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Abstract
We study either fully visible and restricted Boltzmann machines with sub-
Gaussian random weights and spherical or Gaussian priors. We prove that the 
free energies of the spherical and Gaussian models are related by a Legendre 
transformation. Incidentally our analysis brings also a new purely variational 
derivation of the free energy of the spherical models.
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1.  Introduction

Originally inspired by statistical physics [1], Boltzmann machines (BMs) [2, 3] are among 
the most studied data generative models, playing a central role in the phenomenal progresses 
of machine learning through neural networks of the last two decades. In particular restricted 
BMs (RBMs) constitute a cornerstone of unsupervised learning, mainly for the very success-
ful training algorithms developed [4, 5], working also for many interesting deep architectures 
[6, 7], for which RBMs are used as the basic building blocks [8, 9].

Concretely a BM is a probability distribution of the Gibbs type which is aimed to reproduce 
the true distribution of the data. In the much useful neural network interpretation the units of 
the machine should mirror the data, that is typical configurations according to the BM distri-
bution are desired to be close to typical data. Therefore two ingredients are crucial to build 
up a BM: the energy function and the a priori unit distribution. The main focus of the paper 
will be on fully visible BMs, namely Hopfiel models, and RBMs with spherically symmetric 
priors. We will give a formula for the free energy of these BMs pointing out a Legendre duality 
between rigid spherical priors and a certain quite general class of sub-Gaussian distributions, 
already investigated for the Sherrington–Kirkpatrick energy [10]. This latter equivalence is 
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achieved by a suitable adaption of a very much established method from the statistical physics 
tradition, namely equivalence of ensemble (spherical and Gaussian).

1.1.  Set up

First we will introduce the models we will deal with. We start by the energy function.
Let {ξij}i=1,...,N1,j=1,...,N2 a doubly indexed sequence of i.i.d. centred sub-Gaussian r.vs. with

E[ξijξhk] = δihδjk.

For definiteness we assume that

N1

N1 + N2
→ α ∈ (0, 1).

We shall look at this sequence in two different ways, namely as entries of a N1 × N2 ran-
dom matrix Ξ or a collection of N2 patterns in RN1, defining a sample covariance matrix 
1

N2
ΞΞT ∈ RN1×N1. In either cases we can use the following two important properties of rect-

angular random matrices with centred independent subgaussian entries with unitary variance 
[11, 12]. For A ∈ RN×N we denote its eigenvalues as λi := λi(A), i = 1, . . .N ; for A ∈ RN1×N2 
we denote its singular values as σi := σi(A), i = 1, . . .N1.

	( P1) �The empirical distribution of the eigenvalues of 1
N2
ΞΞT  converges a.s. to the Marchenko–

Pastur law:

1
N1

N1∑
j=1

δ(λ− λi(
1

N2
ΞΞT)) ⇀ ρMP(λ;α) P− a.s.

		 where

ρMP(λ;α) := (2 − 1
α
)+δ0(λ) +

(1 − α)

2πα

√
(λ− λ−)(λ+ − λ)

λ
1[λ−,λ+](λ)

� (1.1)

		 with λ± :=
(

1 ±
√
α/(1 − α)

)
2.

	( P2) �The spectrum of 1
N2
ΞΞT  is localised in an interval with large probability:

P(‖ 1
N2

ΞΞT − I‖op � t +
√
λ+ − 1) � 2e−

N1 t2

2 .� (1.2)

We will deal with two kind of Boltzmann machines: Hopfield models (HMs) and restricted 
Boltzmann machines (RBMs). Their energy functions (or Hamiltonians) are

HHM
N1,N2

:= − 1
N1 + N2

N2∑
j=1

N1∑
i<k

ξijξkjxixk,� (1.3)

HRBM
N1,N2

:= − 1√
N1 + N2

N2∑
j=1

N1∑
i=1

ξijxiyj� (1.4)

(we will often drop all the indexes from the energies to lighten the notations).

G Genovese and D Tantari﻿J. Phys. A: Math. Theor. 53 (2020) 094001



3

In the Hopfield model units have one single choice for the prior distribution, while a RBM 
is an undirected bipartite system in which we can have different priors for each layer. With 
this in mind, we can now introduce the prior distributions we shall deal with. Let SN(R) be 
the (N − 1)-dimensional sphere in RN  with radius R

√
N . Define the following a priori prob-

ability measures on RN :
{
σN,R(dx) uniform on SN(R);
γN,θ(dx) centred Gaussian with covariance θI.� (1.5)

Models with Gaussian priors are typically ill-defined for low temperatures and need a sub-
Gaussian regularisation. Let r : R �→ R such that there is ε > 0 with

lim
x→∞

r(x)
x2+ε

= ∞.

We define the regularised prior on RN

ρN(dx) := e−Nr
(

‖x‖√
N

)
γN,θ(dx).� (1.6)

For instance in [13] it was considered r(x) = βx4/4 while in [10, 14] r(x) = βx4/4 − λx2/2.
This notion extends easily to two layer settings. We introduce some r : R2 �→ R so that

lim
x2+y2→∞

r(x, y)
x2 = lim

x2+y2→∞

r(x, y)
y2 = ∞.

Then we define the following measure on RN1 × RN2

ρ2
N1,N2

(dxdy) := e
−
√

N1N2r
(

‖x‖√
N1

, ‖y‖√
N2

)
γN1,θ(dx)γN2,θ(dy).� (1.7)

The idea is that ρ  can be used to regularise a single layer, while ρ2 regularises two layers 
at once. A simple example is low rank matrix factorisation with Gaussian priors in which 
r(x, y) = x2y2/2 [15].

