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Abstract
We study the motion of a one-dimensional run-and-tumble particle with three 
discrete internal states in the presence of a harmonic trap of stiffness µ. The 
three internal states, corresponding to positive, negative and zero velocities 
respectively, evolve following a jump process with rate γ . We compute 
the stationary position distribution exactly for arbitrary values of µ and γ  
which turns out to have a finite support on the real line. We show that the 
distribution undergoes a shape-transition as β = γ/µ is changed. For β < 1, 
the distribution has a double-concave shape and shows algebraic divergences 
with an exponent (β − 1) both at the origin and at the boundaries. For β > 1, 
the position distribution becomes convex, vanishing at the boundaries and 
with a single, finite, peak at the origin. We also show that for the special case 
β = 1, the distribution shows a logarithmic divergence near the origin while 
saturating to a constant value at the boundaries.

Keywords: stochastic processes, active particles, exact solution

(Some figures may appear in colour only in the online journal)

1.  Introduction

Recent years have seen a surge of interest in the study of active matter and active particles. The 
term ‘active particle’ refers to a class of self-propelled particles which can generate dissipa-
tive directed motion by consuming energy directly from their environment [1–6]. Examples 
of active matter can be found in nature at all length scales, ranging from micro-organisms 
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like bacteria [7, 8] to granular matter [9, 10], flock of birds [11, 12] and fish-schools [13, 
14]. Apart from a diverse set of novel collective behaviours like clustering [15–18], motility 
induced phase separation [19–21], and absence of well defined pressure [22], active particles 
show many intriguing features even at the single particle level. One such interesting feature 
is that, in the presence of external potentials and confining boundaries, active particles show 
very different behaviour than their passive counterparts, including non-Boltzmann stationary 
state, clustering near the boundaries of the confining region [23–29] and unusual relaxation 
and persistence properties [30–32]. There have been numerous recent studies focusing on the 
behaviour of active particles in the presence of external potentials and confinements, both 
theoretical [33–36] and experimental [37–40].

The theoretical attempts to characterise the behaviour of active particles focus on studying 
simple models of such systems. Run-and-tumble particle (RTP) is one such class of models 
which mimics the motion of certain bacteria which moves via alternating straight runs and 
random tumbling events resulting in reorientations.In its simplest version, an RTP is an over-
damped particle which moves with a constant speed v0, or ‘runs,’ along the direction of an 
internal ‘spin’ degree of freedom. The orientation of the spin can change randomly resulting 
in a sudden change, or ‘tumble,’ in the direction of motion of the particle. Several variations 
and generalizations of this simple RTP dynamics have been studied in the recent literature 
including finite tumble durations [41–43], space dependent speed [44] and effect of interac-
tions [45–47].

The most studied example of the RTP dynamics is in one spatial dimension where the inter-
nal spin can assume two possible values σ = ±1. In this case, the particle moves with velocity 
v0 or −v0; the reversal of direction occurs stochastically with rate γ, with the flipping of the 
spin σ → −σ. In the presence of an external potential U(x), the position x(t) of this two-state 
RTP evolves according to the Langevin equation,

ẋ = f (x) + v0σ(t)� (1)

where f (x) = −U′(x) is the deterministic force acting on the particle. The spin variable σ 
plays the role of the noise, its dichotomous nature giving rise to the ‘activity’. In fact, it is clear 
from the auto-correlation 〈σ(t)σ(t′)〉 = e−2γ|t−t′| that σ(t) is a coloured noise with a finite 
memory, characterised by the persistence time τ = (2γ)−1. Despite the apparent simplicity 
of the model, the two-state RTP shows a lot of intriguing features typical to active particles 
including non-Boltzmann stationary distribution [24, 30].

For any confining potential, the stationary position distribution of a two-state RTP is known 
exactly, and is given by,

Pst(x) ∝
1

v2
0 − f 2(x)

exp

[
2γ

∫ x

0
dy

f (y)
v2

0 − f 2(y)

]
� (2)

up to a normalization constant. The above result was first obtained long ago in the context of 
quantum optics [48–51], and later to study the role of coloured noise in dynamical systems 
[52]. More recently, it has been re-derived in the context of active particles [22, 24]. In par
ticular, the stationary distribution (2) has been analysed for specific confining potentials of the 
type U(x) ∝ |x| p with p   >  0 in [24]. The case p   =  2 corresponds to a harmonic potential which 
is of particular interest, not only from theoretical but also from an experimental point of view 
[38, 40]. For a harmonic potential U(x) = µx2/2, the stationary distribution (2) simplifies to,

