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Abstract
In order to obtain the ground state of the biased quantum Rabi model in 
the ultrastrong coupling regime, a generalized squeezing rotating-wave 
approximation method including the displacement and the squeezing 
transformations is proposed in this work. While considering the deformation 
of the oscillator state, our method evidently improves the generalized 
variational method. The analyses of a few physical quantities show that our 
method works well especially in the ultrastrong coupling and large atomic 
frequency regime.
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1.  Introduction

The quantum Rabi model (QRM) [1, 2] describes the coupling between a two-level atom and 
a bosonic field. Such model is of fundamental importance, since it has been widely applied in 
modern physics, such as in optical waveguides [3], superconducting circuits [4, 5], trapped ion 
[6] and so on. Given its great importance, there have been numerous theoretical studies on the 
Rabi model finding approximated solutions [7–9, 10–21]. Despite a great achievement of all 
those studies, the exact solution of QRM was only obtained recently [22–24]. This analytical 
solution, however, is in the form of composite transcendental function defined in power series, 
and it is not feasible to analyze the miscellaneous physical quantities of the QRM. Thus, theor
etical research of finding the optimal analytical solution still attracts much attention.

In early days, the atom-field coupling strength of the Rabi model achieved in experiments 
is much smaller than the frequency of the field. Therefore, the QRM can be further simpli-
fied into the renowned Jaynes Cummings model (JCM) through rotating wave approximation 
(RWA), which ignores the counter-rotating-wave (CRW) terms [25]. With the tremendous 
development of experimental technologies, the strength of the light-matter coupling greatly 
increases. Recently one remarkable achievement is the realization of ultrastrong coupling 
[26–28]. To this end, the RWA breaks down [29, 30] since the effect of CRW terms is no 
longer negligible. In this respect, the generalized RWA (GRWA) [7] with a fixed displacement 
is proposed by considering the effect of CRW terms. However, the GRWA method does not 
perform well enough in the ultrastong coupling regime when the resonator frequency is small, 
and a more general variational method which relaxes the displacement is proposed [8, 9]. 
These approximation methods have been applied in the family of the QRM [8, 10–20].

The ultrastrong coupling of the QRM has been experimentally achieved in circuit quantum 
electrodynamics system due to operational conveniences [26–28, 30], and the so-called bias 
term is naturally involved. Compared to the standard form of the QRM, the additional bias 
term may bring in complication but more physics. For instance, the parity symmetry in the 
QRM is broken due to the presence of this bias. Given the interesting physics that come 
together with the bias term, it is therefore highly desirable to study the corresponding model 
analytically. Though there already exists some analytical discussions based on the GRWA 
and generalized variational method (GVM) for the biased QRM [9, 11], we find that there 
is still space to improve the accuracy in the ultrastrong coupling regime. The crucial idea to 
construct a close ground state in the widely used methods (e.g. GRWA, GVM) is to figure out 
the displacement of the oscillator. Since a quantum harmonic oscillator not only can be dis-
placed but also can be squeezed, it is natural and necessary to consider the squeezing effect of 
the oscillator. The squeezing effect of the oscillator can be introduced in the same way with 
the displacement. The squeezing deformation of quantum state in the QRM can be naturally 
captured by an additional squeezing transformation applied onto the oscillator state, and thus 
substantial improvements may be anticipated. The squeezing plays an important role in high 
precision applications. For instance, it can be used to improve the sensitivity of gravity-wave 
detectors [31]. In quantum optics, the most common and useful way to create entangled states 
has been through squeezing [32–35], and it has been recognized that the intrinsic nonlineari-
ties of atoms lead to quadrature squeezing [36–40]. With regard to this consideration, a gen-
eralized squeezing RWA (GSRWA) [15, 41] with an additional squeezing transformation was 
proposed to study the anisotropic QRM and shows high accuracy in large parameter regime. 
In this work, by taking both the displacement and squeezing transformations, we adopt the 
GSRWA by introducing a squeezing transformation to study the underlying physics of the 
biased QRM. The variational parameters in the GSRWA are determined by minimizing the 
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ground-state energy. In order to show the improvement of our methods over the GVM, we also 
calculate several physical quantities by GVM and numerical method for comparison.

The paper is outlined as follows. In section 2, we give the Hamiltonian of the biased QRM 
and shows the details of our method. In section 3, we show the results of several physical 
quantities. In section  4, the applicable regime is discussed and a brief summary is finally 
given.