One technical problem is that the support of σN,R has zero γN,θ-measure, that is 
γN,θ(SN(R)) = 0. For this reason for a given ε > 0 we need to introduce the spherical shells

SN,R,ε := {x ∈ RN : R − ε � ‖x‖2 � R + ε}.� (1.8)

We denote (here and further |A| is the Lebesgue measure of the set A)

σN,R.ε(dx) := |Sε,N,R|−11{Sε,N,R}(x)dx

the uniform probability on a shell and note that it is a.c. w.r.t. γN,θ. We will also often make 
use of the simple relation

|Sε,N,R| = ε|SN,R|+ O
(
ε2) .� (1.9)

With these definitions at hand, we can introduce the probability distributions defining our 

Boltzmann machines. Let µ(·) ∈ {σ(·), γ(·), ρ(·)} and µ2
(·) ∈ {σ(·), γ(·)} ⊗ {σ(·), γ(·)} ∪ {ρ2

(·)} 
denote one prior among the one introduced before respectively for the one-layer and the bipar-
tite machine. We have for β > 0

GHM
N1,N2,β(dx) := Z−1

N1,N2,βµN1(dx)e−βH(x) GRBM
N1,N2,β := Z−1

N1,N2,βµ
2
N1,N2

(dxdy)e−βH(x,y).� (1.10)

The normalisation ZN1,N2,β is called partition function and it needs not to be the same, despite 
the symbol. Moreover
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AHM
N1,N2

(β) :=
1

N1 + N2
log ZN1,N2,β ARBM

N1,N2
(β) :=

1
N1 + N2

log ZN1,N2,β .

� (1.11)
Most interesting is to evaluate the last quantities in the so-called thermodynamic limit, 

namely

N1, N2 → ∞, such that lim
N1,N2

N1

N1 + N2
=: α > 0.

The regime α �= 0, 1 is called high-load and we will stick to that in this work.
Being Lipschitz functions of the weights, free energies always satisfies a concentration 

inequality which ensures their a.s. convergence to the expected value. This self-averaging 
property will be exploited throughout without further mention.

For simplicity we will assume always the distributions of the two layers to have the same 
parameters, i.e. radius and variance. The general case requires a trivial extension of our 
formulas.

In general Aµ(X,α,β) denotes the free energy of a BM with prior µ whose parameters are 
X. We will often drop the descriptive labels from the Hamiltonian, Gibbs measure and free 
energy when it will be clear from the context to which one we refer to. Only exception, the 
quantities of interest referred to spherical shell priors are indicated by ·̂  for all the models.

1.2.  Main result and organisation of the paper

We will focus on the free energy associated to BMs with the particular priors introduced 
above. We will prove the following equivalence at the level of free energies, which can be 
related by a marginalisation (m) or a Legendre transform (LT):

HMσ RBMσ,γ RBMσσ RBMρ2

HMρ RBMργ

m

LT LT

LT LT

m

LT

We will not concern here about low-load (α = 0, 1), yet some of the equivalences we state 
hold also in this regime. More precisely, red arrows indicate equivalences valid only in high 
load while blue arrow equivalences hold regardless of α.

Marginalisation is the usual trick of RBMs. The two layers are coupled linearly, so that one 
can integrate out á la Stratonovich the units from the Gaussian layer in the partition function of 
a RBM to obtain the partition function of a HM (with β2 replacing β). All the relevant quanti-
ties (e.g. Gibbs measures, free energy, order parameters etc) of one model can be computed 
directly from the one of the other one. For instance the equivalence HMσ ↔ RBMσ,γ at the 
level of Gibbs measure reads as

Z−1
N1,N2,βσN2,R(dx)

∫

RN2

γN2,θ(dy)eβHRBM
N1,N2 = Z−1

N1,N2,βσN1,R(dx)e
β2

θ2 HHM
N1 ,

since the partition functions of the two models are numerically the same.
Legendre transforms are where the idea of equivalence of ensembles exploits and more 

precise statements are given in theorem 1.1 below. A Gaussian prior of N units concentrates 
on a N-dimensional sphere of radius proportional to 

√
N . To find the optimal radius we slice 

up the Gibbs measure at the level of the Gaussian prior and look for the most relevant contrib
ution to the free energy. This strategy yields naturally a variational principle of the Legendre 
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type relating the spherical and Gaussian free energies. Moreover we identify the square radius 
of the optimal sphere R2 and the variance of the Gaussian model θ−1 as Legendre conjugate 
variables.

The main idea is very simple; we briefly outline the heuristics for the equivalence 

RBMσσ
LT←→RBMρ2 (the other cases are similar). By the standard disintegration of finite-

dimensional Gaussian measures into spheres we have
∫

RN1×RN1

µ2(dxdy)e−βH(x,y)

=

∫ ∞

0
dR1

∫ ∞

0
dR2e

−
√

N1N2r
(

R1√
N1

, R2√
N2

)
− R1

2θ1
− R2

2θ2

|SN1(R1)× SN2(R2)|
√

2πθ
N1+N2

∫

SN1 (R1)×SN2 (R2)

σN1,R1(dx)σN2,R2(dy)e−βH(x,y).

�

(1.12)

We adjusted the normalisation of the inner integral so to get the partition function of RBMσσ. 
Thus we continue the chain of identities as

(1.12) =
∫ ∞

0
dR1

∫ ∞

0
dR2e

−
√

N1N2r
(

R1√
N1

, R2√
N2

)
− R1

2θ1
− R2

2θ2
+log

(
|SN1

(R1)×SN2
(R2)|

√
2πθN1+N2

)
+(N1+N2)Aσσ(R1,R2)

.

� (1.13)
Then we can evaluate the integral by the usual Laplace method, since by a simple scaling argu-
ment the maximum must be attained at the scale R1, R2 ∼

√
N1 + N2 .