Pst(x) =
2µ

4βB(β,β)v0

[
1 −

(
µx
v0

)2
]β−1

� (3)
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where β = γ/µ and B(u, v) is the beta-function. This distribution is symmetric in x and has a 
finite support in the region − v0

µ � x � v0
µ . Consequently, the particle is confined within this 

region in the stationary state. This stationary position distribution shows an interesting shape-
transition as a function of β. For β > 1 the distribution is convex shaped, with a peak at the 
origin x  =  0 and Pst(x) vanishing at the boundaries x = ± v0

µ . On the other hand, for β < 1 
Pst(x) has a concave shape with divergences at the boundaries and a minimum at the origin. 
For β = 1, the distribution is uniform. Thus by varying β, one can observe a transition from a 
double-peaked (at the boundaries) to a single-peaked distribution. The double-peaked nature 
of the distribution for γ < µ signifies an ‘active phase’, where the persistence time of the spin-
orientation is larger than µ−1, the relaxation time-scale of the potential. On the other hand, 
γ > µ, i.e. when the persistence time is smaller compared to µ−1, corresponds to a passive 
phase, where the stationary distribution resembles that of a passive particle in a trap, with a 
single peak at the centre of the trap. Indeed, in the diffusive limit when v0 → ∞, γ → ∞ but 
keeping the ratio v2

0/2γ = D fixed, the dynamics of the RTP in the harmonic trap converges to 
the Ornstein–Uhlenbeck process4. This is also exhibited in the stationary state where the dis-
tribution in equation (3) converges to a Boltzmann distribution, which in this case is a simple 

Gaussian Pst(x) ∝ e−
µ
D x2

.
It is then natural to ask how the stationary distribution changes if the RTP has more than 

two internal states. In fact, an RTP with many internal degrees have been studied where the 
internal degrees can take a set of discrete values and evolve following some discrete jump pro-
cesses [53, 54]. However, most of these studies are numerical and to the best of our knowledge 
no analytical results are available for the stationary state of a multi-state RTP in the presence 
of an external potential.

In this article, we study a run-and-tumble active particle in one spatial dimension with 
three discrete internal states, with positive, negative and zero velocities, respectively. We show 
that such a multi-state dynamics naturally arises when one considers an RTP in higher spatial 
dimensions and project it to one-dimension. We calculate exactly the stationary position prob-
ability distribution P(x) in the presence of a harmonic potential of strength µ for arbitrary 
flip-rate γ  among the internal states. It turns out that, similar to the two-state case, P(x) has a 
finite support on the real line and its shape is governed by a single dimensionless parameter

β =
γ

µ
.� (4)

Note that β is the ratio of the two time-scales present in the system, namely, the relaxation 
time µ−1 in the trap and γ−1, the time-scale associated with the flipping of the internal spin. 
The parameter β acts as a measure of the ‘activity’ of the dynamics. For small β, i.e. when 
the persistence time γ−1 is much larger than the relaxation time scale µ−1, one would expect 
strong effects of activity such as non-Boltzmann stationary states, while in the opposite limit 
the dynamics resembles more of a normal diffusive particle in a trap leading to Boltzmann-
like stationary state. Such a transition in the stationary state as the parameter β is increased has 
been demonstrated recently in the 2-state RTP model in a confining potential in one dimension 
as discussed above [24], as well as in 2-d active Brownian motion model in the presence of a 
harmonic trap [25]. In this paper, our exact solution for the 3-state RTP model demonstrates 
a similar transition in the stationary position distribution P(x) from an ‘active’ like shape to 
a ‘passive’ like shape as the activity parameter β increases through β = 1. For β < 1, P(x) 

4 Note that the Ornstein–Uhlenbeck process here refers to the dynamics of the position x(t) (and not the velocity 
v(t)) of an overdamped Brownian particle in the presence of a harmonic trap: it is not the standard Ornstein–Uhlen-
beck process v(t) describing the evolution of the velocity of an inertial particle in the presence of friction and noise.
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diverges both at the origin and the boundaries with the same exponent β − 1. Thus, in this 
case, the position distribution has a double-concave shape, with three peaks, namely at the 
boundaries and the origin. For β = 1, P(x) shows a logarithmic divergence near the origin. On 
the other hand, for β > 1, the distribution converges to a finite value at the origin while it van-
ishes at the boundaries, implying a convex shape with a single peak at the origin (see figure 2).

