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Abstract
The time-changing of processes by inverse subordinators is widely studied 
in the literature as models of subdiffusion driven by sporadic trapping. We 
reveal that increments of such subdiffusion processes may exhibit asymptotic 
degeneracy depending on the underlying stochastic temporal progression. 
Various surprising aspects of time-changed processes are discussed in 
light of asymptotic degeneracy, including diffusive dynamics and optimal 
inference. We also motivate asymptotic degeneracy as an important criterion 
for determining appropriateness of such processes for modelling real-world 
phenomena.

Keywords: anomalous diffusion, degenerate increments, eventual rest,  
Fisher information, inverse subordinators
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1.  Introduction

Subdiffusion describes processes with mean squared displacement proportional to tα for 
α ∈ (0, 1). In the recent decades, there has been a growing interest in the literature towards 
subordinated processes as models of subdiffusion in various fields including statistical phys-
ics, biophysics, geophysics and finance. These processes are characterised by an outer process 
subjected to stochastic temporal progression via an inner inverse subordinator. Since subordi-
nators are pure jump processes, inverse subordinators have random periods of immobility. By 
subordinating the evolution of time through the inverse subordinator, these periods of immo-
bility are present in the resulting subdiffusion process. Thus, these processes are often used 
to model subdiffusive dynamics as a result of a trapping mechanism which causes particles 
to be sporadically trapped with independent and identically distributed waiting times. Some 
applications include the modelling of transport of solar magnetic flux elements [25], diffusion 
in the plasma membrane of living cells [26], various European interbank rates [10] and stock 
prices [11].
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The main aim of this paper is to show that time-changed processes may exhibit asymp-
totically degenerate increments depending on the inner process. Specifically, we say that a 
process {Yt : t � 0} has asymptotically degenerate increments if for every ∆ > 0 it holds that 
P(Yt+∆ − Yt = 0) → 1 as t → +∞. For brevity, we also refer to this property as asymptotic 
degeneracy, which as we will see later, is not equivalent to eventual rest but rather a coun-
terintuitive generalisation. We discuss a variety of surprising and practical aspects of this 
asymptotic degeneracy. To this end, let us first summarise the subordination of processes as 
models of subdiffusion. Recall that a subordinator {Us : s � 0} is an increasing pure jump 
Lévy process. For every t � 0, denote St := inf{s > 0 : Us > t} as the first passage time of 
the subordinator. Then, the process {St : t � 0} is called the corresponding inverse subordi-
nator. While our ultimate aim is to draw conclusions on general time-changed processes, our 
initial focus will be on stable subdiffusion processes to introduce asymptotic degeneracy of 
increments. Let {Us : s � 0} be a stable subordinator with stability parameter α ∈ (0, 1) such 
that the Laplace transform of its unit-time marginal is given by E[e−yU1 ] = e−yα for every 
y   >  0. For instance, in the case of time-changed Gaussian Ornstein–Uhlenbeck processes, we 
have the Langevin equations

dXs = (C − κXs) ds + σdWs, dt = dUs,� (1.1)

where {Ws : s  >  0} is a standard Brownian motion. The evolution of the marginal probability 
density function of the resultant process is described by the fractional Fokker–Planck equa-
tion [19, 23]

∂

∂t
p(x, t) = 0D1−α

t

[
− ∂

∂x
(C − κx) +

σ2

2
∂2

∂x2

]
p(x, t),� (1.2)

with p(x, 0) = δ0(x), where 0D1−α
t  is the Riemann–Liouville fractional derivative of order 

1 − α. For a comprehensive review of the relationship between inverse stable subordinators 
and fractional derivatives, we refer the reader to [17]. Generalisation of the above fractional 
Fokker–Planck equation and its corresponding Langevin equations to the case with jump coef-
ficient and the general subordinator can be found in [16]. A special case of interest is when the 
outer process is simply a driftless Brownian motion, in which case C = κ = 0 and the solution 
to equation (1.2) yields

p(x, t) =
∫ +∞

0

1
σ
√

s
φ

(
x

σ
√

s

)
∂

∂s
P(St � s) ds,

with the variance proportional to tα [8], where φ is the standard normal probability density 
function.

The analysis of distribution and statistical inference of increments starting from zero time 
XS∆ − XS0 have been extensively studied in the literature, for instance, [6, 7, 12] to mention a 
few. The general increment XSt+∆ − XSt for t � 0 is considered to be more nuanced than the 
case for t  =  0. Increments starting from t  =  0 will almost surely observe movement, while 
any increment starting from a nonzero time has a positive probability of remaining trapped 
throughout its observation window, as we will shortly show. This leads to a source of techni-
cal inconvenience; the increment XSt+∆ − XSt is not identical in law to XS∆ − XS0 for t  >  0 
even when the outer process has stationary increments. In what follows, we hope to shed more 
light onto the inference and relevance of such subdiffusion processes by investigating general 
increments in spite of the aforementioned technical complications.

This paper is organised as follows. In section 2, we present the density and probability 
of degeneracy for increments of the inverse stable subordinator. We then present an integral 
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representation for the probability of degeneracy for increments of general inverse subordina-
tors, with asymptotics provided for a particular class of inverse subordinators. In section 3, 
surprising relations to subdiffusive dynamics are discussed, along with implications of asymp-
totic degeneracy on optimal inference. We also demonstrate that asymptotic degeneracy is 
an essential yet overlooked criterion for determining modelling relevance of such processes 
towards real-world phenomena. We summarise our investigation in section 4. All derivations 
and some technical details are deferred to the appendix to avoid detracting from the discourse.