2.  Model and analytical solution

Conventionally, the Hamiltonian of the biased QRM reads [42–45]

HB = ωa†a + gσx(a + a†) + ∆σz + ε′σx,� (1)

where a† (a) is the creation (annihilation) operator of the bosonic oscillator with frequency 
ω , Pauli matrix σz describes the two-level system with energy splitting 2∆, ε′σx is the biased 
term, and g is the coupling strength between the oscillator and the qubit. Taking a rotation of 
the spin along y -axis and replacing the parameters with ε′ = ε/2 and ∆ = Ω/2, we can obtain

H = ei π4 σy HBe−i π4 σy

= ωa†a − Ω

2
σx +

ε

2
σz + gσz(a† + a).

�
(2)

For convenience, the following discussions are focusing on Hamiltonian equation  (2) by 
default.

The model Hamiltonian in equation (2) can be divided into the main part and the perturba-
tion as

H = Hdo + Hp.� (3)

Here the displaced oscillator

Hdo = ωa†a + gσz(a† + a)� (4)

is treated as the non-perturbed Hamiltonian, and

Hp = −Ω

2
σx +

ε

2
σz� (5)

can be considered as the perturbation. The ground state of the unperturbed Hamiltonian in 
equation (4) is doubly degenerate, which can be expressed by the direct production of a spin 
eigenstate and a corresponding coherent state:

|G〉do = |±z〉 ⊗ | ∓ λ0〉,� (6)

where |±z〉 are the eigenstates of σz with eigenvalues ±1, and | ± λ0〉 = e±λ0(a†−a)|0〉 are the 
coherent states with λ0 = g/ω.

Taking the perturbation Hp into accounted, the ground state can be approximated by the 
linear combinations of equation (6) in the subspace of degenerate states:

|G〉do =
1√
2
(|+z〉 ⊗ | − λ〉 − |−z〉 ⊗ |λ〉) ,� (7)

where λ is unfixed, since Hp effectively reduces the distance of the displaced oscillator. The 
quantitative value of the λ can be determined by a variational manner, namely, minimizing the 
ground-state energy function of the full Hamiltonian. The state in equation (7) is the starting 
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point of the GVM, which has proven to perform better than the adiabatic approximation and 
the GRWA in a number of cases [8, 10, 12].

To proceed, the displacement in equation (7) can be understood through the unitary trans-
formation on the vacuum state |G̃〉do = Udo |G〉do, i.e.

|G̃〉do = [
1√
2
(|+z〉 − |−z〉)⊗ |0〉],� (8)

where |0〉 is the vacuum Fock state, and the incorporated displacement unitary operator is

Udo = e−λσz(a†−a).� (9)

Correspondingly, the Hamiltonian in the transformed representation can be expressed as

H′ = UdoHU†
do.� (10)

Here λ is introduced as a variational parameter rather than being fixed as λ = g/ω in GRWA, 
and this difference makes GVM obtain better accuracy. The transformed Hamiltonian reads

H′ = H′
0 + H′

1 + H′
2 + H′

3,� (11)

where

H′
0 = ωa†a +

ε

2
σz + (ωλ2 − 2λg),

H′
1 = (g − ωλ)σz(a† + a),

H′
2 = −Ω

2
σxcosh[2λ(a† − a)],

H′
3 = −Ω

2
iσysinh[2λ(a† − a)].

�

(12)

The hyperbolic cosine and sine terms can be further expanded as [46]

cosh[2λ(a† − a)]

= F0(a†a) +
∞∑

k=0

[(a†)2kF2k+1(a†a)− F2k(a†a)a2k].
�

(13)

and

sinh[2λ(a† − a)]

=
∞∑

k=0

[(a†)2k+1F2k+1(a†a) + F2k+1(a†a)a2k+1].
�

(14)

The function Fm is defined as

Fm(n) = e−2λ2
(2λ)m n!

(n + m)!
Lm

n (4λ
2),� (15)

where m and n are integers, and

Lm
n (x) =

n∑
i=0

(−x)i (n + m)!

(m + i)!(n − i)!i!
,� (16)

is the Laguerre polynomial. The detailed calculations see the appendix.
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Similar to the displacement effect, the squeezing effect can be considered by a squeezing 
unitary operator

Us = e
β
2

[
a2−(a†)

2
]
.� (17)

One can easily obtain the transformation of creation and annihilation bosonic operators as

UsaU†
s = a†sinhβ + acoshβ,

Usa†U†
s = asinhβ + a†coshβ.