2.  Model

Our model of a three-state RTP in one-dimension is motivated by a natural ‘clock-like’ model 
for a two-dimensional RTP. In the standard RTP model in 2-d the orientation angle is continu-
ous θ ∈ [0, 2π]; the particle moves along a direction θ with constant speed during a run until 
θ changes via a tumbling event. A natural variation of this model is where the orientation θ 
can have only certain discrete values. This is similar in spirit to spin systems where ‘clock’ 
models are the natural discrete analogue of Heisenberg models with a continuous spin degree 
of freedom. Here we show that while the continuous-θ RTP model in the presence of a 2-d 
harmonic trap is still not solvable analytically for the stationary state, a particular discrete 
version of this model is tractable analytically. Let us consider an overdamped particle moving 
on a two dimensional (xy) plane with an internal orientational degree of freedom or ‘spin’ σ 
associated with it. In the absence of any external potential the particle moves with a constant 
speed v0 along the direction of σ, which is a unit vector with four possible discrete orienta-
tions, denoted by E, W, N, S  (along ±x  and ±y  axes respectively). The spin σ evolves in 
time following a Markov jump process—its orientation can change via a rotation of π2  either 
clockwise or anti-clockwise, both with rate γ2 . This jump process is schematically represented 
in figure 1(a). Additionally, we consider an external harmonic potential U(x, y) = µ

2 (x
2 + y2) 

which exerts a force f (x, y) = −∇U(x, y) on the RTP.
The time-evolution of the position (x(t), y(t)) of the RTP can be conveniently expressed in 

terms of the Langevin equations,

ẋ(t) = −µx(t) + v0σx(t)� (5a)

ẏ(t) = −µy(t) + v0σy(t)� (5b)

where σx,y(t) are components of the spin vector σ(t) at any time t, along the x and y  axes 
respectively (see figure 1(a)).

The position probability distribution P(x, y, t) is given by the sum P(x, y, t) =
∑

σ Pσ(x, y, t) 
where Pσ(x, y, t) denotes the probability that the particle has the position (x, y) and orienta-
tion σ = E, N, W, S at time t. These probabilities evolve according to the Fokker–Planck (FP) 
equations,

Figure 1.  (a) Schematic representation of the jump process through which the 
orientation σ evolves. (b) The equivalent 3-state jump process for σx.
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∂

∂t
PE(x, y, t) =

∂

∂x

[
(µx − v0)PE

]
+

∂

∂y

[
µyPE

]
+

γ

2
(PN + PS)− γPE

� (6a)

∂

∂t
PN(x, y, t) =

∂

∂x

[
µxPN

]
+

∂

∂y

[
(µy − v0)PN

]
+

γ

2
(PE + PW)− γPN

� (6b)

∂

∂t
PW(x, y, t) =

∂

∂x

[
(µx + v0)PW

]
+

∂

∂y

[
µyPW

]
+

γ

2
(PN + PS)− γPW

� (6c)

∂

∂t
PS(x, y, t) =

∂

∂x

[
µxPS

]
+

∂

∂y

[
(µy + v0)PS

]
+

γ

2
(PE + PW)− γPS� (6d)

where we have suppressed the argument of Pσ on the right hand side for the sake of brevity. 
It is hard to find an analytical form of P(x, y, t) as these equations are difficult to solve, even 
in the stationary state.

However, it is also interesting to look at the x-process only, governed by equation (5a). 
This describes an effective one-dimensional RTP where the internal spin σx has three possible 
discrete values, 1, 0,−1. As illustrated in figure 1(a), both σ = N  and σ = S correspond to 
σx = 0 while σ = E and σ = W  corresponds to σx = 1 and σx = −1, respectively. The jump 
from σx = 1 to 0 can, thus, occur through two different channels (E → N  and E → S), result-
ing in a jump rate γ  for σx = 1 → σx = 0. Similarly, σx = −1 → σx = 0 also occurs with 
rate γ. On the other hand, the transition σx = 0 → 1 corresponds to the jumps σ = N → E  
and σ = S → E; since, at any given time, the particle with σx = 0 can be in only one of the 
source states N and S, the effective rate for the transition 0 → 1 is γ/2. Similarly, the effective 
transition rate for 0 → −1 is also γ/2. This effective 3-state jump process in one-dimension 
is schematically shown in figure 1(b). Let Pi(x,t) denote the probability that the RTP is at a 
position x at time t with σx = i. The corresponding FP equations read,