2.  Results

We begin our investigation by considering the probability distribution of increments of the 
inverse stable subordinator. Fix t � 0 and ∆ > 0. Via the selfsimilarity of the marginal density 
of the stable subordinator gα(r; t), we present the density of the increment St+∆ − St as

d
ds

P(St+∆ − St � s) = − 1
αΓ(α)

d
ds

[
1
s

∫ ∆

0+

u
(t +∆− u)1−α

gα (u; s) du

]
,

� (2.1)
for every s  >  0. Since S0  =  0 almost surely, the t  =  0 case corresponds to the probability den-
sity function of S∆, given by [1, 2]

d
ds

P(S∆ � s) =
∆

αs
gα (∆; s) .

Integrating the density (2.1) over s  >  0, we find that the probability of a period of immobilisa-
tion engulfing the fixed-length increment is

P(St+∆ − St = 0) =
sin(απ)

π
B
(

t
t +∆

;α, 1 − α

)
,� (2.2)

where B(z; a, b) :=
∫ z

0 ua−1(1 − u)b−1 du is the incomplete beta function with z ∈ [0, 1], 
Re(a) > 0 and Re(b) > 0. Note that (2.2) is nonzero for every t  >  0, so the probability dis-
tribution of the increment St+∆ − St contains a point mass at the origin, and thus the density 
function (2.1) is not a probability density function for t  >  0. From this, we see that XSt+∆ − XSt 
is not equal in distribution to XS∆ − XS0. Remarkably, the point mass (2.2) implies that every 
fixed-length increment is asymptotically degenerate. Specifically, as t → +∞ it holds that

P(St+∆ − St = 0) ∼ 1 − sin(απ)

(1 − α)π

(
∆

t +∆

)1−α

,

that is, the inverse stable subordinator is asymptotically degenerate. The convergence 
of the probability (2.2) to one as t increases is faster with smaller α. This is quite natural, 
since decreasing α corresponds to increasingly heavy tails of the waiting time distribution. 
Interestingly, the incomplete beta function also appears in the second moment

E
[
(St+∆ − St)

2] = 2(t +∆)2α

α(Γ(α))2 B
(

∆

t +∆
;α+ 1,α

)
,� (2.3)

which can be derived from the density (2.1). From this, we can straightforwardly recover the 
correlation structure of the inverse stable subordinator [15].

Example 2.1.  To provide an explicit example of the above results, consider the special case 
α = 1/2 where the density is available in the closed form
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g(r; s) =
s√

4πr3/2
exp

[
− s2

4r

]
, (r, s) ∈ (0,+∞)2.

Fix ∆ > 0. For the density of St+∆ − St for t  >  0, we substitute the above into (2.1) to obtain

d
ds

P(St+∆ − St � s) = − 1
π

d
ds

∫ ∆

0+

1√
r(t +∆− r)

exp

[
− s2

4r

]
dr.

Examples of this density are provided in figure 1.

The plots indicate that the distribution decreases monotonically with increasing t, which 
affirms the increase in probability of degeneracy (2.2). Specifically, for the probability of ob-
serving movement in the time interval (t, t +∆], we also apply the general expression (2.2) 
to obtain

P(St+∆ − St > 0) =
1
π

∫ ∆
t+∆

0+

1√
u(1 − u)

du =
1
π

∫ ∆

0+

1√
r(t +∆− r)

dr =
2
π
arctan

√
∆/t,

where the second equality follows from the substitution u = r/(t +∆). That is,

P(St+∆ − St = 0) = 1 − 2
π
arctan

√
∆/t =

2
π
arctan

√
t/∆.

As a function of t, the zero increment probability is plotted in figure 2.� □ 

At the core of asymptotic degeneracy is the property that any increment of fixed length 
becomes more likely to be degenerate as we shift it forward in time. A related concept from 
renewal theory is the well-known inspection paradox, in which the flat interval containing the 
fixed time t  >  0 is stochastically larger than the initial interval from t  =  0. In the language of 
subordinators, let {Us : s � 0} be any subordinator and define Zt to be the size of the jump 
which crosses a fixed level t � 0. In the same vein, we can show that P(Zt > x) � P(Z0 > x) 
for every t  >  0, with severity at least nondecreasing in t. By applying the inspection paradox 
to the size of the flat period including the fixed time t, we derive the following representation 
of P(St+∆ − St = 0) when {St : t � 0} is a general inverse subordinator. To this end, let ν(dz) 
be the Lévy measure of the subordinator {Us : s � 0} and denote the largest jump size as 
c := inf{s > 0 : ν((s,+∞)) = 0}, which is infinite if the support of ν(dz) is unbounded. For 
every t � 0 and ∆ � 0, it holds that
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Figure 1.  Plots of the density (2.1) for α = 1/2 with (a) ∆ = 0.1, (b) ∆ = 0.5 and  
(c) ∆ = 1.0.
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P (St+∆ − St = 0) =
∫ t

max{t+∆−c,0}

ν((t +∆− u,+∞))

ν((t − u,+∞))
P (Uτt− ∈ du) ,

� (2.4)
where τt := inf{s > 0 : Us > t} with τ0 = 0+ and τ0− = 0. In particular, consider Lévy 
measures of the form

ν(dz) =
e−βz

zα+1 dz, z > 0,� (2.5)

with parameters α � −1 and β � 0 but (α,β) �= (−1, 0), so c = +∞. Applying (2.4) (see 
appendix A.5), we can show that for every ∆ > 0



limt→+∞ P(St+∆ − St = 0) = 1, (α,β) ∈ (0, 1)× {0},
P(St+∆ − St = 0) = e−β∆, (α,β) ∈ {−1} × (0,+∞),
lim sup t→+∞ P(St+∆ − St = 0) < e−β∆, (α,β) ∈ (−1,+∞)× (0,+∞),