To give rigorous grounds to this heuristics we need some few properties. First, we have to 
control the thermodynamic limit of the free energy of spherical models HMσ and RBMσσ. 
These limits are computed in section 2. Secondly, to properly implement the above disin-
tegration formula, we need the regular behaviour of the model with spherical shell prior as 
the thickness of the shell vanish. In other words, at the level of free energy thermodynamics 
should favour those configurations on the shell which actually lie on a given sphere into it. 
This is proven in sections 2 and 3. Lastly, the unit configurations outside any ball of radius 
growing faster than 

√
N1,

√
N2 must give vanishing contribution in the thermodynamic limit. 

This is proven in section 3, where the proof of our main result, i.e. subsequent theorem 1.1, 
is completed.

Theorem 1.1.  Assume (P1), (P2) and let ρN , ρ2
N  be defined as in (1.6), (1.7) and discussion 

around. Then

	 (i)	�HMσ
LT←→HMρ:

Aρ(θ,α,β) = α sup
R>0

(
α−1Aσ(R,β)− R2

2θ
+ logR − r(R)− 1

2
(log θ − 1)

)
;

� (1.14)

Aσ(R,β) = α inf
θ>0

(
R2

2θ
+ α−1Aρ(θ,α,β)− logR + r(R) +

1
2
(log θ − 1)

)
.

� (1.15)

	(ii)	�RBMσσ
LT←→RBMσ,γ:

Aσ,γ(θ, R2,α,β) = α sup
R1>0

(
α−1Aσσ(R1, R2,β)− R2

1

2θ
+ logR1 −

1
2
(log θ − 1)

)
;

� (1.16)
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Aσσ(R1, R2,β) = α inf
θ>0

(
R2

1

2θ
+ α−1Aσ,γ(θ, R2,α,β)− logR1 +

1
2
(log θ − 1)

)
.

� (1.17)

	(iii)	�RBMσσ
LT←→RBMρ2:

Aρ2(θ,α,β) = sup
R1,R2>0

(
Aσσ(R1, R2)−

αR2
1 + (1 − α)R2

2

2θ
+ log(Rα

1 R1−α
2 )−

√
α(1 − α)r(R1, R2)−

1
2
(log θ − 1)

)
;

� (1.18)

A(R1, R2) = inf
θ1,θ2>0

(
αR2

1

2θ1
+

(1 − α)R2
2

2θ2
+ Aρ2(θ1, θ2,α,β)− log(Rα

1 R1−α
2 ) +

√
α(1 − α)r(R1, R2) +

1
2
(log θα1 θ

1−α
2 − 1)

)
.

� (1.19)
The other equivalences of the scheme above can be derived by combining (i)–(iii) and mar-

ginalisations. Albeit we will not include that in this paper, these dualities can be established 
also for the Gibbs distributions (1.10).

1.3.  Related literature

Once the model has been properly regularised, spherical, Gaussian or sub-Gaussian priors are 
all equivalent; so we shall speak indistinctly of Gaussian BMs in what follows.

The use of Gaussian visible variables is useful to handle real data and has been suggested 
since the beginning of the theory [16]. However the learning and retrieval capabilities of the 
fully visible BM with Gaussian units are not as good as its ±1 counterpart at low-load [17], 
and at high-load they are totally useless [17, 18]. Restricted architectures are more interest-
ing. RBMs with Gaussian visible and latent variables have been used for instance for factor 
analysis [19, 20] and collaborative filtering [21]. In general training, through e.g. contrastive 
divergence, is slower than that in a Bernoulli–Gaussian machine [22–25] and also retrieval is 
less pronounced [17, 26].

Independently on their performances, Gaussian BMs are of great theoretical relevance 
from the viewpoint of spin glasses, since their simpler mathematical structure helps our under-
standing of the, much more complicated, discrete models. Previous results on the model have 
been obtained in [27] and [28]. In [28] the authors achieve the same result as in our theorem 
2.2 and prove much more: fluctuations of the free energy are shown to be Gaussian in high 
temperature and Tracy–Widom for low temperature. The assumptions on the weight distribu-
tion are more general then ours, as they only require finiteness of the moments. Yet the method 
there employed is a sophisticated and technical random matrix argument and our approach 
is certainly lighter and more accessible to non-specialists. In [27] a variational principle for 
the free energy has been proven only for small β, by means of the so-called Latala method. 
One great merit of the approach of this paper is to provide a clear interpretation of the replica 
symmetric nature of the variational formula for the free energy (formulated in terms of the 
overlap), which is absent in [28] and in the present work, even though by a direct comparison 
with [10] one can see that our Lagrange multipliers (a, b below) are essentially shifted over-
laps. In any case it is remarkable that the free energy of a doubly spherical RBM satisfies a 
fully convex minimisation principle, which is a crucial difference compared to the minmax 
of Gauss–Bernoulli [29] and Bernoulli–Bernoulli RBMs [30]. The reason for that eludes our 
current understanding and we must defer the discussion of this point to future works.

G Genovese and D Tantari﻿J. Phys. A: Math. Theor. 53 (2020) 094001
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2.  Free energy of spherical models

In this section  we study the HM Hamiltonian (1.3) and RBM Hamiltonian (1.4) with the 
spherical prior in (1.5). Our main results are

Theorem 2.1.  Let AN1,N2 denote the free energy of HMσ. It holds P-a.s.

lim
N1,N2→∞

AN1,N2 = α min
2q�β(1−α)λ+

(
qR2 − 1

2

∫
ρMP(λ;α) log(2q − β(1 − α)λ)dλ− logR − 1

2

)
.

� (2.1)

Theorem 2.2.  Let AN1,N2 denote the free energy of RBMσσ and α � 1
2. It holds P-a.s.

lim
N1,N2→∞

AN1,N2 = min
ab�β2(1−α)λ+

(
R2

2
(αa + (1 − α)b)− 1

2
(1 − 2α) log(b)

− α

2

∫
ρMP(λ;α) log(ab − β2(1 − α)λ)dλ− logR − 1

2

)
.