∂

∂t
P1(x, t) =

∂

∂x
[(µx − v0)P1] +

γ

2
P0 − γP1� (7a)

∂

∂t
P−1(x, t) =

∂

∂x
[(µx + v0)P−1] +

γ

2
P0 − γP−1� (7b)

∂

∂t
P0(x, t) =

∂

∂x
[µxP0] + γ(P1 + P−1)− γP0.� (7c)

We note that this set of FP equations can also be obtained from equations (6a)–(6d) by integrat-
ing both sides over y  and then identifying P1(x, t) =

∫
dy PE(x, y, t), P−1(x, t) =

∫
dy PW(x, y, t), 

and P0(x, t) =
∫

dy [PN(x, y, t) + PS(x, y, t)].
In the presence of the confining harmonic potential, in the long time limit the RTP is 

expected to reach a stationary state where the left hand side (l. h. s.) of the equations (7a)–(7c) 
would vanish. The corresponding stationary distributions Pi(x) = limt→∞ Pi(x, t) then satisfy 

a set of coupled linear differential equations (obtained by putting ∂Pi
∂t = 0),

d
dx

[(µx − v0)P1] +
γ

2
P0 − γP1 = 0� (8a)
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d
dx

[(µx + v0)P−1] +
γ

2
P0 − γP−1 = 0� (8b)

d
dx

[µxP0] + γ(P1 + P−1)− γP0 = 0.� (8c)

Our objective is to solve this set of equations to find Pi(x) in the stationary state.

Boundary Conditions. While at any finite time t equations (7a)–(7c) hold in the full space 
x ∈ [−∞,∞], the steady state equations (8a)–(8c) hold only over a finite domain x ∈ [x−, x+], 
where x± = ±v0/µ. This is because in the stationary state the RTP gets trapped in this finite 
interval x ∈ [x−, x+]. This can be understood easily from the following argument: from the 
Langevin equation (5a) it is clear that if the particle is outside the region [x−, x+], it always 
feels a drift towards the origin, irrespective of the value of σx. As a result, if the particle starts 
from some initial position x0 > x+, or x0 < x−, it will eventually reach the region [x−, x+]. 
Consequently, the stationary distribution has a finite support in the region [x−, x+] and it is 
zero outside.

To solve the stationary equations (8a)–(8c) in the finite segment x ∈ [x−, x+], we need to 
specify the boundary conditions at the two endpoints x− and x+ . These boundary conditions 
have to be provided additionally, and can not be obtained via discretising the original equa-
tions (7a)–(7c) near x±. To derive these additional boundary conditions we need to investigate 
the trajectory near the boundary points x±. For this purpose, let us first look at the behaviour 
of P1(x) at x  =  x−. To find P1(x−, t), i.e. the probability that the particle is at x  =  x− at time t, 
we have to consider the trajectory of the particle during the infinitesimal interval [t −∆t, t]— 
during this interval the particle (i) either moved a distance ∆x = (−µx− + v0)∆t + O(∆t2) 
(see the Langevin equation (5a)) with σx = 1 or (ii) σx flipped from 0 → 1 while the position 
did not change. The probabilities for these run and the tumbling events are (1 − γ∆t) and 
γ∆t/2, respectively. Then, one can write,

P1(x−, t +∆t) = (1 − γ∆t)P1(x− −∆x, t) +
γ

2
∆tP0(x−, t).� (9)

Let us emphasize again that this equation is not a discretized version of the FP equation (7a) 
near x  =  x−, rather it has to be derived separately in the stationary state. Now, in the stationary 
state, the probabilities Pi(x) are independent of time, hence, we have from (9),

P1(x−) = (1 − γ∆t)P1(x− −∆x) +
γ

2
∆tP0(x−).� (10)

Moreover, from equation  (5a) we have, for σx = 1 and near x−, ∆x = (−µx− + v0)

∆t = 2v0∆t > 0, thus P1(x− −∆x) = P1(x− − 2v0∆t) which vanishes in the stationary 
state, as the argument x− − 2v0∆t is outside the region [x−, x+]. Then, taking ∆t → 0 limit in 
equation (10), we get P1(x−) = 0. Using similar arguments for P−1 and P0, one finds the full 
set of boundary conditions to be satisfied by the set of equations (8a)–(8c),

P1(x−) = 0, P−1(x+) = 0, P0(x−) = 0, P0(x+) = 0.� (11)

Note that the behaviour of P1(x+) and P−1(x−) remain unspecified and we will see that these 
boundary conditions (11) are enough to uniquely determine the stationary state. The set of 
boundary conditions for P1 and P−1 is very similar to the case of 2-state RTP [24]. However, 
as we will see below, the presence of the third state σx = 0 leads to a richer behaviour in the 
present case.

