), in which the previous set of Rkk′ was used in the averaging. We 
stop the computation when the relative change in Rkk′ is below a given threshold. In 

https://doi.org/10.1088/1742-5468/ab633b
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order to find the critical line, we apply the binary search algorithm along the J/U axis 
while keeping the other parameters constant.

To handle the term Mpq, we precompute overlaps of the form 〈p|q〉 and matrix ele-

ments of the form 
〈
q
∣∣∣ exp

(
βµ̃
M
n̂− βŨ

M
n̂2
) ∣∣∣p

〉
 by exact diagonalization of the operators 

P̂ , Q̂ and exp
(

βµ̃
M
n̂− βŨ

M
n̂2
)
 in the truncated basis. This enables fast calculation of Mpq 

by looking up the values for each of the processed pairs p(k), q(k) (for the overlap) or 
q(k), p(k+1) (for the matrix element).

3. Results

First, we find the phase diagram of the system at three various temperatures, and 
we plot it in figure 1. The critical line is found in the space spanned by Hamiltonian 
parameters: chemical potential µ and standard deviation of the intersite interaction J 
normalized by U. Below the phase transition line, i.e. at lower values of J/U, we find 
a disordered phase, while above the line the glassy phase is present. We are working 
with a finite value of M  =  10, but based on comparison with the M  =  8 case as well as 
on our previous work [15], we expect that the T/U  =  0.05 and T/U  =  0.1 lines are close 
to the M → ∞ extrapolation, while the T/U  =  0.01 one is less accurate but remains 
a good approximation of the converged result. Therefore, we will present part of the 
results for all three temperature choices, but will focus only on the T/U  =  0.05 case for 
a more detailed study.

We cut the phase diagram along the vertical line at µ/U = 0.4 (marked in figure 1 
with a dotted line) and plot the corresponding dynamic self-interactions R|k−k′| in 
figure 2. To comply with the standard definition of the correlation function, we anal-

yse the normalized self-interactions R̃|k−k′| ≡ R|k−k′|/R0. The figure is split into three 
panels corresponding to chosen temperatures. Each line in the plots corresponds to a 
single value of J/U, with the colour and line style indicating in which phase the sys-
tem is for that value of J/U. Since we are working in the approximation with QEA = 0, 
we consider the results in the disordered phase valid, while in the glassy phase their 
reliability decreases with the distance from the phase transition. Even though we are 
not considering the glassy phase within the full description of the Edwards–Anderson 
order parameter, our handling should be sucient to probe the physical properties 
close to the critical line. From our calculations it can be seen that in the glassy phase 
the self-correlations saturate. This means that even for large time dierences there are 
correlations, so the system exhibits long-term memory. On the other hand, in the dis
ordered phase the correlations decline monotonically, meaning the system quickly loses 
the dependence on the initial state. This distinction becomes stronger with decreasing 

temperature. In the limit of M → ∞, the value of R̃M/2 becomes the infinite-time cor-
relation, and we will denote it by R̃∞. Working in finite M, we are using R̃M/2 as an 

approximation of this value.

Noting the monotonic nature of R̃|k−k′|, we consider the value R̃M/2 as contain-
ing nearly full information on the decay of correlations. Stated this, we plot a colour 
map of its values for M  =  10 in figure 3 as a function of the same variables (µ/U  and 
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the steepest deep in the disordered phase, while the correlation time increases when 
going towards the glassy phase or integer chemical-potential values. The latter can be 
explained by the fact, that at zero temperature the glassy phase is present all the way 
down to J/U  =  0 in the integer chemical-potential values, while at fractional values of 
µ/U  the glassy-phase threshold is finite [15].

We also choose to cut the T/U  =  0.05 phase diagram along J/U  =  0.04 and 
J/U  =  0.12 (as marked in figure 3 with the dotted lines) and plot the corresponding 
dynamical self-interactions versus µ/U  in figure 4. Here, the saturation around integer 
µ/U  that has been mentioned before is even more visible. We can also compare the two 
J/U choices in absolute terms: the zero-time self interactions are of the same order in 
both cases, and it is the long-time behavior that diers and makes it possible to distin-
guish the short- and long-memory nature of studied phases.