�

(2.2)

The choice α � 1
2 is just a matter of convenience as it will be clear that pre-choosing 

the largest layer simplifies a lot the notations. For α � 1
2 one should bear in mind that the 

Marchenko–Pastur distribution (1.1) has an atom in zero.
First of all we prove that the spherical shells constitute a good approximation of the spheri-

cal prior. We recall that everywhere the quantities with ·̂  are always referred to spherical shell 
priors.

Lemma 2.3.  Let ÂN1,N2,ε denote the free energy of HMσε
, RBMσεσ

 or RBMσεσε
. Then it is

lim
ε→0

lim
N1,N2

ÂN1,N2,ε = lim
N1,N2

lim
ε→0

ÂN1,N2,ε.

The existence of the limit in the r.h.s. will be proven below.

Proof.  In this proof we write N to mean N1 or N2 and by Aσ(R;β) the free energy of a 
spherical model of radius R, according to the context. No further details are needed. By Fubini 
and the mean value theorem there is a R∗

ε ∈ [R
√

N − ε, R
√

N + ε] for which

ÂN1,N2 = Aσ
N1,N2

(R∗
ε;β).

By a simple change of variables we have

Aσ
N1,N2

(R∗
ε;β) = Aσ

N1,N2
(R; cN,εβ),

with cN,ε := R2
ε/R2N . Therefore by Lipschitz continuity of the free energy w.r.t. β

|Aσ
N1,N2

− ÂN1,N2,ε| �
ε

N
.

This, combined with Aσ
N1,N2

= limε→0 ÂN1,N2,ε, gives the assert.� □ 

We first deal with the Hopfield model. Everywhere from now on partition function and 
pressure will be referred to this model, unless otherwise specified.
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The best advantage of the spherical prior is that one can diagonalise the energy (1.3):

H(x) = −(1 − α)

N1∑
i=1

λix2
i .

Thanks to (P2), we can restrict our analysis to disorder realisations with spectrum contained 
in (−∞,λ+]. More precisely

Lemma 2.4.  For any a > λ+ there is a c  >  0 such that

E[AN1,N2(β, R)1{‖ΞΞT
N2

‖op>a}] = O
(
e−cN1

)
.� (2.3)

The proof of that follows essentially the same lines of [10]. We omit here the details. Also, 
the next proof is a straightforward adaption of [10, proof of (9)]. We give it completely in 
order to introduce the argument used to prove theorem 2.2.

Proof of theorem 2.1.  Let 2q > β(1 − α)λ+. Then using (1.9) we have

εẐN1,N2,ε(β,α, R) = ε eqR2N1

∫

RN1

σN1,R,ε(dz)e−
∑N1

i (q− β(1−α)
2 λi)z2

i

� eqR2N1
(2π)

N1
2

|SR
√

N1
|

∫

RN

dz

(2π)
N1
2

e−
∑N1

i (2q−β(1−α)λi)z2
i /2

= eqR2N1
(2π)

N1
2

|SR
√

N |
e−

1
2

∑N
i log(2q−β(1−α)λi),

� (2.4)

therefore, since 1
N1

log
(
|SR

√
N1
|/
√

2π
N1
)
→ logR + 1

2  and thanks to lemma 2.3

lim sup
N1,N2

1
N1 + N2

log ZN1,N2(β,α, R) � αqR2 − α

2

∫
ρMP(λ;α) log(2q − β(1 − α)λ)− α logR − α

2
=: Ã(q),

whence, as Ã(q) is continuous,

lim sup
N1,N2

1
N1 + N2

log ZN1,N2(β,α, R) � min
2q�β(1−α)λ+

Ã(q).

Moreover for 2q > β(1 − α)λ+

∂2
q Ã(q) = 2α

∫
dλ

ρMP(λ;α)
(2q − β(1 − α)λ)2 > 0,

thus Ã(q) is convex and the minimum is attained in a unique point q̄.
Now the reverse bound. Let ε > 0 and Sc

N1,R,ε the complementary set of the shell SN1,R,ε. It 
holds

εẐN1,N2,ε = eqR2N1
(2π)

N1
2

|SR
√

N1
|

∫

RN1

dz

(2π)
N1
2

e−
∑N1

i (q− β(1−α)
2 λi)z2

i − eqR2N1
(2π)

N
2

|SR
√

N1
|

∫

Sc
N1,R,ε

dz

(2π)
N1
2

e−
∑N1

i (q− β(1−α)
2 λi)z2

i .

For any η > 0 small enough we have

∫

Sc
N1,R,ε

dz

(2π)
N1
2

e−
∑N1

i (q− β(1−α)
2 λi)z2

i � exp


N1


η

(
R2 − ε

N1

)
− 1

2N1

∑
j

log(2q − βλj + 2η)






+ exp


N1


−η

(
R2 +

ε

N1

)
− 1

2N1

∑
j

log(2q − βλj − 2η)




 .
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Note now that the r.h.s. is o(e−N) if εN → ∞ as N → ∞. So the greatest contribution is at the 
scale ε = ε̃N, ε̃ > 0 independent on N1. Therefore

lim inf
N1,N2

ÂN1,N2,ε̃ � max
(
Ã(q), A1

ε̃(η; q), A2
ε̃(η; q)

)
,� (2.5)

with

A1
ε̃(η; q) = α(q + η)R2 − αε̃η − α

2

∫
dλρMP(λ;α) log(2(q + η)− βλ)− α logR − α

2
;� (2.6)

A2
ε̃(η; q) = α(q − η)R2 − αε̃η − α

2

∫
dλρMP(λ;α) log(2(q − η)− βλ)− α logR − α

2
.� (2.7)