J. Phys. A: Math. Theor. 53 (2020) 09LT01
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3.  Exact solution

The straightforward strategy to solve a set of coupled first order equations like equations (8a)–
(8c) is to decouple them and find separate equations for Pi(x). However, our primary goal is 
to find the marginal position distribution of the particle, i.e. the probability that the effective 
one-dimensional RTP has a position x, irrespective of the spin-orientation σx. This is given by

P(x) = P0(x) + P1(x) + P−1(x).� (12)

In the following we attempt to derive an equation for P(x) using equations (8a)–(8c). To this 
end, we first define,

Q(x) = P1(x) + P−1(x), and R(x) = P1(x)− P−1(x).� (13)

It is straightforward to see that in terms of these functions P and Q, the four boundary condi-
tions given by equation (11) translate to,

P(x+) = Q(x+), and P(x−) = Q(x−).� (14)

Note that the boundary conditions of R(x) remain unspecified.
We proceed by expressing equations (8a)–(8c) in terms of these functions P and Q. For this 

purpose, we first add equations (8a)–(8c) to get,

d
dx

[
µxP(x)− v0R(x)

]
= 0 ⇒ µxP(x)− v0R(x) = C� (15)

where C is a constant independent of x. To determine C, we substitute x  =  x+ in the above 
equation. Using the definitions of P and R, along with the boundary condition (11), we get, 
C = (µx+ − v0)P1(x+) = 0. Hence, from equation (15) we have,

R(x) =
µx
v0

P(x)� (16)

for all values of x. Now, adding equations (8a) and (8b) and using equation (16), we get,

µxP′(x) + (µ− γ)P(x) = µxQ′(x) + (µ− 2γ)Q(x)� (17)

where ′ denotes the derivative with respect to (w.r.t.) the argument of the functions. Next, we 
subtract equation (8b) from equation (8a) to get,

(µx)2P′(x) + µ(2µ− γ)xP(x) = v2
0Q′(x).� (18)

Equations (17) and (18) are two coupled linear differential equations involving P(x) and Q(x). 
In the following, we use them to get two separate differential equations for P(x) and Q(x). 
But, first, it is convenient to use a change of variable z = (µx

v0
)2 with 0 � z � 1. Let us denote 

P̃(z) = P(x = v0
√

z/µ) and Q̃(z) = Q(x = v0
√

z/µ). Equations (17) and (18) then become,

2zP̃′(z) + (1 − β)P̃(z) = 2zQ̃′(z) + (1 − 2β)Q̃(z)� (19)

zP̃′(z) +
(

1 − β

2

)
P̃(z) = Q̃′(z)� (20)

where β = γ/µ. The two boundary conditions in equation (14) reduce to a single condition 
for P̃  and Q̃,

P̃(z = 1) = Q̃(z = 1).� (21)
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As we will see below, this boundary condition is enough to solve the differential 
equations uniquely.

To get an equation involving P̃(z) only, we take derivative of equation (19) w.r.t. z. Then, 
using equation (20), we immediately arrive at a second order differential equation,

z(1 − z)P̃′′(z) +
[

3 − β

2
− 1

2
(7 − 3β)z

]
P̃′(z)−

(
1 − β

2

)(
3
2
− β

)
P̃(z) = 0.

� (22)
It is straightforward to check that the above equation is in the form of a hypergeometric differ
ential equation,

z(1 − z)P̃′′(z) + [c1 − (a1 + b1 + 1)z]P̃′(z)− a1b1P̃(z) = 0� (23)

with the parameters,

a1 = 1 − β

2
; b1 =

3
2
− β; c1 =

3 − β

2
.� (24)

One can also get a similar second order equation for Q̃(z). To this end, we first express P′(z) 
in terms of Q̃(z) and Q̃′(z), i.e. in a form similar to equation (20). Multiplying equation (19) 
by (1 − β

2 ) and equation (20) by (1 − β), and subtracting the latter resulting equation from 
the former, we get,

zP̃′(z) = (1 − 2β)
(

1 − β

2

)
Q̃ − [1 − β − (2 − β)z]Q̃′(z).� (25)

Taking a derivative of equation (20) and using equation (25), we get,

z(1 − z)Q̃′′(z) +
[

1 − β

2
− 1

2
(5 − 3β)z

]
Q̃′(z)−

(
1 − β

2

)(
1
2
− β

)
Q̃(z) = 0.