� (2.6)
where the second case holds for every t  >  0. Recall that (2.5) generalises the Lévy measures 
of gamma and tempered stable subordinators [12, 14], which fall under the inequality case in 
(2.6), so neither inverse subordinator exhibits asymptotic degeneracy. See figure 2 for a com-
parison between the cases in (2.6). To interpret this, recall the Lévy measure corresponding to 
that of a stable subordinator is of the form (2.5) with (α,β) ∈ (0, 1)× {0}. Since the tail of 
this Lévy measure is heavier than that of the tempered stable or gamma cases, the waiting time 
distribution of the inverse stable subordinator tends to produce much longer flat periods and 
is sufficiently extreme to induce asymptotically degenerate increments. Therefore, asymptotic 
degeneracy requires the tail of the Lévy measure to be at least heavier than exponential. It 
should also be noted that the sensitivity of the probability of degeneracy for an increment to 
the length of the increment depends on the subordinator. For example, for t fixed, in the case 
of the inverse stable subordinator it holds that as ∆ → +∞,

P(St+∆ − St = 0) ∼ sin(απ)

απ

(
t

t +∆

)α

, t > 0.� (2.7)

Figure 2.  Plots of P(St+∆ − St = 0) against t for inverse subordinators corresponding 
to Lévy measures of the form (2.5). The case (α,β) = (1/2, 0) is represented by the 
dominating curve (2.2), the case (α,β) = (−1, 1) is represented by the straight line 
while the bottom represents the Monte Carlo approximation for (α,β) = (1/2, 1). See 
appendix B for details.
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In contrast to this power-law sensitivity towards ∆ which becomes more subdued for larger 
t, the subordinator with Lévy measure given by (2.5) with (α,β) ∈ {−1} × (0,+∞) is stati-
cally and exponentially sensitive to ∆, as P(St+∆ − St = 0) = e−β∆. This sharp contrast in 
sensitivity can be seen in figure 2, as varying ∆ leads to large impacts for the straight line, 
whereas the dominating curve (2.2) experiences only very mild displacement for large t. This 
increasing insensitivity of the increment length is intrinsically linked to asymptotic degen-
eracy of fixed-length increments.

Next, consider the scenario where we completely truncate the tail of the Lévy measure, so 
the largest waiting time is finite (c < +∞). Since all observation windows with length exceed-
ing the largest waiting time almost surely observe movement, asymptotic degeneracy is absent. 
However, rather than considering large increments, one may be interested in high frequency 
sampling schemes in which the length of increments are kept short. We demonstrate that conv
ergence is not guaranteed for such cases. Fix ∆ > 0 and consider ν(dz) = δ{2∆}(dz), where 
every jump is of size 2∆ (so c = 2∆). In other words, {Us : s � 0} is a standard Poisson pro-
cess with jumps of fixed height 2∆. By the representation (2.4), it holds that for every t � 0,

P(St+∆ − St = 0) =
∫ t

max{t−∆,0}

ν((t +∆− u,+∞))

ν((t − u,+∞))
P(Uτt− ∈ du) = P(Uτt− ∈ (max{t −∆, 0}, t]).

Since {Us : s � 0} takes values in {0, 2∆, 4∆, . . . }, we have only two possibilities:

	 1.	�If (t, t +∆] ⊆ (2k∆, 2(k + 1)∆) for some k ∈ {0, 1, 2, . . . }, then P(St+∆ − St = 0) = 1.
	 2.	�If 2k∆ ∈ (t, t +∆] for some k ∈ {0, 1, 2, . . . }, then P(St+∆ − St = 0) = 0.

Thus, as we shift the observation window (t, t +∆] forward in time, the probability of the 
increment becoming degenerate oscillates between zero and one, so the probability does not 
converge as t → +∞. The increment is therefore not asymptotically degenerate. So in the 
case of a high frequency sampling scheme with a bounded waiting time distribution, caution 
is advised when working with fixed-length increments in long-time as convergence is not 
guaranteed.

3.  Discussion

So far, we have derived the density of increments of the inverse stable subordinator (2.1) as 
well as the corresponding degenerate increment probability (2.2). In doing so, we derived the 
asymptotically degenerate increment structure of the inverse subordinator. Moreover, we have 
represented the degenerate increment probability for general inverse subordinators as a ratio 
of its corresponding Lévy measure (2.4), and applied the result to show that a class of inverse 
subordinators do not exhibit asymptotic degeneracy (2.6). In what follows, we discuss vari-
ous practical and overlooked implications of asymptotic degeneracy towards time-changed 
processes.

3.1.  Asymptotic degeneracy for time-changed processes

We now establish the carrying over of asymptotic degeneracy into time-changed processes. 
Let {St : t � 0} be a nondecreasing process independent of another process {Xs : s � 0}. 
Since the outer process is dependent on the internal time variable, it holds that for every t � 0 
and ∆ � 0

S Yuan and R Kawai﻿J. Phys. A: Math. Theor. 53 (2020) 095002
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P
(
XSt+∆

− XSt = 0
)
� P (St+∆ − St = 0) ,� (3.1)

with equality when increments of positive length of {Xs : s � 0} are almost surely nonzero. 
That is, if the time-changing process exhibits asymptotic degeneracy of increments, then so 
must the time-changed process {XSt : t � 0}. It may be tempting to conjecture that any time-
changed process with asymptotically degenerate increments exhibits eventual rest (that is, 
limt→+∞ XSt  exists), as any arbitrarily large increment converges to zero in probability as 
we shift it towards infinity. However, this is not generally true. Consider the time-changed 
Brownian motion {WSt : t � 0} where {St : t � 0} is an inverse stable subordinator, so the 
zero increment probability (3.1) is given explicitly by (2.2) and asymptotic degeneracy of 
increments is guaranteed. For any fixed t � 0, the probability (3.1) decreases to zero at the 
rate O(∆−α) as ∆ increases, as seen in (2.7). That is, this stable subdiffusion process will 
continue to move, albeit very slowly. Hence, we see that asymptotic degeneracy generalises 
the concept of eventual rest.