Now we show that if q̄ is the unique minimiser of Ã(q) it is for η small enough

Ã(q̄) = max
(
Ã(q̄), A1

ε̃(η; q̄), A2
ε̃(η; q̄)

)
,

which will conclude the proof.
To do so we introduce

∆−(q; η) := Ã(q)− A1
ε̃(η; q) = −αη(R2 − ε̃) +

α

2

∫
dλρMP(λ;α) log

(
2(q + η)− βλ

2q − βλ

)
;

� (2.8)

∆+(q; η) := Ã(q)− A2
ε̃(η; q) = αη(R2 + ε̃) +

α

2

∫
dλρMP(λ;α) log

(
2(q − η)− βλ

2q − βλ

)
.� (2.9)

As a function of η, ∆±(q; η) are continuous and differentiable, vanishing in η = 0 and with 
limη→+∞ ∆±(q, η) = ±∞. Moreover ∆+(q; η) is uniformly convex and ∆−(q; η) uniformly 
concave. Thus ∆−(q; η) assumes a positive maximum iff the derivative in η = 0 is positive, 
that is

0 < −(R2 − ε̃) +

∫
dλ

ρMP(λ;α)
2q − βλ

= ε̃− ∂qÃ(q).� (2.10)

Likewise for ∆+(q; η) is always positive iff ∂η∆+(q; η)|η=0 � 0, i.e.

0 � (R2 + ε̃) +

∫
dλ

ρMP(λ;α)
2q − βλ

= ε̃+ ∂qÃ(q).� (2.11)

Combining (2.10) and (2.11) we get

−ε̃ � ∂qÃ(q)
∣∣
q=q̃ < ε̃,

that is q̃ is the unique stationary point of Ã(q). With this choice of q, relation (2.5) gives

lim inf
N1,N2

ÂN1,N2.ε̃ � min
q�βλ+

Ã(q).� (2.12)

As ε̃ can be taken arbitrarily small, we recover (2.1).� □ 
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Now we pass to compute the free energy of RBMσσ by adapting the same method as 
before. Until the end of this section, Hamiltonian, partition function etc will be referred to 
the RBMσσ. First step is to use the singular value decomposition of the matrix {ξij} to write

1√
N1 + N2

(x, ξy) =
√

1 − α
∑

i∈[N1]

σix̃iỹi,� (2.13)

where x̃, ỹ are related respectively to x, y by an orthogonal transformation. Note that this 
decomposition removes automatically N2 − N1 cyclic coordinates of the second layer.

First of all we show that the part of the spectrum which falls away the support of the 
Marchenko–Pastur law is negligible for the free energy. The proof is adapted from [10] and 
we will stress only the most salient points of it.

Lemma 2.5.  There exists c, C > 0 so that

E[AN1,N2 1{maxi∈[N1]
σi>σ̄}] � Ce−cN1 ,

where σ̄ := 1 +
√

α
1+α .

Proof.  For any a > σ̄ we compute

E[eαβ
∑

i∈[N1]
σi x̃i ỹi ] = E[eβ

∑
i∈[N1]

σi x̃i ỹi 1{maxi∈[N1]
σi�a}] + E[eβ

∑
i∈[N1]

σi x̃i ỹi 1{maxi∈[N1]
σi>a}].

The first summand is easily estimated by

E[eβ
∑

i∈[N1]
σi x̃i ỹi 1{maxi∈[N1]

σi�a}] � E[eβa
∑

i∈[N1]
x̃i ỹi ] � E[eβa‖x̃‖‖ỹ‖].� (2.14)

Arguing as in the proof of [10, proposition 1] we can write for a C  >  0

E[eβ
∑

i∈[N1]
σi x̃i ỹi 1{maxi∈[N1]

σi>a}] � Ca
√

2π(N1 + N2)e
β2

2(N1+N2)
‖x̃‖2‖ỹ‖2

.�
(2.15)

Then (2.14) and (2.15) give an annealed bound for the free energy:

lim sup
N1,N2

AN � max

(
σ̄β

√
α(1 − α)R2,

1
2
β2α(1 − α)R2

1R2
2

)
< ∞.� (2.16)

With this bound at hand, we repeat mutatis mutandis the steps of the proof of [10, lemma 
1] to get

E[AN1,N2 1{maxi∈[N1]
σi>σ̄}] �

√
α(1 − α)β2R4 + a2

√
P(‖ΞΞT/N2 − I‖op � t +

√
λ+ − 1)� (2.17)

and the assert follows from (1.2).� □ 

Proof of theorem 2.2.  Now start from (2.13) and write for any a, b such that ab > β2

(1 − α)λ+

ZN1,N2 =

∫
σ1(dx)σ2(dy) exp


√

1 − αβ
∑

i∈[N1]

xiyiσi −
a
2
‖x‖2 − b

2
‖y‖2 +

a
2

R2N1 +
b
2

R2N2




= exp

(
R2

2
(aN1 + bN2)

)∫
σ1(dx)σ2(dy) exp

(
−1

2

N2∑
i=1

(zT
i , Mizi)

)
,

�

(2.18)
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where we have defined

zT
i :=

{
(xi, yi) i = 1, . . . , N1,
(0, yi) i = N1 + 1, . . . , N2

and the 2 × 2 symmetric positively defined matrix

Mi :=

(
a −β

√
1 − ασi

−β
√

1 − ασi b

)
, i ∈ [N1] Mi := diag(0, b), i = N1 + 1, . . . , N2.

Thus by (1.9)

ε2ẐN1,N2,ε � exp

(
R2

2
(aN1 + bN2)

)
(2π)

N1
2 (2π)

N2
2

SR
N1

SR
N2

∫
dxdy
√

2π
N exp

(
−1

2

N2∑
i=1

(zT
i , Mizi)

)
,

= exp

(
R2

2
(aN1 + bN2)

)
(2π)

N1
2 (2π)

N2
2

SR
N1

SR
N2

b−
N2−N1

2

N1∏
i=1

(ab − β2(1 − α)σ2
i )

− 1
2 .