� (26)
Clearly, this is also a hypergeometric differential equation of the form (23), but with a differ-
ent parameter set,

a2 = 1 − β

2
= a1, b2 =

1
2
− β = b1 − 1, c2 =

1 − β

2
= c1 − 1.� (27)

3.1.  Position distribution for β �= 1

The general solutions for equations (22) and (26) can be written in terms of the hypergeomet-
ric function 2F1(a, b, c; z) [55]. For c1 �= 1, i.e. for β �= 1, these general solutions read,

P(z) = A1 [2F1(a1, b1, c1; z)] + B1z1−c1 [2F1(a1 − c1 + 1, b1 − c1 + 1, 2 − c1; z)]
� (28)

Q(z) = A2 [2F1(a2, b2, c2; z)] + B2z1−c2 [2F1(a2 − c2 + 1, b2 − c2 + 1, 2 − c2; z)]
� (29)

where A1, A2, B1, B2 are arbitrary constants. The case β = 1 is special, which we discuss later. 
To determine the constants A1, A2, B1, B2, we first use the original first order equations (19) 
and (20) which must be satisfied by the solution. Substituting equations (28) and (29) in (20) 

and using well known identities involving the hypergeometric function, we get, B2 = B1
1+β

 and 

A2 = A1(1−β)
1−2β . Next, we impose the boundary condition (21). Once again, using properties of 

hypergeometric functions, we get
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B1 =
2A1√
π

Γ( 3−β
2 )Γ( 1

2 + β)

(1 − 2β)Γ( 1+β
2 )

.� (30)

To completely specify P̃(z) we still need A1 which can be determined using the normalization 
condition,

∫ x+

x−
dx P(x) = 1 ⇒

∫ v0/µ

0
dx P̃

[(
µx
v0

)2
]
=

1
2

.� (31)

Fortunately, this integral can be performed analytically and yields,

A1 =
µ

2v0

[
3F2

(
1
2

3
2 − β 1 − β

2
3
2

3−β
2

; 1

)
− 1

β
√
π

Γ( 3−β
2 )Γ(β − 1

2 )

Γ( 1+β
2 )

3F2

(
1
2 1 − β

2
β
2

1+β
2

β
2 + 1

; 1

)]−1

� (32)

where pFq(
a1,a2,...ap
b1,b2,...bq

; z) denotes the generalized hypergeometric function [55]. Finally, we can 
write an explicit expression for the stationary position probability distribution,

P(x) = A1

[
2F1

(
1 − β

2
,

3
2
− β,

3 − β

2
;
(
µx
v0

)2
)

+
2√
π

Γ( 3−β
2 )Γ(β + 1

2 )

(1 − 2β)Γ(β+1
2 )

(
µx
v0

)β−1

2F1

(
1
2

, 1 − β

2
,
β + 1

2
;
(
µx
v0

)2
)]

� (33)
where the normalization constant A1 is given by equation  (32). Note that, P(x) is an even 
function of x and its dependence on the flip rate γ  comes through the dimensionless parameter 
β = γ/µ only. P(x) takes a particularly simple form for certain specific values of β,

P(x) =





Γ( 3
4 )√

πΓ( 1
4 )

√
µv0√

|x|(v2
0−µ2x2)

for β = 1
2

µ
v0
(1 − µ|x|

v0
) for β = 2

6µ
5v0

[
1 − 5(µx

v0
)2 −

(
µ|x|
v0

)3 (
(µx

v0
)2 − 5

)]
for β = 4.

� (34)

One can also write an explicit expression for Q(x) using equations (29) and (30),

Q(x) =
A1

(1 − 2β)

[
(1 − β) 2F1

(
1 − β

2
,

1
2
− β,

1 − β

2
;
(
µx
v0

)2
)

+
2√
π

Γ( 3−β
2 )Γ(β + 1

2 )

(1 + β)Γ(β+1
2 )

(
µx
v0

)β+1

2F1

(
1
2

, 1 − β

2
,
β + 3

2
;
(
µx
v0

)2
)]

.