Given the previous discussion, a natural question to ask is whether the act of time-changing 
by a temporal process with asymptotically degenerate increments always slows diffusiv-
ity. This appears to be reasonable, as introducing asymptotically degenerate increments via 
time-changing always impedes the movement of the outer process with increasing severity 
along time. Consider the case where the outer process is a Brownian motion. Recall that 
the tempered stable and gamma inverse subordinators do not exhibit asymptotic degeneracy, 
and that timing-changing the Brownian motion with either leads to linear diffusion in the 
long-run, whereas time-changing by the inverse stable subordinator leads to lifetime subdif-
fusion [6]. On the whole, there is a necessary and sufficient correspondence. By the self-
similarity of the Brownian motion and its independence with the inner temporal process, it 
holds that Var(WSt) = E[St]. The inner process exhibits asymptotic degeneracy if and only if 
E[St+∆]− E[St] → 0 as t → +∞ for every ∆ � 0. That is, E[St] is sublinear with respect to 
t. Hence, asymptotic degeneracy of the inner temporal process is necessary and sufficient for 
lifetime subdiffusion of the time-changed Brownian motion. Interestingly, this relationship 
between asymptotic degeneracy and lifetime subdiffusion breaks down in the presence of an 
external force. Consider processes of the form {µSt + σWSt : t � 0} with µ �= 0, that is, the 
advection of the particle is disrupted while it is trapped. Where {St : t � 0} is an inverse stable 
subordinator, the probability of a degenerate increment is given by (2.2) and so asymptotic 
degeneracy is present. It is known [6] that the process diffuses at a rate of O(tα) as t → 0 and 
O(t2α) as t → +∞. This leads to a rather counterintuitive result: in the presence of the exter-
nal force, the stable drift-subdiffusion process with α ∈ (1/2, 1) exhibits superdiffusion in the 
long-run along with asymptotically degenerate increments. So surprisingly, time-changing 
by an inner process with asymptotic degeneracy does not necessarily guarantee slower life-
time diffusivity. One should also note that the converse does not hold either, as the fractional 
Brownian motion with Hurst parameter H ∈ (0, 1/2) is an example of a lifetime subdiffusive 
process without asymptotically degenerate increments.

We mention an application of degenerate increment probabilities (2.2) and (3.1) to the con-
text of subdiffusion in the presence of a general space-dependent external binding potential. 
The scenario is modelled with the fractional Fokker–Planck equation (1.2) such that a general 
force function F(x)/(kBT) replaces C − κx , where kBT is thermal energy. Combined with the 
findings in [4], the uncentred covariance is of the form

E[XSt+∆
XSt ] ∼ Kασ

2
BP

(
XSt+∆

− XSt = 0
)
+ µB,� (3.2)
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for every ∆ � 0 and t sufficiently large, where Kα � 4 is constant depending on α ∈ (0, 1), 
and µB and σ2

B are the mean and variance of the corresponding Boltzmann distribution respec-
tively. This leads to a natural interpretation: as t increases, the locations of the process at the 
times t and t +∆ become more correlated due to the growing likelihood of both becoming 
stuck within the same period of immobility. Therefore, it is very intuitive that the covariance 
(3.2) asymptotically depends on the zero increment probability.

3.2.  Optimal inference in light of asymptotic degeneracy

Having established asymptotic degeneracy of fixed-length increments of a large class of sub-
diffusion processes, we consider its practical implications for optimal inference. Statistical 
inference on subdiffusion models are possible by modern developments in single particle 
tracking technology (figure 3(a)). The non-ergodicity brought on by time-changing via the 
inverse stable subordinator is intrinsically linked to asymptotically degenerate increments, as 
the irreproducibility of time-averaged observables across independent sample paths can be 
attributed to the frustration of convergence of time averages caused by the quasi-eventual rest 
of asymptotic degeneracy. When quantified, this non-ergodicity can still yield a viable method 
of parameter inference [3, 7, 18, 24]. However, due to the demanding amount of data required 
for accurate inference via non-ergodicity methods based on single-particle tracking, classical 
inferential techniques based on incremental data of many independent and identically dis-
tributed trajectories (figure 3(b)) may be more favourable [7]. From a practical perspective, it 
is often the case that particles have a history of movement well before their tracking (figure 
3(c)). The only realistic choice of increment starting time for statistical inference in those 
cases is arbitrarily large time. In the case of subdiffusion processes with asymptotic degen-
eracy, the zero increment probability (3.1) converges to one. Any increment data interpreted 
to be of arbitrarily far starting time is nonsensical for inference, thus generally rendering these 
processes as inappropriate for such modelling scenarios.