�

(2.19)

We introduce

Ā(a, b) :=
R2

2
(aα+ b(1 − α))− logR − 1

2
− 1 − 2α

2
log b − α

2

∫
ρMP(dλ;α) log(ab − (1 − α)β2λ)

� (2.20)

and

lim sup
N1,N2

AN1,N2 � Ā(a, b), ∀a, b > 0 : ab > (1 − α)β2λ+.

A direct inspection shows that A(a, b) is jointly uniformly convex for any α ∈ [0, 1/2] if 
ab > (1 − α)β2λ+, therefore

lim sup
N1,N2

AN1,N2 � min
ab>(1−α)β2λ+

Ā(a, b).� (2.21)

We record for later use the gradient coordinates

∂aĀ(a, b) =
αR2

2
− α

2

∫
ρMP(dλ;α)

b
ab − (1 − α)β2λ

;� (2.22)

∂bĀ(a, b) =
(1 − α)R2

2
− 1 − 2α

2b
− α

2

∫
ρMP(dλ;α)

a
ab − (1 − α)β2λ

.

� (2.23)

For the reverse bound consider again spherical shells around SR,N1 and SR,N2  of thickness ε, 
that we name respectively S1,ε and S2,ε. We split S1,ε = RN1 \ Sc

1,ε and S2,ε = RN2 \ Sc
2,ε and 

set Sε := S1,ε × S2,ε. We have
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ε2ẐN1,N2,ε := ε2
∫

σN1,R,ε(dx)σN2,R,ε(dy)e−βHN(x,y)

= exp

(
R2

2
(aN1 + bN2)

)∫

RN1×RN2

dxdy
|S1||S2|

exp

(
−1

2

N2∑
i=1

(zT
i , Mizi)

)

− exp

(
R2

2
(aN1 + bN2)

)∫

Sc
ε

dxdy
|S1||S2|

exp

(
−1

2

N2∑
i=1

(zT
i , Mizi)

)
,

� (2.24)

where we used again the representation (2.18). The free energy associated to the first sum-
mand was already computed above in the thermodynamic limit. Therefore we have to upper 
bound the second summand. We consider four contributions according to the following de-
composition. Let κ ∈ {−1, 1} and put

Sκ,1
ε := {x ∈ RN1 , y ∈ RN2 : κ(‖x‖2 − R2N1) � εN1 },

Sκ,2
ε := {x ∈ RN1 , y ∈ RN2 : κ(‖y‖2 − R2N2) � εN2 }.

Thus Sc
ε =

⋃
κ∈{−1,1},j∈{1,2} Sκ,j

ε . Moreover we pick η > 0 small enough and set

M(κ,j)
i (η) :=

(
a + (2 − j)κη −β

√
1 − ασi

−β
√

1 − ασi b + ( j − 1)κη

)
, i ∈ [N1]

M(κ,j)
i (η) := diag(0, b + ( j − 1)κη), i = N1 + 1, . . . , N2.

�

Also, we put

Zκ,j
N1,N2,ε := exp

(
R2

2
(aN1 + bN2) +

(2 − j)N1κηa
2

+
( j − 1)N2κηb

2
− ηεNj

)

∫

Sκ,j
ε

dxdy
|S1||S2|

exp

(
−1

2

N2∑
i=1

(zT
i , M(κ,j)

i (η)zi)

)

�

(2.25)

so that

(2.24) = −
∑

κ∈{−1,1},j=1,2

Zκ,j
N1,N2,ε.

We conclude that for any η > 0 sufficiently small and a, b with ab > (1 − α)β2λ+

lim sup
N1,N2

ÂN1,N2,ε � max(Ā(a, b), {Aκ,j
ε (η; a, b)}κ∈{−1,1},j∈{1,2}),� (2.26)

where

Aκ,j
ε (η; a, b) := − ηε+

1
2
αa(R2 + (2 − j)κη) +

1
2
(1 − α)b(R2 + ( j − 1)κη)

− logR − 1
2
− 1 − 2α

2
log(b + ( j − 1)κη)

− α

2

∫
ρMP(dλ;α) log((a + (2 − j)κη)(b + ( j − 1)κη)− (1 − α)β2λ).
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In analogy with the proof of theorem 2.1 we define

∆κ,j
ε (η) := Ā(a, b)− Aκ,j

ε (η; a, b)

= ηε− (2 − j)κ
ηαa

2
− ( j − 1)κ

η(1 − α)b
2

+
1 − 2α

2
log(b + ( j − 1)κη)

+
α

2

∫
ρMP(dλ;α) log

(
(a + (2 − j)κη)(b + ( j − 1)κη)− (1 − α)β2λ

ab − (1 − α)β2λ

)
.

We need to show that ∆κ,j
ε (η) � 0 for η > 0 small. As before, to do so it suffices to prove 

the derivative in the origin to be non-negative uniformly in ε > 0. Bearing in mind (2.22) and 
(2.23) we have

d
dη

∆κ,j
ε (η)

∣∣
η=0 = ε+ (2 − j)κ

(
−aαR2

2
+

α

2

∫
ρMP(dλ;α)

(
b

ab − (1 − α)β2λ

))

+ ( j − 1)κ
(
−b(1 − α)R2

2
+

1 − 2α
2b

+
α

2

∫
ρMP(dλ;α)

(
a

ab − (1 − α)β2λ

))

= ε− (2 − j)κ∂aĀ − ( j − 1)κ∂bĀ � 0.