� (18)

Substitute equations (18) into (11) and the transformed Hamiltonian H̃ = UsH′U†
s  is rewritten 

as

H̃ = H̃0 + H̃1 + H̃2 + H̃3,� (19)

with

H̃0 =
ω

4
(e2β + e−2β − 2) +

ω

2
(e2β + e−2β)a†a

+ ωλ2 − 2gλ+
ε

2
σz,

H̃1 = (g − ωλ)σz(a† + a),

H̃2 = −Ω

2
σxcosh[2λe−β(a† − a)],

H̃3 = −Ω

2
iσysinh[2λe−β(a† − a)].

�

(20)

We note that in the bosonic Fock space H̃0 only has the diagonal terms, and H̃1 shows the 
off-diagonal terms with the first order of a (a†). By comparison, H̃2 and H̃3 are more compli-
cated. More precisely, H̃2 can be expanded as the sum of even power of a and a†, while H̃3 
undertakes the sum of odd power of a and a†. It is noteworthy that the coefficients of diagonal 
terms in H̃0 are evidently amplified through the squeezing transformation comparing with 
H′

0 in (12), while the off-diagonal contributions in equation  (20) are either unchanged or 
reduced. Especially for the variational parameter λ = g/ω chosen in GRWA, H̃1 is vanishing. 
For the ultra-strong coupling regime we are interested in, we only consider diagonal terms 
of the Hamiltonian (19) in the following calculations, which leads to an effective adiabatic 
Hamiltonian:

H̃eff =
ω

4
(γ + 1/γ − 2) +

ω

2
(γ + 1/γ)a†a

+ ωλ2 − 2gλ+
ε

2
σz −

Ω

2
σxF′

0(N),
�

(21)

where F′
0(N) = e−2λ2e−2β

L0
N(4λ

2e−2β) and γ = e−2β is defined for convenience. It is obvi-
ous that the Hamiltonian in equation (21) is analytically solvable. The basis can be chosen 
as |±z, n〉, where |±z〉 are the eigenstates of σz with eigenvalues ±1, and |n〉 is the Fock state. 
The Hilbert space can be divided into different subspaces, in which the effective Hamiltonian 
equation (21) can be recast into the following form:

H̃n(λ, γ) =
(
ε−n Rn

Rn ε+n

)
,� (22)
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where ε±n = ω
4 (γ + 1/γ − 2) + ω(γ + 1/γ)n/2 + ωλ2 − 2gλ± ε/2, and Rn = −ΩF′

0(n)/2. 
From equation (22), the eigenstates and eigenvalues depending on the displacement variable 
λ and the squeezing variable γ  can be easily obtained as

E±
n (λ, γ) =

ε−n + ε+n ±
√
(ε−n − ε+n )

2
+ 4R2

n

2
,� (23)

and

|φ̃±
n (λ, γ)〉 = A±

n | − z, n〉+ B±
n |+ z, n〉,� (24)

where

A±
n = ±

√√√√√1
2


1 ± ε−n − ε+n√(

ε−n − ε+n
)2

+ 4R2
n


,

B±
n =

√√√√1
2

[
1 ∓ ε−n − ε+n(

ε−n − ε+n
)2

+ 4R2
n

]
.

�

(25)

The ground-state energy reads

EG(λ, γ) =
ω

4
(γ + 1/γ − 2) + ωλ2 − 2gλ

− 1
2

√
ε2 +Ω2e−4λ2γ .

�
(26)

Taking γ = 1, the obtained energy spectra in equation (26) recover the GVM results [9]:

EGVM
G (λ) = ωλ2 − 2gλ−

√
ε2 +Ω2e−4λ2/2.� (27)

If one further set the variational parameter λ = g/ω, the GRWA result is recovered as

EGRWA
G = −g2/ω − 1

2

√
ε2 +Ω2e−4(g/ω)2/2.� (28)

The variational parameters λ and γ  in the GSRWA vary with ω , Ω and ε, and they can be 

determined by minimizing the EG(λ, γ) by solving ∂EG
∂λ = 0 and ∂EG

∂γ = 0. These two nonlin-
ear equations can not be easily solved in the analytical way. However, in the ultratrong cou-
pling regime we interested in, the approximate solutions are

λ ≈ g

ω +Ω2e−4λ2
0/
√
ε2 +Ω2e−4λ2

0

,� (29)

and

γ ≈ 1 + δ,� (30)

where λ0 = g

ω+Ω2/
√

Ω2+ε2
 and δ = −2Ω2λ2

ω
√

ε2+Ω2
. With determined values of λ and γ , we finally 

obtain the analytical formula of the ground-state wavefunction,

|G̃〉 = |φ̃−
0 (λ, γ)〉 = −

√
1
2
[1 +

ε√
ε2 +Ω2(F′

0(0))2
]|−z, 0〉+

√
1
2
[1 − ε√

ε2 +Ω2(F′
0(0))2

]|+z, 0〉,

� (31)
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and the physical observables can thus be calculated.
Before going on, we would like to discuss the difference between our analytical method 

and the GVM. Equations (29) and (30) show that even if the parameter λ takes the same value 
as that in the GVM, another parameter γ  may play an essential role in lowering the ground-
state energy. When g and Ω are small enough, the optimized γ  in our method approaches to 1, 
which is the exact value presumed in the GVM. However, when g and Ω increase, the optimal 
value of γ  will no longer be 1. In other words, our method improves the precision of vari-
ational method when g and Ω are sizeable.