Interestingly, asymptotic degeneracy of increments sheds light on existing results on Fisher 
information. We will only consider the stable subdiffusion process {σWSt : t � 0} for which 
the Fisher information matrix is known asymptotically. Consider sampling increments over 
the observation window (0,∆n] (figure 3(b)), where the fixed length ∆n is indexed by the 
number of particles n. As n increases, it has been shown that in both long-time (∆n → +∞) 
and short-time (∆n → 0) sampling schemes the Fisher information matrix for the parameters 
(α,σ) is given by

S (α,σ) =
Mα

4σ2

[
σ2 ±2σ
±2σ 4

]
,

Figure 3.  Sampling schemes: (a) discretisation of single particle tracking, and n iid 
observations on (b) (0,∆n] and (c) (t, t +∆n].
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where Mα > 0 depends on α and the off-diagonal terms are positive in long-time and nega-
tive in short-time [7]. The Fisher information for either α or σ is finite and nonzero if the 
other is known a priori, thus we are able to obtain simple optimality criteria for inference on 
either parameter based on increments starting from zero time. Surprisingly, short-time incre-
ments appear to be no less optimal than long-time increments and hence should be preferred 
to reduce experimental effort. We conjecture that asymptotic degeneracy of increments plays 
a key role here; increments of the process with asymptotically far starting times contain no 
information on either parameter, so the inclusion of infinite time in long-time increments does 
not seem to provide any additional information for optimal inference over using short-time 
increments. By the zero increment probability (2.2), we know that increments starting from 
zero time almost surely observe movement, so we expect optimal inference for α to use short-
time increments starting after, but not far away from zero time. However, preferred choices 
of increments may differ depending on the inverse subordinator. For instance, due to asymp-
totically linear diffusion of the gamma and tempered stable cases [6, 12, 14], the effect of the 
inverse subordinator in the long-run is isolated to the coefficient for linear diffusion, and so 
long-time increments may harbour advantages for inference on the parameter σ.

3.3.  Asymptotic degeneracy as a modelling criterion

In the context of modelling, asymptotic degeneracy of increments can be pivotal. We first 
address an important practical question: are there real-world phenomena which exhibit sub-
diffusion driven by sporadic trapping and asymptotic degeneracy but not eventual rest? In the 
literature, stable subdiffusion processes have been used to describe financial data [10, 11]. 
However to our knowledge, there has not yet been a modelling scenario where asymptotic 
degeneracy is required or even considered. To rectify this, we propose that short-term rates 
maintained by open market operations under an inflation targeting regime can be modelled by 
a mean-reverting process time-changed by an inverse stable subordinator, such as the process 
described by the Langevin equations (1.1) or the more general subordinated stable Ornstein–
Uhlenbeck process considered in [10]. As the central bank periodically adjusts the short-term 
rate based on its inflation target, over time the inflation rate converges and fluctuations are alle-
viated. Consequently, not only does the short-term rate demonstrate mean-reverting behaviour 
away from the initial value, but also flat periods which increase in size with time as the policy 
objective is approached. Short-term rates have known starting times, so sampling from the 
asymptotic increment distribution is inappropriate for statistical inference. Moreover, asymp-
totic degeneracy of increments is desired but not eventual rest; the short-term rate will tend 
towards rest due to the stabilising of inflation rate, but it will not experience eventual rest due 
to the existence of sudden shocks and secondary policy objectives. For example, from March 
to June of 2008, the Reserve Bank of Australia’s cash rate was constant at 7.25%. However, 
by April 2009, the cash rate had steadily lowered to 3.00% in the wake of the global financial 
crisis before reaching another flat period [20]. Similar characteristics can be observed in the 
short-term rates which influence the European interbank rates examined in [10]. Therefore, 
the dynamics described by a mean-reverting process time-changed by an inverse stable subor-
dinator captures many stylised facts of short-term rates determined by open market operations 
under an inflation targeting regime. It is crucial to note that in this modelling scenario, tem-
pered stable and gamma subdiffusion models are inadequate precisely because of their lack of 
asymptotic degeneracy. For real-world physical examples of asymptotic degeneracy exhibited 
in a subdiffusion phenomenon, we suggest turning to biophysics. It has been observed exper
imentally that Kv2.1 potassium channels in cells exhibit both sporadic episodes of immobili-
sation as well as tendency towards rest [26]. While each channel may remain immobile for 

S Yuan and R Kawai﻿J. Phys. A: Math. Theor. 53 (2020) 095002



10

extended periods of time, like many physical processes in living cells, eventual rest is never 
realised in practice. The lifetime of the channel may be terminated, for example, by absorp-
tion for recycling. Thus, a stable subdiffusion process with a finite lifetime may be useful in 
capturing increasing waiting times on average over its lifetime.

We next address another important question: What should we do if we would like lifetime 
subdiffusion with trapping dynamics but without asymptotic degeneracy? Firstly, to guarantee 
sporadic trapping without asymptotic degeneracy, we need to choose the inverse of a subor-
dinator with a sufficiently light-tailed Lévy measure. By the result (2.6), we have seen two 
such examples, namely the tempered stable and gamma inverse subordinators [6, 12, 14]. In 
addition, another example is that of a truncated stable Lévy measure, which has been used to 
model the trapping of magnetic bright points on the photosphere [5]. This leaves us with the 
task of selecting an appropriate outer process so as to guarantee lifetime subdiffusion. A natu-
ral choice is the fractional Brownian motion {BH

t : t � 0} with Hurst parameter H ∈ (0, 1/2), 
which is subdiffusive for all time. For example, time-changing by the inverse tempered stable 
subordinator, we have that Var(BH

St
) = O(t2Hα) in short-time and Var(BH

St
) = O(t2H) in long-

time [14], as we desired.

4.  Concluding remarks

We have investigated asymptotic degeneracy of fixed-length increments pertaining to a large 
class of time-changed processes. While asymptotic degeneracy slows diffusivity in some 
cases, the long-run diffusivity of a process is generally attributed to the interaction between 
various anomalous diffusive components. We discussed implications for statistical inference, 
such as the inadequacy of processes with asymptotically degenerate increments for modelling 
contexts which require asymptotic increment sampling. Using the example of short-term rates 
maintained by open market operations under an inflation targeting regime, we showed that 
asymptotic degeneracy can arise naturally in real-world contexts and deserves serious consid-
eration in modelling scenarios as a criterion for model selection. We also demonstrated that 
lifetime subdiffusive processes exist with sporadic trapping but without asymptotically degen-
erate increments. The consideration of asymptotic degeneracy of fixed-length increments not 
only sheds light on properties of many subdiffusion processes, but also leads to various practi-
cal implications valuable to modelling applications.
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Appendix A.  Derivations

The derivation of mathematical results in the main paper are presented in the following 
sections.