�
(35)

From equations (33) and (35) and using the relation (16) between P(x) and R(x) we can also 
calculate Pi(x) individually in a straightforward manner. However, we do not give explicit 
expressions for them here.

Figures 2(a) and (c) show plots of P(x) as a function of x for different values of β cal-
culated from equation (33). We have also measured P(x) from numerical simulations using 
standard Monte-Carlo methods for the orientation σ and integrating equation (5a) by means 
of the Euler discretization scheme; the correspoding data are included in the figures. Similar 
to the 2-state RTP, the distribution shows two different behaviours near the boundary x = x± 
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depending on the value of β. Moreover, for β < 1, P(x) also diverges near the origin x  =  0 
while it shows a cusp-like behaviour for large β. Such three-peak structures of the position 
distribution have been observed numerically earlier in the context of tracer particle motion in 
active gel [56, 57].

As discussed in the introduction, we find a shape transition in the stationary position dis-
tribution P(x) as the ‘activity’ parameter β is increased through β = 1. The non-Boltzmann 
shape of P(x) for β < 1 is, in fact, a manifest signature of the active nature of the system in 
this regime. In the following we investigate the behaviour of P(x) in more details and charac-
terise this shape-transition at β = 1.

Behaviour near x  =  0. To understand the behaviour of P(x) near the origin we use the series 
expansion of the hypergeometric function 2F1(a, b, c; z) near z = 0,

2F1(a, b, c; z) = 1 +
ab
c

z +
ab(1 + a)(1 + b)

2c(1 + c)
z2 +O(z3).� (36)

Using this expansion in equation (33), we have, near x = 0,

P(x) ∼





B1

(
µ
v0

x
)β−1

for β < 1

A1(1 − C1xβ−1) for 1 < β < 3
A1(1 − C2x2) for β > 3

� (37)

where B1 and A1 are given respectively in equations (30) and (32) while C1 and C2 are given by

C1 =
2√
π

Γ( 3−β
2 )Γ(β + 1

2 )

(2β − 1)Γ(β+1
2 )

(
µ

v0

)β−1

,� (38)

C2 =
2β2 + 6 − 7β

2(β − 3)

(
µ

v0

)2

.� (39)

Clearly, for β < 1, P(x) diverges near the origin. Note that, this divergence is integrable and 
the distribution remains normalized for all values of β. The emergence of this additional peak 
at the origin is a direct consequence of the presence of σx = 0 state: From equation (5a) it 
is clear that if σx = 0, the particle moves deterministically towards the origin, reaching it in 
a time ∼ µ−1. If, additionally, the flip rate γ  is small, so that the typical time for changing 
its orientation γ−1 > µ−1 (i.e. β < 1), the particle spends a long time near the origin, thus 
giving rise to the diverging peak. For β > 1, on the other hand, P(x) approaches a finite 

Figure 2.  Stationary position distribution P(x) as a function of x for the 3-state model 
for (a) β < 1, (b) β = 1, and (c) β > 1. Here v0 = 1 and µ = 1. The symbols correspond 
to the data obtained from numerical simulations while solid lines are obtained from the 
exact result (see equations (33) and (46)).
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value at x  =  0. The approach also depends on the value of β : for 1 < β < 3, P(x) has a cusp-
like behaviour near the origin while for β � 3 it shows a quadratic behaviour, resembling a 
Gaussian around the origin. Indeed, in the diffusive limit, when γ → ∞ and v0 → ∞ keeping 
v2

0/(2γ) = D fixed (as a consequence β → ∞ in this limit), we find from equation (39) that 
C2 → µ/(2D). As a result, from the third line of (37), we recover the Boltzmann distribution 
P(x) ∼ e−µ/(2D)x2

 which actually holds for all x.

Behaviour near x = x±. The position distribution P(x) also shows an interesting behaviour 
near the boundaries x = x±. As P(x) is symmetric in x, it suffices to explore its nature near 
one boundary, say x+ . To characterise it we use the series expansion of 2F1(a, b, c; z) near 
z  =  1. From equation (28), we have, for z → 1−,

P̃(z) ∼
{
(1 − z)β−1 for β < 3
(1 − z)2 for β > 3.

� (40)

Hence, near x  =  x+ , we have the following behaviour of P(x) :

P(x) ∼




(x+ − x)β−1 diverges for β < 1
(x+ − x)β−1 vanishes for 1 < β � 3
(x+ − x)2 vanishes for β > 3.