3. The observables and comparison with other methods

With the analytical ground-state wave function equation (31) in hand, in order to show the 
accuracy of the GSRWA quantitatively, we calculate several physical observables to compare 
with the results obtained by the GVM. The numerically exact diagonalized results are also 
involved as a benchmark. The quantum average of a physical observable Q is 〈Q〉 = 〈G|Q|G〉, 
where |G〉 = U†

do U†
s  |G̃〉. In this work, we take the ground-state energy EG = 〈H〉, the mean 

photon number 〈a†a〉, the spin orientation 〈σx〉, and the correlation 〈σz(a† + a)〉 for illustra-
tion. For convenience, we set ω = 1 as an energy unit.

The ground-state energy obtained is given in equation (26). Figures 1(a) and (b) show the 
ground-state energy of the biased Rabi model as a function of g for different parameters. We 
see that both the results obtained by the GSRWA and the GVM agree well with the numerical 
ones for small coupling strength g. With the increase of g, the deviations between the GVM 
results and the numerical ones enlarges. In contrast, our results fit quite well with the exact 
ones. Figures 1(c) and (d) show the ground-state energy of the system as a function of Ω and 
ε. It is obvious that our results are better than the GVM. From these comparisons, we find that 
the GSRWA works much better for large g and large Ω than the GVM. The precision has been 
greatly improved in a wide parameter regime.

Next we focus on the mean photon number

〈a†a〉 = 1
4
(γ + 1/γ − 2) + λ2,� (32)

the spin orientation

〈σx〉 =
Ωe−4λ2γ

√
ε2 +Ω2e−4λ2γ

,� (33)

and the qubit-cavity correlation

〈σz(a† + a)〉 = −2λ.� (34)

As is shown in figure 2, it is obvious that our results is quite close to the numerical results for 
large g, where there are clear deviations for the GVM results.

Another interesting quantity characterizing the squeezing effect is the square of the squeez-
ing strength

〈(a† − a)2〉 = −γ.� (35)

In figure  3, we make the comparison of 〈(a† − a)2〉 calculated by different methods. One 
observes the result obtained by GVM is a constant  −1, but in our method, γ  changes with 
other parameters. The result of 〈(a† − a)2〉 through our method is in good agreement with the 
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Figure 1.  The ground-state energy EG  as a function of g, Ω or ε for different parameters. 
(a) Ω = 2, ε = 0.1; (b) Ω = 3, ε = 0.3; (c) g  =  0.7, ε = 0.1; (d) Ω = 3, g  =  0.3.
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Figure 2.  〈a†a〉, 〈σx〉 and 〈σz(a† + a)〉 as a function of g/ω  for different parameters.  
(a) Ω = 3, ε = 0.1; (b) Ω = 1, ε = 0.1; (c) Ω = 3, ε = 0.1; (d) Ω = 1, ε = 0.1.
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numerical results when Ω/ε is large, which indicates that it is necessary to take the squeez-
ing effect into account, and our GSRWA method is a convincing way to reveal the squeezing 
effect of the ground-state wave function.

4.  Discussion and conclusion

As an approximation, it is necessary to discuss the applicable range of the method we pro-
posed. It is shown that the GSRWA work quite satisfyingly for large g. According to the so-
called polaron picture [47], in such ultrastrong coupling regime, the ground-state energy can 
be well approximated by a single oscillator. Although some numerical methods have already 
considered the squeezing effect [48], the analytical results are relatively rare for an intuitive 
picture The parameter λ describes the displacement effect. From equation (29), we see that the 
optimal value of λ is independent of squeezing rate γ , while the squeezing effect is sensitive 
to the rate of Ω/ω and ε/ω shown in equation (30). When Ω/ω is large, the δ is nonnegligible. 
The difference between our method and the GVM is noticeable. In such a case, our method 
evidently improves the GVM. When ε/ω is large, the δ is small, and it implies that a large bias 
reduces the squeezing.