A.1.  Density function of an increment of the inverse stable subordinator

We begin with the derivation of the density function (2.1). Fix t  >  0. Denote the marginal 

probability density of the subordinator Ut by g(r; t) := ∂
∂rP (Ut � r) for every r � 0. We 

S Yuan and R Kawai﻿J. Phys. A: Math. Theor. 53 (2020) 095002



11

begin by considering the density of St+∆ − St without making assumptions on the subordi-
nator {Ut : t � 0}. By the definitions of the cumulative distribution function and the density 
function, we obtain for every s  >  0,

P(St+∆ − St � s) = P(St � St+∆ − s)

=

∫ +∞

0

∫ x2

max{x2−s,0}

∂

∂x1

(
∂

∂x2
P({St � x1} ∩ {St+∆ � x2})

)
dx1 dx2

=

∫ +∞

0

[
∂

∂x2
P({St � x1} ∩ {St+∆ � x2})

]x1=x2

x1=max{x2−s,0}
dx2.

Hence, we wish to compute its derivative

d
ds

P(St+∆ − St � s) = − d
ds

∫ +∞

0

(
∂

∂x2
P({St � x1} ∩ {St+∆ � x2})

) ∣∣∣
x1=max{x2−s,0}

dx2.

By the independence of the two increments Ux2 − Ux1 and Ux1 − U0, for each nonnegative 
constants x1 < x2 we have that

P({St � x1} ∩ {St+∆ � x2}) = P({Ux1 � t} ∩ {Ux2 � t +∆})
= P({Ux1 � t} ∩ {(Ux2 − Ux1) + Ux1 � t +∆})

=

∫ +∞

t
P((Ux2 − Ux1) + r � t +∆)g(r; x1)dr

=

∫ (t+∆)−

t
P(Ux2 − Ux1 � t +∆− r)g(r; x1)dr +

∫ +∞

t+∆

g(r; x1)dr

=

∫ ∆

0+
P(Ux2−x1 � u)g(t +∆− u; x1)du +

∫ +∞

t+∆

g(r; x1)dr,

where the last equality follows from the substitution r = t +∆− u and stationarity of incre-
ments. Taking the partial derivative with respect to x2, we have that

∂

∂x2
P({St � x1} ∩ {St+∆ � x2}) = −

∫ ∆

0+

∂

∂x2
P(Ux2−x1 � u)g(t +∆− u; x1) du,

where the interchanging of integration and differentiation holds by the Leibniz integral rule.
We now consider the case when {Ut : t � 0} is a stable subordinator with fixed α ∈ (0, 1). 

We proceed with denoting the stable marginal probability density by g(r; t) without the sub-
script as α is fixed hereafter. The probability density g(r; t) satisfies g(0+; t) = 0 and the 
selfsimilarity property

g(r; t) = t−1/αg(t−1/αr; 1), (r, t) ∈ (0,+∞)2.� (A.1)

Thus, we obtain

P({St � x1} ∩ {St+∆ � x2}) =
∫ ∆

0+
P
(

U1 �
u

(x2 − x1)1/α

)
g(t +∆− u; x1)du +

∫ +∞

t+∆

g(r; x1)dr.

Partially differentiating with respect to x2, we have that

∂

∂x2
P({St � x1} ∩ {St+∆ � x2}) =

∫ ∆

0+

u
α(x2 − x1)1/α+1 g

(
u

(x2 − x1)1/α ; 1
)

g(t +∆− u; x1) du

=

∫ ∆

0+

u
α(x2 − x1)

g(u; x2 − x1)g(t +∆− u; x1) du.

S Yuan and R Kawai﻿J. Phys. A: Math. Theor. 53 (2020) 095002



12

By setting x1 = max{x2 − s, 0}, we obtain
(

∂

∂x2
P({St � x1} ∩ {St+∆ � x2})

) ∣∣∣
x1=max{x2−s,0}

=

∫ ∆

0+

u
αmin{x2, s}

g (u;min{x2, s}) g(t +∆− u;max{x2 − s, 0}) du.

Integrating with respect to x2 yields
∫ +∞

0

(
∂

∂x2
P({St � x1} ∩ {St+∆ � x2})

) ∣∣∣
x1=max{x2−s,0}

dx2

=

∫ s

0

∫ ∆

0+

u
αx2

g (u; x2) δ{t+∆}(du) dx2

+

∫ +∞

s+

∫ ∆

0+

u
αs

g (u; s) g (t +∆− u; x2 − s) du dx2,

where δ{t+∆}(du) denotes the Dirac measure concentrated at u = t +∆ and we have applied 
selfsimilarity (A.1). The first term vanishes due to t  >  0. For the second term, we apply 
Tonelli’s theorem by the nonnegativity of the integrand to obtain

∫ +∞

s+

∫ ∆

0+

u
αs

g (u; s) g (t +∆− u; x2 − s) du dx2

=

∫ ∆

0+

u
αs

g(u; s)
[∫ +∞

s+
g(t +∆− u; x2 − s) dx2

]
du

=
1

αΓ(α)s

∫ ∆

0+

u
(t +∆− u)1−α

g(u; s) du,

where the second equality holds by the potential density formula [22]
∫ +∞

s+
g(t +∆− u; x2 − s) dx2 =

∫ +∞

0+
g(t +∆− u; x2) dx2 =

1
Γ(α)(t +∆− u)1−α

.� (A.2)

The density function for s  >  0 is therefore given by

d
ds

P(St+∆ − St � s) = − 1
αΓ(α)

d
ds

[
1
s

∫ ∆

0+

u
(t +∆− u)1−α

g (u; s) du

]
,

which yields (2.1) as desired.