Since the inequality must hold for any ε > 0, κ ∈ {−1, 1} and j ∈ {1, 2}, we have to pick 
(ā, b̄) = argmin Ā. Therefore

lim sup
N1,N2

AN1,N2,ε � max(Ā(ā, b̄), {Aε,κ1,κ2(η; ā, b̄)}κ1,κ2∈{−1,1}) = min
ab>β2(1−α)λ+

Ā(a, b) ∀ε > 0,

which combined with (2.21) proves the theorem.� □ 

3.  Legendre equivalences of priors

In this section we explain the Legendre equivalence of spherical models on general terms. 
First of all we prove some a priori estimates ensuring the boundedness of the free energy in 
the thermodynamic limit. This will be used to cut the tails of the Gaussian distributions of the 
prior.

The first quick remark is that combining theorem 2.1 and a marginalisation we have

Corollary 3.1.  Let AN be the free energy of RBMσ,γ. Then limN AN  exists P-a.s.

Next we focus on the Hopfield model with Gaussian prior previously defined.

Lemma 3.2.  Let AN1,N2 be the free energy of HMρ. There is f (λ+,β) continuous and 
bounded for which

lim sup
N1,N2

E[AN1,N2 ] � f (λ+,β).� (3.1)

Proof.  Let a > λ+ and set for brevity λ∗ := maxi∈[N1] λi. We write

1
N1 + N2

E[log ZN1,N2 ] =
∑
k�0

E
[

1
N1 + N2

log ZN1,N2 | (k + 1)a � λ∗ > ka
]

P((k + 1)a � λ∗ > ka).
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Inside the conditional expectation we can bound HN(z) � a‖z‖2 . Therefore

E
[

1
N1 + N2

log ZN1,N2 | (k + 1)a � λ∗ > ka
]
�

1
N1 + N2

log

∫
γN1,θ(dx) exp

(
‖x‖2(βa(k + 1))− Nr

(
‖x‖√

N

))

�
1

N1 + N2
max
R�0

(
R2(βa(k + 1))− N1r

(
R√
N1

))

= max
R�0

(
R2(βa(k + 1))− r (R)

)
.

On the other hand by assumption

P((k + 1)a � λ∗ > ka) � 2e−ca2k2N1 , c > 0.� (3.2)

In conclusion

E[AN1,N2 ] �
∑
k�0

e−ca2k2N1 max
R�0

(
R2(βa(k + 1))− r (R)

)
=: f (a,β),� (3.3)

a continuous bounded function. In particular the estimate holds also for a → λ+.� □ 

The analogue statement for RBMρ2:

Lemma 3.3.  Let AN1,N2 be the free energy of RBMρ2. There is f (λ+,β) continuous and 
bounded for which

lim sup
N1,N2

E[AN1,N2 ] � f (λ+,β).� (3.4)

Proof.  Same proof as before, noting

β(1 − α)
∑

i

σixiyi −
√

N1N2r
(

‖x‖√
N1

,
‖y‖√

N2

)
� β(1 − α)a‖x‖‖y‖ −

√
N1N2r

(
‖x‖√

N1

)

� max
R1,R2

(β(1 − α)aR1R2 − r(R1, R2))

for any a > σ+.� □ 

The above results immediately allow us to achieve the following useful lemma.

Lemma 3.4.  Let R, δ > 0, N ∈ N. It holds for some C, c > 0
∫

{‖x‖2�R2N1+δ
1 }

ρN1(dx)e−βHN1,N2 (x) � Ce−cN1+δ
1 ,� (3.5)

∫

{‖x‖2�R2N1+δ
1 }

γN1,θ(dx)σR,N2(dy)e−βHN1,N2 (x,y) � Ce−cN1+δ
1 ,� (3.6)

∫

{‖x‖2�R2N1+δ
1 }∪{‖y‖2�R2N1+δ

2 }
ρ2

N1,N2
(dxdy)e−βHN1,N2 (x,y) � Ce−cN1+δ

1 .� (3.7)
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Proof.  We prove only (3.5)–(3.7) are similar. Let us write
∫

{‖x‖2�R2N1+δ
1 }

ρ(dx)e−βHN1,N2 (x) � e−
R2N1+δ

1
2θ

∫

{‖x‖2�R2N1+δ
1 }

γN1,2θ(dx)e
−βHN1,N2 (x)−N1r

(
‖x‖√

N1

)

� e−
R2N1+δ

1
2θ ZN1,N2(2θ) = exp

(
(N1 + N2)AN1,N2(2θ)−

R2N1+δ
1

2θ

)
.

Here we have emphasised the dependence on θ of partition function and free energy. Then 
(3.5) follows from lemma 3.3.� □ 

Now we are ready to prove the Legendre equivalences of theorem 1.1. We shall prove only 
(1.14), (1.16) and (1.18); the dual relations (1.15), (1.17) and (1.19) then follow directly, as one 
can easily verify the inverse Legendre transformation to be also well defined and involutive.

We start by (i), where we deal with a single Gaussian prior. Let ε > 0, δ > 0. From now 
on we will systematically omit the dependence on δ of the objects we will operate with. 
Let further r < Nδ

1/ε, R0:  =  0, Rr+1 := Nδ
1, {Ri}i=1,...,r ⊂ [0, Nδ

1 ) with |Ri+1 − Ri| < 2ε, and 
decompose RN1 :=

⋃r
i=0 S[i]

N1,ε ∪ T , where

S[i]
N1,ε := {z ∈ RN1 Ri

√
N1 � ‖z‖2 � Ri+1

√
N1}, T := {z ∈ RN1 ‖z‖2 � N1

δ+ 1
2 }.