We would like to point out that the analytical method is challenged for large Ω/ω or large 
ε/ω in the sense of perturbation in equation (5). In the large Ω/ω case, we limit our discus-
sion to the ultrastrong coupling regime (g � ω). If the coupling strength becomes much larger, 
one oscillator approximation (single polaron picture) is not enough. In such a case, no matter 
how optimal the displacement and squeezing parameters are chosen, some important physics 
must be missed. In such a case, a novel critical regime meets. Plenty of interesting phenomena 
emerge [49–52].
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Figure 3.  〈(a† − a)2〉 as a function of g, Ω and ε for different parameters. (a) Ω = 3, 
ε = 0.1; (b) Ω = 1, ε = 0.1; (c) g  =  0.7, ε = 0.1; (d) Ω = 2, g  =  0.3.

W Xie et alJ. Phys. A: Math. Theor. 53 (2020) 095302



10

In conclusion, in this paper we propose an approximation method to improve the GVM 
to study the biased QRM by introducing the squeezing transformation. Since the QRM is an 
oscillator-involved model, the wave packet of its ground state is naturally expected to be com-
pressed. In the preceding literature, various transformations to the Hamiltonian are mainly 
limited to the displacement effect of the wave function. The comparison of several physical 
quantities with different parameters show that our method works well for larger coupling 
strength g and atom frequency Ω than the GVM. In these parameter regimes, the effect of 
deformation of the oscillator state can not be neglected. Thus the additional squeezing trans-
formation brings a prominent improvement over the GVM. A natural question arises whether 
such approximation method considering both the displacement and the squeezing effects 
works well for the low-lying excited states. We hope our study is a starting point for further 
investigations and has potential applications in quantum thermodynamics and quantum com-
puting, where a very accurate approximation for obtaining energy spectra is desired [53–56].
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Appendix.  Calculation details of equations (13) and (14)

The associated Laguerre function defined by

Lµ
n (z) =

(n + µ)!

n!µ!

∞∑
l=0

(−n)(−n + 1)(−n + 2) · · · (−n + l − 1)
l!(µ+ 1)(µ+ 2) · · · (µ+ l)

zl,

�

(A.1)

with its reduced form, namely the Laguerre function

Ln(z) = L0
n(z).� (A.2)

For the operator production, we have
{(

a†
)m

an =
(
a†)m−n

hn(N̂), m � n(
a†
)m

an = hm(N̂)an−m, m < n
� (A.3)

where

hn(N̂) = N̂(N̂ − 1)(N̂ − 2) · · · (N̂ − n + 1).� (A.4)
With the above equations in hand, we can obtain

cosh ν
(
a† − a

)
=

1
2
[
eν

(
a† − a

)
+ e−ν

(
a† − a

)]

=
1
2

e−ν2/2
[
eνa†e−νa + e−νa†eνa

]

=
1
2

e−ν2/2
∞∑
m,n

1
m!n!

[νm(−ν)n + (−ν)mνn]
(
a†
)m

an.

� (A.5)
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Here, we use the formula

e(A+B) = eAeBe−
1
2 [A,B].� (A.6)

For m − n = 2k � 0, there is

I+x =
1
2

e−ν2/2
∞∑
m,n

1
m!n!

[νm(−ν)n + (−ν)mνn]
(
a†)m

an

=
1
2

e−ν2/2
∞∑
k

∞∑
n

1
(n + 2k)!n!

[
νn+2k(−ν)n + (−ν)(n+2k)νn

] (
a†)(n+2k)

an

=
1
2

e−ν2/2
∞∑
k

ν2k (a†)2k
m∑
n

(−)nhn(N̂)

(n + 2k)!n!

(
2ν2n)

= e−ν2/2
∞∑
k

ν2k (a†)2k (N̂ + 2k)!
N!

N̂!

(N̂ + 2k)!

∞∑
n

(−)nhn(N̂)

(n + 2k)!n!
ν2n

= e−ν2/2
∞∑
k

ν2k (a†
) (N̂ + 2k)!

N̂!
L2k

N̂

(
ν2) .

�

(A.7)

For m − n = −2k � 0, there is

I−x =
1
2

e−ν2/2
∞∑
m,n

1
m!n!

[νm(−ν)n + (−ν)mνn]
(
a†)m

an

= e−ν2/2
∞∑
k

ν2k (N̂ + 2k)!

N̂!
L2k

N

(
ν2) a2k.

�

(A.8)

With the above all and the definition of Fm(n) in equation (15), the equation (13) can be 
obtained after some algebra. In the similar way, equation (14) can be obtained as well.
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