A.2.  Probability of degeneracy for increments of the inverse stable subordinator

In what follows, we derive the probability of degenerate increment (2.2) for the inverse stable 
subordinator. Let t  >  0 and denote

h(u, s) :=
1
s

u
(t +∆− u)1−α

g(u; s) =
1

s1+1/α

u
(t +∆− u)1−α

g
(

s−1/αu; 1
)

, (u, s) ∈ (0,∆]× (0,+∞),

� (A.3)
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where the second representation follows from selfsimilarity (A.1). Consider the integral of the 
density of the random variable St+∆ − St over (0,+∞):

P (St+∆ − St > 0) =
∫ +∞

0+

d
ds

P(St+∆ − St � s) ds

= − 1
αΓ(α)

∫ +∞

0+

d
ds

[∫ ∆

0+
h(u, s) du

]
ds

=
1

αΓ(α)

[
lim
s→0

∫ ∆

0+
h(u, s) du − lim

s→+∞

∫ ∆

0+
h(u, s) du

]
.

To justify that the second term vanishes, note that the probability density g(u, s) is uniformly 
bounded for s � 1, thus h(u, s) is also uniformly bounded over (u, s) ∈ (0,∆]× [1,+∞). 
Moreover, we have that lims→+∞ h(u, s) = 0 for every u ∈ (0,∆], so we obtain the result 
through an application of the bounded convergence theorem. It remains for us to compute the 
first term. Firstly, we justify the passage of the limit into the integrand. For every u ∈ (0,∆], 
by the asymptotics of the marginal stable density it holds that [22, 14.37]

lim
s→0

h(u, s) =
1
π
Γ(α+ 1) sin(απ)

1
(t +∆− u)1−αuα

=: h(u, 0).

As h(·, s) is bounded for every s ∈ (0, 1], we have that h(·, s) ∈ L1((0,∆]). Moreover, h(·, 0) is 
bounded on [ε,∆] for every ε ∈ (0,∆), so Mε := sup(u,s)∈[ε,∆]×(0,1] h(u, s) < +∞. It remains 
to dominate h(·, s) about the origin. For every fixed s ∈ (0, 1] we have limu→0 h(u, s) = 0, yet 
at the limit we have limu→0 h(u, 0) = +∞, so by continuity there exists ε > 0 sufficiently 
small such that h(u, s2) � h(u, s1) for every 0 < s1 � s2 � 1 and every u ∈ (0, ε). Thus, there 
exists a dominating function h(u, s) � Mε + Cu−α ∈ L1((0,∆]), where C is some positive 
constant. We apply the dominated convergence theorem to obtain

1
αΓ(α)

lim
s→0

∫ +∞

0+
h(u, s) du

=
sin(απ)

π

∫ ∆

0+

1
(t +∆− u)1−αuα

du

=
sin(απ)

π

∫ ∆
t+∆

0+
y−α(1 − y)α−1 dy =

sin(απ)

π
B
(

∆

t +∆
; 1 − α,α

)
,

where the second equality follows from the substitution y = u/(t +∆). Thus, it holds that

P(St+∆ − St > 0) =
1

αΓ(α)
lim
s→0

∫ ∆

0+
h(u, s) du =

sin(απ)

π
B
(

∆

t +∆
; 1 − α,α

)
.

Therefore, we obtain

P(St+∆ − St = 0) = 1 − P(St+∆ − St > 0) =
sin(απ)

π
B
(

t
t +∆

;α, 1 − α

)
,

which yields (2.2) as desired. Note that this formula also holds for t  =  0; for every α ∈ (0, 1) 
and ∆ > 0, it holds that
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P(S∆ − S0 = 0) =
sin(απ)

π
B
(

0
0 +∆

;α, 1 − α

)
= 0.

A.3.  Second moment of increments of the inverse stable subordinator

Using the density (2.1), we derive the second moment of increments of the inverse stable sub-
ordinator (2.3) directly via integration by parts to obtain

E
[
(St+∆ − St)

2] = 02P(St+∆ − St = 0) +
∫ +∞

0+
s2 d

ds
P(St+∆ − St � s) ds

=
2

αΓ(α)

∫ +∞

0+

∫ ∆

0+

u
(t +∆− u)1−α

g(u; s) du ds

− 1
αΓ(α)

∫ +∞

0+

(
d
ds

∫ ∆

0+

u
(t +∆− u)1−α

sg(u; s) du

)
ds

=
2

αΓ(α)

∫ ∆

0+

u
(t +∆− u)1−α

[∫ +∞

0+
g(u; s) ds

]
du

=
2

α(Γ(α))2

∫ ∆

0+
uα(t +∆− u)α−1 du

=
2(t +∆)2α

α(Γ(α))2 B
(

∆

t +∆
;α+ 1,α

)
,

where the third equality holds by the dominated convergence theorem, the fourth equality fol-
lows from (A.2) and the last equality follows by the substitution y = u/(t +∆).