Comparing with (1.8) one easily sees that the S[i]
ε,N1

 are spherical shells. We denote by σ[i]
N1,ε the 

uniform distributions on these shells. Then we have

Zρ
N1,N1

=

r∑
i=0

Zρ
N1,N2

[i] + Z̃ρ
N1,N2

,� (3.8)

where

Zρ
N1,N2

[i] :=
∫

S[i]N1,ε

ρN1(dx)e−βHN1,N2 (x), Z̃ρ
N1,N2

:=
∫

T
ρN1(dx)e−βHN1,N2 (x).

The tail term Z̃ρ
N1,N2

 gives a negligible contribution thanks to lemma 3.4 and we will ignore it 
all the time. Thus by (3.8) we get

max
i∈[r]

Zρ
N1,N2

[i] � Zρ
N1,N2,β �

Nδ

ε
max
i∈[r]

Zρ
N1,N2

[i].

Therefore setting

AN1,N2 [i] :=
(

1
N1 + N2

log Zρ
N1,N2

[i]
)

� (3.9)

we have

max
i∈[r]

(AN1,N2 [i]) �
1

N1 + N2
log Zρ

N1,N2
� max

i∈[r]
(AN1,N2 [i]) +

δ logN1 − log ε

N1 + N2
.

� (3.10)
So the free energy of HMρ is given by the limit of maxi∈[r] (AN1,N2 [i]), provided it exists.

We notice now that by continuity for any x ∈ S[i]
ε,N1

‖x‖2

2θ
+ N1r

(
‖x‖√

N1

)
=

R̃2
i N1

2θ
+ N1r

(
R̃i
)
+ O (ε)� (3.11)
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where R̃i ∈ [Ri, Ri+1]. Therefore

Zρ
N1,N2,β [i] = e−

R̃2
i N1
2θ −N1r(R̃i)−O(ε) |S[i]

N1,ε|√
2πθ

N1

∫
σ
[i]
N1,ε(dx)e−βHN1,N2 (x)� (3.12)

and

AN1,N2 [i] =
N1

N1 + N2

(
1

N1
log

(
|S[i]

ε,N1
|

√
2πθ

N1

)
− R̃2

i

2θ
− r

(
R̃i
))

+ Âε
N1,N2

(
R̃i
)
+

O (ε)

N1 + N2

=: ÃN1,N2,ε
(
R̃i
)
+

O (ε)

N1 + N2
.

Thus we see that the existence of the thermodynamic limit is ensured by lemma 2.3 and we 
have

lim
N1,N2

max
i∈[r]

(AN1,N2 [i]) = sup
R>0

lim
N1,N2

(
ÃN1,N2,ε(R)

)
=: sup

R>0
Ãε(R).

By the uniform concavity of Ãε(R) we have

lim
ε→0

sup
R>0

Ãε(R) = sup
R>0

lim
ε→0

Ãε(R) = −α

2
log θ + α sup

R>0

(
logR +

1
2
+ α−1Aσ(R,β)− r(R)− R2

2θ

)

and the proof of (1.14) is concluded.
Note that in this argument the regularising function r plays essentially no role. So it can 

be set to zero and repeat verbatim all the previous steps for the RBMσ,γ. This way we obtain 
(1.16).

Finally we turn to RBMρ2. Here we have to slice up both Gaussian priors and the pre-
vious construction easily extends. We just sketch the argument, stressing only the points 
in which it differs from above. Let ε > 0, δ > 0, r < Nδ

1/ε, r′ < Nδ
2/ε, R0, R′

0 := 0, 
Rr+1 := Nδ

1, R′
r′+1 := Nδ

2 , {Ri}i=1,...,r ⊂ [0, Nδ
1 ) with |Ri+1 − Ri| < 2ε, {R′

i}i=1,...,r′ ⊂ [0, Nδ
2 ) 

with |R′
i+1 − R′

i | < 2ε. Decompose RN1 × RN2 :=
⋃

i∈[r],j∈[r′] S[i]
N1,ε × S′[ j]

N2,ε ∪ T , where

S[i]
N1,ε := {z ∈ RN1 Ri

√
N1 � ‖z‖2 � Ri+1

√
N1},

S′[i]
N2,ε := {z ∈ RN2 R′

i

√
N2 � ‖z‖2 � R′

i+1
√

N2},

T := {z ∈ RN1 ‖z‖2 � N1
δ+ 1

2 } ∪ {z ∈ RN2 ‖z‖2 � N2
δ+ 1

2 }.

Again T can be neglected due to lemma 3.4. We have to evaluate

Zρ2

N1,N2
[i, j] :=

∫

S[i]N1,ε×S′[ j]
N2,ε

ρ2
N1N2

(dxdy)e−βHN1,N2 (x,y),

=
|S[i]

N1,ε × S′[ j]
N2,ε|√

2πθ
N1+N2

e−
R̃2

i N1+R′2
j N2

2θ −
√

N1N2r(R̃i,R̃′
j)+O(ε)

∫

S[i]N1,ε×S′[ j]
N1,ε

σ
[i]
N1,ε(dx)σ[i]

N1,ε(dy)e−βHN1,N2 (x,y),
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where the R̃i and R̃′
i are introduced as before (see (3.11)). Therefore

AN1,N2,β [i, j] :=
1

N1 + N2
log Zρ2

N1,N2,β [i, j]

=
1

N1 + N2
log

(
|S[i]

N1,ε × S′[ j]
N2,ε|√

2πθ
N1+N2

)
+

O (ε)

N1 + N2
−

R̃2
i + R′2

j

2θ

−
√

N1N2

N1 + N2
r
(
R̃i, R̃′

j
)
+ ÂN1,N2,ε(R̃i, R̃j),

where ÂN1,N2,ε(R̃i, R̃′
j) is the free energy of the RBM whose priors are the spherical shell mea-

sures of centres R̃i, R̃′
j. The argument to pass to the thermodynamic limit is then the same, so 

(1.18) is obtained.
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