Figure 1.  The phase diagram of the system at three chosen temperatures and for 
two values of M (marked in the plot). Labels D and G stand for the disordered and 
the glassy phase, respectively.

Figure 2.  Normalized dynamic self-interactions R̃|k−k′| as a function of |k − k′| 
calculated along the vertical cut marked in figure 1 at three chosen temperature 
values (panels). The lines corresponding to J/U in the disordered phase are solid 
and drawn with a gradient of blue colours, while those corresponding to J/U in the 
glassy regime are dashed and drawn with a red hue. Note that the critical value of 
J/U varies between the panels. The data is drawn with lines for visibility.
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extrapolate the values of R̃M/2 to M → ∞ and plot the estimated R̃∞ as a function of 
J/U in figure 5 for a selection of temperatures near the earlier discussed T/U  =  0.05. 
The phase transition point varies between distinct values of T/U and M but in major-
ity of the cases it takes place in the shaded area. We find that in the disordered phase 
decreasing temperature results in weaker infinite-time correlations, while towards the 
glassy phase this dependence gets reversed. Note, that due to QEA = 0, the calculations 
become less and less accurate deeper in the glassy phase. The extrapolated values of 
R̃∞ origin from fitting the expected dependence of the form c+ a (b+M2) −1 [20] to the 

values of R̃M/2 in the range of M ∈ [4, 12]. We show examples of such fits in figure 6(a).
In the disordered phase, the dependence of R̃∞ on J/U turns out exponential, there-

fore we fit it and extract the J/U → 0 values. We plot them as a function of temperature 

Figure 3.  A heatmap showing values of R̃5 for the full considered range of µ/U  
and J/U, calculated at T/U  =  0.05 and for M  =  10. The solid line marks the phase 
transition.

Figure 4.  Normalized dynamic self-interactions R̃|k−k′| as a function of |k − k′| 
calculated along the two horizontal cuts marked in figure 3 and at T/U  =  0.05. 
Note the common z axis for both panels.
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in figure 6(b). We notice that R̃∞

∣∣∣
J/U→0

(T/U) has the form of c+ a exp(−bU/T ), with 

the variable c negligibly small. Thus, we conclude that R̃∞

∣∣∣
J/U→0

 vanishes at T/U → 0, 

meaning that there are no infinite-time correlations at T/U  =  0 and J/U  =  0, which is 
in line with the expectations for the disordered phase.

Figure 5.  Normalized infinite-time correlations R̃∞ as a function of J/U at selected 
temperatures. The points drawn with open symbols and connected by dotted lines 
correspond to less reliable fits. The shaded area marks the phase transition. The 
inset shows a logarithmic-scale zoom on the low J/U part of the same curves. The 
lines are to guide the eye only.

Figure 6.  (a) Exemplary fits of the M-dependence of the normalized infinite-time 
correlations R̃∞. Columns correspond to varying T/U, while rows present two 
distinct values of J/U. Data is presented with points, while the lines are fits. The 
lightened data points were not taken into account while fitting. The fit drawn with 
a dotted line (at T/U  =  0.04 and J/U  =  0.132) is an example of a one marked as 
less reliable in figure 5. (b) The J/U → 0 behaviour of the normalized infinite-time 
correlation R̃∞. Data is presented with points, while the fit is drawn with a line.
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4. Summary

We have studied dynamic self-interactions in a system of interacting bosons with 
o-diagonal disorder. Following the theoretical framework proven to be successful in 
spin glasses, we have found and characterized the phases. Studying their properties, 
we have established that deep in the disordered phase the correlations fade quickly. 
This behavior is most pronounced at low temperatures and for half-integer chemical 
potentials. Towards the glassy phase, the correlation time increases, and above the 
critical line self-interactions become asymptotically non-vanishing. This is in line with 
the expectation that contrarily to the disordered phase which loses the dependence on 
the initial state quickly, the glassy phase has long-term memory, which is one of the 
features making the glassy states interesting. The low-temperature phase is, however, 
not accurately described within the used approximation of QEA = 0. To study it thor-
oughly, one would need to allow QEA to become nonzero. Additionally, extending the 
analysis to the replica-symmetry broken case [21] might be needed as well, as has been 
the case in quantum spin-glass systems [22].
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