A.4.  Probability of degeneracy of an increment for the general subordinator

Before presenting the derivation of (2.4), we recall the inspection paradox to provide some 
intuition. Define Zt := Uτt − Uτt− as the size of the jump which crosses a fixed level t  >  0, 
with Z0 the size of the first jump. For any fixed x  >  0, we condition on Uτt− to obtain

P(Zt > x) =
∫ t

0
P(Zt > x|Uτt− = u)P(Uτt− ∈ du)

=

∫ t

0
P(Z0 > x|Z0 > t − u)P(Uτt− ∈ du)

=

∫ t

0

P(Z0 > max{x, t − u})
P(Z0 > t − u)

P(Uτt− ∈ du)

=

∫ t

0
min

{
P(Z0 > x)

P(Z0 > t − u)
, 1
}
P(Uτt− ∈ du)

�
∫ t

0
min {P(Z0 > x), 1}P(Uτt− ∈ du)

= P(Z0 > x).
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Note that the denominator of the integrand P(Z0 > t − u) is nonincreasing in t, so the severity 
of the stochastic dominance P(Zt > x) � P(Z0 > x) is at least nondecreasing in t.

We now provide the derivation of (2.4). Fix t  >  0 and ∆ > 0. Recall that 
{Uτt − t > ∆} = {St+∆ − St = 0}. We proceed in a fashion similar to the inspection paradox 
but with respect to the size of the flat period containing the fixed time t instead. Once again, 
by conditioning on Uτt−, we can express the probability of observing no movement over the 
time window (t, t +∆] as

P(St+∆ − St = 0) = P(Uτt − t > ∆)

=

∫ t

max{t+∆−c,0}
P(Uτt − t > ∆|Uτt− = u)P(Uτt− ∈ du)

=

∫ t

max{t+∆−c,0}

P(Z0 > t +∆− u)
P(Z0 > t − u)

P(Uτt− ∈ du)

=

∫ t

max{t+∆−c,0}

ν((t +∆− u,+∞))

ν((t − u,+∞))
P(Uτt− ∈ du).

For the case of t  =  0, note that P(Uτ0− ∈ du) = δ{0}(du). By the inspection paradox it imme-
diately holds that for every ∆ > 0,

P(S∆ − S0 = 0) = P(Uτ0 − 0 > ∆) = P(Z0 > ∆) =

∫ 0

max{∆−c,0}

ν((∆− u,+∞))

ν((0,+∞))
P(Uτ0− ∈ du),

as required.

A.5.  Asymptotics of zero increment probability for a class of Lévy measures

For the derivation of (2.6), let α > −1. Define f (s) := e−β∆ν((s,+∞))− ν((s +∆,+∞)) 
for every s  >  0, so lims→+∞ f (s) = 0. It is easy to check that df (s)/ds < 0 for every s  >  0, 
so f  is strictly decreasing and thus strictly positive, that is, for every s  >  0 it holds that 
ν((s +∆,+∞))/ν((s,+∞)) < e−β∆. Thus, for every t � 0 and ∆ > 0 we have that

P(St+∆ − St = 0) < e−β∆

∫ t

0
P(Uτt− ∈ du) = e−β∆.

For (α,β) ∈ {−1} × (0,+∞), we directly apply the formula (2.4) to obtain

P(St+∆ − St = 0) =
∫ t

0

e−β(t+∆−u)/β

e−β(t−u)/β
P(Uτt− ∈ du) = e−β∆, t > 0,

which corresponds to the straight line in figure 2.

Appendix B.  Sample path generation for tempered stable subordinator

In figure 2, we have explicit formulas for P(St+∆ − St = 0) in the cases (α,β) = (1/2, 0) 
(given by (2.2)) and (α,β) = (−1, 1) (see previous section). However, numerical approx
imation is required in the case (α,β) = (1/2, 1), which corresponds to an inverse tempered 
stable subordinator. In the following, we describe our strategy for numerically approximating 
P(St+∆ − St = 0) in the tempered stable case.
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Let {Us : s � 0} be a tempered stable subordinator corresponding to the Lévy measure 
ν(dz) = e−βzz−α−1dz with α ∈ (0, 1) and β > 0. Evaluation of the event {Uτt − t > ∆} 
requires observing jumps crossing the fixed level t, so generation of increments is insufficient 
for our purpose. We estimated probabilities in the latter case by generating 20 000 sample paths 
of the inverse tempered stable subordinator. To generate sample paths of {Us : s ∈ [0, T]}, we 
take advantage of the series representation [13, 21]

{Us : s ∈ [0, T]} L
=

{
+∞∑
k=1

min

{(
αΓk

T

)−1/α

,
VkU1/α

k

β

}
1(Tk ∈ [0, s]) : s ∈ [0, T]

}
,� (B.1)

where

	 •	�{Γk}k∈N is a sequence of arrival times of a standard Poisson process,
	 •	�{Vk}k∈N is a sequence of iid standard exponential random variables,
	 •	�{Uk}k∈N is a sequence of iid standard uniform random variables, and
	 •	�{Tk}k∈N is a sequence of independent random variables distributed uniformly on [0, T],

such that {Γk}k∈N, {Vk}k∈N, {Uk}k∈N and {Tk}k∈N are mutually independent. An approximate 
sample path of {Us : s ∈ [0, T]} can be obtained by summation of the summands in (B.1) 
over the index set {k ∈ N : Γk/T � n}, where n  >  0 is a truncation parameter. Our numerical 
results for figure 2 correspond to α = 1/2, β = 1 and n  =  20. To justify our choice of n  =  20, 
note that for every k ∈ N such that Γk/T � 20 we have (Γk/(2T))−2 � 0.01, that is, all jumps 
of sizes greater or equal to 0.01 are simulated exactly. This implies that all jumps which can 
cross any observation window (t, t +∆] for ∆ ∈ {0.1, 0.5} are generated, as required. It is 
also important to note that since the process is increasing, the truncation of jumps leads to 
approximate sample paths which are below the true sample path and hence the estimated prob-
ability has a positive bias. However, this bias becomes largely eliminated as t increases due to 
the convergence of P(St+∆ − St = 0), and we refer the reader to [9] for details regarding the 
error analysis of the truncation method for various series representations.
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