� (41)

A similar behaviour is seen also near x  =  x−. Note that this ‘freezing’ for the leading behav-
iour for β > 3 occurs only for the three-state model, but not for the two-state model [24].

3.2.  Position distribution for β = 1

As mentioned before, the case β = 1 is special. In this case, the differential equations (22) 
and (26) reduce to,

z(1 − z)P̃′′(z) + (1 − 2z)P̃′(z)− 1
4

P̃(z) = 0� (42)

z(1 − z)Q̃′′(z)− zQ̃′(z) +
1
4

Q̃(z) = 0� (43)

which correspond to two hypergeometric equations  with c1  =  1 and c2  =  0, along with 
a1 = a2 = b1 = 1/2, b2 = −1/2. Equation  (28) is not a general solution anymore as the 
two hypergeometric functions therein become identical. We use Mathematica to solve equa-
tions (42) and (43) and it turns out that the general solutions can be expressed in the form,

P̃(z) =
2A1

π
K(1 − z) + B1Q− 1

2
(2z − 1)� (44)

Q̃(z) = A2z 2F1

(
1
2

,
3
2

, 2; z
)
+ B2 G20

22

( 1
2

3
2

0 1
; z
)

.� (45)

Here K(u) is the Legendre’s complete elliptic integral of the first kind (see [58] and equa-

tion (19.2.8) in [55]), Gmn
pq (

a1,...ap
b1...bq

; z) is the Meijer’s G-function (see [58] and equation (16.17.1) 
in [55]) and Qν(u) is the Legendre function of the second kind (see equation (14.3.7) in [55]).

To determine the arbitrary constants A1, A2, B1 and B2 we use the same strategy as in the 
previous section. First, we note that the solutions in equations (44) and (45) must satisfy the 
original first order equations  (19) and (20) with β = 1 for all values of z. We then look at  
the behaviour of P̃(z) and Q̃(z) in equations (44) and (45) near z  =  0. In this limit both K(1 − z) 
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and G20
22

(
1
2

3
2

0 1 ; z
)
 diverge logarithmically whereas the Legendre and hypergeometric functions 

approach a constant value. Substituting the series expansions of these functions back into 
equation (20) and comparing coefficients of ln z and different powers of z, we get, B2 = A1, 
and A2 = −π

4 B1. It is also straightforward to check that equation (19) gives the same relation. 
We still have two independent constants A1 and B1. To determine these we use the boundary 
condition (21). Using the limiting behaviours of the special functions we have, for z → 1−, 
P̃(z)− Q̃(z) = B1 +O(1 − z) which immediately implies B1  =  0 (see equation  (21)). The 
last remaining constant A1 can be determined from the normalization condition (31) and yields 
A1 = µ

πv0
. Finally, we have, for β = 1,

P(x) =
2µ
π2v0

K
(

1 − µ2x2

v2
0

)
, and Q(x) =

µ

πv0
G20

22

( 1
2

3
2

0 1
;
µ2x2

v2
0

)
.� (46)

Figure 2(b) shows a plot of P(x) for β = 1 together with the same obtained from numerical 
simulations. To understand the behaviour near the origin x  =  0 and the boundaries x = x± 
we look at the series expansion of P(x). Near x = 0, a logarithmic divergence is seen, 
P(x) ∼ − ln x. On the other hand, near the boundaries x = x±, P(x) approaches a constant 
value, limx→x± P(x) = µ

πv0
.

4.  Conclusion

In this paper, we have solved exactly the stationary position distribution of a one-dimensional 
run-and-tumble (RTP) particle with three discrete internal states and subjected to an external 
harmonic potential. To our knowledge, this is the first exact solution with three states that gen-
eralizes the well-known result for the standard two-state RTP. We showed that the stationary 
state exhibits a rich behavior as a function of the single parameter β = γ/µ (where γ  repre-
sents the rate at which the internal state changes and µ is the stiffness of the trap). One of the 
interesting outcomes is that the stationary distribution undergoes a shape-transition at β = 1.

While we were able to characterise the stationary state of a three-state RTP in a harmonic 
trap exactly, it would be interesting to study the relaxational dynamics towards this stationary 
state, as was recently done for the two-state RTP [24]. It would also be natural to extend our 
studies to non-harmonic potentials, such as U(x) ∼ |x| p, with p   >  0. Another natural exten-
sion would be to consider an RTP particle with more than three internal states. Finding even 
the stationary state of a general n-state RTP with n  >  3 remains a challenging open problem.
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